Sample records for cell pbmc samples

  1. HCG-Activated Human Peripheral Blood Mononuclear Cells (PBMC) Promote Trophoblast Cell Invasion

    PubMed Central

    Wang, Yaqin; Guo, Yue; Zhou, Danni; Xu, Mei; Ding, Jinli; Yang, Jing

    2015-01-01

    Successful embryo implantation and placentation depend on appropriate trophoblast invasion into the maternal endometrial stroma. Human chorionic gonadotropin (hCG) is one of the earliest embryo-derived secreted signals in the peripheral blood mononuclear cells (PBMC) that abundantly expresses hCG receptors. The aims of this study were to estimate the effect of human embryo–secreted hCG on PBMC function and investigate the role and underlying mechanisms of activated PBMC in trophoblast invasion. Blood samples were collected from women undergoing benign gynecological surgery during the mid-secretory phase. PBMC were isolated and stimulated with or without hCG for 0 or 24 h. Interleukin-1β (IL-1β) and leukemia inhibitory factor (LIF) expressions in PBMC were detected by enzyme-linked immunosorbent assay and real-time polymerase chain reaction (PCR). The JAR cell line served as a model for trophoblast cells and was divided into four groups: control, hCG only, PBMC only, and PBMC with hCG. JAR cell invasive and proliferative abilities were detected by trans-well and CCK8 assays and matrix metalloproteinase (MMP)-2 (MMP-2), MMP-9, vascular endothelial growth factor (VEGF), tissue inhibitor of metalloproteinase (TIMP)-1, and TIMP-2 expressions in JAR cells were detected by western blotting and real-time PCR analysis. We found that hCG can remarkably promote IL-1β and LIF promotion in PBMC after 24-h culture. PBMC activated by hCG significantly increased the number of invasive JAR cells in an invasion assay without affecting proliferation, and hCG-activated PBMC significantly increased MMP-2, MMP-9, and VEGF and decreased TIMP-1 and TIMP-2 expressions in JAR cells in a dose-dependent manner. This study demonstrated that hCG stimulates cytokine secretion in human PBMC and could stimulate trophoblast invasion. PMID:26087261

  2. Improvement of IFNγ ELISPOT Performance Following Overnight Resting of Frozen PBMC Samples Confirmed Through Rigorous Statistical Analysis

    PubMed Central

    Santos, Radleigh; Buying, Alcinette; Sabri, Nazila; Yu, John; Gringeri, Anthony; Bender, James; Janetzki, Sylvia; Pinilla, Clemencia; Judkowski, Valeria A.

    2014-01-01

    Immune monitoring of functional responses is a fundamental parameter to establish correlates of protection in clinical trials evaluating vaccines and therapies to boost antigen-specific responses. The IFNγ ELISPOT assay is a well-standardized and validated method for the determination of functional IFNγ-producing T-cells in peripheral blood mononuclear cells (PBMC); however, its performance greatly depends on the quality and integrity of the cryopreserved PBMC. Here, we investigate the effect of overnight (ON) resting of the PBMC on the detection of CD8-restricted peptide-specific responses by IFNγ ELISPOT. The study used PBMC from healthy donors to evaluate the CD8 T-cell response to five pooled or individual HLA-A2 viral peptides. The results were analyzed using a modification of the existing distribution free resampling (DFR) recommended for the analysis of ELISPOT data to ensure the most rigorous possible standard of significance. The results of the study demonstrate that ON resting of PBMC samples prior to IFNγ ELISPOT increases both the magnitude and the statistical significance of the responses. In addition, a comparison of the results with a 13-day preculture of PBMC with the peptides before testing demonstrates that ON resting is sufficient for the efficient evaluation of immune functioning. PMID:25546016

  3. Benefits of a comprehensive quality program for cryopreserved PBMC covering 28 clinical trials sites utilizing an integrated, analytical web-based portal

    PubMed Central

    Ducar, Constance; Smith, Donna; Pinzon, Cris; Stirewalt, Michael; Cooper, Cristine; McElrath, M. Juliana; Hural, John

    2014-01-01

    The HIV Vaccine Trials Network (HVTN) is a global network of 28 clinical trial sites dedicated to identifying an effective HIV vaccine. Cryopreservation of high-quality peripheral blood mononuclear cells (PBMC) is critical for the assessment of vaccine-induced cellular immune functions. The HVTN PBMC Quality Management Program is designed to ensure viable PBMC are processed, stored and shipped for clinical trial assays from all HVTN clinical trial sites. The program has evolved by developing and incorporating best practices for laboratory and specimen quality and implementing automated, web-based tools. These tools allow the site-affiliated processing laboratories and the central Laboratory Operations Unit to rapidly collect, analyze and report PBMC quality data. The HVTN PBMC Quality Management Program includes five key components: 1) Laboratory Assessment, 2) PBMC Training and Certification, 3) Internal Quality Control, 4) External Quality Control (EQC), and 5) Assay Specimen Quality Control. Fresh PBMC processing data is uploaded from each clinical site processing laboratory to a central HVTN Statistical and Data Management Center database for access and analysis on a web portal. Samples are thawed at a central laboratory for assay or specimen quality control and sample quality data is uploaded directly to the database by the central laboratory. Four year cumulative data covering 23,477 blood draws reveals an average fresh PBMC yield of 1.45×106 ±0.48 cells per milliliter of useable whole blood. 95% of samples were within the acceptable range for fresh cell yield of 0.8–3.2×106 cells/ml of usable blood. Prior to full implementation of the HVTN PBMC Quality Management Program, the 2007 EQC evaluations from 10 international sites showed a mean day 2 thawed viability of 83.1% and recovery of 67.5%. Since then, four year cumulative data covering 3338 specimens used in immunologic assays shows that 99.88% had acceptable viabilities (>66%) for use in cellular assays (mean, 91.46% ±4.5%), and 96.2% had acceptable recoveries (50%–130%) with a mean of recovery of 85.8% ±19.12% of the originally cryopreserved cells. EQC testing revealed that since August 2009, failed recoveries dropped from 4.1% to 1.6% and failed viabilities dropped from 1.0% to 0.3%. The HVTN PBMC quality program provides for laboratory assessment, training and tools for identifying problems, implementing corrective action and monitoring for improvements. These data support the benefits of implementing a comprehensive, web-based PBMC quality program for large clinical trials networks. PMID:24709391

  4. The effect of cellular isolation and cryopreservation on the expression of markers identifying subsets of regulatory T cells.

    PubMed

    Zhang, Weiying; Nilles, Tricia L; Johnson, Jacquett R; Margolick, Joseph B

    2016-04-01

    The role of CD4(+) regulatory T cells (Tregs) and their subsets during HIV infection is controversial. Cryopreserved peripheral blood mononuclear cells (PBMC) are an important source for assessing number and function of Tregs. However, it is unknown if PBMC isolation and cryopreservation affect the expression of CD120b and CD39, markers that identify specific subsets of Tregs. HIV-uninfected (HIV-) and -infected (HIV+) men were randomly selected from the Multicenter AIDS Cohort Study (MACS). Percentages of CD120b(+) and CD39(+) Tregs measured by flow cytometry in whole blood and in corresponding fresh and cryopreserved PBMC were compared. Percentages of CD120b(+) Tregs were significantly lower in a) fresh PBMC relative to whole blood, and b) freshly thawed frozen PBMC relative to fresh PBMC when the recovery of viable cryopreserved cells was low. When present, low expression of CD120b in frozen PBMC was reversible by 4h of in vitro culture. In contrast, expression of CD39 on Tregs was not affected by isolation and/or cryopreservation of PBMC, or by relative recovery of cryopreserved PBMC. These findings were unaffected by the HIV status of the donor. The data suggest that percentages of CD120b(+) Tregs and CD39(+) Tregs can be validly measured in either whole blood or PBMC (fresh and frozen) in HIV- and HIV+ men. However, for measurement of CD120b(+) Tregs one type of sample should be used consistently within a given study, and thawed frozen cells may require in vitro culture if recovery of viable cells is low. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Comparison of three methods of DNA extraction from peripheral blood mononuclear cells and lung fragments of equines.

    PubMed

    Santos, E M; Paula, J F R; Motta, P M C; Heinemann, M B; Leite, R C; Haddad, J P A; Del Puerto, H L; Reis, J K P

    2010-08-17

    We compared three different protocols for DNA extraction from horse peripheral blood mononuclear cells (PBMC) and lung fragments, determining average final DNA concentration, purity, percentage of PCR amplification using beta-actin, and cost. Thirty-four samples from PBMC, and 33 samples from lung fragments were submitted to DNA extraction by three different protocols. Protocol A consisted of a phenol-chloroform and isoamylic alcohol extraction, Protocol B used alkaline extraction with NaOH, and Protocol C used the DNAzol((R)) reagent kit. Protocol A was the best option for DNA extraction from lung fragments, producing high DNA concentrations, with high sensitivity in PCR amplification (100%), followed by Protocols C and B. On the other hand, for PBMC samples, Protocol B gave the highest sensitivity in PCR amplification (100%), followed by Protocols C and A. We conclude that Protocol A should be used for PCR diagnosis from lung fragment samples, while Protocol B should be used for PBMC.

  6. Benefits of a comprehensive quality program for cryopreserved PBMC covering 28 clinical trials sites utilizing an integrated, analytical web-based portal.

    PubMed

    Ducar, Constance; Smith, Donna; Pinzon, Cris; Stirewalt, Michael; Cooper, Cristine; McElrath, M Juliana; Hural, John

    2014-07-01

    The HIV Vaccine Trials Network (HVTN) is a global network of 28 clinical trial sites dedicated to identifying an effective HIV vaccine. Cryopreservation of high-quality peripheral blood mononuclear cells (PBMC) is critical for the assessment of vaccine-induced cellular immune functions. The HVTN PBMC Quality Management Program is designed to ensure that viable PBMC are processed, stored and shipped for clinical trial assays from all HVTN clinical trial sites. The program has evolved by developing and incorporating best practices for laboratory and specimen quality and implementing automated, web-based tools. These tools allow the site-affiliated processing laboratories and the central Laboratory Operations Unit to rapidly collect, analyze and report PBMC quality data. The HVTN PBMC Quality Management Program includes five key components: 1) Laboratory Assessment, 2) PBMC Training and Certification, 3) Internal Quality Control, 4) External Quality Control (EQC), and 5) Assay Specimen Quality Control. Fresh PBMC processing data is uploaded from each clinical site processing laboratory to a central HVTN Statistical and Data Management Center database for access and analysis on a web portal. Samples are thawed at a central laboratory for assay or specimen quality control and sample quality data is uploaded directly to the database by the central laboratory. Four year cumulative data covering 23,477 blood draws reveals an average fresh PBMC yield of 1.45×10(6)±0.48 cells per milliliter of useable whole blood. 95% of samples were within the acceptable range for fresh cell yield of 0.8-3.2×10(6) cells/ml of usable blood. Prior to full implementation of the HVTN PBMC Quality Management Program, the 2007 EQC evaluations from 10 international sites showed a mean day 2 thawed viability of 83.1% and a recovery of 67.5%. Since then, four year cumulative data covering 3338 specimens used in immunologic assays shows that 99.88% had acceptable viabilities (>66%) for use in cellular assays (mean, 91.46% ±4.5%), and 96.2% had acceptable recoveries (50%-130%) with a mean of recovery of 85.8% ±19.12% of the originally cryopreserved cells. EQC testing revealed that since August 2009, failed recoveries dropped from 4.1% to 1.6% and failed viabilities dropped from 1.0% to 0.3%. The HVTN PBMC quality program provides for laboratory assessment, training and tools for identifying problems, implementing corrective action and monitoring for improvements. These data support the benefits of implementing a comprehensive, web-based PBMC quality program for large clinical trials networks. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Intracellular levels of hepatitis B virus DNA and pregenomic RNA in peripheral blood mononuclear cells of chronically infected patients.

    PubMed

    Lu, L; Zhang, H-Y; Yueng, Y-H; Cheung, K-F; Luk, J M; Wang, F-S; Lau, G K K

    2009-02-01

    It remains uncertain whether hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and pregenomic RNA (pgRNA) can be detected in the serum or peripheral blood mononuclear cells (PBMC) of patients with chronic hepatitis B (CHB) infection. We examined HBV cccDNA and pgRNA in the serum and PBMC, and investigated the effect of lamivudine therapy on the viral loads in the PBMC of CHB patients. Paired serum and PBMC samples from 50 treatment-naïve CHB patients [25 hepatitis B e antigen (HBeAg) positive and 25 HBeAg negative] were quantified for total HBV DNA, cccDNA and pgRNA by real time polymerase chain reaction. HBV cccDNA and pgRNA were below the lower detection limit in all serum samples, and in 84% of PBMC. HBV DNA (r = 0.889, P < 0.001) and pgRNA (r = 0.696, P < 0.001) in PBMC correlated with the HBV DNA in serum. In the longitudinal study, 30 patients treated with lamivudine therapy for a median duration of 34 weeks (range 12-48 weeks) were examined. The median HBV DNA reduction in PBMC before and after treatment was 1.318 (range -0.471 to 3.846) log units, which was significantly lower than serum HBV DNA reduction [3.371 (range -0.883 to 9.454) log units, P < 0.05]. HBV cccDNA and pgRNA were undetectable in the serum of CHB patients. HBV viral loads in PBMC correlated with serum HBV DNA. Lamivudine therapy had less effect on the HBV viral loads in PBMC compared with the serum viral loads.

  8. Menstrual blood closely resembles the uterine immune micro-environment and is clearly distinct from peripheral blood.

    PubMed

    van der Molen, R G; Schutten, J H F; van Cranenbroek, B; ter Meer, M; Donckers, J; Scholten, R R; van der Heijden, O W H; Spaanderman, M E A; Joosten, I

    2014-02-01

    Is menstrual blood a suitable source of endometrial derived lymphocytes? Mononuclear cells isolated from menstrual samples (menstrual blood mononuclear cells (MMC)) are clearly distinct from peripheral blood mononuclear cells (PBMC) and show a strong resemblance with biopsy-derived endometrial mononuclear cells. A critical event in the onset of pregnancy is the implantation of the embryo in the uterine wall. The immune cell composition in the endometrium at the time of implantation is considered pivotal for success. Despite advancing knowledge on the composition of the immune cell population in the uterus, the role of endometrial immune cells in reproductive disorders is still not fully resolved, mainly due to the fact that this type of research requires invasive techniques. Here, we collected menstrual fluid and validated this unique non-invasive technique to obtain and study the endometrium-derived immune cells which would be present around the time of implantation. Five healthy non-pregnant females with regular menstruation cycles and not using oral contraceptives collected their menstrual blood using a menstrual cup in five consecutive cycles. Sampling took place over the first 3 days of menses, with 12 h intervals. Peripheral blood samples, taken before and after each menstruation, were obtained for comparative analysis. MMC and PBMC samples were characterized for the different lymphocyte subsets by flow cytometry, with emphasis on NK cells and T cells. Next, the functional capacity of the MMC-derived NK cells was determined by measuring intracellular production of IFN-γ, granzyme B and perforin after culture in the presence of IL-2 and IL-15. In support of their endometrial origin, MMC samples contained the typical composition of mononuclear cells expected of endometrial tissue, were phenotypically similar to the reported phenotype for biopsy-derived endometrial cells, and were distinct from PBMC. Increased percentages of NK cells and decreased percentages of T cells were found in MMC when compared with PBMC from the same female. The MMC-derived NK cells were pre-dominantly CD56(bright)/CD16(-), in contrast to the primarily CD56(dim)/CD16(+) peripheral blood NK cells. MMC-derived NK cells expressed CD103, indicating their mucosal origin. In addition, the pattern of natural cytotoxicity receptor (NCR) expression in MMC-derived NK cells was comparable with that in endometrial biopsy-derived NK cells. Compared with PBMC, the NKp30 expression was decreased, while the percentage of NKp44 positive cells was increased in MMC samples. CXCR3 and CXCR4 were hardly expressed by MMC-derived NK cells, indicating that these cells are not of PBMC origin. NK cells from MMC samples were functional as shown by their capacity to produce IFN-γ, granzyme B and perforin, upon stimulation with IL-2 and IL-15. MMC-derived T cells revealed an increased expression of CD103, CD69 and CXCR4 compared with PBMC-derived T cells. Importantly, MMC collection using a menstrual cup proved highly reliable and reproducible between women and between cycles. Based on the parameters we studied, MMC appear similar to biopsy-derived endometrial mononuclear cells. However, sampling is not done at the exact same time in the menstrual cycle, and thus we cannot exclude some, as yet undetected, differences. Also, it should be considered that for some women, the use of the menstrual cup may be unpleasant. Menstrual blood may be a source of endometrial cells and may create new opportunities to study uterine immunological cells in fertility issues. No external funding was obtained for the present study. None of the authors have any conflict of interest to declare. NA.

  9. Paracrine Factors from Irradiated Peripheral Blood Mononuclear Cells Improve Skin Regeneration and Angiogenesis in a Porcine Burn Model

    PubMed Central

    Hacker, Stefan; Mittermayr, Rainer; Nickl, Stefanie; Haider, Thomas; Lebherz-Eichinger, Diana; Beer, Lucian; Mitterbauer, Andreas; Leiss, Harald; Zimmermann, Matthias; Schweiger, Thomas; Keibl, Claudia; Hofbauer, Helmut; Gabriel, Christian; Pavone-Gyöngyösi, Mariann; Redl, Heinz; Tschachler, Erwin; Mildner, Michael; Ankersmit, Hendrik Jan

    2016-01-01

    Burn wounds pose a serious threat to patients and often require surgical treatment. Skin grafting aims to achieve wound closure but requires a well-vascularized wound bed. The secretome of peripheral blood mononuclear cells (PBMCs) has been shown to improve wound healing and angiogenesis. We hypothesized that topical application of the PBMC secretome would improve the quality of regenerating skin, increase angiogenesis, and reduce scar formation after burn injury and skin grafting in a porcine model. Full-thickness burn injuries were created on the back of female pigs. Necrotic areas were excised and the wounds were covered with split-thickness mesh skin grafts. Wounds were treated repeatedly with either the secretome of cultured PBMCs (SecPBMC), apoptotic PBMCs (Apo-SecPBMC), or controls. The wounds treated with Apo-SecPBMC had an increased epidermal thickness, higher number of rete ridges, and more advanced epidermal differentiation than controls. The samples treated with Apo-SecPBMC had a two-fold increase in CD31+ cells, indicating more angiogenesis. These data suggest that the repeated application of Apo-SecPBMC significantly improves epidermal thickness, angiogenesis, and skin quality in a porcine model of burn injury and skin grafting. PMID:27125302

  10. Encapsulated fish oil enriched in alpha-tocopherol alters plasma phospholipid and mononuclear cell fatty acid compositions but not mononuclear cell functions.

    PubMed

    Yaqoob, P; Pala, H S; Cortina-Borja, M; Newsholme, E A; Calder, P C

    2000-03-01

    Several studies have reported that dietary fish oil (FO) supplementation alters cytokine production and other functional activities of peripheral blood mononuclear cells (PBMC). However, few of these studies have been placebo controlled and few have related the functional changes to alterations in PBMC fatty acid composition Healthy subjects supplemented their diets with 9 g day-1 of encapsulated placebo oil (3 : 1 mix of coconut and soybean oils), olive oil (OO), safflower oil (SO), evening primrose oil (EPO) or FO [providing 2.1 g eicosapentaenoic acid (EPA) plus 1.1 g docosahexaenoic acid (DHA) per day] for 12 weeks; the capsules also provided 205 mg alpha-tocopherol per day. Blood was sampled at 4-weekly intervals and plasma and PBMC prepared. Plasma phospholipid and PBMC fatty acid composition, plasma alpha-tocopherol and thiobarbituric acid-reactive substance concentrations, plasma total antioxidant capacity, the proportions of different PBMC subsets, the proportions of PBMC expressing the adhesion molecules CD2, CD11b and CD54, and PBMC functions (lymphocyte proliferation, natural killer cell activity, cytokine production) were measured. All measurements were repeated after a 'washout' period of 8 weeks. The placebo, OO and SO capsules had no effect on plasma phospholipid or PBMC fatty acid composition. The proportion of dihomo-gamma-linolenic acid in plasma phospholipids was elevated in subjects taking EPO and was decreased in subjects taking FO. There was no appearance of gamma-linolenic acid in the plasma phospholipids or PBMC in subjects taking EPO. There was a marked increase in the proportion of EPA in the plasma phospholipids (10-fold) and PBMC (four-fold) of subjects taking FO supplements; this increase was maximal after 4 weeks of supplementation. There was an increase in the proportion of DHA in plasma phospholipids and PBMC, and an approximately 20% decrease in the proportion of arachidonic acid in plasma phospholipids and PBMC, during FO supplementation. Plasma concentrations of alpha-tocopherol were significantly elevated during supplementation in all subjects and returned to baseline values after the washout period. There were no effects of supplementation with any of the capsules on total plasma antioxidant activity or plasma thiobarbituric acid-reactive substances or on the proportion of different PBMC subsets, on the proportion of PBMC expressing adhesion molecules, on natural killer cell activity, on the proliferation of mitogen-stimulated whole blood cultures or PBMC, or on the ex vivo production of a range of cytokines by whole blood cultures or PBMC cultures stimulated by either concanavalin A or lipopolysaccharide. Supplementation of the diet with 3.2 g EPA plus DHA per day markedly alters plasma phospholipid and PBMC fatty acid compositions. The lack of effect of FO upon PBMC functions may relate to the level of alpha-tocopherol included in the supplements.

  11. Polystyrene microspheres enable 10‐color compensation for immunophenotyping of primary human leukocytes

    PubMed Central

    Carr, Karen D.; Norman, John C.; Huye, Leslie; Hegde, Meenakshi

    2015-01-01

    Abstract Compensation is a critical process for the unbiased analysis of flow cytometry data. Numerous compensation strategies exist, including the use of bead‐based products. The purpose of this study was to determine whether beads, specifically polystyrene microspheres (PSMS) compare to the use of primary leukocytes for single color based compensation when conducting polychromatic flow cytometry. To do so, we stained individual tubes of both PSMS and leukocytes with panel specific antibodies conjugated to fluorochromes corresponding to fluorescent channels FL1‐FL10. We compared the matrix generated by PSMS to that generated using peripheral blood mononuclear cells (PBMC). Ideal for compensation is a sample with both a discrete negative population and a bright positive population. We demonstrate that PSMS display autofluorescence properties similar to PBMC. When comparing PSMS to PBMC for compensation PSMS yielded more evenly distributed and discrete negative and positive populations to use for compensation. We analyzed three donors' PBMC stained with our 10‐color T cell subpopulation panel using compensation generated by PSMS vs.PBMC and detected no significant differences in the population distribution. Panel specific antibodies bound to PSMS represent an invaluable valid tool to generate suitable compensation matrices especially when sample material is limited and/or the sample requires analysis of dynamically modulated or rare events. © 2015 The Authors. Cytometry Part A Published by Wiley Periodicals, Inc. PMID:26202733

  12. Distribution of Curcumin and THC in Peripheral Blood Mononuclear Cells Isolated from Healthy Individuals and Patients with Chronic Lymphocytic Leukemia.

    PubMed

    Bolger, Gordon T; Licollari, Albert; Tan, Aimin; Greil, Richard; Pleyer, Lisa; Vcelar, Brigitta; Majeed, Muhammad; Sordillo, Peter

    2018-01-01

    Background/Aim: Curcumin is being widely investigated for its anticancer properties and studies in the literature suggest that curcumin distributes to a higher degree in tumor versus non-tumor cells. In the current study, we report on investigation of the distribution of curcumin and metabolism to THC in PBMC from healthy individuals and chronic lymphocytic leukemia (CLL) patients following exposure to Lipocurc™ (liposomal curcumin). Materials and Methods: The time and temperature-dependent distribution of liposomal curcumin and metabolism to tetrahydrocurcumin (THC) were measured in vitro in human peripheral blood mononuclear cells (PBMC) obtained from healthy individuals, PBMC HI (cryopreserved and freshly isolated PBMC) and CLL patients (cryopreserved PBMC) with lymphocyte counts ranging from 17-58×10 6 cells/ml (PBMC CLL,Grp 1 ) and >150×10 6 cells/ml (PBMC CLL,Grp 2 ). PBMC were incubated in plasma protein supplemented media with Lipocurc™ for 2-16 min at 37°C and 4°C and the cell and medium levels of curcumin determined by LC-MS/MS. Results: PBMC from CLL patients displayed a 2.2-2.6-fold higher distribution of curcumin compared to PBMC HI Curcumin distribution into PBMCCLL, Grp 1/Grp 2 ranged from 384.75 - 574.50 ng/g w.w. of cell pellet and was greater compared to PBMC HI that ranged from 122.27-220.59 ng/g w.w. of cell pellet following incubation for up to 15-16 min at 37°C. The distribution of curcumin into PBMC CLL,Grp 2 was time-dependent in comparison to PBMC HI which did not display a time-dependence and there was no temperature-dependence for curcumin distribution in either cell type. Curcumin was metabolized to THC in PBMC. The metabolism of curcumin to THC was not markedly different between PBMC HI (range=23.94-42.04 ng/g w.w. cell pellet) and PBMC CLL,Grp 1/Grp 2 (range=23.08-48.22 ng/g. w.w. cell pellet). However, a significantly greater time and temperature-dependence was noted for THC in PBMC CLL,Grp 2 compared to PBMC HI Conclusion: Curcumin distribution into PBMC from CLL patients was higher compared to PBMC from healthy individuals, while metabolism to THC was similar. The potential for a greater distribution of curcumin into PBMC from CLL patients may be of therapeutic benefit. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Neutralizing Antibodies in Sera from Macaques Immunized with Attenuated Simian Immunodeficiency Virus

    PubMed Central

    Langlois, Alphonse J.; Desrosiers, Ronald C.; Lewis, Mark G.; KewalRamani, Vineet N.; Littman, Dan R.; Zhou, Ji Ying; Manson, Kelledy; Wyand, Michael S.; Bolognesi, Dani P.; Montefiori, David C.

    1998-01-01

    Infection with attenuated simian immunodeficiency virus (SIV) in rhesus macaques has been shown to raise antibodies capable of neutralizing an animal challenge stock of primary SIVmac251 in CEMx174 cells that correlate with resistance to infection after experimental challenge with this virulent virus (M. S. Wyand, K. H. Manson, M. Garcia-Moll, D. C. Montefiori, and R. C. Desrosiers, J. Virol. 70:3724–3733, 1996). Here we show that these neutralizing antibodies are not detected in human and rhesus peripheral blood mononuclear cells (PBMC). In addition, neutralization of primary SIVmac251 in human and rhesus PBMC was rarely detected with plasma samples from a similar group of animals that had been infected either with SIVmac239Δnef for 1.5 years or with SIVmac239Δ3 for 3.2 years, although low-level neutralization was detected in CEMx174 cells. Potent neutralization was detected in CEMx174 cells when the latter plasma samples were assessed with laboratory-adapted SIVmac251. In contrast to primary SIVmac251, laboratory-adapted SIVmac251 did not replicate in human and rhesus PBMC despite its ability to utilize CCR5, Bonzo/STRL33, and BOB/gpr15 as coreceptors for virus entry. These results illustrate the importance of virus passage history and the choice of indicator cells for making assessments of neutralizing antibodies to lentiviruses such as SIV. They also demonstrate that primary SIVmac251 is less sensitive to neutralization in human and rhesus PBMC than it is in established cell lines. Results obtained in PBMC did not support a role for neutralizing antibodies as a mechanism of protection in animals immunized with attenuated SIV and challenged with primary SIVmac251. PMID:9658152

  14. Gene expression profiling of peripheral blood mononuclear cells (PBMC) from Mycobacterium bovis infected cattle after in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD).

    PubMed

    Meade, Kieran G; Gormley, Eamonn; Park, Stephen D E; Fitzsimons, Tara; Rosa, Guilherme J M; Costello, Eamon; Keane, Joseph; Coussens, Paul M; MacHugh, David E

    2006-09-15

    Microarray analysis of messenger RNA (mRNA) abundance was used to investigate the gene expression program of peripheral blood mononuclear cells (PBMC) from cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis. An immunospecific bovine microarray platform (BOTL-4) with spot features representing 1336 genes was used for transcriptional profiling of PBMC from six M. bovis-infected cattle stimulated in vitro with bovine purified protein derivative of tuberculin (PPD-bovine). Cells were harvested at four time points (3 h, 6 h, 12 h and 24 h post-stimulation) and a split-plot design with pooled samples was used for the microarray experiment to compare gene expression between PPD-bovine stimulated PBMC and unstimulated controls for each time point. Statistical analyses of these data revealed 224 genes (approximately 17% of transcripts on the array) differentially expressed between stimulated and unstimulated PBMC across the 24 h time course (P<0.05). Of the 224 genes, 87 genes were significantly upregulated and 137 genes were significantly downregulated in M. bovis-infected PBMC stimulated with PPD-bovine across the 24 h time course. However, perturbation of the PBMC transcriptome was most apparent at time points 3 h and 12 h post-stimulation, with 81 and 84 genes differentially expressed, respectively. In addition, a more stringent statistical threshold (P<0.01) revealed 35 genes (approximately 3%) that were differentially expressed across the time course. Real-time quantitative reverse transcription PCR (qRT-PCR) of selected genes validated the microarray results and demonstrated a wide range of differentially expressed genes in PPD-bovine-, PPD-avian- and Concanavalin A (ConA) stimulated PBMC, including the interferon-gamma gene (IFNG), which was upregulated in PBMC stimulated with PPD-bovine (40-fold), PPD-avian (10-fold) and ConA (8-fold) after in vitro culture for 12 h. The pattern of expression of these genes in PPD-bovine stimulated PBMC provides the first description of an M. bovis-specific signature of infection that may provide insights into the molecular basis of the host response to infection. Although the present study was carried out with mixed PBMC cell populations, it will guide future studies to dissect immune cell-specific gene expression patterns in response to M. bovis infection.

  15. Induction and repair of DNA damage measured by the comet assay in human T lymphocytes separated by immunomagnetic cell sorting.

    PubMed

    Bausinger, Julia; Speit, Günter

    2014-11-01

    The comet assay is widely used in human biomonitoring to measure DNA damage in whole blood or isolated peripheral blood mononuclear cells (PBMC) as a marker of exposure to genotoxic agents. Cytogenetic assays with phytohemagglutinin (PHA)-stimulated cultured T lymphocytes are also frequently performed in human biomonitoring. Cytogenetic effects (micronuclei, chromosome aberrations, sister chromatid exchanges) may be induced in vivo but also occur ex vivo during the cultivation of lymphocytes as a consequence of DNA damage present in lymphocytes at the time of sampling. To better understand whether DNA damage measured by the comet assay in PBMC is representative for DNA damage in T cells, we comparatively investigated DNA damage and its repair in PBMC and T cells obtained by immunomagnetic cell sorting. PBMC cultures and T cell cultures were exposed to mutagens with different modes of genotoxic action and DNA damage was measured by the comet assay after the end of a 2h exposure and after 18h post-incubation. The mutagens tested were methyl methanesulfonate (MMS), (±)-anti-B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), 4-nitroquinoline-1-oxide (4NQO), styrene oxide and potassium bromate. MMS and potassium bromate were also tested by the modified comet assay with formamido pyrimidine glycosylase (FPG) protein. The results indicate that the mutagens tested induce DNA damage in PBMC and T cells in the same range of concentrations and removal of induced DNA lesions occurs to a comparable extent. Based on these results, we conclude that the comet assay with PBMC is suited to predict DNA damage and its removal in T cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Distribution, persistence and interchange of Epstein-Barr virus strains among PBMC, plasma and saliva of primary infection subjects.

    PubMed

    Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing

    2015-01-01

    Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle.

  17. Distribution, Persistence and Interchange of Epstein-Barr Virus Strains among PBMC, Plasma and Saliva of Primary Infection Subjects

    PubMed Central

    Kwok, Hin; Chan, Koon Wing; Chan, Kwok Hung; Chiang, Alan Kwok Shing

    2015-01-01

    Our study aimed at investigating the distribution, persistence and interchange of viral strains among peripheral blood mononuclear cells (PBMC), plasma and saliva of primary Epstein-Barr virus (EBV) infection subjects. Twelve infectious mononucleosis (IM) patients and eight asymptomatic individuals (AS) with primary EBV infection were followed longitudinally at several time points for one year from the time of diagnosis, when blood and saliva samples were collected and separated into PBMC, plasma and saliva, representing circulating B cell, plasma and epithelial cell compartments, respectively. To survey the viral strains, genotyping assays for the natural polymorphisms in two latent EBV genes, EBNA2 and LMP1, were performed and consisted of real-time PCR on EBNA2 to distinguish type 1 and 2 viruses, fluorescent-based 30-bp typing assay on LMP1 to distinguish deletion and wild type LMP1, and fluorescent-based heteroduplex tracking assays on both EBNA2 and LMP1 to distinguish defined polymorphic variants. No discernible differences were observed between IM patients and AS. Multiple viral strains were acquired early at the start of infection. Stable persistence of dominant EBV strains in the same tissue compartment was observed throughout the longitudinal samples. LMP1-defined strains, China 1, China 2 and Mediterranean+, were the most common strains observed. EBNA2-defined groups 1 and 3e predominated the PBMC and saliva compartments. Concordance of EBNA2 and LMP1 strains between PBMC and saliva suggested ready interchange of viruses between circulating B cell and epithelial cell pools, whilst discordance of viral strains observed between plasma and PBMC/saliva indicated presence of viral pools in other undetermined tissue compartments. Taken together, the results indicated that the distribution, persistence and interchange of viral strains among the tissue compartments are more complex than those proposed by the current model of EBV life cycle. PMID:25807555

  18. Peripheral Blood Mononuclear Cells Enhance Cartilage Repair in in vivo Osteochondral Defect Model.

    PubMed

    Hopper, Niina; Wardale, John; Brooks, Roger; Power, Jonathan; Rushton, Neil; Henson, Frances

    2015-01-01

    This study characterized peripheral blood mononuclear cells (PBMC) in terms of their potential in cartilage repair and investigated their ability to improve the healing in a pre-clinical large animal model. Human PBMCs were isolated with gradient centrifugation and adherent PBMC's were evaluated for their ability to differentiate into adipogenic, chondrogenic and osteogenic lineages and also for their expression of musculoskeletal genes. The phenotype of the PBMCs was evaluated using Stro-1, CD34, CD44, CD45, CD90, CD106, CD105, CD146 and CD166 cell surface markers. Osteochondral defects were created in the medial femoral condyle (MFC) of 24 Welsh mountain sheep and evaluated at a six month time point. Four cell treatment groups were evaluated in combination with collagen-GAG-scaffold: (1) MSC alone; (2) MSCs and PBMCs at a ratio of 20:1; (3) MSCs and PBMC at a ratio of 2:1 and (4) PBMCs alone. Samples from the surgical site were evaluated for mechanical properties, ICRS score and histological repair. Fresh PBMC samples were 90% positive for hematopoietic cell surface markers and negative for the MSC antibody panel (<1%, p = 0.006). However, the adherent PBMC population expressed mesenchymal stem cell markers in hypoxic culture and lacked CD34/45 positive cells (<0.2%). This finding demonstrated that the adherent cells had acquired an MSC-like phenotype and transformed in hypoxia from their original hematopoietic lineage. Four key genes in muskuloskeletal biology were significantly upregulated in adherent PBMCs by hypoxia: BMP2 4.2-fold (p = 0.0007), BMP6 10.7-fold (p = 0.0004), GDF5 2.0-fold (p = 0.002) and COL1 5.0-fold (p = 0.046). The monolayer multilineage analysis confirmed the trilineage mesenchymal potential of the adherent PBMCs. PBMC cell therapy was equally good as bone marrow MSC therapy for defects in the ovine large animal model. Our results show that PBMCs support cartilage healing and oxygen tension of the environment was found to have a key effect on the derivation of a novel adherent cell population with an MSC-like phenotype. This study presents a novel and easily attainable point-of-care cell therapy with PBMCs to treat osteochondral defects in the knee avoiding any cell manipulations outside the surgical room.

  19. Comparison of porcine endogenous retroviruses infectious potential in supernatants of producer cells and in cocultures.

    PubMed

    Costa, Michael Rodrigues; Fischer, Nicole; Gulich, Barbara; Tönjes, Ralf R

    2014-01-01

    Porcine endogenous retroviruses (PERV) pose a zoonotic risk potential in pig-to-human xenotransplantation given that PERV capacity to infect different human cell lines in vitro has been clearly shown in the past. However, PERV infectious potential for human peripheral blood mononuclear cells (huPBMC) has been also demonstrated, albeit with controversial results. As productive PERV infection of huPBMC involves immune suppression that may attract opportunistic pathogens as shown for other retroviruses, it is crucial to ascertain unequivocally huPBMC susceptibility for PERV. To address this question, we first investigated in vitro infectivity of PERV for huPBMC using supernatants containing highly infectious PERV-A/C. Second, huPBMC were cocultivated with PERV-A/C producer cells to come a step closer to the in vivo situation of xenotransplantation. In addition, cocultivation of huPBMC with porcine PBMC (poPBMC) isolated from German landrace pigs was performed to distinguish PERV replication competence when they were constitutively produced by immortalized cells or by primary poPBMC. Supernatants containing recombinant highly infectious PERV-A/C were used to infect PHA-activated huPBMC in the presence or absence of polybrene. Next, PERV-producing cell lines such as human 293/5° and primary mitogenically activated poPBMC of three German landrace pigs were cocultivated with huPBMC as well as with susceptible human and porcine cell lines as controls. PERV infection was monitored by using three test approaches. The presence of provirus DNA in putatively infected cells was detected via sensitive nested PCR. Viral expression was determined by screening for the activity of gammaretroviral reverse transcriptase (RT) in cell-free supernatants of infected cells. Virus release was monitored by counting the number of packaged RNA particles in supernatants via PERV-specific quantitative one-step real-time reverse transcriptase PCR. Porcine endogenous retroviruses-A/C in supernatants of human producer 293/5° cells was not able to infect huPBMC. Neither RT activity nor PERV copies were detected. Even provirus could not be detected displaying the inability of PERV-A/C to induce a productive infection in huPBMC. In cocultivation experiments only non-productive infection of huPBMC with PERV derived from 293/5° cell line and from PHA-activated poPBMC was observed by detection of provirus DNA in infected cells. Recombinant PERV-A/C in supernatants of producer cells failed to infect huPBMC, whereas coculture experiments with producer cell lines lead to non-productive infection of huPBMC. PERV in supernatants seem to have not sufficient infectious potential for huPBMC. However, extensive PERV exposure to huPBMC via cocultivation enabled at least virus cell entry as provirus was detected by nested PCR. Furthermore, results presented support previous data showing German landrace pigs as low producers with negligible infectious potential due to the absence of replication-competent PERV in the genome. The low PERV expression profile and the lack of significant replication competence of German landrace pigs raise hope for considering these animals as putative donor animals in future pig-to-human xenotransplantation. Nonetheless, data imply that PERV still represent a virological risk in the course of xenotransplantation, as the presence of PERV provirus in host cells may lead to a provirus integration resulting in insertional mutagenesis and chromosomal rearrangements. © 2014 John Wiley & Sons A/S.

  20. Accurate measurement of peripheral blood mononuclear cell concentration using image cytometry to eliminate RBC-induced counting error.

    PubMed

    Chan, Leo Li-Ying; Laverty, Daniel J; Smith, Tim; Nejad, Parham; Hei, Hillary; Gandhi, Roopali; Kuksin, Dmitry; Qiu, Jean

    2013-02-28

    Peripheral blood mononuclear cells (PBMCs) have been widely researched in the fields of immunology, infectious disease, oncology, transplantation, hematological malignancy, and vaccine development. Specifically, in immunology research, PBMCs have been utilized to monitor concentration, viability, proliferation, and cytokine production from immune cells, which are critical for both clinical trials and biomedical research. The viability and concentration of isolated PBMCs are traditionally measured by manual counting with trypan blue (TB) using a hemacytometer. One of the common issues of PBMC isolation is red blood cell (RBC) contamination. The RBC contamination can be dependent on the donor sample and/or technical skill level of the operator. RBC contamination in a PBMC sample can introduce error to the measured concentration, which can pass down to future experimental assays performed on these cells. To resolve this issue, RBC lysing protocol can be used to eliminate potential error caused by RBC contamination. In the recent years, a rapid fluorescence-based image cytometry system has been utilized for bright-field and fluorescence imaging analysis of cellular characteristics (Nexcelom Bioscience LLC, Lawrence, MA). The Cellometer image cytometry system has demonstrated the capability of automated concentration and viability detection in disposable counting chambers of unpurified mouse splenocytes and PBMCs stained with acridine orange (AO) and propidium iodide (PI) under fluorescence detection. In this work, we demonstrate the ability of Cellometer image cytometry system to accurately measure PBMC concentration, despite RBC contamination, by comparison of five different total PBMC counting methods: (1) manual counting of trypan blue-stained PBMCs in hemacytometer, (2) manual counting of PBMCs in bright-field images, (3) manual counting of acetic acid lysing of RBCs with TB-stained PBMCs, (4) automated counting of acetic acid lysing of RBCs with PI-stained PBMCs, and (5) AO/PI dual staining method. The results show comparable total PBMC counting among all five methods, which validate the AO/PI staining method for PBMC measurement in the image cytometry method. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The Center for HIV/AIDS Vaccine Immunology (CHAVI) Multi-site Quality Assurance Program for Cryopreserved Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Sarzotti-Kelsoe, Marcella; Needham, Leila K.; Rountree, Wes; Bainbridge, John; Gray, Clive M.; Fiscus, Susan A.; Ferrari, Guido; Stevens, Wendy S.; Stager, Susan L.; Binz, Whitney; Louzao, Raul; Long, Kristy O.; Mokgotho, Pauline; Moodley, Niranjini; Mackay, Melanie; Kerkau, Melissa; McMillion, Takesha; Kirchherr, Jennifer; Soderberg, Kelly A.; Haynes, Barton F.; Denny, Thomas N.

    2014-01-01

    The Center for HIV/AIDS Vaccine Immunology (CHAVI) consortium was established to determine the host and virus factors associated with HIV transmission, infection and containment of virus replication, with the goal of advancing the development of an HIV protective vaccine. Studies to meet this goal required the use of cryopreserved Peripheral Blood Mononuclear Cell (PBMC) specimens, and therefore it was imperative that a quality assurance (QA) oversight program be developed to monitor PBMC samples obtained from study participants at multiple international sites. Nine site-affiliated laboratories in Africa and the USA collected and processed PBMCs, and cryopreserved PBMC were shipped to CHAVI repositories in Africa and the USA for long-term storage. A three-stage program was designed, based on Good Clinical Laboratory Practices (GCLP), to monitor PBMC integrity at each step of this process. The first stage evaluated the integrity of fresh PBMCs for initial viability, overall yield, and processing time at the site-affiliated laboratories (Stage 1); for the second stage, the repositories determined post-thaw viability and cell recovery of cryopreserved PBMC, received from the site-affiliated laboratories (Stage 2); the third stage assessed the long-term specimen storage at each repository (Stage 3). Overall, the CHAVI PBMC QA oversight program results highlight the relative importance of each of these stages to the ultimate goal of preserving specimen integrity from peripheral blood collection to long-term repository storage. PMID:24910414

  2. Impact of dialyzer membrane on apoptosis and function of polymorphonuclear cells and cytokine synthesis by peripheral blood mononuclear cells in hemodialysis patients.

    PubMed

    Andreoli, Maria C C; Dalboni, Maria A; Watanabe, Renato; Manfredi, Silvia R; Canziani, Maria E F; Kallás, Esper G; Sesso, Ricardo C; Draibe, Sergio A; Balakrishnan, Vaidyanathapuram S; Jaber, Bertrand L; Liangos, Orfeas; Cendoroglo, Miguel

    2007-12-01

    In an in vivo crossover trial, we compared a cellulosic with a synthetic dialyzer with respect to polymorphonuclear cells (PMN) function and apoptosis, cytokine serum levels and synthesis by peripheral blood mononuclear cells (PBMC), and complement activation. Twenty hemodialysis (HD) patients were assigned in alternate order to HD with cellulose acetate (CA) or polysulfone (PS) dialyzer. After 2 weeks, patients were crossed over to the second dialyzer and treated for another 2 weeks. Apoptosis was assessed by flow cytometry in freshly isolated PMN. Phagocytosis and production of peroxide by PMN were studied by flow cytometry in whole blood. PBMC were isolated from blood samples and incubated for 24 h with or without lipopolysaccharide (LPS). There was no impact of dialyzer biocompatibility on PMN apoptosis and function, cytokine synthesis by PBMC or on their serum levels, serum levels of C3a, and terminal complement complex (TCC). Nevertheless, after HD, serum levels of complement correlated negatively with PMN phagocytosis and peroxide production, and positively with PMN apoptosis and cytokine production by PBMC. Although the results did not show a dialyzer advantage on the immunologic parameters, complement activation may have modulated cell function and apoptosis after HD.

  3. Type-I interferon receptor expression: its circadian rhythm and downregulation after interferon-alpha administration in peripheral blood cells from renal cancer patients.

    PubMed

    Shiba, Masahiro; Nonomura, Norio; Nakai, Yasutomo; Nakayama, Masashi; Takayama, Hitoshi; Inoue, Hitoshi; Tsujimura, Akira; Nishimura, Kazuo; Okuyama, Akihiko

    2009-04-01

    To investigate the regulation of interferon-alpha (IFN-alpha) receptor expression in metastatic renal cell carcinoma (RCC) after IFN-alpha administration. Blood sampling was carried out in eight patients with metastatic RCC and six healthy volunteers. Flow-cytometric analysis using a monoclonal antibody against the active subunit of the type-I IFN-alpha receptor (IFNAR2) was carried out to examine the circadian rhythm of IFNAR2 expression in peripheral blood mononuclear cells (PBMC) as well as its downregulation after IFN-alpha administration. According to its circadian rhythm IFNAR2 in PBMC had a peak expression at night. Once IFN-alpha is administered, IFNAR2 levels in PBMC showed downregulation within 48 h and recovered within another 48 h. Our findings might support the establishment of an optimal schedule for IFN-alpha administration.

  4. Interaction of rotavirus with human peripheral blood mononuclear cells: plasmacytoid dendritic cells play a role in stimulating memory rotavirus specific T cells in vitro.

    PubMed

    Mesa, Martha C; Rodríguez, Luz-Stella; Franco, Manuel A; Angel, Juana

    2007-09-15

    We studied the interaction of RV with human peripheral blood mononuclear cells (PBMC) from adult volunteers. After exposure of PBMC to rhesus RV (RRV), T and B lymphocytes, NK cells, monocytes, and myeloid and plasmacytoid dendritic cells expressed RV non-structural proteins, at variable levels. Expression of these RV proteins was abolished if infection was done in the presence of anti-VP7 neutralizing antibodies or 10% autologous serum. Supernatants of RRV exposed PBMC contained TNF-alpha, IL-6, IFN-alpha, IFN-gamma, IL-2 and IL-10. Plasmacytoid DC were found to be the main source of IFN-alpha production, and in their absence the production of IFN-gamma and the frequency of RV specific T cells that secrete IFN-gamma diminished. Finally, we could not detect RV-antigen associated with the PBMC or expression of RV non-structural proteins in PBMC of acutely RV-infected children. Thus, although PBMC are susceptible to the initial steps of RV infection, most PBMC of children with RV-gastroenteritis are not infected.

  5. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators

    PubMed Central

    Bodenmiller, Bernd; Zunder, Eli R.; Finck, Rachel; Chen, Tiffany J.; Savig, Erica S.; Bruggner, Robert V.; Simonds, Erin F.; Bendall, Sean C.; Sachs, Karen; Krutzik, Peter O.; Nolan, Garry P.

    2013-01-01

    The ability to comprehensively explore the impact of bio-active molecules on human samples at the single-cell level can provide great insight for biomedical research. Mass cytometry enables quantitative single-cell analysis with deep dimensionality, but currently lacks high-throughput capability. Here we report a method termed mass-tag cellular barcoding (MCB) that increases mass cytometry throughput by sample multiplexing. 96-well format MCB was used to characterize human peripheral blood mononuclear cell (PBMC) signaling dynamics, cell-to-cell communication, the signaling variability between 8 donors, and to define the impact of 27 inhibitors on this system. For each compound, 14 phosphorylation sites were measured in 14 PBMC types, resulting in 18,816 quantified phosphorylation levels from each multiplexed sample. This high-dimensional systems-level inquiry allowed analysis across cell-type and signaling space, reclassified inhibitors, and revealed off-target effects. MCB enables high-content, high-throughput screening, with potential applications for drug discovery, pre-clinical testing, and mechanistic investigation of human disease. PMID:22902532

  6. Barcoding of live human PBMC for multiplexed mass cytometry*

    PubMed Central

    Mei, Henrik E.; Leipold, Michael D.; Schulz, Axel Ronald; Chester, Cariad; Maecker, Holden T.

    2014-01-01

    Mass cytometry is developing as a means of multiparametric single cell analysis. Here, we present an approach to barcoding separate live human PBMC samples for combined preparation and acquisition on a CyTOF® instrument. Using six different anti-CD45 antibody (Ab) conjugates labeled with Pd104, Pd106, Pd108, Pd110, In113, and In115, respectively, we barcoded up to 20 samples with unique combinations of exactly three different CD45 Ab tags. Cell events carrying more than or less than three different tags were excluded from analyses during Boolean data deconvolution, allowing for precise sample assignment and the electronic removal of cell aggregates. Data from barcoded samples matched data from corresponding individually stained and acquired samples, at cell event recoveries similar to individual sample analyses. The approach greatly reduced technical noise and minimizes unwanted cell doublet events in mass cytometry data, and reduces wet work and antibody consumption. It also eliminates sample-to-sample carryover and the requirement of instrument cleaning between samples, thereby effectively reducing overall instrument runtime. Hence, CD45-barcoding facilitates accuracy of mass cytometric immunophenotyping studies, thus supporting biomarker discovery efforts, and should be applicable to fluorescence flow cytometry as well. PMID:25609839

  7. Lipopolysaccharide Stimulates Butyric Acid-Induced Apoptosis in Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Kurita-Ochiai, Tomoko; Fukushima, Kazuo; Ochiai, Kuniyasu

    1999-01-01

    We previously reported that butyric acid, an extracellular metabolite from periodontopathic bacteria, induced apoptosis in murine thymocytes, splenic T cells, and human Jurkat T cells. In this study, we examined the ability of butyric acid to induce apoptosis in peripheral blood mononuclear cells (PBMC) and the effect of bacterial lipopolysaccharide (LPS) on this apoptosis. Butyric acid significantly inhibited the anti-CD3 monoclonal antibody- and concanavalin A-induced proliferative responses in a dose-dependent fashion. This inhibition of PBMC growth by butyric acid depended on apoptosis in vitro. It was characterized by internucleosomal DNA digestion and revealed by gel electrophoresis followed by a colorimetric DNA fragmentation assay to occur in a concentration-dependent fashion. Butyric acid-induced PBMC apoptosis was accompanied by caspase-3 protease activity but not by caspase-1 protease activity. LPS potentiated butyric acid-induced PBMC apoptosis in a dose-dependent manner. Flow-cytometric analysis revealed that LPS increased the proportion of sub-G1 cells and the number of late-stage apoptotic cells induced by butyric acid. Annexin V binding experiments with fractionated subpopulations of PBMC in flow cytometory revealed that LPS accelerated the butyric acid-induced CD3+-T-cell apoptosis followed by similar levels of both CD4+- and CD8+-T-cell apoptosis. The addition of LPS to PBMC cultures did not cause DNA fragmentation, suggesting that LPS was unable to induce PBMC apoptosis directly. These data suggest that LPS, in combination with butyric acid, potentiates CD3+ PBMC T-cell apoptosis and plays a role in the apoptotic depletion of CD4+ and CD8+ cells. PMID:9864191

  8. Detection and Characterization of Circulating Tumour Cells from Frozen Peripheral Blood Mononuclear Cells

    PubMed Central

    Lu, David; Graf, Ryon P.; Harvey, Melissa; Madan, Ravi A.; Heery, Christopher; Marte, Jennifer; Beasley, Sharon; Tsang, Kwong Y.; Krupa, Rachel; Louw, Jessica; Wahl, Justin; Bales, Natalee; Landers, Mark; Marrinucci, Dena; Schlom, Jeffrey; Gulley, James L.; Dittamore, Ryan

    2015-01-01

    Retrospective analysis of patient tumour samples is a cornerstone of clinical research. CTC biomarker characterization offers a non-invasive method to analyse patient samples. However, current CTC technologies require prospective blood collection, thereby reducing the ability to utilize archived clinical cohorts with long-term outcome data. We sought to investigate CTC recovery from frozen, archived patient PBMC pellets. Matched samples from both mCRPC patients and mock samples, which were prepared by spiking healthy donor blood with cultured prostate cancer cell line cells, were processed “fresh” via Epic CTC Platform or from “frozen” PBMC pellets. Samples were analysed for CTC enumeration and biomarker characterization via immunofluorescent (IF) biomarkers, fluorescence in-situ hybridization (FISH) and CTC morphology. In the frozen patient PMBC samples, the median CTC recovery was 18%, compared to the freshly processed blood. However, abundance and localization of cytokeratin (CK) and androgen receptor (AR) protein, as measured by IF, were largely concordant between the fresh and frozen CTCs. Furthermore, a FISH analysis of PTEN loss showed high concordance in fresh vs. frozen. The observed data indicate that CTC biomarker characterization from frozen archival samples is feasible and representative of prospectively collected samples. PMID:28936240

  9. Morphological characterization and in vitro biocompatibility of a porous nickel-titanium alloy.

    PubMed

    Prymak, Oleg; Bogdanski, Denise; Köller, Manfred; Esenwein, Stefan A; Muhr, Gert; Beckmann, Felix; Donath, Tilmann; Assad, Michel; Epple, Matthias

    2005-10-01

    Disks consisting of macroporous nickel-titanium alloy (NiTi, Nitinol, Actipore) are used as implants in clinical surgery, e.g. for fixation of spinal dysfunctions. The morphological properties were studied by scanning electron microscopy (SEM) and by synchrotron radiation-based microtomography (SRmuCT). The composition was studied by X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and energy-dispersive X-ray spectroscopy (EDX). The mechanical properties were studied with temperature-dependent dynamical mechanical analysis (DMA). Studies on the biocompatibility were performed by co-incubation of porous NiTi samples with isolated peripheral blood leukocyte fractions (polymorphonuclear neutrophil granulocytes, PMN; peripheral blood mononuclear leukocytes, PBMC) in comparison with control cultures without NiTi samples. The cell adherence to the NiTi surface was analyzed by fluorescence microscopy and scanning electron microscopy. The activation of adherent leukocytes was analyzed by measurement of the released cytokines using enzyme-linked immunosorbent assay (ELISA). The cytokine response of PMN (analyzed by the release of IL-1ra and IL-8) was not significantly different between cell cultures with or without NiTi. There was a significant increase in the release of IL-1ra (p<0.001), IL-6 (p<0.05), and IL-8 (p<0.05) from PBMC in the presence of NiTi samples. In contrast, the release of TNF-alpha by PBMC was not significantly elevated in the presence of NiTi. IL-2 was released from PBMC only in the range of the lower detection limit in all cell cultures. The material, clearly macroporous with an interconnecting porosity, consists of NiTi (martensite; monoclinic, and austenite; cubic) with small impurities of NiTi2 and possibly NiC(x). The material is not superelastic upon manual compression and shows a good biocompatibility.

  10. Arylamine N-acetyltransferase 1 in situ N-acetylation on CD3+ peripheral blood mononuclear cells correlate with NATb mRNA and NAT1 haplotype.

    PubMed

    Salazar-González, Raúl A; Turiján-Espinoza, Eneida; Hein, David W; Niño-Moreno, Perla C; Romano-Moreno, Silvia; Milán-Segovia, Rosa C; Portales-Pérez, Diana P

    2018-02-01

    Human arylamine N-acetyltransferase 1 (NAT1) is responsible for the activation and elimination of xenobiotic compounds and carcinogens. Genetic polymorphisms in NAT1 modify both drug efficacy and toxicity. Previous studies have suggested a role for NAT1 in the development of several diseases. The aim of the present study was to evaluate NAT1 protein expression and in situ N-acetylation capacity in peripheral blood mononuclear cells (PBMC), as well as their possible associations with the expression of NAT1 transcript and NAT1 genotype. We report NAT1 protein, mRNA levels, and N-acetylation in situ activity for PBMC obtained from healthy donors. NAT1-specific protein expression was higher in CD3+ cells than other major immune cell subtypes (CD19 or CD56 cells). N-acetylation of pABA varied markedly among the PBMC of participants, but correlated very significantly with levels of NAT1 transcripts. NAT1*4 subjects showed significantly (p = 0.017) higher apparent pABA V max of 71.3 ± 3.7 versus the NAT1*14B subjects apparent V max of 58.5 ± 2.5 nmoles Ac-pABA/24 h/million cells. Levels of pABA N-acetylation activity at each concentration of substrate evaluated also significantly correlated with NAT1 mRNA levels for all samples (p < 0.0001). This highly significant correlation was maintained for samples with the NAT1*4 (p = 0.002) and NAT1*14B haplotypes (p = 0.0106). These results provide the first documentation that NAT1-catalyzed N-acetylation in PBMC is higher in T cell than in other immune cell subtypes and that individual variation in N-acetylation capacity is dependent upon NAT1 mRNA and NAT1 haplotype.

  11. Responsiveness of blood and sputum inflammatory cells in Japanese COPD patients, non-COPD smoking controls, and non-COPD nonsmoking controls

    PubMed Central

    Kawayama, Tomotaka; Kinoshita, Takashi; Matsunaga, Kazuko; Kobayashi, Akihiro; Hayamizu, Tomoyuki; Johnson, Malcolm; Hoshino, Tomoaki

    2016-01-01

    Purpose To compare pulmonary and systemic inflammatory mediator release, pre- and poststimulation, ex vivo, in cells from Japanese patients with chronic obstructive pulmonary disease (COPD), non-COPD smoking controls, and non-COPD nonsmoking controls (NSC). Patients and methods This was a nontreatment study with ten subjects per group. Inflammatory biomarker release, including interleukin (IL)-6 and -8, matrix metalloproteinase-9, and tumor necrosis factor (TNF)-α, was measured in peripheral blood mononuclear cells (PBMC) and sputum cells with and without lipopolysaccharide or TNF-α stimulation. Results In PBMC, basal TNF-α release (mean ± standard deviation) was significantly different between COPD (81.6±111.4 pg/mL) and nonsmoking controls (9.5±5.2 pg/mL) (P<0.05). No other significant differences were observed. Poststimulation biomarker release tended to increase, with the greatest changes in the COPD group. The greatest mean increases were seen in the lipopolysaccharide-induced release of matrix metalloproteinase-9, TNF-α, and IL-6 from PBMC. Pre- and poststimulation data from sputum samples were more variable and less conclusive than from PBMC. In the COPD group, induced sputum neutrophil levels were higher and macrophage levels were lower than in either control group. Significant correlations were seen between the number of sputum cells (macrophages and neutrophils) and biomarker levels (IL-8, IL-6, and TNF-α). Conclusion This was the first study to compare cellular inflammatory mediator release before and after stimulation among Japanese COPD, smoking controls, and nonsmoking controls populations. Poststimulation levels tended to be higher in patients with COPD. The results suggest that PBMC are already preactivated in the circulation in COPD patients. This provides further evidence that COPD is a multicomponent disease, involving both airway and systemic inflammation. PMID:26929615

  12. Responsiveness of blood and sputum inflammatory cells in Japanese COPD patients, non-COPD smoking controls, and non-COPD nonsmoking controls.

    PubMed

    Kawayama, Tomotaka; Kinoshita, Takashi; Matsunaga, Kazuko; Kobayashi, Akihiro; Hayamizu, Tomoyuki; Johnson, Malcolm; Hoshino, Tomoaki

    2016-01-01

    To compare pulmonary and systemic inflammatory mediator release, pre- and poststimulation, ex vivo, in cells from Japanese patients with chronic obstructive pulmonary disease (COPD), non-COPD smoking controls, and non-COPD nonsmoking controls (NSC). This was a nontreatment study with ten subjects per group. Inflammatory biomarker release, including interleukin (IL)-6 and -8, matrix metalloproteinase-9, and tumor necrosis factor (TNF)-α, was measured in peripheral blood mononuclear cells (PBMC) and sputum cells with and without lipopolysaccharide or TNF-α stimulation. In PBMC, basal TNF-α release (mean ± standard deviation) was significantly different between COPD (81.6±111.4 pg/mL) and nonsmoking controls (9.5±5.2 pg/mL) (P<0.05). No other significant differences were observed. Poststimulation biomarker release tended to increase, with the greatest changes in the COPD group. The greatest mean increases were seen in the lipopolysaccharide-induced release of matrix metalloproteinase-9, TNF-α, and IL-6 from PBMC. Pre- and poststimulation data from sputum samples were more variable and less conclusive than from PBMC. In the COPD group, induced sputum neutrophil levels were higher and macrophage levels were lower than in either control group. Significant correlations were seen between the number of sputum cells (macrophages and neutrophils) and biomarker levels (IL-8, IL-6, and TNF-α). This was the first study to compare cellular inflammatory mediator release before and after stimulation among Japanese COPD, smoking controls, and nonsmoking controls populations. Poststimulation levels tended to be higher in patients with COPD. The results suggest that PBMC are already preactivated in the circulation in COPD patients. This provides further evidence that COPD is a multicomponent disease, involving both airway and systemic inflammation.

  13. Simian immunodeficiency virus (SIV)/immunoglobulin G immune complexes in SIV-infected macaques block detection of CD16 but not cytolytic activity of natural killer cells.

    PubMed

    Wei, Qing; Stallworth, Jackie W; Vance, Patricia J; Hoxie, James A; Fultz, Patricia N

    2006-07-01

    Natural killer cells are components of the innate immune system that play an important role in eliminating viruses and malignant cells. Using simian immunodeficiency virus (SIV) infection of macaques as a model, flow cytometry revealed a gradual loss of CD16+ NK cell numbers that was associated with disease progression. Of note, the apparent loss of NK cells was detected in whole-blood samples but not in isolated peripheral blood mononuclear cells (PBMC), suggesting that an inhibitor(s) of the antibody used to detect CD16, the low-affinity immunoglobulin G (IgG) receptor, was present in blood but was removed during PBMC isolation. (Actual decreases in CD16+ cell numbers in PBMC generally were not detected until animals became lymphopenic.) The putative decrease in CD16+ cell numbers in whole blood correlated with increasing SIV-specific antibody titers and levels of plasma virion RNA. With the addition of increasing amounts of plasma from progressor, but not nonprogressor, macaques to PBMC from an uninfected animal, the apparent percentage of CD16+ cells and the mean fluorescence intensity of antibodies binding to CD16 declined proportionately. A similar decrease was observed with the addition of monomeric IgG (mIgG) and IgG immune complexes (IgG-ICs) purified from the inhibitory plasma samples; some of the ICs contained SIV p27(gag) antigen and/or virions. Of interest, addition of purified IgG/IgG-ICs to NK cell lytic assays did not inhibit killing of K562 cells. These results indicate that during progressive SIV and, by inference, human immunodeficiency virus disease, CD16+ NK cell numbers can be underestimated, or the cells not detected at all, when one is using a whole-blood fluorescence-activated cell sorter assay and a fluorochrome-labeled antibody that can be blocked by mIgG or IgG-ICs. Although this blocking had no apparent effect on NK cell activity in vitro, the in vivo effects are unknown.

  14. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function.

    PubMed

    Germann, Anja; Oh, Young-Joo; Schmidt, Tomm; Schön, Uwe; Zimmermann, Heiko; von Briesen, Hagen

    2013-10-01

    The ability to analyze cryopreserved peripheral blood mononuclear cell (PBMC) from biobanks for antigen-specific immunity is necessary to evaluate response to immune-based therapies. To ensure comparable assay results, collaborative research in multicenter trials needs reliable and reproducible cryopreservation that maintains cell viability and functionality. A standardized cryopreservation procedure is comprised of not only sample collection, preparation and freezing but also low temperature storage in liquid nitrogen without any temperature fluctuations, to avoid cell damage. Therefore, we have developed a storage approach to minimize suboptimal storage conditions in order to maximize cell viability, recovery and T-cell functionality. We compared the influence of repeated temperature fluctuations on cell health from sample storage, sample sorting and removal in comparison to sample storage without temperature rises. We found that cyclical temperature shifts during low temperature storage reduce cell viability, recovery and immune response against specific-antigens. We showed that samples handled under a protective hood system, to avoid or minimize such repeated temperature rises, have comparable cell viability and cell recovery rates to samples stored without any temperature fluctuations. Also T-cell functionality could be considerably increased with the use of the protective hood system compared to sample handling without such a protection system. This data suggests that the impact of temperature fluctuation on cell integrity should be carefully considered in future clinical vaccine trials and consideration should be given to optimal sample storage conditions. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Virtual Global Transplant Laboratory Standard Operating Procedures for Blood Collection, PBMC Isolation, and Storage.

    PubMed

    Higdon, Lauren E; Lee, Karim; Tang, Qizhi; Maltzman, Jonathan S

    2016-09-01

    Research on human immune responses frequently involves the use of peripheral blood mononuclear cells (PBMC) immediately, or at significantly delayed timepoints, after collection. This requires PBMC isolation from whole blood and cryopreservation for some applications. It is important to standardize protocols for blood collection, PBMC isolation, cryopreservation, and thawing that maximize survival and functionality of PBMC at the time of analysis. This resource includes detailed protocols describing blood collection tubes, isolation of PBMC using a density gradient, cryopreservation of PBMC, and thawing of cells as well as preparation for functional assays. For each protocol, we include important considerations, such as timing, storage temperatures, and freezing rate. In addition, we provide alternatives so that researchers can make informed decisions in determining the optimal protocol for their application.

  16. A Simple Mouse Model for the Study of Human Immunodeficiency Virus.

    PubMed

    Kim, Kang Chang; Choi, Byeong-Sun; Kim, Kyung-Chang; Park, Ki Hoon; Lee, Hee Jung; Cho, Young Keol; Kim, Sang Il; Kim, Sung Soon; Oh, Yu-Kyoung; Kim, Young Bong

    2016-02-01

    Humanized mouse models derived from immune-deficient mice have been the primary tool for studies of human infectious viruses, such as human immunodeficiency virus (HIV). However, the current protocol for constructing humanized mice requires elaborate procedures and complicated techniques, limiting the supply of such mice for viral studies. Here, we report a convenient method for constructing a simple HIV-1 mouse model. Without prior irradiation, NOD/SCID/IL2Rγ-null (NSG) mice were intraperitoneally injected with 1 × 10(7) adult human peripheral blood mononuclear cells (hu-PBMCs). Four weeks after PBMC inoculation, human CD45(+) cells, and CD3(+)CD4(+) and CD3(+)CD8(+) T cells were detected in peripheral blood, lymph nodes, spleen, and liver, whereas human CD19(+) cells were observed in lymph nodes and spleen. To examine the usefulness of hu-PBMC-inoculated NSG (hu-PBMC-NSG) mice as an HIV-1 infection model, we intravenously injected these mice with dual-tropic HIV-1DH12 and X4-tropic HIV-1NL4-3 strains. HIV-1-infected hu-PBMC-NSG mice showed significantly lower human CD4(+) T cell counts and high HIV viral loads in the peripheral blood compared with noninfected hu-PBMC-NSG mice. Following highly active antiretroviral therapy (HAART) and neutralizing antibody treatment, HIV-1 replication was significantly suppressed in HIV-1-infected hu-PBMC-NSG mice without detectable viremia or CD4(+) T cell depletion. Moreover, the numbers of human T cells were maintained in hu-PBMC-NSG mice for at least 10 weeks. Taken together, our results suggest that hu-PBMC-NSG mice may serve as a relevant HIV-1 infection and pathogenesis model that could facilitate in vivo studies of HIV-1 infection and candidate HIV-1 protective drugs.

  17. The Hsp72 response in peri-parturient dairy cows: relationships with metabolic and immunological parameters

    PubMed Central

    Catalani, Elisabetta; Amadori, Massimo; Vitali, Andrea; Bernabucci, Umberto; Nardone, Alessandro

    2010-01-01

    The study was aimed at assessing whether the peri-parturient period is associated with changes of intracellular and plasma inducible heat shock proteins (Hsp) 72 kDa molecular weight in dairy cows, and to establish possible relationships between Hsp72, metabolic, and immunological parameters subjected to changes around calving. The study was carried out on 35 healthy peri-parturient Holstein cows. Three, two, and one week before the expected calving, and 1, 2, 3, 4, and 5 weeks after calving, body conditions score (BCS) was measured and blood samples were collected to separate plasma and peripheral blood mononuclear cells (PBMC). Concentrations of Hsp72 in PBMC and plasma increased sharply after calving. In the post-calving period, BCS and plasma glucose declined, whereas plasma nonesterified fatty acids (NEFA) and tumor necrosis factor-alpha increased. The proliferative responses of PBMC to lipopolysaccharide (LPS) declined progressively after calving. The percentage of PBMC expressing CD14 receptors and Toll-like receptors (TLR)-4 increased and decreased in the early postpartum period, respectively. Correlation analysis revealed significant positive relationships between Hsp72 and NEFA, and between PBMC proliferation in response to LPS and the percentage of PBMC expressing TLR-4. Conversely, significant negative relationships were found between LPS-triggered proliferation of PBMC and both intracellular and plasma Hsp72. Literature data and changes of metabolic and immunological parameters reported herein authorize a few interpretative hypotheses and encourage further studies aimed at assessing possible cause and effect relationships between changes of PBMC and circulating Hsp72, metabolic, and immune parameters in dairy cows. PMID:20349286

  18. Effect of thermal stress on expression profile of apoptosis related genes in peripheral blood mononuclear cells of transition Sahiwal cow.

    PubMed

    Somal, A; Aggarwal, A; Upadhyay, R C

    2015-01-01

    The study was conducted to evaluate the effect of thermal stress on expression profile of genes related to apoptosis in peripartum Sahiwal cows. For this, twelve pregnant dry Sahiwal cows were selected from Livestock Research Centre at National Dairy Research Institute, Karnal. The cows were divided into two groups consisting of six Sahiwal cows each. Cows of group I calved during thermoneutral temperature conditions (THI=67.3) and cows of group II calved in summer season (THI=79.9). Blood samples were collected on -15, 0 and +15 days with respect to calving where day '0' represents the day of calving. The peripheral blood mononuclear cells (PBMC) were separated and total RNA was isolated for the BCL-2 (B-Cell Lymphoma-2), BAX (BCL-2 antagonist killer-1), BAK (Bcl-2-associated X protein), CASP-3 (cysteine-aspartic proteases-3) and P53 (tumour protien-53) mRNAs expression. It was found that there was up regulation of CASP-3 on the day of calving during both temperature conditions. Comparison between the two temperature conditions showed that expression of CASP-3, BCL-2, BAK, P53 and ratio of BAX/BCL-2 in PBMC increased during summer as compared to thermoneutral condition suggesting the susceptibility of these cells to apoptosis. Based on the above findings it can be concluded that during calving PBMC are more susceptible to apoptosis, and summer being more stressful potentiates the apoptosis of PBMC in Sahiwal cows.

  19. 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting.

    PubMed

    Fink, Corby; Gaudet, Jeffrey M; Fox, Matthew S; Bhatt, Shashank; Viswanathan, Sowmya; Smith, Michael; Chin, Joseph; Foster, Paula J; Dekaban, Gregory A

    2018-01-12

    A 19 Fluorine ( 19 F) perfluorocarbon cell labeling agent, when employed with an appropriate cellular MRI protocol, allows for in vivo cell tracking. 19 F cellular MRI can be used to non-invasively assess the location and persistence of cell-based cancer vaccines and other cell-based therapies. This study was designed to determine the feasibility of labeling and tracking peripheral blood mononuclear cells (PBMC), a heterogeneous cell population. Under GMP-compliant conditions human PBMC were labeled with a 19 F-based MRI cell-labeling agent in a manner safe for autologous re-injection. Greater than 99% of PBMC labeled with the 19 F cell-labeling agent without affecting functionality or affecting viability. The 19 F-labeled PBMC were detected in vivo in a mouse model at the injection site and in a draining lymph node. A clinical cellular MR protocol was optimized for the detection of PBMC injected both at the surface of a porcine shank and at a depth of 1.2 cm, equivalent to depth of a human lymph node, using a dual 1 H/ 19 F dual switchable surface radio frequency coil. This study demonstrates it is feasible to label and track 19 F-labeled PBMC using clinical MRI protocols. Thus, 19 F cellular MRI represents a non-invasive imaging technique suitable to assess the effectiveness of cell-based cancer vaccines.

  20. Expression levels of seven candidate genes in human peripheral blood mononuclear cells and their association with preeclampsia

    PubMed Central

    Garza-Veloz, I.; Carrillo-Sanchez, K.; Martinez-Gaytan, V.; Cortes-Flores, R.; Ochoa-Torres, M. A.; Guerrero, G. G.; Rodriguez-Sanchez, I. P.; Cancela-Murrieta, C. O.; Zamudio-Osuna, M.; Badillo-Almaraz, J. I.; Castruita-De la Rosa, C.

    2014-01-01

    Objective To evaluate the peripheral blood mononuclear cell (PBMC) expression levels of hemeoxygenase 1 (HMOX-1), superoxide dismutase 1 (SOD-1), vascular endothelial growth factor A (VEGF-A), transforming growth factor beta 1 (TGF-β1), interleukin (IL)-6, IL-15 and AdipoQ genes to study their association with preeclampsia (PE). Methods A total of 177 pregnant women were recruited: 108 cases and 69 controls. Quantification of gene expression was measured by quantitative real-time polymerase chain reaction (PCR) using TaqMan probes. Results Underexpression of VEGF-A and TGF-β1 was a constant in most of the cases (80.91% and 76.36%, respectively) and their expression was associated with onset and/or severity of disease (p values < 0.05). IL-6, IL-15 and AdipoQ, showed low or no expression in PBMC samples evaluated. Conclusion PBMC underexpression of VEGF-A and TGF-β1 is a hallmark of PE in the study population. PMID:24295154

  1. Value of a quality assessment program in optimizing cryopreservation of peripheral blood mononuclear cells in a multicenter study.

    PubMed

    Aziz, Najib; Margolick, Joseph B; Detels, Roger; Rinaldo, Charles R; Phair, John; Jamieson, Beth D; Butch, Anthony W

    2013-04-01

    Cryopreservation of peripheral blood mononuclear cells (PBMC) allows assays of cellular function and phenotype to be performed in batches at a later time on PBMC at a central laboratory to minimize assay variability. The Multicenter AIDS Cohort Study (MACS) is an ongoing prospective study of the natural and treated history of human immunodeficiency virus (HIV) infection that stores cryopreserved PBMC from participants two times a year at four study sites. In order to ensure consistent recovery of viable PBMC after cryopreservation, a quality assessment program was implemented and conducted in the MACS over a 6-year period. Every 4 months, recently cryopreserved PBMC from HIV-1-infected and HIV-1-uninfected participants at each MACS site were thawed and evaluated. The median recoveries of viable PBMC for HIV-1-infected and -uninfected participants were 80% and 83%, respectively. Thawed PBMC from both HIV-1-infected and -uninfected participants mounted a strong proliferative response to phytohemagglutinin, with median stimulation indices of 84 and 120, respectively. Expression of the lymphocyte surface markers CD3, CD4, and CD8 by thawed PBMC was virtually identical to what was observed on cells measured in real time using whole blood from the same participants. Furthermore, despite overall excellent performance of the four participating laboratories, problems were identified that intermittently compromised the quality of cryopreserved PBMC, which could be corrected and monitored for improvement over time. Ongoing quality assessment helps laboratories improve protocols and performance on a real-time basis to ensure optimal cryopreservation of PBMC for future studies.

  2. Triptolide Attenuates Endotoxin- and Staphylococcal Exotoxin-Induced T-Cell Proliferation and Production of Cytokines and Chemokines

    DTIC Science & Technology

    2005-02-01

    were from Sigma (St. Louis, MO, USA). Cell Culture Human PBMC were isolated by Ficoll-Hypaque density gradient centri- fugation of heparinized blood...Cytotoxicity was measured by the uptake of trypan blue . T-cell proliferation was assayed with PBMC (105 cells/well) that were plated in triplicate with...concentration range used in these studies (1–30 nM), as confirmed by trypan blue dye exclusion test. However, at 100 nM triptolide, 20% of PBMC took up

  3. 4-Hydroxy-17-methylincisterol from Agaricus blazei Decreased Cytokine Production and Cell Proliferation in Human Peripheral Blood Mononuclear Cells via Inhibition of NF-AT and NF-κB Activation

    PubMed Central

    Tsai, Wei-Jern; Yang, Shih-Chien; Huang, Yu-Ling; Chen, Chien-Chih; Chuang, Kai-An; Kuo, Yuh-Chi

    2013-01-01

    Agaricus blazei Murill is an edible and medicinal mushroom. In the previous study, we have proved that extracts of A. blazei inhibit human peripheral blood mononuclear cell (PBMC) proliferation activated with phytohemagglutinin (PHA). Currently, we purified 4-hydroxy-17-methylincisterol (4-HM; C21H33O3) from A. blazei investigated its regulatory effects on cytokine productions and cell proliferation of PBMC induced by PHA. The results indicated that 4-HM suppressed, in activated PBMC, the production and mRNA expression of interleukin-2 (IL-2), IL-4, tumor necrosis factor-α, and interferon-γ in a concentration-dependent manner. This inhibition was not related to cell viability. While 4-HM did not affect ERK phosphorylation and its downstream c-fos gene expression in PBMC induced by PHA, it decreased both NF-AT and NF-κB activation. The upstream signaling of NF-AT and NF-κB, intracellular calcium concentrations ([Ca2+]i), and protein kinase C theta (PKC θ) activation in PHA-treated PBMC were reduced by 4-HM. The data demonstrated that the suppressant effects of 4-HM on cell proliferation in PBMC activated by PHA appeared to be mediated, at least in part, through inhibition of Ca2+ mobilization and PKC θ activation, NF-AT and NF-κB activation, and cytokine transcripts and productions of PBMC. We suggested that A. blazei contained a potential immunomodulator 4-HM. PMID:23533483

  4. In vitro antitumor actions of extracts from endemic plant Helichrysum zivojinii

    PubMed Central

    2013-01-01

    Background The aim of this research was to determine the intensity and mechanisms of the cytotoxic actions of five extracts isolated from the endemic plant species Helichrysum zivojinii Černjavski & Soška (family Asteraceae) against specific cancer cell lines. In order to evaluate the sensitivity of normal immunocompetent cells implicated in the antitumor immune response, the cytotoxicity of extracts was also tested against healthy peripheral blood mononuclear cells (PBMC). Methods The aerial parts of the plants were air-dried, powdered, and successively extracted with solvents of increasing polarity to obtain hexane, dichloromethane, ethyl-acetate, n-butanol and methanol extracts. The cytotoxic activities of the extracts against human cervix adenocarcinoma HeLa, human melanoma Fem-x, human myelogenous leukemia K562, human breast adenocarcinoma MDA-MB-361 cells and PBMC were evaluated by the MTT test. The mode of HeLa cell death was investigated by morphological analysis. Changes in the cell cycle of HeLa cells treated with the extracts were analyzed by flow cytometry. The apoptotic mechanisms induced by the tested extracts were determined using specific caspase inhibitors. Results The investigated Helichrysum zivojinii extracts exerted selective dose-dependent cytotoxic actions against selected cancer cell lines and healthy immunocompetent PBMC stimulated to proliferate, while the cytotoxic actions exerted on unstimulated PBMC were less pronounced. The tested extracts exhibited considerably stronger cytotoxic activities towards HeLa, Fem-x and K562 cells in comparison to resting and stimulated PBMC. It is worth noting that the cytotoxicity of the extracts was weaker against unstimulated PBMC in comparison to stimulated PBMC. Furthermore, each of the five extracts induced apoptosis in HeLa cells, through the activation of both intrinsic and extrinsic signaling pathways. Conclusion Extracts obtained from the endemic plant Helichrysum zivojinii may represent an important source of novel potential antitumor agents due to their pronounced and selective cytotoxic actions towards malignant cells. PMID:23414290

  5. In vitro antitumor actions of extracts from endemic plant Helichrysum zivojinii.

    PubMed

    Matić, Ivana Z; Aljančić, Ivana; Žižak, Željko; Vajs, Vlatka; Jadranin, Milka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-02-18

    The aim of this research was to determine the intensity and mechanisms of the cytotoxic actions of five extracts isolated from the endemic plant species Helichrysum zivojinii Černjavski & Soška (family Asteraceae) against specific cancer cell lines. In order to evaluate the sensitivity of normal immunocompetent cells implicated in the antitumor immune response, the cytotoxicity of extracts was also tested against healthy peripheral blood mononuclear cells (PBMC). The aerial parts of the plants were air-dried, powdered, and successively extracted with solvents of increasing polarity to obtain hexane, dichloromethane, ethyl-acetate, n-butanol and methanol extracts. The cytotoxic activities of the extracts against human cervix adenocarcinoma HeLa, human melanoma Fem-x, human myelogenous leukemia K562, human breast adenocarcinoma MDA-MB-361 cells and PBMC were evaluated by the MTT test. The mode of HeLa cell death was investigated by morphological analysis. Changes in the cell cycle of HeLa cells treated with the extracts were analyzed by flow cytometry. The apoptotic mechanisms induced by the tested extracts were determined using specific caspase inhibitors. The investigated Helichrysum zivojinii extracts exerted selective dose-dependent cytotoxic actions against selected cancer cell lines and healthy immunocompetent PBMC stimulated to proliferate, while the cytotoxic actions exerted on unstimulated PBMC were less pronounced. The tested extracts exhibited considerably stronger cytotoxic activities towards HeLa, Fem-x and K562 cells in comparison to resting and stimulated PBMC. It is worth noting that the cytotoxicity of the extracts was weaker against unstimulated PBMC in comparison to stimulated PBMC. Furthermore, each of the five extracts induced apoptosis in HeLa cells, through the activation of both intrinsic and extrinsic signaling pathways. Extracts obtained from the endemic plant Helichrysum zivojinii may represent an important source of novel potential antitumor agents due to their pronounced and selective cytotoxic actions towards malignant cells.

  6. The gamma delta T cell repertoire in Graves' disease and multinodular goitre.

    PubMed Central

    McIntosh, R S; Tandon, N; Pickerill, A P; Davies, R; Barnett, D; Weetman, A P

    1993-01-01

    gamma delta T cells are a subset of T cells with unknown function, and restriction of the gamma delta T cell receptor (TCR) repertoire has been described in rheumatoid arthritis and multiple sclerosis. Elevated numbers of gamma delta T cells have been reported in the peripheral blood and thyroids of patients with Graves' disease. We have carried out flow cytometric analysis on peripheral blood mononuclear cells (PBMC) and intrathyroidal lymphocytes (ITL) from 12 patients with Graves' disease and nine patients with multinodular goitre (MNG), a thyroid disease of unknown etiology. There was no significant difference between the proportion of gamma delta T cells in the PBMC of Graves' and MNG patients, nor between the PBMC and ITL populations in either patient group. We have also carried out polymerase chain reaction amplification on RNA prepared from matched PBMC, ITL and the activated (CD25+) subset of ITL using six TCR V delta-family specific primers. Although there were differences in the amounts of each V delta transcript amplified from PBMC and ITL, there was no difference between the two patient groups. No consistent differences were therefore found between the gamma delta T cell populations in Graves' and MNG patients, arguing against the direct involvement of this T cell subset in the pathogenesis of Graves' disease. Images Fig. 1 PMID:8252809

  7. Activation and propagation of tumor infiltrating lymphocytes on clinical-grade designer artificial antigen presenting cells for adoptive immunotherapy of melanoma

    PubMed Central

    Forget, Marie-Andrée; Malu, Shruti; Liu, Hui; Toth, Christopher; Maiti, Sourindra; Kale, Charuta; Haymaker, Cara; Bernatchez, Chantale; Huls, Helen; Wang, Ena; Marincola, Francesco M.; Hwu, Patrick; Cooper, Laurence J. N.; Radvanyi, Laszlo G.

    2014-01-01

    PURPOSE Adoptive cell therapy (ACT) with autologous tumor infiltrating lymphocytes (TIL) is a therapy for metastatic melanoma with response rates up to 50%. However, the generation of the TIL transfer product is challenging, requiring pooled allogeneic normal donor peripheral blood mononuclear cells (PBMC) used in vitro as “feeders” to support a rapid expansion protocol (REP). Here, we optimized a platform to propagate TIL to a clinical scale using K562-cells genetically modified to express costimulatory molecules such as CD86, CD137-ligand and membrane-bound IL-15 to function as artificial antigen-presenting cell (aAPC) as an alternative to using PBMC feeders. EXPERIMENTAL DESIGN We used aAPC or γ-irradiated PBMC feeders to propagate TIL and measured rates of expansion. The activation and differentiation state was evaluated by flow cytometry and differential gene expression analyses. Clonal diversity was assessed based on pattern of T-cell receptor (TCR) usage. T-cell effector function was measured by evaluation of cytotoxic granule content and killing of target cells. RESULTS The aAPC propagated TIL at numbers equivalent to that found with PBMC feeders, while increasing the frequency of CD8+ T-cell expansion with a comparable effector-memory phenotype. mRNA profiling revealed an up-regulation of genes in the Wnt and stem-cell pathways with the aAPC. The aAPC platform did not skew clonal diversity and CD8+ T cells showed comparable anti-tumor function as those expanded with PBMC feeders. CONCLUSIONS TIL can be rapidly expanded with aAPC to clinical scale generating T cells with similar phenotypic and effector profiles as with PBMC feeders. These data support the clinical-application of aAPC to manufacture TIL for the treatment of melanoma. PMID:25304728

  8. Clinical validation of a novel diagnostic HIV-2 total nucleic acid qualitative assay using the Abbott m2000 platform: Implications for complementary HIV-2 nucleic acid testing for the CDC 4th generation HIV diagnostic testing algorithm.

    PubMed

    Chang, Ming; Wong, Audrey J S; Raugi, Dana N; Smith, Robert A; Seilie, Annette M; Ortega, Jose P; Bogusz, Kyle M; Sall, Fatima; Ba, Selly; Seydi, Moussa; Gottlieb, Geoffrey S; Coombs, Robert W

    2017-01-01

    The 2014 CDC 4th generation HIV screening algorithm includes an orthogonal immunoassay to confirm and discriminate HIV-1 and HIV-2 antibodies. Additional nucleic acid testing (NAT) is recommended to resolve indeterminate or undifferentiated HIV seroreactivity. HIV-2 NAT requires a second-line assay to detect HIV-2 total nucleic acid (TNA) in patients' blood cells, as a third of untreated patients have undetectable plasma HIV-2 RNA. To validate a qualitative HIV-2 TNA assay using peripheral blood mononuclear cells (PBMC) from HIV-2-infected Senegalese study participants. We evaluated the assay precision, sensitivity, specificity, and diagnostic performance of an HIV-2 TNA assay. Matched plasma and PBMC samples were collected from 25 HIV-1, 30 HIV-2, 8 HIV-1/-2 dual-seropositive and 25 HIV seronegative individuals. Diagnostic performance was evaluated by comparing the outcome of the TNA assay to the results obtained by the 4th generation HIV screening and confirmatory immunoassays. All PBMC from 30 HIV-2 seropositive participants tested positive for HIV-2 TNA including 23 patients with undetectable plasma RNA. Of the 30 matched plasma specimens, one was HIV non-reactive. Samples from 50 non-HIV-2 infected individuals were confirmed as non-reactive for HIV-2 Ab and negative for HIV-2 TNA. The agreement between HIV-2 TNA and the combined immunoassay results was 98.8% (79/80). Furthermore, HIV-2 TNA was detected in 7 of 8 PBMC specimens from HIV-1/HIV-2 dual-seropositive participants. Our TNA assay detected HIV-2 DNA/RNA in PBMC from serologically HIV-2 reactive, HIV indeterminate or HIV undifferentiated individuals with undetectable plasma RNA, and is suitable for confirming HIV-2 infection in the HIV testing algorithm. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Evaluation of NK Cell Function by Flowcytometric Measurement and Impedance Based Assay Using Real-Time Cell Electronic Sensing System

    PubMed Central

    Park, Ki-Hyun; Park, Hyesun; Kim, Myungshin; Kim, Yonggoo; Han, Kyungja; Oh, Eun-Jee

    2013-01-01

    Although real-time cell electronic sensing (RT-CES) system-based natural killer (NK) cytotoxicity has been introduced, it has not been evaluated using human blood samples. In present study, we measured flowcytometry based assay (FCA) and RT-CES based NK cytotoxicity and analyzed degranulation activity (CD107a) and cytokine production. In 98 healthy individuals, FCA with peripheral blood mononuclear cells (PBMCs) at effector to target (E/T) ratio of 32 revealed 46.5 ± 2.6% cytolysis of K562 cells, and 23.5 ± 1.1% of NK cells showed increased degranulation. In RT-CES system, adherent NIH3T3 target cells were resistant to basal killing by PBMC or NK cells. NK cell activation by adding IL-2 demonstrated real-time dynamic killing activity, and lymphokine-activated PBMC (E/T ratio of 32) from 15 individuals showed 59.1 ± 6.2% cytotoxicity results after 4 hours incubation in RT-CES system. However, there was no significant correlation between FCA and RT-CES cytotoxicity. After K562 target cell stimulation, PBMC produced profound proinflammatory and immunoregulatory cytokines/chemokines including IL-2, IL-8, IL-10, MIP-1α β, IFN-γ, and TNF-α, and cytokine/chemokine secretion was related to flowcytometry-based NK cytotoxicity. These data suggest that RT-CES and FCA differ in sensitivity, applicability and providing information, and further investigations are necessary in variable clinical conditions. PMID:24236291

  10. Evaluation of NK cell function by flowcytometric measurement and impedance based assay using real-time cell electronic sensing system.

    PubMed

    Park, Ki-Hyun; Park, Hyesun; Kim, Myungshin; Kim, Yonggoo; Han, Kyungja; Oh, Eun-Jee

    2013-01-01

    Although real-time cell electronic sensing (RT-CES) system-based natural killer (NK) cytotoxicity has been introduced, it has not been evaluated using human blood samples. In present study, we measured flowcytometry based assay (FCA) and RT-CES based NK cytotoxicity and analyzed degranulation activity (CD107a) and cytokine production. In 98 healthy individuals, FCA with peripheral blood mononuclear cells (PBMCs) at effector to target (E/T) ratio of 32 revealed 46.5 ± 2.6% cytolysis of K562 cells, and 23.5 ± 1.1% of NK cells showed increased degranulation. In RT-CES system, adherent NIH3T3 target cells were resistant to basal killing by PBMC or NK cells. NK cell activation by adding IL-2 demonstrated real-time dynamic killing activity, and lymphokine-activated PBMC (E/T ratio of 32) from 15 individuals showed 59.1 ± 6.2% cytotoxicity results after 4 hours incubation in RT-CES system. However, there was no significant correlation between FCA and RT-CES cytotoxicity. After K562 target cell stimulation, PBMC produced profound proinflammatory and immunoregulatory cytokines/chemokines including IL-2, IL-8, IL-10, MIP-1 α β , IFN- γ , and TNF- α , and cytokine/chemokine secretion was related to flowcytometry-based NK cytotoxicity. These data suggest that RT-CES and FCA differ in sensitivity, applicability and providing information, and further investigations are necessary in variable clinical conditions.

  11. Increase in TGF-β Secreting CD4+CD25+ FOXP3+ T Regulatory Cells in Anergic Lepromatous Leprosy Patients

    PubMed Central

    Saini, Chaman; Ramesh, Venkatesh; Nath, Indira

    2014-01-01

    Background Lepromatous leprosy caused by Mycobacterium leprae is associated with antigen specific T cell unresponsiveness/anergy whose underlying mechanisms are not fully defined. We investigated the role of CD25+FOXP3+ regulatory T cells in both skin lesions and M.leprae stimulated PBMC cultures of 28 each of freshly diagnosed patients with borderline tuberculoid (BT) and lepromatous leprosy (LL) as well as 7 healthy household contacts of leprosy patients and 4 normal skin samples. Methodology/Principle Findings Quantitative reverse transcribed PCR (qPCR), immuno-histochemistry/flowcytometry and ELISA were used respectively for gene expression, phenotype characterization and cytokine levels in PBMC culture supernatants. Both skin lesions as well as in vitro antigen stimulated PBMC showed increased percentage/mean fluorescence intensity of cells and higher gene expression for FOXP3+, TGF-β in lepromatous (p<0.01) as compared to tuberculoid leprosy patients. CD4+CD25+FOXP3+ T cells (Tregs) were increased in unstimulated basal cultures (p<0.0003) and showed further increase in in vitro antigen but not mitogen (phytohemaglutinin) stimulated PBMC (iTreg) in lepromatous as compared to tuberculoid leprosy patients (p<0.002). iTregs of lepromatous patients showed intracellular TGF-β which was further confirmed by increase in TGF-β in culture supernatants (p<0.003). Furthermore, TGF-β in iTreg cells was associated with phosphorylation of STAT5A. TGF-β was seen in CD25+ cells of the CD4+ but not that of CD8+ T cell lineage in leprosy patients. iTregs did not show intracellular IFN-γ or IL-17 in lepromatous leprosy patients. Conclusions/Significance Our results indicate that FOXP3+ iTregs with TGF-β may down regulate T cell responses leading to the antigen specific anergy associated with lepromatous leprosy. PMID:24454972

  12. Grain dust induces IL-8 production from bronchial epithelial cells: the effect of dexamethasone on IL-8 production.

    PubMed

    Park, H S; Suh, J H; Kim, H Y; Kwon, O J; Choi, D C

    1999-04-01

    Recent publications have suggested an active participation of neutrophils to induce bronchoconstriction after inhalation of grain dust (GD). To further understand the role of neutrophils in the pathogenesis of GD-induced asthma, this investigation was designed to determine whether human bronchial epithelial cells could produce IL-8 production and to observe the effect of dexamethasone on IL-8 production. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four concentrations (1 to 200 microg/mL) of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant, which was derived from the culture of PBMC from a GD-induced asthmatic subject under the exposure to 10 microg/mL of GD, and compared with those cultured without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. To evaluate the effect of dexamethasone on IL-8 production, four concentrations (5 to 5000 ng/mL) of dexamethasone were pre-incubated for 24 hours and the same experiments were repeated. There was significant production of IL-8 from bronchial epithelial cells with additions of GD in a dose-dependent manner (P < .05), which was significantly augmented with additions of PBMC supernatant (P < .05) at each concentration. Compared with the untreated sample, pretreatment of dexamethasone could induced a remarkable inhibitions (15% to 55%) of IL-8 production from bronchial epithelial cells in a dose-dependent manner. These results suggest that IL-8 production from bronchial epithelial cells may contribute to neutrophil recruitment occurring in GD-induced airway inflammation. The downregulation of IL-8 production by dexamethasone from bronchial epithelial cells may contribute to the efficacy of this compound in reducing cellular infiltration and ultimately to its anti-inflammatory property.

  13. Malignant mesothelioma effusions are infiltrated by CD3+ T cells highly expressing PD-L1 and the PD-L1+ tumor cells within these effusions are susceptible to ADCC by the anti-PD-L1 antibody avelumab

    PubMed Central

    Khanna, Swati; Thomas, Anish; Abate-Daga, Daniel; Zhang, Jingli; Morrow, Betsy; Steinberg, Seth M.; Orlandi, Augusto; Ferroni, Patrizia; Schlom, Jeffrey; Guadagni, Fiorella; Hassan, Raffit

    2016-01-01

    INTRODUCTION The functional aspects of programmed death 1 (PD-1) and PD ligand 1 (PD-L1) immune checkpoints in malignant mesothelioma have not been studied. METHODS Tumor samples from 65 patients with mesothelioma were evaluated for PD-L1 expression by immunohistochemistry and its prognostic significance. Malignant effusions from patients with pleural and peritoneal mesothelioma were evaluated for PD-1+ and PD-L1+ infiltrating lymphocytes and their role in inducing tumor cell PD-L1 expression. Antibody dependent cellular cytotoxicity (ADCC) of avelumab, a fully humanized IgG1 anti PD-L1 antibody towards primary mesothelioma cell lines was evaluated in presence of autologous and allogeneic NK cells. RESULTS Of 65 pleural and peritoneal mesothelioma tumors examined, 41 (63%) were PD-L1 positive, which was associated with slightly inferior overall survival compared to patients with PD-L1 negative tumors (median 23.0 vs. 33.3 months; p=0.35). The frequency of PD-L1 expression was similar in pleural and peritoneal mesothelioma patients with 62% and 64% of samples positive, respectively. Of nine mesothelioma effusion samples evaluated, the fraction of cells expressing PD-L1 ranged from 12 to 83%. Of 7 patients with paired malignant effusion and peripheral blood mononuclear cells (PBMC) samples, PD-L1 expression was significantly higher on CD3+ T cells present in malignant effusions as compared with PBMC (p=0.016). In addition, CD14+PD-1+ cells were elevated in malignant effusions compared with PBMC (p=0.031). The lymphocytes present in malignant effusions recognized autologous tumor cells and induced IFN-γ-mediated PD-L1 expression on the tumor cell surface. Of the three primary mesothelioma cell lines tested, two were susceptible to avelumab mediated ADCC in presence of autologous NK cells. CONCLUSION The majority of pleural as well as peritoneal mesothelioma express PD-L1. Malignant effusions in this disease are characterized by presence of tumor cells and CD3+ T cells that highly express PD-L1. In addition, mesothelioma tumor cells are susceptible to ADCC by anti-PD-L1 antibody avelumab. PMID:27544053

  14. Nitric oxide inhibits establishment of macroschizont-infected cell lines and is produced by macrophages of calves undergoing bovine tropical theileriosis or East Coast fever.

    PubMed

    Visser, A E; Abraham, A; Sakyi, L J; Brown, C G; Preston, P M

    1995-02-01

    Nitric oxide (NO) was produced when bovine peripheral blood mononuclear cells (PBMC) or purified, adherent PBMC (macrophages) were incubated in vitro with bovine recombinant interferon gamma (Bo rIFN-gamma). NO was produced by cells from naive, uninfected calves as well as by cells from cattle either infected with or recovered from infection with Theileria annulata or Theileria parva. PBMC of cattle undergoing tropical theileriosis (T. annulata infection) or East Coast fever (T. parva infection) synthesized NO spontaneously in vitro. NO was also induced when PBMC of immune, but not of naive, cattle were cultured with T. annulata macroschizont-infected cell lines. Macrophages alone were not stimulated to produce NO by such infected cells. In vitro establishment of macroschizont-infected cell lines was suppressed either by incubating sporozoites with S-nitroso-N-acetyl-DL-penicillamine (SNAP), a NO releasing molecule, prior to invasion of PBMC or by pulsing developing cultures of trophozoite-infected cells with SNAP. Proliferation of established macroschizont-infected cell lines was not affected by SNAP. Taken together with the well documented roles of NO in neutrotransmission, vasodilatation, cell and tissue damage and immunosuppression, the results presented here indicate that NO may not only protect cattle against T. annulata and T. parva but, if produced in excess, play a prominent role in the pathogenesis of tropical theileriosis and East Coast fever.

  15. Altered anti-inflammatory response of mononuclear cells to neuropeptide PACAP is associated with deregulation of NF-{kappa}B in chronic pancreatitis.

    PubMed

    Michalski, Christoph W; Selvaggi, Federico; Bartel, Michael; Mitkus, Tomas; Gorbachevski, Andrej; Giese, Thomas; Sebastiano, Pierluigi Di; Giese, Nathalia A; Friess, Helmut

    2008-01-01

    Although it is recognized that neurogenic influences contribute to progression of chronic inflammatory diseases, the molecular basis of neuroimmune interactions in the pathogenesis of chronic pancreatitis (CP) is not well defined. Here we report that responsiveness of peripheral blood mononuclear cells (PBMC) to the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is altered in CP. Expression of PACAP and its receptors in human CP was analyzed with quantitative RT-PCR, laser-capture microdissection, and immunohistochemistry. Regulation of PACAP expression was studied in coculture systems using macrophages and acinar cells. Responsiveness of donor and CP PBMC to PACAP was determined based on cytokine profiles and NF-kappaB activation of LPS- or LPS+PACAP-exposed cells. Although donor and CP PBMC responded equally to LPS, PACAP-mediated counteraction of LPS-induced cytokine response was switched from inhibiting TNF-alpha to decreasing IL-1beta and increasing IL-10 secretion. The change of PACAP-mediated anti-inflammatory pattern was associated with altered activation of NF-kappaB: compared with LPS alone, a combination of LPS and PACAP had no effect on NF-kappaB p65 nuclear translocation in CP PBMC, whereas NF-kappaB was significantly decreased in donor PBMC. According to laser-capture microdissection and coculture experiments, PBMC also contributed to generation of a PACAP-rich intrapancreatic environment by upregulating PACAP expression in macrophages encountering apoptotic pancreatic acini. The nociceptive status of CP patients correlated with pancreatic PACAP levels and with IL-10 bias of PACAP-exposed CP PBMC. Thus the ability of PBMC to produce and to respond to PACAP might influence neuroimmune interactions that regulate pain and inflammation in CP.

  16. Toxocara canis adult worm antigen induces proliferative response of healthy human peripheral blood mononuclear cells.

    PubMed

    Inuo, G; Akao, N; Kohsaka, H; Saito, I; Miyasaka, N; Fujita, K

    1995-02-01

    The proliferative response of human peripheral blood mononuclear cells (PBMC) from healthy donors to Toxocara canis adult worm antigens (TcA) was examined. PBMC from all donors examined (n = 7) strongly responded to TcA in a dose-dependent fashion after six days of culture, irrespective of their serological reactivity. In contrast, cord blood mononuclear cells did not react to TcA. The proliferation of PBMC in response to TcA was completely inhibited by anti-HLA-DR antibody. Purified CD4+ T cells reconstituted with autologous irradiated antigen presenting cells (APC) vigorously proliferated in response to TcA, but this was abrogated by pretreatment of APC with paraformaldehyde. Significant IL-2, IL-3, IL-4, IL-5 and IFN-gamma mRNA expression was detected in PBMC stimulated with TcA, with expression peaking at 72 h after stimulation. IL-1 beta, IL-6, IL-10 and GM-CSF mRNA expression was also upregulated, peaking at 24 h after stimulation. Taken together, these results suggest that adult T. canis-derived antigens have the ability to activate human PBMC as conventional antigens, possibly due to their cross-reactivity, which may be involved in the host defence against helminth infection.

  17. Controlled-rate freezer cryopreservation of highly concentrated peripheral blood mononuclear cells results in higher cell yields and superior autologous T-cell stimulation for dendritic cell-based immunotherapy.

    PubMed

    Buhl, Timo; Legler, Tobias J; Rosenberger, Albert; Schardt, Anke; Schön, Michael P; Haenssle, Holger A

    2012-11-01

    Availability of large quantities of functionally effective dendritic cells (DC) represents one of the major challenges for immunotherapeutic trials against infectious or malignant diseases. Low numbers or insufficient T-cell activation of DC may result in premature termination of treatment and unsatisfying immune responses in clinical trials. Based on the notion that cryopreservation of monocytes is superior to cryopreservation of immature or mature DC in terms of resulting DC quantity and immuno-stimulatory capacity, we aimed to establish an optimized protocol for the cryopreservation of highly concentrated peripheral blood mononuclear cells (PBMC) for DC-based immunotherapy. Cryopreserved cell preparations were analyzed regarding quantitative recovery, viability, phenotype, and functional properties. In contrast to standard isopropyl alcohol (IPA) freezing, PBMC cryopreservation in an automated controlled-rate freezer (CRF) with subsequent thawing and differentiation resulted in significantly higher cell yields of immature and mature DC. Immature DC yields and total protein content after using CRF were comparable with results obtained with freshly prepared PBMC and exceeded results of standard IPA freezing by approximately 50 %. While differentiation markers, allogeneic T-cell stimulation, viability, and cytokine profiles were similar to DC from standard freezing procedures, DC generated from CRF-cryopreserved PBMC induced a significantly higher antigen-specific IFN-γ release from autologous effector T cells. In summary, automated controlled-rate freezing of highly concentrated PBMC represents an improved method for increasing DC yields and autologous T-cell stimulation.

  18. Equine interferon gamma synthesis in lymphocytes after in vivo infection and in vitro stimulation with EHV-1.

    PubMed

    Paillot, R; Daly, J M; Juillard, V; Minke, J M; Hannant, D; Kydd, J H

    2005-08-22

    Equine cytotoxic T lymphocyte (CTL) responses to equine herpesvirus-1 (EHV-1) are well characterised but little is known about the cytokine response after infection or vaccination. EHV-1 is common in horses and infects lymphocytes in vivo. This virus was used as a model to measure the synthesis of interferon gamma (IFN-gamma) by equine peripheral blood mononuclear cells (PBMC) after in vivo infection and/or in vitro stimulation with EHV-1. Both flow cytometry and ELISPOT assays were used to quantify equine IFN-gamma using a mouse anti-bovine IFN-gamma monoclonal antibody (clone CC302; shown to cross-react with recombinant equine IFN-gamma) and a rabbit anti-canine IFN-gamma polyclonal antibody. The percentage of PBMC synthesising IFN-gamma after in vitro stimulation with EHV-1 increased with age. In yearlings infected experimentally with EHV-1, PBMC showed two peaks of IFN-gamma synthesis, 11 and 56 days after infection. The IFN-gamma synthesis was principally associated with CD8(+) cells. The patterns of IFN-gamma synthesis detected by intracellular IFN-gamma staining or ELISPOT were compared with CTL data and shown to be similar. These methods were also applied successfully to frozen samples of PBMC. Measurement of equine IFN-gamma using these simple techniques can now be applied to future studies on protective cellular immune responses following virus infection and/or vaccination of horses.

  19. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells

    PubMed Central

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-01-01

    Objective: It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti-Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). Materials and Methods: The activity of IgY anti-M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). Results: IgY anti-M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti-M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis. Conclusions: We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti-M. tuberculosis, stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. SUMMARY Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti-Mycobacterium tuberculosis complexIgY anti-M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti-M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosisThe increasing IL-2 and IFN-γ productions in PBMC were related to stimulation on mRNA transcription which can induce proliferation of PBMC. Abbreviations Used: IgY anti-M. tuberculosis: Immunoglobulin Y anti-Mycobacterium tuberculosis; IL-2: Interleukin-2; IFN-γ: Interferon-γ; PBMCs: Peripheral blood mononuclear cells. PMID:29333035

  20. The Activity of Immunoglobulin Y Anti-Mycobacterium tuberculosis on Proliferation and Cytokine Expression of Rat Peripheral Blood Mononuclear Cells.

    PubMed

    Sudjarwo, Sri Agus; Eraiko, Koerniasari; Sudjarwo, Giftania Wardani; Koerniasari

    2017-12-01

    It has long been known that chickens, like mammals, are capable of producing antigen-specific immunoglobulin Y (IgY), which functions similar to IgG. The present study was performed to investigate the activity of IgY anti- Mycobacterium tuberculosis on proliferation, interleukin (IL)-2, and interferon (IFN)-γ expression of rat peripheral blood mononuclear cells (PBMCs). The activity of IgY anti- M. tuberculosis in different doses (25, 50, and 100 μg/ml) on rat PBMCs proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. The production of IL-2 and IFN-γ in the PBMC supernatant was determined using enzyme-linked immunosorbent assay. Investigation was performed on mRNA expression of IL-2 and IFN-γ by reverse transcription-polymerase chain reaction (RT-PCR). IgY anti- M. tuberculosis significantly increased the proliferation of rat PBMC. Furthermore, IgY anti-M. tuberculosis dose dependently increased IL-2 and IFN-γ production in PBMC, suggesting that pharmacological activities of IgY anti- M. tuberculosis in PBMC may be mediated by regulating the production of cytokines. In the RT-PCR, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti- M. tuberculosis . We concluded that increasing IL-2 and IFN-γ productions in PBMC was related to IgY anti- M. tuberculosis , stimulating the mRNA transcription (gene expression) of these cytokines which can induce proliferation of PBMC. Lohman laying hens immunized intramuscularly with antigens of M. tuberculosis can produce specific IgY anti- Mycobacterium tuberculosis complexIgY anti- M. tuberculosis significantly increased the proliferation of rat peripheral blood mononuclear cell (PBMC)IgY anti- M. tuberculosis dose dependently increased interleukin 2 (IL-2) and interferon (IFN)-γ production in PBMCIn the reverse transcription-polymerase chain reaction, expression of cytokines such as IL-2 and IFN-γ in PBMC cultures was increased by IgY anti-M. tuberculosis The increasing IL-2 and IFN-γ productions in PBMC were related to stimulation on mRNA transcription which can induce proliferation of PBMC. Abbreviations Used: IgY anti- M . tuberculosis: Immunoglobulin Y anti- Mycobacterium tuberculosis ; IL-2: Interleukin-2; IFN-γ: Interferon-γ; PBMCs: Peripheral blood mononuclear cells.

  1. Spontaneous apoptosis, oxidative status and immunophenotype markers in blood lymphocytes of AIDS patients.

    PubMed

    Losa, G A; Graber, R

    2000-01-01

    Peripheral blood mononuclear cells (PBMC) from 251 HIV-positive drug abusers of known clinical stage and from 40 healthy donors were tested for conventional immunologic markers (CD3, CD4, CD8, CD19, CD14, CD16/CD56, CD45 and HLA-DR). Additional cell parameters and the occurrence of spontaneous apoptosis (programmed cell death) were investigated on freshly isolated PBMC by flow cytometric measurement of either annexin-V bound to plasma membrane phosphatidylserine or propidium iodide uptake. The activity of gamma-glutamyltransferase (gamma-GT), an ectoenzyme contributing to the synthesis of the intracellular antioxidant glutathione (GSH) and involved in early apoptosis, was also determined in these cells. Immunocompetent T-cell counts were lower in HIV+ patients, with the exception of CD8+ and HLA-DR+ lymphocytes. The external binding of annexin-V was significantly higher in HIV+ PBMC and occurred in both CD8+ and CD4+ T-lymphocyte subsets. The activity of gamma-GT, was significantly lower in the PBMC from HIV+ patients, indicating that the redox status of PBMC may be affected in HIV+ individuals. Finally, the most dominant features characterising patients receiving antiretroviral therapy were greater long-term stability in the distribution of various cell parameters excepted the level of apoptosis.

  2. Spontaneous Apoptosis, Oxidative Status and Immunophenotype Markers in Blood Lymphocytes of AIDS Patients

    PubMed Central

    Losa, Gabriele A.; Graber, Riccardo

    2000-01-01

    Peripheral blood mononuclear cells (PBMC) from 251 HIV‐positive drug abusers of known clinical stage and from 40 healthy donors were tested for conventional immunologic markers (CD3, CD4, CD8, CD19, CD14, CD16/CD56, CD45 and HLA‐DR). Additional cell parameters and the occurrence of spontaneous apoptosis (programmed cell death) were investigated on freshly isolated PBMC by flow cytometric measurement of either annexin‐V bound to plasma membrane phosphatidylserine or propidium iodide uptake. The activity of γ‐glutamyltransferase (γ‐GT), an ectoenzyme contributing to the synthesis of the intracellular antioxidant glutathione (GSH) and involved in early apoptosis, was also determined in these cells. Immunocompetent T‐cell counts were lower in HIV+ patients, with the exception of CD8+ and HLA‐DR+ lymphocytes. The external binding of annexin‐V was significantly higher in HIV+ PBMC and occurred in both CD8+ and CD4+ T‐lymphocyte subsets. The activity of γ‐GT, was significantly lower in the PBMC from HIV+ patients, indicating that the redox status of PBMC may be affected in HIV+ individuals. Finally, the most dominant features characterising patients receiving antiretroviral therapy were greater long‐term stability in the distribution of various cell parameters excepted the level of apoptosis. PMID:11254221

  3. The Effect of Krill Oil Supplementation on Exercise Performance and Markers of Immune Function

    PubMed Central

    Da Boit, Mariasole; Mastalurova, Ina; Brazaite, Goda; McGovern, Niall; Thompson, Keith; Gray, Stuart Robert

    2015-01-01

    Background Krill oil is a rich source of the long-chain n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which may alter immune function after exercise. The aim of the study was to determine the effects of krill oil supplementation on post exercise immune function and performance. Methods Nineteen males and 18 females (age: 25.8 ± 5.3 years; mean ± S.D.) were randomly assigned to 2 g/day of krill oil (n = 18) or placebo (n = 19) supplementation for 6 weeks. A maximal incremental exercise test and cycling time trial (time to complete set amount of work) were performed pre-supplementation with the time trial repeated post-supplementation. Blood samples collected pre- and post- supplementation at rest, and immediately, 1 and 3h post-exercise. Plasma IL-6 and thiobarbituric acid reactive substances (TBARS) concentrations and, erythrocyte fatty acid composition were measured. Natural killer (NK) cell cytotoxic activity and peripheral blood mononuclear cell (PBMC) IL-2, IL-4, IL-10, IL-17 and IFNγ production were also measured. Results No effects of gender were noted for any variable. PBMC IL-2 and NK cell cytotoxic activity were greater (P < 0.05) 3h post exercise in the krill oil compared to the control group. Plasma IL-6 and TBARS, PBMC IL-4, IL-10, IL-17 and IFNγ production, along with performance and physiological measures during exercise, were not different between groups. Conclusion Six weeks of krill oil supplementation can increase PBMC IL-2 production and NK cell cytotoxic activity 3h post-exercise in both healthy young males and females. Krill oil does not modify exercise performance. PMID:26407095

  4. Differences in Env and Gag protein expression patterns and epitope availability in feline immunodeficiency virus infected PBMC compared to infected and transfected feline model cell lines.

    PubMed

    Roukaerts, Inge D M; Grant, Chris K; Theuns, Sebastiaan; Christiaens, Isaura; Acar, Delphine D; Van Bockstael, Sebastiaan; Desmarets, Lowiese M B; Nauwynck, Hans J

    2017-01-02

    Env and Gag are key components of the FIV virion that are targeted to the plasma membrane for virion assembly. They are both important stimulators and targets of anti-FIV immunity. To investigate and compare the expression pattern and antigenic changes of Gag and Env in various research models, infected PBMC (the natural FIV host cells) and GFox, and transfected CrFK were stained over time with various Env and Gag specific MAbs. In FIV infected GFox and PBMC, Env showed changes in epitope availability for antibody binding during processing and trafficking, which was not seen in transfected CrFK. Interestingly, epitopes exposed on intracellular Env and Env present on the plasma membrane of CrFK and GFox seem to be hidden on plasma membrane expressed Env of FIV infected PBMC. A kinetic follow up of Gag and Env expression showed a polarization of both Gag and Env expression to specific sites at the plasma membrane of PBMC, but not in other cell lines. In conclusion, mature trimeric cell surface expressed Env might be antigenically distinct from intracellular monomeric Env in PBMC and might possibly be unrecognizable by feline humoral immunity. In addition, Env expression is restricted to a small area on the plasma membrane and co-localizes with a large moiety of Gag, which may represent a preferred FIV budding site, or initiation of virological synapses with direct cell-to-cell virus transmission. Copyright © 2016. Published by Elsevier B.V.

  5. Serum amyloid A induction of cytokines in monocytes/macrophages and lymphocytes.

    PubMed

    Song, Changjie; Hsu, Kenneth; Yamen, Eric; Yan, Weixing; Fock, Jianyi; Witting, Paul K; Geczy, Carolyn L; Freedman, S Ben

    2009-12-01

    Serum amyloid A (SAA) is a biomarker of inflammation. Elevated blood levels in cardiovascular disease and local deposition in atheroma implies a role of SAA as a mediator rather than just a marker of inflammation. This study explored SAA-induced cytokine production and secretion by mononuclear cells. RT-PCR showed that SAA time-dependently induced cytokine mRNAs in peripheral blood mononuclear cells (PBMC) and THP-1 monocytoid cells, and dramatically increased IL-1beta, MCP-1, IL-6, IL-8, IL-10, GM-CSF, TNF, and MIP-1alpha secretion by PBMC to levels 28 to 25,000 fold above baseline, as measured with Bio-Plex kits; monocytes were the principle source. SAA induction of cytokines in monocyte-derived macrophages (MDM) was significantly higher than from monocytes from the same donors. SAA time-dependently induced transient and significant upregulation of NF-kappaB1 mRNA; inhibitor studies indicate that activation of NF-kappaB through the ERK1/2, p38 and JNK MAPKs and the PI3K pathway was involved. PBMC from 10 patients with coronary artery disease (CAD) spontaneously secreted higher levels of IL-6 and MIP-1alpha after 24h incubation than PBMC from normal controls, whereas SAA-induced levels of all cytokines were similar to controls. Aortic and coronary sinus sampling in 23 CAD patients indicated significant SAA release into the coronary circulation, not evident in 11 controls. SAA can increase monocyte and macrophage cytokine production, possibly at sites of atherosclerosis, thereby contributing to the pro-inflammatory state in coronary artery disease.

  6. Myeloid cells in peripheral blood mononuclear cell concentrates inhibit the expansion of chimeric antigen receptor T cells.

    PubMed

    Stroncek, David F; Ren, Jiaqiang; Lee, Daniel W; Tran, Minh; Frodigh, Sue Ellen; Sabatino, Marianna; Khuu, Hanh; Merchant, Melinda S; Mackall, Crystal L

    2016-07-01

    Autologous chimeric antigen receptor (CAR) T-cell therapies have shown promising clinical outcomes, but T-cell yields have been variable. CD19- and GD2-CAR T-cell manufacturing records were reviewed to identify sources of variability. CD19-CAR T cells were used to treat 43 patients with acute lymphocytic leukemia or lymphoma and GD2-CAR T cells to treat eight patients with osteosarcoma and three with neuroblastoma. Both types of CAR T cells were manufactured using autologous peripheral blood mononuclear cells (PBMC) concentrates and anti-CD3/CD28 beads for T-cell enrichment and simulation. A comparison of the first 6 GD2- and the first 22 CD19-CAR T-cell products manufactured revealed that GD2-CAR T-cell products contained fewer transduced cells than CD19-CAR T-cell products (147 ± 102 × 10(6) vs 1502 ± 1066 × 10(6); P = 0.0059), and their PBMC concentrates contained more monocytes (31.4 ± 12.4% vs 18.5 ± 13.7%; P = 0.019). Among the first 28 CD19-CAR T-cell products manufactured, four had poor expansion yielding less than 1 × 10(6) transduced T cells per kilogram. When PBMC concentrates from these four patients were compared with the 24 others, PBMC concentrates of poorly expanding products contained greater quantities of monocytes (39.8 ± 12.9% vs. 15.3 ± 10.8%, P = 0.0014). Among the patients whose CD19-CAR T cells expanded poorly, manufacturing for two patients was repeated using cryopreserved PBMC concentrates but incorporating a monocyte depleting plastic adherence step, and an adequate dose of CAR T cells was produced for both patients. Variability in CAR T-cell expansion is due, at least in part, to the contamination of the starting PBMC concentrates with monocytes. Published by Elsevier Inc.

  7. PBMC are as good a source of tumor-reactive T lymphocytes as TIL after selection by Melan-A/A2 multimer immunomagnetic sorting.

    PubMed

    Labarrière, Nathalie; Gervois, Nadine; Bonnin, Annabelle; Bouquié, Régis; Jotereau, Francine; Lang, François

    2008-02-01

    Choosing a reliable source of tumor-specific T lymphocytes and an efficient method to isolate these cells still remains a critical issue in adoptive cellular therapy (ACT). In this study, we assessed the capacity of MHC/peptide based immunomagnetic sorting followed by polyclonal T cell expansion to derive pure polyclonal and tumor-reactive Melan-A specific T cell populations from melanoma patient's PBMC and TIL. We first demonstrated that this approach was extremely efficient and reproducible. We then used this procedure to compare PBMC and TIL-derived cells from three melanoma patients in terms of avidity for Melan-A A27L analog, Melan-A(26-35)and Melan-A(27-35), tumor reactivity (lysis and cytokine production) and repertoire. Regardless of their origin, i.e., fresh PBMC, peptide stimulated PBMC or TIL, all sorted populations (from the three patients) were cytotoxic against HLA-A2+ melanoma cell lines expressing Melan-A. Although some variability in peptide avidity, lytic activity and cytokine production was observed between populations of different origins in a given patient, it differed from one patient to another and thus no correlation could be drawn between T cell source and reactivity. Analysis of Vbeta usage within the sorted populations showed the recurrence of Vbeta3 and Vbeta14 subfamilies in the three patients but differences in the rest of the Melan-A repertoire. In addition, in two patients, we observed major repertoire differences between populations sorted from the three sources. We especially documented that in vitro peptide stimulation of PBMC, used to facilitate the sort by enriching in specific T lymphocytes, could significantly alter their repertoire and reactivity towards tumor cells. We conclude that PBMC which are easily obtained from all melanoma patients, can be as good a source as TIL to derive high amounts of tumor-reactive Melan-A specific T cells, with this selection/amplification procedure. However, the conditions of peptide stimulation should be improved to prevent a possible loss of reactive clonotypes.

  8. Intracellular Cytokine Staining and Flow Cytometry: Considerations for Application in Clinical Trials of Novel Tuberculosis Vaccines.

    PubMed

    Smith, Steven G; Smits, Kaatje; Joosten, Simone A; van Meijgaarden, Krista E; Satti, Iman; Fletcher, Helen A; Caccamo, Nadia; Dieli, Francesco; Mascart, Francoise; McShane, Helen; Dockrell, Hazel M; Ottenhoff, Tom H M

    2015-01-01

    Intracellular cytokine staining combined with flow cytometry is one of a number of assays designed to assess T-cell immune responses. It has the specific advantage of enabling the simultaneous assessment of multiple phenotypic, differentiation and functional parameters pertaining to responding T-cells, most notably, the expression of multiple effector cytokines. These attributes make the technique particularly suitable for the assessment of T-cell immune responses induced by novel tuberculosis vaccines in clinical trials. However, depending upon the particular nature of a given vaccine and trial setting, there are approaches that may be taken at different stages of the assay that are more suitable than other alternatives. In this paper, the Tuberculosis Vaccine Initiative (TBVI) TB Biomarker Working group reports on efforts to assess the conditions that will determine when particular assay approaches should be employed. We have found that choices relating to the use of fresh whole blood or peripheral blood mononuclear cells (PBMC) and frozen PBMC; use of serum-containing or serum-free medium; length of stimulation period and use of co-stimulatory antibodies can all affect the sensitivity of intracellular cytokine assays. In the case of sample material, frozen PBMC, despite some loss of sensitivity, may be more advantageous for batch analysis. We also recommend that for multi-site studies, common antibody panels, gating strategies and analysis approaches should be employed for better comparability.

  9. Replication Competent Molecular Clones of HIV-1 Expressing Renilla Luciferase Facilitate the Analysis of Antibody Inhibition in PBMC

    PubMed Central

    Edmonds, Tara G.; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S.; Conway, Joan A.; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T.; Montefiori, David C.; Kappes, John C.; Ochsenbauer, Christina

    2010-01-01

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. PMID:20863545

  10. Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC.

    PubMed

    Edmonds, Tara G; Ding, Haitao; Yuan, Xing; Wei, Qing; Smith, Kendra S; Conway, Joan A; Wieczorek, Lindsay; Brown, Bruce; Polonis, Victoria; West, John T; Montefiori, David C; Kappes, John C; Ochsenbauer, Christina

    2010-12-05

    Effective vaccine development for human immunodeficiency virus type 1 (HIV-1) will require assays that ascertain the capacity of vaccine immunogens to elicit neutralizing antibodies (NAb) to diverse HIV-1 strains. To facilitate NAb assessment in peripheral blood mononuclear cell (PBMC)-based assays, we developed an assay-adaptable platform based on a Renilla luciferase (LucR) expressing HIV-1 proviral backbone. LucR was inserted into pNL4-3 DNA, preserving all viral open reading frames. The proviral genome was engineered to facilitate expression of diverse HIV-1 env sequences, allowing analysis in an isogenic background. The resulting Env-IMC-LucR viruses are infectious, and LucR is stably expressed over multiple replications in PBMC. HIV-1 neutralization, targeting TZM-bl cells, was highly correlative comparing virus (LucR) and cell (firefly luciferase) readouts. In PBMC, NAb activity can be analyzed either within a single or multiple cycles of replication. These results represent advancement toward a standardizable PBMC-based neutralization assay for assessing HIV-1 vaccine immunogen efficacy. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Sex- and Disease-Specific Inflammasome Signatures in Circulating Blood Leukocytes of Patients with Abdominal Aortic Aneurysm

    PubMed Central

    Wu, Xiaoyu; Cakmak, Sinan; Wortmann, Markus; Hakimi, Maani; Zhang, Jian; Böckler, Dittmar; Dihlmann, Susanne

    2016-01-01

    Male sex is a risk factor for abdominal aortic aneurysm (AAA). Within the AAA adventitia, infiltrating leukocytes express high levels of inflammasome components. To further elucidate the role of inflammatory cells in the pathogenesis of AAA, we here addressed expression and functionality of inflammasome components in peripheral blood mononuclear cells (PBMC) of AAA patients in association with sex. PBMC and plasma were isolated from 100 vascular patients, including 34 pairs of AAA patients and age/sex-matched non-AAA patients. Male PBMC were found to express significantly higher mRNA levels of AIM2, NLRP3, ASC (PYCARD), CASP1, CASP5, and IL1B (all P < 0.0001) than female PBMC. Within the male patients, PBMC of AAA patients displayed increased mRNA levels of NLRP3 (P = 0.044), CASP1 (P = 0.032) and IL1B (P = 0.0004) compared with matched non-AAA PBMC, whereas there was no difference between female AAA and non-AAA patients. The relative protein level of NLRP3 was significantly lower in PBMC lysates from all AAA patients than in matched controls (P = 0.038), whereas AIM2 and active Caspase-1 (p10) protein levels were significantly increased (P = 0.014 and P = 0.049). ELISA revealed significantly increased IL-1α (mean = 6.34 versus 0.01 pg/mL) and IL-1β plasma levels (mean = 12.07 versus 0.04 pg/mL) in AAA patients. The data indicate that male PBMC display a systemic proinflammatory state with primed inflammasomes that may contribute to AAA-pathogenesis. The AAA-specific inflammasome activation pattern suggests differential regulation of the sensors AIM2 and NLRP3 in inflammatory cells of AAA patients. PMID:27474483

  12. Effects of interferon-alpha subtypes on the TH1/TH2 balance in peripheral blood mononuclear cells from patients with hepatitis virus infection-associated liver disorders.

    PubMed

    Ariyasu, Toshio; Tanaka, Takeshi; Fujioka, Noboru; Yanai, Yoshiaki; Yamamoto, Shigeto; Yamauchi, Hiroshi; Ikegami, Hakuo; Ikeda, Masao; Kurimoto, Masashi

    2005-01-01

    Interferon-alpha (IFN-alpha) has recently been shown to modulate in vitro T helper (Th) 1-driven responses in the peripheral blood mononuclear cells (PBMC) of patients with hepatitis B virus or C virus infection. In this study, we examined the in vitro effects of IFN-alpha subtypes (IFN-alpha1, -alpha2, -alpha5, -alpha8, and -alpha10) on the Th1/Th2 balance in PBMC obtained from patients with hepatitis virus infection-associated liver disorders and chronic hepatitis (CH), in comparison with the effect on healthy control volunteer PBMC. The Th1-type cell percentages and Th1/Th2 ratios were significantly higher in the PBMC of patients when compared with controls both before and after cultivation in vitro, with the IFN-alpha subtypes. The IFNalpha-5 induced an increase in the Th2-type cell percentages in both control and patient PBMC, resulting in that IFN-alpha5 lowered the Th1/Th2 ratio in patients with CH. Furthermore, statistical analysis revealed that IFN-alpha8 significantly promoted an increase in the Th1/Th2 ratios of PBMC from patients with CH and liver cirrhosis (LC) but not that of PBMC from patients with LC-hepatocellular carcinoma (HCC) and HCC. These findings imply that hepatitis virus infection and its disease status modify the effects of IFN-alpha subtypes on Th1 and Th2 immune balance in patients. Our findings should help to elucidate the mechanisms underlying successful IFN therapy for hepatitis virus infection and prevention of hepatocellular carcinogenesis.

  13. Excess apoptosis of mononuclear cells contributes to the depressed cytomegalovirus-specific immunity in HIV-infected patients on HAART

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Adriana; Jesser, Renee D.; Edelstein, Charles L.

    2004-12-05

    HIV-infected patients on highly active antiretroviral therapy (HAART) have persistently decreased cytomegalovirus (CMV)-specific proliferative responses [lymphocyte proliferation assay (LPA)] in spite of increases in CD4+ T cell counts. Here we demonstrate an association between apoptosis of unstimulated peripheral blood mononuclear cells (uPBMC) and decreased CMV-LPA. HAART recipients had more apoptosis of uPBMC than controls when measured by caspases 3, 8, and 9 activities and by annexin V binding. Patients with undetectable HIV replication maintained significantly higher apoptosis of CD4+ and CD14+ cells compared to controls. CMV-LPA decreased with higher apoptosis of uPBMC in patients only. This association was independent ofmore » CD4+ cell counts or HIV replication. Furthermore, rescuing PBMC from apoptosis with crmA, but not with TRAIL- or Fas-pathway blocking agents or with other caspase inhibitors, increased CMV-LPA in HAART recipients. This effect was not observed in uninfected controls, further indicating that the down regulatory effect of apoptosis on cell-mediated immunity (CMI) was specifically associated with the HIV-infected status.« less

  14. Ex-vivo expansion of CFU-GM and BFU-E in unselected PBMC cultures with Flt3L is enhanced by autologous plasma.

    PubMed

    Guo, M; Miller, W M; Papoutsakis, E T; Patel, S; James, C; Goolsby, C; Winter, J N

    1999-01-01

    Previous ex-vivo expansion studies in our laboratory, comparing unselected and CD34(+)-selected PBMC, have shown no advantage for CD34(+) cell selection, in terms of the expansion achieved. Our goal was to develop procedures for consistent generation of large numbers of hematopoietic progenitor and post-progenitor cells from unselected PBMC. Unselected PBMC, collected from cancer patients undergoing apheresis prior to high-dose chemotherapy and autologous stem cell rescue, were expanded ex vivo in static cultures, without a stromal layer, in the presence of Flt3 ligand (Flt3L), a recombinant GM-CSF/IL-3 fusion protein (PIXY321), G-CSF and GM-CSF for 10 days. The addition of 2% autologous plasma to this cytokine combination enhanced expansion of total cell numbers (3.2 fold versus 1.9 fold; p < 0.01), colony-forming units granulocyte-macrophage (CFU-GM) (22.0 fold versus 8.1 fold, p < 0.01) and burst-forming units erythroid (BFU-E) (17.6 fold versus 7.0 fold, 0.01 < p < 0.02). The optimal seeding density for a given specimen was inversely related to the frequency of CD34(+) cells in the sample. CFU-GM expansion with the Flt3L-containing cytokine cocktail was equivalent to that obtained with IL-3, IL-6, G-CSF and SCF, whether or not the cultures were supplemented with autologous plasma. In plasma-free cultures, BFU-E expansion was significantly higher with IL-3, IL-6, G-CSF and SCF than with Flt3L, PIXY321, G-CSF and GM-CSF. In the presence of autologous plasma, however BFU-E expansion was higher in the Flt3L-containing media. In comparison studies, autologous plasma suppressed BFU-E expansion in SCF-containing cultures. Consistent with our colony assay results, dual-parameter flow cytometric analysis of the expanded cell population revealed that supplementation with autologous plasma yielded a significant increase in the numbers of myeloid progenitors in Flt3L-containing cultures. Unselected PBMC from cancer patients can be effectively expanded ex vivo in Flt3L, PIXY321, G-CSF and GM-CSF, supplemented with autologous plasma, yielding high numbers of myeloid and erythroid progenitors.

  15. Effect of conjugated linoleic acid on proliferation and cytokine expression of bovine peripheral blood mononuclear cells and splenocytes ex vivo.

    PubMed

    Renner, Lydia; von Soosten, Dirk; Sipka, Anja; Döll, Susanne; Beineke, Andreas; Schuberth, Hans-Joachim; Dänicke, Sven

    2012-04-01

    Twenty-five primiparous Holstein cows were divided into five experimental groups (five animals per group) by different feeding (control fat preparation [CON] or conjugated linoleic acid [CLA] supplement) and slaughtering times. The daily consumption of CLA was 6.0 g of the trans-10, cis-12 CLA-isomer and 5.7 g cis-9, trans-11 CLA isomer. An initial group (IG) was slaughtered one day post partum (pp) and the remaining 20 animals after 42 and 105 days pp, respectively. Blood for peripheral blood mononuclear cells (PBMC) separation was taken seven days ante partum and immediately before slaughter. The spleen was removed during dissection for isolation of splenocytes and samples for histopathological examination. Cell viability and Concanavalin A-stimulated proliferation was analysed by MTT and Alamar Blue assay. Basal expression of cytokines (interleukin [IL]-4, IL-10, IL-12, tumour necrosis factor alpha [TNF-alpha] and interferon gamma [IFN-gamma]) was measured by quantitative real time polymerase chain reaction (qRT-PCR) in unstimulated PMBC and splenocytes. With PBMC, stimulation indices increased from 1 day pp to 105 days pp with no differences between CLA and CON groups. With splenocytes, the stimulation index of the CLA group was lower compared to CON group 105 days pp. Baseline expression of cytokines was not effected by CLA feeding comparing similar time points. Also, no differences occurred in the expression of IL-4 in PBMC and IL-10 as well as TNF-alpha in both cell populations, when comparing the feeding groups separately with IG. IL-4 was more frequently expressed in CLA group 42 days pp in splenocytes. IFN-gamma expression was increased 105 days pp in CLA group in splenocytes and PBMC. IL-12 was higher expressed 105 days (PBMC) or 42 days pp (splenocytes) when compared to IG. There was no effect of CLA feeding or slaughter time on histopathology of the spleen. In conclusion, the present results demonstrate an inhibiting effect of CLA on the mitogen-induced activation of splenocytes.

  16. Process of assay selection and optimization for the study of case and control samples from a phase IIb efficacy trial of a candidate tuberculosis vaccine, MVA85A.

    PubMed

    Harris, Stephanie A; Satti, Iman; Matsumiya, Magali; Stockdale, Lisa; Chomka, Agnieszka; Tanner, Rachel; O'Shea, Matthew K; Manjaly Thomas, Zita-Rose; Tameris, Michele; Mahomed, Hassan; Scriba, Thomas J; Hanekom, Willem A; Fletcher, Helen A; McShane, Helen

    2014-07-01

    The first phase IIb safety and efficacy trial of a new tuberculosis vaccine since that for BCG was completed in October 2012. BCG-vaccinated South African infants were randomized to receive modified vaccinia virus Ankara, expressing the Mycobacterium tuberculosis antigen 85A (MVA85A), or placebo. MVA85A did not significantly boost the protective effect of BCG. Cryopreserved samples provide a unique opportunity for investigating the correlates of the risk of tuberculosis disease in this population. Due to the limited amount of sample available from each infant, preliminary work was necessary to determine which assays and conditions give the most useful information. Peripheral blood mononuclear cells (PBMC) were stimulated with antigen 85A (Ag85A) and purified protein derivative from M. tuberculosis in an ex vivo gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) and a Ki67 proliferation assay. The effects of a 2-h or overnight rest of thawed PBMC on ELISpot responses and cell populations were determined. Both the ELISpot and Ki67 assays detected differences between the MVA85A and placebo groups, and the results correlated well. The cell numbers and ELISpot responses decreased significantly after an overnight rest, and surface flow cytometry showed a significant loss of CD4(+) and CD8(+) T cells. Of the infants tested, 50% had a positive ELISpot response to a single pool of flu, Epstein-Barr virus (EBV), and cytomegalovirus (CMV) (FEC) peptides. This pilot work has been essential in determining the assays and conditions to be used in the correlate study. Moving forward, PBMC will be rested for 2 h before assay setup. The ELISpot assay, performed in duplicate, will be selected over the Ki67 assay, and further work is needed to evaluate the effect of high FEC responses on vaccine-induced immunity and susceptibility to tuberculosis disease. Copyright © 2014 Harris et al.

  17. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health

    PubMed Central

    Thompson, Laura A.; Romano, Tracy A.

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples (n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska (n = 9). Human blood samples (n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies. PMID:27746745

  18. Pressure Induced Changes in Adaptive Immune Function in Belugas (Delphinapterus leucas); Implications for Dive Physiology and Health.

    PubMed

    Thompson, Laura A; Romano, Tracy A

    2016-01-01

    Increased pressure, associated with diving, can alter cell function through several mechanisms and has been shown to impact immune functions performed by peripheral blood mononuclear cells (PBMC) in humans. While marine mammals possess specific adaptations which protect them from dive related injury, it is unknown how their immune system is adapted to the challenges associated with diving. The purpose of this study was to measure PBMC activation (IL2R expression) and Concanavalin A induced lymphocyte proliferation (BrdU incorporation) in belugas following in vitro pressure exposures during baseline, Out of Water Examination (OWE) and capture/release conditions. Beluga blood samples ( n = 4) were obtained from animals at the Mystic Aquarium and from free ranging animals in Alaska ( n = 9). Human blood samples ( n = 4) (Biological Specialty Corporation) were run for comparison. In vivo catecholamines and cortisol were measured in belugas to characterize the neuroendocrine response. Comparison of cellular responses between controls and pressure exposed cells, between conditions in belugas, between belugas and humans as well as between dive profiles, were run using mixed generalized linear models (α = 0.05). Cortisol was significantly higher in Bristol Bay belugas and OWE samples as compared with baseline for aquarium animals. Both IL2R expression and proliferation displayed significant pressure induced changes, and these responses varied between conditions in belugas. Both belugas and humans displayed increased IL2R expression, while lymphocyte proliferation decreased for aquarium animals and increased for humans and Bristol Bay belugas. Results suggest beluga PBMC function is altered during diving and changes may represent dive adaptation as the response differs from humans, a non-dive adapted mammal. In addition, characteristics of a dive (i.e., duration, depth) as well as neuroendocrine activity can alter the response of beluga cells, potentially impacting the ability of animals to fight infection or avoid dive related pathologies.

  19. Prospective identification of erythroid elements in cultured peripheral blood.

    PubMed

    Miller, J L; Njoroge, J M; Gubin, A N; Rodgers, G P

    1999-04-01

    We have developed a prospective approach to identify the generation of erythroid cells derived from cultured peripheral blood mononuclear cells (PBMC) by monitoring the expression of the cell surface protein CD48. Unpurified populations of PBMC obtained from the buffy coats of normal volunteers were grown in suspension culture in the absence or presence of erythropoietin. A profile of surface CD48 expression permitted a flow cytometric identification of erythropoietin responsive populations at various stages of their maturation. In the absence of erythropoietin (EPO) supplemented media, the CD48- cells represented <5% of the total population of PBMC remaining in culture. In cultures supplemented with 1 U/mL EPO, the mean percentage of CD48- cells increased to 34.7 + 14.9% (p < 0.01) after 14 days in culture. Coordinated CD34 and CD71 (transferrin receptor) expression, morphology, gamma-globin transcription, and colony formation in methylcellulose were observed during the 14-day culture period. Flow cytometric monitoring of bulk cultured PBMC provides a simple and reliable means for the prospective or real-time study of human erythropoiesis.

  20. Inflammation in adult women with a history of child maltreatment: The involvement of mitochondrial alterations and oxidative stress.

    PubMed

    Boeck, Christina; Koenig, Alexandra Maria; Schury, Katharina; Geiger, Martha Leonie; Karabatsiakis, Alexander; Wilker, Sarah; Waller, Christiane; Gündel, Harald; Fegert, Jörg Michael; Calzia, Enrico; Kolassa, Iris-Tatjana

    2016-09-01

    The experience of maltreatment during childhood is associated with chronic low-grade inflammation in adulthood. However, the molecular mechanisms underlying this pro-inflammatory phenotype remain unclear. Mitochondria were recently found to principally coordinate inflammatory processes via both inflammasome activation and inflammasome-independent pathways. To this end, we hypothesized that alterations in immune cell mitochondrial functioning and oxidative stress might be at the interface between the association of maltreatment experiences during childhood and inflammation. We analyzed pro-inflammatory biomarkers (levels of C-reactive protein, cytokine secretion by peripheral blood mononuclear cells (PBMC) in vitro, PBMC composition, lysophosphatidylcholine levels), serum oxidative stress levels (arginine:citrulline ratio, l-carnitine and acetylcarnitine levels) and mitochondrial functioning (respiratory activity and density of mitochondria in PBMC) in peripheral blood samples collected from 30 women (aged 22-44years) with varying degrees of maltreatment experiences in form of abuse and neglect during childhood. Exposure to maltreatment during childhood was associated with an increased ROS production, higher levels of oxidative stress and an increased mitochondrial activity in a dose-response relationship. Moreover, the increase in mitochondrial activity and ROS production were positively associated with the release of pro-inflammatory cytokines by PBMC. Decreased serum levels of lysophosphatidylcholines suggested higher inflammasome activation with increasing severity of child maltreatment experiences. Together these findings offer preliminary evidence for the association of alterations in immune cell mitochondrial functioning, oxidative stress and the pro-inflammatory phenotype observed in individuals with a history of maltreatment during childhood. The results emphasize that the early prevention of child abuse and neglect warrants more attention, as the experience of maltreatment during childhood might have life-long consequences for physical health. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  1. Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies.

    PubMed

    Stroncek, David F; Fellowes, Vicki; Pham, Chauha; Khuu, Hanh; Fowler, Daniel H; Wood, Lauren V; Sabatino, Marianna

    2014-09-17

    Peripheral blood mononuclear cells (PBMC) concentrates collected by apheresis are frequently used as starting material for cellular therapies, but the cell of interest must often be isolated prior to initiating manufacturing. The results of enriching 59 clinical PBMC concentrates for monocytes or lymphocytes from patients with solid tumors or multiple myeloma using a commercial closed system semi-automated counter-flow elutriation instrument (Elutra, Terumo BCT) were evaluated for quality and consistency. Elutriated monocytes (n = 35) were used to manufacture autologous dendritic cells and elutriated lymphocytes (n = 24) were used manufacture autologous T cell therapies. Elutriated monocytes with >10% neutrophils were subjected to density gradient sedimentation to reduce neutrophil contamination and elutriated lymphocytes to RBC lysis. Elutriation separated the PBMC concentrates into 5 fractions. Almost all of the lymphocytes, platelets and red cells were found in fractions 1 and 2; in contrast, most of the monocytes, 88.6 ± 43.0%, and neutrophils, 74.8 ± 64.3%, were in fraction 5. In addition, elutriation of 6 PBMCs resulted in relatively large quantities of monocytes in fractions 1 or 2. These 6 PBMCs contained greater quantities of monocytes than the other 53 PBMCs. Among fraction 5 isolates 38 of 59 contained >10% neutrophils. High neutrophil content of fraction 5 was associated with greater quantities of neutrophils in the PBMC concentrate. Following density gradient separation the neutrophil counts fell to 3.6 ± 3.4% (all products contained <10% neutrophils). Following red cell lysis of the elutriated lymphocyte fraction the lymphocyte recovery was 86.7 ± 24.0% and 34.3 ± 37.4% of red blood cells remained. Elutriation was consistent and effective for isolating monocytes and lymphocytes from PBMC concentrates for manufacturing clinical cell therapies, but further processing is often required.

  2. Paracrine-mediated osteoclastogenesis by the osteosarcoma MG63 cell line: is RANKL/RANK signalling really important?

    PubMed

    Costa-Rodrigues, J; Teixeira, C A; Fernandes, M H

    2011-08-01

    Although in the past little attention has been paid to the influence of osteosarcoma cells in osteoclast function, recent studies suggest a close relationship between osteosarcoma aggressiveness and osteoclastic activity. The present study addresses the paracrine effects of MG63 cells, a human osteosarcoma-derived cell line, on the differentiation of peripheral blood osteoclast precursor cells (PBMC). PBMC were cultured for 21 days in the presence of conditioned media from MG63 cell cultures (CM) collected at 48 h (CM_MG1), 7 days (CM_MG2) and 14 days (CM_MG3). MG63 cell cultures displayed the expression of ALP and BMP-2 and, also, the osteoclastogenic genes M-CSF and RANKL, although with a low expression of RANKL. PBMC cultures supplemented with CM presented an evident osteoclastogenic behavior, which was dependent on the culture period of the MG63 cells. The inductive effect appeared to be more relevant for the differentiation and activation genes, c-myc and c-src, and lower for genes associated with osteoclast function. In addition, PBMC cultures displayed increased functional parameters, including calcium phosphate resorbing activity. Assessment of the PBMC cultures in the presence of U0126, PDTC, and indomethacin suggested that in addition to MEK and NFkB pathways, other signaling mechanisms, probably not involving RANKL/RANK interaction, might be activated in the presence of conditioned medium from MG63. In conclusion, MG63 cell line appears to induce a significant paracrine-mediated osteoclastogenic response. Understanding the mechanisms underlying the interaction of osteosarcoma cells and osteoclasts may contribute to the development of new potential approaches in the treatment of such bone metabolic diseases.

  3. [Significance of detecting the EBV-DNA level in peripheral blood mononuclear cells and the EBV-infected cell type in patients with chronic active EBV infection].

    PubMed

    Xing, Yan; Song, Hong-mei; Wu, Xiao-yan; Wang, Wei; Wei, Min

    2011-07-01

    To study the difference in the EBV-DNA level in peripheral blood mononuclear cells (PBMC) and the type of Epstein-Barr virus (EBV)-infected cells in pediatric patients with chronic active EBV (CAEBV) infection, acute EBV infection (AEBV) and healthy children, and to analyze the relationship between the above difference and the clinical manifestation of CAEBV. Real-time fluorescent quantitative polymerase chain reaction (PCR) was used to detect the EBV-DNA levels in peripheral blood mononuclear cells (PBMC) in 12 normal children, 10 pediatric patients with CAEBV infection and 13 pediatric patients with AEBV infection in our hospital between March 2004 and April 2008. Immunomagnetic bead cell fractionation and fluorescent in situ hybridization (FISH) by EBV encoding RNA-1 ( EBER-1) probe were used in the healthy children, EBV-DNA positive CAEBV patients and AEBV patients to detect the type of EBV-infected cells. The average EBV-DNA level in CAEBV patients' PBMC was (6.8 x 10(7) +/- 1.1 x 10(8)) copies/ml, while the average EBV-DNA level of AEBV patients' PBMC was (1.3 x 10(6) +/- 1.6 x 10(6)) copies/ml. The average EBV-DNA level of CAEBV infected patients' PBMC was significantly higher than that of AEBV infected patients' PBMC (P<0.01). The cell fractionation and FISH in seven CAEBV patients showed that EBV in CAEBV patients infected not only B cells, but NK cells and CD4+ and CD8+ T cells to different degree, and these patients presented recurrent and persistent infectious mononucleosis (IM)-like symptoms. In 6 CAEBV patients infection mainly occurred to T cells, in one case, infection occurred mainly in CD8+ T cells, and the patient died from fulminant and deadly T lymphocytes proliferative syndrome except presenting firstly high fever, enlargment of the liver, spleen, lymphnode and the severe decrease of one or three kinds of blood cells. In 1 CAEBV patient the infection was mainly found in NK cells, who presented with hypersensitivity to mosquito biting and high IgE level (2500 U/ml). But EBV in seven AEBV patients infection was found only in B cells who presented with only IM for one time and no EBV-infected PBMC were found in the remaining 6 healthy children. There are much more EBV replications and different EBV-infected cell types in CAEBV patients. Detection of EBV-DNA level by real-time fluorescent quantitative PCR and the detection of the type of EBV-infected cells may help in diagnosis, treatment and development evaluation of children with CAEBV infection.

  4. Evidence of functional cell-mediated immune responses to nontypeable Haemophilus influenzae in otitis-prone children

    PubMed Central

    Seppanen, Elke; Tan, Dino; Corscadden, Karli J.; Currie, Andrew J.; Richmond, Peter C.; Thornton, Ruth B.

    2018-01-01

    Otitis media (OM) remains a common paediatric disease, despite advances in vaccinology. Susceptibility to recurrent acute OM (rAOM) has been postulated to involve defective cell-mediated immune responses to common otopathogenic bacteria. We compared the composition of peripheral blood mononuclear cells (PBMC) from 20 children with a history of rAOM (otitis-prone) and 20 healthy non-otitis-prone controls, and assessed innate and cell-mediated immune responses to the major otopathogen nontypeable Haemophilus influenzae (NTHi). NTHi was a potent stimulator of inflammatory cytokine secretion from PBMC within 4 hours, with no difference in cytokine levels produced between PBMC from cases or controls. In the absence of antigen stimulation, otitis-prone children had more circulating Natural Killer (NK) cells (p<0.01), particularly NKdim (CD56lo) cells (p<0.01), but fewer CD4+ T cells (p<0.01) than healthy controls. NTHi challenge significantly increased the proportion of activated (CD107a+) NK cells in otitis-prone and non-otitis-prone children (p<0.01), suggesting that NK cells from otitis-prone children are functional and respond to NTHi. CD8+ T cells and NK cells from both cases and controls produced IFNγ in response to polyclonal stimulus (Staphylococcal enterotoxin B; SEB), with more IFNγ+ CD8+ T cells present in cases than controls (p<0.05) but similar proportions of IFNγ+ NK cells. Otitis-prone children had more circulating IFNγ-producing NK cells (p<0.05) and more IFNγ-producing CD4+ (p<0.01) or CD8+ T-cells (p<0.05) than healthy controls. In response to SEB, more CD107a-expressing CD8+ T cells were present in cases than controls (p<0.01). Despite differences in PBMC composition, PBMC from otitis-prone children mounted innate and T cell-mediated responses to NTHi challenge that were comparable to healthy children. These data provide evidence that otitis-prone children do not have impaired functional cell mediated immunity. PMID:29621281

  5. Engraftment of PBMC from SLE and APS Donors into BALB-Rag2−/−IL2Rgc−/− Mice: a Promising Model for Studying Human Disease

    PubMed Central

    Andrade, Danieli; Redecha, Patricia B.; Vukelic, Milena; Qing, Xiaoping; Perino, Giorgio; Salmon, Jane E.; Koo, Gloria C.

    2011-01-01

    Purpose To construct a humanized SLE mouse that resembles the human disease to define pathophysiology and targeted for treatments. Methods We infused peripheral blood mononuclear cells (PBMC) from SLE patients into BALB-Rag2−/−IL2Rgc−/−mice (DKO), which lack T, B and NK cells. PBMC from 5 SLE patients and 4 normal donors (ND) at 3–5×106/mouse were infused IV/IP to non-irradiated 4–5 weeks old mice. We evaluated the engraftment of human CD45+cells and monitored the plasma human IgG, anti-dsDNA, anti-cardiolipin (aCL) antibodies, proteinuria, and kidney histology. Results We found 100% successful engraftment of 40 DKO mice infused with human PBMC. In both SLE-DKO and ND-DKO mice, 50–80% human CD45+ cells were observed in PBMC fraction 4–6 weeks post engraftment, with 70–90% CD3+ cells. There were fewer CD3+4+cells (5.5±2.1%) and more CD3+8+cells (79.4±3.6%) in the SLE-DKO mice, as in the SLE patients. CD19+B cells and CD11c+Monocytic cells were found in the spleen, lung, liver and bone marrow. There was no significant difference in plasma human IgG levels and anti-dsDNA antibodies between SLE-DKO and ND-DKO mice. Levels of aCL antibody were significantly higher in all SLE-DKO mice infused with PBMC from a SLE patient with high titers of aCL antibodies. SLE-DKO mice had proteinuria, human IgG deposits in the kidneys and shorter life span. In SLE- DKO mice engrafted from the aCL-positive patient, we found micro-thrombi and infiltration of CD3+, CD8+ and CD19+ cells in the glomeruli, recapitulating APS in these mice. Conclusion A novel humanized SLE-DKO mouse is established, exhibiting many characteristics of immunologic and clinical features of SLE. PMID:21560114

  6. Glucocorticoid effects on sheep peripheral blood mononuclear cell proliferation and cytokine production under in vitro hyperthermia.

    PubMed

    Caroprese, M; Ciliberti, M G; De Palo, P; Santillo, A; Sevi, A; Albenzio, M

    2018-06-27

    The present experiment aimed at understanding the effects of cortisol levels on sheep peripheral blood mononuclear cell (PBMC) proliferation and cytokine production during hyperthermia. To mimic stress related to the exposition of high ambient temperatures, PBMC were cultured at 43°C for 12 h, and subsequently at 39°C for additional 12 h. Cells in normothermia were cultured at 39°C for 24 h. Phytohemagglutinin-stimulated PBMC were cultured with different cortisol levels: 0 ng/mL; 100 ng/mL, representing the physiological cortisol concentration simulating stress condition (Cort100); and 1,000 ng/mL, representing the hyperactivated hypothalamic-pituitary-adrenal axis (Cort1000). Phytohemagglutinin-stimulated PBMC with 0 ng/mL of cortisol concentration represented the positive control, whereas nonstimulated PBMC without cortisol represented the negative control (NC). The free cell supernatants were collected for the determination of IL-6, IL-1β, and IL-10 by ELISA. Bromodeoxyuridine assay was performed on cells to determine cell proliferation. Exposition to hyperthermia negatively affected cell proliferation, IL-6, IL-1β, and IL-10 concentrations in cell supernatants. The interaction of hyperthermia and cortisol level affected both cell proliferation and IL-10 production. Both PBMC proliferation and IL-10 production in positive control, Cort100, and Cort100 decreased at 43°C as compared with 39°C NC. On average, the Cort100 treatment displayed higher concentrations of IL-6 than NC. The present experiment demonstrated that the action of cortisol concentration simulating stress condition on cell proliferation and cytokine production was a permissive/stimulatory action during normothermia, whereas it was a suppressive action during hyperthermia. These data confirmed that cortisol concentration simulating stress condition could have a role in the immune system of sheep via mediating cellular homeostasis in the condition of hyperthermia. The negative effects of hyperthermia on sheep immune responses were apparent when performing an immunological challenge. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  7. Phytosterols from Dunaliella tertiolecta Reduce Cell Proliferation in Sheep Fed Flaxseed during Post Partum

    PubMed Central

    Ciliberti, Maria Giovanna; Francavilla, Matteo; Intini, Simona; Albenzio, Marzia; Marino, Rosaria; Santillo, Antonella; Caroprese, Mariangela

    2017-01-01

    The post partum period is characterized by immunosuppression and increased disease susceptibility. Both phytosterols from microalga Dunaniella tertiolecta and dietary supplementation with n-3 polyunsaturated fatty acids (PUFA) influence cell proliferation and cytokine release during inflammation. The objective of this paper was the evaluation of the effects of physterols, extracted and purified from D. tertiolecta, on the in vitro immune responses of ewes supplemented with flaxseed during post partum. Twenty Comisana parturient ewes were divided in two balanced groups, and supplemented with flaxseed (FS, 250 g/day) or fed with a conventional diet (CON). Blood samples (15 mL) were collected for five weeks, starting from lambing, in order to isolate peripheral blood mononuclear cells (PBMC). Stimulated PBMC were treated with a total sterols fraction from D. tertiolecta (TS), a mix of ergosterol and 7-dehydroporiferasterol (purified extract, PE), and a mix of acetylated ergosterol and 7-dehydroporiferasterol (acetylated purified extract, AcPE), extracted and purified from D. tertiolecta at two concentrations (0.4 and 0.8 mg/mL). Results of the experiment demonstrated that n-3 PUFA from flaxseed induced an anti-inflammatory cytokine profile, with an increase of both IL-10, IL-6 and a decrease of IL-1β. TS, PE, and AcPE purified from D. tertiolecta showed an anti-proliferative effect on sheep PBMC regardless their chemical composition and concentration. PMID:28684702

  8. Cryopreservation for delayed circulating tumor cell isolation is a valid strategy for prognostic association of circulating tumor cells in gastroesophageal cancer.

    PubMed

    Brungs, Daniel; Lynch, David; Luk, Alison Ws; Minaei, Elahe; Ranson, Marie; Aghmesheh, Morteza; Vine, Kara L; Carolan, Martin; Jaber, Mouhannad; de Souza, Paul; Becker, Therese M

    2018-02-21

    To demonstrate the feasibility of cryopreservation of peripheral blood mononuclear cells (PBMCs) for prognostic circulating tumor cell (CTC) detection in gastroesophageal cancer. Using 7.5 mL blood samples collected in EDTA tubes from patients with gastroesopheagal adenocarcinoma, CTCs were isolated by epithelial cell adhesion molecule based immunomagnetic capture using the IsoFlux platform. Paired specimens taken during the same blood draw ( n = 15) were used to compare number of CTCs isolated from fresh and cryopreserved PBMCs. Blood samples were processed within 24 h to recover the PBMC fraction, with PBMCs used for fresh analysis immediately processed for CTC isolation. Cryopreservation of PBMCs lasted from 2 wk to 25.2 mo (median 14.6 mo). CTCs isolated from pre-treatment cryopreserved PBMCs ( n = 43) were examined for associations with clinicopathological variables and survival outcomes. While there was a significant trend to a decrease in CTC numbers associated with cryopreserved specimens (mean number of CTCs 34.4 vs 51.5, P = 0.04), this was predominately in samples with a total CTC count of > 50, with low CTC count samples less affected ( P = 0.06). There was no significant association between the duration of cryopreservation and number of CTCs. In cryopreserved PBMCs from patient samples prior to treatment, a high CTC count (> 17) was associated with poorer overall survival (OS) ( n = 43, HR = 4.4, 95%CI: 1.7-11.7, P = 0.0013). In multivariate analysis, after controlling for sex, age, stage, ECOG performance status, and primary tumor location, a high CTC count remained significantly associated with a poorer OS (HR = 3.7, 95%CI: 1.2-12.4, P = 0.03). PBMC cryopreservation for delayed CTC isolation is a valid strategy to assist with sample collection, transporting and processing.

  9. Validation of a HLA-A2 tetramer flow cytometric method, IFNgamma real time RT-PCR, and IFNgamma ELISPOT for detection of immunologic response to gp100 and MelanA/MART-1 in melanoma patients

    PubMed Central

    Xu, Yuanxin; Theobald, Valerie; Sung, Crystal; DePalma, Kathleen; Atwater, Laura; Seiger, Keirsten; Perricone, Michael A; Richards, Susan M

    2008-01-01

    Background HLA-A2 tetramer flow cytometry, IFNγ real time RT-PCR and IFNγ ELISPOT assays are commonly used as surrogate immunological endpoints for cancer immunotherapy. While these are often used as research assays to assess patient's immunologic response, assay validation is necessary to ensure reliable and reproducible results and enable more accurate data interpretation. Here we describe a rigorous validation approach for each of these assays prior to their use for clinical sample analysis. Methods Standard operating procedures for each assay were established. HLA-A2 (A*0201) tetramer assay specific for gp100209(210M) and MART-126–35(27L), IFNγ real time RT-PCR and ELISPOT methods were validated using tumor infiltrating lymphocyte cell lines (TIL) isolated from HLA-A2 melanoma patients. TIL cells, specific for gp100 (TIL 1520) or MART-1 (TIL 1143 and TIL1235), were used alone or spiked into cryopreserved HLA-A2 PBMC from healthy subjects. TIL/PBMC were stimulated with peptides (gp100209, gp100pool, MART-127–35, or influenza-M1 and negative control peptide HIV) to further assess assay performance characteristics for real time RT-PCR and ELISPOT methods. Validation parameters included specificity, accuracy, precision, linearity of dilution, limit of detection (LOD) and limit of quantification (LOQ). In addition, distribution was established in normal HLA-A2 PBMC samples. Reference ranges for assay controls were established. Results The validation process demonstrated that the HLA-A2 tetramer, IFNγ real time RT-PCR, and IFNγ ELISPOT were highly specific for each antigen, with minimal cross-reactivity between gp100 and MelanA/MART-1. The assays were sensitive; detection could be achieved at as few as 1/4545–1/6667 cells by tetramer analysis, 1/50,000 cells by real time RT-PCR, and 1/10,000–1/20,000 by ELISPOT. The assays met criteria for precision with %CV < 20% (except ELISPOT using high PBMC numbers with %CV < 25%) although flow cytometric assays and cell based functional assays are known to have high assay variability. Most importantly, assays were demonstrated to be effective for their intended use. A positive IFNγ response (by RT-PCR and ELISPOT) to gp100 was demonstrated in PBMC from 3 melanoma patients. Another patient showed a positive MART-1 response measured by all 3 validated methods. Conclusion Our results demonstrated the tetramer flow cytometry assay, IFNγ real-time RT-PCR, and INFγ ELISPOT met validation criteria. Validation approaches provide a guide for others in the field to validate these and other similar assays for assessment of patient T cell response. These methods can be applied not only to cancer vaccines but to other therapeutic proteins as part of immunogenicity and safety analyses. PMID:18945350

  10. Vascular Morphogenesis in the Context of Inflammation: Self-Organization in a Fibrin-Based 3D Culture System.

    PubMed

    Rüger, Beate M; Buchacher, Tanja; Giurea, Alexander; Kubista, Bernd; Fischer, Michael B; Breuss, Johannes M

    2018-01-01

    Introduction: New vessel formation requires a continuous and tightly regulated interplay between endothelial cells with cells of the perivascular microenvironment supported by mechanic-physical and chemical cues from the extracellular matrix. Aim: Here we investigated the potential of small fragments of synovial tissue to form de novo vascular structures in the context of inflammation within three dimensional (3D) fibrin-based matrices in vitro , and assessed the contribution of mesenchymal stromal cell (MSC)-immune cell cross-talk to neovascularization considering paracrine signals in a fibrin-based co-culture model. Material and Methods: Synovial tissue fragments from patients with rheumatoid arthritis (RA) and inflammatory osteoarthritis (OA) were cultivated within 3D fibrin matrices for up to 4 weeks. Cellular and structural re-arrangement of the initially acellular matrix were documented by phase contrast microscopy and characterized by confocal laser-scanning microscopy of topographically intact 3D cultures and by immunohistochemistry. MSC-peripheral blood mononuclear cell (PBMC) co-cultures in the 3D fibrin system specifically addressed the influence of perivascular cell interactions to neo-vessel formation in a pro-inflammatory microenvironment. Cytokine levels in the supernatants of cultured explant tissues and co-cultures were evaluated by the Bio-Plex cytokine assay and ELISA. Results: Vascular outgrowth from the embedded tissue into the fibrin matrix was preceded by leukocyte egress from the tissue fragments. Neo-vessels originating from both the embedded sample and from clusters locally formed by emigrated mononuclear cells were consistently associated with CD45 + leukocytes. MSC and PBMC in co-culture formed vasculogenic clusters. Clusters and cells with endothelial phenotype emerging from them, were surrounded by a collagen IV scaffold. No vascular structures were observed in control 3D monocultures of PBMC or MSC. Paracrine signals released by cultured OA tissue fragments corresponded with elevated levels of granulocyte-colony stimulating factor, vascular endothelial growth factor and interleukin-6 secreted by MSC-PBMC co-cultures. Conclusion: Our results show that synovial tissue fragments with immune cell infiltrates have the potential to form new vessels in initially avascular 3D fibrin-based matrices. Cross-talk and cluster formation of MSC with immune cells within the 3D fibrin environment through self-organization and secretion of pro-angiogenic paracrine factors can support neo-vessel growth.

  11. Inorganic zinc supplementation modulates heat shock and immune response in heat stressed peripheral blood mononuclear cells of periparturient dairy cows.

    PubMed

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; B, Indu; Aarif, Ovais

    2017-06-01

    Thermal stress in India is one of the major constraints affecting dairy cattle productivity. Every attempt should be made to ameliorate the heat and calving related stress in high producing dairy cows for higher economic returns. In the current study, inorganic zinc was tried to alleviate the adverse effects of thermal stress in periparturient cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were chosen for the experiment. The blood samples were collected periparturiently on three occasions viz. -21, 0 and +21 days relative to calving. The in vitro study was conducted after isolating peripheral blood mononuclear cells (PBMC) from whole blood. The cultured PBMC were subjected to three different levels of exposures viz. 37°C as control, 42°C to induce thermal stress and 42°C + zinc to ameliorate the adverse effects of high temperature. Heat shock lead to a significant (P<0.05) rise in the level of heat shock proteins (HSP). HSP was more on the day of calving as well. KF showed more HSP concentration than Sahiwal breed indicating the heat bearing capacity of later. Zinc treatment to thermally stressed PBMC caused a fall in the HSP concentration in both the breeds during periparturient period. Moreover, heat stress increased significantly (P<0.05) the Interleukin 6 (IL-6) concentration which declined upon zinc supplementation to PBMC. IL-6 levels decreased periparturiently. Heat and calving related stress caused a fall in the IL-12 levels which increased significantly (P<0.05) with zinc supplementation. These findings suggest that zinc supplementation attenuates the HSP response and augments immunity in PBMC of periparturient dairy cows. The study could help to alleviate the heat stress and potentiate immunity by providing mineral supplements in periparturient dairy cattle habituating tropics. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. B Cells and B Cell Blasts Withstand Cryopreservation While Retaining Their Functionality for Producing Antibody.

    PubMed

    Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V

    2018-05-31

    In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.

  13. Centella asiatica modulates cancer cachexia associated inflammatory cytokines and cell death in leukaemic THP-1 cells and peripheral blood mononuclear cells (PBMC's).

    PubMed

    Naidoo, Dhaneshree Bestinee; Chuturgoon, Anil Amichund; Phulukdaree, Alisa; Guruprasad, Kanive Parashiva; Satyamoorthy, Kapaettu; Sewram, Vikash

    2017-08-01

    Cancer cachexia is associated with increased pro-inflammatory cytokine levels. Centella asiatica (C. asiatica) possesses antioxidant, anti-inflammatory and anti-tumour potential. We investigated the modulation of antioxidants, cytokines and cell death by C. asiatica ethanolic leaf extract (C LE ) in leukaemic THP-1 cells and normal peripheral blood mononuclear cells (PBMC's). Cytotoxcity of C LE was determined at 24 and 72 h (h). Oxidant scavenging activity of C LE was evaluated using the 2, 2-diphenyl-1 picrylhydrazyl (DPPH) assay. Glutathione (GSH) levels, caspase (-8, -9, -3/7) activities and adenosine triphosphate (ATP) levels (Luminometry) were then assayed. The levels of tumour necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β and IL-10 were also assessed using enzyme-linked immunosorbant assay. C LE decreased PBMC viability between 33.25-74.55% (24 h: 0.2-0.8 mg/ml C LE and 72 h: 0.4-0.8 mg/ml C LE ) and THP-1 viability by 28.404% (72 h: 0.8 mg/ml C LE ) (p < 0.0001). Oxidant scavenging activity was increased by C LE (0.05-0.8 mg/ml) (p < 0.0001). PBMC TNF-α and IL-10 levels were decreased by C LE (0.05-0.8 mg/ml) (p < 0.0001). However, PBMC IL-6 and IL-1β concentrations were increased at 0.05-0.2 mg/ml C LE but decreased at 0.4 mg/ml C LE (p < 0.0001). In THP-1 cells, C LE (0.2-0.8 mg/ml) decreased IL-1β and IL-6 whereas increased IL-10 levels (p < 0.0001). In both cell lines, C LE (0.05-0.2 mg/ml, 24 and 72 h) increased GSH concentrations (p < 0.0001). At 24 h, caspase (-9, -3/7) activities was increased by C LE (0.05-0.8 mg/ml) in PBMC's whereas decreased by C LE (0.2-0.4 mg/ml) in THP-1 cells (p < 0.0001). At 72 h, C LE (0.05-0.8 mg/ml) decreased caspase (-9, -3/7) activities and ATP levels in both cell lines (p < 0.0001). In PBMC's and THP-1 cells, C LE proved to effectively modulate antioxidant activity, inflammatory cytokines and cell death. In THP-1 cells, C LE decreased pro-inflammatory cytokine levels whereas it increased anti-inflammatory cytokine levels which may alleviate cancer cachexia.

  14. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNF-α production is inhibited by progesterone in peripheral blood mononuclear cells.

    PubMed

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-07-01

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNF-α production, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4. © 2017 Wiley Periodicals, Inc.

  15. Specific overexpression of tumour necrosis factor-α-induced protein (TNFAIP)9 in CD14(+) CD16(-) monocytes in patients with rheumatoid arthritis: comparative analysis with TNFAIP3.

    PubMed

    Takai, C; Matsumoto, I; Inoue, A; Umeda, N; Tanaka, Y; Kurashima, Y; Wada, Y; Narita, I; Sumida, T

    2015-06-01

    The tumour necrosis factor (TNF)-α-induced proteins (TNFAIP)9 and TNFAIP3 play an important pathogenic role in murine arthritis. To clarify their pathophysiological roles in patients with rheumatoid arthritis (RA), we examined their expression and localization in peripheral blood mononuclear cells (PBMC). TNFAIP9 and TNFAIP3 mRNA expression was determined in PBMC of RA patients and healthy subjects (control). Flow cytometry was used to analyse the main TNFAIP9- and TNFAIP3-expressing cell populations. TNFAIP9 and TNFAIP3 mRNA expression levels were examined in vitro on CD14(+) cells stimulated with TNF-α and lipopolysaccharide (LPS). The expression levels of TNFAIP9 and TNFAIP3 mRNA were also measured before and 12 weeks after treatment with tocilizumab and abatacept. TNFAIP9 expression was significantly higher, while TNFAIP3 expression was lower in PBMC of RA (n=36) than the control (n=24) (each P < 0.05). TNFAIP9 was expressed on CD14(+) cells, especially in human leucocyte antigen D-related (HLA-DR)(+) CD14(bright) CD16(-) cells, while TNFAIP3 was expressed mainly on CD3(+) T cells. TNF-α and LPS induced TNFAIP9 and TNFAIP3 in human CD14(+) monocytes in vitro. Treatment with tocilizumab (n=13), but not abatacept (n=11), significantly reduced TNFAIP9 mRNA expression in PBMC, which was associated with reduction in the number of circulating CD14(bright) monocytes. The expression of TNFAIP9 in CD14(+) cells was specifically elevated in patients with RA, regulated by TNF-α and LPS, and suppressed by tocilizumab, while TNFAIP3 in PBMC showed different localization and induction patterns. © 2015 British Society for Immunology.

  16. Hepatitis C virus RNA detection in serum and peripheral blood mononuclear cells of patients with hepatitis C

    PubMed Central

    Zhou, Ping; Cai, Qing; Chen, You-Chun; Zhang, Mu-Sen; Guan, Jian; Li, Xiao-Juan

    1997-01-01

    AIM: To investigate the existence and clinical significance of hepatitis C virus (HCV) RNA in the serum and peripheral blood mononuclear cells (PBMC) of patients with hepatitis C. METHODS: HCV RNA was detected by nested polymerase chain reaction (Nested PCR) in serum and in PBMC of 46 patients with acute hepatitis C (AHC) and in 42 patients with chronic hepatitis C (CHC). RESULTS: The positive rate of HCV RNA in PBMC of patients with CHC was markedly higher than that of patients with AHC (P < 0.01). The positive rates of HCV RNA in serum of patients with AHC and CHC and in PBMC of patients with CHC were significantly higher than those of anti-HCV positive patients with normal alanine aminotransferase (ALT) levels (P < 0.01). HCV RNA was negative in the serum of two patients, but could be detected in PBMC. In 12 patients, anti HCV was negative while HCV RNA was positive in serum. CONCLUSION: (1) detection of serum HCV RNA by nested PCR might be helpful in the early diagnosis of anti-HCV negative hepatitis C; (2) liver damage in patients with hepatitis C might be correlated with HCV-viremia; (3) infection of PBMC by HCV might play an important role in chronic liver damage in patients with HCV and in the chronicity of its clinical course; and (4) PBMC might be considered as a “reservoir” for HCV. PMID:27041960

  17. Strong interferon-gamma mediated cellular immunity to scrub typhus demonstrated using a novel whole cell antigen ELISpot assay in rhesus macaques and humans.

    PubMed

    Sumonwiriya, Manutsanun; Paris, Daniel H; Sunyakumthorn, Piyanate; Anantatat, Tippawan; Jenjaroen, Kemajittra; Chumseng, Suchintana; Im-Erbsin, Rawiwan; Tanganuchitcharnchai, Ampai; Jintaworn, Suthatip; Blacksell, Stuart D; Chowdhury, Fazle R; Kronsteiner, Barbara; Teparrukkul, Prapit; Burke, Robin L; Lombardini, Eric D; Richards, Allen L; Mason, Carl J; Jones, James W; Day, Nicholas P J; Dunachie, Susanna J

    2017-09-01

    Scrub typhus is a febrile infection caused by the obligate intracellular bacterium Orientia tsutsugamushi, which causes significant morbidity and mortality across the Asia-Pacific region. The control of this vector-borne disease is challenging due to humans being dead-end hosts, vertical maintenance of the pathogen in the vector itself, and a potentially large rodent reservoir of unclear significance, coupled with a lack of accurate diagnostic tests. Development of an effective vaccine is highly desirable. This however requires better characterization of the natural immune response of this neglected but important disease. Here we implement a novel IFN-γ ELISpot assay as a tool for studying O. tsutsugamushi induced cellular immune responses in an experimental scrub typhus rhesus macaque model and human populations. Whole cell antigen for O. tsutsugamushi (OT-WCA) was prepared by heat inactivation of Karp-strain bacteria. Rhesus macaques were infected intradermally with O. tsutsugamushi. Freshly isolated peripheral blood mononuclear cells (PBMC) from infected (n = 10) and uninfected animals (n = 5) were stimulated with OT-WCA, and IFN-γ secreting cells quantitated by ELISpot assay at five time points over 28 days. PBMC were then assayed from people in a scrub typhus-endemic region of Thailand (n = 105) and responses compared to those from a partially exposed population in a non-endemic region (n = 14), and to a naïve population in UK (n = 12). Mean results at Day 0 prior to O. tsutsugamushi infection were 12 (95% CI 0-25) and 15 (2-27) spot-forming cells (SFC)/106 PBMC for infected and control macaques respectively. Strong O. tsutsugamushi-specific IFN-γ responses were seen post infection, with ELISpot responses 20-fold higher than baseline at Day 7 (mean 235, 95% CI 200-270 SFC/106 PBMC), 105-fold higher at Day 14 (mean 1261, 95% CI 1,097-1,425 SFC/106 PBMC), 125-fold higher at Day 21 (mean 1,498, 95% CI 1,496-1,500 SFC/106 PBMC) and 118-fold higher at Day 28 (mean 1,416, 95% CI 1,306-1,527 SFC/106 PBMC). No significant change was found in the control group at any time point compared to baseline. Humans from a scrub typhus endemic region of Thailand had mean responses of 189 (95% CI 88-290) SFC/106 PBMC compared to mean responses of 40 (95% CI 9-71) SFC/106 PBMC in people from a non-endemic region and 3 (95% CI 0-7) SFC/106 PBMC in naïve controls. In summary, this highly sensitive assay will enable field immunogenicity studies and further characterization of the host response to O. tsutsugamushi, and provides a link between human and animal models to accelerate vaccine development.

  18. ELISPOT Assays in 384-Well Format: Up to 30 Data Points with One Million Cells

    PubMed Central

    Hanson, Jodi; Sundararaman, Srividya; Caspell, Richard; Karacsony, Edith; Karulin, Alexey Y.; Lehmann, Paul V.

    2015-01-01

    Comprehensive immune monitoring requires that frequencies of T cells, producing different cytokines, are measured to establish the magnitude of Th1, Th2, and Th17 components of cell-mediated immunity. Antigen titration provides additional information about the affinity of T cell response. In tumor immunity, it is also advisable to account for determinant spreading by testing multiple epitopes. Efforts for comprehensive immune monitoring would require substantial numbers of PBMC to run the above tests systematically, which in most test cases is limiting. Immune monitoring with ELISPOT assays have been performed, thus far, in a 96-well format. In this study we show that one can increase cell utilization by performing the assay in 384-well plates whose membrane surface area is one third that of 96-well plates. Systematic testing of PBMC for antigen-specific T cell response in the two formats demonstrated that the 384-well assay corresponds to a one-in-three miniaturization of the 96-well assay. The lowest number of cells that can be used in the 384-well format, while allowing for sufficient contact with APC, is 33,000 PBMC/well. Therefore, with one million PBMC typically obtained from 1 mL of blood, a 30 well T cell ELISPOT assay can be performed in a 384-well format. PMID:25643292

  19. An in vitro model demonstrates the potential of neoplastic human germ cells to influence the tumour microenvironment.

    PubMed

    Klein, B; Schuppe, H-C; Bergmann, M; Hedger, M P; Loveland, B E; Loveland, K L

    2017-07-01

    Testicular germ cell tumours (TGCT) typically contain high numbers of infiltrating immune cells, yet the functional nature and consequences of interactions between GCNIS (germ cell neoplasia in situ) or seminoma cells and immune cells remain unknown. A co-culture model using the seminoma-derived TCam-2 cell line and peripheral blood mononuclear cells (PBMC, n = 7 healthy donors) was established to investigate how tumour and immune cells each contribute to the cytokine microenvironment associated with TGCT. Three different co-culture approaches were employed: direct contact during culture to simulate in situ cellular interactions occurring within seminomas (n = 9); indirect contact using well inserts to mimic GCNIS, in which a basement membrane separates the neoplastic germ cells and immune cells (n = 3); and PBMC stimulation prior to direct contact during culture to overcome the potential lack of immune cell activation (n = 3). Transcript levels for key cytokines in PBMC and TCam-2 cell fractions were determined using RT-qPCR. TCam-2 cell fractions showed an immediate increase (within 24 h) in several cytokine mRNAs after direct contact with PBMC, whereas immune cell fractions did not. The high levels of interleukin-6 (IL6) mRNA and protein associated with TCam-2 cells implicate this cytokine as important to seminoma physiology. Use of PBMCs from different donors revealed a robust, repeatable pattern of changes in TCam-2 and PBMC cytokine mRNAs, independent of potential inter-donor variation in immune cell responsiveness. This in vitro model recapitulated previous data from clinical TGCT biopsies, revealing similar cytokine expression profiles and indicating its suitability for exploring the in vivo circumstances of TGCT. Despite the limitations of using a cell line to mimic in vivo events, these results indicate how neoplastic germ cells can directly shape the surrounding tumour microenvironment, including by influencing local immune responses. IL6 production by seminoma cells may be a practical target for early diagnosis and/or treatment of TGCT. © 2017 American Society of Andrology and European Academy of Andrology.

  20. Activation of innate immunity by prostate specific antigen (PSA).

    PubMed

    Kodak, James A; Mann, Dean L; Klyushnenkova, Elena N; Alexander, Richard B

    2006-11-01

    Prostate specific antigen (PSA) is a serine protease secreted by the prostatic epithelium. The only known function of the protein is to cleave seminogelin. We wished to determine if PSA activated peripheral blood mononuclear cells (PBMC). PBMC and selected sub-populations were cultured with purified PSA. Secretion of IFNgamma was measured by cytokine capture flow cytometry and enzyme-linked immunosorbent assay. We observed secretion of IFNgamma and a proliferative response in PBMC cultured with PSA. We found that NK cells were the source of the IFNgamma but NK cells were not directly stimulated by PSA. Rather, a soluble factor secreted primarily by CD14 monocytes in response to PSA stimulated NK cells to secrete IFNgamma. PSA induces a pro-inflammatory response that results in the secretion of INFgamma by NK cells. The presence of large amounts of PSA could contribute to the common finding of inflammatory infiltrates in the prostate.

  1. Recovery from Bell Palsy after Transplantation of Peripheral Blood Mononuclear Cells and Platelet-Rich Plasma.

    PubMed

    Seffer, Istvan; Nemeth, Zoltan

    2017-06-01

    Peripheral blood mononuclear cells (PBMCs) are multipotent, and plasma contains growth factors involving tissue regeneration. We hypothesized that transplantation of PBMC-plasma will promote the recovery of paralyzed facial muscles in Bell palsy. This case report describes the effects of PBMC-plasma transplantations in a 27-year-old female patient with right side Bell palsy. On the affected side of the face, the treatment resulted in both morphological and functional recovery including voluntary facial movements. These findings suggest that PBMC-plasma has the capacity of facial muscle regeneration and provides a promising treatment strategy for patients suffering from Bell palsy or other neuromuscular disorders.

  2. A Sensitive Method for Detecting Peptide-specific CD4+ T Cell Responses in Peripheral Blood from Patients with Myasthenia Gravis

    PubMed Central

    Sharma, Sapna; Malmeström, Clas; Lindberg, Christopher; Meisel, Sarah; Schön, Karin; Verolin, Martina; Lycke, Nils Yngve

    2017-01-01

    Myasthenia gravis (MG) is an autoimmune neurological disorder typified by skeletal muscle fatigue and most often production of autoantibodies against the nicotinic acetylcholine receptor (AChR). The present study was undertaken to assess the extent of AChR-peptide recognition in MG patients using co-culturing (DC:TC) of autologous monocyte-derived dendritic cells (moDCs) and highly enriched CD4+ T cells from the blood as compared to the traditional whole peripheral blood mononuclear cell (PBMC) cultures. We found that the DC:TC cultures were highly superior to the PBMC cultures for detection of reactivity toward HLA-DQ/DR-restricted AChR-peptides. In fact, whereas DC:TC cultures identified recognition in all MG patients the PBMC cultures failed to detect responsiveness in around 40% of the patients. Furthermore, reactivity to multiple peptides was evident in DC:TC cultures, while PBMC cultures mostly exhibited reactivity to a single peptide. No healthy control (HC) CD4+ T cells responded to the peptides in either culture system. Interestingly, whereas spontaneous production of IFNγ and IL-17 was observed in the DC:TC cultures from MG patients, recall responses to peptides enhanced IL-10 production in 9/13 MG patients, while little increase in IFNγ and IL-17 was seen. HCs did not produce cytokines to peptide stimulations. We conclude that the DC: TC culture system is significantly more sensitive and better identifies the extent of responsiveness in MG patients to AChR-peptides than traditional PBMC cultures. PMID:29114250

  3. A Sensitive Method for Detecting Peptide-specific CD4+ T Cell Responses in Peripheral Blood from Patients with Myasthenia Gravis.

    PubMed

    Sharma, Sapna; Malmeström, Clas; Lindberg, Christopher; Meisel, Sarah; Schön, Karin; Verolin, Martina; Lycke, Nils Yngve

    2017-01-01

    Myasthenia gravis (MG) is an autoimmune neurological disorder typified by skeletal muscle fatigue and most often production of autoantibodies against the nicotinic acetylcholine receptor (AChR). The present study was undertaken to assess the extent of AChR-peptide recognition in MG patients using co-culturing (DC:TC) of autologous monocyte-derived dendritic cells (moDCs) and highly enriched CD4 + T cells from the blood as compared to the traditional whole peripheral blood mononuclear cell (PBMC) cultures. We found that the DC:TC cultures were highly superior to the PBMC cultures for detection of reactivity toward HLA-DQ/DR-restricted AChR-peptides. In fact, whereas DC:TC cultures identified recognition in all MG patients the PBMC cultures failed to detect responsiveness in around 40% of the patients. Furthermore, reactivity to multiple peptides was evident in DC:TC cultures, while PBMC cultures mostly exhibited reactivity to a single peptide. No healthy control (HC) CD4 + T cells responded to the peptides in either culture system. Interestingly, whereas spontaneous production of IFNγ and IL-17 was observed in the DC:TC cultures from MG patients, recall responses to peptides enhanced IL-10 production in 9/13 MG patients, while little increase in IFNγ and IL-17 was seen. HCs did not produce cytokines to peptide stimulations. We conclude that the DC: TC culture system is significantly more sensitive and better identifies the extent of responsiveness in MG patients to AChR-peptides than traditional PBMC cultures.

  4. Cytokine Production but Lack of Proliferation in Peripheral Blood Mononuclear Cells from Chronic Chagas' Disease Cardiomyopathy Patients in Response to T. cruzi Ribosomal P Proteins

    PubMed Central

    Longhi, Silvia A.; Atienza, Augusto; Perez Prados, Graciela; Buying, Alcinette; Balouz, Virginia; Buscaglia, Carlos A.; Santos, Radleigh; Tasso, Laura M.; Bonato, Ricardo; Chiale, Pablo; Gómez, Karina A.

    2014-01-01

    Background Trypanosoma cruzi ribosomal P proteins, P2β and P0, induce high levels of antibodies in patients with chronic Chagas' disease Cardiomyopathy (CCC). It is well known that these antibodies alter the beating rate of cardiomyocytes and provoke apoptosis by their interaction with β1-adrenergic and M2-muscarinic cardiac receptors. Based on these findings, we decided to study the cellular immune response to these proteins in CCC patients compared to non-infected individuals. Methodology/Principal findings We evaluated proliferation, presence of surface activation markers and cytokine production in peripheral blood mononuclear cells (PBMC) stimulated with P2β, the C-terminal portion of P0 (CP0) proteins and T. cruzi lysate from CCC patients predominantly infected with TcVI lineage. PBMC from CCC patients cultured with P2β or CP0 proteins, failed to proliferate and express CD25 and HLA-DR on T cell populations. However, multiplex cytokine assays showed that these antigens triggered higher secretion of IL-10, TNF-α and GM-CSF by PBMC as well as both CD4+ and CD8+ T cells subsets of CCC subjects. Upon T. cruzi lysate stimulation, PBMC from CCC patients not only proliferated but also became activated within the context of Th1 response. Interestingly, T. cruzi lysate was also able to induce the secretion of GM-CSF by CD4+ or CD8+ T cells. Conclusions/Significance Our results showed that although the lack of PBMC proliferation in CCC patients in response to ribosomal P proteins, the detection of IL-10, TNF-α and GM-CSF suggests that specific T cells could have both immunoregulatory and pro-inflammatory potential, which might modulate the immune response in Chagas' disease. Furthermore, it was possible to demonstrate for the first time that GM-CSF was produced by PBMC of CCC patients in response not only to recombinant ribosomal P proteins but also to parasite lysate, suggesting the value of this cytokine to evaluate T cells responses in T. cruzi infection. PMID:24901991

  5. Hemorrhagic cystitis in children undergoing bone marrow transplantation: a putative role for simian virus 40.

    PubMed

    Comar, Manola; D'Agaro, Pierlanfranco; Andolina, Marino; Maximova, Natasha; Martini, Fernanda; Tognon, Mauro; Campello, Cesare

    2004-08-27

    Late-onset hemorrhagic cystitis (HC) is a well-known severe complication of bone marrow transplantation (BMT), both in adults and in children. Protracted postengraftment HC is associated with graft-versus-host disease and viral infections, mainly caused by BK virus (BKV) or adenovirus (AV). This study investigated whether simian virus 40 (SV40) DNA sequences can be detected in specimens from pediatric patients affected by severe postengraftment HC. The clinical diagnosis of HC was made in 7 of 28 BMT children. DNA from peripheral blood mononuclear cells (PBMC) and urine sediment cells and supernatants was analyzed by polymerase chain reaction (PCR) for human cytomegalovirus (HCMV), AV, BKV, JC virus (JCV), and SV40. DNA filter hybridization and sequencing was carried out in SV40-positive samples. SV40 footprints were detected in two of seven cases of HC. Specific SV40 DNA sequences were detected by PCR and by filter hybridization both in urine and in PBMC samples at the HC onset and during the follow-up. The DNA sequencing proved that the amplicons belonged to the SV40 wild-type. Urine samples of the two HC cases tested negative by cell cultures, PCR, or both for HCMV, BKV, JCV, and AV. The detection of SV40 DNA sequences suggest that this simian polyomavirus could be involved, at least in some cases, in the HC occurring in children after BMT.

  6. Vitamin B6 Modifies the Immune Cross-Talk between Mononuclear and Colon Carcinoma Cells.

    PubMed

    Bessler, H; Djaldetti, M

    2016-01-01

    The role of vitamin B6 as a key component in a number of biological events has been well established. Based on the relationship between chronic inflammation and carcinogenesis on the one hand, and the interaction between immune and cancer cells expressed by modulated cytokine production on the other hand, the aim of the present work was to examine the possibility that vitamin B6 affects cancer development by an interference in the cross-talk between human peripheral blood mononuclear cells (PBMC) and those from two colon carcinoma cell lines. Both non-stimulated PBMC and mononuclear cells induced for cytokine production by HT-29 and RKO cells from human colon carcinoma lines were incubated without and with 4, 20 and 100 μg/ml of pyridoxal hydrochloride (vitamin B6) and secretion of TNF-α, IL-1β, IL-6, IFN-γ, IL-10, and IL-1ra was examined. Vit B6 caused a dose-dependent decrease in production of all cytokines examined, except for that of IL-1ra. The results indicate that vitamin B6 exerts an immunomodulatory effect on human PBMC. The finding that production of inflammatory cytokines is more pronounced when PBMC are in contact with malignant cells and markedly inhibited by the vitamin suggests an additional way by which vitamin B6 may exert its carcinopreventive effect.

  7. Chamomile and marigold tea: chemical characterization and evaluation of anticancer activity.

    PubMed

    Matić, Ivana Z; Juranić, Zorica; Savikin, Katarina; Zdunić, Gordana; Nađvinski, Neva; Gođevac, Dejan

    2013-06-01

    With the aim to evaluate the selectivity in the antitumor action, the cytotoxic activity of chamomile and marigold tea was tested against various malignant cell lines and against healthy immunocompetent peripheral blood mononuclear cells (PBMC). Chemical profiles of chamomile and marigold infusions and decoctions were analyzed by liquid chromatography/mass spectrometry; their total phenolic content and radical scavenging activity were determined, too. Results from present research demonstrate that chamomile and marigold tea exert selective dose-dependent cytotoxic action against target cancer cells. It is noteworthy that cytotoxicity of tea prepared from Calendula officinalis is remarkably higher in comparison to that from Matricaria recutita tea. The cytotoxic effect of chamomile tea is very weak to healthy PBMC, while the effect of marigold tea on PBMC is more pronounced. Marigold tea exerts highly selective antitumor effect especially to melanoma Fem-x cells in comparison to the action to normal healthy PBMC. Chemical analyses show that dominant phenolic compounds in examined infusions and decoctions are flavonoid glycosides and hydroxycinnamic acid derivatives. There are no considerable differences in total phenolic content and antioxidant activity between examined infusions. Antitumor potential of chamomile and marigold tea should be further investigated. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Effects of injectable trace minerals on humoral and cell-mediated immune responses to Bovine viral diarrhea virus, Bovine herpes virus 1 and Bovine respiratory syncytial virus following administration of a modified-live virus vaccine in dairy calves.

    PubMed

    Palomares, R A; Hurley, D J; Bittar, J H J; Saliki, J T; Woolums, A R; Moliere, F; Havenga, L J; Norton, N A; Clifton, S J; Sigmund, A B; Barber, C E; Berger, M L; Clark, M J; Fratto, M A

    2016-10-01

    Our objective was to evaluate the effect of an injectable trace mineral (ITM) supplement containing zinc, manganese, selenium, and copper on the humoral and cell mediated immune (CMI) responses to vaccine antigens in dairy calves receiving a modified-live viral (MLV) vaccine containing BVDV, BHV1, PI3V and BRSV. A total of 30 dairy calves (3.5 months of age) were administered a priming dose of the MLV vaccine containing BHV1, BVDV1 & 2, BRSV, PI3V, and an attenuated-live Mannheimia-Pasteurella bacterin subcutaneously (SQ). Calves were randomly assigned to 1 of 2 groups: (1) administration of ITM SQ (ITM, n=15) or (2) injection of sterile saline SQ (Control; n=15). Three weeks later, calves received a booster of the same vaccine combination SQ, and a second administration of ITM, or sterile saline, according to the treatment group. Blood samples were collected on days 0, 7, 14, 21, 28, 42, 56, and 90 post-vaccination for determination of antibody titer, viral recall antigen-induced IFN-γ production, and viral antigen-induced proliferation by peripheral blood mononuclear cells (PBMC). Administration of ITM concurrently with MLV vaccination resulted in higher antibody titers to BVDV1 on day 28 after priming vaccination compared to the control group (P=0.03). Calves treated with ITM showed an earlier enhancement in PBMC proliferation to BVDV1 following vaccination compared to the control group. Proliferation of PBMC after BVDV stimulation tended to be higher on day 14 after priming vaccination in calves treated with ITM than in the control group (P=0.08). Calves that received ITM showed higher PBMC proliferation to BRSV stimulation on day 7 after priming vaccination compared to the control group (P=0.01). Moreover, calves in the ITM group also had an enhanced production IFN-γ by PBMC after stimulation with BRSV on day 21 after priming vaccination compared to day 0 (P<0.01). In conclusion, administration of ITM concurrently with MLV vaccination in dairy calves resulted in increased antibody titer to BVDV1, and greater PBMC proliferation to BVDV1 and BRSV recall stimulation compared to the control group, suggesting that ITM might represent a promising tool to enhance the humoral and CMI responses to MLV vaccines in cattle. Copyright © 2016. Published by Elsevier B.V.

  9. Validation of RNA-based molecular clonotype analysis for virus-specific CD8+ T-cells in formaldehyde-fixed specimens isolated from peripheral blood

    PubMed Central

    van Bockel, David; Price, David A.; Asher, Tedi E.; Venturi, Vanessa; Suzuki, Kazuo; Warton, Kristina; Davenport, Miles P.; Cooper, David A.; Douek, Daniel C.; Kelleher, Anthony D.

    2007-01-01

    Recent advances in the field of molecular clonotype analysis have enabled detailed repertoire characterization of viably isolated antigen-specific T cell populations directly ex vivo. However, in the absence of a biologically contained FACS facility, peripheral blood mononuclear cell (PBMC) preparations derived from patients infected with agents such as HIV must be formaldehyde fixed to inactivate the pathogen; this procedure adversely affects nucleic acid template quality. Here, we developed and validated a method to amplify and sequence mRNA species derived from formaldehyde fixed PBMC specimens. Antigen-specific CD8+ cytotoxic T-lymphocyte populations were identified with standard fluorochrome-conjugated peptide-major histocompatibility complex class I tetramers refolded around synthetic peptides representing immunodominant epitopes from HIV p24 Gag (KRWII[M/L]GLNK/HLA B*2705) and CMV pp65 (NLVPMVATV/HLA A*0201 and TPRVTGGGAM/HLA B*0702), and acquired in separate laboratories with or without fixation. In the presence of proteinase K pre-treatment, the observed antigen-specific CD8+ T-cell repertoire determined by molecular clonotype analysis was statistically no different whether derived from fixed or unfixed PBMC. However, oligo-dT recovery methods were not suitable for use with fixed tissue as significant skewing of clonotypic representation was observed. Thus, we have developed a reliable RNA-based method for molecular clonotype analysis that is compatible with formaldehyde fixation and therefore suitable for use with primary human samples isolated by FACS outside the context of a biological safety level 3 containment facility. PMID:17716684

  10. Echinococcus multilocularis vesicular fluid inhibits activation and proliferation of natural killer cells.

    PubMed

    Bellanger, Anne-Pauline; Mougey, Valentine; Pallandre, Jean-Rene; Gbaguidi-Haore, Houssein; Godet, Yann; Millon, Laurence

    2017-08-25

    Alveolar echinococcosis is a severe chronic helminthic disease that mimics slow-growing liver cancer. The immune evasion strategy of Echinococcus multilocularis Leuckart, 1863 remains poorly understood. The aim of this study was to investigate in vitro the impact of E. multilocularis vesicular fluid (Em-VF) on peripheral blood mononuclear cells (PBMC) and on natural killer (NK) cells. PBMC and NK cells were exposed to Em-VF (1 µg/ml) during six days. The effect of Em-VF was assessed on CD69, viability and proliferation, and on and transforming growth factor β (TGF-β), interferon γ (IFN-γ), interleukin 17 (IL-17) and interleukin 10, using flow cytometry and ELISA, respectively. Exposure to Em-VF had no bearing on PBMC's viability, proliferation and expression of CD69. In contrast, higher levels of IL-17 at day three and of TGF-β at day six were observed in PBMC supernatant after exposure to Em-VF (p < 0.05, Wilcoxon signed-rank test). Exposure to Em-VF induced a significant decrease of CD69 expression of NK cells at day three and a significant decrease of proliferation of NK cells at day six (p < 0.05, Wilcoxon signed-rank test). In contrast, NK cells viability and levels of cytokines did not vary significantly over Em-VF stimulation. Exposure to Em-VF had a significant bearing on activation and proliferation of NK cells. NK cells may play an important role in the immune response of the host against E. multilocularis.

  11. Xenogeneic graft-versus-host-disease in NOD-scid IL-2Rγnull mice display a T-effector memory phenotype.

    PubMed

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D; Lombardi, Giovanna; Nestle, Frank O

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; "Hu-PBMC mice") are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγ(null)), notably the NOD-scid IL-2Rγ(null) (NSG) and BALB/c-Rag2(null) IL-2Rγ(null) (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45(+) compartment and higher engraftment levels of CD3(+) T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (T(EM)) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting T(EM)-cell driven GvHD.

  12. Xenogeneic Graft-versus-Host-Disease in NOD-scid IL-2Rγnull Mice Display a T-Effector Memory Phenotype

    PubMed Central

    Ali, Niwa; Flutter, Barry; Sanchez Rodriguez, Robert; Sharif-Paghaleh, Ehsan; Barber, Linda D.; Lombardi, Giovanna; Nestle, Frank O.

    2012-01-01

    The occurrence of Graft-versus-Host Disease (GvHD) is a prevalent and potentially lethal complication that develops following hematopoietic stem cell transplantation. Humanized mouse models of xenogeneic-GvHD based upon immunodeficient strains injected with human peripheral blood mononuclear cells (PBMC; “Hu-PBMC mice”) are important tools to study human immune function in vivo. The recent introduction of targeted deletions at the interleukin-2 common gamma chain (IL-2Rγnull), notably the NOD-scid IL-2Rγnull (NSG) and BALB/c-Rag2 null IL-2Rγnull (BRG) mice, has led to improved human cell engraftment. Despite their widespread use, a comprehensive characterisation of engraftment and GvHD development in the Hu-PBMC NSG and BRG models has never been performed in parallel. We compared engrafted human lymphocyte populations in the peripheral blood, spleens, lymph nodes and bone marrow of these mice. Kinetics of engraftment differed between the two strains, in particular a significantly faster expansion of the human CD45+ compartment and higher engraftment levels of CD3+ T-cells were observed in NSG mice, which may explain the faster rate of GvHD development in this model. The pathogenesis of human GvHD involves anti-host effector cell reactivity and cutaneous tissue infiltration. Despite this, the presence of T-cell subsets and tissue homing markers has only recently been characterised in the peripheral blood of patients and has never been properly defined in Hu-PBMC models of GvHD. Engrafted human cells in NSG mice shows a prevalence of tissue homing cells with a T-effector memory (TEM) phenotype and high levels of cutaneous lymphocyte antigen (CLA) expression. Characterization of Hu-PBMC mice provides a strong preclinical platform for the application of novel immunotherapies targeting TEM-cell driven GvHD. PMID:22937164

  13. Human peripheral blood mononuclear cell in vitro system to test the efficacy of food bioactive compounds: Effects of polyunsaturated fatty acids and their relation with BMI.

    PubMed

    Cifre, Margalida; Díaz-Rúa, Rubén; Varela-Calviño, Rubén; Reynés, Bàrbara; Pericás-Beltrán, Jordi; Palou, Andreu; Oliver, Paula

    2017-04-01

    To analyse the usefulness of isolated human peripheral blood mononuclear cells (PBMC) to rapidly/easily reflect n-3 long-chain polyunsaturated fatty acid (LCPUFA) effects on lipid metabolism/inflammation gene profile, and evaluate if these effects are body mass index (BMI) dependent. PBMC from normoweight (NW) and overweight/obese (OW/OB) subjects were incubated with physiological doses of docosahexaenoic (DHA), eicosapentaenoic acid (EPA), or their combination. PBMC reflected increased beta-oxidation-like capacity (CPT1A expression) in OW/OB but only after DHA treatment. However, insensitivity to n-3 LCPUFA was evident in OW/OB for lipogenic genes: both PUFA diminished FASN and SREBP1C expression in NW, but no effect was observed for DHA in PBMC from high-BMI subjects. This insensitivity was also evident for inflammation gene profile: all treatments inhibited key inflammatory genes in NW; nevertheless, no effect was observed in OW/OB after DHA treatment, and EPA effect was impaired. SLC27A2, IL6 and TNFα PBMC expression analysis resulted especially interesting to determine obesity-related n-3 LCPUFA insensitivity. A PBMC-based human in vitro system reflects n-3 LCPUFA effects on lipid metabolism/inflammation which is impaired in OW/OB. These results confirm the utility of PBMC ex vivo systems for bioactive-compound screening to promote functional food development and to establish appropriate dietary strategies for obese population. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Characteristic analysis of peripheral blood mononuclear cell apoptosis in coke oven workers.

    PubMed

    Zhang, Hong Mei; Nie, Ji Sheng; Li, Xin; Niu, Qiao

    2012-01-01

    The aim of the present study was to determine the peripheral blood mononuclear cell (PBMC) apoptosis in coke oven workers so that we can take effective measures to protect coke oven workers. The subjects, 129 coke oven workers and 37 warehouse workers (controls), were investigated using a questionnaire to collect information about their age, working years, smoking and drinking habits, vocational history and other general information. The coke oven workers were divided into the oven-bottom group (34), oven-side group (48) and oven-top group (47) according to their working sites and environmental monitoring data. The concentration of benzo[a]pyrene (B[a]P) and the subjects' urinary 1-hydroxypyrene (1-OH-Py) levels were determined by HPLC. Additionally, the PBMCs were separated from blood samples, and the early and late apoptosis rates were determined by flow cytometry. The airborne B[a]P concentrations were 19.5 ± 13.2, 185.9 ± 38.6 and 1,623.5 ± 435.8 ng/m(3) at the bottom, side and top of the oven, respectively, and were higher than in the controls' workplaces 10.2 ± 7.6 ng/m(3). Urinary 1-OH-Py, indicating the B[a]P's internal exposure level, was significantly higher in the exposed groups than in the controls (p<0.05). Compared with the controls, the coke oven workers' PBMC apoptosis rates were significantly increased and increased in association with the B[a]P level. PBMC apoptosis increased in association with the 1-OH-Py level and coking operation years and decreased in association with years of alcohol consumption. PBMC apoptosis in the coke oven workers was associated with the 1-OH-Py level, coke operation years and years of alcohol consumption and may be induced by B[a]P.

  15. Generation and partial characterization of an eosinophil chemotactic cytokine produced by sensitized equine mononuclear cells stimulated with Strongylus vulgaris antigen.

    PubMed

    Dennis, V A; Klei, T R; Chapman, M R

    1993-07-01

    Supernatants generated by stimulation of peripheral blood mononuclear cells (PBMC) from Strongylus vulgaris sensitized or immunized ponies were assayed in vitro for eosinophil chemotactic activity (ECA) using the filter system in blind well chambers. The supernatants from these cultures were chemotactic for eosinophils, but not for neutrophils. Supernates from cultures of unsensitized PBMC stimulated with S. vulgaris antigen were not chemotactic for eosinophils. ECA was first detected in culture supernatants after 1.5 h of incubation and was dependent on both antigen and PBMC concentrations, but independent of serum concentrations. Both female and male S. vulgaris worm antigens stimulated ECA production from sensitized PBMC. ECA was not induced by in vitro stimulation of sensitized S. vulgaris PBMC by female Strongylus edentatus worm antigen. Partial characterization of the eosinophil chemotactic cytokine showed it to be nondialyzable, greater than 8000 molecular weight (MW), and sensitive to heating (56 and 95 degrees C), trypsin, and sodium metaperiodate treatments, suggesting that the cytokine is a protein containing some essential carbohydrate moieties. The cytokine described in this paper could partially contribute to the in vivo blood and tissue eosinophilia in experimental S. vulgaris infection.

  16. Simplified process for the production of anti-CD19-CAR engineered T cells

    PubMed Central

    Tumaini, Barbara; Lee, Daniel W.; Lin, Tasha; Castiello, Luciano; Stroncek, David F.; Mackall, Crystal; Wayne, Alan; Sabatino, Marianna

    2014-01-01

    Background Adoptive Immunotherapy using chimeric antigen receptor (CAR) engineered T cells specific for CD19 has shown promising results for the treatment of B cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. Here, we describe a new, simplified method to produce anti-CD19-CAR T cells. Methods T cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 hours and then a second transduction was performed. No spinoculation was used. Cells were then expanded for an additional 9 days. Results The method was validated using 2 PBMC products from a patient with B-CLL and one PBMC product from a healthy subject. The 2 PBMC products from the B-CLL patient contained 11.4% and 12.9% T cells. The manufacture process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6 fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first 4 ALL patients treated at our institution. Discussion We developed a simplified semi-closed system for the initial selection, activation, transduction and expansion of T cells using anti-CD3/anti-CD28 beads and bags, to produce autologous anti-CD19 CAR transduced T cells to support an ongoing clinical trial. PMID:23992830

  17. Nitric oxide secretion in human conjunctival fibroblasts is inhibited by alpha linolenic acid.

    PubMed

    Erdinest, Nir; Shohat, Noam; Moallem, Eli; Yahalom, Claudia; Mechoulam, Hadas; Anteby, Irene; Ovadia, Haim; Solomon, Abraham

    2015-01-01

    It is known that both human conjunctival fibroblasts (HCF) and corneal epithelial (HCE) cells contribute to the inflammatory process in the ocular surface by releasing inflammatory cytokines. In addition, nitric oxide (NO) has an important role in inflammatory responses in the ocular surface. In the present study, we aimed to characterize the capacity of these cells to release nitric oxide in response to cytokines and Lipopolysaccharide (LPS), and show that Alpha-linoleic acid (ALA) inhibits these responses. HCF, HCE cells, peripheral blood mononuclear cells (PBMCs) and co-culture of HCF and PBMC were treated with different combinations of inflammatory inducers, including interleukin)IL- (6, tumor necrosis factors (TNF)-α, interferon (IFN)- γ and IL-1β and LPS. Nitrite levels were measured in cell supernatants with and without ALA by the Griess reaction test at 24, 48 and 72 h respectively. Expression of nitric oxide synthase 2 (NOS-2) was evaluated by real-time PCR. All cytokine combinations had an inducible effect on nitrite secretion in HCF, PBMC and co-cultured PBMC and HCF, but not in HCE cells. Treatment with a combination of IL-6, LPS, TNF-α, IFN- γ and IL-1β induced the highest nitrite secretion (2.91 fold, P < 0.01) as compared to cells incubated in medium alone. nitrite secretion was reduced by 38.9 % (P < 0.05) after treatment with ALA alone. Co-culturing PBMC with HCF with and without ALA treatment demonstrated similar results in nitrite level as,compared to PBMC alone. In addition, ALA significantly decreased NOS-2 expression in HCF by 48.9 % (P < 0. 001) after 72 h. The decrease in nitrite release and inhibition of NOS-2 expression indicate that ALA may have an anti-inflammatory effect both on HCF and on peripheral immune cells. This indicates that ALA may serve as a potent anti-inflammatory agent in ocular surface inflammation.

  18. Functional and phenotypic characterization of CD8+CD28+ and CD28- T cells in atopic individuals sensitized to Dermatophagoides pteronyssinus.

    PubMed

    Lourenço, O; Fonseca, A M; Paiva, A; Arosa, F A; Taborda-Barata, L

    2006-01-01

    CD8+ T suppressor cells may play a role in immunoregulation. Recent studies have characterized this population by the lack of the CD28 molecule. These CD8+CD28 T cells differ phenotypically and functionally from CD8 + CD28 + T cells. Little is known about CD8 + CD28 cells in atopy. Our aim was to analyze the phenotype and functional properties of CD8 + CD28T cells in atopic and non-atopic individuals. Peripheral blood mononuclear cells (PBMC) were obtained after density gradient centrifugation. CD8 + CD28 and CD8 + CD28 + T cells were isolated using immunomagnetic beads. Relative percentages of these cells and expression of several phenotypic markers were analyzed by flow cytometry. Proliferation was assessed by thymidine incorporation in isolated populations and in co-cultures with PBMC using Dermatophagoides pteronyssinus as stimulus. Cytokine synthesis was evaluated in culture supernatants by cytometric bead array. The relative percentages of CD8+CD28 T cells and their phenotypic expression in atopic and non-atopic volunteers were not significantly different. However, CD8 + CD28 T cells showed greater proliferation than did CD8+CD28+ T cells when stimulated with D. pteronyssinus, although cytokine synthesis patterns were similar. CD8+CD28 co-cultures with PBMC showed greater proliferation than CD8+CD28+ T cell co-cultures, but cytokine synthesis patterns were not different. Our data confirm phenotypic and functional differences between CD28+ and CD28 T cells, irrespective of atopic status. Purified human CD8+CD28 T cells, freshly isolated from peripheral blood, do not have suppressor properties on allergen-specific proliferation or on cytokine synthesis in PBMC.

  19. Presence of 25(OH)D deficiency and its effect on vitamin D receptor mRNA expression.

    PubMed

    Goswami, R; Mondal, A M; Tomar, N; Ray, D; Chattopadhyay, P; Gupta, N; Sreenivas, V

    2009-03-01

    Vitamin D and its metabolites act through vitamin D receptor (VDR). We hypothesized that subjects with low serum 25(OH)D levels but normal PTH might have increased VDR expression. VDRmRNA expression was assessed by real time PCR in duodenal mucosa and PBMC (peripheral blood mononuclear cells) in 45 subjects with normal duodenoscopy and in PBMC alone in 48 healthy volunteers with hypovitaminosis D. 25(OH)D, PTH and VDRmRNA expression in PBMC was reassessed after 8 weeks of oral cholecalciferol (60 000 IU per week) in a subset (n=23) of healthy volunteers. The VDRmRNA expressions in the duodenum and PBMC were significantly correlated (r=0.42), but the expression was 13 times higher in the former than the latter. The mean VDRmRNA expression was similar in 25(OH)D-deficient subjects with or without PTH elevation, both in the duodenum and PBMC. The PBMC VDRmRNA expression showed no significant change after cholecalciferol supplementation. A weak correlation coefficient between duodenal mucosa and PBMC VDRmRNA suggests that caution needs to be exercised while using the latter as a surrogate for other sites.

  20. Ubiquitin proteasome system in Parkinson's disease: a keeper or a witness?

    PubMed

    Martins-Branco, Diogo; Esteves, Ana R; Santos, Daniel; Arduino, Daniela M; Swerdlow, Russell H; Oliveira, Catarina R; Januario, Cristina; Cardoso, Sandra M

    2012-12-01

    The aim of this work was to evaluate the role of ubiquitin-proteasome system (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson's disease (PD) cellular models. We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patient population we evaluated the aSN levels in the plasma and the influence of several demographic characteristics in the above mentioned determinations. We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a downregulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomer levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. aSN oligomers are ubiquitinated and we identified a ubiquitin-dependent clearance insufficiency with the accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Ubiquitin Proteasome System in Parkinson Disease: a keeper or a witness?

    PubMed Central

    Martins-Branco, Diogo; Esteves, Ana R.; Santos, Daniel; Arduino, Daniela M.; Swerdlow, Russell H.; Oliveira, Catarina R.; Januario, Cristina; Cardoso, Sandra M.

    2014-01-01

    Objective The aim of this work was to evaluate the role of Ubiquitin-Proteasome System (UPS) on mitochondrial-driven alpha-synuclein (aSN) clearance in in vitro, ex vivo and in vivo Parkinson disease (PD) cellular models. Method We used SH-SY5Y ndufa2 knock-down (KD) cells, PD cybrids and peripheral blood mononuclear cells (PBMC) from patients meeting the diagnostic criteria for PD. We quantified aSN aggregation, proteasome activity and protein ubiquitination levels. In PBMC of PD patients population we evaluated aSN levels in plasma and the influence of several demographic characteristics in the above mentioned determinations. Results We found that ubiquitin-independent proteasome activity was up-regulated in SH-SY5Y ndufa2 KD cells while a down regulation was observed in PD cybrids and PBMC. Moreover, we observed an increase in protein ubiquitination that correlates with a decrease in ubiquitin-dependent proteasome activity. Accordingly, proteasome inhibition prevented ubiquitin-dependent aSN clearance. Ubiquitin-independent proteasome activity was positively correlated with ubiquitination in PBMC. We also report a negative correlation of chymotrypsin-like activity with age in control and late-onset PD groups. Total ubiquitin content is positively correlated with aSN oligomers levels, which leads to an age-dependent increase of aSN ubiquitination in LOPD. Moreover, aSN levels are increased in the plasma of PD patients. Interpretation aSN oligomers are ubiquitinated and we identified an ubiquitin-dependent clearance insufficiency with accumulation of both aSN and ubiquitin. However, SH-SY5Y ndufa2 KD cells showed a significant up-regulation of ubiquitin-independent proteasomal enzymatic activity that could mean a cell rescue attempt. Moreover, we identified that UPS function is age-dependent in PBMC. PMID:22921536

  2. Consumption of selenium-enriched broccoli increases cytokine production in human peripheral blood mononuclear cells stimulated ex vivo, a preliminary human intervention study.

    PubMed

    Bentley-Hewitt, Kerry L; Chen, Ronan K-Y; Lill, Ross E; Hedderley, Duncan I; Herath, Thanuja D; Matich, Adam J; McKenzie, Marian J

    2014-12-01

    Selenium (Se) is a micronutrient essential for human health, including immune function. Previous research indicates that Se supplementation may cause a shift from T helper (Th)1- to Th2-type immune responses. We aim to test the potential health promoting effects of Se-enriched broccoli. In a human trial, 18 participants consumed control broccoli daily for 3 days. After a 3-day wash-out period, the participants were provided with Se-enriched broccoli containing 200 μg of Se per serving for 3 days. Plasma and peripheral blood mononuclear cell (PBMC) samples were collected at the start and end of each broccoli feeding period for analysis of total Se and measurement of cytokine production from PBMC stimulated with antigens ex vivo. Plasma Se content remained consistent throughout the control broccoli feeding period and the baseline of the Se-enriched broccoli period (1.22 μmol/L) and then significantly increased following 3 days of Se-enriched broccoli feeding. Interleukin (IL-2, IL-4, IL-5, IL-13, and IL-22) production from PBMC significantly increased after 3 days of Se-enriched broccoli feeding compared with baseline. This study indicates that consumption of Se-enriched broccoli may increase immune responses toward a range of immune challenges. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Immunogenicity and immunomodulatory properties of hepatocyte-like cells derived from human amniotic epithelial cells.

    PubMed

    Tee, Jing Yang; Vaghjiani, Vijesh; Liu, Yu Han; Murthi, Padma; Chan, James; Manuelpillai, Ursula

    2013-01-01

    Hepatocyte transplantation is being trialled as an alternative to whole organ transplant for patients with acute liver failure and liver specific metabolic diseases. Due to the scarcity of human hepatocytes, hepatocyte-like cells (HLC) generated from stem cells may become a viable alternative to hepatocyte transplantation. Human amniotic epithelial cells (hAEC) from the placenta have stem cell-like properties and can be differentiated into HLC. Naïve hAEC have low immunogenicity and exert immunomodulatory effects that may facilitate allogeneic transplantation. However, whether the immunogenicity and immunomodulatory properties alter with differentiation into HLC are unknown. We further characterized HLC generated from hAEC, examined changes in human leucocyte antigens (HLA) and co-stimulatory molecules and effects exerted by the HLC on human peripheral blood mononuclear cells (PBMC). HLC derived from hAEC expressed proteins found in hepatocytes, had CYP3A4 drug metabolizing enzyme activity and secreted urea. IFN-γ treatment increased HLA Class IA, Class II and co-stimulatory molecule CD40 expression in the HLC. IFN-γ treated HLC stimulated proliferation of PBMC in one-way mixed lymphocyte reactions and were more immunogenic than undifferentiated hAEC. However, the HLC showed immunomodulatory properties and inhibited mitogen induced PBMC proliferation in vitro. PBMC proliferation may have been inhibited by IL-6, TGF-β1, PGE2 and HLA-G secreted by the HLC. The retention of immunomodulatory properties may enable HLC grafts to survive for longer periods despite the immunogenicity of the HLC.

  4. Immunosenescence Induced by Plasma from Individuals with Obesity Caused Cell Signaling Dysfunction and Inflammation.

    PubMed

    Parisi, Mariana Migliorini; Grun, Lucas Kich; Lavandoski, Patrícia; Alves, Letícia Biscaino; Bristot, Ivi Juliana; Mattiello, Rita; Mottin, Cláudio Corá; Klamt, Fábio; Jones, Marcus Herbert; Padoin, Alexandre Vontobel; Guma, Fátima Costa Rodrigues; Barbé-Tuana, Florencia María

    2017-09-01

    To evaluate the consequences of plasma from individuals with obesity on parameters associated with immunosenescence in unrelated healthy peripheral blood mononuclear cells (PBMC). Freshly isolated PBMC were incubated in media supplemented with 10% of plasma from individuals with obesity or control subjects for the first 4 hours of 24 to 120 hours of culture. Plasma from individuals with obesity modulated the phenotype of healthy PBMC, leading to a higher rate of apoptosis, lower amounts of phospho-γH2AX and -p53, and mitochondrial dysfunction. After 120 hours, there was a higher secretion of inflammatory cytokines IL-1β and IL-8. CD8 + T lymphocytes presented decreased expression of CD28, which is associated with the immunosenescent phenotype. CD14 + macrophages showed increased expression of CD80 and CD206, suggesting a modulation in the activation of macrophages. These results demonstrate that chronic systemic inflammation observed in obesity induces dysfunctional features in PBMC that are consistent with premature immunosenescence. © 2017 The Obesity Society.

  5. Increased CD4+CD45RA-FoxP3low cells alter the balance between Treg and Th17 cells in colitis mice.

    PubMed

    Ma, Ya-Hui; Zhang, Jie; Chen, Xue; Xie, You-Fu; Pang, Yan-Hua; Liu, Xin-Juan

    2016-11-14

    To investigate the role of regulatory T cell (Treg) subsets in the balance between Treg and T helper 17 (Th17) cells in various tissues from mice with dextran sulfate sodium-induced colitis. Treg cells, Treg cell subsets, Th17 cells, and CD4 + CD25 + FoxP3 + IL-17 + cells from the lamina propria of colon (LPC) and other ulcerative colitis (UC) mouse tissues were evaluated by flow cytometry. Forkhead box protein 3 (FoxP3), interleukin 17A (IL-17A), and RORC mRNA levels were assessed by real-time PCR, while interleukin-10 (IL-10) and IL-17A levels were detected with a Cytometric Beads Array. In peripheral blood monocytes (PBMC), mesenteric lymph node (MLN), lamina propria of jejunum (LPJ) and LPC from UC mice, Treg cell numbers were increased ( P < 0.05), and FoxP3 and IL-10 mRNA levels were decreased. Th17 cell numbers were also increased in PBMC and LPC, as were IL-17A levels in PBMC, LPJ, and serum. The number of FrI subset cells (CD4 + CD45RA + FoxP3 low ) was increased in the spleen, MLN, LPJ, and LPC. FrII subset cells (CD4 + CD45RA - FoxP3 high ) were decreased among PBMC, MLN, LPJ, and LPC, but the number of FrIII cells (CD4 + CD45RA - FoxP3 low ) and CD4 + CD25 + FoxP3 + IL-17A + cells was increased. FoxP3 mRNA levels in CD4 + CD45RA - FoxP3 low cells decreased in PBMC, MLN, LPJ, and LPC in UC mice, while IL-17A and RORC mRNA increased. In UC mice the distribution of Treg, Th17 cells, CD4 + CD45RA - FoxP3 high , and CD4 + CD45RA - FoxP3 low cells was higher in LPC relative to other tissues. Increased numbers of CD4 + CD45RA - FoxP3 low cells may cause an imbalance between Treg and Th17 cells that is mainly localized to the LPC rather than secondary lymphoid tissues.

  6. Increased CD4+CD45RA-FoxP3low cells alter the balance between Treg and Th17 cells in colitis mice

    PubMed Central

    Ma, Ya-Hui; Zhang, Jie; Chen, Xue; Xie, You-Fu; Pang, Yan-Hua; Liu, Xin-Juan

    2016-01-01

    AIM To investigate the role of regulatory T cell (Treg) subsets in the balance between Treg and T helper 17 (Th17) cells in various tissues from mice with dextran sulfate sodium-induced colitis. METHODS Treg cells, Treg cell subsets, Th17 cells, and CD4+CD25+FoxP3+IL-17+ cells from the lamina propria of colon (LPC) and other ulcerative colitis (UC) mouse tissues were evaluated by flow cytometry. Forkhead box protein 3 (FoxP3), interleukin 17A (IL-17A), and RORC mRNA levels were assessed by real-time PCR, while interleukin-10 (IL-10) and IL-17A levels were detected with a Cytometric Beads Array. RESULTS In peripheral blood monocytes (PBMC), mesenteric lymph node (MLN), lamina propria of jejunum (LPJ) and LPC from UC mice, Treg cell numbers were increased (P < 0.05), and FoxP3 and IL-10 mRNA levels were decreased. Th17 cell numbers were also increased in PBMC and LPC, as were IL-17A levels in PBMC, LPJ, and serum. The number of FrI subset cells (CD4+CD45RA+FoxP3low) was increased in the spleen, MLN, LPJ, and LPC. FrII subset cells (CD4+CD45RA-FoxP3high) were decreased among PBMC, MLN, LPJ, and LPC, but the number of FrIII cells (CD4+CD45RA-FoxP3low) and CD4+CD25+FoxP3+IL-17A+ cells was increased. FoxP3 mRNA levels in CD4+CD45RA-FoxP3low cells decreased in PBMC, MLN, LPJ, and LPC in UC mice, while IL-17A and RORC mRNA increased. In UC mice the distribution of Treg, Th17 cells, CD4+CD45RA-FoxP3high, and CD4+CD45RA-FoxP3low cells was higher in LPC relative to other tissues. CONCLUSION Increased numbers of CD4+CD45RA-FoxP3low cells may cause an imbalance between Treg and Th17 cells that is mainly localized to the LPC rather than secondary lymphoid tissues. PMID:27895423

  7. Analysis of cytotoxic effects of silver nanoclusters on human peripheral blood mononuclear cells 'in vitro'.

    PubMed

    Orta-García, Sandra Teresa; Plascencia-Villa, Germán; Ochoa-Martínez, Angeles Catalina; Ruiz-Vera, Tania; Pérez-Vázquez, Francisco Javier; Velázquez-Salazar, J Jesús; Yacamán, Miguel José; Navarro-Contreras, Hugo Ricardo; Pérez-Maldonado, Iván N

    2015-10-01

    The antimicrobial properties of silver nanoparticles (AgNPs) have made these particles one of the most used nanomaterials in consumer products. Therefore, an understanding of the interactions (unwanted toxicity) between nanoparticles and human cells is of significant interest. The aim of this study was to assess the in vitro cytotoxicity effects of silver nanoclusters (AgNC, < 2 nm diameter) on peripheral blood mononuclear cells (PBMC). Using flow cytometry and comet assay methods, we demonstrate that exposure of PBMC to AgNC induced intracellular reactive oxygen species (ROS) generation, DNA damage and apoptosis at 3, 6 and 12 h, with a dose-dependent response (0.1, 1, 3, 5 and 30 µg ml(-1)). Advanced electron microscopy imaging of complete and ultrathin-sections of PBMC confirmed the cytotoxic effects and cell damage caused by AgNC. The present study showed that AgNC produced without coating agents induced significant cytotoxic effects on PBMC owing to their high aspect ratio and active surface area, even at much lower concentrations (<1 µg ml(-1)) than those applied in previous studies, resembling what would occur under real exposure conditions to nanosilver-functionalized consumer products. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Suppressed PHA Activation of T Lymphocytes in Simulated Microgravity Is Restored by Direct Activation of Protein Kinase C with Phorbol Ester

    NASA Technical Reports Server (NTRS)

    Cooper, David; Pellis, Neal R.

    1997-01-01

    Various aspects of spaceflight, including microgravity, cosmic radiation, and physiological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. We utilized clinostatic RWV bioreactors that simulate aspects of microgravity to analyze the response of human PBMC to polyclonal activation. PHA responsiveness in the RWV was almost completely diminished. IL-2 and IFN-gamma secretion was reduced whereas IL- 1 beta and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions did not suppress PHA activation. Furthermore, increasing cell density and, therefore, cell-cell interactions in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, submitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  9. Peripheral blood mononuclear cells from patients with rheumatoid arthritis spontaneously secrete vascular endothelial growth factor (VEGF): specific up-regulation by tumour necrosis factor-alpha (TNF-α) in synovial fluid

    PubMed Central

    BOTTOMLEY, MJ; WEBB, NJA; WATSON, CJ; HOLT, PJL; FREEMONT, AJ; BRENCHLEY, PEC

    1999-01-01

    This study was designed to investigate VEGF production from peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) compared with healthy controls and to identify the predominant cellular source in PBMC isolated from RA patients. The regulation of PBMC VEGF production by cytokines and synovial fluid (SF) was studied. PBMC were isolated from RA patients and healthy controls and stimulated with lipopolysaccharide (LPS), IL-1β, IL-4, IL-6, IL-8, IL-10, TNF-α and transforming growth factor-beta (TGF-β) isoforms for varying time points up to 72 h at 37°C/5% CO2. The effect of SF on VEGF secretion by PBMC was also studied. Supernatant VEGF levels were measured using a flt-1 receptor capture ELISA. RA patients had significantly higher spontaneous production of VEGF compared with controls, and monocytes were identified as the predominant cellular source. RA PBMC VEGF production was up-regulated by TGF-β isoforms and TNF-α and down-regulated by IL-4 and IL-10, with no effect observed with IL-1β, IL-6 and IL-8. Antibody blocking experiments confirmed that TNF-α and not TGF-β isoforms in SF increased VEGF secretion by RA PBMC. These results emphasize the importance of monocytes as a source of VEGF in the pathophysiology of RA. Several cytokines known to be present in SF can modulate the level of VEGF secretion, but the predominant effect of SF in VEGF up-regulation is shown to be dependent on TNF-α. PMID:10403932

  10. Antimony resistant Leishmania donovani but not sensitive ones drives greater frequency of potent T-regulatory cells upon interaction with human PBMCs: role of IL-10 and TGF-β in early immune response.

    PubMed

    Guha, Rajan; Das, Shantanabha; Ghosh, June; Sundar, Shyam; Dujardin, Jean Claude; Roy, Syamal

    2014-07-01

    In India the sand fly, Phlebotomus argentipes, transmitted parasitic disease termed kala-azar is caused by Leishmania donovani (LD) in humans. These immune-evading parasites have increasingly developed resistance to the drug sodium antimony gluconate in endemic regions. Lack of early diagnosis methods for the disease limits the information available regarding the early interactions of this parasite with either human tissues or cell lineages. We reasoned that peripheral blood mononuclear cells (PBMCs) from healthy human beings could help compare some of their immune signatures once they were exposed for up to 8 days, to either pentavalent antimony sensitive (Sb(S)-LD) or resistant (Sb(R)-LD) Leishmania donovani isolates. At day 2, PBMC cultures exposed to Sb(S)-LD and Sb(R)-LD stationary phase promastigotes had four and seven fold higher frequency of IL-10 secreting monocyte-macrophage respectively, compared to cultures unexposed to parasites. Contrasting with the CD4(+)CD25-CD127- type-1 T-regulatory (Tr1) cell population that displayed similar features whatever the culture conditions, there was a pronounced increase in the IL-10 producing CD4(+)CD25(+)CD127low/- inducible T-regulatory cells (iTregs) in the PBMC cultures sampled at day 8 post addition of Sb(R)-LD. Sorted iTregs from different cultures on day 8 were added to anti-CD3/CD28 induced naïve PBMCs to assess their suppressive ability. We observed that iTregs from Sb(R)-LD exposed PBMCs had more pronounced suppressive ability compared to Sb(S)-LD counterpart on a per cell basis and is dependent on both IL-10 and TGF-β, whereas IL-10 being the major factor contributing to the suppressive ability of iTregs sorted from PBMC cultures exposed to Sb(S)-LD. Of note, iTreg population frequency value remained at the basal level after addition of genetically modified Sb(R)-LD lacking unique terminal sugar in surface glycan. Even with limitations of this artificial in vitro model of L. donovani-human PBMC interactions, the present findings suggest that Sb(R)-LD have higher immunomodulatory capacity which may favour aggressive pathology.

  11. Cryopreservation for delayed circulating tumor cell isolation is a valid strategy for prognostic association of circulating tumor cells in gastroesophageal cancer

    PubMed Central

    Brungs, Daniel; Lynch, David; Luk, Alison WS; Minaei, Elahe; Ranson, Marie; Aghmesheh, Morteza; Vine, Kara L; Carolan, Martin; Jaber, Mouhannad; de Souza, Paul; Becker, Therese M

    2018-01-01

    AIM To demonstrate the feasibility of cryopreservation of peripheral blood mononuclear cells (PBMCs) for prognostic circulating tumor cell (CTC) detection in gastroesophageal cancer. METHODS Using 7.5 mL blood samples collected in EDTA tubes from patients with gastroesopheagal adenocarcinoma, CTCs were isolated by epithelial cell adhesion molecule based immunomagnetic capture using the IsoFlux platform. Paired specimens taken during the same blood draw (n = 15) were used to compare number of CTCs isolated from fresh and cryopreserved PBMCs. Blood samples were processed within 24 h to recover the PBMC fraction, with PBMCs used for fresh analysis immediately processed for CTC isolation. Cryopreservation of PBMCs lasted from 2 wk to 25.2 mo (median 14.6 mo). CTCs isolated from pre-treatment cryopreserved PBMCs (n = 43) were examined for associations with clinicopathological variables and survival outcomes. RESULTS While there was a significant trend to a decrease in CTC numbers associated with cryopreserved specimens (mean number of CTCs 34.4 vs 51.5, P = 0.04), this was predominately in samples with a total CTC count of > 50, with low CTC count samples less affected (P = 0.06). There was no significant association between the duration of cryopreservation and number of CTCs. In cryopreserved PBMCs from patient samples prior to treatment, a high CTC count (> 17) was associated with poorer overall survival (OS) (n = 43, HR = 4.4, 95%CI: 1.7-11.7, P = 0.0013). In multivariate analysis, after controlling for sex, age, stage, ECOG performance status, and primary tumor location, a high CTC count remained significantly associated with a poorer OS (HR = 3.7, 95%CI: 1.2-12.4, P = 0.03). CONCLUSION PBMC cryopreservation for delayed CTC isolation is a valid strategy to assist with sample collection, transporting and processing. PMID:29467551

  12. Physalin F, a seco-steroid from Physalis angulata L., has immunosuppressive activity in peripheral blood mononuclear cells from patients with HTLV1-associated myelopathy.

    PubMed

    Pinto, Lorena A; Meira, Cássio S; Villarreal, Cristiane F; Vannier-Santos, Marcos A; de Souza, Claudia V C; Ribeiro, Ivone M; Tomassini, Therezinha C B; Galvão-Castro, Bernardo; Soares, Milena B P; Grassi, Maria F R

    2016-04-01

    Human T-lymphotropic virus type 1 (HTLV-1) induces a strong activation of the immune system, especially in individuals with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Physalin F is a secosteroid with potent anti-inflammatory and immunomodulatory activities. The present study aimed to investigate the effects of physalin F on peripheral blood mononuclear cells (PBMC) of HAM/TSP subjects. A concentration-dependent inhibition of spontaneous proliferation of PBMC from HAM/TSP subjects was observed in the presence of physalin F, as evaluated by (3)H-thymidine uptake. The IC50 for physalin F was 0.97 ± 0.11 μM. Flow cytometry analysis using Cytometric Bead Array (CBA) showed that physalin F (10 μM) significantly reduced the levels of IL-2, IL-6, IL-10, TNF-α and IFN-γ, but not IL-17A, in supernatants of PBMC cultures. Next, apoptosis induction was addressed by using flow cytometry to evaluate annexin V expression. Treatment with physalin F (10 μM) increased the apoptotic population of PBMC in HAM/TSP subjects. Transmission electron microscopy analysis of PBMC showed that physalin F induced ultrastructural changes, such as pyknotic nuclei, damaged mitochondria, enhanced autophagic vacuole formation, and the presence of myelin-like figures. In conclusion, physalin F induces apoptosis of PBMC, decreasing the spontaneous proliferation and cytokine production caused by HTLV-1 infection. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Cpt1a gene expression in peripheral blood mononuclear cells as an early biomarker of diet-related metabolic alterations

    PubMed Central

    Díaz-Rúa, Rubén; Palou, Andreu; Oliver, Paula

    2016-01-01

    Background Research on biomarkers that provide early information about the development of future metabolic alterations is an emerging discipline. Gene expression analysis in peripheral blood mononuclear cells (PBMC) is a promising tool to identify subjects at risk of developing diet-related diseases. Objective We analysed PBMC expression of key energy homeostasis-related genes in a time-course analysis in order to find out early markers of metabolic alterations due to sustained intake of high-fat (HF) and high-protein (HP) diets. Design We administered HF and HP diets (4 months) to adult Wistar rats in isocaloric conditions to a control diet, mainly to avoid overweight associated with the intake of hyperlipidic diets and, thus, to be able to characterise markers of metabolically obese normal-weight (MONW) syndrome. PBMC samples were collected at different time points of dietary treatment and expression of relevant energy homeostatic genes analysed by real-time reverse transcription-polymerase chain reaction. Serum parameters related with metabolic syndrome, as well as fat deposition in liver, were also analysed. Results The most outstanding results were those obtained for the expression of the lipolytic gene carnitine palmitoyltransferase 1a (Cpt1a). Cpt1a expression in PBMC increased after only 1 month of exposure to both unbalanced diets, and this increased expression was maintained thereafter. Interestingly, in the case of the HF diet, Cpt1a expression was altered even in the absence of increased body weight but correlated with alterations such as higher insulin resistance, alteration of serum lipid profile and, particularly, increased fat deposition in liver, a feature characteristic of metabolic syndrome, which was even observed in animals fed with HP diet. Conclusions We propose Cpt1a gene expression analysis in PBMC as an early biomarker of metabolic alterations associated with MONW phenotype due to the intake of isocaloric HF diets, as well as a marker of increased risk of metabolic diseases associated with the intake of HF or HP diets. PMID:27885970

  14. Induction of hapten-specific tolerance of human CD8+ urushiol (poison ivy)-reactive T lymphocytes.

    PubMed

    Kalish, R S; Wood, J A

    1997-03-01

    The interaction of CD28 with B7 molecules (CD80 or CD86) is an essential second signal for both the activation of CD4+ T cells through the T-cell receptor and the prevention of anergy. We studied the requirement of hapten-specific human CD8+ cells for CD28 co-stimulation in recognition of hapten, and anergy induction. Urushiol, the immunogenic hapten of poison ivy (Toxicodendron radicans), elicits a predominantly CD8+ T-cell response. Autologous PBMC were pre-incubated with urushiol prior to fixation by paraformaldehyde. Fixed antigen-presenting cells were unable to present urushiol to human CD8+ urushiol-specific T cells. Addition of anti-CD28, however, overcame this antigen-presenting defect, enabling CD8+ cells to proliferate. Fixation of antigen-presenting cells prevents upregulation of B7, and addition of anti-CD28 substitutes for this signal. Proliferation of CD8+ T cells in response to urushiol was blocked by CTLA4Ig, a recombinant fusion protein that blocks CD28/B7 interactions. Preincubation of urushiol-specific CD8+ cells with fixed PBMC + urushiol for 7 d induced anergy. Anergic CD8+ cells were viable and able to proliferate in response to IL-2, but not in response to urushiol. Induction of anergy required the presence of urushiol, and pre-incubation with irradiated PBMC + urushiol did not have this effect. It is proposed that anergy was induced by presentation of urushiol by fixed PBMC, in the absence of adequate co-stimulation signals. Induction of anergy by blocking of co-stimulation could potentially induce clinical hyposensitization to haptens.

  15. Human mesenchymal stem cells suppress donor CD4(+) T cell proliferation and reduce pathology in a humanized mouse model of acute graft-versus-host disease.

    PubMed

    Tobin, L M; Healy, M E; English, K; Mahon, B P

    2013-05-01

    Acute graft-versus-host disease (aGVHD) is a life-threatening complication following allogeneic haematopoietic stem cell transplantation (HSCT), occurring in up to 30-50% of patients who receive human leucocyte antigen (HLA)-matched sibling transplants. Current therapies for steroid refractory aGVHD are limited, with the prognosis of patients suboptimal. Mesenchymal stem or stromal cells (MSC), a heterogeneous cell population present in many tissues, display potent immunomodulatory abilities. Autologous and allogeneic ex-vivo expanded human MSC have been utilized to treat aGVHD with promising results, but the mechanisms of therapeutic action remain unclear. Here a robust humanized mouse model of aGVHD based on delivery of human peripheral blood mononuclear cells (PBMC) to non-obese diabetic (NOD)-severe combined immunodeficient (SCID) interleukin (IL)-2rγ(null) (NSG) mice was developed that allowed the exploration of the role of MSC in cell therapy. MSC therapy resulted in the reduction of liver and gut pathology and significantly increased survival. Protection was dependent upon the timing of MSC therapy, with conventional MSC proving effective only after delayed administration. In contrast, interferon (IFN)-γ-stimulated MSC were effective when delivered with PBMC. The beneficial effect of MSC therapy in this model was not due to the inhibition of donor PBMC chimerism, as CD45(+) and T cells engrafted successfully in this model. MSC therapy did not induce donor T cell anergy, FoxP3(+) T regulatory cells or cause PBMC apoptosis in this model; however, it was associated with the direct inhibition of donor CD4(+) T cell proliferation and reduction of human tumour necrosis factor-α in serum. © 2012 British Society for Immunology.

  16. Grain dust induces IL-8 production from bronchial epithelial cells: effect on neutrophil recruitment.

    PubMed

    Park, H S; Suh, J H; Kim, S S; Kwon, O J

    2000-06-01

    There have been several investigations suggesting an involvement of activated neutrophils in the development of grain dust (GD)-induced occupational asthma. Interleukin-8 in the sputa from GD-induced asthmatic patients increased significantly after the exposure to GD. To confirm IL-8 production from bronchial epithelial cells when exposed to GD, and to evaluate the role of IL-8 on neutrophil recruitment. We cultured Beas-2B, a bronchial epithelial cell line. To observe GD-induced responses, four different concentrations ranging from 1 to 200 microg/mL of GD were incubated for 24 hours and compared with those without incubation of GD. To evaluate the effect of pro-inflammatory cytokines on IL-8 production and neutrophil chemotaxis, epithelial cells were incubated with peripheral blood mononuclear cell (PBMC) culture supernatant derived from subjects with GD-induced asthma exposed to 10 microg/mL of GD, and then compared with those without addition of PBMC supernatant. The level of released IL-8 in the supernatant was measured by enzyme-linked immunosorbent assay. Neutrophil chemotactic activity of the culture supernatant was determined by modified Boyden chamber method. Interleukin-8 production and neutrophil chemotactic activity from bronchial epithelial cells significantly increased with additions of GD in a dose-dependent manner (P < .05, respectively), and were significantly augmented with additions of PBMC supernatant (P < .05, respectively) at each concentration. Close correlation was noted between neutrophil chemotactic activity and IL-8 level (r = 0.87, P < .05). Compared with the untreated sample, pre-treatment of anti-IL-8 antibody induced a significant suppression (up to 67.2%) of neutrophil chemotactic activity in a dose-dependent manner. These results suggest that IL-8 produced from bronchial epithelial cells may be a major cytokine, which induces neutrophil migration into the airways when exposed to GD.

  17. Role of peripheral blood mononuclear cell transportation from mother to baby in HBV intrauterine infection.

    PubMed

    Shao, Qingliang; Zhao, Xiaxia; Yao Li, M D

    2013-12-01

    We aimed to investigate the role of peripheral blood mononuclear cell transportation from mother to baby in hepatitis B virus (HBV) intrauterine infection. Thirty HBsAg-positive pregnant women in the second trimester and their aborted fetuses were included in this study. Enzyme-linked-immunosorbent-assay was utilized to detect HBsAg in the peripheral blood of pregnant women and the femoral vein blood of their aborted fetuses. HBV-DNA in serum and peripheral blood mononuclear cells (PBMC) and GSTM1 alleles of pregnant women and their aborted fetuses were detected by nested polymerase chain reaction (PCR) and seminested PCR, respectively. We also examined the location of placenta HBsAg and HBcAb using immunohistochemical staining. The expression of placenta HBV-DNA was detected by in situ hybridization. For the 30 aborted fetuses, the HBV intrauterine infection rate was 43.33%. The HBV-positive rates of HBsAg in peripheral blood, serum, and PBMC were 10% (3/30), 23.33% (7/30), and 33.33% (10/30), respectively. Maternal-fetal PBMC transport was significantly positively correlated with fetal PBMC HBV-DNA (P = 0.004). Meanwhile, the rates of HBV infection gradually decreased from the maternal side to the fetus side of placenta (decidual cells > trophoblastic cells > villous mesenchymal cells > villous capillary endothelial cells). However, no significant correlation between placenta HBV infection and HBV intrauterine infection was observed (P = 0.410). HBV intrauterine infection was primarily due to peripheral blood mononuclear cell maternal-fetal transportation in the second trimester in pregnant women.

  18. Increased apoptosis and peripheral blood mononuclear cell suppression of bone marrow mesenchymal stem cells in severe aplastic anemia.

    PubMed

    Chao, Yu-Hua; Lin, Chiao-Wen; Pan, Hui-Hsien; Yang, Shun-Fa; Weng, Te-Fu; Peng, Ching-Tien; Wu, Kang-Hsi

    2018-06-05

    Although immune-mediated pathogenesis is considered an important aspect of severe aplastic anemia (SAA), its underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs) are essential to the formation of specialized microenvironments in the bone marrow (BM), and MSC insufficiency can trigger the development of SAA. To find MSC alterations in the SAA BM, we compared BM MSCs from five children with SAA and five controls. Peripheral blood mononuclear cells (PBMCs) were cocultured with MSCs to evaluate the supportive effects of MSCs on hematopoiesis. Cytometric bead array immunoassay was used to determine cytokine excretion by MSCs. The immune functions of MSCs and their conditioned medium (CM) were evaluated by PBMC proliferation assays. SAA MSCs were characterized by a high percentage of cells in the abnormal sub-G1 phase of the cell cycle, which suggests an increased rate of apoptosis in SAA MSCs. In comparison with control MSCs, PBMCs cocultured with SAA MSCs displayed significantly reduced PBMC proliferation (P = 0.009). Aberrant cytokine profiles were secreted by SAA MSCs, with increased concentrations of interleukin-6, interferon-γ, tumor necrosis factor-α, and interleukin-1β in the CM. PBMC proliferation assays demonstrated additional immunosuppressive effects of SAA MSCs (P = 0.016) and their CM (P = 0.013). Our data revealed increased apoptosis and PBMC suppression of SAA MSCs. The alterations of MSCs may contribute to the formation of functionally abnormal microenvironments in SAA BM. © 2018 Wiley Periodicals, Inc.

  19. The Markers of Glutamate Metabolism in Peripheral Blood Mononuclear Cells and Neurological Complications in Lung Cancer Patients

    PubMed Central

    Ambrosius, Wojciech; Gazdulska, Joanna; Gołda-Gocka, Iwona; Kozubski, Wojciech; Ramlau, Rodryg

    2016-01-01

    Objective. To evaluate the involvement of glutamate metabolism in peripheral blood mononuclear cells (PBMC) in the development of neurological complications in lung cancer and during chemotherapy. Methods. The prospective study included 221 lung cancer patients treated with chemotherapeutics. Neurological status and cognitive functions were evaluated at baseline and after 6-month follow-up. Glutamate level, the activities of glutaminase- (GLS-) glutamate synthetizing enzyme, glutamate dehydrogenase (GDH), and glutamate decarboxylase catalyzing glutamate degradation were analyzed in PBMC and in sera of lung cancer patients by means of spectrophotometric and colorimetric methods. Results. Chemotherapy of lung neoplasms induced increase of glutamate content in PBMC and its concentration in serum increased the activity of GDH in PBMC and decreased activity of glutaminase in PBMC. The changes in glutamate metabolism markers were associated with initial manifestation of neurological deficit in lung cancer patients and with new symptoms, which appear as a complication of chemotherapy. Moreover, the analyzed parameters of glutamate control correlated with a spectrum of cognitive functions measures in lung cancer patients. Conclusion. We have demonstrated dysregulation in glutamate and glutamate metabolism controlling enzymes as promising indicators of risk for chemotherapy-induced neurological complications in lung cancer patients with particular emphasis on cognitive impairment. PMID:28044066

  20. A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis.

    PubMed

    Lemieux, Jennifer; Jobin, Christine; Simard, Carl; Néron, Sonia

    2016-07-01

    The cryopreservation of human lymphocytes is an essential step for the achievement of several cellular therapies. Besides, T cells are considered as promising actors in cancer therapy for their cytotoxic and regulatory properties. Consequently, the development of tools to monitor the impact of freezing and thawing processes on their fine distribution may be an asset to achieve quality control in cellular therapy. In this study, the phenotypes of freshly isolated human mononuclear cells were compared to those observed following one cycle of cryopreservation and rest periods 0h, 1h and 24h after thawing but before staining. T cells were scrutinized for their distribution according to naive, memory effector, regulatory and helper subsets. Flow cytometry analyses were done using eight-color antibody panels as proposed by the Human Immunophenotyping Consortium. Data were further analyzed by using conventional directed gating and clustering software, namely SPADE and viSNE. Overall, SPADE and viSNE tools were very efficient to monitor the outcome of PBMC populations and T cell subsets. T cells were more sensitive to cryopreservation than other cells. Our results indicated that submitting the thawed cells to a 1h rest period improved the detection of some cell markers when compared to fresh samples. In contrast, cells submitted to a 24h rest period, or to none, were less representative of fresh sample distribution. The heterogeneity of PBMC, as well as the effects of freeze-thaw cycle on their distribution, can be easily monitored by using SPADE and viSNE. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of globularifolin on cell survival, nuclear factor-κB activity, neopterin production, tryptophan breakdown and free radicals in vitro.

    PubMed

    Sipahi, Hande; Becker, Kathrin; Gostner, Johanna M; Charehsaz, Mohammad; Kirmizibekmez, Hasan; Schennach, Harald; Aydin, Ahmet; Fuchs, Dietmar

    2014-01-01

    The potential effects of globularifolin, an acylated iridoid glucoside, on cell survival, inflammation markers and free radicals scavenging were investigated. Viability assay on human myelomomonocytic cell line THP-1 and human peripheral blood mononuclear cells (PBMC) using the Cell-Titer Blue assay proved that globularifolin had no toxic effect at the tested concentrations. Conversely, it is proportional to the dose globularifolin increased growth of THP-1 cells (p <0.01). On human PBMC, globularifolin at 6.25 and 12.5 μM concentrations showed a stimulatory effect, while at 12.5-200 μM it suppressed response of PBMC to stimulation with phytohemagglutinin (PHA). Globularifolin (50-200 μM) enhanced neopterin formation dose-dependently, whereas tryptophan breakdown was not influenced. At 50-200 μM in unstimulated PBMC in THP-1 cells, globularifolin induced a significant expression of nuclear factor-κB (NF-κB) as was quantified by Quanti-Blue assay. By contrast, in lipopolysaccharide (LPS)-stimulated cells, the higher concentrations of globularifolin suppressed NF-κB expression dose-dependently and a significant decrease was observed at 200 μM concentration. A positive correlation was found between increased neopterin and NF-κB activity (p <0.01). Similarly, a positive correlation was observed between neopterin levels in mitogen-induced cells and NF-κB activity in LPS-stimulated cells after treatment with globularifolin (p=0.001). The free radical scavenging capacity of globularifolin evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay showed relative ORAC values of 0.36±0.05 μmol Trolox equivalent/μmol. All together, results show that natural antioxidant globularifolin might represent a potential immunomodulatory as well as proliferative agent, which deserves further in vitro and in vivo studies. © 2013.

  2. Novel Mouse Xenograft Models Reveal a Critical Role of CD4+ T Cells in the Proliferation of EBV-Infected T and NK Cells

    PubMed Central

    Arai, Ayako; Nakazawa, Atsuko; Kawano, Fuyuko; Ichikawa, Sayumi; Shimizu, Norio; Yamamoto, Naoki; Morio, Tomohiro; Ohga, Shouichi; Nakamura, Hiroyuki; Ito, Mamoru; Miura, Osamu; Komano, Jun; Fujiwara, Shigeyoshi

    2011-01-01

    Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγnull strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases. PMID:22028658

  3. Novel mouse xenograft models reveal a critical role of CD4+ T cells in the proliferation of EBV-infected T and NK cells.

    PubMed

    Imadome, Ken-ichi; Yajima, Misako; Arai, Ayako; Nakazawa, Atsuko; Kawano, Fuyuko; Ichikawa, Sayumi; Shimizu, Norio; Yamamoto, Naoki; Morio, Tomohiro; Ohga, Shouichi; Nakamura, Hiroyuki; Ito, Mamoru; Miura, Osamu; Komano, Jun; Fujiwara, Shigeyoshi

    2011-10-01

    Epstein-Barr virus (EBV), a ubiquitous B-lymphotropic herpesvirus, ectopically infects T or NK cells to cause severe diseases of unknown pathogenesis, including chronic active EBV infection (CAEBV) and EBV-associated hemophagocytic lymphohistiocytosis (EBV-HLH). We developed xenograft models of CAEBV and EBV-HLH by transplanting patients' PBMC to immunodeficient mice of the NOD/Shi-scid/IL-2Rγ(null) strain. In these models, EBV-infected T, NK, or B cells proliferated systemically and reproduced histological characteristics of the two diseases. Analysis of the TCR repertoire expression revealed that identical predominant EBV-infected T-cell clones proliferated in patients and corresponding mice transplanted with their PBMC. Expression of the EBV nuclear antigen 1 (EBNA1), the latent membrane protein 1 (LMP1), and LMP2, but not EBNA2, in the engrafted cells is consistent with the latency II program of EBV gene expression known in CAEBV. High levels of human cytokines, including IL-8, IFN-γ, and RANTES, were detected in the peripheral blood of the model mice, mirroring hypercytokinemia characteristic to both CAEBV and EBV-HLH. Transplantation of individual immunophenotypic subsets isolated from patients' PBMC as well as that of various combinations of these subsets revealed a critical role of CD4+ T cells in the engraftment of EBV-infected T and NK cells. In accordance with this finding, in vivo depletion of CD4+ T cells by the administration of the OKT4 antibody following transplantation of PBMC prevented the engraftment of EBV-infected T and NK cells. This is the first report of animal models of CAEBV and EBV-HLH that are expected to be useful tools in the development of novel therapeutic strategies for the treatment of the diseases.

  4. Nanovesicles from Malassezia sympodialis and Host Exosomes Induce Cytokine Responses – Novel Mechanisms for Host-Microbe Interactions in Atopic Eczema

    PubMed Central

    Gehrmann, Ulf; Qazi, Khaleda Rahman; Johansson, Catharina; Hultenby, Kjell; Karlsson, Maria; Lundeberg, Lena

    2011-01-01

    Background Intercellular communication can occur via the release of membrane vesicles. Exosomes are nanovesicles released from the endosomal compartment of cells. Depending on their cell of origin and their cargo they can exert different immunoregulatory functions. Recently, fungi were found to produce extracellular vesicles that can influence host-microbe interactions. The yeast Malassezia sympodialis which belongs to our normal cutaneous microbial flora elicits specific IgE- and T-cell reactivity in approximately 50% of adult patients with atopic eczema (AE). Whether exosomes or other vesicles contribute to the inflammation has not yet been investigated. Objective To investigate if M. sympodialis can release nanovesicles and whether they or endogenous exosomes can activate PBMC from AE patients sensitized to M. sympodialis. Methods Extracellular nanovesicles isolated from M. sympodialis, co-cultures of M. sympodialis and dendritic cells, and from plasma of patients with AE and healthy controls (HC) were characterised using flow cytometry, sucrose gradient centrifugation, Western blot and electron microscopy. Their ability to stimulate IL-4 and TNF-alpha responses in autologous CD14, CD34 depleted PBMC was determined using ELISPOT and ELISA, respectively. Results We show for the first time that M. sympodialis releases extracellular vesicles carrying allergen. These vesicles can induce IL-4 and TNF-α responses with a significantly higher IL-4 production in patients compared to HC. Exosomes from dendritic cell and M. sympodialis co-cultures induced IL-4 and TNF-α responses in autologous CD14, CD34 depleted PBMC of AE patients and HC while plasma exosomes induced TNF-α but not IL-4 in undepleted PBMC. Conclusions Extracellular vesicles from M. sympodialis, dendritic cells and plasma can contribute to cytokine responses in CD14, CD34 depleted and undepleted PBMC of AE patients and HC. These novel observations have implications for understanding host-microbe interactions in the pathogenesis of AE. PMID:21799736

  5. CHEMOKINE RECEPTOR 7 (CCR7)-EXPRESSION AND IFNγ PRODUCTION DEFINE VACCINE-SPECIFIC CANINE T CELL SUBSETS

    PubMed Central

    Hartley, Ashley N.; Tarleton, Rick L.

    2015-01-01

    Canines suffer from and serve as strong translational animals models for many immunological disorders and infectious diseases. Routine vaccination has been a mainstay of protecting dogs through the stimulation of robust antibody responses and expansion of memory T cell populations. Commercially available reagents and described techniques are limited for identifying and characterizing canine T cell subsets and evaluating T cell-specific effector function. To define reagents for delineating naïve versus activated T cells and identify antigen-specific T cells, we tested anti-human and anti-bovine T-cell specific cell surface marker reagents for cross-reactivity with canine peripheral blood mononuclear cells (PBMCs. Both CD4+ and CD8+ T cells from healthy canine donors showed reactivity to CCL19-Ig, a CCR7 ligand, and coexpression with CD62L. An in vitro stimulation with concanavalin A validated downregulation of CCR7 and CD62L expression on stimulated healthy control PBMCs, consistent with an activated T cell phenotype. Anti-IFNγ antibodies identified antigen-specific IFNγ-producing CD4+ and CD8+ T cells upon in vitro vaccine antigen PBMC stimulation. PBMC isolation within 24 hours of sample collection allowed for efficient cell recovery and accurate T cell effector function characterization. These data provide a reagent and techniques platform via flow cytometry for identifying canine T cell subsets and characterizing circulating antigen-specific canine T cells for potential use in diagnostic and field settings. PMID:25758065

  6. Budesonide increases TLR4 and TLR2 expression in Treg lymphocytes of allergic asthmatics.

    PubMed

    Pace, Elisabetta; Di Sano, Caterina; Ferraro, Maria; Bruno, Andreina; Caputo, Valentina; Gallina, Salvatore; Gjomarkaj, Mark

    2015-06-01

    Reduced innate immunity responses as well as reduced T regulatory activities characterise bronchial asthma. In this study the effect of budesonide on the expression of TLR4 and TLR2 in T regulatory lymphocyte sub-population was assessed. TLR4 and TLR2 expression in total peripheral blood mononuclear cells (PBMC), in CD4+/CD25+ and in CD4+/CD25- was evaluated, by flow cytometric analysis, in mild intermittent asthmatics (n = 14) and in controls (n = 11). The in vitro effects of budesonide in modulating: TLR4 and TLR2 expression in controls and in asthmatics; IL-10 expression and cytokine release (IL-6 and TNF-α selected by a multiplex assay) in asthmatics were also explored. TLR4 and TLR2 were reduced in total PBMC from asthmatics in comparison to PBMC from controls. CD4+CD25+ cells expressed at higher extent TLR2 and TLR4 in comparison to CD4+CD25- cells. Budesonide was able to increase the expression of TLR4, TLR2 and IL-10 in CD4+/CD25 highly+ cells from asthmatics. TLR4 ligand, LPS induced Foxp3 expression. Budesonide was also able to reduce the release of IL-6 and TNF-α by PBMC of asthmatics. Budesonide potentiates the activity of Treg by increasing TLR4, TLR2 and IL-10 expression. This event is associated to the decreased release of IL-6 and TNF-α in PBMC treated with budesonide. These findings shed light on new mechanisms by which corticosteroids, drugs widely used for the clinical management of bronchial asthma, control T lymphocyte activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT

    PubMed Central

    Maecker, Holden T; Moon, James; Bhatia, Sonny; Ghanekar, Smita A; Maino, Vernon C; Payne, Janice K; Kuus-Reichel, Kristine; Chang, Jennie C; Summers, Amanda; Clay, Timothy M; Morse, Michael A; Lyerly, H Kim; DeLaRosa, Corazon; Ankerst, Donna P; Disis, Mary L

    2005-01-01

    Background Cryopreservation of PBMC and/or overnight shipping of samples are required for many clinical trials, despite their potentially adverse effects upon immune monitoring assays such as MHC-peptide tetramer staining, cytokine flow cytometry (CFC), and ELISPOT. In this study, we compared the performance of these assays on leukapheresed PBMC shipped overnight in medium versus cryopreserved PBMC from matched donors. Results Using CMV pp65 peptide pool stimulation or pp65 HLA-A2 tetramer staining, there was significant correlation between shipped and cryopreserved samples for each assay (p ≤ 0.001). The differences in response magnitude between cryopreserved and shipped PBMC specimens were not significant for most antigens and assays. There was significant correlation between CFC and ELISPOT assay using pp65 peptide pool stimulation, in both shipped and cryopreserved samples (p ≤ 0.001). Strong correlation was observed between CFC (using HLA-A2-restricted pp65 peptide stimulation) and tetramer staining (p < 0.001). Roughly similar sensitivity and specificity were observed between the three assays and between shipped and cryopreserved samples for each assay. Conclusion We conclude that all three assays show concordant results on shipped versus cryopreserved specimens, when using a peptide-based readout. The assays are also concordant with each other in pair wise comparisons using equivalent antigen systems. PMID:16026627

  8. Quality Assurance of Samples and Processes in the Spanish Renal Research Network (REDinREN) Biobank.

    PubMed

    Calleros-Basilio, Laura; Cortés, María Alicia; García-Jerez, Andrea; Luengo-Rodríguez, Alicia; Orozco-Agudo, Ana; Valdivielso, José Manuel; Rodríguez-Puyol, Diego; Rodríguez-Puyol, Manuel

    2016-12-01

    Biobanks are useful platforms to build bridges between basic, translational, and clinical research and clinical care. They are repositories of high-quality human biological samples ideal for evaluating their histological characteristics and also their genome, transcriptome, and proteome. The Spanish Renal Research Network Biobank contains more than 76,500 well-preserved frozen samples of a wide variety of kidney diseases, collected from 5450 patients seen by over 70 nephrology services throughout the Spanish territory. To determine and to report the results of the quality control of samples and processes conducted in our biobank, implemented in accordance with the requirements of the ISO 9001:2008 international standard. Two types of quality controls were performed: (1) systematic, that is, measurement of viable peripheral blood mononuclear cells (PBMCs) obtained and purity of nucleic acids and (2) ad-hoc, that is, viability of thawed PBMC, DNA extraction process reproducibility, and the integrity and functionality of nucleic acids, implemented on a routine basis. PBMC isolation by Ficoll yielded reproducible results and its cryopreserved viability was >90%. Acceptable A260/A280 ratios were obtained for the vast majority of the DNA (n = 2328) and RNA (n = 78) samples analyzed. DNA integrity was demonstrated by agarose gels and by β-globulin gene polymerase chain reaction (PCR) amplification of 1327 and 989 bp fragments. DNA of acceptable quality had at least three bands of β-globulin amplified obtained (n = 26/30). RNA integrity number (RIN) determinations obtained RIN numbers ≥7 (n = 87/96). The amplifiability of nucleic acids was confirmed by qPCR and RT-qPCR of β-actin and GAPDH genes. Long storage or delayed processing time did not affect the quality of the samples analyzed. The processes of DNA extraction also yielded reproducible results. These results clearly indicate that our PBMC, DNA, and RNA stored samples meet the required quality standards to be used for biomedical research, ensuring their long-term preservation.

  9. A cell-based systems biology assessment of human blood to monitor immune responses after influenza vaccination.

    PubMed

    Hoek, Kristen L; Samir, Parimal; Howard, Leigh M; Niu, Xinnan; Prasad, Nripesh; Galassie, Allison; Liu, Qi; Allos, Tara M; Floyd, Kyle A; Guo, Yan; Shyr, Yu; Levy, Shawn E; Joyce, Sebastian; Edwards, Kathryn M; Link, Andrew J

    2015-01-01

    Systems biology is an approach to comprehensively study complex interactions within a biological system. Most published systems vaccinology studies have utilized whole blood or peripheral blood mononuclear cells (PBMC) to monitor the immune response after vaccination. Because human blood is comprised of multiple hematopoietic cell types, the potential for masking responses of under-represented cell populations is increased when analyzing whole blood or PBMC. To investigate the contribution of individual cell types to the immune response after vaccination, we established a rapid and efficient method to purify human T and B cells, natural killer (NK) cells, myeloid dendritic cells (mDC), monocytes, and neutrophils from fresh venous blood. Purified cells were fractionated and processed in a single day. RNA-Seq and quantitative shotgun proteomics were performed to determine expression profiles for each cell type prior to and after inactivated seasonal influenza vaccination. Our results show that transcriptomic and proteomic profiles generated from purified immune cells differ significantly from PBMC. Differential expression analysis for each immune cell type also shows unique transcriptomic and proteomic expression profiles as well as changing biological networks at early time points after vaccination. This cell type-specific information provides a more comprehensive approach to monitor vaccine responses.

  10. Myelomonocytic THP-1 cells for in vitro testing of immunomodulatory properties of nanoparticles.

    PubMed

    Schroecksnadel, Sebastian; Jenny, Marcel; Fuchs, Dietmar

    2011-02-01

    The use of nanoparticles for new therapeutic and diagnostics options represents a new risk for individuals exposed to such compounds. The myelomonocytic cell line THP-1 could be a useful alternative to human peripheral blood mononuclear cells (PBMC) to test for effects of drugs and compounds. Stimulation degree of cells can be monitored by measurement of neopterin and/or the kynurenine to tryptophan ratio. The method is robust and reproducible in the range of 0.1-1.0 microg/ml of LPS. However, compared to the PBMC assay it will not reveal any effect on the T-cell interaction.

  11. PBMC telomerase activity, but not leukocyte telomere length, correlates with hippocampal volume in major depression

    PubMed Central

    Wolkowitz, Owen M.; Mellon, Synthia H.; Lindqvist, Daniel; Epel, Elissa S.; Blackburn, Elizabeth H.; Lin, Jue; Reus, Victor I.; Burke, Heather; Rosser, Rebecca; Mahan, Laura; Mackin, Scott; Yang, Tony; Weiner, Michael; Mueller, Susanne

    2015-01-01

    Accelerated cell aging, indexed in peripheral leukocytes by telomere length and in peripheral blood mononuclear cells (PBMCs) by telomerase activity, has been reported in several studies of major depressive disorder (MDD). However, the relevance of these peripheral measures for brain indices that are presumably more directly related to MDD pathophysiology is unknown. In this study, we explored the relationship between PBMC telomerase activity and leukocyte telomere length and magnetic resonance imaging-estimated hippocampal volume in un-medicated depressed individuals and healthy controls. We predicted that, to the extent peripheral and central telomerase activity are directly related, PBMC telomerase activity would be positively correlated with hippocampal volume, perhaps due to hippocampal telomerase-associated neurogenesis, neuroprotection or neurotrophic facilitation, and that this effect would be clearer in individuals with increased PBMC telomerase activity, as previously reported in un-medicated MDD. We did not have specific hypotheses regarding the relationship between leukocyte telomere length and hippocampal volume, due to conflicting reports in the published literature. We found, in 25 un-medicated MDD subjects, that PBMC telomerase activity was significantly positively correlated with hippocampal volume; this relationship was not observed in 18 healthy controls. Leukocyte telomere length was not significantly related to hippocampal volume in either group (19 unmedicated MDD subjects and 17 healthy controls). Although the nature of the relationship between peripheral telomerase activity and telomere length and the hippocampus is unclear, these preliminary data are consistent with the possibility that PBMC telomerase activity indexes, and may provide a novel window into, hippocampal neuroprotection and/or neurogenesis in MDD. PMID:25773002

  12. Production of nitric oxide by peripheral blood mononuclear cells from the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Walsh, Catherine J; Stuckey, Joyce E; Cox, Heather; Smith, Brett; Funke, Christina; Stott, Jeff; Colle, Clarence; Gaspard, Joseph; Manire, Charles A

    2007-08-15

    Florida manatees (Trichechus manatus latirostris) are exposed to many conditions in their habitat that may adversely impact health and impair immune function in this endangered species. In an effort to increase the current knowledge base regarding the manatee immune system, the production of an important reactive nitrogen intermediate, nitric oxide (NO), by manatee peripheral blood mononuclear cells (PBMC) was investigated. PBMC from healthy captive manatees were stimulated with LPS, IFN-gamma, or TNF-alpha, either alone or in various combinations, with NO production assessed after 24, 48, 72, and 96 h of culture. NO production in response to LPS stimulation was significantly greater after 48, 72, or 96 h of culture compared to NO production after 24h of culture. A specific inhibitor of inducible nitric oxide synthase (iNOS), L-NIL (L-N(6)-(1-iminoethyl)lysine), significantly decreased NO production by LPS-stimulated manatee PBMC. Manatee specific oligonucleotide primers for iNOS were designed to measure expression of relative amounts of mRNA in LPS-stimulated manatee PBMC from captive manatees. NO production by PBMC from manatees exposed to red tide toxins was analyzed, with significantly greater NO production by both unstimulated and LPS stimulated PBMC from red tide exposed compared with healthy captive or cold-stress manatees. Free-ranging manatees produced significantly lower amounts of nitric oxide compared to either captive or red tide rescued manatees. Results presented in this paper contribute to the current understanding of manatee immune function and represent the first report of nitric oxide production in the immune system of a marine mammal.

  13. Anti-fibrotic characteristics of Vγ9+ γδ T cells in systemic sclerosis.

    PubMed

    Markovits, Noa; Bendersky, Anna; Loebstein, Ronen; Brusel, Marina; Kessler, Efrat; Bank, Ilan

    2016-01-01

    γδ T cells of the Vγ9Vδ2 subtype secrete anti-fibrotic cytokines upon isopentenyl pyrophosphate (IPP) stimulation. In this study, we sought to compare IPP and Zoledronate, an up-regulator of IPP, effects on proliferation and cytokine secretion of Vγ9+ T cells from systemic sclerosis (SSc) patients and healthy controls (HCs). We also examined the effect of IPP-triggered peripheral blood mononuclear cells (PBMC) on fibroblast procolla- gen secretion. PBMC from SSc patients and HCs were stimulated by increasing concentrations of Zoledronate, with or without IPP, and Vγ9+ T cell percentages were calculated using FACScan analysis. Subsequently, PBMC were cultured with IPP or toxic shock syndrome toxin-1 (TSST-1), and contents of the anti-fibrotic cytokines tumour necrosis factor (TNF)-α and interferon (IFN)-γ were measured by ELISA kits. Finally, supernatants of IPP-triggered Vγ9+ T cells from SSc patients were added to fibroblast cultures, and relative intensities of procollagen α1 chains were determined by densinometry. Higher concentrations of Zoledronate were required for maximal proliferation of Vγ9+ T cells in 9 SSc patients compared to 9 HCs, irrespective of exogenous IPP. When compared to stimulation by TSST-1, a non-Vγ9+ selective reagent, secretion of the anti-fibrotic cytokines TNF-α and IFN-γ in response to IPP was relatively diminished in SSc but not in HCs. Reduction of procollagen secretion by fibroblasts cultured with supernatants of IPP-stimulated PBMC was observed only in some SSc patients. Activated Vγ9+ T cells could act as anti-fibrotic mediators in SSc, although decreased responsiveness to IPP may play a role in the pathological fibrosis of this disease.

  14. Effect of in vitro zinc supplementation on HSPs expression and Interleukin 10 production in heat treated peripheral blood mononuclear cells of transition Sahiwal and Karan Fries cows.

    PubMed

    Sheikh, Aasif Ahmad; Aggarwal, Anjali; Aarif, Ovais

    2016-02-01

    The changing climatic scenario with apprehended rise in global temperature is likely to affect the livestock adversely vis-à-vis production and reproduction. This has prompted more focus in addressing the unfavorable effects of thermal stress in livestock system. Presuming that the trace element zinc is indispensible for cellular antioxidant system and immune function, the present study was designed to investigate the effect of zinc treatment on heat stress alleviation and immune modulation in peripheral blood mononuclear cells (PBMC) of indigenous and crossbred transition cows. Twelve cows, six each of Sahiwal and Karan Fries (KF) in their second parity with confirmed pregnancy were selected for the experiment. The blood samples were collected at -21, 0 and +21 days in relation to expected date of calving. The experiment was carried out in vitro after isolating PBMC from whole blood. The 48h cultured PBMC were subjected to assorted levels of exposures viz. 37°C, 42°C to impose heat stress and 42°C+zinc to alleviate heat stress and modulate immunity. The PBMC viability was 86%, 69% and 78%, respectively. The mRNA expression of heat shock proteins (HSP 40, 70 and 90α) and Interleukin-10 (IL-10) production varied between the two breeds vis-à-vis days and levels of exposure. The mRNA expression of HSP40 and HSP70 was significantly (P<0.05) higher in Karan Fries than the Sahiwal cows. Both the breeds showed maximum expression of HSP on the day of parturition, more so in KF than Sahiwal. There was a significant (P<0.05) difference in the HSP mRNA expression at different levels of exposure. Zinc treatment to heat stressed PBMC caused a significant (P<0.05) down regulation of HSP. For immune status, anti-inflammatory cytokine, IL-10 in the culture supernatant was accessed. The IL-10 was significantly (P<0.05) higher in Karan Fries (168.18±14.09pg/ml) than the Sahiwal cows (147.24±11.82pg/ml). The IL-10 concentration was highest on the day of calving. Zinc treatment reduced the IL-10 concentration. From the study, it could be concluded that the zinc supplementation in heat stressed PBMC can ameliorate thermal stress and modulate immune response which can act as a model for reducing heat stress during the periparturient period in tropical livestock. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Characterization of surface interleukin-2 receptor expression on gated populations of peripheral blood mononuclear cells from manatees, Trichechus manatus latirostris.

    PubMed

    Sweat, J M; Johnson, C M; Marikar, Y; Gibbs, E P

    2005-12-15

    An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin.

  16. Khat (Catha edulis) alters the phenotype and anti-microbial activity of peripheral blood mononuclear cells.

    PubMed

    Murdoch, Craig; Aziz, Hesham Abdul; Fang, Hsin-Yu; Jezan, Hussun; Musaid, Raga; Muthana, Munitta

    2011-12-08

    The habit of khat chewing has been associated with increased risk of systemic and oral disease. Although research has been conducted on the affects of khat on oral epithelial cells, little is known about its influence on immune cells. This study examined the biological effects of khat on the phenotype and function of peripheral blood mononuclear cells (PBMCs). Khat-stimulated PBMCs were examined for signs of cytotoxicity, apoptosis and changes in cell surface receptor and cytokine expression. Khat-induced regulation of transcription factors and stress-related factors were examined, as was PBMC phagocytic activity against oral bacteria. Khat was cytotoxic to PBMC in a dose- and time-dependent manner and cell death was mediated by apoptosis. Khat-treated PBMC showed increased expression of co-stimulatory molecules (CD80, CD86 and MHC II) and pattern recognition receptors (TLR-2, TLR-4 and TREM-1) but secretion of inflammatory cytokines (TNFα, IL-6, CCL5, CXCL8) was inhibited. In contrast, khat induced an increase in the anti-inflammatory cytokine IL-10 as well as IL-2, IFN-γ, FasL and HSP70. These khat-induced alterations were accompanied by increased expression of transcription factors p38 MAPK and HIF-1α, whilst expression of NFκB p65 was inhibited. Although the ability of PBMC to phagocytose dextran and oral bacteria was inhibited, production of reactive oxygen species was increased. These data suggest that khat may severely influence the effectiveness of immune surveillance and anti-microbial capacity of PBMCs. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Effects of subtoxic concentrations of TiO{sub 2} and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson-Willman, Britta; Gehrmann, Ulf; Cansu, Zekiye

    Metal oxide nanoparticles are widely used in the paint and coating industry as well as in cosmetics, but the knowledge of their possible interactions with the immune system is very limited. Our aims were to investigate if commercially available TiO{sub 2} and ZnO nanoparticles may affect different human immune cells and their production of exosomes, nano-sized vesicles that have a role in cell to cell communication. We found that the TiO{sub 2} or ZnO nanoparticles at concentrations from 1 to 100 μg/mL did not affect the viability of primary human peripheral blood mononuclear cells (PBMC). In contrast, monocyte-derived dendritic cellsmore » (MDDC) reacted with a dose dependent increase in cell death and caspase activity to ZnO but not to TiO{sub 2} nanoparticles. Non-toxic exposure, 10 μg/mL, to TiO{sub 2} and ZnO nanoparticles did not significantly alter the phenotype of MDDC. Interestingly, ZnO but not TiO{sub 2} nanoparticles induced a down regulation of FcγRIII (CD16) expression on NK-cells in the PBMC population, suggesting that subtoxic concentrations of ZnO nanoparticles might have an effect on FcγR-mediated immune responses. The phenotype and size of exosomes produced by PBMC or MDDC exposed to the nanoparticles were similar to that of exosomes harvested from control cultures. TiO{sub 2} or ZnO nanoparticles could not be detected within or associated to exosomes as analyzed with TEM. We conclude that TiO{sub 2} and ZnO nanoparticles differently affect immune cells and that evaluations of nanoparticles should be performed even at subtoxic concentrations on different primary human immune cells when investigating potential effects on immune functions. -- Highlights: ► ZnO nanoparticles induce cell death of MDDC but not of PBMC. ► ZnO nanoparticles induce caspase activation and DNA fragmentation in MDDC. ► TiO{sub 2} nanoparticles are taken up by MDDC but have no effect on their phenotype. ► ZnO nanoparticles induce a significant reduction of CD16 expression on NK cells. ► ZnO and TiO{sub 2} nanoparticles have no effect on exosomes produced by MDDC or PBMC.« less

  18. Integration of Immune Cell Populations, mRNA-Seq, and CpG Methylation to Better Predict Humoral Immunity to Influenza Vaccination: Dependence of mRNA-Seq/CpG Methylation on Immune Cell Populations

    PubMed Central

    Zimmermann, Michael T.; Kennedy, Richard B.; Grill, Diane E.; Oberg, Ann L.; Goergen, Krista M.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Poland, Gregory A.

    2017-01-01

    The development of a humoral immune response to influenza vaccines occurs on a multisystems level. Due to the orchestration required for robust immune responses when multiple genes and their regulatory components across multiple cell types are involved, we examined an influenza vaccination cohort using multiple high-throughput technologies. In this study, we sought a more thorough understanding of how immune cell composition and gene expression relate to each other and contribute to interindividual variation in response to influenza vaccination. We first hypothesized that many of the differentially expressed (DE) genes observed after influenza vaccination result from changes in the composition of participants’ peripheral blood mononuclear cells (PBMCs), which were assessed using flow cytometry. We demonstrated that DE genes in our study are correlated with changes in PBMC composition. We gathered DE genes from 128 other publically available PBMC-based vaccine studies and identified that an average of 57% correlated with specific cell subset levels in our study (permutation used to control false discovery), suggesting that the associations we have identified are likely general features of PBMC-based transcriptomics. Second, we hypothesized that more robust models of vaccine response could be generated by accounting for the interplay between PBMC composition, gene expression, and gene regulation. We employed machine learning to generate predictive models of B-cell ELISPOT response outcomes and hemagglutination inhibition (HAI) antibody titers. The top HAI and B-cell ELISPOT model achieved an area under the receiver operating curve (AUC) of 0.64 and 0.79, respectively, with linear model coefficients of determination of 0.08 and 0.28. For the B-cell ELISPOT outcomes, CpG methylation had the greatest predictive ability, highlighting potentially novel regulatory features important for immune response. B-cell ELISOT models using only PBMC composition had lower performance (AUC = 0.67), but highlighted well-known mechanisms. Our analysis demonstrated that each of the three data sets (cell composition, mRNA-Seq, and DNA methylation) may provide distinct information for the prediction of humoral immune response outcomes. We believe that these findings are important for the interpretation of current omics-based studies and set the stage for a more thorough understanding of interindividual immune responses to influenza vaccination. PMID:28484452

  19. UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells

    PubMed Central

    Samudio, Ismael; Rezvani, Katayoun; Shaim, Hila; Hofs, Elyse; Ngom, Mor; Bu, Luke; Liu, Guoyu; Lee, Jason T. C.; Imren, Suzan; Lam, Vivian; Poon, Grace F. T.; Ghaedi, Maryam; Takei, Fumio; Humphries, Keith; Jia, William

    2016-01-01

    Herein we demonstrate that oncolytic herpes simplex virus-1 (HSV-1) potently activates human peripheral blood mononuclear cells (PBMCs) to lyse leukemic cell lines and primary acute myeloid leukemia samples, but not healthy allogeneic lymphocytes. Intriguingly, we found that UV light–inactivated HSV-1 (UV-HSV-1) is equally effective in promoting PBMC cytolysis of leukemic cells and is 1000- to 10 000-fold more potent at stimulating innate antileukemic responses than UV-inactivated cytomegalovirus, vesicular stomatitis virus, reovirus, or adenovirus. Mechanistically, UV-HSV-1 stimulates PBMC cytolysis of leukemic cells, partly via Toll-like receptor-2/protein kinase C/nuclear factor-κB signaling, and potently stimulates expression of CD69, degranulation, migration, and cytokine production in natural killer (NK) cells, suggesting that surface components of UV-HSV-1 directly activate NK cells. Importantly, UV-HSV-1 synergizes with interleukin-15 (IL-15) and IL-2 in inducing activation and cytolytic activity of NK cells. Additionally, UV-HSV-1 stimulates glycolysis and fatty acid oxidation–dependent oxygen consumption in NK cells, but only glycolysis is required for their enhanced antileukemic activity. Last, we demonstrate that T cell–depleted human PBMCs exposed to UV-HSV-1 provide a survival benefit in a murine xenograft model of human acute myeloid leukemia (AML). Taken together, our results support the preclinical development of UV-HSV-1 as an adjuvant, alone or in combination with IL-15, for allogeneic donor mononuclear cell infusions to treat AML. PMID:26941401

  20. Expression of CD30 mRNA, CD30L mRNA and a variant form of CD30 mRNA in restimulated peripheral blood mononuclear cells (PBMC) of patients with helminthic infections resembling a Th2 disease

    PubMed Central

    Kilwinski, J; Berger, T; Mpalaskas, J; Reuter, S; Flick, W; Kern, P

    1999-01-01

    It has been proposed that CD30, a member of the tumour necrosis factor (TNF) receptor superfamily, is preferentially up-regulated on Th2-type human T cells. In order to investigate a correlation between infection with Echinococcus multilocularis and CD30 expression, we analysed regulation of CD30 mRNA, a variant form of CD30 mRNA (CD30v) and CD30 ligand (CD30L) mRNA expression on PBMC from patients with alveolar echinococcosis (AE) using reverse transcriptase-polymerase chain reaction (RT-PCR). In PBMC of patients with AE as well as healthy donors, spontaneous expression of CD30L mRNA and the CD30v mRNA could be detected. However, the intact form of CD30 mRNA could be detected neither in freshly isolated PBMC of patients nor in PBMC of healthy individuals. Expression of CD30L mRNA and the variant form of CD30 mRNA was frequently detected at individual time points during 72 h of culture of PBMC stimulated with crude Echinococcus antigen. In contrast to CD30v or CD30L mRNA expression, induction of CD30 mRNA expression was detected only in three out of six (50%) healthy donors and in 10 out of 21 (48%) patients with alveolar echinococcosis after 72 h of incubation. As a control, mitogenic stimulation of PBMC of both healthy individuals and infected patients led to expression of intact CD30 mRNA within 24 h of culture. These data demonstrate the different expression of two different forms of CD30 mRNA in PBMC of human individuals. The specific induction of CD30 expression is correlated only in rare cases with the clinical status of patients with AE, indicating the lack of a general induction of CD30 mRNA in this Th2-type-dominated helminthic disease. The data provide further evidence that the CD30 receptor is not an exclusive marker for a Th2-type response. PMID:9933429

  1. HIV-1 DNA levels in peripheral blood mononuclear cells and cannabis use are associated with intermittent HIV shedding in semen of men who have sex with men on successful antiretroviral regimens.

    PubMed

    Ghosn, Jade; Leruez-Ville, Marianne; Blanche, Jérôme; Delobelle, Aurore; Beaudoux, Céline; Mascard, Laurence; Lecuyer, Hervé; Canestri, Ana; Landman, Roland; Zucman, David; Ponscarme, Diane; Rami, Agathe; Viard, Jean-Paul; Spire, Bruno; Rouzioux, Christine; Costagliola, Dominique; Suzan-Monti, Marie

    2014-06-01

    Few data exist on the efficacy of combined antiretroviral therapy (cART) in semen of human immunodeficiency virus type 1 (HIV-1) infected men who have sex with men (MSM) with sustained control of HIV replication in blood. HIV-1 infected MSM on successful cART for >6 months were enrolled. HIV-RNA was quantified in seminal plasma (spVL) and in blood plasma (bpVL) from 2 paired samples collected 4 weeks apart. Relationship between spVL and bpVL (measured by an ultrasensitive assay, LOQ 10 copies/mL), total peripheral blood mononuclear cells (PBMC)-associated HIV-DNA, sexually transmitted infections (STIs), and self-reported socio-behavioral characteristics was assessed using GEE logistic regression. In total, 157 patients were included. Median time with bpVL <50 copies/mL was 3.3 years. spVL was detectable in 23/304 samples (prevalence 7.6%). Median spVL was 145 cp/mL (100-1475). spVL was detectable on the first, on the second, and on both samples in 5, 14, and 2 men, respectively. In sum, 33 individuals (21%) had STIs (asymptomatic in 24/33). Residual bpVL was undetectable by ultrasensitive assay in 225/300 samples (75%). After multivariable adjustments, PBMC-associated HIV-DNA (OR 2.6[1.2; 6.0], for HIV-DNA > 2.5 log10 cp/10(6) PBMC, P = .02), and cannabis use during sexual intercourse (OR 2.8[1.2; 6.7], P = .02) were the only factors associated significantly with spVL. We show that HIV-RNA can be detected intermittently in semen of HIV-1 infected MSM despite successful cART. The size of blood HIV-1 reservoir predicted spVL detection. Our results indicated also that the possible effect of cannabis should be taken into account when developing prevention interventions targeted toward HIV-infected MSM on successful cART. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Antitumor and immunostimulatory activities of a genotype V recombinant attenuated veterinary Newcastle disease virus vaccine.

    PubMed

    Ortega-Rivera, Oscar Antonio; Quintanar, J Luis; Del Toro-Arreola, Susana; Alpuche-Solis, Ángel G; Esparza-Araiza, Mayra J; Salinas, Eva

    2018-01-01

    Antitumor conventional treatments including chemo/radiotherapy result in several side effects and non-specificity. Therapies including the use of oncolytic viruses, particularly the Newcastle disease virus (NDV), have emerged as an attractive alternative due to their capacity to kill cancer cells directly or through stimulation of the immune system. In the present study, a commercial vaccine composed of a recombinant attenuated NDV strain P05 (rNDV-P05) was assessed for antitumor and immunostimulatory activity. Firstly, hemagglutination activity was evaluated at different pH and temperature conditions. Then, cancer cell lines and peripheral blood mononuclear cells (PBMC) were co-cultured with or without rNDV-P05 and cytoplasmic nucleosomes were measured by enzyme-linked immunosorbent assay (ELISA) as an apoptosis indicator. Antitumor cytokines produced by PBMC in response to the virus were analyzed by ELISA and reverse transcription quantitative polymerase chain reaction. Characterization of rNDV-P05 indicates that the virus is slightly sensible to acid and basic pH, and stable at temperatures no greater than 42°C. The majority of cell lines developed apoptosis in co-culture with rNDV-P05 in a dose-time dependent manner. The highest level of HeLa, HCC1954 and HepG2 cell apoptosis was at 48 h/50 hemagglutination units (HU), and HL-60 was 24 h/50 HU. A549 cell line and PBMC did not show sensitivity to apoptosis by the virus. PBMC from healthy donors stimulated with the rNDV-P05 increased significantly the levels of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α and soluble TNF-related apoptosis-inducing ligand in culture supernatants, as well as their mRNA expression. These results demonstrate that the pro-apoptotic effect of rNDV-P05 and its magnitude is specific to particular tumor cell lines and is not induced on PBMC; and the virus stimulates the expression of several key antitumor cytokines. This study promotes the use of rNDV-P05 in an alternate application of different viral strains during virotherapy with NDV.

  3. Antitumor and immunostimulatory activities of a genotype V recombinant attenuated veterinary Newcastle disease virus vaccine

    PubMed Central

    Ortega-Rivera, Oscar Antonio; Quintanar, J Luis; Del Toro-Arreola, Susana; Alpuche-Solis, Ángel G; Esparza-Araiza, Mayra J; Salinas, Eva

    2018-01-01

    Antitumor conventional treatments including chemo/radiotherapy result in several side effects and non-specificity. Therapies including the use of oncolytic viruses, particularly the Newcastle disease virus (NDV), have emerged as an attractive alternative due to their capacity to kill cancer cells directly or through stimulation of the immune system. In the present study, a commercial vaccine composed of a recombinant attenuated NDV strain P05 (rNDV-P05) was assessed for antitumor and immunostimulatory activity. Firstly, hemagglutination activity was evaluated at different pH and temperature conditions. Then, cancer cell lines and peripheral blood mononuclear cells (PBMC) were co-cultured with or without rNDV-P05 and cytoplasmic nucleosomes were measured by enzyme-linked immunosorbent assay (ELISA) as an apoptosis indicator. Antitumor cytokines produced by PBMC in response to the virus were analyzed by ELISA and reverse transcription quantitative polymerase chain reaction. Characterization of rNDV-P05 indicates that the virus is slightly sensible to acid and basic pH, and stable at temperatures no greater than 42°C. The majority of cell lines developed apoptosis in co-culture with rNDV-P05 in a dose-time dependent manner. The highest level of HeLa, HCC1954 and HepG2 cell apoptosis was at 48 h/50 hemagglutination units (HU), and HL-60 was 24 h/50 HU. A549 cell line and PBMC did not show sensitivity to apoptosis by the virus. PBMC from healthy donors stimulated with the rNDV-P05 increased significantly the levels of interferon (IFN)-α, IFN-γ, tumor necrosis factor (TNF)-α and soluble TNF-related apoptosis-inducing ligand in culture supernatants, as well as their mRNA expression. These results demonstrate that the pro-apoptotic effect of rNDV-P05 and its magnitude is specific to particular tumor cell lines and is not induced on PBMC; and the virus stimulates the expression of several key antitumor cytokines. This study promotes the use of rNDV-P05 in an alternate application of different viral strains during virotherapy with NDV. PMID:29399179

  4. Proliferative responses to canine thyroglobulin of peripheral blood mononuclear cells from hypothyroid dogs.

    PubMed

    Tani, Hiroyuki; Nabetani, Tomoyo; Sasai, Kazumi; Baba, Eiichiroh

    2005-04-01

    The immune responses of hypothyroid dogs to canine thyroglobulin (cTg) were evaluated for the proliferative ability of peripheral blood mononuclear cells (PBMC). PBMC from three hypothyroid dogs with high titers of thyroglobulin autoantibody (TgAA) and 3 clinically normal dogs were cultured with 5, 10, or 20 microg/ml of cTg for 72 hr. The proliferative responses of the cells were determined by the level of incorporated BrdU. The numbers of cells expressing Thy-1, CD4, CD8 and IgG in the PBMC were counted by the immunofluorescence method. Proliferative responses to cTg were observed in the cells from hypothyroid dogs. The number of cells expressing IgG and CD8 in the hypothyroid dogs tended to be high compared with the clinically normal dogs. The CD4+ cells in cultures from hypothyroid dogs increased depending upon the amount of cTg. There was a significant (P<0.05) positive correlation between the number of CD4+ cells and the concentration of cTg in the cultures from hypothyroid dogs. These findings suggest a possible relationship between canine hypothyroidism and cellular immunity. Loss of self tolerance to thyroid antigens in CD4+ T cells may play an important role in the development of canine hypothyroidism.

  5. In vitro Catecholamine Exposure Produces Variable Effects on the B7 Costimulatory Pathway in Human Monocytic Cells

    NASA Technical Reports Server (NTRS)

    Salicru, A. N.; Crucian, B.; Sams, Clarence; Actor, J. K.; Marshall, G. D., Jr.

    2006-01-01

    Catecholamines have been associated with immunomodulation of the adaptive immune system towards a Th2 response in vitro. We therefore examined the role of in vitro epinephrine (EPI) and norepinephrine (NE) exposure on the B7 costimulatory expression of antigen presenting cells (APC) from human monocytic cell lines and human peripheral blood mononuclear cells (PBMC). THP1 monocytic cells and CD14+ cells from normal human PBMC were stimulated with lipopolysaccharide (LPS) and incubated with physiologic stress levels (10(exp -6) - 10(exp -8)M) of EPI or NE for 24 hours. Cells were subsequently stained with CD80 FITC, CD86 PE, and CD14 PC5 antibodies and analyzed by flow cytometry for changes in fluorescence and mean fluorescence intensity (MFI). Exposure of THP1 to EPI in vitro at concentrations of 10(exp -6), 10(exp -7) and 10(exp -8)M significantly decreased mean CD80 from 42 plus or minus 0.7% to 11 plus or minus 0.44%, 19.1 plus or minus 2.0%, and 30.7 plus or minus 2.1% expression, respectively (p less than 0.01). In addition, CD86 expression increased with EPI at 10(exp -6), 10(exp -7) and 10(exp -8) M from 9.2 plus or minus 0.52% to 41 plus or minus 3.8%, 26.4 plus or minus 1.9%, and 15.74 plus or minus 1.8% expression, respectively (p less than 0.01). Similar results for mean CD80 and CD86 percent expression were observed for CD14+ cells from PBMC with a sample size of N = 6 and for NE when substituted for EPI. The data show that in vitro exposure to catecholamines significantly decreases %CD86 expression and significantly increases %CD86 expression in THP1 cells and human CD14+ APC. Previous studies have suggested an association between increased CD86 expression and TH2 activity. Thus, these data suggest that immunomodulation by catecholamines results in part by the variable effects of the B7 costimulatory pathway in APC.

  6. An integrated workflow to assess technical and biological variability of cell population frequencies in human peripheral blood by flow cytometry

    PubMed Central

    Burel, Julie G.; Qian, Yu; Arlehamn, Cecilia Lindestam; Weiskopf, Daniela; Zapardiel-Gonzalo, Jose; Taplitz, Randy; Gilman, Robert H.; Saito, Mayuko; de Silva, Aruna D.; Vijayanand, Pandurangan; Scheuermann, Richard H.; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    In the context of large-scale human system immunology studies, controlling for technical and biological variability is crucial to ensure that experimental data support research conclusions. Here, we report on a universal workflow to evaluate both technical and biological variation in multiparameter flow cytometry, applied to the development of a 10-color panel to identify all major cell populations and T cell subsets in cryopreserved PBMC. Replicate runs from a control donation and comparison of different gating strategies assessed technical variability associated with each cell population and permitted the calculation of a quality control score. Applying our panel to a large collection of PBMC samples, we found that most cell populations showed low intra-individual variability over time. In contrast, certain subpopulations such as CD56 T cells and Temra CD4 T cells were associated with high inter-individual variability. Age but not gender had a significant effect on the frequency of several populations, with a drastic decrease in naïve T cells observed in older donors. Ethnicity also influenced a significant proportion of immune cell population frequencies, emphasizing the need to account for these co-variates in immune profiling studies. Finally, we exemplify the usefulness of our workflow by identifying a novel cell-subset signature of latent tuberculosis infection. Thus, our study provides a universal workflow to establish and evaluate any flow cytometry panel in systems immunology studies. PMID:28069807

  7. An Integrated Workflow To Assess Technical and Biological Variability of Cell Population Frequencies in Human Peripheral Blood by Flow Cytometry.

    PubMed

    Burel, Julie G; Qian, Yu; Lindestam Arlehamn, Cecilia; Weiskopf, Daniela; Zapardiel-Gonzalo, Jose; Taplitz, Randy; Gilman, Robert H; Saito, Mayuko; de Silva, Aruna D; Vijayanand, Pandurangan; Scheuermann, Richard H; Sette, Alessandro; Peters, Bjoern

    2017-02-15

    In the context of large-scale human system immunology studies, controlling for technical and biological variability is crucial to ensure that experimental data support research conclusions. In this study, we report on a universal workflow to evaluate both technical and biological variation in multiparameter flow cytometry, applied to the development of a 10-color panel to identify all major cell populations and T cell subsets in cryopreserved PBMC. Replicate runs from a control donation and comparison of different gating strategies assessed the technical variability associated with each cell population and permitted the calculation of a quality control score. Applying our panel to a large collection of PBMC samples, we found that most cell populations showed low intraindividual variability over time. In contrast, certain subpopulations such as CD56 T cells and Temra CD4 T cells were associated with high interindividual variability. Age but not gender had a significant effect on the frequency of several populations, with a drastic decrease in naive T cells observed in older donors. Ethnicity also influenced a significant proportion of immune cell population frequencies, emphasizing the need to account for these covariates in immune profiling studies. We also exemplify the usefulness of our workflow by identifying a novel cell-subset signature of latent tuberculosis infection. Thus, our study provides a universal workflow to establish and evaluate any flow cytometry panel in systems immunology studies. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. CD45-mediated signaling pathway is involved in Rhizoctonia bataticola lectin (RBL)-induced proliferation and Th1/Th2 cytokine secretion in human PBMC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pujari, Radha; Eligar, Sachin M.; Kumar, Natesh

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer RBL, a potent mitogenic and complex N-glycan specific lectin binds to CD45 on PBMC. Black-Right-Pointing-Pointer RBL triggers CD45-mediated signaling involved in activation of p38MAPK and STAT-5. Black-Right-Pointing-Pointer Inhibition of CD45 PTPase signaling blocks RBL-induced ZAP70 phosphorylation. Black-Right-Pointing-Pointer RBL-CD45 mediated signaling is crucial for RBL-induced immunodulatory activities. -- Abstract: We earlier reported the mitogenic and immunostimulatory activities of Rhizoctonia bataticola lectin (RBL), purified from phytopathogenic fungus R. bataticola in human PBMC. The lectin demonstrates specificity towards glycoproteins containing complex N-glycans. Since CD45-protein tyrosine phosphatase that abundantly expresses N-glycans is important in T-cell signaling, the study aimed to investigate themore » involvement of CD45 in the immunomodulatory activities of RBL. Flowcytometry and confocal microscopy studies revealed that RBL exhibited binding to PBMC and colocalized with CD45. The binding was comparable in cells expressing different CD45 isoforms-RA, -RB and -RO. CD45 blocking antibody reduced the binding and proliferation of PBMC induced by RBL. CD45-PTPase inhibitor dephostatin inhibited RBL-induced proliferation, expression of CD25 and pZAP-70. RBL-induced secretion of Th1/Th2 cytokines were significantly inhibited in presence of dephostatin. Also, dephostatin blocked phosphorylation of p38MAPK and STAT-5 that was crucial for the biological functions of RBL. The study demonstrates the involvement of CD45-mediated signaling in RBL-induced PBMC proliferation and Th1/Th2 cytokine secretion through activation of p38MAPK and STAT-5.« less

  9. Cytotoxic and genotoxic potential of geraniol in peripheral blood mononuclear cells and human hepatoma cell line (HepG2).

    PubMed

    Queiroz, T B; Santos, G F; Ventura, S C; Hiruma-Lima, C A; Gaivão, I O M; Maistro, E L

    2017-09-27

    Geraniol is an acyclic monoterpene alcohol present in the essential oil of many aromatic plants and is one of the most frequently used molecules by the flavor and fragrance industries. The literature also reports its therapeutic potential, highlighting itself especially as a likely molecule for the development of drugs against cancer. In view of these considerations, this study was designed to evaluate the cytotoxic and genotoxic potential of geraniol, in an in vitro protocol, using two types of human cells: one without the ability to metabolize (peripheral blood mononuclear cells - PBMC), and the other with this capability (human hepatoma cell line - HepG2) through the comet assay and the micronucleus test. Four concentrations (10, 25, 50, and 100 µg/mL) were selected for the genotoxic assessment for PBMC and three (1.25, 2.5, and 5 µg/mL) for HepG2 cells based on cytotoxicity tests (MTT assay). Results showed that geraniol did not present genotoxic or clastogenic/aneugenic effects on both cell types under the conditions studied. However, caution is advised in the use of this substance by humans, since a significant reduction in viability of HepG2 and a marked decrease in cell viability on normal PBMC were verified.

  10. Low cytotoxicity of anisotropic gold nanoparticles coated with lysine on peripheral blood mononuclear cells "in vitro".

    PubMed

    Avila-Alejo, Jorge O; González-Palomo, Ana K; Plascencia-Villa, Germán; José-Yacamán, Miguel; Navarro-Contreras, Hugo R; Pérez-Maldonado, Iván N

    2017-12-01

    The aim of this study was to evaluate the cytotoxic effects of anisotropic (non spherical morphologies) gold nanoparticles coated with the amino acid Lysine (Lys) on peripheral blood mononuclear cells (PBMC) "in vitro". Gold (Au) nanoparticles tested in this study were synthesized by a seed-mediated growth using Lys as a structure and shape directing agent. Cytotoxic effects were evaluated by cell viability (resazurin assay), reactive oxygen species (ROS) induction (2',7'-dichlorofluorescein diacetate assay), DNA damage (comet assay) and apoptosis/necrosis (AnnexinV/propidium iodide assay) after PBMC were exposed to increasing concentrations (10, 25, 50, 100, and 250μM) of AuNPs coated with Lys (AuNPs-Lys) at different exposure times (3, 6, 12, and 24h). The results demonstrated that AuNPs-Lys exhibited low cytotoxicity towards PBMC, (high cell viability), with low levels of ROS, DNA damage and apoptosis/necrosis detected after treatment. These data suggest that AuNPs-Lys, might be viable for biomedical application subject to further investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Quantifying CD4 receptor protein in two human CD4+ lymphocyte preparations for quantitative flow cytometry.

    PubMed

    Wang, Meiyao; Misakian, Martin; He, Hua-Jun; Bajcsy, Peter; Abbasi, Fatima; Davis, Jeffrey M; Cole, Kenneth D; Turko, Illarion V; Wang, Lili

    2014-01-01

    In our previous study that characterized different human CD4+ lymphocyte preparations, it was found that both commercially available cryopreserved peripheral blood mononuclear cells (PBMC) and a commercially available lyophilized PBMC (Cyto-Trol™) preparation fulfilled a set of criteria for serving as biological calibrators for quantitative flow cytometry. However, the biomarker CD4 protein expression level measured for T helper cells from Cyto-Trol was about 16% lower than those for cryopreserved PBMC and fresh whole blood using flow cytometry and mass cytometry. A primary reason was hypothesized to be due to steric interference in anti- CD4 antibody binding to the smaller sized lyophilized control cells. Targeted multiple reaction monitoring (MRM) mass spectrometry (MS) is used to quantify the copy number of CD4 receptor protein per CD4+ lymphocyte. Scanning electron microscopy (SEM) is utilized to assist searching the underlying reasons for the observed difference in CD4 receptor copy number per cell determined by MRM MS and CD4 expression measured previously by flow cytometry. The copy number of CD4 receptor proteins on the surface of the CD4+ lymphocyte in cryopreserved PBMCs and in lyophilized control cells is determined to be (1.45 ± 0.09) × 10(5) and (0.85 ± 0.11) × 10(5), respectively, averaged over four signature peptides using MRM MS. In comparison with cryopreserved PBMCs, there are more variations in the CD4 copy number in lyophilized control cells determined based on each signature peptide. SEM images of CD4+ lymphocytes from lyophilized control cells are very different when compared to the CD4+ T cells from whole blood and cryopreserved PBMC. Because of the lyophilization process applied to Cyto-Trol control cells, a lower CD4 density value, defined as the copy number of CD4 receptors per CD4+ lymphocyte, averaged over three different production lots is most likely explained by the loss of the CD4 receptors on damaged and/or broken microvilli where CD4 receptors reside. Steric hindrance of antibody binding and the association of CD4 receptors with other biomolecules likely contribute significantly to the nearly 50% lower CD4 receptor density value for cryopreserved PBMC determined from flow cytometry compared to the value obtained from MRM MS.

  12. An IFNG SNP with an estrogen-like response element selectively enhances promoter expression in peripheral but not lamina propria T cells.

    PubMed

    Gonsky, R; Deem, R L; Bream, J H; Young, H A; Targan, S R

    2006-07-01

    This study examines mucosa-specific regulatory pathways involved in modulation of interferon-gamma (IFN-gamma) in lamina propria T cells. Previous studies identified mucosa-specific CD2 cis-elements within the -204 to -108 bp IFNG promoter. Within this region, a single-site nucleotide polymorphism, -179G/T, imparts tumor necrosis factor-alpha stimulation of IFNG in peripheral blood lymphocytes, and is linked with accelerated AIDS progression. We discovered a putative estrogen response element (ERE) introduced by the -179T, which displays selective activation in peripheral blood mononuclear cells (PBMC) vs lamina propria mononuclear cells (LPMC). Transfection of PBMC with constructs containing the -179G or -179T site revealed CD2-mediated enhancement of the -179T compared to -179G allele, although, in LPMC, a similar level of expression was detected. Electrophoretic mobility shift assay (EMSA) analysis demonstrated CD2-mediated nucleoprotein binding to the -179T but not the -179G in PBMC. In LPMC, binding is constitutive to both -179G and -179T regions. Sequence and EMSA analysis suggests that the -179T allele creates an ERE-like binding site capable of binding recombinant estrogen receptor. Estrogen response element transactivation is enhanced by CD2 signaling, but inhibited by estrogen in PBMC but not in LPMC, although expression of estrogen receptor was similar. This is the first report to describe a potential molecular mechanism responsible for selectively controlling IFN-gamma production in LPMC.

  13. Feline immunodeficiency virus envelope glycoprotein mediates apoptosis in activated PBMC by a mechanism dependent on gp41 function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garg, Himanshu; Joshi, Anjali; Tompkins, Wayne A.

    2004-12-20

    Feline Immunodeficiency Virus (FIV) is a lentivirus that causes immunodeficiency in cats, which parallels HIV-1-induced immunodeficiency in humans. It has been established that HIV envelope (Env) glycoprotein mediates T cell loss via a mechanism that requires CXCR4 binding. The Env glycoprotein of FIV, similar to HIV, requires CXCR4 binding for viral entry, as well as inducing membrane fusion leading to syncytia formation. However, the role of FIV Env in T cell loss and the molecular mechanisms governing this process have not been elucidated. We studied the role of Env glycoprotein in FIV-mediated T cell apoptosis in an in vitro model.more » Our studies demonstrate that membrane-expressed FIV Env induces apoptosis in activated feline peripheral blood mononuclear cells (PBMC) by a mechanism that requires CXCR4 binding, as the process was inhibited by CXCR4 antagonist AMD3100 in a dose-dependent manner. Interestingly, studies regarding the role of CD134, the recently identified primary receptor of FIV, suggest that binding to CD134 may not be important for induction of apoptosis in PBMC. However, inhibiting Env-mediated fusion post CXCR4 binding by FIV gp41-specific fusion inhibitor also inhibited apoptosis. Under similar conditions, a fusion-defective gp41 mutant was unable to induce apoptosis in activated PBMC. Our findings are the first report suggesting the potential of FIV Env to mediate apoptosis in bystander cells by a process that is dependent on gp41 function.« less

  14. Standardized peripheral blood mononuclear cell culture assay for determination of drug susceptibilities of clinical human immunodeficiency virus type 1 isolates. The RV-43 Study Group, the AIDS Clinical Trials Group Virology Committee Resistance Working Group.

    PubMed Central

    Japour, A J; Mayers, D L; Johnson, V A; Kuritzkes, D R; Beckett, L A; Arduino, J M; Lane, J; Black, R J; Reichelderfer, P S; D'Aquila, R T

    1993-01-01

    A standardized antiviral drug susceptibility assay for clinical human immunodeficiency virus type 1 (HIV-1) isolates has been developed for use in clinical trials. The protocol is a two-step procedure that first involves cocultivation of patient infected peripheral blood mononuclear cells (PBMC) with seronegative phytohemagglutinin-stimulated donor PBMC to obtain an HIV-1 stock. The virus stock is titrated for viral infectivity (50% tissue culture infective dose) by use of serial fourfold virus dilutions in donor PBMC. A standardized inoculum of 1,000 50% tissue culture infective doses per 10(6) cells is used in the second step of the procedure to acutely infect seronegative donor PBMC in a 7-day microtiter plate assay with triplicate wells containing zidovudine (ZDV) concentrations ranging from 0 to 5.0 microM. The ZDV 50% inhibitory concentrations (IC50) for reference ZDV-susceptible and ZDV-resistant HIV-1 isolates ranged from 0.002 to 0.113 microM and from 0.15 to > 5.0 microM, respectively. Use of this consensus protocol reduced interlaboratory variability for ZDV IC50 determinations with reference HIV-1 isolates. Among eight laboratories, the coefficient of variation ranged from 0.85 to 1.25 with different PBMC protocols and was reduced to 0.39 to 0.98 with the standardized assay. Among the clinical HIV-1 isolates assayed by the standardized drug susceptibility assay, the median ZDV IC50 increased gradually with more ZDV therapy. This protocol provides an efficient and reproducible means to assess the in vitro susceptibility to antiretroviral agents of virtually all clinical HIV-1 isolates. PMID:8517697

  15. p38 mitogen-activated protein kinase mediates IL-8 induction by the ribotoxin deoxynivalenol in human monocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Zahidul; Center for Integrative Toxicology, Michigan State University, 234 G.M. Trout Building, Michigan State University, East Lansing, MI 48824-1224; Gray, Jennifer S.

    2006-06-15

    The effects of the ribotoxic trichothecene deoxynivalenol (DON) on mitogen-activated protein kinase (MAPK)-mediated IL-8 expression were investigated in cloned human monocytes and peripheral blood mononuclear cells (PBMC). DON (250 to 1000 ng/ml) induced both IL-8 mRNA and IL-8 heteronuclear RNA (hnRNA), an indicator of IL-8 transcription, in the human U937 monocytic cell line in a concentration-dependent manner. Expression of IL-8 hnRNA, mRNA and protein correlated with p38 phosphorylation and was completely abrogated by the p38 MAPK inhibitor SB203580. DON at 500 ng/ml similarly induced p38-dependent IL-8 protein and mRNA expression in PBMC cultures from healthy volunteers. Significantly increased IL-6 andmore » IL-1{beta} intracellular protein and mRNA expression was also observed in PBMC treated with DON (500 ng/ml) which were also partially p38-dependent. Flow cytometry of PBMC revealed that DON-induced p38 phosphorylation varied among individuals relative to both threshold toxin concentrations (25-100 ng/ml) and relative increases in percentages of phospho-p38{sup +} cells. DON-induced p38 activation occurred exclusively in the CD14{sup +} monocyte population. DON was devoid of agonist activity for human Toll-like receptors 2, 3, 4, 5, 7, 8 and 9. However, two other ribotoxins, emetine and anisomycin, induced p38 phosphorylation in PBMC similarly to DON. Taken together, these data suggest that (1) p38 activation was required for induction of IL-8 and proinflammatory gene expression in the monocyte and (2) DON induced p38 activation in human monocytes via the ribotoxic stress response.« less

  16. Cord blood versus age 5 mononuclear cell proliferation on IgE and asthma

    PubMed Central

    2010-01-01

    Background Fetal immune responses following exposure of mothers to allergens during pregnancy may influence the subsequent risk of childhood asthma. However, the association of allergen-induced cord blood mononuclear cell (CBMC) proliferation and cytokine production with later allergic immune responses and asthma has been controversial. Our objective was to compare indoor allergen-induced CBMC with age 5 peripheral blood mononuclear cell (PBMC) proliferation and determine which may be associated with age 5 allergic immune responses and asthma in an inner city cohort. Methods As part of an ongoing cohort study of the Columbia Center for Children's Environmental Health (CCCEH), CBMCs and age 5 PBMCs were cultured with cockroach, mouse, and dust mite protein extracts. CBMC proliferation and cytokine (IL-5 and IFN-γ) responses, and age 5 PBMC proliferation responses, were compared to anti-cockroach, anti-mouse, and anti-dust mite IgE levels, wheeze, cough, eczema and asthma. Results Correlations between CBMC and age 5 PBMC proliferation in response to cockroach, mouse, and dust mite antigens were nonsignificant. Cockroach-, mouse-, and dust mite-induced CBMC proliferation and cytokine responses were not associated with allergen-specific IgE at ages 2, 3, and 5, or with asthma and eczema at age 5. However, after adjusting for potential confounders, age 5 cockroach-induced PBMC proliferation was associated with anti-cockroach IgE, total IgE, and asthma (p < 0.05). Conclusion In contrast to allergen-induced CBMC proliferation, age 5 cockroach-induced PBMC proliferation was associated with age 5 specific and total IgE, and asthma, in an inner-city cohort where cockroach allergens are prevalent and exposure can be high. PMID:20684781

  17. Accelerating population balance-Monte Carlo simulation for coagulation dynamics from the Markov jump model, stochastic algorithm and GPU parallel computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zuwei; Zhao, Haibo, E-mail: klinsmannzhb@163.com; Zheng, Chuguang

    2015-01-15

    This paper proposes a comprehensive framework for accelerating population balance-Monte Carlo (PBMC) simulation of particle coagulation dynamics. By combining Markov jump model, weighted majorant kernel and GPU (graphics processing unit) parallel computing, a significant gain in computational efficiency is achieved. The Markov jump model constructs a coagulation-rule matrix of differentially-weighted simulation particles, so as to capture the time evolution of particle size distribution with low statistical noise over the full size range and as far as possible to reduce the number of time loopings. Here three coagulation rules are highlighted and it is found that constructing appropriate coagulation rule providesmore » a route to attain the compromise between accuracy and cost of PBMC methods. Further, in order to avoid double looping over all simulation particles when considering the two-particle events (typically, particle coagulation), the weighted majorant kernel is introduced to estimate the maximum coagulation rates being used for acceptance–rejection processes by single-looping over all particles, and meanwhile the mean time-step of coagulation event is estimated by summing the coagulation kernels of rejected and accepted particle pairs. The computational load of these fast differentially-weighted PBMC simulations (based on the Markov jump model) is reduced greatly to be proportional to the number of simulation particles in a zero-dimensional system (single cell). Finally, for a spatially inhomogeneous multi-dimensional (multi-cell) simulation, the proposed fast PBMC is performed in each cell, and multiple cells are parallel processed by multi-cores on a GPU that can implement the massively threaded data-parallel tasks to obtain remarkable speedup ratio (comparing with CPU computation, the speedup ratio of GPU parallel computing is as high as 200 in a case of 100 cells with 10 000 simulation particles per cell). These accelerating approaches of PBMC are demonstrated in a physically realistic Brownian coagulation case. The computational accuracy is validated with benchmark solution of discrete-sectional method. The simulation results show that the comprehensive approach can attain very favorable improvement in cost without sacrificing computational accuracy.« less

  18. Occult HCV Infection (OCI) Diagnosis in Cirrhotic and Non-cirrhotic Naïve Patients by Intra-PBMC Nested Viral RNA PCR.

    PubMed

    Abd Alla, Mohamed Darwish Ahmed; Elibiary, Saleh Ahmed; Wu, George Y; El-Awady, Mostafa Kamel

    2017-12-28

    Background and Aims: Occult HCV infections (OCIs) include IgG antibody seronegative cryptogenic (COCIs), as well as seropositive secondary naïve (SNOCIs) and experienced (SEOCIs) cases. We used peripheral-blood-mononuclear-cell (PBMC)-PCR to evaluate COCIs and SNOCIs prevalence, serum HCV spontaneous disappearance (SCSD) in naïve cirrhotics and non-cirrhotics, intra-PBMC HCV-RNA strands in relation to cirrhosis density in naïve non-viremia cases, and HCV-RNA seroconversion after 1 year of solitary naïve intra-PBMC infection. Methods: The anti-HCV IgG antibody-positive naïve-patients ( n = 785) were classified into viremic ( n = 673) and non-viremic [ n = 112, including non-cirrhotics ( n = 55) and cirrhotics ( n = 57)], and 62 controls without evidence of HCV-infection. Controls and post-HCV non-viremia cases ( n = 62+112 = 174) were submitted to hepatic Fibroscan-Elastography evaluation. All subjects ( n = 847) were screened for intra-PBMC HCV-RNA sense and antisense strands by nested-PCR. Results: Naïve-OCI cases (4.84%) that were diagnosed by PBMC-PCR significantly raised the total numbers of HCV-infection to 714 ( p = 0.01). The percent positivity of SNOCIs (34.82%) was significantly higher than for asymptomatic-COCIs (3.125%, p = 0.0001). Comparing PBMC-PCR with single-step-reverse-transcription (SRT)-PCR for identification of SCSD in naïve IgG antibody-positive non-viremia patients ( n = 112) revealed a decline in SCSD prevalence by PBMC-PCR (from 14.27% to 9.3%), regardless of presence of hepatic cirrhosis ( p = 0.03). SCSD was found to be higher by PBMC-PCR in non-cirrhotics compared to cirrhotics ( p = 0.0001), with an insignificant difference when using SRT-PCR ( p = 0.45). Intra-PBMC HCV-RNA infection was significantly more frequent in cirrhotics compared to both non-cirrhotics and controls ( p < 0.0005). An increased hepatic fibrosis density was recognized in intra-PBMC HCV-RNA infection with sense ( p = 0.0001) or antisense strand ( p = 0.003). HCV-RNA seroconversion was associated with intra-PBMC infection when both sense and antisense strands were detected ( p = 0.047). Conclusions: Intracellular HCV-RNA evaluation is crucial for diagnosing OCIs and addressing relapse probability.

  19. Evaluation of gene expression levels for cytokines in ocular toxoplasmosis.

    PubMed

    Maia, M M; Meira-Strejevitch, C S; Pereira-Chioccola, V L; de Hippólito, D D C; Silva, V O; Brandão de Mattos, C C; Frederico, F B; Siqueira, R C; de Mattos, L C

    2017-10-01

    This study evaluated levels for mRNA expression of 7 cytokines in ocular toxoplasmosis. Peripheral blood mononuclear cells (PBMC) of patients with ocular toxoplasmosis (OT Group, n = 23) and chronic toxoplasmosis individuals (CHR Group, n = 9) were isolated and stimulated in vitro with T. gondii antigen. Negative controls (NC) were constituted of 7 PBMC samples from individuals seronegative for toxoplasmosis. mRNA expression for cytokines was determined by qPCR. Results showed a significant increase in mRNA levels from antigen stimulated PBMCs derived from OT Group for expressing IL-6 (at P < .005 and P < .0005 for CHR and NC groups, respectively), IL-10 (at P < .0005 and P < .005 for CHR and NC groups, respectively) and TGF-β (at P < .005) for NC group. mRNA levels for TNF-α and IL-12 were also upregulated in patients with OT compared to CHR and NC individuals, although without statistical significance. Additionally, mRNA levels for IL-27 and IFN-γ in PBMC of patients with OT were upregulated in comparison with NC individuals. Differences between OT and NC groups were statistically significant at P < .05 and P < .0005, respectively. © 2017 John Wiley & Sons Ltd.

  20. Epstein-Barr virus DNA is detected in peripheral blood mononuclear cells of EBV-seronegative infants with infectious mononucleosis-like symptoms.

    PubMed

    Ikuta, Kazufumi; Saiga, Kyoko; Deguchi, Masanori; Sairenji, Takeshi

    2003-01-01

    We demonstrated Epstein-Barr virus (EBV) DNA in peripheral blood mononuclear cells (PBMCs) from infants with infectious mononucleosis- (IM) like symptoms. Thirteen of the 17 patients did not have EBV antibodies; however, EBV DNA was detected in 8 PBMC from the 13 seronegative patients by PCR. The 4 patients were retested in 6-12 months later. Three patients were still seronegative; however EBV DNA wasnot detected. One patient seroconverted and EBV DNA could still be detected. The transcript of EBNA1 was detected in one patient, but neither EBNA2 nor LMP2A were detected in all PBMC from the 4 tested patients. Type 1 EBV DNA was detected in 5 PBMC of 7 tested patients, and type 2 EBV DNA was detected in type 1 positive PBMC of one patient as well. The IL-1 beta polymorphism that is reported to be one of the immunological factors of EBV seronegativity revealed no difference in IM-like patients. These results indicated that EBV infection occurs in EBV-seronegative IM-like infants; however, the modes of infection are clearly different from IM.

  1. Changes in metabolite, energy metabolism related enzyme activities and peripheral blood mononuclear cell (PBMC) populations in beef heifers with two differing liveweight change profiles in New Zealand.

    PubMed

    Mori, A; Kenyon, P R; Mori, N; Yamamoto, I; Tanaka, Y; Suzuki, N; Tazaki, H; Ozawa, T; Hayashi, T; Hickson, R E; Morris, S T; Blair, H; Arai, T

    2008-02-01

    Metabolite and immunoreactive insulin (IRI) concentrations, energy metabolism related enzymes activities and peripheral blood mononuclear cell (PBMC) populations were measured in blood of pregnant Angus heifers with differing liveweight change profiles (gaining or losing), in New Zealand to investigate the meanings of those parameters in the restricted feeding beef heifers. Beef heifers losing liveweight (-412 g/day) showed significantly lower concentrations of plasma IRI, and higher concentrations of plasma free fatty acid (FFA) than heifers gaining liveweight (483 g/day). The cytosolic and mitochondrial malate dehydrogenase (MDH) activities and MDH/lactate dehydrogenase (M/L) ratio in leukocytes of the liveweight losing heifers were significantly higher than those the liveweight gaining heifers. Percentages of cluster of differentiation (CD) 3 positive cells and natural killer (NK) cells in PBMC decreased significantly in the liveweight losing heifers compared to those in the liveweight gaining heifers. Plasma IRI and FFA concentrations, leukocyte cytosolic and mitochondrial MDH activities and CD3 positive and NK cell populations may be useful markers to evaluate metabolic conditions and immunity in the restricted feeding beef heifers.

  2. Modulation of the proteome of peripheral blood mononuclear cells from HIV-1 infected patients by drugs of abuse

    PubMed Central

    Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikunar; Nair, Bindukumar; Sykes, Donald E.; Agosto-Mujica, Arnadri; Hsiao, Chiu Bin; Schwartz, Stanley A.

    2010-01-01

    We used proteomic analyses to assess how drug abuse modulates immunologic responses to infections with the human immunodeficiency virus type 1 (HIV-1). Two dimensional (2D) difference gel electrophoresis was utilized to determine changes in the proteome of peripheral blood mononuclear cells (PBMC) isolated from HIV-1 positive donors that occurred after treatment with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins. We further isolated specific subpopulations of PBMC to determine which subpopulations were selectively affected by treatment with drugs of abuse. Monocytes, B cells and T cells were positively or negatively selected from PBMC isolated from HIV-1 positive donors. Our results demonstrate that cocaine and methamphetamine modulate gene expression primarily in monocytes and T cells, the primary targets of HIV-1 infection. Proteomic data were validated with quantitative, real-time PCR. These studies elucidate the molecular mechanisms underlying the effects of drugs of abuse on HIV-1 infections. Several functionally relevant classes of proteins were identified as potential mediators of HIV-1 pathogenesis and disease progression associated with drug abuse. PMID:19543960

  3. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines.

    PubMed

    Edvardsen, Kine; Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S; Bratland, Eirik

    2015-10-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10.

  4. Growth and activation of natural killer cells ex vivo from children with neuroblastoma for adoptive cell therapy.

    PubMed

    Liu, Yin; Wu, Hong-Wei; Sheard, Michael A; Sposto, Richard; Somanchi, Srinivas S; Cooper, Laurence J N; Lee, Dean A; Seeger, Robert C

    2013-04-15

    Adoptive transfer of natural killer (NK) cells combined with tumor-specific monoclonal antibodies (mAb) has therapeutic potential for malignancies. We determined if large numbers of activated NK (aNK) cells can be grown ex vivo from peripheral blood mononuclear cells (PBMC) of children with high-risk neuroblastoma using artificial antigen-presenting cells (aAPC). Irradiated K562-derived Clone 9.mbIL21 aAPC were cocultured with PBMC, and propagated NK cells were characterized with flow cytometry, cytotoxicity assays, Luminex multicytokine assays, and a nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of disseminated neuroblastoma. Coculturing patient PBMC with aAPC for 14 days induced 2,363- ± 443-fold expansion of CD56(+)CD3(-)CD14(-) NK cells with 83% ± 3% purity (n = 10). Results were similar to PBMC from normal donors (n = 5). Expression of DNAM-1, NKG2D, FcγRIII/CD16, and CD56 increased 6- ± 3-, 10- ± 2-, 21- ± 20-, and 18- ± 3-fold, respectively, on day 14 compared with day 0, showing activation of NK cells. In vitro, aNK cells were highly cytotoxic against neuroblastoma cell lines and killing was enhanced with GD2-specific mAb ch14.18. When mediating cytotoxicity with ch14.18, release of TNF-α, granulocyte macrophage colony-stimulating factor, IFN-γ, sCD40L, CCL2/MCP-1, CXCL9/MIG, and CXCL11/I-TAC by aNK cells increased 4-, 5-, 6-, 15-, 265-, 917-, and 363-fold (151-9,121 pg/mL), respectively, compared with aNK cells alone. Survival of NOD/SCID mice bearing disseminated neuroblastoma improved when treated with thawed and immediately intravenously infused cryopreserved aNK cells compared with untreated mice and was further improved when ch14.18 was added. Propagation of large numbers of aNK cells that maintain potent antineuroblastoma activities when cryopreserved supports clinical testing of adoptive cell therapy with ch14.18.

  5. Mitochondrial Oxidative Phosphorylation Protein Levels in Peripheral Blood Mononuclear Cells Correlate with Levels in Subcutaneous Adipose Tissue within Samples Differing by HIV and Lipoatrophy Status

    PubMed Central

    Gerschenson, Mariana; Chow, Dominic; Libutti, Daniel E.; Willis, John H.; Murray, James; Capaldi, Roderick A.; Marusich, Michael

    2008-01-01

    Abstract Depletion of mitochondrial DNA (mtDNA) and mtDNA-encoded respiratory chain proteins in subcutaneous (SC) fat from patients with HIV lipoatrophy have clearly demonstrated the role of mitochondrial dysfunction in this syndrome. Research in HIV lipoatrophy, however, has been severely hampered by the lack of a suitable surrogate marker in blood or other easily obtained clinical specimens as fat biopsies are invasive and mtDNA levels in peripheral blood mononuclear cells (PBMC) do not consistently correlate with the disease process. We used a simple, rapid, quantitative 2-site dipstick immunoassay to measure OXPHOS enzymes Complex I (CI) and Complex IV (CIV), and rtPCR to measure mtDNA in 26 matched SC fat and PBMC specimens previously banked from individuals on potent antiretroviral (ARV) therapy with HIV lipoatrophy, on similar ARV therapy without lipoatrophy, and in HIV seronegative controls. Significant correlations were found between the respective PBMC and fat levels for both CI (r = 0.442, p = 0.024) and for CIV (r = 0.507, p = 0.008). Both CI and CIV protein levels were also significantly reduced in both PBMCs and fat in lipoatrophic subjects compared to HIV seronegative controls (p ≤ 0.05), while a comparative reduction in mtDNA levels in lipoatrophic subjects was observed only in fat. We conclude that CI and CIV levels in PBMCs correlate to their respective levels in fat and may have utility as surrogate markers of mitochondrial dysfunction in lipoatrophy. PMID:18844460

  6. Diallyl Polysulfides from Allium sativum as Immunomodulators, Hepatoprotectors, and Antimycobacterial Agents.

    PubMed

    Oosthuizen, Carel; Arbach, Miriam; Meyer, Debra; Hamilton, Chris; Lall, Namrita

    2017-07-01

    Mycobacterium tuberculosis remains one of the world's deadliest killers, with an annual death rate of ∼1.5 million. The medicinal effects of garlic have been well documented, and natural products have been shown to have antimycobacterial activity. The current study evaluated the efficacy of six Allium sativum L. polysulfide mixtures as antimycobacterial agents together with their cytotoxic, immunomodulatory, and hepatoprotective activities. The microtitre PrestoBlue assay was used to determine the minimum inhibitory concentrations (MIC). Cytotoxicity was evaluated by using peripheral blood mononuclear cells (PBMC). Excreted cytokine levels were determined by utilizing an enzyme-linked immunosorbent assay (ELISA), by exposing isolated PBMCs to varying concentrations of polysulfide mixtures. Human C3A liver cells were utilized in the hepatoprotective study, to assess the protective effect against the toxicity induced by acetaminophen. Samples with higher amounts of diallyl trisulfide (Sample G4) showed the highest antimycobacterial activity, exhibiting an MIC of 2.5 μg/mL against M. tuberculosis H37Rv. Five samples showed moderate toxicity in PBMC, with G1 showing no toxicity. The selective index of G4 was the highest, with a selectivity index close to one. Two samples, G3 and G6 containing higher amounts of diallyl tetrasulfide and lower amounts of diallyl trisulfide, showed >50% hepatoprotection. This is comparable to a hepatoprotective agent, Silymarin, which showed a hepatoprotective effect of 30% at the tested concentration. Diallyl tetrasulfide showed significant antimycobacterial activity. A combination of higher diallyl tetrasulfide and lower diallyl trisulfide was indicative of hepatoprotective activity.

  7. Impaired plasmacytoid dendritic cell (PDC)-NK cell activity in viremic human immunodeficiency virus infection attributable to impairments in both PDC and NK cell function.

    PubMed

    Conry, Sara J; Milkovich, Kimberly A; Yonkers, Nicole L; Rodriguez, Benigno; Bernstein, Helene B; Asaad, Robert; Heinzel, Frederick P; Tary-Lehmann, Magdalena; Lederman, Michael M; Anthony, Donald D

    2009-11-01

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infections impair plasmacytoid dendritic cell (PDC) and natural killer (NK) cell subset numbers and functions, though little is known about PDC-NK cell interactions during these infections. We evaluated PDC-dependent NK cell killing and gamma interferon (IFN-gamma) and granzyme B production, using peripheral blood mononuclear cell (PBMC)-based and purified cell assays of samples from HCV- and HIV-infected subjects. CpG-enhanced PBMC killing and IFN-gamma and granzyme B activity (dependent on PDC and NK cells) were impaired in viremic HIV infection. In purified PDC-NK cell culture experiments, CpG-enhanced, PDC-dependent NK cell activity was cell contact and IFN-alpha dependent, and this activity was impaired in viremic HIV infection but not in HCV infection. In heterologous PDC-NK cell assays, impaired PDC-NK cell killing activity was largely attributable to an NK cell defect, while impaired PDC-NK cell IFN-gamma-producing activity was attributable to both PDC and NK cell defects. Additionally, the response of NK cells to direct IFN-alpha stimulation was defective in viremic HIV infection, and this defect was not attributable to diminished IFN-alpha receptor expression, though IFN-alpha receptor and NKP30 expression was closely associated with killer activity in viremic HIV infection but not in healthy controls. These data indicate that during uncontrolled HIV infection, PDC-dependent NK cell function is impaired, which is in large part attributable to defective IFN-alpha-induced NK cell activity and not to altered IFN-alpha receptor, NKP30, NKP44, NKP46, or NKG2D expression.

  8. 3D chromatin conformation correlates with replication timing and is conserved in resting cells

    PubMed Central

    Moindrot, Benoit; Audit, Benjamin; Klous, Petra; Baker, Antoine; Thermes, Claude; de Laat, Wouter; Bouvet, Philippe; Mongelard, Fabien; Arneodo, Alain

    2012-01-01

    Although chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types. Preferential interactions have been observed between the consecutive early-initiation zones, but also between those separated by several tens of megabases. Thus, the 3D conformation of chromatin is strongly correlated with the replication timing along the whole chromosome. We furthermore provide direct clues that, in addition to the timing value per se, the shape of the timing profile at a given locus defines its set of genomic contacts. As this timing-related scheme of chromatin organization exists in lymphoblastoid cells, resting and cycling PBMC, this indicates that it is maintained several weeks or months after the previous S-phase. Lastly, our work highlights that the major chromatin changes accompanying PBMC entry into cell cycle occur while keeping largely unchanged the long-range chromatin contacts. PMID:22879376

  9. Effect of sex steroid hormones on replication and transmission of major HIV subtypes.

    PubMed

    Ragupathy, Viswanath; Devadas, Krishnakumar; Tang, Shixing; Wood, Owen; Lee, Sherwin; Dastyer, Armeta; Wang, Xue; Dayton, Andrew; Hewlett, Indira

    2013-11-01

    The HIV epidemic is expanding worldwide with an increasing number of distinct viral subtypes and circulating recombinant forms (CRFs). Out of 34 million adults living with HIV and AIDS, women account for one half of all HIV-1 infections worldwide. These gender differences in HIV pathogenesis may be attributed to sex hormones. Little is known about the role of sex hormone effects on HIV Subtypes pathogenesis. The aim of our study was to determine sex hormone effects on replication and transmissibility of HIV subtypes. Peripheral blood mononuclear cells (PBMC) and monocyte derived dendritic cells (MDDC) from male and female donors were infected with HIV subtypes A-D and CRF02_AG, CRF01_AE, MN (lab adapted), Group-O, Group-N and HIV-2 at a concentration of 5ng/ml of p24 or p27. Virus production was evaluated by measuring p24 and p27 levels in culture supernatants. Similar experiments were carried out in the presence of physiological concentrations of sex steroid hormones. R5/X4 expressions measured by flow cytometry and transmissibility was evaluated by transfer of HIV from primary dendritic cells (DC) to autologous donor PBMC. Our results from primary PBMC and MDDC from male and female donors indicate in the absence of physiological concentrations of hormone treatment virus production was observed in three clusters; high replicating virus (subtype B and C), moderate replicative virus (subtype A, D, CRF01_AE, Group_N) and least replicative virus (strain MN). However, dose of sex steroid hormone treatment influenced HIV replication and transmission kinetics in PBMC, DCs and cell lines. Such effects were inconsistent between donors and HIV subtypes. Sex hormone effects on HIV entry receptors (CCR5/CXCR4) did not correlate with virus production. Subtypes B and C showed higher replication in PBMC from males and females and were transmitted more efficiently through DC to male and female PBMC compared with other HIV-1 subtypes, HIV-1 Group O and HIV-2. These findings are consistent with increased worldwide prevalence of subtype B and C compared to other subtypes. Sex steroid hormones had variable effect on replication or transmission of different subtypes. These findings suggest that subtype, gender and sex hormones may play a crucial role in the replication and transmission of HIV. Published by Elsevier Ltd.

  10. Whole Blood Activation Results in Altered T Cell and Monocyte Cytokine Production Profiles by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Crucian, Brian E.; Sams, Clarence F.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry, a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a whole-blood activation culture has been described. In this study, whole blood activation was compared to traditional PBMC activation and the individual cytokine secretion patterns for both T cells, T cell subsets and monocytes was determined by flow cytometry. RESULTS: For T cell cytokine assessment (IFNg/IL-10 and IL-21/L-4) following PMA +ionomycin activation: (1) a Significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture and (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. Four-color analysiS was used to allow assessment of cytokine production by specific T cell subsets. It was found that IFNgamma production was significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were Significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines (IL-1a/IL-12 and TNFa/IL-10) in conjunction with CD14. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFa. equally well in both culture systems, however monocyte production of IL-10 was significantly elevated in whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent distinct monocyte subsets with unique functions. CONCLUSIONS: Whole blood culture eliminates the need to purify cell populations prior to culture and may have Significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. In this study, alterations in cytokine production are demonstrated between whole blood and PBMC activation. It is likely that whole blood activation more accurately represents the in-vivo immune balance than PBMC activation.

  11. Characteristic cytokine generation patterns in cancer cells and infiltrating lymphocytes in oral squamous cell carcinomas and the influence of chemoradiation combined with immunotherapy on these patterns.

    PubMed

    Yamamoto, Tetsuya; Kimura, Tsuyoshi; Ueta, Eisaku; Tatemoto, Yukihiro; Osaki, Tokio

    2003-01-01

    Cytokines produced by tumor cells and tumor-infiltrating lymphocytes (TIL) appear to regulate tumor cell growth and the cytotoxic activity of TIL. The objectives of the present study were to investigate cytokine generation patterns in tumor cells and TIL and to examine the influence of cancer therapy on this cytokine production and the cytotoxic activity of TIL. We determined the levels of cytokines produced by tumor cells and TIL in vitro and measured the cytotoxic activity of TIL against Daudi cells in patients with oral squamous cell carcinoma (OSC) before and 1 week after the start of concomitant chemo-radio-immunotherapy. Before the therapy, OSC cells generated higher levels of granulocyte-macrophage colony-stimulating factor, tumor necrosis factor-alpha (TNF-alpha) and transforming growth factor-beta (TGF-beta) than did oral keratinocytes isolated from the noninflamed gingivae of healthy individuals, but both kinds of cells generated similar levels of interleukin (IL)-1beta and IL-6. Compared with peripheral blood mononuclear cells (PBMC) of the patients, TIL produced higher levels of IL-1beta, IL-6, IL-10, TNF-alpha and TGF-beta, whereas their production of IL-12 and interferon-gamma (IFN-gamma) was only slightly higher than that in PBMC. After 1 week of therapy, the cytokine production by OSC cells had largely decreased, while the production of TNF-alpha, IFN-gamma, TGF-beta and IL-12 by TIL had increased greatly, although other cytokine levels were almost constant during the investigations. The cytotoxic activity of TIL was higher than that of PBMC before the therapy, and this activity was strongly increased by 1 week of therapy. These results suggest that the cytokine productivities of TIL and tumor cells differ from those of PBMC and normal keratinocytes, respectively, and that chemo-radio-immunotherapy modulates in situ cytokine generation, which is advantageous for inhibition of tumor cell growth and activation of TIL. Copyright 2003 S. Karger AG, Basel

  12. Lifestyles and mental health status are associated with natural killer cell and lymphokine-activated killer cell activities.

    PubMed

    Morimoto, K; Takeshita, T; Inoue-Sakurai, C; Maruyama, S

    2001-04-10

    We investigated the association of lifestyle and mental health status with natural killer (NK) cell and lymphokine-activated killer (LAK) cell activities in healthy males. NK cell activity was determined in 105 male workers and LAK cell activity was determined in 54 male workers. Peripheral blood was obtained from each subject and peripheral blood mononuclear cells (PBMC) were isolated from the blood. These PBMC were used as effector cells. LAK cells were generated by incubation of PBMC with interleukin-2 for 72 h. NK cell activity against NK-sensitive K562 cells and LAK cell activity against NK-resistant Raji cells were examined by 51Cr release assay. Overall lifestyles were evaluated according to the answers on a questionnaire regarding eight health practices (cigarette smoking, alcohol consumption, eating breakfast, hours of sleep, hours of work, physical exercise, nutritional balance, mental stress). Subjects with a good overall lifestyle showed significantly higher NK cell (P < 0.05) and LAK cell (P < 0.05) activities than those with a poor overall lifestyles. Among eight lifestyle factors, cigarette smoking has relatively strong effects on NK cell and LAK cell activities. Subjects who complained of unstable mental status had significantly lower NK cell activity than those who reported stable mental status. When subjects were divided into four groups by lifestyle and mental health status, subjects who had poor or moderate lifestyle and reported unstable mental status showed the lowest NK cell activity and subjects who had good lifestyle and reported stable mental status showed the highest NK cell activity among four groups.

  13. Identification and Characterization of Neospora caninum Cyclophilin That Elicits Gamma Interferon Production

    PubMed Central

    Tuo, Wenbin; Fetterer, Raymond; Jenkins, Mark; Dubey, J. P.

    2005-01-01

    Gamma interferon (IFN-γ) response is essential to the development of a host protective immunity in response to infections by intracellular parasites. Neosporosis, an infection caused by the intracellular protozoan parasite Neospora caninum, is fatal when there is a complete lack of IFN-γ in the infected host. However, the mechanism by which IFN-γ is elicited by the invading parasite is unclear. This study has identified a microbial protein in the N. caninum tachyzoite N. caninum cyclophilin (NcCyP) as a major component of the parasite responsible for the induction of IFN-γ production by bovine peripheral blood mononuclear cells (PBMC) and antigen-specific CD4+ T cells. NcCyP has high sequence homology (86%) with Toxoplasma gondii 18-kDa CyP with a calculated molecular mass of 19.4 kDa. NcCyP is a secretory protein with a predicted signal peptide of 17 amino acids. Abundant NcCyP was detected in whole-cell N. caninum tachyzoite lysate antigen (NcAg) and N. caninum tachyzoite culture supernatant. In N. caninum tachyzoite culture supernatant, three NcCyP bands of 19, 22, and 24 kDa were identified. NcAg stimulated high levels of IFN-γ production by PBMC and CD4+ T cells. The IFN-γ-inducing effect of NcAg was blocked by cyclosporine, a specific ligand for CyP, in a dose-dependent manner. Furthermore, cyclosporine abolished IFN-γ production by PBMC from naïve cows as well as PBMC and CD4+ T cells from infected/immunized cows. These results indicate that the N. caninum tachyzoite naturally produces a potent IFN-γ-inducing protein, NcCyP, which may be important for parasite survival as well as host protection. PMID:16041025

  14. DDE and PCB 153 independently induce aryl hydrocarbon receptor (AhR) expression in peripheral blood mononuclear cells.

    PubMed

    Gaspar-Ramírez, Octavio; Pérez-Vázquez, Francisco J; Salgado-Bustamante, Mariana; González-Amaro, Roberto; Hernandez-Castro, Berenice; Pérez-Maldonado, Ivan N

    2015-01-01

    Recent studies have demonstrated that compounds inducing pro-inflammatory cytokines enhance AhR expression. The aim of this study was 2-fold: (1) to determine if two pro-inflammatory compounds, dichlorodiphenyldichloroethylene (DDE) and 2,2',4,4',5,5'-hexa-chlorobiphenyl (PCB 153), independently affect AhR gene expression in peripheral blood mononuclear cells (PBMC); and (2) if affected, to determine whether the mechanism involved was due to AhR activation or to a pro-inflammatory effect of the chemicals. PBMC isolated from healthy individuals were incubated in the presence of DDE (10 µg/ml) and PCB 153 (20 ng/ml) over time and AhR and CYP1A1 expression was assessed with a real-time PCR technique. The results indicated there was over-expression of the AhR mRNA in PBMC when the cells were treated with DDE and PCB 153. No changes in expression levels of CYP1A1 mRNA were found. Importantly, when the cells were exposed to DDE and PCB 153 in the presence of an antagonist of tumor necrosis factor (TNF)-α, the over-expression of AhR was abolished; as expected, the expression of CYP1A1 was unaffected. In conclusion, these studies demonstrated for the first time an increment of AhR expression "in vitro" in PBMC treated with two pro-inflammatory environmental pollutants, DDE and PCB153. Moreover, the over-expression of AhR was dependent of TNFα induced by DDE and PCB 153 and was independent of AhR activation.

  15. Effect of the oncolytic ECHO-7 virus Rigvir® on the viability of cell lines of human origin in vitro.

    PubMed

    Tilgase, Andra; Patetko, Liene; Blāķe, Ilze; Ramata-Stunda, Anna; Borodušķis, Mārtiņš; Alberts, Pēteris

    2018-01-01

    Background: The role of oncolytic viruses in cancer treatment is increasingly studied. The first oncolytic virus (Rigvir®, ECHO-7) was registered in Latvia over a decade ago. In a recent retrospective study Rigvir® decreased mortality 4.39-6.57-fold in stage IB-IIC melanoma patients. The aims of the present study are to test the effect of Rigvir® on cell line viability in vitro and to visualize the cellular presence of Rigvir® by immunocytochemistry. Methods: The cytolytic effect of Rigvir® on the viability of FM-9, RD, AGS, A549, HDFa, HPAF‑II, MSC, MCF7, HaCaT, and Sk-Mel-28 cell lines was measured using live cell imaging. PBMC viability was measured using flow cytometry. The presence of ECHO-7 virus was visualized using immunocytochemistry. Statistical difference between treatment groups was calculated using two-way ANOVA. Results: Rigvir® (10%, volume/volume) reduced cell viability in FM-9, RD, AGS, A549, HDFa, HPAF‑II and MSC cell lines by 67-100%. HaCaT cell viability was partly affected while Rigvir® had no effect on MCF7, Sk-Mel-28 and PBMC viability. Detection of ECHO-7 by immunocytochemistry in FM-9, RD, AGS, A549, HDFa, HPAF-II and Sk-Mel-28 cell lines suggests that the presence of Rigvir® in the cells preceded or coincided with the time of reduction of cell viability. Rigvir® (10%) had no effect on live PBMC count. Conclusions: The results suggest that Rigvir® in vitro reduces the viability of cells of human melanoma, rhabdomyosarcoma, gastric adenocarcinoma, lung carcinoma, pancreas adenocarcinoma but not in PBMC. The presence of Rigvir® in the sensitive cells was confirmed using anti-ECHO-7 antibodies. The present results suggest that a mechanism of action for the clinical benefit of Rigvir® is its cytolytic properties. The present results suggest that the effect of Rigvir® could be tested in other cancers besides melanoma. Further studies of possible Rigvir® entry receptors are needed.

  16. A Positive Control for Detection of Functional CD4 T Cells in PBMC: The CPI Pool.

    PubMed

    Schiller, Annemarie; Zhang, Ting; Li, Ruliang; Duechting, Andrea; Sundararaman, Srividya; Przybyla, Anna; Kuerten, Stefanie; Lehmann, Paul V

    2017-12-07

    Testing of peripheral blood mononuclear cells (PBMC) for immune monitoring purposes requires verification of their functionality. This is of particular concern when the PBMC have been shipped or stored for prolonged periods of time. While the CEF (Cytomegalo-, Epstein-Barr and Flu-virus) peptide pool has become the gold standard for testing CD8 cell functionality, a positive control for CD4 cells is so far lacking. The latter ideally consists of proteins so as to control for the functionality of the antigen processing and presentation compartments, as well. Aiming to generate a positive control for CD4 cells, we first selected 12 protein antigens from infectious/environmental organisms that are ubiquitous: Varicella, Influenza, Parainfluenza, Mumps, Cytomegalovirus, Streptococcus , Mycoplasma , Lactobacillus , Neisseria , Candida , Rubella, and Measles. Of these antigens, three were found to elicited interferon (IFN)-γ-producing CD4 cells in the majority of human test subjects: inactivated cytomegalo-, parainfluenza-, and influenza virions (CPI). While individually none of these three antigens triggered a recall response in all donors, the pool of the three (the 'CPI pool'), did. One hundred percent of 245 human donors tested were found to be CPI positive, including Caucasians, Asians, and African-Americans. Therefore, the CPI pool appears to be suitable to serve as universal positive control for verifying the functionality of CD4 and of antigen presenting cells.

  17. Gamma delta T cell responses associated with the development of tuberculosis in health care workers.

    PubMed

    Ordway, Diane J; Pinto, Luisa; Costa, Leonor; Martins, Marta; Leandro, Clara; Viveiros, Miguel; Amaral, Leonard; Arroz, Maria J; Ventura, Fernando A; Dockrell, Hazel M

    2005-03-01

    This study evaluated T cell immune responses to purified protein derivative (PPD) and Mycobacterium tuberculosis (Mtb) in health care workers who remained free of active tuberculosis (HCWs w/o TB), health care workers who went on to develop active TB (HCWs w/TB), non-health care workers who were TB free (Non-HCWs) and tuberculosis patients presenting with minimal (Min TB) or advanced (Adv TB) disease. Peripheral blood mononuclear cells (PBMC) were stimulated with Mtb and PPD and the expression of T cell activation markers CD25+ and HLA-DR+, intracellular IL-4 and IFN-gamma production and cytotoxic responses were evaluated. PBMC from HCWs who developed TB showed decreased percentages of cells expressing CD8+CD25+ in comparison to HCWs who remained healthy. HCWs who developed TB showed increased gammadelta TCR+ cell cytotoxicity and decreased CD3+gammadelta TCR- cell cytotoxicity in comparison to HCWs who remained healthy. PBMC from TB patients with advanced disease showed decreased percentages of CD25+CD4+ and CD25+CD8+ T cells that were associated with increased IL-4 production in CD8+ and gammadelta TCR+ phenotypes, in comparison with TB patients presenting minimal disease. TB patients with advanced disease showed increased gammadelta TCR+ cytotoxicity and reduced CD3+gammadelta TCR- cell cytotoxicity. Our results suggest that HCWs who developed TB show an early compensatory mechanism involving an increase in lytic responses of gammadelta TCR+ cells which did not prevent TB.

  18. Modulation of allergy incidence in icelandic horses is associated with a change in IL-4-producing T cells.

    PubMed

    Hamza, E; Doherr, M G; Bertoni, G; Jungi, T W; Marti, E

    2007-01-01

    Equine insect bite hypersensitivity (IBH) is an immediate-type hypersensitivity reaction provoked by insect-derived allergens. Icelandic horses living in Iceland do not have IBH due to absence of relevant insects, but acquire it at high frequency after being imported to mainland Europe. In contrast, their offspring born in mainland Europe has reduced IBH incidence. T helper 1 (Th1) and Th2 cells and cytokines were determined in Icelandic horses born in Iceland and on the continent and which either have IBH or are healthy. Peripheral blood mononuclear cells (PBMC) from these horses were stimulated for 18 h during summer and winter with polyclonal T cell stimuli, IBH allergen(s) or irrelevant allergen(s). Cells were analysed by flow cytometry for interferon-gamma (IFN-gamma) and interleukin-4 (IL-4); RNA was analysed for IFN-gamma, IL-4, IL-5 and IL-13 mRNA. During summer, but not during winter, IBH PBMC stimulated polyclonally showed reduced IFN-gamma mRNA and IFN-gamma-producing cells when compared with those of healthy horses, regardless of origin. PBMC stimulated polyclonally or with IBH allergen showed increased IL-4 mRNA levels and higher numbers of IL-4-producing cells when born in Iceland or showing IBH symptoms. IL-5 and IL-13 mRNA were modulated neither by disease nor by origin. Abrogation of IL-4 production in healthy horses born in mainland Europe may be due, at least in part, to IL-10. There was an increased level of IL-10 in supernatants from PBMC of healthy horses born in mainland Europe and stimulated polyclonally or with IBH allergen. Modulation of IBH incidence is governed by altered Th1/Th2 ratio, which might be influenced by IL-10. Copyright 2007 S. Karger AG, Basel.

  19. A novel, helminth-derived immunostimulant enhances human recall responses to hepatitis C virus and tetanus toxoid and is dependent on CD56+ cells for its action.

    PubMed

    MacDonald, A J; Libri, N A; Lustigman, S; Barker, S J; Whelan, M A; Semper, A E; Rosenberg, W M

    2008-05-01

    We have described previously an immunostimulant derived from Onchocerca volvulus, the helminth parasite that causes onchocerciasis. Recombinant O. volvulus activation-associated secreted protein-1 (rOv-ASP-1) was a potent adjuvant for antibody and cellular responses to protein, polypeptide and small peptide antigens. Our aims were to determine whether rOv-ASP-1 is immunostimulatory for human peripheral blood mononuclear cells (PBMC) and, if so, whether it could augment cellular responses against human pathogen antigens in vitro. Cytokines from rOv-ASP-1-stimulated human PBMC were measured by a fluorescence activated cell sorter-based multiplex assay. Recall responses of normal healthy donor (NHD) and chronic hepatitis C virus (c-HCV)-infected patient PBMC to tetanus toxoid (TT) or HCV core (HCVco) antigen, respectively, were measured by interferon-gamma enzyme-linked immunospot assays. Interferon-gamma was the predominant cytokine induced by rOv-ASP-1. 77.3% of NHD anti-TT and 88.9% of c-HCV anti-HCVco responses were enhanced by rOv-ASP-1. The immunostimulant effect was dependent upon contact between CD56+ and CD56- fractions of PBMC. We have described a helminth-derived protein that can act as an immunostimulant for human recall responses in vitro to TT and, perhaps more importantly, HCV antigens in patients with chronic HCV infection. Our longer-term goal would be to boost anti-viral responses in chronic infections such as HCV.

  20. Identification of a novel splice variant of human PD-L1 mRNA encoding an isoform-lacking Igv-like domain.

    PubMed

    He, Xian-hui; Xu, Li-hui; Liu, Yi

    2005-04-01

    To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon? encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intracellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.

  1. Human eosinophils modulate peripheral blood mononuclear cell response to Schistosoma mansoni adult worm antigen in vitro.

    PubMed

    Tweyongyere, R; Namanya, H; Naniima, P; Cose, S; Tukahebwa, E M; Elliott, A M; Dunne, D W; Wilson, S

    2016-08-01

    High numbers of eosinophils are observed in parasitic infections and allergic diseases, where they are proposed to be terminally differentiated effector cells that play beneficial role in host defence, or cause harmful inflammatory response. Eosinophils have been associated with killing of schistosomulae in vitro, but there is growing evidence that eosinophils can play additional immuno-regulatory role. Here, we report results of a study that examines peripheral blood mononuclear cell (PBMC) cytokine responses to Schistosoma mansoni adult worm antigen (SWA) when stimulated alone or enriched with autologous eosinophils. Production of the Th-2 type cytokines interleukin (IL)-4, IL-5 and IL-13 was lower (P = 0·017, 0·018 and <0·001, respectively) in PBMC + eosinophil cultures than in PBMC-only cultures stimulated with SWA. Substantial levels of IL-13, IL-10, interferon gamma and tumour necrosis factor alpha were recorded in cultures of eosinophils, but none of these cytokines showed significant association with the observed eosinophil-induced drop in cytokine responses of PBMC. Transwell experiments suggested that the observed effect is due to soluble mediators that downmodulate production of Th-2 type cytokines. This study shows that eosinophils may down-modulate schistosome-specific Th-2 type cytokine responses in S. mansoni-infected individuals. The mechanism of this immune modulation remains to be elucidated. © 2016 The Authors. Parasite Immunology Published by John Wiley & Sons Ltd.

  2. Selective survival of peripheral blood lymphocytes in children with HIV-1 following delivery of an anti-HIV gene to bone marrow CD34(+) cells.

    PubMed

    Podsakoff, Greg M; Engel, Barbara C; Carbonaro, Denise A; Choi, Chris; Smogorzewska, Elzbieta M; Bauer, Gerhard; Selander, David; Csik, Susan; Wilson, Kathy; Betts, Michael R; Koup, Richard A; Nabel, Gary J; Bishop, Keith; King, Steven; Schmidt, Manfred; von Kalle, Christof; Church, Joseph A; Kohn, Donald B

    2005-07-01

    Two HIV-1-infected children on antiretroviral therapy were enrolled into a clinical study of retroviral-mediated transfer of a gene that inhibits replication of HIV-1, targeting bone marrow CD34+ hematopoietic stem/progenitor cells. Two retroviral vectors were used, one encoding a "humanized" dominant-negative REV protein (huM10) that is a potent inhibitor of HIV-1 replication and one encoding a nontranslated marker gene (FX) to serve as an internal control for the level of gene marking. Peripheral blood mononuclear cells (PBMC) containing the huM10 gene or FX gene were detected by quantitative PCR at frequencies of approximately 1/10,000 in both subjects for the first 1-3 months following re-infusion of the gene-transduced bone marrow, but then were at or below the limits of detection (<1/1,000,000) at most times over 2 years. In one patient, a reappearance of PBMC containing the huM10 gene, but not the FX gene, occurred concomitant with a rise in the HIV-1 viral load during a period of nonadherence to the antiretroviral regimen. Unique clones of gene-marked PBMC were detected by LAM-PCR during the time of elevated HIV-1 levels. These findings indicate that there was a selective survival advantage for PBMC containing the huM10 gene during the time of increased HIV-1 load.

  3. Cytokine and transcription factor expression by Aspergillus fumigatus-stimulated peripheral blood mononuclear cells in dogs with sino-nasal aspergillosis.

    PubMed

    Vanherberghen, M; Bureau, F; Peters, I R; Day, M J; Lynch, A; Fievez, L; Billen, F; Clercx, C; Peeters, D

    2013-08-15

    The causal agent of sino-nasal aspergillosis is usually Aspergillus fumigatus, which is a saprophytic and ubiquitous fungus that causes a severe rhinosinusitis in apparent healthy dogs. Affected dogs do not have systemic immuno-suppression. It has been shown previously that dogs affected by this disease have local over-expression of interleukin (IL)-10 and Th1 cytokines in nasal mucosal tissue. The aim of the present study was to assess the response of peripheral blood mononuclear cells (PBMC) from affected and unaffected dogs to antigen-specific stimulation with heat-inactivated Aspergillus spp. conidia, by quantifying gene expression for specific Th1, Th2, Th17 and Treg cytokines and their related transcription factors. Quantification of IL-4 and IFN-γ protein in culture supernatant was performed by enzyme-linked immunosorbent assay (ELISA). PBMC from dogs with SNA produced adequate mRNA encoding IFN-γ and IFN-γ protein. The expression of IL-17A mRNA was significantly greater in PBMC of affected compared with unaffected dogs. The amount of IL-10 mRNA in PBMC from affected dogs decreased after antigen-specific challenge. These results suggest that the incapacity of affected dogs to clear these fungal infections is not related to a defect in Th1 immunity or to an overwhelming regulatory reaction, but rather to an uncontrolled pro-inflammatory reaction driven by Th17 cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Peripheral Blood Cells from Patients with Autoimmune Addison's Disease Poorly Respond to Interferons In Vitro, Despite Elevated Serum Levels of Interferon-Inducible Chemokines

    PubMed Central

    Bjånesøy, Trine; Hellesen, Alexander; Breivik, Lars; Bakke, Marit; Husebye, Eystein S.; Bratland, Eirik

    2015-01-01

    Autoimmune Addison's disease (AAD) is a disorder caused by an immunological attack on the adrenal cortex. The interferon (IFN)-inducible chemokine CXCL10 is elevated in serum of AAD patients, suggesting a peripheral IFN signature. However, CXCL10 can also be induced in adrenocortical cells stimulated with IFNs, cytokines, or microbial components. We therefore investigated whether peripheral blood mononuclear cells (PBMCs) from AAD patients display an enhanced propensity to produce CXCL10 and the related chemokine CXCL9, after stimulation with type I or II IFNs or the IFN inducer poly (I:C). Although serum levels of CXCL10 and CXCL9 were significantly elevated in patients compared with controls, IFN stimulated patient PBMC produced significantly less CXCL10/CXCL9 than control PBMC. Low CXCL10 production was not significantly associated with medication, disease duration, or comorbidities, but the low production of poly (I:C)-induced CXCL10 among patients was associated with an AAD risk allele in the phosphatase nonreceptor type 22 (PTPN22) gene. PBMC levels of total STAT1 and -2, and IFN-induced phosphorylated STAT1 and -2, were not significantly different between patients and controls. We conclude that PBMC from patients with AAD are deficient in their response to IFNs, and that the adrenal cortex itself may be responsible for the increased serum levels of CXCL10. PMID:25978633

  5. The placental immune milieu is characterized by a Th2- and anti-inflammatory transcription profile, regardless of maternal allergy, and associates with neonatal immunity.

    PubMed

    Abelius, Martina S; Janefjord, Camilla; Ernerudh, Jan; Berg, Göran; Matthiesen, Leif; Duchén, Karel; Nilsson, Lennart J; Jenmalm, Maria C

    2015-05-01

    How maternal allergy affects the systemic and local immunological environment during pregnancy and the immune development of the offspring is unclear. Expression of 40 genes was quantified by PCR arrays in placenta, peripheral blood mononuclear cells (PBMC), and cord blood mononuclear cells (CBMC) from 7 allergic and 12 non-allergic women and their offspring. Placental gene expression was dominated by a Th2-/anti-inflammatory profile, irrespectively of maternal allergy, as compared to gene expression in PBMC. p35 expression in placenta correlated with fetal Tbx21 (ρ = -0.88, P < 0.001) and IL-5 expression in PBMC with fetal galectin1 (ρ = 0.91, P < 0.001). Increased expression of Th2-associated CCL22 in CBMC preceded allergy development. Gene expression locally and systemically during pregnancy was partly associated with the offspring's gene expression, possibly indicating that the immunological milieu is important for fetal immune development. Maternal allergy was not associated with an enhanced Th2 immunity in placenta or PBMC, while a marked prenatal Th2 skewing, shown as increased CCL22 mRNA expression, might contribute to postnatal allergy development. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Gene expression analysis of whole blood, peripheral blood mononuclear cells, and lymphoblastoid cell lines from the Framingham Heart Study

    PubMed Central

    Joehanes, Roby; Johnson, Andrew D.; Barb, Jennifer J.; Raghavachari, Nalini; Liu, Poching; Woodhouse, Kimberly A.; O'Donnell, Christopher J.; Munson, Peter J.

    2012-01-01

    Despite a growing number of reports of gene expression analysis from blood-derived RNA sources, there have been few systematic comparisons of various RNA sources in transcriptomic analysis or for biomarker discovery in the context of cardiovascular disease (CVD). As a pilot study of the Systems Approach to Biomarker Research (SABRe) in CVD Initiative, this investigation used Affymetrix Exon arrays to characterize gene expression of three blood-derived RNA sources: lymphoblastoid cell lines (LCL), whole blood using PAXgene tubes (PAX), and peripheral blood mononuclear cells (PBMC). Their performance was compared in relation to identifying transcript associations with sex and CVD risk factors, such as age, high-density lipoprotein, and smoking status, and the differential blood cell count. We also identified a set of exons that vary substantially between participants, but consistently in each RNA source. Such exons are thus stable phenotypes of the participant and may potentially become useful fingerprinting biomarkers. In agreement with previous studies, we found that each of the RNA sources is distinct. Unlike PAX and PBMC, LCL gene expression showed little association with the differential blood count. LCL, however, was able to detect two genes related to smoking status. PAX and PBMC identified Y-chromosome probe sets similarly and slightly better than LCL. PMID:22045913

  7. Autologous serum supplement favours in vitro regenerative paracrine factors synthesis.

    PubMed

    Haque, Nazmul; Kasim, Noor Hayaty Abu; Kassim, Noor Lide Abu; Rahman, Mohammad Tariqur

    2017-08-01

    Foetal bovine serum (FBS) is often the serum supplement of choice for in vitro human cell culture. This study compares the effect of FBS and autologous human serum (AuHS) supplement in human peripheral blood mononuclear cell (PBMC) culture to prepare secretome. The PBMC (n = 7) were cultured either in RPMI-1640 containing L-glutamine and 50 units/ml Penicillin-Streptomycin (BM) or in BM with either AuHS or FBS. Viability, proliferation and differentiation of PBMC were evaluated. Paracrine factors present in the secretomes (n = 6) were analysed using ProcartaPlex Human Cytokine panel (17 plex). Ingenuity Pathway Analysis (IPA) was performed to predict activation or inhibition of biological functions related to tissue regeneration. The viability of PBMC that were cultured with FBS supplement was significantly reduced at 96 h compared to those at 0 and 24 h (P < .05). While the reduction of the viability of PBMC that were cultured with AuHS supplement was not significantly different compared to those at 0 and 24 h. The FBS secretomes prepared at 24 h was found to contain significantly higher amount of EGF (P < .05) compared to that in AuHS or BM secretome. The AuHS secretomes contained significantly higher amount of HGF at 24 (P < .05) and 96 h (P < .01), and VEGF-A at 24 h (P < .05) compared to those in the FBS secretomes. SDF-1 was not detected in the FBS secretomes prepared at either 24 or 96 hours. Double immunocytochemical staining revealed a marked increase in co-localization of SDF-1 and its receptor in PBMC that were cultured with AuHS supplement compared to that cultured with FBS supplement. In secretome preparation, AuHS supplement favours synthesis of paracrine factors that are needed for regenerative therapy. © 2017 John Wiley & Sons Ltd.

  8. Time-resolved fluorescence monitoring of cholesterol in peripheral blood mononuclear cells

    NASA Astrophysics Data System (ADS)

    Martinakova, Z.; Horilova, J.; Lajdova, I.; Marcek Chorvatova, A.

    2014-12-01

    Precise evaluation of intracellular cholesterol distribution is crucial for improving diagnostics of diseased states associated with cholesterol alteration. Time-resolved fluorescence techniques are tested for non-invasive investigation of cholesterol in living cells. Fluorescent probe NBD attached to cholesterol was employed to evaluate cholesterol distribution in peripheral blood mononuclear cells (PBMC) isolated from the human blood. Fluorescence Lifetime Imaging Microscopy (FLIM) was successfully applied to simultaneously monitor the spatial distribution and the timeresolved characteristics of the NBD-cholesterol fluorescence in PBMC. Gathered data are the first step in the development of a new perspective non-invasive diagnostic method for evaluation of cholesterol modifications in diseases associated with disorders of lipid metabolism.

  9. Barcoding of live human peripheral blood mononuclear cells for multiplexed mass cytometry.

    PubMed

    Mei, Henrik E; Leipold, Michael D; Schulz, Axel Ronald; Chester, Cariad; Maecker, Holden T

    2015-02-15

    Mass cytometry is developing as a means of multiparametric single-cell analysis. In this study, we present an approach to barcoding separate live human PBMC samples for combined preparation and acquisition on a cytometry by time of flight instrument. Using six different anti-CD45 Ab conjugates labeled with Pd104, Pd106, Pd108, Pd110, In113, and In115, respectively, we barcoded up to 20 samples with unique combinations of exactly three different CD45 Ab tags. Cell events carrying more than or less than three different tags were excluded from analyses during Boolean data deconvolution, allowing for precise sample assignment and the electronic removal of cell aggregates. Data from barcoded samples matched data from corresponding individually stained and acquired samples, at cell event recoveries similar to individual sample analyses. The approach greatly reduced technical noise and minimizes unwanted cell doublet events in mass cytometry data, and it reduces wet work and Ab consumption. It also eliminates sample-to-sample carryover and the requirement of instrument cleaning between samples, thereby effectively reducing overall instrument runtime. Hence, CD45 barcoding facilitates accuracy of mass cytometric immunophenotyping studies, thus supporting biomarker discovery efforts, and it should be applicable to fluorescence flow cytometry as well. Copyright © 2015 by The American Association of Immunologists, Inc.

  10. PBMC: Pre-conditioned Backward Monte Carlo code for radiative transport in planetary atmospheres

    NASA Astrophysics Data System (ADS)

    García Muñoz, A.; Mills, F. P.

    2017-08-01

    PBMC (Pre-Conditioned Backward Monte Carlo) solves the vector Radiative Transport Equation (vRTE) and can be applied to planetary atmospheres irradiated from above. The code builds the solution by simulating the photon trajectories from the detector towards the radiation source, i.e. in the reverse order of the actual photon displacements. In accounting for the polarization in the sampling of photon propagation directions and pre-conditioning the scattering matrix with information from the scattering matrices of prior (in the BMC integration order) photon collisions, PBMC avoids the unstable and biased solutions of classical BMC algorithms for conservative, optically-thick, strongly-polarizing media such as Rayleigh atmospheres.

  11. CD83 Antibody Inhibits Human B Cell Responses to Antigen as well as Dendritic Cell-Mediated CD4 T Cell Responses.

    PubMed

    Wong, Kuan Y; Baron, Rebecca; Seldon, Therese A; Jones, Martina L; Rice, Alison M; Munster, David J

    2018-05-15

    Anti-CD83 Ab capable of Ab-dependent cellular cytotoxicity can deplete activated CD83 + human dendritic cells, thereby inhibiting CD4 T cell-mediated acute graft-versus-host disease. As CD83 is also expressed on the surface of activated B lymphocytes, we hypothesized that anti-CD83 would also inhibit B cell responses to stimulation. We found that anti-CD83 inhibited total IgM and IgG production in vitro by allostimulated human PBMC. Also, Ag-specific Ab responses to immunization of SCID mice xenografted with human PBMC were inhibited by anti-CD83 treatment. This inhibition occurred without depletion of all human B cells because anti-CD83 lysed activated CD83 + B cells by Ab-dependent cellular cytotoxicity and spared resting (CD83 - ) B cells. In cultured human PBMC, anti-CD83 inhibited tetanus toxoid-stimulated B cell proliferation and concomitant dendritic cell-mediated CD4 T cell proliferation and expression of IFN-γ and IL-17A, with minimal losses of B cells (<20%). In contrast, the anti-CD20 mAb rituximab depleted >80% of B cells but had no effect on CD4 T cell proliferation and cytokine expression. By virtue of the ability of anti-CD83 to selectively deplete activated, but not resting, B cells and dendritic cells, with the latter reducing CD4 T cell responses, anti-CD83 may be clinically useful in autoimmunity and transplantation. Advantages might include inhibited expansion of autoantigen- or alloantigen-specific B cells and CD4 T cells, thus preventing further production of pathogenic Abs and inflammatory cytokines while preserving protective memory and regulatory cells. Copyright © 2018 by The American Association of Immunologists, Inc.

  12. High-intensity interval training improves inflammatory and adipokine profiles in postmenopausal women with metabolic syndrome.

    PubMed

    Steckling, Flávia Mariel; Farinha, Juliano Boufleur; Figueiredo, Felipe da Cunha; Santos, Daniela Lopes Dos; Bresciani, Guilherme; Kretzmann, Nélson Alexandre; Stefanello, Sílvio Terra; Courtes, Aline Alves; Beck, Maristela de Oliveira; Sangoi Cardoso, Manuela; Duarte, Marta Maria Medeiros Frescura; Moresco, Rafael Noal; Soares, Félix Alexandre Antunes

    2018-02-12

    This study investigate the effects of high-intensity interval training (HIIT) on systemic levels of inflammatory and hormonal markers in postmenopausal women with metabolic syndrome (MS). Fifteen postmenopausal women with MS completed the training on treadmills. Functional, body composition parameters, maximal oxygen uptake (VO 2 max), and lipid profile were assessed before and after HIIT. Serum or plasma levels of cytokines and hormonal markers were measured along the intervention. The analysis of messenger RNA (mRNA) expression of these cytokines was performed in peripheral blood mononuclear cells (PBMC). VO 2 max and some anthropometric parameters were improved after HIIT, while decreased levels of proinflammatory markers and increased levels of interleukin-10 (IL-10) were also found. Adipokines were also modulated after 12 weeks or training. The mRNA expression of the studied genes was unchanged after HIIT. In conclusion, HIIT benefits inflammatory and hormonal axis on serum or plasma samples, without changes on PBMC of postmenopausal MS patients.

  13. Ultrafiltration and endotoxin removal from dialysis fluids.

    PubMed

    Di Felice, A; Cappelli, G; Facchini, F; Tetta, C; Cornia, F; Aimo, G; Lusvarghi, E

    1993-06-01

    Biocompatibility in hemodialysis is now regarded as a multifactorial problem and dialysate represents a main risk. Pyrogenic fractions mostly coming from gram-negative bacteria easily pass through dialysis membrane, either by backdiffusion or by backfiltration, and induce blood cell activation. To demonstrate the long-term efficiency of a 2 m2 polyamide ultrafilter in producing a pyrogen free solution, we used an experimental circuit ultrafiltering for 240 hours (500 ml/min) a bicarbonate dialysate contaminated (5 to 48 EU/ml) by a Pseudomonas aeruginosa filtrate. The efficiency was monitored by LAL-test and IL-1 PBMC so to detect not only lipid A containing endotoxins but also other cytokines inducing bacterial fractions. At the post-ultrafilter sampling port the LAL-test was < 0.005 to 0.034 EU/ml; IL-1 PBMC was below the detection limit (20 pg/ml) being 27 to 63 pg/ml at the pre-ultrafilter level. Polyamide ultrafiltration represents an efficient system to obtain an endotoxin-free dialysate and a single filter works up to 240 hours.

  14. Cellular HIV-1 DNA Levels in Drug Sensitive Strains Are Equivalent to Those in Drug Resistant Strains in Newly-Diagnosed Patients in Europe

    PubMed Central

    Demetriou, Victoria L.; van de Vijver, David A. M. C.; Kousiappa, Ioanna; Balotta, Claudia; Clotet, Bonaventura; Grossman, Zehava; Jørgensen, Louise B.; Lepej, Snjezana Z.; Levy, Itzchak; Nielsen, Claus; Paraskevis, Dimitrios; Poljak, Mario; Roman, Francois; Ruiz, Lidia; Schmidt, Jean-Claude; Vandamme, Anne-Mieke; Van Laethem, Kristel; Vercauteren, Jurgen; Kostrikis, Leondios G.

    2010-01-01

    Background HIV-1 genotypic drug resistance is an important threat to the success of antiretroviral therapy and transmitted resistance has reached 9% prevalence in Europe. Studies have demonstrated that HIV-1 DNA load in peripheral blood mononuclear cells (PBMC) have a predictive value for disease progression, independently of CD4 counts and plasma viral load. Methodology/Principal Findings Molecular-beacon-based real-time PCR was used to measure HIV-1 second template switch (STS) DNA in PBMC in newly-diagnosed HIV-1 patients across Europe. These patients were representative for the HIV-1 epidemic in the participating countries and were carrying either drug-resistant or sensitive viral strains. The assay design was improved from a previous version to specifically detect M-group HIV-1 and human CCR5 alleles. The findings resulted in a median of 3.32 log10 HIV-1 copies/106 PBMC and demonstrated for the first time no correlation between cellular HIV-1 DNA load and transmitted drug-resistance. A weak association between cellular HIV-1 DNA levels with plasma viral RNA load and CD4+ T-cell counts was also reconfirmed. Co-receptor tropism for 91% of samples, whether or not they conferred resistance, was CCR5. A comparison of pol sequences derived from RNA and DNA, resulted in a high similarity between the two. Conclusions/Significance An improved molecular-beacon-based real-time PCR assay is reported for the measurement of HIV-1 DNA in PBMC and has investigated the association between cellular HIV-1 DNA levels and transmitted resistance to antiretroviral therapy in newly-diagnosed patients from across Europe. The findings show no correlation between these two parameters, suggesting that transmitted resistance does not impact disease progression in HIV-1 infected individuals. The CCR5 co-receptor tropism predominance implies that both resistant and non-resistant strains behave similarly in early infection. Furthermore, a correlation found between RNA- and DNA-derived sequences in the pol region suggests that genotypic drug-resistance testing could be carried out on either template. PMID:20544014

  15. Heat stress upregulation of Toll-like receptors 2/4 and acute inflammatory cytokines in peripheral blood mononuclear cell (PBMC) of Bama miniature pigs: an in vivo and in vitro study.

    PubMed

    Ju, X-H; Xu, H-J; Yong, Y-H; An, L-L; Jiao, P-R; Liao, M

    2014-09-01

    Global warming is a challenge to animal health, because of increased heat stress, with subsequent induction of immunosuppression and increased susceptibility to disease. Toll-like receptors (TLR) are pattern recognition receptors that act as sentinels of pathogen invasion and tissue damage. Ligation of TLRs results in a signaling cascade and production of inflammatory cytokines, which eradicate pathogens and maintain the health of the host. We hypothesized that the TLR signaling pathway plays a role in immunosuppression in heat-stressed pigs. We explored the changes in the expression of TLR2, TLR4 and the concentration of acute inflammatory cytokines, such as IL-2, IL-8, IL-12 and IFN-γ in Bama miniature pigs subjected to 21 consecutive days of heat stress, both in vitro and in vivo models. The results showed that heat stress induced the upregulation of cortisol in the plasma of pigs (P<0.05); TLR4 mRNA was elevated, but IL-2 was reduced in peripheral blood mononuclear cells (PBMC, P<0.05). The white blood cell count and the percentage of granulocytes (eosinophilic+basophilic) decreased significantly in heat-stressed pigs (P<0.05). In the in vitro model (PBMC heat shocked for 1 h followed by a 9 h recovery period), TLR2 and TLR4 mRNA expression also increased, as did the concentration of IL-12 in supernatants. However, IFN-γ was significantly reduced in PBMC culture supernatants (P<0.05). We concluded that a consecutive heat stress period elevated the expression of TLR2 and TLR4 in PBMC and increased the plasma levels of inflammatory cytokines. These data indicate that TLR activation and dysregulation of cytokine expression in response to prolonged heat stress may be associated with immunosuppression and increased susceptibility to antigenic challenge in Bama miniature pigs.

  16. Cytokine secretion induced by superantigens in peripheral blood mononuclear cells, lamina propria lymphocytes, and intraepithelial lymphocytes.

    PubMed Central

    Sperber, K; Silverstein, L; Brusco, C; Yoon, C; Mullin, G E; Mayer, L

    1995-01-01

    Superantigens are potent inducers of T-cell proliferation and induce a broad range of cytokines, including tumor necrosis factor (TNF), gamma interferon, and interleukin 2 (IL-2). In the present study, we compared the abilities of different staphylococcal superantigens (staphylococcal enterotoxin B [SEB], staphylococcal enterotoxin E [SEE], and toxic shock syndrome toxin 1 [TSST-1]) to stimulate distinct cytokine profiles in peripheral blood mononuclear cells (PBMC), lamina propria lymphocytes (LPL), and intraepithelial lymphocytes (IEL). One million PBMC, LPL, and IEL were stimulated with various concentrations of superantigen (10 to 0.001 ng/ml) for 24, 48, and 72 h. Maximum cytokine production by PBMC, LPL, and IEL was observed for all three superantigens at 48 h at a concentration of 1 ng/ml. In PBMC, SEE and TSST-1 stimulated more IL-2 and gamma interferon than SEB. SEE and TSST-1 also stimulated more TNF and IL-4 production than SEB. In contrast, SEB stimulated more IL-6 than either SEE or TSST-1. In LPL, there was no SEE-induced IL-2 or IL-4 production, but IL-6, TNF, and gamma interferon were induced. SEB similarly induced no IL-2 or gamma interferon from the LPL, but IL-4, IL-6, and TNF were detected. TSST-1 stimulation of LPL resulted in IL-2 and TNF production but no IL-4, IL-6, or gamma interferon. In IEL, SEE induced no IL-2, IL-4, or gamma interferon but produced IL-6 and TNF, while SEB stimulation resulted in no IL-2 or gamma interferon but did result in detectable IL-4, IL-6, and TNF. Taken together, these data indicate that there are significant differences in the cytokine profiles induced by superantigens in LPL and IEL compared with those in PBMC, and these differences may relate to differences in activation requirements. PMID:7583927

  17. Common Marker Genes Identified from Various Sample Types for Systemic Lupus Erythematosus.

    PubMed

    Bing, Peng-Fei; Xia, Wei; Wang, Lan; Zhang, Yong-Hong; Lei, Shu-Feng; Deng, Fei-Yan

    2016-01-01

    Systemic lupus erythematosus (SLE) is a complex auto-immune disease. Gene expression studies have been conducted to identify SLE-related genes in various types of samples. It is unknown whether there are common marker genes significant for SLE but independent of sample types, which may have potentials for follow-up translational research. The aim of this study is to identify common marker genes across various sample types for SLE. Based on four public microarray gene expression datasets for SLE covering three representative types of blood-born samples (monocyte; peripheral blood mononuclear cell, PBMC; whole blood), we utilized three statistics (fold-change, FC; t-test p value; false discovery rate adjusted p value) to scrutinize genes simultaneously regulated with SLE across various sample types. For common marker genes, we conducted the Gene Ontology enrichment analysis and Protein-Protein Interaction analysis to gain insights into their functions. We identified 10 common marker genes associated with SLE (IFI6, IFI27, IFI44L, OAS1, OAS2, EIF2AK2, PLSCR1, STAT1, RNASE2, and GSTO1). Significant up-regulation of IFI6, IFI27, and IFI44L with SLE was observed in all the studied sample types, though the FC was most striking in monocyte, compared with PBMC and whole blood (8.82-251.66 vs. 3.73-74.05 vs. 1.19-1.87). Eight of the above 10 genes, except RNASE2 and GSTO1, interact with each other and with known SLE susceptibility genes, participate in immune response, RNA and protein catabolism, and cell death. Our data suggest that there exist common marker genes across various sample types for SLE. The 10 common marker genes, identified herein, deserve follow-up studies to dissert their potentials as diagnostic or therapeutic markers to predict SLE or treatment response.

  18. Partial construction of apoptotic pathway in PBMC obtained from active SLE patients and the significance of plasma TNF-alpha on this pathway.

    PubMed

    Pitidhammabhorn, Dhanesh; Kantachuvesiri, Surasak; Totemchokchyakarn, Kitti; Kitiyanant, Yindee; Ubol, Sukathida

    2006-09-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disorder that affects various organs and systems. Increased apoptosis, together with defects in the uptake of apoptotic bodies, are thought to have a pathogenic role in SLE. By detection of chromatin condensation, 30% of apoptosis was detected in peripheral blood mononuclear cells (PBMC) from Thai patients with active SLE. Therefore, understanding of the molecular processes in PBMC apoptosis may allow us to gain insight into pathophysiology of SLE. Thus, genes involved in the apoptosis of PBMC from these patients were investigated ex vivo by cDNA array analysis. Seventeen apoptosis-related genes were stimulated in active SLE, more than twofold higher than in inactive SLE. These genes are classified into six groups, namely death receptors, death ligands, caspases, bcl-family, and neutral proteases and genes involved in endoplasmic reticulum stress-mediated apoptosis, such as caspase-4 and GADD153. Among those stimulated genes, tumor necrosis factor (TNF) and the TNF-receptor family were drastically up-regulated 60- and 19-fold higher than in healthy controls, respectively. Moreover, the degree of apoptosis correlated with the level of TNF-alpha in plasma, suggesting that the TNF family plays a role in the induction of apoptosis in SLE. To verify this hypothesis, PBMC from healthy individuals were treated with plasma from active SLE patients in the presence or absence of etanercept, a TNF inhibitor. In the presence of etanercept, active SLE plasma reduced the level of apoptosis to 26.43%. In conclusion, massive apoptotic death of PBMC occurred during the active stage of SLE. The molecular pathway of SLE-PBMC apoptosis was mediated at least via TNF/TNFR signaling pathway, which was confirmed by functional test of TNF-alpha in SLE patients' plasma.

  19. T-lymphocyte cytokine mRNA expression in cystic echinococcosis.

    PubMed

    Fauser, S; Kern, P

    1997-04-01

    In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.

  20. A lower degree of PBMC L1 methylation is associated with excess body weight and higher HOMA-IR in the presence of lower concentrations of plasma folate.

    PubMed

    Piyathilake, Chandrika J; Badiga, Suguna; Alvarez, Ronald D; Partridge, Edward E; Johanning, Gary L

    2013-01-01

    Identification of associations between global DNA methylation and excess body weight (EBW) and related diseases and their modifying factors are an unmet research need that may lead to decreasing DNA methylation-associated disease risks in humans. The purpose of the current study was to evaluate the following; 1) Association between the degree of peripheral blood mononuclear cell (PBMC) L1 methylation and folate, and indicators of EBW, 2) Association between the degree of PBMC L1 methylation and folate, and insulin resistance (IR) as indicated by a higher homeostasis model assessment (HOMA-IR). The study population consisted of 470 child-bearing age women diagnosed with abnormal pap. The degree of PBMC L1 methylation was assessed by pyrosequencing. Logistic regression models specified indicators of EBW (body mass index-BMI, body fat-BF and waist circumference-WC) or HOMA-IR as dependent variables and the degree of PBMC L1 methylation and circulating concentrations of folate as the independent predictor of primary interest. Women with a lower degree of PBMC L1 methylation and lower plasma folate concentrations were significantly more likely to have higher BMI, % BF or WC (OR = 2.49, 95% CI:1.41-4.47, P = 0.002; OR = 2.49, 95% CI:1.40-4.51, P = 0.002 and OR = 1.98, 95% = 1.14-3.48 P = 0.0145, respectively) and higher HOMA-IR (OR = 1.78, 95% CI:1.02-3.13, P = 0.041). Our results demonstrated that a lower degree of PBMC L1 methylation is associated with excess body weight and higher HOMA-IR, especially in the presence of lower concentrations of plasma folate.

  1. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model

    PubMed Central

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V.S.; Fletcher, Helen A.

    2015-01-01

    Introduction The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. Methods We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Results Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. Conclusions These results represent novel insights into the immune repertoires involved in malaria vaccination. PMID:26256523

  2. Transcriptional changes induced by candidate malaria vaccines and correlation with protection against malaria in a human challenge model.

    PubMed

    Dunachie, Susanna; Berthoud, Tamara; Hill, Adrian V S; Fletcher, Helen A

    2015-09-29

    The complexity of immunity to malaria is well known, and clear correlates of protection against malaria have not been established. A better understanding of immune markers induced by candidate malaria vaccines would greatly enhance vaccine development, immunogenicity monitoring and estimation of vaccine efficacy in the field. We have previously reported complete or partial efficacy against experimental sporozoite challenge by several vaccine regimens in healthy malaria-naïve subjects in Oxford. These include a prime-boost regimen with RTS,S/AS02A and modified vaccinia virus Ankara (MVA) expressing the CSP antigen, and a DNA-prime, MVA-boost regimen expressing the ME TRAP antigens. Using samples from these trials we performed transcriptional profiling, allowing a global assessment of responses to vaccination. We used Human RefSeq8 Bead Chips from Illumina to examine gene expression using PBMC (peripheral blood mononuclear cells) from 16 human volunteers. To focus on antigen-specific changes, comparisons were made between PBMC stimulated with CSP or TRAP peptide pools and unstimulated PBMC post vaccination. We then correlated gene expression with protection against malaria in a human Plasmodium falciparum malaria challenge model. Differentially expressed genes induced by both vaccine regimens were predominantly in the IFN-γ pathway. Gene set enrichment analysis revealed antigen-specific effects on genes associated with IFN induction and proteasome modules after vaccination. Genes associated with IFN induction and antigen presentation modules were positively enriched in subjects with complete protection from malaria challenge, while genes associated with haemopoietic stem cells, regulatory monocytes and the myeloid lineage modules were negatively enriched in protected subjects. These results represent novel insights into the immune repertoires involved in malaria vaccination. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Detection and sequencing of measles virus from peripheral mononuclear cells from patients with inflammatory bowel disease and autism.

    PubMed

    Kawashima, H; Mori, T; Kashiwagi, Y; Takekuma, K; Hoshika, A; Wakefield, A

    2000-04-01

    It has been reported that measles virus may be present in the intestine of patients with Crohn's disease. Additionally, a new syndrome has been reported in children with autism who exhibited developmental regression and gastrointestinal symptoms (autistic enterocolitis), in some cases soon after MMR vaccine. It is not known whether the virus, if confirmed to be present in these patients, derives from either wild strains or vaccine strains. In order to characterize the strains that may be present, we have carried out the detection of measles genomic RNA in peripheral mononuclear cells (PBMC) in eight patients with Crohn's disease, three patients with ulcerative colitis, and nine children with autistic enterocolitis. As controls, we examined healthy children and patients with SSPE, SLE, HIV-1 (a total of eight cases). RNA was purified from PBMC by Ficoll-paque, followed by reverse transcription using AMV; cDNAs were subjected to nested PCR for detection of specific regions of the hemagglutinin (H) and fusion (F) gene regions. Positive samples were sequenced directly, in nucleotides 8393-8676 (H region) or 5325-5465 (from noncoding F to coding F region). One of eight patients with Crohn disease, one of three patients with ulcerative colitis, and three of nine children with autism, were positive. Controls were all negative. The sequences obtained from the patients with Crohn's disease shared the characteristics with wild-strain virus. The sequences obtained from the patients with ulcerative colitis and children with autism were consistent with being vaccine strains. The results were concordant with the exposure history of the patients. Persistence of measles virus was confirmed in PBMC in some patients with chronic intestinal inflammation.

  4. Cytokine Profiles for Peripheral Blood Lymphocytes from Patients with Active Pulmonary Tuberculosis and Healthy Household Contacts in Response to the 30-Kilodalton Antigen of Mycobacterium tuberculosis

    PubMed Central

    Torres, Martha; Herrera, Teresa; Villareal, Hector; Rich, Elizabeth A.; Sada, Eduardo

    1998-01-01

    Patients with active tuberculosis (TB) have a stronger humoral but a poorer cellular immune response to the secreted 30-kDa antigen (Ag) of Mycobacterium tuberculosis than do healthy household contacts (HHC), who presumably are more protected against disease. The basis for this observation was studied by examining the Th1 (interleukin 2 [IL-2] and gamma interferon [IFN-γ])- and Th2 (IL-10 and IL-4)-type cytokines produced in response to the 30-kDa Ag by peripheral blood mononuclear cells (PBMC) from patients with active pulmonary TB (n = 7) and from HHC who were tuberculin (purified protein derivative) skin test positive (n = 12). Thirty-kilodalton-Ag-stimulated PBMC from TB patients produced significantly lower levels of IFN-γ (none detectable) than did those from HHC (212 ± 73 pg/ml, mean ± standard error) (P < 0.001). Likewise, 30-kDa-Ag-stimulated PBMC from TB patients failed to express IFN-γ mRNA by reverse transcription-PCR, whereas cells from HHC expressed the IFN-γ gene. In contrast, 30-kDa-Ag-stimulated PBMC from TB patients produced significantly higher levels of IL-10 (403 ± 80 pg/ml) than did those from HHC (187 ± 66 pg/ml) (P < 0.013), although cells from both groups expressed the IL-10 gene. IL-2 and IL-4 were not consistently produced, and their genes were not expressed by 30-kDa-Ag-stimulated cells from either TB patients or HHC. After treatment with antituberculous drugs, lymphocytes from four of the seven TB patients proliferated and three of them expressed IFN-γ mRNA in response to the 30-kDa Ag and produced decreased levels of IL-10. PMID:9423855

  5. Anti-HIV-1 Activity of Flavonoid Myricetin on HIV-1 Infection in a Dual-Chamber In Vitro Model

    PubMed Central

    Pasetto, Silvana; Pardi, Vanessa; Murata, Ramiro Mendonça

    2014-01-01

    HIV infection by sexual transmission remains an enormous global health concern. More than 1 million new infections among women occur annually. Microbicides represent a promising prevention strategy that women can easily control. Among emerging therapies, natural small molecules such as flavonoids are an important source of new active substances. In this study we report the in vitro cytotoxicity and anti-HIV-1 and microbicide activity of the following flavonoids: Myricetin, Quercetin and Pinocembrin. Cytotoxicity tests were conducted on TZM-bl, HeLa, PBMC, and H9 cell cultures using 0.01–100 µM concentrations. Myricetin presented the lowest toxic effect, with Quercetin and Pinocembrin relatively more toxic. The anti-HIV-1 activity was tested with TZM-bl cell plus HIV-1 BaL (R5 tropic), H9 and PBMC cells plus HIV-1 MN (X4 tropic), and the dual tropic (X4R5) HIV-1 89.6. All flavonoids showed anti-HIV activity, although Myricetin was more effective than Quercetin or Pinocembrin. In TZM-bl cells, Myricetin inhibited ≥90% of HIV-1 BaL infection. The results were confirmed by quantification of HIV-1 p24 antigen in supernatant from H9 and PBMC cells following flavonoid treatment. In H9 and PBMC cells infected by HIV-1 MN and HIV-1 89.6, Myricetin showed more than 80% anti-HIV activity. Quercetin and Pinocembrin presented modest anti-HIV activity in all experiments. Myricetin activity was tested against HIV-RT and inhibited the enzyme by 49%. Microbicide activities were evaluated using a dual-chamber female genital tract model. In the in vitro microbicide activity model, Myricetin showed promising results against different strains of HIV-1 while also showing insignificant cytotoxic effects. Further studies of Myricetin should be performed to identify its molecular targets in order to provide a solid biological foundation for translational research. PMID:25546350

  6. Mushroom plant workers experience a shift towards a T helper type 2 dominant state: contribution of innate immunity to spore antigen

    PubMed Central

    SAIKAI, T; TANAKA, H; SATO, N; ABE, S; MATSUURA, A

    2004-01-01

    Contemporary mushroom factories are places where there is a substantial risk of the occurrence of respiratory allergy. The aims of this investigation were to estimate its causative agents and to evaluate the contribution of innate immune response in mushroom workers who cultivate Hypsizigus marmoreus (Bunashimeji). Cross-sectional and follow-up studies were performed in the factory. We investigated CD1b, CD3, CD4, CD8, CD14, CD45RO, CD62L and CD161 expression in peripheral blood mononuclear cells (PBMC) by flow cytometry, and serum levels of interleukin (IL-2), IL-4, granulocyte-macrophage colony stimulating factor (GM-CSF), IL-13 and interferon (IFN)-γ by enzyme-linked immunosorbent assay (ELISA). Co-culture experiments of PBMC with spore extracts were also performed. Percentages of CD1b+ monocytes, natural killer (NK), NK T and CD4+ T cells were increased in the workers compared with controls. Increases in Th2 type cells, Th2/Th1 ratio and serum IL-13 and decreased IFN-γ were detected, indicating a Th2-biased status of the workers. The follow-up study showed that monocytes and NK cells increased soon after employment while CD4+ T, Th2 and NK T cells increased gradually as employment time lengthened. Serum precipitating antibody to the mushroom antigen could be detected at a later stage. Co-cultivation of PBMC with the spore extracts induced much higher CD1b expression, and suppressed secretion of Th1 cytokine in culture supernatants. These results indicate that the mushroom antigen contains highly immunogenic substances which stimulate PBMC into a Th2-biased in vivo status, and innate immune cells might also play a critical role in developing respiratory allergy in mushroom workers. PMID:14678272

  7. Supernatants from culture of type I collagen-stimulated PBMC from patients with cutaneous systemic sclerosis versus localized scleroderma demonstrate suppression of MMP-1 by fibroblasts.

    PubMed

    Brown, Monica; Postlethwaite, Arnold E; Myers, Linda K; Hasty, Karen A

    2012-06-01

    Systemic sclerosis (SSc) is a chronic fibrosing disease characterized by vasculopathy, autoimmunity, and an accumulation of collagen in tissues. Numerous studies have shown that compared to healthy or diseased controls, the peripheral blood mononuclear cells (PBMC) from patients with SSc produce a variety of cytokines or proliferate when cultured with solubilized type I collagen (CI) or constituent α1(II) and α2(I) polypeptide chains. The purpose of this study was to determine whether PBMC isolated from patients with SSc and cultured in vitro with soluble CI elaborated soluble mediators that inhibit the production of collagenase (i.e., matrix metalloproteinase, MMP-1) by fibroblasts. Supernatants of CI-stimulated PBMC from juvenile and adult diffuse cutaneous (dc)SSc patients significantly reduced MMP-1 production by SSc dermal fibroblasts, while supernatants of CI-stimulated PBMC from patients with localized scleroderma (LS) did not. CI-stimulated PBMC culture supernatants from patients with dcSSc in contrast to patients with LS exhibited increased levels of platelet-derived growth factor (PDGF)-AA, PDGF-BB, TNF-α, IL-13, and EGF. Prolonged culture of SSc dermal fibroblasts with recombinant PDGF-BB or IL-13 inhibited the induction of MMP-1 in response to subsequent TNF-α stimulation. These data suggest that therapies aimed at reducing these cytokines may decrease collagen accumulation in SSc, preventing the development of chronic fibrosis.

  8. The effects of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in osteopenia women.

    PubMed

    Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin

    2014-03-01

    The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn't have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn't show statistically significant difference, it tended to increase in the pilates group (NS). These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.

  9. The effects of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in osteopenia women

    PubMed Central

    Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin

    2014-01-01

    [Purpose] The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. [Methods] We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. [Results] As a result, serum P showed significant interaction effect between group and time (p<.001), the pilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (p<.05), while the control group showed a tendency to increase. Serum CK also showed a significant interaction between group and time (p<.05), the pilates group significantly increased at immediately after exercise and during recovery after exercise (p<.05) but the control group didn’t have changes. TNF-α and IL-6 mRNA expression in PBMC was significantly increased in the pilates group (p<.01, p<.05), although INF-γ mRNA expression didn’t show statistically significant difference, it tended to increase in the pilates group (NS). [Conclusion] These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption. PMID:25566441

  10. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements.

    PubMed

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement modification because of their high cytocompatibility and support of active resorption by osteoclasts.

  11. LOWER LEVELS OF INTERLEUKIN-12 PRECEDE THE DEVELOPMENT OF TUBERCULOSIS AMONG HIV-INFECTED WOMEN

    PubMed Central

    Bordón, José; Plankey, Michael W.; Young, Mary; Greenblatt, Ruth M.; Villacres, Maria C.; French, Audrey L.; Zhang, Jie; Brock, Guy; Appana, Savitri; Herold, Betsy; Durkin, Helen; Golub, Jonathan E.; Fernandez-Botran, Rafael

    2012-01-01

    Tuberculosis (TB) is the worldwide leading cause of death among HIV-infected individuals, accounting for more than half of AIDS-related deaths. A high risk of tuberculosis (TB) has been shown in early stages of the HIV disease, even in the presence of normal CD4+ cell counts. Moreover, the factors that determine protective immunity vs. susceptibility to M. tuberculosis cannot be fully explained by simple changes in IFNγ levels or a shift from Th1 to Th2 cytokines. This work investigated the relationship between cytokine expression profiles in peripheral blood mononuclear cells (PBMC) and susceptibility to M. tuberculosis in ten HIV+ women who went on to develop TB. RNA transcripts for IL-4, IL-4δ2, IL-10, IL-12(p35), IL-13, IL-17A, IFNγ and TNFα were measured by real-time quantitative PCR in unstimulated or TB peptide antigen-stimulated PBMCs from ten HIV+ women with positive tuberculin skin tests (TST) and compared with HIV-seropositive and seronegative women without previous TB and negative TST. Stimulated PBMC cultures showed significantly lower expression of IL-12p35 (p=0.004) and IL-10 (p=0.026) in the HIV+TB+ group six to twelve months before onset of TB compared to HIV+TB− women. Unstimulated PBMC from HIV+TB+ women also had lower expression of Th2 cytokines [IL-4 (p=0.056) and IL-13 (p=0.050)] compared to HIV+TB− women. These results suggest that lower IL-12 production by PBMC in response to TB antigens and lower levels of both Th1 and Th2 cytokines by PBMC correlate with future development of TB in HIV-infected women and may be responsible for their increased susceptibility. PMID:21880503

  12. Characterization of tumor-associated T-lymphocyte subsets and immune checkpoint molecules in head and neck squamous cell carcinoma

    PubMed Central

    Thelen, Martin; Reuter, Sabrina; Zentis, Peter; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; Wennhold, Kerstin; Garcia-Marquez, Maria; Tharun, Lars; Quaas, Alexander; Schauss, Astrid; Isensee, Jörg; Hucho, Tim; Huebbers, Christian

    2017-01-01

    The composition of tumor-infiltrating lymphocytes (TIL) reflects biology and immunogenicity of cancer. Here, we characterize T-cell subsets and expression of immune checkpoint molecules in head and neck squamous cell carcinoma (HNSCC). We analyzed TIL subsets in primary tumors (n = 34), blood (peripheral blood mononuclear cells (PBMC); n = 34) and non-cancerous mucosa (n = 7) of 34 treatment-naïve HNSCC patients and PBMC of 15 healthy controls. Flow cytometry analyses revealed a highly variable T-cell infiltration mainly of an effector memory phenotype (CD45RA−/CCR7−). Naïve T cells (CD45RA+/CCR7+) were decreased in the microenvironment compared to PBMC of patients, while regulatory T cells (CD4+/CD25+/CD127low and CD4+/CD39+) were elevated. Furthermore, we performed digital image analyses of entire cross sections of HNSCC to define the ‘Immunoscore’ (CD3+ and CD8+ cell infiltration in tumor core and invasive margin) and quantified MHC class I expression on tumor cells by immunohistochemistry. Immune checkpoint molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) were increased in TILs compared to peripheral T cells in flow-cytometric analysis. Human papillomavirus (HPV) positive tumors showed higher numbers of TILs, but a similar composition of T-cell subsets and checkpoint molecule expression compared to HPV negative tumors. Taken together, the tumor microenvironment of HNSCC is characterized by a strong infiltration of regulatory T cells and high checkpoint molecule expression on T-cell subsets. In view of increasingly used immunotherapies, a detailed knowledge of TILs and checkpoint molecule expression on TILs is of high translational relevance. PMID:28574843

  13. Human cytokine responses induced by Gram-positive cell walls of normal intestinal microbiota

    PubMed Central

    Chen, T; Isomäki, P; Rimpiläinen, M; Toivanen, P

    1999-01-01

    The normal microbiota plays an important role in the health of the host, but little is known of how the human immune system recognizes and responds to Gram-positive indigenous bacteria. We have investigated cytokine responses of peripheral blood mononuclear cells (PBMC) to Gram-positive cell walls (CW) derived from four common intestinal indigenous bacteria, Eubacterium aerofaciens (Eu.a.), Eubacterium limosum(Eu.l.), Lactobacillus casei(L.c.), and Lactobacillus fermentum (L.f.). Our results indicate that Gram-positive CW of the normal intestinal microbiota can induce cytokine responses of the human PBMC. The profile, level and kinetics of these responses are similar to those induced by lipopolysaccharide (LPS) or CW derived from a pathogen, Streptococcus pyogenes (S.p.). Bacterial CW are capable of inducing production of a proinflammatory cytokine, tumour necrosis factor-alpha (TNF-α), and an anti-inflammatory cytokine, IL-10, but not that of IL-4 or interferon-gamma (IFN-γ). Monocytes are the main cell population in PBMC to produce TNF-α and IL-10. Induction of cytokine secretion is serum-dependent; both CD14-dependent and -independent pathways are involved. These findings suggest that the human cytokine responses induced by Gram-positive CW of the normal intestinal microbiota are similar to those induced by LPS or Gram-positive CW of the pathogens. PMID:10540188

  14. Enhancement of natural killer cell activity in human immunodeficiency virus-infected subjects by in vitro treatment with biologic response modifier OK-432.

    PubMed Central

    Huang, X L; Fan, Z; Murayama, T; Rinaldo, C

    1995-01-01

    A decrease in natural killer (NK) cell function has been related to the progression of human immunodeficiency virus (HIV) infection. In the present study, we assessed the ability of a streptococcus-derived biologic response modifier, OK-432, to augment NK lysis of uninfected K562 and U937 cells and HIV-infected U937 cells by peripheral blood mononuclear cells (PBMC) from HIV-seropositive homosexual men. Optimal two- to fourfold increases in lysis of the three targets were observed after pretreatment of PBMC from HIV-negative subjects for 4 h with 2 micrograms of OK-432 per ml. This effect was related primarily to gamma interferon (IFN-gamma) production induced by OK-432 and was not linked to production of tumor necrosis factors alpha and beta or to monocytes in the cultures. The enhancing effect of OK-432 on NK cell function was diminished but still evident in PBMC from subjects with relatively early-phase (< 3-year) HIV infection and high CD4+ cell counts and was lower in subjects with longer-term HIV infection (> 3 years), in association with reduced production of IFN-gamma. Augmentation of NK cell activity in HIV-infected men by OK-432 was comparable to that induced by treatment of cells with 1,000 U of IFN-alpha or interleukin 2 per ml. The data suggest that the NK cell-enhancing effects of OK-432 are at least in part mediated by IFN-gamma and that OK-432 may be effective in treatment of patients with early-phase HIV infection. PMID:7719919

  15. Disease progression in recurrent glioblastoma patients treated with the VEGFR inhibitor axitinib is associated with increased regulatory T cell numbers and T cell exhaustion.

    PubMed

    Du Four, Stephanie; Maenhout, Sarah K; Benteyn, Daphné; De Keersmaecker, Brenda; Duerinck, Johnny; Thielemans, Kris; Neyns, Bart; Aerts, Joeri L

    2016-06-01

    Recurrent glioblastoma is associated with a poor overall survival. Antiangiogenic therapy results in a high tumor response rate but has limited impact on survival. Immunotherapy has emerged as an efficient treatment modality for some cancers, and preclinical evidence indicates that anti-VEGF(R) therapy can counterbalance the immunosuppressive tumor microenvironment. We collected peripheral blood mononuclear cells (PBMC) of patients with recurrent glioblastoma treated in a randomized phase II clinical trial comparing the effect of axitinib with axitinib plus lomustine and analyzed the immunophenotype of PBMC, the production of cytokines and expression of inhibitory molecules by circulating T cells. PBMC of 18 patients were collected at baseline and at 6 weeks after initiation of study treatment. Axitinib increased the number of naïve CD8(+) T cells and central memory CD4(+) and CD8(+) T cells and reduced the TIM3 expression on CD4(+) and CD8(+) T cells. Patients diagnosed with progressive disease on axitinib had a significantly increased number of regulatory T cells and an increased level of PD-1 expression on CD4(+) and CD8(+) T cells. In addition, reduced numbers of cytokine-producing T cells were found in progressive patients as compared to patients responding to treatment. Our results suggest that axitinib treatment in patients with recurrent glioblastoma has a favorable impact on immune function. At the time of acquired resistance to axitinib, we documented further enhancement of a preexisting immunosuppression. Further investigations on the role of axitinib as potential combination partner with immunotherapy are necessary.

  16. Radioprotective activity of Gentiana lutea extract and mangiferin.

    PubMed

    Menkovic, Nebojsa; Juranic, Zorica; Stanojkovic, Tatjana; Raonic-Stevanovic, Tatjana; Savikin, Katarina; Zdunić, Gordana; Borojevic, Nenad

    2010-11-01

    Radioprotective/sensitizing actions of Gentiana lutea aqueous-ethanol extract and mangiferin on radiation-induced effects on different types of cells were investigated. The study focused on the decreasing survival of normal human immunocompetent cells, the survival of the malignant cells in vitro, and the survival of ex vivo irradiated cells before and after consumption of the extract by healthy volunteers. The in vitro experiments showed that mangiferin could inhibit cytotoxic action of ionizing irradiation (doses of 6 and 8 Gy) only on normal resting human PBMC, not stimulated for proliferation. Orally consumed G. lutea extract showed the potential to reduce the cytotoxic effect of x-ray irradiation on normal human immunocompetent cells PBMC of some healthy people, without changing the susceptibility of malignant cells to be destroyed by irradiation. Since the radioprotective effect was individually dependent, further clinical studies are needed. Copyright © 2010 John Wiley & Sons, Ltd.

  17. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro

    PubMed Central

    2013-01-01

    Programmed death-1 (PD-1) is a known immunoinhibitory receptor that contributes to immune evasion of various tumor cells and pathogens causing chronic infection, such as bovine leukemia virus (BLV) infection. First, in this study, to establish a method for the expression and functional analysis of bovine PD-1, hybridomas producing monoclonal antibodies (mAb) specific for bovine PD-1 were established. Treatment with these anti-PD-1 mAb enhanced interferon-gamma (IFN-γ) production of bovine peripheral blood mononuclear cells (PBMC). Next, to examine whether PD-1 blockade by anti-PD-1 mAb could upregulate the immune reaction during chronic infection, the expression and functional analysis of PD-1 in PBMC isolated from BLV-infected cattle with or without lymphoma were performed using anti-PD-1 mAb. The frequencies of both PD-1+ CD4+ T cells in blood and lymph node and PD-1+ CD8+ T cells in lymph node were higher in BLV-infected cattle with lymphoma than those without lymphoma or control uninfected cattle. PD-1 blockade enhanced IFN-γ production and proliferation and reduced BLV-gp51 expression and B-cell activation in PBMC from BLV-infected cattle in response to BLV-gp51 peptide mixture. These data show that anti-bovine PD-1 mAb could provide a new therapy to control BLV infection via upregulation of immune response. PMID:23876077

  18. Genetic Variation of the Kinases That Phosphorylate Tenofovir and Emtricitabine in Peripheral Blood Mononuclear Cells.

    PubMed

    Figueroa, Dominique B; Madeen, Erin P; Tillotson, Joseph; Richardson, Paul; Cottle, Leslie; McCauley, Marybeth; Landovitz, Raphael J; Andrade, Adriana; Hendrix, Craig W; Mayer, Kenneth H; Wilkin, Timothy; Gulick, Roy M; Bumpus, Namandjé N

    2018-05-01

    Tenofovir (TFV) disoproxil fumarate and emtricitabine (FTC) are used in combination for HIV treatment and pre-exposure prophylaxis (PrEP). TFV disoproxil fumarate is a prodrug that undergoes diester hydrolysis to TFV. FTC and TFV are nucleoside/nucleotide reverse transcriptase inhibitors that upon phosphorylation to nucleotide triphosphate analogs competitively inhibit HIV reverse transcriptase. We previously demonstrated that adenylate kinase 2, pyruvate kinase, muscle and pyruvate kinase, liver and red blood cell phosphorylate TFV in peripheral blood mononuclear cells (PBMC). To identify the kinases that phosphorylate FTC in PBMC, siRNAs targeted toward kinases that phosphorylate compounds structurally similar to FTC were delivered to PBMC, followed by incubation with FTC and the application of a matrix-assisted laser desorption ionization-mass spectrometry method and ultra high performance liquid chromatography-UV to detect the formation of FTC phosphates. Knockdown of deoxycytidine kinase decreased the formation of FTC-monophosphate, while siRNA targeted toward thymidine kinase 1 decreased the abundance of FTC-diphosphate. Knockdown of either cytidine monophosphate kinase 1 or phosphoglycerate kinase 1 decreased the abundance of FTC-triphosphate. Next-generation sequencing of genomic DNA isolated from 498 HIV-uninfected participants in the HIV Prevention Trials Network 069/AIDS Clinical Trials Group A5305 clinical study, revealed 17 previously unreported genetic variants of TFV or FTC phosphorylating kinases. Of note, four individuals were identified as simultaneous carriers of variants of both TFV and FTC activating kinases. These results identify the specific kinases that activate FTC in PBMC, while also providing further insight into the potential for genetic variation to impact TFV and FTC activation.

  19. The DNA Methylome of Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Ye, Mingzhi; Zheng, Hancheng; Yu, Jian; Wu, Honglong; Sun, Jihua; Zhang, Hongyu; Chen, Quan; Luo, Ruibang; Chen, Minfeng; He, Yinghua; Jin, Xin; Zhang, Qinghui; Yu, Chang; Zhou, Guangyu; Sun, Jinfeng; Huang, Yebo; Zheng, Huisong; Cao, Hongzhi; Zhou, Xiaoyu; Guo, Shicheng; Hu, Xueda; Li, Xin; Kristiansen, Karsten; Bolund, Lars; Xu, Jiujin; Wang, Wen; Yang, Huanming; Wang, Jian; Li, Ruiqiang; Beck, Stephan; Wang, Jun; Zhang, Xiuqing

    2010-01-01

    DNA methylation plays an important role in biological processes in human health and disease. Recent technological advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%) methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood tests world-wide. We found that 68.4% of CpG sites and <0.2% of non-CpG sites were methylated, demonstrating that non-CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences. Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599 haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their transcriptional start sites of which >80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies, our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a paradigm for large-scale epigenomics studies. PMID:21085693

  20. Smoking-related microRNAs and mRNAs in human peripheral blood mononuclear cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Ming-Wei

    Teenager smoking is of great importance in public health. Functional roles of microRNAs have been documented in smoke-induced gene expression changes, but comprehensive mechanisms of microRNA-mRNA regulation and benefits remained poorly understood. We conducted the Teenager Smoking Reduction Trial (TSRT) to investigate the causal association between active smoking reduction and whole-genome microRNA and mRNA expression changes in human peripheral blood mononuclear cells (PBMC). A total of 12 teenagers with a substantial reduction in smoke quantity and a decrease in urine cotinine/creatinine ratio were enrolled in genomic analyses. In Gene Set Enrichment Analysis (GSEA) and Ingenuity Pathway Analysis (IPA), differentially expressedmore » genes altered by smoke reduction were mainly associated with glucocorticoid receptor signaling pathway. The integrative analysis of microRNA and mRNA found eleven differentially expressed microRNAs negatively correlated with predicted target genes. CD83 molecule regulated by miR-4498 in human PBMC, was critical for the canonical pathway of communication between innate and adaptive immune cells. Our data demonstrated that microRNAs could regulate immune responses in human PBMC after habitual smokers quit smoking and support the potential translational value of microRNAs in regulating disease-relevant gene expression caused by tobacco smoke. - Highlights: • We conducted a smoke reduction trial program and investigated the causal relationship between smoke and gene regulation. • MicroRNA and mRNA expression changes were examined in human PBMC. • MicroRNAs are important in regulating disease-causal genes after tobacco smoke reduction.« less

  1. RT-LAMP assay: an alternative approach for profiling of bovine heat shock protein 70 gene in PBMC cultured model.

    PubMed

    Sengar, Gyanendra Singh; Deb, Rajib; Raja, T V; Singh, Umesh; Kant, Rajiv; Bhanuprakash, V; Alyethodi, R R; Kumar, Sushil; Verma, Preetam; Chakraborty, Soumendu; Alex, Rani; Singh, Rani

    2017-07-01

    The purpose of this study is to develop a novel Reverse Transcriptase Loop-mediated isothermal amplification (RT-LAMP) based assay for in vitro profiling of heat shock protein 70 (Hsp70) in bovine peripheral blood mononuclear cell (PBMC) culture model utilizing the absorbance level of magnesium pyrophosphate-a by-product of LAMP reaction. A set of bovine Hsp70 specific RT-LAMP primers were designed to detect the differential absorbance level of magnesium pyrophosphate by-product which signifies the degree of Hsp70 amplification from cDNA of thermally induced cultured cells at different recovery periods. The study revealed significant (P < 0.05) correlation between absorbance level and the fold change of Hsp70 transcripts at different kinetic intervals of heat stress recovery in bovine PBMC cell culture models. RT-LAMP based absorbance assay can be used as an indicator to measure the degree of bovine Hsp70 transcripts produced during thermal stress and can be used as an alternative to the traditional Real time PCR assay. Developed RT-LAMP assay can be used as a cost-effective method for profiling of bovine HSP70 gene.

  2. Direct determination of phosphorylated intracellular anabolites of stavudine (d4T) by liquid chromatography/tandem mass spectrometry.

    PubMed

    Pruvost, A; Becher, F; Bardouille, P; Guerrero, C; Creminon, C; Delfraissy, J F; Goujard, C; Grassi, J; Benech, H

    2001-01-01

    The objective was to develop and validate a routine assay for active intracellular anabolites of stavudine (d4T), a nucleoside reverse transcriptase inhibitor in human PBMC, applicable to pharmacokinetic studies and treatment monitoring. This was achieved using liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS), which theoretically allies optimum sensitivity, specificity and high sample throughput. After cellular lysis in a Tris/methanol buffer, the extract spiked with 2[H(8)]-ATP (internal standard) is directly injected into the LC/MS/MS system. Phosphorylated metabolites of d4T as well as deoxythymidine-triphosphate, the competitor on the reverse transcriptase, are separated from d4T on a reverse-phase microbore column with ion pairing. The detection is performed in the multiple reaction monitoring (MRM) mode after drug ionisation in negative mode electrospray. The limit of quantitation for d4T-TP was 138 fmol per 7 mL blood (9.8 fmol per 10(6) cells) and CV% for repeatability and intermediate precision were lower than 15%. Stability of compounds was checked before and during the process of isolation of PBMC. Cellular samples from several d4T-treated patients were successfully analysed using this method and d4T-triphosphate and deoxythymidine triphosphate were recovered. In conclusion, we have developed and validated a routine LC/MS/MS method that allows the simultaneous determination of mono-, di- and triphosphorylated anabolites of d4T in PBMC as well as the natural corresponding triphosphate in one analysis. For the first time, the chain terminator ratio (d4T-TP/dT-TP) could be directly measured. This method can be used simply and routinely on more than 35 samples per day. Extension to other nucleoside analogues is under development. Copyright 2001 John Wiley & Sons, Ltd.

  3. Qualitative Immune Modulation by Interleukin-2 (IL-2) Adjuvant Therapy in Immunological Non Responder HIV-Infected Patients

    PubMed Central

    Sabbatini, Francesca; Bandera, Alessandra; Ferrario, Giulio; Trabattoni, Daria; Marchetti, Giulia; Franzetti, Fabio; Clerici, Mario; Gori, Andrea

    2010-01-01

    Background Treatment of HIV-infected patients with interleukin-2 (IL-2) produces significant increases in CD4 T cell counts; however an associated qualitative improvement in cells function has yet to be conclusively demonstrated. By measuring mycobacterial killing activity, we evaluated IL-2-mediated functional immune enhancement ex vivo in immunological non-responders (INRs). Methods and Findings PBMC from 12 immunological non-responders (INRs) (CD4+<200/µl, HIV-RNA<50 cp/ml) on combination antiretroviral treatment (cART) were collected at baseline, and after 3 IL-2 cycles. Eight INRs receiving only cART were studied as controls. After 21 days of PBMC incubation with a virulent M. avium suspension, counts of residual colony forming units (CFUs) and concentrations of TNF-α, IL-10 and IFN-γ were determined. In IL-2 treated patients, a significant reduction in mean residual CFUs of PBMC cultures was observed (p<0.01). Moreover, following IL-2 treatment, significant increases in PBMC's IFNγ production (p = 0.02) and substantial reductions in IL-10 levels were observed. Conclusions IL-2 therapy restores the ability of the lympho-monocyte system in eliciting an effective response against mycobacterial infections. Our data indicate the possibility of a clinical role held by IL-2 in enhancing the immune function of subjects unable to achieve immune competence through cART alone. PMID:21124762

  4. Curcumin and its synthetic analogue dimethoxycurcumin differentially modulates antioxidant status of normal human peripheral blood mononuclear cells.

    PubMed

    Simon, Emmanuel; Aswini, P; Sameer Kumar, V B; Mankadath, Gokuldas

    2018-05-01

    Curcumin is a polyphenol derived from the herb Curcuma longa, which has been extensively studied in terms of its antitumour, antioxidant, and chemopreventive activity as well as various other effects. In the present work we compared curcumin with its synthetic analogue dimethoxycurcumin (dimc) in terms of its antioxidant enzyme-modulating effects in human peripheral blood mononuclear cells (PBMC). We found that these compounds modulate antioxidant enzymes differentially. Both curcumin and dimethoxycurcumin effected a decrease in lipid peroxidation status in PBMC, however, curcumin had better activity in this regard. An increase in the activity of catalase was seen in the case of curcumin-treated PBMC, whereas dimc increased catalase activity significantly to almost twofold level. Real time-polymerase chain reaction (RT-PCR) analysis revealed significant up-regulation of catalase at mRNA level post treatment with curcumin as well as dimc, however, dimc had better activity in this regard. Glutathione reductase (GR) activity and reduced glutathione levels increased in the case of peripheral blood mononuclear cells (PBMC) treated with curcumin, however, the trend was reversed with dimethoxycurcumin where, both glutathione reductase activity and reduced glutathione levels were significantly reduced. RT-PCR analysis of glutathione reductase mRNA levels showed decrease in mRNA levels post treatment with dimethoxycurcumin (dimc) further corroborating GR enzyme assay results, however, we could not obtain significant result post curcumin treatment. NFkB reporter assay and western blot analysis of nuclear as well as cytosolic fractions of NFkB revealed that curcumin inhibits NFkB activation whereas inhibition was much less with dimc. It has been reported that curcumin and dimc exerts differential cytotoxicity in normal and tumour cells and the reason for this had been attributed to the differential uptake of these compounds by normal cells and tumour cells. Based on our results we propose that differential modulation of antioxidant enzymes via NFkB pathway could be the reason behind differential cytotoxicity of dimc as well as curcumin in normal cells and tumour cells in addition to differential uptake of these compounds as reported previously.

  5. Specific suppression of anti-DNA production in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liebling, M.R.; Wong, C.; Radosevich, J.

    1988-09-01

    To investigate the regulation of anti-DNA antibody production, we generated anti-DNA-specific suppressor cells by exposing normal human T cells and a small percentage of adherent cells to high concentrations of DNA. These cells suppressed the production of anti-DNA by both autologous peripheral blood mononuclear cells (PBMC) and allogeneic PBMC derived from systemic lupus erythematosus (SLE) patients. Anti-DNA production was suppressed significantly more than anti-RNA, antitetanus, or total immunoglobulin production. Specific suppression was enhanced by increasing the numbers of DNA-primed CD8+ cells and was obliterated by irradiation of the DNA-primed cells. In contrast to T cells from normal individuals, T cellsmore » obtained from two intensively studied SLE patients were unable to generate specific suppressor cells for anti-DNA production in both autologous and allogeneic test systems. Despite this defect, these patients were still capable of generating specific suppressor cells for antibody production directed against an exogenous antigen, tetanus toxoid.« less

  6. Neutrophils are immune cells preferentially targeted by retinoic acid in elderly subjects

    PubMed Central

    2010-01-01

    Background The immune system gradually deteriorates with age and nutritional status is a major factor in immunosenescence. Of the many nutritional factors implicated in age-related immune dysfunction, vitamin A may be a good candidate, since vitamin A concentrations classically decrease during aging whereas it may possess important immunomodulatory properties via its active metabolites, the retinoic acids. This prompted us to investigate the immune response induced by retinoids in adults and elderly healthy subjects. Before and after oral supplementation with 13cis retinoic acid (0.5 mg/kg/day during 28 days), whole blood cells were phenotyped, and functions of peripheral blood mononuclear cells (PBMC) and polymorphonuclear cells (PMN) were investigated by flow cytometry and ELISA tests. Results In both young adults (n = 20, 25 ± 4 years) and older subjects (n = 20, 65 ± 4 years), retinoic acid supplementation had no effect on the distribution of leukocyte subpopulations or on the functions of PBMC (Il-2 and sIl-2R production, membrane expression of CD25). Concerning PMN, retinoic acid induced an increase in both spontaneous migration and cell surface expression of CD11b in the two different age populations, whereas bactericidal activity and phagocytosis remained unchanged. Conclusions We demonstrated that retinoic acid induces the same intensity of immune response between adult and older subjects, and more specifically affects PMN functions, i.e. adhesion and migration, than PBMC functions. PMID:20727130

  7. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation

    PubMed Central

    Bennett, Darin C.; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K. K.; McElwee, Kevin J.; Cheng, Kimberly M.

    2015-01-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51 × faster), ostrich oil (1.46 × faster), and rhea oil (1.64 × faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35 × slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. PMID:26217022

  8. Oxidative Stress and Genotoxicity of Zinc Oxide Nanoparticles to Pseudomonas Species, Human Promyelocytic Leukemic (HL-60), and Blood Cells.

    PubMed

    Soni, Deepika; Gandhi, Deepa; Tarale, Prashant; Bafana, Amit; Pandey, R A; Sivanesan, Saravanadevi

    2017-08-01

    In the present study, toxicity of commercial zinc oxide nanoparticles (ZnO NPs) was studied on the bacterium Pseudomonas sp., human promyelocytic leukemia (HL-60) cells, and peripheral blood mononuclear cells (PBMC). The toxicity was assessed by measuring growth, cell viability, and protein expression in bacterial cell. The bacterial growth and viability decreased with increasing concentrations of ZnO NP. Three major proteins, ribosomal protein L1 and L9 along with alkyl hydroperoxides reductase, were upregulated by 1.5-, 1.7-, and 2.0-fold, respectively, after ZnO NP exposure. The results indicated oxidative stress as the leading cause of toxic effect in bacteria. In HL-60 cells, cytotoxic and genotoxic effects along with antioxidant enzyme activity and reactive oxygen species (ROS) generation were studied upon ZnO NP treatment. ZnO NP exhibited dose-dependent increase in cell death after 24-h exposure. The DNA-damaging potential of ZnO NP in HL-60 cells was maximum at 0.05 mg/L concentration. Comet assay showed 70-80% increase in tail DNA at 0.025 to 0.05 mg/L ZnO NP concentration. A significant increase of 1.6-, 1.4-, and 2.0-fold in ROS level was observed after 12 h. Genotoxic potential of ZnO NPs was also demonstrated in PBMC through DNA fragmentation. Thus, ZnO NP, besides being an essential element having antibacterial activity, also showed toxicity towards human cells (HL-60 and PBMC).

  9. Protein-bound polysaccharide-K augments the anticancer effect of fluoropyrimidine derivatives possibly by lowering dihydropyrimidine dehydrogenase expression in gastrointestinal cancers.

    PubMed

    Mekata, Eiji; Murata, Satoshi; Sonoda, Hiromichi; Shimizu, Tomoharu; Umeda, Tomoko; Shiomi, Hisanori; Naka, Shigeyuki; Yamamoto, Hiroshi; Abe, Hajime; Edamatsu, Takeo; Fujieda, Ayako; Fujioka, Masaki; Wada, Tsutomu; Tani, Tohru

    2013-12-01

    Protein-bound polysaccharide-K (PSK) enhances the antitumor effect of anticancer drug when used clinically in combination with such drugs. PSK is known to act by immune-mediated mechanisms; however, the relationship between PSK and metabolic enzymes of anticancer drugs is unknown. We used the collagen gel droplet-embedded culture drug sensitivity test (CD-DST) clinically to evaluate the sensitivity of anticancer drugs. In the present study, we modified the CD-DST by adding peripheral blood mononuclear cells (PBMCs) (immuno-CD-DST) and examined the antitumor effect of PSK in combination with anticancer drugs. First, HCT116 human colon cancer cells were cultured with PSK and 5-fluorouracil (5-FU) or 5'-deoxy-5-fluorouridine (5'-DFUR) in the presence or absence of PBMCs, and the antiproliferative effects were compared. In the presence of PBMCs, PSK augmented the inhibitory effects of 5-FU and 5'-DFUR on HCT116 cell proliferation. Next, using human gastric cancer and colon cancer cell lines, the effects of PSK on mRNA expression of various metabolic enzymes of fluoropyrimidines: dihydropyrimidine dehydrogenase (DPD), thymidylate synthase, thymidine phosphorylase and orotate phosphoribosyl transferase, were examined by real-time PCR. PSK significantly enhanced DPD mRNA expression in all of the cancer cell lines tested, but not those of the other enzymes. Addition of IFN-α and TRAIL, cytokines known to inhibit DPD expression, to the cultures reduced DPD mRNA expression in the cancer cells. When PBMC samples collected from healthy volunteers were cultured with PSK, IFN-α mRNA expression increased in 3 of the 5 PBMC samples, while TRAIL mRNA expression was unchanged. The present results propose the possibility that PSK induces PBMCs to express IFN-α which inhibits DPD expression, and consequently augments the antitumor effect of 5-FU or 5'-DFUR. Immuno-CD-DST is useful for evaluating drugs with immunological mechanisms of action.

  10. Physical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sorting

    PubMed Central

    Telikepalli, Srivalli; Shinogle, Heather E.; Thapa, Prem S.; Kim, Jae Hyun; Deshpande, Meghana; Jawa, Vibha; Middaugh, C. Russell; Narhi, Linda O.; Joubert, Marisa K.; Volkin, David B.

    2015-01-01

    An IgG2 monoclonal antibody (mAb) solution was subjected to stirring, generating high concentrations of nanometer and subvisible particles, which were then successfully size enriched into different size bins by low speed centrifugation or a combination of gravitational sedimentation and Fluorescence-Activated Cell Sorting (FACS). The size-fractionated mAb particles were assessed for their ability to elicit the release of cytokines from a population of donor-derived human peripheral blood mononuclear cells (PBMC) at two phases of the immune response. Fractions enriched in nanometer-sized particles showed a lower response than those enriched in micron-sized particles in this assay. Particles of 5–10 μm in size displayed elevated cytokine release profiles compared to other size ranges. Stir-stressed mAb particles had amorphous morphology, contained protein with partially altered secondary structure, elevated surface hydrophobicity (compared to controls), and trace levels of elemental fluorine. FACS size-enriched the mAb particle samples, yet did not notably alter the overall morphology or composition of particles as measured by Microflow imaging, Transmission Electron Microscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy. The utility and limitations of FACS for size separation of mAb particles and potential of in-vitro PBMC studies to rank order the immunogenic potential of various types of mAb particles is discussed. PMID:25753756

  11. Biological assay using T cell response for Cry-consensus peptide designed for the peptide-based immunotherapy of Japanese cedar pollinosis.

    PubMed

    Kozutsumi, Daisuke; Tsunematsu, Masako; Yamaji, Taketo; Kino, Kohsuke

    2007-01-01

    Cry-consensus peptide is a linearly linked peptide of T-cell epitopes for the management of Japanese cedar (JC) pollinosis and is expected to become a new drug for immunotherapy. However, the mechanism of T-cell epitopes in allergic diseases is not well understood, and thus, a simple in vitro procedure for evaluation of its biological activity is desired. Peripheral blood mononuclear cells (PBMC) were isolated from 27 JC pollinosis patients and 10 healthy subjects, and cultured in vitro for 4 days in the presence of Cry-consensus peptide and (3)H-thymidine. The relationship between growth stimulation (stimulation index; SI) and antigen-specific IgE levels in serum was also investigated in JC pollinosis patients. Moreover, to confirm the importance of the primary sequence in Cry-consensus peptide, heat-treated Cry-consensus peptide and a mixture of the amino acids of which Cry-consensus peptide is composed, and their (3)H-thymidine uptake was compared with Cry-consensus peptide. Finally, whether Cry-consensus peptide stimulates PBMCs from healthy subjects was investigated. The mean SI of JC patients showed a good correlation with Cry-consensus peptide concentration in the culture medium; however, the SI was independent of the anti-Cry j 1 IgE level. Heat-denatured Cry-consensus peptide retained a PBMC proliferation stimulatory effect comparable to the original Cry-consensus peptide, while the mixture of amino acids constituting Cry-consensus peptide did not stimulate PBMC proliferation. PBMCs from healthy subjects did not respond to Cry-consensus peptide at all. These data indicate that the PBMC response of patients suffering from JC pollinosis to Cry-consensus peptide is specific for the sequence of T cell epitopes thereof and may be useful for the evaluation of the efficacy of Cry-consensus peptide in vivo.

  12. Fetal Fibroblasts and Keratinocytes with Immunosuppressive Properties for Allogeneic Cell-Based Wound Therapy

    PubMed Central

    Zuliani, Thomas; Saiagh, Soraya; Knol, Anne-Chantal; Esbelin, Julie; Dréno, Brigitte

    2013-01-01

    Fetal skin heals rapidly without scar formation early in gestation, conferring to fetal skin cells a high and unique potential for tissue regeneration and scar management. In this study, we investigated the possibility of using fetal fibroblasts and keratinocytes to stimulate wound repair and regeneration for further allogeneic cell-based therapy development. From a single fetal skin sample, two clinical batches of keratinocytes and fibroblasts were manufactured and characterized. Tolerogenic properties of the fetal cells were investigated by allogeneic PBMC proliferation tests. In addition, the potential advantage of fibroblasts/keratinocytes co-application for wound healing stimulation has been examined in co-culture experiments with in vitro scratch assays and a multiplex cytokines array system. Based on keratin 14 and prolyl-4-hydroxylase expression analyses, purity of both clinical batches was found to be above 98% and neither melanocytes nor Langerhans cells could be detected. Both cell types demonstrated strong immunosuppressive properties as shown by the dramatic decrease in allogeneic PBMC proliferation when co-cultured with fibroblasts and/or keratinocytes. We further showed that the indoleamine 2,3 dioxygenase (IDO) activity is required for the immunoregulatory activity of fetal skin cells. Co-cultures experiments have also revealed that fibroblasts-keratinocytes interactions strongly enhanced fetal cells secretion of HGF, GM-CSF, IL-8 and to a lesser extent VEGF-A. Accordingly, in the in vitro scratch assays the fetal fibroblasts and keratinocytes co-culture accelerated the scratch closure compared to fibroblast or keratinocyte mono-cultures. In conclusion, our data suggest that the combination of fetal keratinocytes and fibroblasts could be of particular interest for the development of a new allogeneic skin substitute with immunomodulatory activity, acting as a reservoir for wound healing growth factors. PMID:23894651

  13. Allogeneic peripheral blood stem cell transplantation for the treatment of chronic active Epstein-Barr virus infection.

    PubMed

    Fujii, N; Takenaka, K; Hiraki, A; Maeda, Y; Ikeda, K; Shinagawa, K; Ashiba, A; Munemasa, M; Sunami, K; Hiramatsu, Y; Ishimaru, F; Niiya, K; Yoshino, T; Harada, M

    2000-10-01

    The prognosis of chronic active Epstein-Barr virus infection (CAEBV) is very poor. We describe a 24-year-old male with severe CAEBV who was treated with allogeneic peripheral blood stem cell transplantation (allo-PBSCT). On admission, EBER-1 in lymphocytes infiltrating the liver, EBV-DNA in peripheral blood mononuclear cells (PBMC) and monoclonal NK cell proliferation were confirmed. After unsuccessful chemotherapy, he received an allo-PBSCT from his HLA-identical sister. Although he died of pulmonary hemorrhage on day +19, EBV-DNA was undetectable by PCR in PBMC, and the post-mortem liver showed no EBER-1-positive lymphocytes. This experience suggests that EBV-positive lymphocytes in CAEBV may be eradicated by allo-PBSCT, thereby raising the possibility of a new treatment modality. Bone Marrow Transplantation (2000) 26, 805-808.

  14. Phytochemical properties and cytotoxicity evaluation of the aqueous extracts from Rafflesia cantleyi

    NASA Astrophysics Data System (ADS)

    Bakoush, Sumaia Mohamed Mohamed; Yaacob, Wan Ahmad; Adam, Jumaat; Ibrahim, Nazlina

    2015-09-01

    In the present study, phytochemical properties and cytotoxic evaluation of aqueous extract of Rafflesia cantleyi bud parts were done. Three bud parts including disk, bract and perigone tube were extracted in water to produce crude aqueous extract. Cytotoxic activity of R. cantleyi bud parts was assessed by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against normal cells Vero, 3T3 cell lines and mice peripheral blood mononuclear cells PBMC. Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and alkaloids. The CC50 value against Vero, 3T3 and PBMC cells were equal or more than 125 µg/ml indicating the non-cytotoxic effect of the bud parts extracts. The finding revealed that crude extracts of all the tested bud parts contained potential bioactive compounds which can be used for various biological activities and have no cytotoxicity to selected normal cells.

  15. T lymphocyte-derived TNF and IFN-γ repress HFE expression in cancer cells.

    PubMed

    Reuben, Alexandre; Godin-Ethier, Jessica; Santos, Manuela M; Lapointe, Réjean

    2015-06-01

    The immune system and tumors are closely intertwined initially upon tumor development. During this period, tumors evolve to promote self-survival through immune escape, including by targeting crucial components involved in the presentation of antigens to the immune system in order to avoid recognition. Accordingly, components involved in MHC I presentation of tumor antigens are often mutated and down-regulated targets in tumors. On the other hand, the immune system has been shown to influence tumors through production of immunosuppressive cytokines, recruitment and polarization of cells favoring or impeding tumor escape or through production of anti-tumor cytokines promoting tumor rejection. We previously discovered that the hemochromatosis protein HFE, a negative regulator of iron absorption, dampens classical MHC I antigen presentation. In this study, we evaluated the impact of activated T lymphocytes purified from peripheral blood mononuclear cells (PBMC) on HFE expression in tumor cell lines. We co-cultured tumor cell lines from melanoma, lung, and kidney cancers with anti-CD3-activated PBMC and established that HFE expression is increased in tumor cell lines compared to healthy tissues, whilst being down-regulated significantly upon exposure to activated PBMC. HFE down-regulation was mediated by both CD4 and CD8 T lymphocytes, through production of soluble mediators, namely TNF and IFN-γ. These results suggest that the immune system may modulate tumor HFE expression in inflammatory conditions in order to regulate MHC I antigen presentation and promote tumor clearance. Copyright © 2015. Published by Elsevier Ltd.

  16. Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism.

    PubMed

    Smith, Desirée E C; Hornstra, Jacqueline M; Kok, Robert M; Blom, Henk J; Smulders, Yvo M

    2013-08-01

    In randomized trails, folic acid (FA) lowered plasma homocysteine, but failed to reduce cardiovascular risk. We hypothesize this is due to a discrepancy between plasma and intracellular effects of FA. In a double-blind trial, 50 volunteers were randomized to received 500 µg FA daily for 8 weeks, or placebo. Plasma and peripheral blood mononuclear cell (PBMC) concentrations of homocysteine, S-adenosylmethionine (SAM), S-adenosylhomocysteine, methionine, cystathionine and 5-methyltetrahydrofolate (bioactive folate) were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). PBMCs were used as a cellular model since they display the full spectrum of one-carbon (1C) enzymes and reactions. At baseline, plasma concentrations were a poor reflection of intracellular concentrations for most 1C metabolites, except 5-methyltetrahydrofolate (R=0.33, p=0.02), homocysteine (Hcy) (R=0.35, p=0.01), and cystathionine (R=0.45, p=0.001). FA significantly lowered plasma homocysteine (p=0.00), but failed to lower intracellular homocysteine or change the concentrations of any of the other PBMC 1C metabolites. At baseline, PBMC homocysteine concentrations correlated to PBMC SAM. After FA supplementation, PBMC homocysteine no longer correlated with PBMC SAM, suggesting a loss of SAM's regulatory function. In vitro experiments in lymphoblasts confirmed that at higher folate substrate concentrations, physiological concentrations of SAM no longer effectively inhibit the key regulatory enzyme methylenetetrahydrofolate reductase (MTHFR). FA supplementation does not reduce intracellular concentrations of Hcy or any of its closely related substances. Rather, FA may disturb physiological regulation of intracellular 1C metabolism by interfering with SAM's inhibitory effect on MTHFR activity.

  17. Human T-cell responses to oral streptococci in human PBMC-NOD/SCID mice.

    PubMed

    Salam, M A; Nakao, R; Yonezawa, H; Watanabe, H; Senpuku, H

    2006-06-01

    We investigated cellular and humoral immune responses to oral biofilm bacteria, including Streptococcus mutans, Streptococcus anginosus, Streptococcus sobrinus, and Streptococcus sanguinis, in NOD/SCID mice immunized with human peripheral blood mononuclear cells (hu-PBMC-NOD/SCID mice) to explore the pathogenicity of each of those organisms in dental and oral inflammatory diseases. hu-PBMC-NOD/SCID mice were immunized by intraperitoneal injections with the whole cells of the streptococci once a week for 3 weeks. FACS analyses were used to determine the percentages of various hu-T cell types, as well as intracellular cytokine production of interleukin-4 and interferon-gamma. Serum IgG and IgM antibody levels in response to the streptococci were also determined by enzyme-linked immunosorbent assay. S. anginosus induced a significant amount of the proinflammatory cytokine interferon-gamma in CD4(+) and CD8(+) T cells in comparison with the other streptococci. However, there was no significant differences between the streptococci in interleukin-4 production by CD4(+) and CD8(+) T cells after inoculation. Further, S. mutans significantly induced human anti-S. mutans IgG, IgG(1), IgG(2), and IgM antibodies in comparison with the other organisms. In conclusion, S. anginosus up-regulated Th1 and Tc1 cells, and S. mutans led to increasing levels of their antibodies, which was associated with the induction of Th2 cells. These results may contribute to a better understanding of human lymphocyte interactions to biofilm bacteria, along with their impact on dental and mucosal inflammatory diseases, as well as endocarditis.

  18. T cell-replacing factor for glucocorticosteroid-induced immunoglobulin production. A unique steroid-dependent cytokine

    PubMed Central

    1983-01-01

    Glucocorticosteroids (GCS) added to otherwise unstimulated cultures of human peripheral blood mononuclear cells (PBMC) induce the synthesis and secretion of all classes of immunoglobulin. The magnitude of this response is similar to that seen with other polyclonal B cell activators such as pokeweed mitogen (PWM), and like that of PWM, the steroid effect is dependent on both T cells and monocytes. To determine the cellular target for GCS in these cultures, separated populations of T cells and non-T cells were preincubated with steroids and then recombined. No immunoglobulin was produced in any of these preincubation experiments. As a different approach to this question, supernatants were collected from various cell populations following stimulation with PWM, concanavalin A (Con A), phytohemagglutinin (PHA), alloantigens, or GCS. These supernatants were tested for their effects on GCS-induced Ig production by B cells. Supernatants from 3-d cultures of unstimulated, as well as GCS-treated, PBMC contained a T cell- replacing factor that permitted T-depleted PBMC to produce Ig upon steroid stimulation. This supernatant factor (TRF-S) could be produced in the absence of steroid stimulation, but both the factor and GCS were necessary for the induction of Ig synthesis. Production of the TRF-S required the presence of both T cells and adherent cells in culture and was found in the highest concentrations at 3-4 d of culture. Supernatants from cultures stimulated with PWM, PHA, Con A, and alloantigens did not contain detectable TRF-S activity, and TRF-S was unable to replace helper T cells for PWM-induced Ig production. TRF-S required the presence of adherent cells in the T cell-depleted responder population for its action. Further, it was effective in inducing Ig production along with GCS in the presence of a sufficient concentration of cyclosporin A to block all T cell helper activity for primary responses of PBMC to PWM or GCS. TRF-S was inactivated by trypsin treatment, heating to 56 degrees C, freezing, lyophilization, and storage at 4 degrees C for greater than 3 wk. Its molecular weight is probably 10,000 daltons or more, since TRF-S activity is not rapidly dialyzable. These experiments indicate that GCS-induced Ig production by human B cells does not require the presence of intact T cells in the cultures and therefore the steroids are not exerting their influence directly on T suppressor or T helper cells. Furthermore, they demonstrate a previously unrecognized cytokine that induces the differentiation of human B cells to Ig production in the presence of GCS. PMID:6605406

  19. Aqueous extract of Carica papaya leaves exhibits anti-tumor activity and immunomodulatory effects.

    PubMed

    Otsuki, Noriko; Dang, Nam H; Kumagai, Emi; Kondo, Akira; Iwata, Satoshi; Morimoto, Chikao

    2010-02-17

    Various parts of Carica papaya Linn. (CP) have been traditionally used as ethnomedicine for a number of disorders, including cancer. There have been anecdotes of patients with advanced cancers achieving remission following consumption of tea extract made from CP leaves. However, the precise cellular mechanism of action of CP tea extracts remains unclear. The aim of the present study is to examine the effect of aqueous-extracted CP leaf fraction on the growth of various tumor cell lines and on the anti-tumor effect of human lymphocytes. In addition, we attempted to identify the functional molecular weight fraction in the CP leaf extract. The effect of CP extract on the proliferative responses of tumor cell lines and human peripheral blood mononuclear cells (PBMC), and cytotoxic activities of PBMC were assessed by [(3)H]-thymidine incorporation. Flow cytometric analysis and measurement of caspase-3/7 activities were performed to confirm the induction of apoptosis on tumor cells. Cytokine productions by PBMC were measured by ELISA. Gene profiling of the effect of CP extract treatment was performed by microarray analysis and real-time RT-PCR. We observed significant growth inhibitory activity of the CP extract on tumor cell lines. In PBMC, the production of IL-2 and IL-4 was reduced following the addition of CP extract, whereas that of IL-12p40, IL-12p70, IFN-gamma and TNF-alpha was enhanced without growth inhibition. In addition, cytotoxicity of activated PBMC against K562 was enhanced by the addition of CP extract. Moreover, microarray analyses showed that the expression of 23 immunomodulatory genes, classified by gene ontology analysis, was enhanced by the addition of CP extract. In this regard, CCL2, CCL7, CCL8 and SERPINB2 were representative of these upregulated genes, and thus may serve as index markers of the immunomodulatory effects of CP extract. Finally, we identified the active components of CP extract, which inhibits tumor cell growth and stimulates anti-tumor effects, to be the fraction with M.W. less than 1000. Since Carica papaya leaf extract can mediate a Th1 type shift in human immune system, our results suggest that the CP leaf extract may potentially provide the means for the treatment and prevention of selected human diseases such as cancer, various allergic disorders, and may also serve as immunoadjuvant for vaccine therapy. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  20. Evolution of cytokine profile during the treatment of cerebral toxoplasmosis in HIV-infected patients.

    PubMed

    Meira, Cristina da Silva; Pereira-Chioccola, Vera Lucia; Vidal, José Ernesto; Motoie, Gabriela; Costa-Silva, Thaís Alves da; Gava, Ricardo

    2015-11-01

    This study was to follow IFN-γ, TNF-α and IL-10 modulation of peripheral blood mononuclear cells (PBMC) from HIV/cerebral toxoplasmosis patients (CT) during specific treatment. The results were compared with two other groups: HIV patients that had CT at least one year before (P/CT) and individuals with chronic toxoplasmosis (CHR). Blood samples (63) collected from three groups were analyzed. CT, 15 patients (3 blood samples collected one day before Toxoplasma gondii treatment; 7 and 15days during the treatment). P/CT, 5 patients (one blood sample collected at least, one year after the treatment). CHR, 13 individuals with chronic toxoplasmosis (one blood sample). Cytokine levels were assessed by ELISA after PBMC stimulation with T. gondii antigen. CT patients had low IFN-γ; discrete increase at 7th and 15th days; and the levels were recovered in cured patients (P/CT). CT patients had high TNF-α in the beginning of the treatment. TNF-α levels decrease during the treatment (7th and 15th) and in those patients who were treated (P/CT). IL-10 levels were almost similar in CT and P/CT groups but low when compared with CHR individuals. The evolution of the infection was correlated to restoration of IFN-γ response and a decrease of the inflammation. The evaluation of the immune response can provide valuable information and better monitoring of patients during specific treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Expression changes of serotonin receptor gene subtype 5HT3a in peripheral blood mononuclear cells from schizophrenic patients treated with haloperidol and Olanzapin.

    PubMed

    Shariati, Gholam Reza; Ahangari, Ghasem; Hossein-nezhad, Arash; Asadi, Seyed Mohammad; Pooyafard, Farzaneh; Ahmadkhaniha, Hamid Reza

    2009-09-01

    Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC) of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT(3a) serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI) score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT(3a). Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  2. Withaferin A induces mitochondrial-dependent apoptosis in non-small cell lung cancer cells via generation of reactive oxygen species.

    PubMed

    Liu, Xi; Chen, Lei; Liang, Tao; Tian, Xiao-Dong; Liu, Yang; Zhang, Tao

    2017-01-01

    Withaferin A (WA) is a bioactive lactone, isolated from natural sources, mainly found in Withania somnifera, and was known to be highly effective against a variety of tumor cells both in vitro and in vivo. Accumulating experimental evidence suggests the involvement of reactive oxygen species (ROS) in WA-mediated cytotoxicity against cancer cells. Hence, the purpose of this study was to investigate the effect of WA in non-small cell lung cancer (NSCLC) cells and also the role of ROC in WA-mediated cytotoxicity. In the present study we investigated the cytotoxic potential of WA against NSCLC cell line A549 and also highlighted the mechanism of cytotoxicity of this compound. Non-carcinoma WI-38 and PBMC cell lines were used as controls. WA treatment resulted in a dose-dependent cytotoxicity in A549 cells, while the non-carcinoma cells WI-38 and PBMC were unaffected. Further experimental approaches revealed that ROS plays a major role in WAinduced apoptosis in NSCLC cells. WA induces oxidative damage to NSCLC cells with minimum toxicity to normal cells.

  3. Cytokine production by PBMC and serum from allergic and non-allergic subjects following in vitro histamine stimulation to test fexofenadine and osthole anti-allergic properties.

    PubMed

    Kordulewska, Natalia Karolina; Kostyra, Elżbieta; Cieślińska, Anna; Fiedorowicz, Ewa; Jarmołowska, Beata

    2016-11-15

    FXF is a third-generation antihistamine drug and osthole is assumed a natural antihistamine alternative. This paper compares peripheral blood mononuclear cell (PBMC) incubation with FXF and osthole, by studying FXF, osthole and histamine cytokine secretion in PBMC in vitro cultures. Mabtech kits determined the interleukins IL-1β, IL-4, IL-10, IL-13 and TNF-α. The influence of the above active substances on cytokine secretion in PBMC's and serum was assessed: cytokines were IL-1β, IL-4, IL-10, IL-13 and TNF-α; and cytokine levels secreted by untreated PBMCs in pure culture medium formed the absolute control (ctrl). We determined that osthole affects PBMC cytokine secretion to almost precisely the same extent as FXF (IL-1β, IL-4, IL-10 and TNF). In addition osthole had greater IL-13 blocking ability than FXF. Moreover, we observed significantly decreased IL-4 level in histamine/osthole theatment compared to histamine alone. Meanwhile, FXF not significantly decrease the level of IL-4 increased by histamine. This data indicates osthole's strong role in allergic inflamation. All results confirm our hypothesis that osthole is a natural histamine antagonist and therefore can be beneficially used in antihistamine treatment of conditions such as allergies. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Dynamics of cellular HIV-1 DNA levels over 144 weeks of darunavir/ritonavir monotherapy versus triple therapy in the MONET trial.

    PubMed

    Geretti, Anna Maria; Arribas, Jose R; Lathouwers, Erkki; Foster, Geraldine M; Yakoob, Rabia; Kinloch, Sabine; Hill, Andrew; van Delft, Yvon; Moecklinghoff, Christiane

    2013-01-01

    In patients receiving combination antiretroviral therapy (ART), switching to monotherapy with ritonavir-boosted darunavir (DRV/r) can maintain plasma HIV-1 RNA suppression with no treatment-emergent drug resistance; effects on cellular HIV-1 DNA burden are less well characterized. In MONET, patients on stable combination ART for at least 6 months with plasma HIV-1 RNA <50 copies/mL and no history of virologic failure switched to DRV/r 800/100 mg once daily, either alone (n = 127) or with 2 nucleos(t)ide reverse transcriptase inhibitors (NRTIs) (n = 129). In a representative subset of 146 patients, total HIV-1 DNA load in peripheral blood mononuclear cells (PBMC) was tested retrospectively at baseline, week 48, week 96, and week 144. Mean HIV-1 DNA levels at baseline vs week 144 were 2.50 vs 2.49 log10 copies/106 PBMC in the monotherapy arm and 2.59 vs 2.61 log10 copies/106 PBMC in the triple therapy arm, with mean (median) changes of -0.05 (-0.03) and +0.03 (+0.01) log10 copies/106 PBMC in the 2 arms, respectively. Overall baseline HIV-1 DNA levels were higher in patients with nadir CD4 counts <200 cell/µL (P<.05) and in patients who over 144 weeks experienced at least 1 HIV-1 RNA measurement >50 copies/mL (P < .05). In this substudy of the MONET trial, HIV-1 DNA levels remained stable during 144 weeks of either DRV/r monotherapy or triple therapy with DRV/r + 2 NRTIs. In both treatment arms, baseline HIV-1 DNA levels were predicted by the nadir CD4 cell count and predictive of plasma HIV-1 RNA detection during follow-up.

  5. Construction, expression and in vitro biological behaviors of Ig scFv fragment in patients with chronic B cell leukemia.

    PubMed

    Zhu, Lijuan; Liao, Wenjun; Zhu, Huifen; Lei, Ping; Wang, Zhihua; Shao, Jingfang; Zhang, Yue; Shen, Guanxin

    2006-01-01

    The expression vector of SmIg scFv fragment was constructed in patient with B cell chronic lymphocyte leukemia (B-CLL) and expressed in E. coli to obtain scFv fragment, and the effect of the protein on the proliferation of stimulated peripheral blood mononuclear cells (PBMC) was investigated in vitro. Two pairs of primers were designed, and variable region genes of light chain and heavy chain were amplified by PCR respectively from the pGEM-T vectors previously constructed in our laboratory which containing light chain gene or Fd fragment of heavy chain gene. The PCR product was digested, purified and inserted into pHEN2 vector to construct the soluble expression vector pHEN2-scFv. After the induction by IPTG, the scFv protein was identified by SDS-PAGE electrophoresis and purified by Ni-NTA-Chromatography. MTT was used to determine the effect of purified protein on the proliferation of stimulated PBMC in vitro. Plasmid PCR and restriction enzyme digestion of pHEN2-scFv revealed the pHEN2-scFv vector was constructed successfully. Id-scFv protein was expressed in positive clone after induced by IPTG. SDS-PAGE analysis showed that the relative molecular weight of fusion protein was about 30 kD (1 kD= 0.9921 ku), which was consistent with the theoretically predicted value. Proliferation of PBMC could be induced by purified Id-scFv. It was suggested that the expression vector of SmIg scFv fragment was constructed successfully, and scFv protein was expressed and secreted from E. coli, which could induce proliferation of PBMC. This may lay an experimental foundation for further research of Id-HSP complex vaccine for B-CLL.

  6. Sulfasalazine and Mesalamine Modulate Beryllium-Specific Lymphocyte Proliferation and Inflammatory Cytokine Production

    PubMed Central

    Dobis, Dave R.; Sawyer, Richard T.; Gillespie, May M.; Newman, Lee S.; Maier, Lisa A.; Day, Brian J.

    2010-01-01

    Occupational exposure to beryllium (Be) results in Be sensitization (BeS) that can progress to pulmonary granulomatous inflammation associated with chronic Be disease (CBD). Be-specific lymphocytes are present in the blood of patients with BeS and in the blood and lungs of patients with CBD. Sulfasalazine and its active metabolite, mesalamine, are clinically used to ameliorate chronic inflammation associated with inflammatory bowel disease. We tested whether sulfasalazine or mesalamine could decrease Be-stimulated peripheral blood mononuclear cell (PBMC) proliferation in subjects with CBD and BeS and Be-induced cytokine production in CBD bronchoalveolar lavage (BAL) cells. CBD (n = 25), BeS (n = 12) and healthy normal control (n = 6) subjects were enrolled and ex vivo proliferation and cytokine production were assessed in the presence of Be and sulfasalazine or mesalamine. Be-stimulated PBMC proliferation was inhibited by treatment with either sulfasalazine or mesalamine. Be-stimulated CBD BAL cell IFN-γ and TNF-α cytokine production was decreased by treatment with sulfasalazine or mesalamine. Our data suggest that both sulfasalazine and mesalamine interfere with Be-stimulated PBMC proliferation in CBD and BeS and dampens Be-stimulated CBD BAL cell proinflammatory cytokine production. These studies demonstrate that sulfasalazine and mesalamine can disrupt inflammatory pathways critical to the pathogenesis of chronic granulomatous inflammation in CBD, and may serve as novel therapy for human granulomatous lung diseases. PMID:19901345

  7. Sulfasalazine and mesalamine modulate beryllium-specific lymphocyte proliferation and inflammatory cytokine production.

    PubMed

    Dobis, Dave R; Sawyer, Richard T; Gillespie, May M; Newman, Lee S; Maier, Lisa A; Day, Brian J

    2010-10-01

    Occupational exposure to beryllium (Be) results in Be sensitization (BeS) that can progress to pulmonary granulomatous inflammation associated with chronic Be disease (CBD). Be-specific lymphocytes are present in the blood of patients with BeS and in the blood and lungs of patients with CBD. Sulfasalazine and its active metabolite, mesalamine, are clinically used to ameliorate chronic inflammation associated with inflammatory bowel disease. We tested whether sulfasalazine or mesalamine could decrease Be-stimulated peripheral blood mononuclear cell (PBMC) proliferation in subjects with CBD and BeS and Be-induced cytokine production in CBD bronchoalveolar lavage (BAL) cells. CBD (n = 25), BeS (n = 12) and healthy normal control (n = 6) subjects were enrolled and ex vivo proliferation and cytokine production were assessed in the presence of Be and sulfasalazine or mesalamine. Be-stimulated PBMC proliferation was inhibited by treatment with either sulfasalazine or mesalamine. Be-stimulated CBD BAL cell IFN-γ and TNF-α cytokine production was decreased by treatment with sulfasalazine or mesalamine. Our data suggest that both sulfasalazine and mesalamine interfere with Be-stimulated PBMC proliferation in CBD and BeS and dampens Be-stimulated CBD BAL cell proinflammatory cytokine production. These studies demonstrate that sulfasalazine and mesalamine can disrupt inflammatory pathways critical to the pathogenesis of chronic granulomatous inflammation in CBD, and may serve as novel therapy for human granulomatous lung diseases.

  8. Identification of HLA-A2 restricted T-cell epitopes within the conserved region of the immunoglobulin G heavy-chain in patients with multiple myeloma.

    PubMed

    Belle, Sebastian; Han, Fang; Condomines, Maud; Christensen, Olaf; Witzens-Harig, Mathias; Kasper, Bernd; Kleist, Christian; Terness, Peter; Moos, Marion; Cremer, Friedrich; Hose, Dirk; Ho, Anthony D; Goldschmidt, Hartmut; Klein, Bernard; Hundemer, Michael

    2008-07-01

    The aim of this study is the identification of HLA-A2 restricted T-cell epitopes in the conserved region of the immunoglobulin-G-heavy-chain (IgGH) that can be used for immunotherapy in multiple myeloma (MM) patients. After the IgGH gene sequence was scanned for HLA-A2 restricted T-cell epitopes with a high binding affinity to the MHC-I-complex, promising nona-peptides were synthesized. Peptide specific CD8+ T-cells were generated from peripheral blood mononuclear cells (PBMC) of healthy donors (HD) and patients with MM using peptide pulsed dendritic cells (DC) in vitro. The activation and cytotoxicity of CD8+ T-cells was analyzed by IFN-alpha ELISpot-assay and 51Chromium release-assay. HLA-A2 restriction was proven by blocking T-cell activation with anti-HLA-A2 antibodies. Two HLA-A2 restricted T-cell epitopes-TLVTVSSAS derived from the IgGH-framework-region 4 (FR4) and LMISRTPEV from the constant region (CR)-induced expansion of specific CD8+ T-cells from PBMC in two of three (TLVTVSSAS) and one of three (LMISRTPEV) HD respectively. Specific T-cells were induced from PBMC in two of six (TLVTVSSAS) and eight of 19 (LMISRTPEV) patients with MM. Specific CD8+ T-cells also lysed peptide-pulsed target cells in 51Chromium release-assay. LMISRTPEV specific CD8+ T-cells from MM patients lysed specifically the HLA-A2+ IgG myeloma cell line XG-6. We identified two HLA-A2 restricted T-cell epitopes-TLVTVSSAS and LMISRTPEV--which can yield an expansion of CD8+ T-cells with the ability to kill peptide-loaded target cells and HLA-A2+ IgG+ myeloma cells. We conclude that TLVTVSSAS and LMISRTPEV could be T-cell epitopes for immunotherapy in MM patients.

  9. In-vitro biocompatibility of alternative CAPD fluids; comparison of bicarbonate-buffered and glucose-polymer-based solutions.

    PubMed

    Jörres, A; Gahl, G M; Topley, N; Neubauer, A; Ludat, K; Müller, C; Passlick-Deetjen, J

    1994-01-01

    Evidence is accumulating that conventional dialysis fluids for CAPD are incompatible with peritoneal host defence. We therefore investigated the effect of alternative CAPD fluids on mononuclear leukocyte (PBMC) viability and cytokine production in vitro. Fluids tested were bicarbonate-buffered solutions containing 1.5% or 4.25% glucose, 7.5% glucose polymer dialysis fluid (GPDF), and conventional 1.5% glucose fluid (G1.5%). PBMC were stimulated (2 h, 37 degrees C) in the different test fluids with a clinical isolate of Staphylococcus epidermidis or Escherichia coli lipopolysaccharide. The cytokines TNF alpha and IL-6 in PBMC supernatants were measured by specific enzyme immunoassays. Induction of cytokine messenger RNA was evaluated by reverse transcription-polymerase chain reaction. Conventional G1.5% (pH 5.5) inhibited cytokine release from activated PBMC by > 95%, whereas cell responses in low-glucose bicarbonate fluid were not significantly reduced. In contrast, high-glucose bicarbonate fluid exerted > 80% inhibition despite its neutral pH. GPDF was inhibitory at its initial low pH, whereas cytokine release was restored following pH neutralization. Cytokine mRNA expression was suppressed by conventional G1.5% fluid and by high-glucose bicarbonate fluid. These data indicate that pH neutralization leads to a substantial improvement of dialysis fluid biocompatibility; however, hyperosmolality and/or high glucose content inhibit cell responsiveness even at normal pH. Replacement of glucose by glucose polymer might prove beneficial provided that the initial low pH is neutralized.

  10. Flow cytometry analysis of T-cell subsets in cerebrospinal fluid of narcolepsy type 1 patients with long-lasting disease.

    PubMed

    Moresco, Monica; Lecciso, Mariangela; Ocadlikova, Darina; Filardi, Marco; Melzi, Silvia; Kornum, Birgitte Rahbek; Antelmi, Elena; Pizza, Fabio; Mignot, Emmanuel; Curti, Antonio; Plazzi, Giuseppe

    2018-04-01

    Type 1 narcolepsy (NT1) is a central hypersomnia linked to the destruction of hypocretin-producing neurons. A great body of genetic and epidemiological data points to likely autoimmune disease aetiology. Recent reports have characterized peripheral blood T-cell subsets in NT1, whereas data regarding the cerebrospinal fluid (CSF) immune cell composition are lacking. The current study aimed to characterize the T-cell and natural killer (NK) cell subsets in NT1 patients with long disease course. Immune cell subsets from CSF and peripheral blood mononuclear cell (PBMC) samples were analysed by flow cytometry in two age-balanced and sex-balanced groups of 14 NT1 patients versus 14 healthy controls. The frequency of CSF cell groups was compared with PBMCs. Non-parametric tests were used for statistical analyses. The NT1 patients did not show significant differences of CSF immune cell subsets compared to controls, despite a trend towards higher CD4 + terminally differentiated effector memory T cells. T cells preferentially displayed a memory phenotype in the CSF compared to PBMCs. Furthermore, a reduced frequency of CD4 + terminally differentiated effector memory T cells and an increased frequency of NK CD56 bright cells was observed in PBMCs from patients compared to controls. Finally, the ratio between CSF and peripheral CD4 + terminally differentiated effector memory T cells was two-fold increased in NT1 patients versus controls. Significant differences in PBMCs and in CSF/PBMC ratios of immune cell profile were found in NT1 patients compared to healthy controls. These differences might have arisen from the different HLA status, or be primary or secondary to hypocretin deficiency. Further functional studies in patients close to disease onset are required to understand NT1 pathophysiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. HIV DNA and Dementia in Treatment-Naïve HIV-1-Infected Individuals in Bangkok, Thailand

    PubMed Central

    Shiramizu, Bruce; Ratto-Kim, Silvia; Sithinamsuwan, Pasiri; Nidhinandana, Samart; Thitivichianlert, Sataporn; Watt, George; deSouza, Mark; Chuenchitra, Thippawan; Sukwit, Suchitra; Chitpatima, Suwicha; Robertson, Kevin; Paul, Robert; Shikuma, Cecilia; Valcour, Victor

    2007-01-01

    High HIV-1 DNA (HIV DNA) levels in peripheral blood mononuclear cells (PBMC) correlate with HIV-1-associated dementia (HAD) in patients on highly active antiretroviral therapy (HAART). If this relationship also exists among HAART-naïve patients, then HIV DNA may be implicated in the pathogenesis of HAD. In this study, we evaluated the relationship between HIV DNA and cognition in subjects naïve to HAART in a neuro AIDS cohort in Bangkok, Thailand. Subjects with and without HAD were recruited and matched for age, gender, education, and CD4 cell count. PBMC and cellular subsets were analyzed for HIV DNA using real-time PCR. The median log10 HIV DNA copies per 106 PBMC for subjects with HAD (n=15) was 4.27, which was higher than that found in subjects without dementia (ND; n=15), 2.28, p<0.001. This finding was unchanged in a multivariate model adjusting for plasma HIV-1 RNA levels. From a small subset of individuals, in which adequate number of cells were available, more HIV DNA was in monocytes/macrophages from those with HAD compared to those with ND. These results are consistent with a previous report among HAART-experienced subjects, thus further implicating HIV DNA in the pathogenesis of HAD. PMID:17211496

  12. One-step production of phage-silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification

    NASA Astrophysics Data System (ADS)

    De Plano, Laura M.; Scibilia, Santi; Rizzo, Maria Giovanna; Crea, Sara; Franco, Domenico; Mezzasalma, Angela M.; Guglielmino, Salvatore P. P.

    2018-03-01

    Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The "one-step" functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage-SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage-SiNPs are performed by UV-Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage-SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage-SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage-SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.

  13. Lack of immunotoxicity of saquinavir (Ro 31-8959) used alone or in double or triple combination with AZT and ddC.

    PubMed

    Viora, M; Di Genova, G; Quaranta, M G; Boirivant, M; Camponeschi, B

    1998-09-01

    Saquinavir (Ro 31-8959; SQV) has been demonstrated to be a potent inhibitor of human immunodeficiency virus (HIV) proteinases and acts synergistically with dideoxynucleoside analogues. The aim of this study was to investigate the in vitro immunomodulatory effects of SQV on normal human peripheral blood mononuclear cells (PBMC) and on lamina propria mononuclear cells (LPMC). We used the drug either alone or in double and triple combination with AZT and ddC to assess whether SQV enhances the immunomodulatory effects induced by AZT and ddC that we previously observed. We demonstrated that SQV did not induce any modulation of the proliferative response either in PBMC or in LPMC. Similarly, NK cell-mediated cytotoxic activity and cytokine production were not modified by SQV. More importantly, SQV/AZT, SQV/ddC, and SQV/AZT/ddC combinations did not strengthen neither the inhibition of PBMC and LPMC proliferative response or the modulation of cytokine production induced by AZT, ddC, and AZT/ddC. On the other hand, the increased IL-2 production induced by AZT and ddC was not observed adding SQV to the dideoxynucleoside analogues. In conclusion, we demonstrated that SQV used in combination with AZT and ddC did not add any further immunotoxicity.

  14. Clozapine-induced agranulocytosis: Evidence for an immune-mediated mechanism from a patient-specific in-vitro approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regen, Francesca; Herzog, Irmelin; Hahn, Eric

    2017-02-01

    Use of the atypical antipsychotic clozapine (CZP) is compromised by the risk of potentially fatal agranulocytosis/granulocytopenia (CIAG). To address this, we have established a simple, personalized cell culture-based strategy to identify CIAG-susceptible patients, hypothesizing that an immunogenic and possibly haptene-based mechanism underlies CIAG pathophysiology. To detect a putative haptene-induced response to CZP in vitro exposure, a traditional lymphocyte stimulation assay was adapted and applied to patient-specific peripheral blood-derived mononuclear cells (PBMC). 6 patients with a history of CIAG, 6 patients under CZP treatment (without CIAG) and 12 matched healthy controls were studied. In vitro CZP exposure, even at strikingly lowmore » levels, resulted in significantly increased proliferation rates only in CIAG patients' PBMC. Other parameters including cell viability and mitogen-induced proliferation were also affected by in vitro CZP exposure, yet there was no significant difference between the groups. This personalized approach is a starting point for further investigations into a putative haptene-based mechanism underlying CIAG development, and may facilitate the future development of predictive testing. - Highlights: • Clozapine induces proliferation in PBMCs from patients with a history of CIAG. • Simple, PBMC-based assay results in robust effects of physiological clozapine levels. • Haptene-based mechanisms discussed to underlie clozapine-induced proliferation.« less

  15. Use of diaminofluoresceins to detect and measure nitric oxide in low level generating human immune cells.

    PubMed

    Tiscornia, Adriana; Cairoli, Ernesto; Marquez, Maria; Denicola, Ana; Pritsch, Otto; Cayota, Alfonso

    2009-03-15

    Nitric oxide ((*)NO) has been implicated in multiple physiological and pathological immune processes. Different methods have been developed to detect and quantify (*)NO, where one of the principal difficulties are the accurately detection in cellular system with low levels of (*)NO production. The choice of the (*)NO detection method to be used depends on the characteristics of the experimental system and the levels of (*)NO production which depend on either the organism source of samples or the experimental conditions. Recently, high sensitive methods to detect and image (*)NO have been reported using 4,5-diaminofluorescein-based fluorescent probes (DAF) and its derivate 4,5-diaminofluorescein diacetate (DAF-2 DA). This work was aimed to adapt and optimize the use of DAF probes to detect and quantify the (*)NO production in systems of high, moderate and low out-put production, especially in human PBMC and their subpopulations. Here, we report an original experimental design which is useful to detect and estimate (*)NO fluxes in human PBMC and their subpopulations with high specificity and sensitivity.

  16. A high-throughput assay of NK cell activity in whole blood and its clinical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate themore » status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.« less

  17. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system

    PubMed Central

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-01-01

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice. PMID:28425472

  18. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system.

    PubMed

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori; Fujii, Teruo; Laurell, Thomas

    2017-04-20

    The incidence of cancer is increasing worldwide and metastatic disease, through the spread of circulating tumor cells (CTCs), is responsible for the majority of the cancer deaths. Accurate monitoring of CTC levels in blood provides clinical information supporting therapeutic decision making, and improved methods for CTC enumeration are asked for. Microfluidics has been extensively used for this purpose but most methods require several post-separation processing steps including concentration of the sample before analysis. This induces a high risk of sample loss of the collected rare cells. Here, an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood concentration of the peripheral blood mononuclear cell (PBMC) fraction were efficiently separated and trapped at a recovery of 76.2 ± 5.9% of the cancer cells and a minute contamination of 0.12 ± 0.04% PBMCs while simultaneously enabling a 20x volumetric concentration. This constitutes a first step towards a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice.

  19. A highly reproducible quantitative viral outgrowth assay for the measurement of the replication-competent latent HIV-1 reservoir.

    PubMed

    Fun, Axel; Mok, Hoi Ping; Wills, Mark R; Lever, Andrew M

    2017-02-24

    Cure of Human Immunodeficiency Virus (HIV) infection remains elusive due to the persistence of HIV in a latent reservoir. Strategies to eradicate latent infection can only be evaluated with robust, sensitive and specific assays to quantitate reactivatable latent virus. We have taken the standard peripheral blood mononuclear cell (PBMC) based viral outgrowth methodology and from it created a logistically simpler and more highly reproducible assay to quantify replication-competent latent HIV in resting CD4 + T cells, both increasing accuracy and decreasing cost and labour. Purification of resting CD4 + T cells from whole PBMC is expedited and achieved in 3 hours, less than half the time of conventional protocols. Our indicator cell line, SupT1-CCR5 cells (a clonal cell line expressing CD4, CXCR4 and CCR5) provides a readily available standardised readout. Reproducibility compares favourably to other published assays but with reduced cost, labour and assay heterogeneity without compromising sensitivity.

  20. Ratite oils promote keratinocyte cell growth and inhibit leukocyte activation.

    PubMed

    Bennett, Darin C; Leung, Gigi; Wang, Eddy; Ma, Sam; Lo, Blanche K K; McElwee, Kevin J; Cheng, Kimberly M

    2015-09-01

    Traditionally, native Australian aborigines have used emu oil for the treatment of inflammation and to accelerate wound healing. Studies on mice suggest that topically applied emu oil may have anti-inflammatory properties and may promote wound healing. We investigated the effects of ratite oils (6 emu, 3 ostrich, 1 rhea) on immortalized human keratinocytes (HaCaT cells) in vitro by culturing the cells in media with oil concentrations of 0%, 0.5%, and 1.0%. Peking duck, tea tree, and olive oils were used as comparative controls. The same oils at 0.5% concentration were evaluated for their influence on peripheral blood mononuclear cell (PBMC) survival over 48 hr and their ability to inhibit IFNγ production in PBMCs activated by phytohemagglutinin (PHA) in ELISpot assays. Compared to no oil control, significantly shorter population doubling time durations were observed for HaCaT cells cultured in emu oil (1.51×faster), ostrich oil (1.46×faster), and rhea oil (1.64×faster). Tea tree oil demonstrated significant antiproliferative activity and olive oil significantly prolonged (1.35×slower) cell population doubling time. In contrast, almost all oils, particularly tea tree oil, significantly reduced PBMC viability. Different oils had different levels of inhibitory effect on IFNγ production with individual emu, ostrich, rhea, and duck oil samples conferring full inhibition. This preliminary investigation suggests that emu oil might promote wound healing by accelerating the growth rate of keratinocytes. Combined with anti-inflammatory properties, ratite oil may serve as a useful component in bandages and ointments for the treatment of wounds and inflammatory skin conditions. © 2015 Poultry Science Association Inc.

  1. TLR8 stimulation enhances cetuximab-mediated natural killer cell lysis of head and neck cancer cells and dendritic cell cross priming of EGFR-specific CD8+ T cells

    PubMed Central

    Stephenson, Ryan M.; Lim, Chwee Ming; Matthews, Maura; Dietsch, Gregory; Hershberg, Robert; Ferris, Robert L.

    2013-01-01

    Background Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) that prolongs survival in the treatment of head and neck cancer (HNC), but only in 10–20% of patients. An immunological mechanism of action such as natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR bearing cells. Objective To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells. Methods Peripheral blood mononuclear cells (PBMC), NK, DC and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853–861 tetramer staining. Results TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p<0.01) and HNC patients (p<0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα(p<0.0001), IFNγ(p<0.0001), and IL-12p40(p<0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p<0.001). TLR8 stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab. Discussion VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination, and for determining biomarkers of response. PMID:23685782

  2. NK cells modulate the cytotoxic activity generated by Mycobacterium leprae-hsp65 in leprosy patients: role of IL-18 and IL-13

    PubMed Central

    DE LA BARRERA, S; FINIASZ, M; FINK, S; ILARREGUI, J; ALEMÁN, M; OLIVARES, L; FRANCO, M C; PIZZARIELLO, G; DEL CARMEN SASIAIN, M

    2004-01-01

    Protection against intracellular pathogens such as Mycobacterium leprae is critically dependent on the function of NK cells at early stages of the immune response and on Th1 cells at later stages. In the present report we evaluated the role of IL-18 and IL-13, two cytokines that can influence NK cell activity, in the generation of M. leprae-derived hsp65-cytotoxic T lymphocytes (CTL) from peripheral blood mononuclear cells (PBMC) of leprosy patients. We demonstrated that IL-18 modulates hsp65-induced CTL generation and collaborates with IL-12 for this effect. In paucibacillary (PB) patients and normal controls (N) depletion of NK cells reduces the cytolytic activity. Under these conditions, IL-12 cannot up-regulate this CTL generation, while, in contrast, IL-18 increases the cytotoxic activity both in the presence or absence of NK cells. IL-13 down-regulates the hsp65-induced CTL generation and counteracts the positive effect of IL-18. The negative effect of IL-13 is observed in the early stages of the response, suggesting that this cytokine affects IFNγ production by NK cells. mRNA coding for IFNγ is induced by IL-18 and reduced in the presence of IL-13, when PBMC from N or PB patients are stimulated with hsp65. Neutralization of IL-13 in PBMC from multibacillary (MB) leprosy patients induces the production of IFNγ protein by lymphocytes. A modulatory role on the generation of hsp65 induced CTL is demonstrated for IL-18 and IL-13 and this effect takes place through the production of IFNγ. PMID:14678270

  3. Alterations in sheep peripheral blood mononuclear cell proliferation and cytokine release by polyunsaturated fatty acid supplementation in the diet under high ambient temperature.

    PubMed

    Ciliberti, Maria Giovanna; Albenzio, Marzia; Annicchiarico, Giovanni; Sevi, Agostino; Muscio, Antonio; Caroprese, Mariangela

    2015-02-01

    The aim of this study was to investigate the effects of polyunsaturated fatty acid (PUFA) supplementation from different sources in the diet of dairy sheep under high ambient temperatures on ex vivo lymphocyte proliferation and inflammatory responses. The experiment was carried out during summer: 32 Comisana ewes were divided into 4 groups of 8. The FS group was supplemented with whole flaxseed, the AG group was supplemented with Ascophyllum nodosum, the FS+AG group was supplemented with a combination of flaxseed and A. nodosum. The fourth group (CON group) was a control and received a diet containing no supplement. The average maximum temperature was around 33°C during wk 2 and 3, whereas the mean temperature never decreased below 26°C. Following 15 d of treatment with respective diets, peripheral blood mononuclear cells (PBMC) from sheep who received a diet supplemented with A. nodosum had impaired cell proliferation responses and IL-6 production after mitogen stimulation compared with PBMC from FS+AG sheep. In addition, PBMC from AG sheep displayed impaired cell proliferation compared with cells from the CON group. The FS+AG cells produced lower levels of IL-10 than CON cells, and higher IL-6 than AG and CON cells. Results demonstrated that the supplementation with PUFA from different sources in a sheep's diet can influence their immunological responses under high ambient temperatures depending on the composition of fatty acid supplementation. In particular, synergistic effects of different PUFA from flaxseed and A. nodosum, simultaneously administrated in the sheep diet, were observed on activation of inflammation response. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  4. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha.

    PubMed

    Corral, L G; Haslett, P A; Muller, G W; Chen, R; Wong, L M; Ocampo, C J; Patterson, R T; Stirling, D I; Kaplan, G

    1999-07-01

    TNF-alpha mediates both protective and detrimental manifestations of the host immune response. Our previous work has shown thalidomide to be a relatively selective inhibitor of TNF-alpha production in vivo and in vitro. Additionally, we have recently reported that thalidomide exerts a costimulatory effect on T cell responses. To develop thalidomide analogues with increased anti-TNF-alpha activity and reduced or absent toxicities, novel TNF-alpha inhibitors were designed and synthesized. When a selected group of these compounds was examined for their immunomodulatory activities, different patterns of cytokine modulation were revealed. The tested compounds segregated into two distinct classes: one class of compounds, shown to be potent phosphodiesterase 4 inhibitors, inhibited TNF-alpha production, increased IL-10 production by LPS-induced PBMC, and had little effect on T cell activation; the other class of compounds, similar to thalidomide, were not phosphodiesterase 4 inhibitors and markedly stimulated T cell proliferation and IL-2 and IFN-gamma production. These compounds inhibited TNF-alpha, IL-1beta, and IL-6 and greatly increased IL-10 production by LPS-induced PBMC. Similar to thalidomide, the effect of these agents on IL-12 production was dichotomous; IL-12 was inhibited when PBMC were stimulated with LPS but increased when cells were stimulated by cross-linking the TCR. The latter effect was associated with increased T cell CD40 ligand expression. The distinct immunomodulatory activities of these classes of thalidomide analogues may potentially allow them to be used in the clinic for the treatment of different immunopathological disorders.

  5. Determination of intracellular fludarabine triphosphate in human peripheral blood mononuclear cells by LC-MS/MS.

    PubMed

    Huang, Liusheng; Lizak, Patricia; Aweeka, Francesca; Long-Boyle, Janel

    2013-12-01

    Fludarabine is a nucleoside analog routinely used in conditioning regimens of pediatric allogeneic stem cell transplantation to promote stem cell engraftment. In children, it remains a challenge to accurately and precisely quantify the active intracellular triphosphate species of fludarabine in vivo, primarily due to limitations on blood volume and inadequate assay sensitivity. Here we report a liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of fludarabine triphosphate in human peripheral blood mononuclear cells (PBMC). PBMC (∼5 million cells) were collected and lysed in 1mL 70% methanol containing 1.2mM tris buffer (pH 7.4). The lysate (80μL) was mixed with internal standard (2-chloro-adenosine triphosphate, 150ng/mL, 20μL) and injected onto an API5000 LC-MS/MS system. Separation was achieved on a hypercarb column (100mm×2.1mm, 3μm) eluted with 100mM ammonium acetate (pH 9.8) and acetonitrile in a gradient mode at a flow rate of 0.4mL/min. Multiple reactions monitoring (MRM) and electrospray ionization in negative mode (ESI(-)) were used for detection. The ion pairs 524.0/158.6 for the drug and 540.0/158.8 for the IS were selected for quantification and 524.0/425.7 used for confirmation. Retention time was 3.0 and 3.4min for fludarabine triphosphate and the IS, respectively. The concentration range for the calibration curve was 1.52-76nM. Our method is simple, fast, and has been successfully applied in a clinical dose-concentration study in children to quantify intracellular fludarabine in low volume clinical samples. The median concentration was 1.03 and 3.19pmole/million PBMC at trough and peak time points, respectively. Fludarabine triphosphate is degraded in water within hours but relatively stable in 70% methanol-tris (1.2mM, pH 7.4). One limitation is that the hypercarb column takes a longer time to equilibrate than conventional reverse phase columns, and peaks become broad and distorted if the column is not washed and stored properly. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Preliminary evidence of mitochondrial dysfunction associated with post-infective fatigue after acute infection with Epstein Barr virus.

    PubMed

    Vernon, Suzanne D; Whistler, Toni; Cameron, Barbara; Hickie, Ian B; Reeves, William C; Lloyd, Andrew

    2006-01-31

    Acute infectious diseases are typically accompanied by non-specific symptoms including fever, malaise, irritability and somnolence that usually resolve on recovery. However, in some individuals these symptoms persist in what is commonly termed post-infective fatigue. The objective of this pilot study was to determine the gene expression correlates of post-infective fatigue following acute Epstein Barr virus (EBV) infection. We followed 5 people with acute mononucleosis who developed post-infective fatigue of more than 6 months duration and 5 HLA-matched control subjects who recovered within 3 months. Subjects had peripheral blood mononuclear cell (PBMC) samples collected at varying time points including at diagnosis, then every 2 weeks for 3 months, then every 3 months for a year. Total RNA was extracted from the PBMC samples and hybridized to microarrays spotted with 3,800 oligonucleotides. Those who developed post-infective fatigue had gene expression profiles indicative of an altered host response during acute mononucleosis compared to those who recovered uneventfully. Several genes including ISG20 (interferon stimulated gene), DNAJB2 (DnaJ [Hsp40] homolog and CD99), CDK8 (cyclin-dependent kinase 8), E2F2 (E2F transcription factor 2), CDK8 (cyclin-dependent kinase 8), and ACTN2 (actinin, alpha 2), known to be regulated during EBV infection, were differentially expressed in post-infective fatigue cases. Several of the differentially expressed genes affect mitochondrial functions including fatty acid metabolism and the cell cycle. These preliminary data provide insights into alterations in gene transcripts associated with the varied clinical outcomes from acute infectious mononucleosis.

  7. Comparative analysis of monocytic and granulocytic myeloid-derived suppressor cell subsets in patients with gastrointestinal malignancies.

    PubMed

    Duffy, Austin; Zhao, Fei; Haile, Lydia; Gamrekelashvili, Jaba; Fioravanti, Suzanne; Ma, Chi; Kapanadze, Tamar; Compton, Kathryn; Figg, William D; Greten, Tim F

    2013-02-01

    Myeloid-derived suppressor cells (MDSC) are a heterogenous population of cells comprising myeloid progenitor cells and immature myeloid cells, which have the ability to suppress the effector immune response. In humans, MDSC have not been well characterized owing to the lack of specific markers, although it is possible to broadly classify the MDSC phenotypes described in the literature as being predominantly granulocytic (expressing markers such as CD15, CD66, CD33) or monocytic (expressing CD14). In this study, we set out to perform a direct comparative analysis across both granulocytic and monocytic MDSC subsets in terms of their frequency, absolute number, and function in the peripheral blood of patients with advanced GI cancer. We also set out to determine the optimal method of sample processing given that this is an additional source of heterogeneity. Our findings demonstrate consistent changes across sample processing methods for monocytic MDSC, suggesting that reliance upon cryopreserved PBMC is acceptable. Although we did not see an increase in the population of granulocytic MDSC, these cells were found to be more suppressive than their monocytic counterparts.

  8. Identification of HIV-1 Genitourinary Tract Compartmentalization by Analyzing the env Gene Sequences in Urine

    PubMed Central

    BLASI, Maria; CARPENTER, J. Harris; BALAKUMARAN, Bala; CARA, Andrea; GAO, Feng; KLOTMAN, Mary E.

    2015-01-01

    Objective HIV-1 persists indefinitely in memory CD4+ T cells and other long-lived cellular reservoirs despite antiretroviral therapy (ART). Our group had previously demonstrated that HIV-1 can establish a productive infection in renal epithelial cells and that the kidney represents a separate compartment for HIV-1 replication. Here, to better understand the viruses in this unique site, we genetically characterized and compared the viruses in blood and urine specimens from twenty-four HIV-1 infected subjects with detectable viremia. Design and Methods Blood and urine samples were obtained from 35 HIV-1 positive subjects. Single-genome amplification was performed on HIV-1 env RNA and DNA isolated from urine supernatants and urine derived cell pellets respectively, as well as from plasma and PBMC from the same individuals. Neighbor-joining trees were constructed under the Kimura 2-parameter mode. Results We amplified and sequenced the full-length HIV-1 envelope (env) gene from twelve of the twenty-four individuals, indicating that fifty percent (50%) of the viremic HIV-1 positive patients had viral RNA in their urine. Phylogenetic analysis of the env sequences from four subjects with more than fifteen urine-derived env sequences showed that the majority of the sequences from urine formed distinct cluster(s) independent of those PBMC and plasma-derived sequences, consistent with viral compartmentalization in the urine. Conclusions Our results suggest the presence of a distinct HIV compartment in the genitourinary tract. PMID:26372275

  9. Detecting specific cytotoxic T lymphocytes against SARS-coronavirus with DimerX HLA-A2:Ig fusion protein.

    PubMed

    Wang, Yue-Dan; Chen, Wei Feng

    2004-11-01

    To assess specific cytotoxic T lymphocytes (CTLs) against Severe acute respiratory syndrome (SARS)-coronavirus, a modified DimerX flow cytometry assay was performed with peripheral blood mononuclear cell (PBMC) from HLA-A2+ SARS-recovered donors at different time points post disease. CD8+DimerX-S1203+ CTLs were detected in the PBMC from these donors up to 3 months after recovery. The percentages of CD8+DimerX-S1203+ cells paralleled the numbers of interferon-gamma-positive spots in an ELISPOT assay using the same antigenic peptide. In conclusion, DimerX-based flow cytometry staining may prove to be a real-time method to screen for CTL directed at epitopes from a newly identified virus.

  10. Safety, immunogenicity, and efficacy of the ML29 reassortant vaccine for Lassa fever in small non-human primates✩

    PubMed Central

    Lukashevich, Igor S.; Carrion, Ricardo; Salvato, Maria S.; Mansfield, Keith; Brasky, Kathleen; Zapata, Juan; Cairo, Cristiana; Goicochea, Marco; Hoosien, Gia E.; Ticer, Anysha; Bryant, Joseph; Davis, Harry; Hammamieh, Rasha; Mayda, Maria; Jett, Marti; Patterson, Jean

    2008-01-01

    A single injection of ML29 reassortant vaccine for Lassa fever induces low, transient viremia, and low or moderate levels of ML29 replication in tissues of common marmosets depending on the dose of the vaccination. The vaccination elicits specific immune responses and completely protects marmosets against fatal disease by induction of sterilizing cell-mediated immunity. DNA array analysis of human peripheral blood mononuclear cells from healthy donors exposed to ML29 revealed that gene expression patterns in ML29-exposed PBMC and control, media-exposed PBMC, clustered together confirming safety profile of the ML29 in non-human primates. The ML29 reassortant is a promising vaccine candidate for Lassa fever. PMID:18692539

  11. Mitogenic activity of new lectins from seeds of wild Artocarpus species from Vietnam.

    PubMed

    Blasco, E; Ngoc, L D; Aucouturier, P; Preud'Homme, J L; Barra, A

    1996-05-01

    Proliferative response of human peripheral blood mononuclear cells (PBMC) stimulated by new lectins purified from seeds of differents Artocarpus species from Vietnam (A. asperulus, A. heterophyllus, A. masticata, A. melinoxylus, A. parva and A. petelotii) was studied and compared to those of the lectin jacalin purified from jackfruit (A. heterophyllus) seeds collected in the island La Réunion. All lectins stimulated human PBMC to proliferate, with a variable efficiency of the mitogenic activity. Phenotypic analysis of cells recovered after 7 day-cultures showed that these lectins mostly stimulated CD4+ T lymphocytes. These results suggest that these lectins from different Artocarpus species are similar in terms of their mitogenic activity although their structural features are not identical.

  12. CpG oligodeoxynucleotides containing GACGTT motifs enhance the immune responses elicited by a goose parvovirus vaccine in ducks.

    PubMed

    Lee, Jai-Wei; Lin, Yu-Ming; Yen, Ting-Ying; Yang, Wen-Jen; Chu, Chun-Yen

    2010-11-23

    Recombinant parvovirus VP2 (rVP2) was formulated with different types of adjuvant, including aluminum adjuvant and CpG oligodeoxynucleotides (ODNs), and the immunological responses after vaccination in ducks were examined. In comparison with the control group, production of rVP2-specific antibodies, expression of cytokines in peripheral blood mononuclear cells (PBMC) stimulated by rVP2, and percentage of CD4(+)/CD8(+) cells in PBMC were significantly increased in ducks immunized with rVP2 formulated with CpG ODNs containing 3 copies of GACGTT motif. CpG ODNs with GACGTT motifs might be used to improve the efficacy of vaccines for ducks. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Ex vivo enrichment of circulating anti-tumor T cells from both cutaneous and ocular melanoma patients: clinical implications for adoptive cell transfer therapy.

    PubMed

    Mazzarella, Tonia; Cambiaghi, Valeria; Rizzo, Nathalie; Pilla, Lorenzo; Parolini, Danilo; Orsenigo, Elena; Colucci, Annalisa; Modorati, Giulio; Doglioni, Claudio; Parmiani, Giorgio; Maccalli, Cristina

    2012-08-01

    Tumor-infiltrating lymphocytes (TILs) have been successfully used for adoptive cell transfer (ACT) immunotherapy; however, due to their scarce availability, this therapy is possible for a limited fraction of cutaneous melanoma patients. We assessed whether an effective protocol for ex vivo T-cell expansion from peripheral blood mononuclear cells (PBMCs), suitable for ACT of both cutaneous and ocular melanoma patients, could be identified. PBMCs from both cutaneous and ocular melanoma patients were stimulated in vitro with autologous, irradiated melanoma cells (mixed lymphocyte tumor cell culture; MLTCs) in the presence of IL-2 and IL-15 followed by the rapid expansion protocol (REP). The functional activity of these T lymphocytes was characterized and compared with that of TILs. In addition, the immune infiltration in vivo of ocular melanoma lesions was analyzed. An efficient in vitro MLTC expansion of melanoma reactive T cells was achieved from all PBMC's samples obtained in 7 cutaneous and ocular metastatic melanoma patients. Large numbers of melanoma-specific T cells could be obtained when the REP protocol was applied to these MLTCs. Most MLTCs were enriched in non-terminally differentiated T(EM) cells homogeneously expressing co-stimulatory molecules (e.g., NKG2D, CD28, CD134, CD137). A similar pattern of anti-tumor activity, in association with a more variable expression of co-stimulatory molecules, was detected on short-term in vitro cultured TILs isolated from the same patients. In these ocular melanoma patients, we observed an immune infiltrate with suppressive characteristics and a low rate of ex vivo growing TILs (28.5% of our cases). Our MLTC protocol overcomes this limitation, allowing the isolation of T lymphocytes with effector functions even in these patients. Thus, anti-tumor circulating PBMC-derived T cells could be efficiently isolated from melanoma patients by our novel ex vivo enrichment protocol. This protocol appears suitable for ACT studies of cutaneous and ocular melanoma patients.

  14. Tumor necrosis factor-alpha (TNF-alpha) concentrations from whole blood cultures correlate with isolated peripheral blood mononuclear cell cultures

    USDA-ARS?s Scientific Manuscript database

    Many cellular immune assays are impractical because they require labor-intensive isolation of cells from their natural environment. The objectives of this study were to determine the relationship between cell culture supernatant TNF-alpha from isolated peripheral blood mononuclear cells (PBMC) and w...

  15. Ex Vivo Expanded Human Regulatory T Cells Can Prolong Survival of a Human Islet Allograft in a Humanized Mouse Model

    PubMed Central

    Wu, Douglas C.; Hester, Joanna; Nadig, Satish N.; Zhang, Wei; Trzonkowski, Piotr; Gray, Derek; Hughes, Stephen; Johnson, Paul; Wood, Kathryn J.

    2013-01-01

    Background Human regulatory T cells (Treg) offer an attractive adjunctive therapy to reduce current reliance on lifelong, nonspecific immunosuppression after transplantation. Here, we evaluated the ability of ex vivo expanded human Treg to prevent the rejection of islets of Langerhans in a humanized mouse model and examined the mechanisms involved. Methods We engrafted human pancreatic islets of Langerhans into the renal subcapsular space of immunodeficient BALB/c.rag2−/−.cγ−/− mice, previously rendered diabetic via injection of the β-cell toxin streptozocin. After the establishment of stable euglycemia, mice were reconstituted with allogeneic human peripheral blood mononuclear cells (PBMC) and the resultant alloreactive response studied. Ex vivo expanded CD25highCD4+ human Treg, which expressed FoxP3, CTLA-4, and CD62L and remained CD127low, were then cotransferred together with human PBMC and islet allografts and monitored for evidence of rejection. Results Human islets transplanted into diabetic immunodeficient mice reversed diabetes but were rejected rapidly after the mice were reconstituted with allogeneic human PBMC. Cotransfer of purified, ex vivo expanded human Treg prolonged islet allograft survival resulting in the accumulation of Treg in the peripheral lymphoid tissue and suppression of proliferation and interferon-γ production by T cells. In vitro, Treg suppressed activation of signal transducers and activators of transcription and inhibited the effector differentiation of responder T cells. Conclusions Ex vivo expanded Treg retain regulatory activity in vivo, can protect a human islet allograft from rejection by suppressing signal transducers and activators of transcription activation and inhibiting T-cell differentiation, and have clinical potential as an adjunctive cellular therapy. PMID:23917725

  16. Dysregulation in microRNA Expression Is Associated with Alterations in Immune Functions in Combat Veterans with Post-Traumatic Stress Disorder

    PubMed Central

    Zhou, Juhua; Nagarkatti, Prakash; Zhong, Yin; Ginsberg, Jay P.; Singh, Narendra P.; Zhang, Jiajia; Nagarkatti, Mitzi

    2014-01-01

    While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD) has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR) in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC) and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs) decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD. PMID:24759737

  17. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder.

    PubMed

    Zhou, Juhua; Nagarkatti, Prakash; Zhong, Yin; Ginsberg, Jay P; Singh, Narendra P; Zhang, Jiajia; Nagarkatti, Mitzi

    2014-01-01

    While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD) has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR) in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC) and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs) decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD.

  18. Viability and Functionality of Cryopreserved Peripheral Blood Mononuclear Cells in Pediatric Dengue

    PubMed Central

    Perdomo-Celis, Federico; Salgado, Doris M.; Castañeda, Diana M.

    2016-01-01

    Cryopreserved peripheral blood mononuclear cells (PBMCs) are widely used in studies of dengue. In this disease, elevated frequency of apoptotic PBMCs has been described, and molecules such as soluble tumor necrosis factor (TNF)-related apoptosis-inducing ligands (sTRAIL) are involved. This effect of dengue may affect the efficiency of PBMC cryopreservation. Here, we evaluate the viability (trypan blue dye exclusion and amine-reactive dye staining) and functionality (frequency of gamma interferon [IFN-γ]-producing T cells after polyclonal stimulation) of fresh and cryopreserved PBMCs from children with dengue (in acute and convalescence phases), children with other febrile illnesses, and healthy children as controls. Plasma sTRAIL levels were also evaluated. The frequencies of nonviable PBMCs detected by the two viability assays were positively correlated (r = 0.74; P < 0.0001). Cryopreservation particularly affected the PBMCs of children with dengue, who had a higher frequency of nonviable cells than healthy children and children with other febrile illnesses (P ≤ 0.02), and PBMC viability levels were restored in the convalescent phase. In the acute phase, an increased frequency of CD3+ CD8+ amine-positive cells was found before cryopreservation (P = 0.01). Except for B cells in the acute phase, cryopreservation usually did not affect the relative frequencies of viable PBMC subpopulations. Dengue infection reduced the frequency of IFN-γ-producing CD3+ cells after stimulation compared with healthy controls and convalescent-phase patients (P ≤ 0.003), and plasma sTRAIL correlated with this decreased frequency in dengue (rho = −0.56; P = 0.01). Natural dengue infection in children can affect the viability and functionality of cryopreserved PBMCs. PMID:26961858

  19. A benchmark for evaluation of algorithms for identification of cellular correlates of clinical outcomes.

    PubMed

    Aghaeepour, Nima; Chattopadhyay, Pratip; Chikina, Maria; Dhaene, Tom; Van Gassen, Sofie; Kursa, Miron; Lambrecht, Bart N; Malek, Mehrnoush; McLachlan, G J; Qian, Yu; Qiu, Peng; Saeys, Yvan; Stanton, Rick; Tong, Dong; Vens, Celine; Walkowiak, Sławomir; Wang, Kui; Finak, Greg; Gottardo, Raphael; Mosmann, Tim; Nolan, Garry P; Scheuermann, Richard H; Brinkman, Ryan R

    2016-01-01

    The Flow Cytometry: Critical Assessment of Population Identification Methods (FlowCAP) challenges were established to compare the performance of computational methods for identifying cell populations in multidimensional flow cytometry data. Here we report the results of FlowCAP-IV where algorithms from seven different research groups predicted the time to progression to AIDS among a cohort of 384 HIV+ subjects, using antigen-stimulated peripheral blood mononuclear cell (PBMC) samples analyzed with a 14-color staining panel. Two approaches (FlowReMi.1 and flowDensity-flowType-RchyOptimyx) provided statistically significant predictive value in the blinded test set. Manual validation of submitted results indicated that unbiased analysis of single cell phenotypes could reveal unexpected cell types that correlated with outcomes of interest in high dimensional flow cytometry datasets. © 2015 International Society for Advancement of Cytometry.

  20. Parvovirus B19 infection modulates the levels of cytokines in the plasma of rheumatoid arthritis patients.

    PubMed

    Naciute, Milda; Mieliauskaite, Diana; Rugiene, Rita; Maciunaite, Gabriele; Mauricas, Mykolas; Murovska, Modra; Girkontaite, Irute

    2017-08-01

    Parvovirus B19 (B19V) infection is associated with various autoimmune diseases. We investigated the levels of pro-inflammatory (IFNᵧ, TNFα, IL-2, IL-12) and anti-inflammatory (IL-4, IL-10) cytokines in the plasma of B19V DNA positive (B19 + ) and negative (B19 - ) rheumatoid arthritis (RA) patients in comparison with the control group (healthy persons). Blood samples were collected from 118 patients with RA and 49 healthy voluntaries. B19V sequence was determined in whole blood and cell-free plasma DNA by nested PCR. The levels of cytokines in the plasma and cell culture medium from Concanavalin A (ConA) or B19V VP1 protein stimulated PBMC were determined by ELISA. The levels of IL-4, IL-10, IL-12, IL-2 and TNFα were higher in plasma of RA patients in comparison with control persons. B19 + controls and RA patients had lower levels of IFNᵧ in comparison with B19 - controls and RA patients. Within RA patients the plasma levels of IFNᵧ were lower in patients with low RA disease activity or remission. Plasma level of IL-4 was increased and IL-10 level was decreased in B19 + RA patients in comparison with B19 - RA patients and did not differ between B19 + and B19 - controls. B19V infection did not affect plasma levels of IL-12, IL-2, and TNFα. ConA and B19 VP1 protein stimulated PBMC from RA patients produced less IFNᵧ than stimulated PBMC from the healthy controls. B19V infection could differently modulate the amount of cytokines in the plasma of healthy persons and RA patients. Decreased production of IFNᵧ and raised level of plasma IL-4 in RA patients could lower antiviral clearance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Docosahexaenoic diet supplementation, exercise and temperature affect cytokine production by lipopolysaccharide-stimulated mononuclear cells.

    PubMed

    Capó, Xavier; Martorell, Miquel; Sureda, Antoni; Batle, Juan Miguel; Tur, Josep Antoni; Pons, Antoni

    2016-09-01

    Acute exercise induces changes in peripheral mononuclear cells' (PBMCs) capabilities to produce cytokines. The aim was to investigate the effect of docosahexaenoic acid (DHA) diet supplementation on cytokine production, by lipopolysaccharide (LPS)-stimulated PBMCs after exercise, and the in vitro influence of temperature. Fifteen male soccer players were randomly assigned to a placebo or an experimental group. The experimental group consumed an almond-based beverage enriched with DHA (1.16 g DHA/day) for 8 weeks, whereas the placebo group consumed a similar non-enriched beverage. Blood samples were taken before and after the nutritional intervention in basal conditions and 2 h after acute exercise. Nutritional intervention significantly increased the DHA content in erythrocytes only in experimental group (from 34 ± 3.6 to 43 ± 3.6 nmols DHA/10(9) erythrocytes). Exercise significantly increased Toll-like receptor 4 (TLR4) in PBMCs but only in the placebo group (203 %). Exercise also significantly increased IL6, IL8, VEGF, INFγ, TNFα, IL1α, IL1β, MCP1, and EGG production rates by LPS-stimulated PBMCs, and this response was attenuated by DHA supplementation. Temperature but not DHA also affected the pattern of cytokine production increasing IL6, IL8, IL1β, and MCP1 synthesis. The higher change was evidenced in IL1β increasing the production rate at 39.5 °C from 3.19 ± 0.77 to 22.4 ± 6.1 pg/h 10(6) PBMC in placebo and from 2.36 ± 0.11 to 10.6 ± 0.38 pg/h 10(6) PBMC in the supplemented group. The profile of affected cytokines differs between temperature and exercise, suggesting a different PBMC activation pathway. DHA diet supplementation only attenuated cytokine production after exercise and not that induced by temperature.

  2. Effector and memory T cell subsets in the response to bovine tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14 days) cultured IFN-gamma ELISPOT assays of peripheral blood mononuclear cells (PBMC) are used to access T cell central memory (Tcm) responses in both cattle and humans. With bovine tuberculosis, vaccine-elicited long-term IFN-gamma ELISPOT response correlates with protection; how...

  3. Isolation and preservation of peripheral blood mononuclear cells for analysis of islet antigen-reactive T cell responses: position statement of the T-Cell Workshop Committee of the Immunology of Diabetes Society.

    PubMed

    Mallone, R; Mannering, S I; Brooks-Worrell, B M; Durinovic-Belló, I; Cilio, C M; Wong, F S; Schloot, N C

    2011-01-01

    Autoimmune T cell responses directed against insulin-producing β cells are central to the pathogenesis of type 1 diabetes (T1D). Detection of such responses is therefore critical to provide novel biomarkers for T1D 'immune staging' and to understand the mechanisms underlying the disease. While different T cell assays are being developed for these purposes, it is important to optimize and standardize methods for processing human blood samples for these assays. To this end, we review data relevant to critical parameters in peripheral blood mononuclear cell (PBMC) isolation, (cryo)preservation, distribution and usage for detecting antigen-specific T cell responses. Based on these data, we propose recommendations on processing blood samples for T cell assays and identify gaps in knowledge that need to be addressed. These recommendations may be relevant not only for the analysis of T cell responses in autoimmune disease, but also in cancer and infectious disease, particularly in the context of clinical trials. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.

  4. Proteomic analysis of blood cells in fish exposed to chemotherapeutics: evidence for long term effects.

    PubMed

    Pierrard, Marie-Aline; Kestemont, Patrick; Phuong, Nguyen Thanh; Tran, Minh Phu; Delaive, Edouard; Thezenas, Marie-Laëtitia; Dieu, Marc; Raes, Martine; Silvestre, Frédéric

    2012-04-18

    Proteomics technology are increasingly used in ecotoxicological studies to characterize and monitor biomarkers of exposure. The present study aims at identifying long term effects of malachite green (MG) exposure on the proteome of peripheral blood mononuclear cells (PBMC) from the Asian catfish, Pangasianodon hypophthalmus. A common (0.1 ppm) concentration for therapeutic treatment was applied twice with a 72 h interval. PBMC were collected directly at the end of the second bath of MG (T1) and after 1 month of decontamination (T2). Analytical 2D-DIGE gels were run and a total of 2551±364 spots were matched. Among them, MG induced significant changes in abundance of 116 spots with no recovery after one month of decontamination. Using LC-MS/MS and considering single identification per spot, we could identify 25 different proteins. Additionally, MG residues were measured in muscle and in blood indicating that leuco-MG has almost totally disappeared after one month of decontamination. This work highlights long term effects of MG treatment on the PBMC proteome from fish intended for human consumption. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation.

    PubMed

    Capron, Arnaud; Mourad, Michel; De Meyer, Martine; De Pauw, Luc; Eddour, Djamila Chaib; Latinne, Dominique; Elens, Laure; Haufroid, Vincent; Wallemacq, Pierre

    2010-05-01

    This prospective study investigated the effect of genetic polymorphisms in a biotransformation enzyme (CYP3A5) and a transporter protein (ABCB1) on tacrolimus (Tac) whole blood concentrations in renal transplantation, and more specifically on peripheral blood mononuclear cell (PBMC) drug concentrations, after renal transplantation. A total of 96 renal transplant recipients were genotyped for the exon 11 (1199G>A), 21 (3435C>T) and 26 (2677G>T/A) polymorphisms in the ABCB1 gene and for the intron 3 polymorphism in the CYP3A5 gene. Tac blood and PBMC concentrations were determined at day 7 after transplantation and at steady state, and then compared with recipient genotypes. The ABCB1 1199G>A, 3435C>T and 2677G>T/A SNPs, appeared to reduce the activity of P-glycoprotein towards Tac, increasing Tac PBMC concentrations. The impact of ABCB1 genetic polymorphisms on Tac blood concentrations was negligible. As increased Tac intracellular concentrations might in turn enhance immunosuppressive status and prevention or rejection, ABCB1 recipient genotyping might be useful to better individualize the Tac immunosuppressive therapy in renal transplantation.

  6. Osteoclastic differentiation and resorption is modulated by bioactive metal ions Co2+, Cu2+ and Cr3+ incorporated into calcium phosphate bone cements

    PubMed Central

    Bernhardt, Anne; Schamel, Martha; Gbureck, Uwe; Gelinsky, Michael

    2017-01-01

    Biologically active metal ions in low doses have the potential to accelerate bone defect healing. For successful remodelling the interaction of bone graft materials with both bone-forming osteoblasts and bone resorbing osteoclasts is crucial. In the present study brushite forming calcium phosphate cements (CPC) were doped with Co2+, Cu2+ and Cr3+ and the influence of these materials on osteoclast differentiation and activity was examined. Human osteoclasts were differentiated from human peripheral blood mononuclear cells (PBMC) both on the surface and in indirect contact to the materials on dentin discs. Release of calcium, phosphate and bioactive metal ions was determined using ICP-MS both in the presence and absence of the cells. While Co2+ and Cu2+ showed a burst release, Cr3+ was released steadily at very low concentrations (below 1 μM) and both calcium and phosphate release of the cements was considerably changed in the Cr3+ modified samples. Direct cultivation of PBMC/osteoclasts on Co2+ cements showed lower attached cell number compared to the reference but high activity of osteoclast specific enzymes tartrate resistant acid phosphatase (TRAP), carbonic anhydrase II (CAII) and cathepsin K (CTSK) and significantly increased gene expression of vitronectin receptor. Indirect cultivation with diluted Co2+ cement extracts revealed highest resorbed area compared to all other modifications and the reference. Cu2+ cements had cytotoxic effect on PBMC/osteoclasts during direct cultivation, while indirect cultivation with diluted extracts from Cu2+ cements did not provoke cytotoxic effects but a strictly inhibited resorption. Cr3+ doped cements did not show cytotoxic effects at all. Gene expression and enzyme activity of CTSK was significantly increased in direct culture. Indirect cultivation with Cr3+ doped cements revealed significantly higher resorbed area compared to the reference. In conclusion Cr3+ doped calcium phosphate cements are an innovative cement modification because of their high cytocompatibility and support of active resorption by osteoclasts. PMID:28763481

  7. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.

    PubMed

    Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-15

    Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Prevalence of occult hepatitis C virus infection in the Iranian patients with human immunodeficiency virus infection.

    PubMed

    Bokharaei-Salim, Farah; Keyvani, Hossein; Esghaei, Maryam; Zare-Karizi, Shohreh; Dermenaki-Farahani, Sahar-Sadat; Hesami-Zadeh, Khashayar; Fakhim, Shahin

    2016-11-01

    Occult hepatitis C virus (HCV) infection is a new form of chronic HCV infection described by the presence of the genomic HCV-RNA in liver biopsy and/or peripheral blood mononuclear cell (PBMC) samples, and undetectable levels or absence of HCV-RNA and in the absence or presence of anti HCV antibodies in the plasma specimens. The aim of the present study was to evaluate the occurrence of occult HCV infection (OCI) among Iranian subjects infected with human immunodeficiency virus (HIV) using RT-nested PCR. From March 2014 until April 2015, 109 Iranian patients with established HIV infection were enrolled in this cross-sectional study. After extraction of viral RNA from the plasma and PBMC samples, HCV-RNA status was examined by RT-nested PCR using primers from the 5'-NTR. HCV genotyping was conducted using RFLP analysis. For the confirmation of HCV genotyping by RFLP method, the PCR products were sequenced. Of the 109 patients, 50 were positive for antibodies against HCV. The HCV-RNA was detected in PBMC specimens in 6 (10.2%) out of the total 59 patients negative for anti-HCV Abs and undetectable plasma HCV-RNA and also from 4 (8.0%) out of the total 50 patients positive for anti-HCV Abs and undetectable plasma HCV-RNA. HCV genotyping analysis showed that 6 (60.0%) patients were infected with HCV subtype 3a, 3 (30.0%) were infected with HCV subtype 1a and 1 (10.0%) patient was infected with HCV subtype 1b. This study revealed the incidence of OCI (9.2%) in HIV-infected Iranian patients. Hence, designing prospective studies focusing on the detection of OCI in these patients would provide more information. J. Med. Virol. 88:1960-1966, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Comparison of cytomegalovirus viral load measure by real-time PCR with pp65 antigenemia for the diagnosis of cytomegalovirus disease in solid organ transplant patients.

    PubMed

    Hernando, S; Folgueira, L; Lumbreras, C; San Juan, R; Maldonado, S; Prieto, C; Babiano, M J; Delgado, J; Andres, A; Moreno, E; Aguado, J M; Otero, J R

    2005-11-01

    Cytomegalovirus (CMV) infection is the most frequent complication in solid organ transplant recipients. Currently, the antigenemia assay is widely used to detect this infection, although its success is being questioned to a great extent nowadays. The aim of our study is to compare a quantitative real time PCR to measure CMV DNA to the antigenemia assay, for the diagnosis to CMV disease. For our research, we prospectively processed 1198 samples (plasma and peripheral blood leukocytes [PBMC]), which belonged to 158 transplant recipients. In every sample the detection of the pp65 antigen in PBMC was carried out, as well as the quantification of CMV DNA by PCR (Light Cycler, LC-PCR). For this process, FRET probes, which detect a 254-bp fragment from the CMV gB gene, were used. The dynamic range of the LC-PCR was 500 to 5.10(7) copies/mL plasma and from 62 to 6.10(6) copies/10(6) PBMC. Twenty-three episodes of cytomegalovirus (CMV) disease occurred in 22 out of 158 patients and PCR displayed levels of sensitivity and specificity of 100% and 67%, respectively. The antigenemia assay obtained values of 91% and 57%. We established a cutoff value of 10(3) copies/mL plasma and 315 copies/10(6) cells. According to these cutoff values, PCR showed levels of sensitivity, specificity, VPN and VPP of 95.6%, 81.6%, 99%, and 53% respectively. Moreover, the LC-PCR assay anticipated the antigenemia assay in 10 patients out of 22 who developed CMV disease and the appearance of any clinical symptoms in 12 out of 22 patients. In conclusion, we believe that the quantification of CMV DNA by LC-PCR is a superior assay to pp65 antigenemia test regarding the early diagnosis of CMV disease in solid organ transplant recipients.

  10. Complex effect of hydroxyapatite nanoparticles on the differentiation and functional activity of human pre-osteoclastic cells.

    PubMed

    Costa-Rodrigues, João; Silva, Ana; Santos, Catarina; Almeida, Maria Margarida; Costa, Maria Elisabete; Fernandes, Maria Helena

    2014-12-01

    Nanosized hydroxyapatite (HA) is a promising material in clinical applications targeting the bone tissue. NanoHA is able to modulate bone cellular events, which accounts for its potential utility, but also raises safety concerns regarding the maintenance of the bone homeostasis. This work analyses the effects of HA nanoparticles (HAnp) on osteoclastic differentiation and activity, an issue that has been barely addressed. Rod-like HAnp, produced by a hydrothermal precipitation method, were tested on peripheral blood mononuclear cells (PBMC), which contains the CD14+ osteoclastic precursors, in unstimulated or osteoclastogenic-induced conditions. HAnp were added at three time-points during the osteoclastic differentiation pathway, and cell response was evaluated for osteoclastic related parameters. Results showed that HAnp modulated the differentiation and function of osteoclastic cells in a dose- and time-dependent manner. In addition, the effects were dependent on the stage of osteoclastic differentiation. In unstimulated PBMC, HAnp significantly increased osteoclastogenesis, leading to the formation of mature osteoclasts, as evident by the significant increase of TRAP activity, number of TRAP-positive multinucleated cells, osteoclastic gene expression and resorbing ability. However, in a population of mature osteoclasts (formed in osteoclastogenic-induced PBMC cultures), HAnp caused a dose-dependent decrease on the osteoclastic-related parameters. These results highlight the complex effects of HAnp in osteoclastic differentiation and activity, and suggest the possibility of HAnp to modulate/disrupt osteoclastic behavior, with eventual imbalances in the bone metabolism. This should be carefully considered in bone-related and other established and prospective biomedical applications of HAnp.

  11. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C

    NASA Technical Reports Server (NTRS)

    Cooper, D.; Pellis, N. R.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    Utilizing clinostatic rotating wall vessel (RWV) bioreactors that simulate aspects of microgravity, we found phytohemagglutinin (PHA) responsiveness to be almost completely diminished. Activation marker expression was significantly reduced in RWV cultures. Furthermore, cytokine secretion profiles suggested that monocytes are not as adversely affected by simulated microgravity as T cells. Reduced cell-cell and cell-substratum interactions may play a role in the loss of PHA responsiveness because placing peripheral blood mononuclear cells (PBMC) within small collagen beads did partially restore PHA responsiveness. However, activation of purified T cells with cross-linked CD2/CD28 and CD3/CD28 antibody pairs was completely suppressed in the RWV, suggesting a defect in signal transduction. Activation of purified T cells with PMA and ionomycin was unaffected by RWV culture. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus our data indicate that during polyclonal activation the signaling pathways upstream of PKC activation are sensitive to simulated microgravity.

  12. Tyrosine kinase inhibitors as modulators of trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity in breast cancer cell lines.

    PubMed

    Collins, Denis M; Gately, Kathy; Hughes, Clare; Edwards, Connla; Davies, Anthony; Madden, Stephen F; O'Byrne, Kenneth J; O'Donovan, Norma; Crown, John

    2017-09-01

    Trastuzumab is an anti-HER2 monoclonal antibody (mAb) therapy capable of antibody-dependent cell-mediated cytotoxicity (ADCC) and used in the treatment of HER2+ breast cancer. Through interactions with FcƴR+ immune cell subsets, trastuzumab functions as a passive immunotherapy. The EGFR/HER2-targeting tyrosine kinase inhibitor (TKI) lapatinib and the next generation TKIs afatinib and neratinib, can alter HER2 levels, potentially modulating the ADCC response to trastuzumab. Using LDH-release assays, we investigated the impact of antigen modulation, assay duration and peripheral blood mononuclear cell (PBMC) activity on trastuzumab-mediated ADCC in breast cancer models of maximal (SKBR3) and minimal (MCF-7) target antigen expression to determine if modulating the ADCC response to trastuzumab using TKIs may be a viable approach for enhancing tumor immune reactivity. HER2 levels were determined in lapatinib, afatinib and neratinib-treated SKBR3 and MCF-7 using high content analysis (HCA). Trastuzumab-mediated ADCC was assessed following treatment with TKIs utilising a colorimetric LDH release-based protocol at 4 and 12h timepoints. PBMC activity was assessed against non-MHC-restricted K562 cells. A flow cytometry-based method (CFSE/7-AAD) was also used to measure trastuzumab-mediated ADCC in medium-treated SKBR3 and MCF-7. HER2 antigen levels were significantly altered by the three TKIs in both cell line models. The TKIs significantly reduced LDH levels directly in SKBR3 cells but not MCF-7. Lapatinib and neratinib augment trastuzumab-related ADCC in SKBR3 but the effect was not consistent with antigen expression levels and was dependent on volunteer PBMC activity (vs. K562). A 12h assay timepoint produced more consistent results. Trastuzumab-mediated ADCC (PBMC:target cell ratio of 10:1) was measured at 7.6±4.7% (T12) by LDH assay and 19±3.2 % (T12) using the flow cytometry-based method in the antigen-low model MCF-7. In the presence of effector cells with high cytotoxic capacity, TKIs have the ability to augment the passive immunotherapeutic potential of trastuzumab in SKBR3, a model of HER2+ breast cancer. ADCC levels detected by LDH release assays are extremely low in MCF-7; the flow cytometry-based CFSE/7-AAD method is more sensitive and consistent for the determination of ADCC in HER2-low models. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Activated glycoprotein A repetitions predominant (GARP)-expressing regulatory T cells inhibit allergen-induced intestinal inflammation in humanized mice.

    PubMed

    Eschborn, Melanie; Weigmann, Benno; Reissig, Sonja; Waisman, Ari; Saloga, Joachim; Bellinghausen, Iris

    2015-07-01

    Recently, we developed a humanized mouse model of allergen-induced IgE-dependent gut inflammation in PBMC-engrafted immunodeficient mice. In the present study, we wanted to investigate the role of regulatory T (Treg) cells and their activation status in this model. Nonobese diabetic-severe combined immunodeficiency-γc(-/-) mice were injected intraperitoneally with human PBMCs from allergic donors together with the respective allergen or NaCl as control in the presence or absence of different concentrations of CD4(+)CD25(+) Treg cells of the same donor. After an additional allergen boost 1 week later, mice were challenged with the allergen rectally on day 21 and gut inflammation was monitored by a high-resolution video mini-endoscopic system evaluating translucency, granularity, fibrin production, vascularity, and stool. Allergen-specific human IgE in mouse sera, which was detectable only in PBMC plus allergen-treated mice, was strongly inhibited by coinjection of Treg cells at a ratio of at least 1:10. Consequently, the presence of Treg cells significantly decreased IgE-dependent allergen-induced gut inflammation after rectal allergen challenge. In addition, Treg cells reduced allergen-specific proliferation and cytokine production of recovered human CD4(+) T cells in vitro. Activation of Treg cells before injection further increased all inhibitory effects. Prevention of gut inflammation also occurred by the administration of glycoprotein A repetitions predominant, a molecule expressed by activated Treg cells, whereas its blockade completely abrogated inhibition by Treg cells. These results demonstrate that allergen-specific gut inflammation in human PBMC-engrafted mice can be avoided by enhancing the numbers or activity of autologous Treg cells, which is of great interest for therapeutic intervention of allergic diseases of the intestine. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  14. Peritoneal macrophage and blood monocyte functions after open and laparoscopic-assisted cecectomy in rats.

    PubMed

    Lee, S W; Feingold, D L; Carter, J J; Zhai, C; Stapleton, G; Gleason, N; Whelan, R L

    2003-12-01

    It has been well established that open abdominal surgery results in systemic immunosuppression postoperatively; in contrast, laparoscopic surgery is associated with significantly better preserved systemic immune function. However, when intraperitoneal (local) immune function is considered, laparoscopic procedures done under a CO2 pneumoperitoneum (pneumo) have been shown to result in greater immunosuppression compared to that of open surgery. Few studies have simultaneously assessed systemic and local immune function. The purpose of this study was to assess peripheral blood mononuclear cell (PBMC) and peritoneal macrophage tumor necrosis factor-alpha (TNF-alpha) levels, H2O2 production, and MHC class II antigen expression after open and laparoscopically assisted cecectomy in a rat model. A total of 75 Sprague Dawley rats were used for three separate experiments. For each study, rats were randomly divided into three groups: anesthesia alone (AC), laparoscopic-assisted cecectomy (LC), and open cecectomy via full laparotomy (OP). A CO2 pneumo was used for laparoscopic operations. On postoperative day 1 the animals were sacrificed, macrophages were harvested via intraperitoneal lavage, and PBMCs were isolated from whole blood obtained by cardiac puncture. In experiment 1, macrophages and PBMC from each animal were stimulated with lipopolysaccharide, after which TNF-alpha levels of the supernatant were determined. In experiment 2, after stimulation with PMA, H2O2 release was assessed by measuring fluorescence. In experiment 3, via flow cytometry, the number of cells with surface MHC class II proteins were determined. Data from the three groups in each experiment were compared using analysis of variance Tukey-Kramer tests. Macrophages and PBMC from rats in the OP group released significantly more TNF-alpha than cells from rats in the LC ( p < 0.05) or AC ( p < 0.05) groups. Macrophages from rats in the OP group released significantly less H2O2 than cells from the AC ( p < 0.01) and LC ( p < 0.05) groups. There was no difference between the AC and LC results. No significant differences in PBMC H2O2 release were noted among any of the groups. OP group macrophages expressed significantly less MHC class II antigen than did AC group macrophages ( p < 0.05). No differences were noted among the LC results and either the OP or AC group's outcomes. No differences were noted in PBMC MHC class II expression among any of the groups. In all instances, the LC group's macrophage results were similar to the AC group's results. OC group macrophages produced significantly more TNF-alpha and less H2O2 than both the AC and LC groups. MHC class II protein expression was less for the OC group than for the AC group. OC group PBMCs produced more TNF-alpha. No differences in PBMC H2O2 release or MHC class II expression were noted. Laparoscopic methods better preserves the baseline values of the parameters studied.

  15. Cross-disease transcriptomics: Unique IL-17A signaling in psoriasis lesions and an autoimmune PBMC signature

    PubMed Central

    Sarkar, Mrinal K.; Liang, Yun; Xing, Xianying; Gudjonsson, Johann E.

    2016-01-01

    Transcriptome studies of psoriasis have identified robust changes in mRNA expression through large-scale analysis of patient cohorts. These studies, however, have analyzed all mRNA changes in aggregate, without distinguishing between disease-specific and non-specific differentially expressed genes (DEGs). In this study, RNA-seq meta-analysis was used to identify (1) psoriasis-specific DEGs altered in few diseases besides psoriasis and (2) non-specific DEGs similarly altered in many other skin conditions. We show that few cutaneous DEGs are psoriasis-specific and that the two DEG classes differ in their cell type and cytokine associations. Psoriasis-specific DEGs are expressed by keratinocytes and induced by IL-17A, whereas non-specific DEGs are expressed by inflammatory cells and induced by IFN-gamma and TNF. PBMC-derived DEGs were more psoriasis-specific than cutaneous DEGs. Nonetheless, PBMC DEGs associated with MHC class I and NK cells were commonly downregulated in psoriasis and other autoimmune diseases (e.g., multiple sclerosis, sarcoidosis and juvenile rheumatoid arthritis). These findings demonstrate “cross-disease” transcriptomics as an approach to gain insights into the cutaneous and non-cutaneous psoriasis transcriptomes. This highlighted unique contributions of IL-17A to the cytokine network and uncovered a blood-based gene signature that links psoriasis to other diseases of autoimmunity. PMID:27206706

  16. A cluster pattern algorithm for the analysis of multiparametric cell assays.

    PubMed

    Kaufman, Menachem; Bloch, David; Zurgil, Naomi; Shafran, Yana; Deutsch, Mordechai

    2005-09-01

    The issue of multiparametric analysis of complex single cell assays of both static and flow cytometry (SC and FC, respectively) has become common in recent years. In such assays, the analysis of changes, applying common statistical parameters and tests, often fails to detect significant differences between the investigated samples. The cluster pattern similarity (CPS) measure between two sets of gated clusters is based on computing the difference between their density distribution functions' set points. The CPS was applied for the discrimination between two observations in a four-dimensional parameter space. The similarity coefficient (r) ranges between 0 (perfect similarity) to 1 (dissimilar). Three CPS validation tests were carried out: on the same stock samples of fluorescent beads, yielding very low r's (0, 0.066); and on two cell models: mitogenic stimulation of peripheral blood mononuclear cells (PBMC), and apoptosis induction in Jurkat T cell line by H2O2. In both latter cases, r indicated similarity (r < 0.23) within the same group, and dissimilarity (r > 0.48) otherwise. This classification and algorithm approach offers a measure of similarity between samples. It relies on the multidimensional pattern of the sample parameters. The algorithm compensates for environmental drifts in this apparatus and assay; it also may be applied to more than four dimensions.

  17. Circulating rotavirus-specific T cells have a poor functional profile.

    PubMed

    Parra, Miguel; Herrera, Daniel; Jácome, María Fernanda; Mesa, Martha C; Rodríguez, Luz-Stella; Guzmán, Carolina; Angel, Juana; Franco, Manuel A

    2014-11-01

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ(+) cells, while influenza-CD4 and tetanus toxoid-CD4 T cell responses were enriched in multifunctional T cells. Moreover, rIL-2--unlike rIL-12 or DGKα-i--increased the frequencies of RV-CD4 TNF-α(+), CD4 IFN-γ(+), and CD8 IFN-γ(+) cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Induction and identification of rabbit peripheral blood derived dendritic cells

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  19. Long-acting combination anti-HIV drug suspension enhances and sustains higher drug levels in lymph node cells than in blood cells and plasma.

    PubMed

    Kraft, John C; McConnachie, Lisa A; Koehn, Josefin; Kinman, Loren; Collins, Carol; Shen, Danny D; Collier, Ann C; Ho, Rodney J Y

    2017-03-27

    The aim of the present study was to determine whether a combination of anti-HIV drugs - tenofovir (TFV), lopinavir (LPV) and ritonavir (RTV) - in a lipid-stabilized nanosuspension (called TLC-ART101) could enhance and sustain intracellular drug levels and exposures in lymph node and blood cells above those in plasma. Four macaques were given a single dose of TLC-ART101 subcutaneously. Drug concentrations in plasma and mononuclear cells of the blood (PBMCs) and lymph nodes (LNMCs) were analysed using a validated combination LC-MS/MS assay. For the two active drugs (TFV, LPV), plasma and PBMC intracellular drug levels persisted for over 2 weeks; PBMC drug exposures were three- to four-fold higher than those in plasma. Apparent terminal half-lives (t1/2) of TFV and LPV were 65.3 and 476.9 h in plasma, and 169.1 and 151.2 h in PBMCs. At 24 and 192 h, TFV and LPV drug levels in LNMCs were up to 79-fold higher than those in PBMCs. Analysis of PBMC intracellular TFV and its active metabolite TFV-diphosphate (TFV-DP) indicated that intracellular exposures of total TFV and TFV-DP were markedly higher and persisted longer than in humans and macaques dosed with oral TFV prodrugs, tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide (TAF). A simple, scalable three-drug combination, lipid-stabilized nanosuspension exhibited persistent drug levels in cells of lymph nodes and the blood (HIV host cells) and in plasma. With appropriate dose adjustment, TLC-ART101 may be a useful HIV treatment with a potential to impact residual virus in lymph nodes.

  20. Vitamin E-loaded dialyzer resets PBMC-operated cytokine network in dialysis patients.

    PubMed

    Libetta, Carmelo; Zucchi, Manuela; Gori, Elena; Sepe, Vincenzo; Galli, Francesco; Meloni, Federica; Milanesi, Fabio; Dal Canton, Antonio

    2004-04-01

    In hemodialysis patients the activity of stimulated Th1 lymphocytes is depressed, while Th2 cells are constitutively primed. Such phenomena may depend on monocyte activation and altered release of interleukin (IL)-12 and IL-18, which regulate Th cell differentiation. Reactive oxygen species (ROS) activate monocytes; therefore, a hemodialyzer with antioxidant activity would contrast ROS, prevent monocyte activation, reset IL-12 and IL-18 release, and restore Th1/Th2 balance. Ten patients on regular dialysis treatment (RDT) with cellulosic membrane (CM) were shifted to vitamin E-coated dialyzer (VE). During treatment with CM and after 3, 6, and 12 months of treatment with VE, peripheral blood mononuclear cells (PBMC) and purified CD4+ cells were isolated, and cultured, resting, mitogen-stimulated, and interferon gamma (IFNgamma), IL-4, IL-10, IL-12, and IL-18 release was measured. Vitamin E and A plasma levels and the effects of a single dialysis session on peripheral blood NO levels were assayed. The constitutive release of IL-4 and IL-10 by CD4+ cells was abated significantly by treatment with VE (nadir -77.8% and -55.3%, respectively, at 12 months). INFgamma release by mitogen-stimulated CD4+ recovered with VE (zenith +501% at 12 months). PBMC constitutive production of IL-12 and IL-18 was significantly reduced by VE (nadir at 12 months -64.7% and -51.3%, respectively). VE increased plasma levels of vitamins E and A. NO plasma levels fell after a single dialysis treatment with VE (-17%, P < 0.05) in contrast with CU (+27.1%, P < 0.05). The network of cytokines released by monocytes and Th cells is reset toward normality by treatment with vitamin E-coated dialyzer.

  1. The UK ME/CFS Biobank for biomedical research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Multiple Sclerosis

    PubMed Central

    Lacerda, Eliana M.; Bowman, Erinna W.; Cliff, Jacqueline M.; Kingdon, Caroline C.; King, Elizabeth C.; Lee, Ji-Sook; Clark, Taane G.; Dockrell, Hazel M.; Riley, Eleanor M.; Curran, Hayley; Nacul, Luis

    2017-01-01

    The UK ME/CFS Biobank was launched in August 2011 following extensive consultation with professionals and patient representatives. The bioresource aims to enhance research on myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), related to pathophysiology, biomarkers and therapeutic approaches. The cohort includes 18–60 year olds, encompassing 284 clinically-confirmed ME/CFS cases, 60 neurologist-diagnosed multiple sclerosis (MS) cases, and 135 healthy individuals. The Biobank contains blood samples, aliquoted into serum, plasma, peripheral blood mononuclear cells (PBMC), red blood cells/granulocyte pellet, whole blood, and RNA (totalling 29,863 aliquots). Extensive dataset (700 clinical and socio-demographic variables/participant) enables comprehensive phenotyping. Potential reuse is conditional to ethical approval. PMID:28649428

  2. The UK ME/CFS Biobank for biomedical research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Multiple Sclerosis.

    PubMed

    Lacerda, Eliana M; Bowman, Erinna W; Cliff, Jacqueline M; Kingdon, Caroline C; King, Elizabeth C; Lee, Ji-Sook; Clark, Taane G; Dockrell, Hazel M; Riley, Eleanor M; Curran, Hayley; Nacul, Luis

    2017-01-01

    The UK ME/CFS Biobank was launched in August 2011 following extensive consultation with professionals and patient representatives. The bioresource aims to enhance research on myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), related to pathophysiology, biomarkers and therapeutic approaches. The cohort includes 18-60 year olds, encompassing 284 clinically-confirmed ME/CFS cases, 60 neurologist-diagnosed multiple sclerosis (MS) cases, and 135 healthy individuals. The Biobank contains blood samples, aliquoted into serum, plasma, peripheral blood mononuclear cells (PBMC), red blood cells/granulocyte pellet, whole blood, and RNA (totalling 29,863 aliquots). Extensive dataset (700 clinical and socio-demographic variables/participant) enables comprehensive phenotyping. Potential reuse is conditional to ethical approval.

  3. DNA activates human immune cells through a CpG sequence-dependent manner

    PubMed Central

    Bauer, M; Heeg, K; Wagner, H; Lipford, G B

    1999-01-01

    While bacterial DNA and cytosine–guanosine-dinucleotide-containing oligonucleotides (CpG ODN) are well described activators of murine immune cells, their effect on human cells is inconclusive. We investigated their properties on human peripheral blood mononuclear cells (PBMC) and subsets thereof, such as purified monocytes, T and B cells. Here we demonstrate that bacterial DNA and CpG ODN induce proliferation of B cells, while other subpopulations, such as monocytes and T cells, did not proliferate. PBMC mixed cell cultures, as well as purified monocytes, produced interleukin-6 (IL-6), IL-12 and tumour necrosis factor-α upon stimulation with bacterial DNA; however, only IL-6 and IL-12 secretion became induced upon CpG ODN stimulation. We conclude that monocytes, but not B or T cells, represent the prime source of cytokines. Monocytes up-regulated expression of antigen-presenting, major histocompatibility complex class I and class II molecules in response to CpG DNA. In addition, both monocytes and B cells up-regulate costimulatory CD86 and CD40 molecules. The activation by CpG ODN depended on sequence motifs containing the core dinucleotide CG since destruction of the motif strongly reduced immunostimulatory potential. PMID:10457226

  4. Effects of polyphenols including curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene on lymphocyte pro-inflammatory cytokine production of senior horses in vitro.

    PubMed

    Siard, Melissa H; McMurry, Kellie E; Adams, Amanda A

    2016-05-01

    Senior horses (aged ≥ 20 years) exhibit increased chronic, low-grade inflammation systemically, termed inflamm-aging. Inflammation is associated with many afflictions common to the horse, including laminitis and osteoarthritis, which are commonly treated with the non-steroidal anti-inflammatory drugs (NSAIDs) flunixin meglumine and phenylbutazone. Although these NSAIDs are effective in treating acute inflammatory problems, long-term treatment with NSAIDs can result in negative side effects. Thus, bioactive polyphenols including curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene were investigated to determine their effectiveness as anti-inflammatory agents in vitro. Heparinized blood was collected via jugular venipuncture from senior horses (n = 6; mean age = 26 ± 2 years), and peripheral blood mononuclear cells (PBMC) were isolated using a Ficoll density gradient. PBMC were then incubated 22 h at 37°C, 5% CO2 with multiple concentrations (320, 160, 80, 40, 20, 10 μM) of all five polyphenols (curcuminoids, resveratrol, quercetin, pterostilbene, and hydroxypterostilbene), dissolved in DMSO to achieve the aforementioned concentrations. PBMC were stimulated the last 4h of the incubation period with phorbol 12-myristate 13-acetate (PMA)/ionomycin and Brefeldin A (BFA). A Vicell-XR counter evaluated cell viability following incubation. PBMC were stained intracellularly for interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) and analyzed via flow cytometry. Data was analyzed by one-way analysis of variance (ANOVA). Viability of PBMC incubated with various compound concentrations were compared with PBMC incubated with DMSO alone (positive control) to determine at what concentration each compound caused cytotoxicity. The highest concentration at which cell viability did not significantly differ from the positive control was: 20 μM for curcuminoids, 40 μM for hydroxypterostilbene, 80 μM for pterostilbene, and 160 μM for quercetin and resveratrol. Flunixin meglumine and phenylbutazone were then evaluated within this range of optimal concentrations for the polyphenol compounds (160, 80, 40, 20 μM) to compare the polyphenols to NSAIDs at equivalent concentrations. The highest concentration at which viability did not significantly differ from the positive control was: 40 μM for flunixin meglumine and 160 μM for phenylbutazone. All five polyphenols and flunixin meglumine significantly decreased lymphocyte production of IFN-γ, while only hydroxypterostilbene, pterostilbene, quercetin, and resveratrol significantly reduced lymphocyte production of TNF-α compared to the positive control (p < 0.05). Polyphenols performed similarly to or more effectively than common NSAIDs in reducing lymphocyte production of inflammatory cytokines of the senior horse in vitro. This study therefore supports the further investigation of polyphenols to determine whether they may be effective anti-inflammatory treatments for chronic inflammation in the horse. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Irreversible inhibition of BTK kinase by a novel highly selective inhibitor CHMFL-BTK-11 suppresses inflammatory response in rheumatoid arthritis model.

    PubMed

    Wu, Hong; Huang, Qiong; Qi, Ziping; Chen, Yongfei; Wang, Aoli; Chen, Cheng; Liang, Qianmao; Wang, Jinghua; Chen, Wensheng; Dong, Jin; Yu, Kailin; Hu, Chen; Wang, Wenchao; Liu, Xiaochuan; Deng, Yuanxin; Wang, Li; Wang, Beilei; Li, Xiaoxiang; Gray, Nathanael S; Liu, Jing; Wei, Wei; Liu, Qingsong

    2017-03-28

    BTK plays a critical role in the B cell receptor mediated inflammatory signaling in the rheumatoid arthritis (RA). Through a rational design approach we discovered a highly selective and potent BTK kinase inhibitor (CHMFL-BTK-11) which exerted its inhibitory efficacy through a covalent bond with BTK Cys481. CHMFL-BTK-11 potently blocked the anti-IgM stimulated BCR signaling in the Ramos cell lines and isolated human primary B cells. It significantly inhibited the LPS stimulated TNF-α production in the human PBMC cells but only weakly affecting the normal PBMC cell proliferation. In the adjuvant-induced arthritis rat model, CHMFL-BTK-11 ameliorated the inflammatory response through blockage of proliferation of activated B cells, inhibition of the secretion of the inflammatory factors such as IgG1, IgG2, IgM, IL-6 and PMΦ phagocytosis, stimulation of secretion of IL-10. The high specificity of CHMFL-BTK-11 makes it a useful pharmacological tool to further detect BTK mediated signaling in the pathology of RA.

  6. Impact of fexofenadine, osthole and histamine on peripheral blood mononuclear cell proliferation and cytokine secretion.

    PubMed

    Karolina Kordulewska, Natalia; Kostyra, Elżbieta; Matysiewicz, Michał; Cieślińska, Anna; Jarmołowska, Beata

    2015-08-15

    This paper compares results of peripheral blood mononuclear cell (PBMC) incubation with fexofenadine (FXF) and osthole. FXF is a third-generation antihistamine drug and osthole is assumed a natural antihistamine alternative. To our best knowledge, this is the first comparative study on FXF, osthole and histamine cytokine secretion and cytotoxicity in PBMC in vitro cultures using cell proliferation ELISA BrdU. The cultures were treated 12, 42, 48 and 72h with FXF and osthole at 150, 300 and 450ng/ml concentrations and histamine at 50, 100 and 200ng/ml. Our study results confirm that FXF, osthole and histamine exert no cytotoxic effect on PBMCs and that IL-6, IL-10 and TNF-α cytokine secretion following osthole cell stimulation was similar to that by FXF stimulation.This confirms our hypothesis that osthole is a natural histamine antagonist, and can therefore be beneficially applied in antihistamine treatment. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Analysis of monoclonal antibodies reactive with molecules upregulated or expressed only on activated lymphocytes.

    PubMed

    Davis, W C; Naessens, J; Brown, W C; Ellis, J A; Hamilton, M J; Cantor, G H; Barbosa, J I; Ferens, W; Bohach, G A

    1996-08-01

    Monoclonal antibodies potentially specific for antigens expressed or upregulated on activated leukocytes were selected for further analysis from the panel submitted to the third international workshop on ruminant leukocyte antigens. The kinetics of expression of these activation antigens on resting peripheral mononuclear cells (PBMC) and PBMC stimulated with concanavalin A or staphylococcal superantigen SECI for 4, 24 or 96 h were compared, as well as their appearance on various subsets of cells. For some of them, a molecular mass could be determined after immunoprecipitation from radio-labeled, lectin-stimulated cells. Based on the results from the clustering, kinetic studies and biochemical data, evidence was gathered for assigning two additional mAbs to cluster BoCD25 (IL-2 receptor) and two mAbs to cluster BoCD71 (transferrin receptor). Four mAbs recognized an early activation antigen predominantly expressed on gamma delta T cells in short-term cultures. A number of other activation antigens were further characterized.

  8. Distinct susceptibility of HIV vaccine vector-induced CD4 T cells to HIV infection

    PubMed Central

    Niu, Qingli; Hou, Wei; Churchyard, Gavin; Nitayaphan, Sorachai; Pitisuthithum, Punnee; Rerks-Ngarm, Supachai; Franchini, Genoveffa

    2018-01-01

    The concerns raised from adenovirus 5 (Ad5)-based HIV vaccine clinical trials, where excess HIV infections were observed in some vaccine recipients, have highlighted the importance of understanding host responses to vaccine vectors and the HIV susceptibility of vector-specific CD4 T cells in HIV vaccination. Our recent study reported that human Ad5-specific CD4 T cells induced by Ad5 vaccination (RV156A trial) are susceptible to HIV. Here we further investigated the HIV susceptibility of vector-specific CD4 T cells induced by ALVAC, a canarypox viral vector tested in the Thai trial RV144, as compared to Ad5 vector-specific CD4 T cells in the HVTN204 trial. We showed that while Ad5 vector-specific CD4 T cells were readily susceptible to HIV, ALVAC-specific CD4 T cells in RV144 PBMC were substantially less susceptible to both R5 and X4 HIV in vitro. The lower HIV susceptibility of ALVAC-specific CD4 T cells was associated with the reduced surface expression of HIV entry co-receptors CCR5 and CXCR4 on these cells. Phenotypic analyses identified that ALVAC-specific CD4 T cells displayed a strong Th1 phenotype, producing higher levels of IFN-γ and CCL4 (MIP-1β) but little IL-17. Of interest, ALVAC and Ad5 vectors induced distinct profiles of vector-specific CD8 vs. CD4 T-cell proliferative responses in PBMC, with ALVAC preferentially inducing CD8 T-cell proliferation, while Ad5 vector induced CD4 T-cell proliferation. Depletion of ALVAC-, but not Ad5-, induced CD8 T cells in PBMC led to a modest increase in HIV infection of vector-specific CD4 T cells, suggesting a role of ALVAC-specific CD8 T cells in protecting ALVAC-specific CD4 T cells from HIV. Taken together, our data provide strong evidence for distinct HIV susceptibility of CD4 T cells induced by different vaccine vectors and highlight the importance of better evaluating anti-vector responses in HIV vaccination. PMID:29474461

  9. Preliminary evidence of mitochondrial dysfunction associated with post-infective fatigue after acute infection with Epstein Barr Virus

    PubMed Central

    Vernon, Suzanne D; Whistler, Toni; Cameron, Barbara; Hickie, Ian B; Reeves, William C; Lloyd, Andrew

    2006-01-01

    Background Acute infectious diseases are typically accompanied by non-specific symptoms including fever, malaise, irritability and somnolence that usually resolve on recovery. However, in some individuals these symptoms persist in what is commonly termed post-infective fatigue. The objective of this pilot study was to determine the gene expression correlates of post-infective fatigue following acute Epstein Barr virus (EBV) infection. Methods We followed 5 people with acute mononucleosis who developed post-infective fatigue of more than 6 months duration and 5 HLA-matched control subjects who recovered within 3 months. Subjects had peripheral blood mononuclear cell (PBMC) samples collected at varying time points including at diagnosis, then every 2 weeks for 3 months, then every 3 months for a year. Total RNA was extracted from the PBMC samples and hybridized to microarrays spotted with 3,800 oligonucleotides. Results Those who developed post-infective fatigue had gene expression profiles indicative of an altered host response during acute mononucleosis compared to those who recovered uneventfully. Several genes including ISG20 (interferon stimulated gene), DNAJB2 (DnaJ [Hsp40] homolog and CD99), CDK8 (cyclin-dependent kinase 8), E2F2 (E2F transcription factor 2), CDK8 (cyclin-dependent kinase 8), and ACTN2 (actinin, alpha 2), known to be regulated during EBV infection, were differentially expressed in post-infective fatigue cases. Several of the differentially expressed genes affect mitochondrial functions including fatty acid metabolism and the cell cycle. Conclusion These preliminary data provide insights into alterations in gene transcripts associated with the varied clinical outcomes from acute infectious mononucleosis. PMID:16448567

  10. Methylation of Epstein-Barr virus Rta promoter in EBV primary infection, reactivation and lymphoproliferation.

    PubMed

    Germi, Raphaële; Guigue, Nicolas; Lupo, Julien; Semenova, Touyana; Grossi, Laurence; Vermeulen, Odile; Epaulard, Olivier; de Fraipont, Florence; Morand, Patrice

    2016-10-01

    During Epstein-Barr virus (EBV) latency, the EBV genome is largely silenced by methylation. This silencing is overturned during the switch to the lytic cycle. A key event is the production of the viral protein Zta which binds to three Zta-response elements (ZRE) from the Rta promoter (Rp), two of which (ZRE2 and ZRE3) include three CpG motifs methylated in the latent genome. The bisulphite pyrosequencing reaction was used to quantify the methylation of ZRE2, ZRE3a, and ZRE3b in EBV-positive cell lines and in ex vivo samples of EBV-related diseases, in order to assess whether the level of methylation in these ZREs could provide additional information to viral DNA load and serology in the characterization of EBV-associated diseases. In PBMC from two patients with infectious mononucleosis, over time Rp became increasingly methylated whereas EBV load decreased. In tonsil from patients with chronic tonsillitis, the methylation was less than in EBV-associated tumors, regardless of the viral load. This was even more striking when only the ZRE3a and ZRE3b were considered since some samples presented unbalanced profiles on ZRE2. EBV reactivation in cell culture showed that the reduction in the overall level of methylation was closely related to the production of unmethylated virions. Thus, an assessment of the level of methylation may help to better characterize EBV replication in PBMC and in biopsies with high EBV load, during infectious mononucleosis and EBV-associated cancers. J. Med. Virol. 88:1814-1820, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. The low molecular weight fraction of human serum albumin upregulates production of 15d-PGJ2 in Peripheral Blood Mononuclear Cells.

    PubMed

    Thomas, Gregory W; Rael, Leonard T; Hausburg, Melissa; Frederick, Elizabeth D; Mains, Charles W; Slone, Denetta; Carrick, Matthew M; Bar-Or, David

    2016-05-13

    Activation of the innate immune system involves a series of events designed to counteract the initial insult followed by the clearance of debris and promotion of healing. Aberrant regulation can lead to systemic inflammatory response syndrome, multiple organ failure, and chronic inflammation. A better understanding of the innate immune response may help manage complications while allowing for proper immune progression. In this study, the ability of several classes of anti-inflammatory drugs to affect LPS-induced cytokine and prostaglandin release from peripheral blood mononuclear cells (PBMC) was evaluated. PBMC were cultured in the presence of dexamethasone (DEX), ibuprofen (IBU), and the low molecular weight fraction of 5% albumin (LMWF5A) followed by stimulation with LPS. After 24 h, TNFα, PGE2, and 15d-PGJ2 release was determined by ELISA. Distinct immunomodulation patterns emerged following LPS stimulation of PBMC in the presence of said compounds. DEX, a steroid with strong immunosuppressive properties, reduced TNFα, PGE2, and 15d-PGJ2 release. IBU caused significant reduction in prostaglandin release while TNFα release was unchanged. An emerging biologic with known anti-inflammatory properties, LMWF5A, significantly reduced TNFα release while enhancing PGE2 and 15d-PGJ2 release. Incubating LMWF5A together with IBU negated this observed increased prostaglandin release without affecting the suppression of TNFα release. Additionally, LMWF5A caused an increase in COX-2 transcription and translation. LMWF5A exhibited a unique immune modulation pattern in PBMC, disparate from steroid or NSAID administration. This enhancement of prostaglandin release (specifically 15d-PGJ2), in conjunction with a decrease in TNFα release, suggests a switch that favors resolution and decreased inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Variable p-CREB expression depicts different asthma phenotypes.

    PubMed

    Chiappara, G; Chanez, P; Bruno, A; Pace, E; Pompeo, F; Bousquet, J; Bonsignore, G; Gjomarkaj, M

    2007-07-01

    Chromatin modification may play a role in inflammatory gene regulation in asthma. Cyclic adenosine mono-phosphate response element-binding protein (CREB), with the specific co-activator, the CREB-binding protein (CBP), contributes to the acetylation of chromatin and to the transcription of pro-inflammatory genes. To evaluate the expression of CBP and of phospho-CREB (p-CREB) in bronchial biopsies and in peripheral blood mononuclear cells (PBMC) of controls (C), untreated (UA), inhaled steroid treated (ICS) and steroid-dependent asthmatic (SDA) patients. We used immunohistochemistry in bronchial biopsies and western blot analysis and immunocytochemistry in PBMC. Cyclic adenosine mono-phosphate response element-binding protein expression, in the epithelium was similar in all groups, while p-CREB expression was increased in UA and in SDA in comparison with ICS and C subjects (C vs UA P = 0.002, C vs SDA P = 0.007), (ICS vs SDA P = 0.005), (ICS vs UA P = 0.001). Interestingly, also in the submucosa, p-CREB was increased in UA and SDA in comparison with ICS and C subjects (C vs UA P = 0.0004) (C vs SDA P < 0.0001) (ICS vs UA P = 0.002) (ICS vs SDA P < 0.0001) and positively correlated with leukocyte infiltration within the bronchi (CD45RB+ cells). Similar results were obtained with PBMC isolated from the same patient groups. Incubation of PBMC in vitro, with fluticasone propionate, decreased the p-CREB expression induced by cytokine activation (interferon-gamma, tumor necrosis factor-alpha). This study demonstrates that the expression of p-CREB is related, in asthma, to the persistent inflammation according to the disease severity. p-CREB expression can be modulated by glucocorticoids in responsive patients.

  13. Effects of elevated parameters of subclinical ketosis on the immune system of dairy cows: in vivo and in vitro results.

    PubMed

    Schulz, Kirsten; Frahm, Jana; Kersten, Susanne; Meyer, Ulrich; Reiche, Dania; Sauerwein, Helga; Dänicke, Sven

    2015-01-01

    Using an established model in which subclinical ketosis is induced, the response of differential blood counts and levels of various haematological variables, including the inflammatory marker haptoglobin (Hp), were tested over the last six weeks of parturition until the 56th day post-partum in cows with lower or higher body condition scores (LBC and HBC, respectively; n = 9/group). Animals in the HBC group evidenced subclinical ketosis whereas LBC animals were metabolically healthy. For in vitro examination with ß-hydroxybutyrate (BHB) as a further stimulus, peripheral blood mononuclear cell (PBMC) counts of cows with and without subclinical ketosis (n = 5/group) were observed. Counts of leucocytes, granulocytes and lymphocytes (LY) peaked at day 1 post-partum in HBC cows, with a more marked increase in heifers. In subclinical ketosis LY count increased again, with significantly higher values in the HBC group. The red blood cell (RBC) profile was affected by parity (counts were higher in heifers). Hp showed a positive linear correlation with BHB and non-esterified fatty acids (NEFA; R(2) = 0.41). PBMC from cows that were not pre-stressed with subclinical ketosis were more sensitive to increasing levels of BHB in vitro, as evidenced by both their higher proliferative capability and increased release of nitric oxide (NO). In summary, cows with subclinical ketosis showed a heightened immune response compared with metabolically healthy individuals, based on increased LY counts, increasing stimulative properties of PBMC and a relationship between Hp and typically increased values of BHB and NEFA. Concentrations of BHB in vivo during subclinical ketosis did not alter the proliferative capability of bovine PBMC in vitro, which was first significantly decreased at a dosage of 5 mM BHB.

  14. Cognitive impairment in metabolically-obese, normal-weight rats: identification of early biomarkers in peripheral blood mononuclear cells.

    PubMed

    Cifre, Margalida; Palou, Andreu; Oliver, Paula

    2018-03-22

    Metabolically-obese, normal-weight (MONW) individuals are not obese in terms of weight and height but have a number of obesity-related features (e.g. greater visceral adiposity, insulin resistance, and increased risk of cardiovascular disease). The MONW phenotype is related to the intake of unbalanced diets, such as those rich in fat. Increasing evidence shows a relationship between high-fat diet consumption and mild cognitive impairment and dementia. Thus, MONW individuals could be at a greater risk of cognitive dysfunction. We aimed to evaluate whether MONW-like animals present gene expression alterations in the hippocampus associated with an increased risk of cognitive impairment, and to identify early biomarkers of cognitive dysfunction in peripheral blood mononuclear cells (PBMC). Wistar rats were chronically fed with a 60% (HF60) or a 45% (HF45) high-fat diet administered isocalorically to control animals to mimic MONW features. Expression analysis of cognitive decline-related genes was performed using RT-qPCR, and working memory was assessed using a T-maze. High-fat diet consumption altered the pattern of gene expression in the hippocampus, clearly pointing to cognitive decline, which was accompanied by a worse performance in the T-maze in HF60 animals. Remarkably, Syn1 and Sorl1 mRNA showed the same expression pattern in both the hippocampus and the PBMC obtained at different time-points in the HF60 group, even before other pathological signs were observed. Our results demonstrate that long-term intake of high-fat diets, even in the absence of obesity, leads to cognitive disruption that is reflected in PBMC transcriptome. Therefore, PBMC are revealed as a plausible, minimally-invasive source of early biomarkers of cognitive impairment associated with increased fat intake.

  15. Effect of cryopreservation on IL-4, IFNgamma and IL-6 production of porcine peripheral blood lymphocytes.

    PubMed

    Li, Xiujin; Zhong, Zhenyu; Liang, Shuang; Wang, Xingxing; Zhong, Fei

    2009-12-01

    Cryopreservation of animal or human peripheral blood mononuclear cells (PBMC) is a commonly used technique. Effects of cryopreservation on functional capacity, especially the cytokine production of human PBMCs, have been extensively defined. However, certain animals, such as livestock, are a shortage of these information. Here we investigated the effects of cryopreservation on cytokine (IL-4, IFNgamma and IL-6) production of porcine PBMC. The porcine PBMCs were cryopreserved at -196 degrees C for a variety time periods for 2, 5, 25 and 50 days. Viability and cytokine production of the porcine PBMCs were measured before and after cryopreservation. The results showed that about 90% cell recovery rate was obtained at each storage time, indicating that about 10% loss of PBMCs in this short-term cryopreservation was due to the freezing process rather than the duration of cryopreservation. The fresh or frozen resting porcine PBMCs produced little cytokines in the absence of stimulation. However, three cytokines were apparently increased after PMA stimulation in both fresh and frozen porcine PBMCs. The sensitivity of frozen cells to PMA simulation for IFNgamma and IL-6 production was different from that of the fresh ones. IFNgamma production from the frozen PBMCs was significantly higher than that from the fresh ones (P<0.01). In contrast, IL-6 level from the frozen sample was significantly lower than that from the fresh one (P<0.05). Those results indicate that cryopreservation can increase the sensitivity of porcine PBMCs stimulated by PMA for IFNgamma production but not for IL-6 production. There was no significant difference of IL-4 production between fresh and frozen cells either stimulated (P>0.05) or un-stimulated (P>0.05).

  16. A Cell Line-Based Neutralization Assay for Primary Human Immunodeficiency Virus Type 1 Isolates That Use either the CCR5 or the CXCR4 Coreceptor

    PubMed Central

    Trkola, Alexandra; Matthews, Jamie; Gordon, Cynthia; Ketas, Tom; Moore, John P.

    1999-01-01

    We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies. PMID:10516002

  17. Abacavir and didanosine induce the interaction between human leukocytes and endothelial cells through Mac-1 upregulation.

    PubMed

    De Pablo, Carmen; Orden, Samuel; Apostolova, Nadezda; Blanquer, Amando; Esplugues, Juan V; Alvarez, Angeles

    2010-06-01

    Abacavir and didanosine are nucleoside reverse transcriptase inhibitors (NRTI) widely used in therapy for HIV-infection but which have been linked to cardiovascular complications. The objective of this study was to analyze the effects of clinically relevant doses of abacavir and didanosine on human leukocyte-endothelium interactions and to compare them with those of other NRTIs. The interactions between human leukocytes - specifically peripheral blood polymorphonuclear (PMN) or mononuclear (PBMC) cells - and human umbilical vein endothelial cells were evaluated in a flow chamber system that reproduces conditions in vivo. The expression of adhesion molecules was analyzed by flow cytometry. Abacavir induced a dose-dependent increase in PMN and PBMC rolling and adhesion. This was reproduced by didanosine but not by lamivudine or zidovudine. Both abacavir and didanosine increased Mac-1 expression in neutrophils and monocytes, but produced no effects on either lymphocytes or the expression of endothelial adhesion molecules. The PMN/PBMC rolling and adhesion induced by abacavir or didanosine did not occur when antibodies against Mac-1 or its ligand ICAM-1 were blocked. Abacavir induces significant human leukocyte accumulation through the activation of Mac-1, which in turn interacts with its endothelial ligand ICAM-1. The fact that didanosine exhibits similar effects and that lamivudine and zidovudine do not points to a relationship between the chemical structure of NRTIs and the induction of leukocyte/endothelial cell interactions. This mechanism may be especially relevant to the progression of the vascular damage associated with atherosclerosis and myocardial infarction in abacavir and didanosine-treated patients.

  18. Patients with inflammatory bowel disease (IBD) reveal increased induction capacity of intracellular interferon-gamma (IFN-γ) in peripheral CD8+ lymphocytes co-cultured with intestinal epithelial cells

    PubMed Central

    Bisping, G; Lügering, N; Lütke-Brintrup, S; Pauels, H -G; Schürmann, G; Domschke, W; Kucharzik, T

    2001-01-01

    Intestinal epithelial cells seem to play a key role during IBD. The network of cellular interactions between epithelial cells and lamina propria mononuclear cells is still incompletely understood. In the following co-culture model we investigated the influence of intestinal epithelial cells on cytokine expression of T cytotoxic and T helper cells from patients with IBD and healthy controls. Peripheral blood mononuclear cells (PBMC) were purified by a Ficoll–Hypaque gradient followed by co-incubation with epithelial cells in multiwell cell culture insert plates in direct contact as well as separated by transwell filters. We used Caco-2 cells as well as freshly isolated colonic epithelia obtained from surgical specimens. Three-colour immunofluorescence flow cytometry was performed after collection, stimulation and staining of PBMC with anti-CD4, anti-CD8, anti-IFN-γ and anti-IL-4. Patients with IBD (Crohn's disease (CD), n = 12; ulcerative colitis (UC), n = 16) and healthy controls (n = 10) were included in the study. After 24 h of co-incubation with Caco-2 cells we found a significant increase of IFN-γ-producing CD8+ lymphocytes in patients with IBD. In contrast, healthy controls did not respond to the epithelial stimulus. No significant differences could be found between CD and UC or active and inactive disease. A significant increase of IFN-γ+/CD8+ lymphocytes in patients with UC was also seen after direct co-incubation with primary cultures of colonic crypt cells. The observed epithelial–lymphocyte interaction seems to be MHC I-restricted. No significant epithelial cell-mediated effects on cytokine expression were detected in the PBMC CD4+ subsets. Patients with IBD—even in an inactive state of disease—exert an increased capacity for IFN-γ induction in CD8+ lymphocytes mediated by intestinal epithelial cells. This mechanism may be important during chronic intestinal inflammation, as in the case of altered mucosal barrier function epithelial cells may become targets for IFN-γ-producing CD8+ lymphocytes. PMID:11167992

  19. Neutralizing Activity of Broadly Neutralizing Anti-HIV-1 Antibodies against Clade B Clinical Isolates Produced in Peripheral Blood Mononuclear Cells.

    PubMed

    Cohen, Yehuda Z; Lorenzi, Julio C C; Seaman, Michael S; Nogueira, Lilian; Schoofs, Till; Krassnig, Lisa; Butler, Allison; Millard, Katrina; Fitzsimons, Tomas; Daniell, Xiaoju; Dizon, Juan P; Shimeliovich, Irina; Montefiori, David C; Caskey, Marina; Nussenzweig, Michel C

    2018-03-01

    Recently discovered broadly neutralizing antibodies (bNAbs) against HIV-1 demonstrate extensive breadth and potency against diverse HIV-1 strains and represent a promising approach for the treatment and prevention of HIV-1 infection. The breadth and potency of these antibodies have primarily been evaluated by using panels of HIV-1 Env-pseudotyped viruses produced in 293T cells expressing molecularly cloned Env proteins. Here we report on the ability of five bNAbs currently in clinical development to neutralize circulating primary HIV-1 isolates derived from peripheral blood mononuclear cells (PBMCs) and compare the results to those obtained with the pseudovirus panels used to characterize the bNAbs. The five bNAbs demonstrated significantly less breadth and potency against clinical isolates produced in PBMCs than against Env-pseudotyped viruses. The magnitude of this difference in neutralizing activity varied, depending on the antibody epitope. Glycan-targeting antibodies showed differences of only 3- to 4-fold, while antibody 10E8, which targets the membrane-proximal external region, showed a nearly 100-fold decrease in activity between published Env-pseudotyped virus panels and PBMC-derived primary isolates. Utilizing clonal PBMC-derived primary isolates and molecular clones, we determined that the observed discrepancy in bNAb performance is due to the increased sensitivity to neutralization exhibited by 293T-produced Env-pseudotyped viruses. We also found that while full-length molecularly cloned viruses produced in 293T cells exhibit greater sensitivity to neutralization than PBMC-derived viruses do, Env-pseudotyped viruses produced in 293T cells generally exhibit even greater sensitivity to neutralization. As the clinical development of bNAbs progresses, it will be critical to determine the relevance of each of these in vitro neutralization assays to in vivo antibody performance. IMPORTANCE Novel therapeutic and preventive strategies are needed to contain the HIV-1 epidemic. Antibodies with exceptional neutralizing activity against HIV-1 may provide several advantages to traditional HIV drugs, including an improved side-effect profile, a reduced dosing frequency, and immune enhancement. The activity of these antibodies has been established in vitro by utilizing HIV-1 Env-pseudotyped viruses derived from circulating viruses but produced in 293T cells by pairing Env proteins with a backbone vector. We tested PBMC-produced circulating viruses against five anti-HIV-1 antibodies currently in clinical development. We found that the activity of these antibodies against PBMC isolates is significantly less than that against 293T Env-pseudotyped viruses. This decline varied among the antibodies tested, with some demonstrating moderate reductions in activity and others showing an almost 100-fold reduction. As the development of these antibodies progresses, it will be critical to determine how the results of different in vitro tests correspond to performance in the clinic. Copyright © 2018 Cohen et al.

  20. An active lifestyle induces positive antioxidant enzyme modulation in peripheral blood mononuclear cells of overweight/obese postmenopausal women.

    PubMed

    Farinha, Juliano Boufleur; De Carvalho, Nélson Rodrigues; Steckling, Flávia Mariel; De Vargas, Liziane Da Silva; Courtes, Aline Alves; Stefanello, Sílvio Terra; Martins, Caroline Curry; Bresciani, Guilherme; Dos Santos, Daniela Lopes; Soares, Félix Alexandre Antunes

    2015-01-15

    The aim of this study was to investigate the effects of an active lifestyle on mitochondrial functioning, viability, bioenergetics, and redox status markers in peripheral blood mononuclear cells (PBMC) of overweight/ obese postmenopausal women. We performed a cross-sectional study with postmenopausal women aged 45–64 years and body mass index N 25 kg/m2, divided into physically active (n = 23) and sedentary (n = 12) groups. Mitochondria functioning and viability, bioenergetics and redox status parameters were assessed in PBMC with spectrophotometric and fluorometric assays. No differences were found in the enzyme activity of complexes I and II of the electron transport chain (ETC), mitochondrial superoxide dismutase (MnSOD) activity, methyl-tetrazolium reduction levels and reduced glutathione and oxidized glutathione levels between the groups. However, the physically active group presented higher levels of reactive oxygen species (ROS) (P= 0.04) and increased catalase (CAT) (P= 0.029), total (P= 0.011) and cytosolic SOD (CuZnSOD) (P= 0.009) activities. An active lifestyle that includes aerobic exercise for at least 30 min, three times per week may improve antioxidant enzyme activities in PBMC in overweight/obese postmenopausal women, without changes in the activity of the ETC enzymes. However, this low intensity physical activity is not able to induce relevant mitochondrial adaptations.

  1. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans.

    PubMed

    Candotti, Fabio; Shaw, Kit L; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F; Weinberg, Kenneth I; Crooks, Gay M; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S; Rosenblatt, Howard M; Davis, Carla M; Hanson, Celine; Rishi, Radha G; Wang, Xiaoyan; Gjertson, David; Yang, Otto O; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A; Engel, Barbara C; Podsakoff, Gregory M; Hershfield, Michael S; Blaese, R Michael; Parkman, Robertson; Kohn, Donald B

    2012-11-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)-deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34(+) cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m(2)). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency.

  2. Gene therapy for adenosine deaminase–deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans

    PubMed Central

    Candotti, Fabio; Shaw, Kit L.; Muul, Linda; Carbonaro, Denise; Sokolic, Robert; Choi, Christopher; Schurman, Shepherd H.; Garabedian, Elizabeth; Kesserwan, Chimene; Jagadeesh, G. Jayashree; Fu, Pei-Yu; Gschweng, Eric; Cooper, Aaron; Tisdale, John F.; Weinberg, Kenneth I.; Crooks, Gay M.; Kapoor, Neena; Shah, Ami; Abdel-Azim, Hisham; Yu, Xiao-Jin; Smogorzewska, Monika; Wayne, Alan S.; Rosenblatt, Howard M.; Davis, Carla M.; Hanson, Celine; Rishi, Radha G.; Wang, Xiaoyan; Gjertson, David; Yang, Otto O.; Balamurugan, Arumugam; Bauer, Gerhard; Ireland, Joanna A.; Engel, Barbara C.; Podsakoff, Gregory M.; Hershfield, Michael S.; Blaese, R. Michael; Parkman, Robertson

    2012-01-01

    We conducted a gene therapy trial in 10 patients with adenosine deaminase (ADA)–deficient severe combined immunodeficiency using 2 slightly different retroviral vectors for the transduction of patients' bone marrow CD34+ cells. Four subjects were treated without pretransplantation cytoreduction and remained on ADA enzyme-replacement therapy (ERT) throughout the procedure. Only transient (months), low-level (< 0.01%) gene marking was observed in PBMCs of 2 older subjects (15 and 20 years of age), whereas some gene marking of PBMC has persisted for the past 9 years in 2 younger subjects (4 and 6 years). Six additional subjects were treated using the same gene transfer protocol, but after withdrawal of ERT and administration of low-dose busulfan (65-90 mg/m2). Three of these remain well, off ERT (5, 4, and 3 years postprocedure), with gene marking in PBMC of 1%-10%, and ADA enzyme expression in PBMC near or in the normal range. Two subjects were restarted on ERT because of poor gene marking and immune recovery, and one had a subsequent allogeneic hematopoietic stem cell transplantation. These studies directly demonstrate the importance of providing nonmyeloablative pretransplantation conditioning to achieve therapeutic benefits with gene therapy for ADA-deficient severe combined immunodeficiency. PMID:22968453

  3. Effector and memory T cell subsets in the response to bovine tuberculosis

    USDA-ARS?s Scientific Manuscript database

    Long-term (i.e., 14d) cultured IFN-gamma ELISPOT assays of PBMC are used as a correlate of T cell central memory (Tcm) responses in cattle and humans. With bovine tuberculosis, vaccine-elicited Tcm responses correlate with protection against experimental Mycobacterium bovis infection. The objective ...

  4. "Characterization of the immune reagent chicken IL-16"

    USDA-ARS?s Scientific Manuscript database

    Interleukin-16 has been characterized as a pro-inflammatory cytokine that mediates an immune response in human and mouse monocytes and peripheral blood mononuclear cells (PBMC), and it plays a role in proliferating B-cells and myelomas. The function of chicken IL-16 ortholog (ch-IL-16) is far less u...

  5. Enhanced analytical sensitivity of a quantitative PCR for CMV using a modified nucleic-acid extraction procedure.

    PubMed

    Ferreira-Gonzalez, A; Yanovich, S; Langley, M R; Weymouth, L A; Wilkinson, D S; Garrett, C T

    2000-01-01

    Accurate and rapid diagnosis of CMV disease in immunocompromised individuals remains a challenge. Quantitative polymerase chain reaction (QPCR) methods for detection of CMV in peripheral blood mononuclear cells (PBMC) have improved the positive and negative predictive value of PCR for diagnosis of CMV disease. However, detection of CMV in plasma has demonstrated a lower negative predictive value for plasma as compared with PBMC. To enhance the sensitivity of the QPCR assay for plasma specimens, plasma samples were centrifuged before nucleic-acid extraction and the extracted DNA resolubilized in reduced volume. Optimization of the nucleic-acid extraction focused on decreasing or eliminating the presence of inhibitors in the pelleted plasma. Quantitation was achieved by co-amplifying an internal quantitative standard (IS) with the same primer sequences as CMV. PCR products were detected by hybridization in a 96-well microtiter plate coated with a CMV or IS specific probe. The precision of the QPCR assay for samples prepared from untreated and from pelleted plasma was then assessed. The coefficient of variation for both types of samples was almost identical and the magnitude of the coefficient of variations was reduced by a factor of ten if the data were log transformed. Linearity of the QPCR assay extended over a 3.3-log range for both types of samples but the range of linearity for pelleted plasma was 20 to 40,000 viral copies/ml (vc/ml) in contrast to 300 to 400,000 vc/ml for plasma. Thus, centrifugation of plasma before nucleic-acid extraction and resuspension of extracted CMV DNA in reduced volume enhanced the analytical sensitivity approximately tenfold over the dynamic range of the assay. Copyright 2000 Wiley-Liss, Inc.

  6. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD)

    PubMed

    Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H

    1995-12-01

    Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD.

  7. T cell epitope-specific defects in the immune response to cat allergen in patients with atopic dermatitis.

    PubMed

    Carneiro, Raquel; Reefer, Amanda; Wilson, Barbara; Hammer, Juergen; Platts-Mills, Thomas; Custis, Natalie; Woodfolk, Judith

    2004-04-01

    Atopic dermatitis (AD) is often associated with high titer IgE antibodies (ab) to allergens, and IL-10-mediated regulation of IFN-gamma has been proposed to contribute to this IgE ab production. However, the relevance of IL-10 and IFN-gamma to IgE associated with AD has not been examined in the context of an allergen-specific system. Analysis of PBMC responses in vitro showed deficient T cell proliferation to overlapping IL-10- (peptide (P) 2:1) and IFN-gamma- (P2:2) inducing chain 2 major epitopes of cat allergen (Fel d 1) in cultures from sensitized AD patients (mean IgE to cat=20.9 IU/ml). Diminished IFN-gamma induction by Fel d 1 and P2:2, along with elevated peptide-induced IL-10 (except for P2:1) was observed in PBMC cultures from AD subjects compared with non-AD (sensitized and non-sensitized) subjects. Neither T cell proliferation nor IFN-gamma production to chain 2 epitopes could be restored by anti-IL-10 mAb in cultures from sensitized AD subjects. Moreover, allergen avoidance was associated with a paradoxical decrease in both IL-10 and IFN-gamma in peptide-stimulated PBMC from these subjects. Control of IFN-gamma production to chain 2 epitopes by IL-10 may be relevant to sensitization status. Development of high titer IgE ab in AD could reflect a failure of this mechanism.

  8. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD)

    PubMed Central

    Duchmann, R; Kaiser, I; Hermann, E; Mayet, W; Ewe, K; Meyer zum Büschenfelde, K H

    1995-01-01

    Hyporesponsiveness to a universe of bacterial and dietary antigens from the gut lumen is a hallmark of the intestinal immune system. Since hyperresponsiveness against these antigens might be associated with inflammation, we studied the immune response to the indigenous intestinal microflora in peripheral blood, inflamed and non-inflamed human intestine. Lamina propria monocuclear cells (LPMC) isolated from inflamed intestine but not peripheral blood mononuclear cells (PBMC) of IBD patients with active inflammatory disease strongly proliferated after co-culture with sonicates of bacteria from autologous intestine (BsA). Proliferation was inhibitable by anti-MHC class II MoAb, suggesting that it was driven by antigen. LPMC from adjacent non-inflamed intestinal areas of the same IBD patients and PBMC or LPMC isolated from non-inflamed intestine of controls and patients with IBD in remission, in contrast, did not proliferate. PBMC or LPMC which had been tolerant to bacteria from autologous intestine, however, strongly proliferated after co-culture with bacterial sonicates from heterologous intestine (BsH). This proliferation was associated with an expansion of CD8+ T cells, increased expression of activation markers on both CD4+ and CD8+ lymphocyte subsets, and production of IL-12, interferon-gamma (IFN-gamma), and IL-10 protein. These results show that tolerance selectively exists to intestinal flora from autologous but not heterologous intestine, and that tolerance is broken in intestinal inflammation. This may be an important mechanism for the perpetuation of chronic IBD. PMID:8536356

  9. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME).

    PubMed

    Petty, Robert D; McCarthy, Neil E; Le Dieu, Rifca; Kerr, Jonathan R

    2016-01-01

    Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function.

  10. MicroRNAs hsa-miR-99b, hsa-miR-330, hsa-miR-126 and hsa-miR-30c: Potential Diagnostic Biomarkers in Natural Killer (NK) Cells of Patients with Chronic Fatigue Syndrome (CFS)/ Myalgic Encephalomyelitis (ME)

    PubMed Central

    Petty, Robert D.; McCarthy, Neil E.; Le Dieu, Rifca; Kerr, Jonathan R.

    2016-01-01

    Background Chronic Fatigue Syndrome (CFS/ME) is a complex multisystem disease of unknown aetiology which causes debilitating symptoms in up to 1% of the global population. Although a large cohort of genes have been shown to exhibit altered expression in CFS/ME patients, it is currently unknown whether microRNA (miRNA) molecules which regulate gene translation contribute to disease pathogenesis. We hypothesized that changes in microRNA expression in patient leukocytes contribute to CFS/ME pathology, and may therefore represent useful diagnostic biomarkers that can be detected in the peripheral blood of CFS/ME patients. Methods miRNA expression in peripheral blood mononuclear cells (PBMC) from CFS/ME patients and healthy controls was analysed using the Ambion Bioarray V1. miRNA demonstrating differential expression were validated by qRT-PCR and then replicated in fractionated blood leukocyte subsets from an independent patient cohort. The CFS/ME associated miRNA identified by these experiments were then transfected into primary NK cells and gene expression analyses conducted to identify their gene targets. Results Microarray analysis identified differential expression of 34 miRNA, all of which were up-regulated. Four of the 34 miRNA had confirmed expression changes by qRT-PCR. Fractionating PBMC samples by cell type from an independent patient cohort identified changes in miRNA expression in NK-cells, B-cells and monocytes with the most significant abnormalities occurring in NK cells. Transfecting primary NK cells with hsa-miR-99b or hsa-miR-330-3p, resulted in gene expression changes consistent with NK cell activation but diminished cytotoxicity, suggesting that defective NK cell function contributes to CFS/ME pathology. Conclusion This study demonstrates altered microRNA expression in the peripheral blood mononuclear cells of CFS/ME patients, which are potential diagnostic biomarkers. The greatest degree of miRNA deregulation was identified in NK cells with targets consistent with cellular activation and altered effector function. PMID:26967895

  11. CD4+ T-cell responses to foot-and-mouth disease virus in vaccinated cattle.

    PubMed

    Carr, B Veronica; Lefevre, Eric A; Windsor, Miriam A; Inghese, Cristina; Gubbins, Simon; Prentice, Helen; Juleff, Nicholas D; Charleston, Bryan

    2013-01-01

    We have performed a series of studies to investigate the role of CD4(+) T-cells in the immune response to foot-and-mouth disease virus (FMDV) post-vaccination. Virus neutralizing antibody titres (VNT) in cattle vaccinated with killed FMD commercial vaccine were significantly reduced and class switching delayed as a consequence of rigorous in vivo CD4(+) T-cell depletion. Further studies were performed to examine whether the magnitude of T-cell proliferative responses correlated with the antibody responses. FMD vaccination was found to induce T-cell proliferative responses, with CD4(+) T-cells responding specifically to the FMDV antigen. In addition, gamma interferon (IFN-γ) was detected in the supernatant of FMDV antigen-stimulated PBMC and purified CD4(+) T-cells from vaccinated cattle. Similarly, intracellular IFN-γ could be detected specifically in purified CD4(+) T-cells after restimulation. It was not possible to correlate in vitro proliferative responses or IFN-γ production of PBMC with VNT, probably as a consequence of the induction of T-independent and T-dependent antibody responses and antigen non-specific T-cell responses. However, our studies demonstrate the importance of stimulating CD4(+) T-cell responses for the induction of optimum antibody responses to FMD-killed vaccines.

  12. CXCL16/CXCR6-mediated adhesion of human peripheral blood mononuclear cells to inflamed endothelium.

    PubMed

    Linke, Bona; Meyer Dos Santos, Sascha; Picard-Willems, Bettina; Keese, Michael; Harder, Sebastian; Geisslinger, Gerd; Scholich, Klaus

    2017-06-21

    The endothelial chemokine CXC motif ligand 16 (CXCL16) is involved in the recruitment and firm adhesion of CXCR6 + cells to the atherosclerosis-prone aortic vessel wall. Recently we showed that CXCR6 + platelets from flowing blood attach to CXCL16 expressed by activated endothelium on the luminal side of the blood vessel. With this study we supplement these findings with the observation that platelets bound to the inflamed endothelium are presenting CXCR6 to CXCL16-positive peripheral blood mononuclear cells (PBMCs) and, thus, are mediating an increased adhesion of PBMCs to the arterial wall. Furthermore we identified endothelial CXCL16 as an important adhesion molecule promoting the firm adhesion of CXCR6-positive PBMCs to inflamed endothelium. Our results demonstrate that endothelial CXCL16 as well as platelet CXCR6 are acting as potent PBMC-adhesion ligands, inducing PBMC-adhesion to the atherosclerosis-prone vessel wall and thus promoting the progression of atherosclerosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. A tuberculosis vaccine based on phosphoantigens and fusion proteins induces distinct gammadelta and alphabeta T cell responses in primates.

    PubMed

    Cendron, Delphine; Ingoure, Sophie; Martino, Angelo; Casetti, Rita; Horand, Françoise; Romagné, François; Sicard, Hélène; Fournié, Jean-Jacques; Poccia, Fabrizio

    2007-02-01

    Phosphoantigens are mycobacterial non-peptide antigens that might enhance the immunogenicity of current subunit candidate vaccines for tuberculosis. However, their testing requires monkeys, the only animal models suitable for gammadelta T cell responses to mycobacteria. Thus here, the immunogenicity of 6-kDa early secretory antigenic target-mycolyl transferase complex antigen 85B (ESAT-6-Ag85B) (H-1 hybrid) fusion protein associated or not to a synthetic phosphoantigen was compared by a prime-boost regimen of two groups of eight cynomolgus. Although phosphoantigen activated immediately a strong release of systemic Th1 cytokines (IL-2, IL-6, IFN-gamma, TNF-alpha), it further anergized blood gammadelta T lymphocytes selectively. By contrast, the hybrid H-1 induced only memory alphabeta T cell responses, regardless of phosphoantigen. These latter essentially comprised cytotoxic T lymphocytes specific for Ag85B (on average + 430 cells/million PBMC) and few IFN-gamma-secreting cells (+ 40 cells/million PBMC, equally specific for ESAT-6 and for Ag85B). Hence, in macaques, a prime-boost with the H-1/phosphoantigen subunit combination induces two waves of immune responses, successively by gammadelta T and alphabeta T lymphocytes.

  14. Effect of two-chambered bicarbonate lactate-buffered peritoneal dialysis fluids on peripheral blood mononuclear cell and polymorphonuclear cell function in vitro.

    PubMed

    Sundaram, S; Cendoroglo, M; Cooker, L A; Jaber, B L; Faict, D; Holmes, C J; Pereira, B J

    1997-11-01

    Low pH, high osmolality, increasing glucose concentration, and glucose degradation products (GDP) formed during heat sterilization of conventional peritoneal dialysis (PD) fluids have been shown to have a detrimental effect on cells involved in peritoneal host defense. The two-chambered PD fluid bag in which glucose at pH approximately 3 is separated from a bicarbonate (25 mmol/L)-lactate (15 mmol/L) buffer during heat sterilization permits PD fluids with lower GDP to be delivered to the patient at neutral pH. To establish the possible benefit of two-chambered bag PD fluids on peripheral blood mononuclear cell (PBMC) and polymorphonuclear (PMN) cell function, we compared conventional 1.5% Dianeal (1.5%D) with 1.5% two-chambered bag bicarbonate-lactate (1.5%D-B), and conventional 4.25% Dianeal (4.25%D) with 4.25% two-chambered bag bicarbonate-lactate (4.25%D-B). Furthermore, to study the effect of the sterilization process on PBMC and PMN function, we compared filter-sterilized 4.25%D (4.25%D-F) with 4.25%D and 4.25%D-B. PBMC were harvested by Ficoll-Hypaque separation, and 2.5 x 10(6) cells in RPMI were incubated with an equal volume of the test fluids for 4 hours, pelleted, and resuspended in RPMI containing 10 ng endotoxin for a further 20 hours. Tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated PBMC was not significantly different (P = 0.10) between 1.5%D-B and 1.5%D, but was significantly higher (P = 0.01) with 4.25%D-B compared with 4.25%D. PBMC exposed to filter-sterilized fluid (4.25%D-F) showed significantly higher endotoxin-stimulated TNF-alpha production compared with 4.25%D (P = 0.02), but was not significantly different from 4.25%D-B (P = 0.40). PMN were harvested by Ficoll-Hypaque separation and 10 x 10(6) cells incubated with test fluids for 30 minutes. After incubation, phagocytosis (phagocytosis index) was determined by the uptake of 14C-labeled Staphylococcus aureus, oxidative burst by reduction of ferricytochrome C to ferrocytochrome C on stimulation with PMA, and enzyme release by measurement of endotoxin-stimulated bactericidal/permeability increasing protein (BPI). Bicarbonate-lactate two-chambered fluids of similar osmolality and glucose concentration conferred a significant improvement in phagocytosis (P = 0.02 for 1.5%D-B and P < 0.001 for 4.25%D-B). Oxidative burst and BPI release were significantly higher in 4.25%D-B compared with 4.25%D (P < 0.001). Filter-sterilized 4.25%D-F conferred a significant improvement in phagocytosis and oxidative burst compared with 4.25%D (P < 0.001) or 4.25%D-B (P < 0.001). Furthermore, conventional 4.25%D was associated with significantly lower BPI release compared with 4.25%D-F (P = 0.01). GDP's acetaldehyde and 5-HMF were analyzed in 4.25%D-B, 4.25%D, and 4.25%D-F. Acetaldehyde was below the lower limit (0.79 ppm) of the standard curve in 4.25%D-B and 4.25%D-F fluids but was detected (3.76 to 5.12 ppm) in all of the 4.25%D fluids. Relative levels of 5-HMF in the 4.25%D-B (0.032 to 0.041 Abs @ 284 nm) and 4.25%D (0.031 to 0.036 Abs @ 284 nm) were similar. The lowest levels (0.001 Abs @ 284 nm) were observed in the filter-sterilized 4.25%D-F. The beneficial effects of two-chambered bicarbonate lactate-buffered PD fluids on PBMC and PMN function are probably related to reduction of GDP from heat sterilization of glucose in a separate chamber at a lower pH. This improvement in biocompatibility could have a beneficial affect on peritoneal defenses.

  15. Characterization of a human antigen specific helper factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, B.

    1986-03-01

    While antigen (Ag) specific helper factors have been characterized in mice, similar molecules have not been identified in humans. To characterize human antigen specific helper molecules, an IL-2 dependent tetanus toxoid (T.T.) reactive T cell line was fused with a 6-thioguanine resistant CEM line, and hybrids selected in medium containing hypoxanthine and azaserine. Hybrids were screened by culturing the cells with /sup 35/S-Met then reacting the supernatants with T.T. or hepatitis vaccine immobilized on nitrocellulose. One hybrid, TT6BA-O, was identified which secreted a Met-containing molecule which bound T.T. but not hepatitis vaccine. Supernatants from TT6BA-O, but not the parent CEMmore » line, when added to autologous peripheral blood mononuclear cells (PBMC's) stimulated secretion of T.T. specific antibodies (Abs). Specificity controls demonstrated that TT6BA-O supernatant did not induce antibodies to diphtheria toxoid, hepatitis vaccine or pneumococcal polysaccharide, and total immunoglobulin (lg) synthesis was minimally increased. In contrast, pokeweed mitogen stimulated significant lg synthesis as well as Ab's to pneumococcal polysaccharide and T.T. TT6BA-O supernatant induced anti-T.T.Ab's in autologous PBMC's but not PBMC's from 3 unrelated donors, suggesting that the activity of the helper factor is restricted, possibly by the MHC. The molecular weight of the helper factor was estimated at 100,000-150,000 by Sephacryl S-300 chromatography. Finally, the helper factor could be demonstrated to bind and elute from sephorose-immobilized T.T. and anti-DR antisera, but not anti-lg antisera or the T40/25 monoclonal antibody, which binds a nonpolymorphic determinant on the human T cell receptor. These results demonstrate that human Ag specific helper factors exist, bind antigen and bear class II MHC determinants.« less

  16. Structural changes in lymphocytes membrane of Chernobyl clean-up workers from Latvia.

    PubMed

    Kalnina, Inta; Zvagule, Tija; Gabruseva, Natalija; Kirilova, Jelena; Kurjane, Natalja; Bruvere, Ruta; Kesters, Andris; Kizane, Gunta; Kirilovs, Georgijs; Meirovics, Imants

    2007-11-01

    ABM (3-aminobenzanthrrone derivative) developed at the Riga Technical University, Riga, Latvia) has been previously shown as a potential probe for determination of the immune state of patients with different pathologies . The fist study (using probe ABM) of peripheral blood mononuclear cells (PBMC) membranes of 97 Chernobyl clean-up workers from Latvia was conducted in 1997. Now we repeatedly examine the same (n = 54) individuals in dynamics. ABM spectral parameters in PBMC suspension, fluorescence anisotropy and blood plasma albumin characteristics were recorded. In 1997 screening showed 5 different patterns of fluorescence spectra, from which in 2007 we obtained only two. These patterns of spectra had never been previously seen in healthy individuals or patients with tuberculosis, multiple sclerosis, rheumatoid arthritis, etc., examined by us. Patterns of ABM fluorescence spectra are associated with membrane anisotropy and conformational changes of blood plasma albumin. We observed that in dynamics 1997-2007 the lipid compartment of the membrane became more fluid while the lipid-protein interface became more rigid. The use of probe ANS and albumin auto-fluorescence allowed show conformational alterations in Chernobyl clean-up workers blood plasma. It is necessary to note that all investigated parameters significantly differ in observed groups of patients. These findings reinforce our understanding that that the cell membrane is a significant biological target of radiation. The role of the membrane in the expression and course of cell damage after radiation exposure must be considered. So ten years dynamic of PBMC membrane characteristics by ABM (spectral shift and anisotropy indexes) in Chernobyl clean-up workers reveal progressive trend toward certain resemblance with those of chronic B-cell lymphoid leukemia.

  17. Single Cell Dissection of Human Pancreatic Islet Dysfunction in Diabetes

    DTIC Science & Technology

    2017-06-01

    of memory T cells , innate cells and the differentiation potential of naive T cells during ME/CFS; and 3) To determine the T cell and innate cell ...apoptosis and the innate immune response in human pancreatic β- cells . Diabetes 64: 3808–3817. Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir...interactive nature of CellView aids in cell doublet identification. In the PBMC data, ‘Subcluster-analysis’ reveals a mixture of lymphoid and myeloid

  18. Immunization of Cattle by Infection with Cowdria ruminantium Elicits T Lymphocytes That Recognize Autologous, Infected Endothelial Cells and Monocytes†

    PubMed Central

    Mwangi, Duncan M.; Mahan, Suman M.; Nyanjui, John K.; Taracha, Evans L. N.; McKeever, Declan J.

    1998-01-01

    Peripheral blood mononuclear cells (PBMC) from immune cattle proliferate in the presence of autologous Cowdria ruminantium-infected endothelial cells and monocytes. Endothelial cells required treatment with T-cell growth factors to induce class II major histocompatibility complex expression prior to infection and use as stimulators. Proliferative responses to both infected autologous endothelial cells and monocytes were characterized by expansion of a mixture of CD4+, CD8+, and γδ T cells. However, γδ T cells dominated following several restimulations. Reverse transcription-PCR analysis of cytokine expression by C. ruminantium-specific T-cell lines and immune PBMC revealed weak interleukin-2 (IL-2), IL-4, and gamma interferon (IFN-γ) transcripts at 3 to 24 h after stimulation. Strong expression of IFN-γ, tumor necrosis factor alpha (TNF-α), TNF-β, and IL-2 receptor α-chain mRNA was detected in T-cell lines 48 h after antigen stimulation. Supernatants from these T-cell cultures contained IFN-γ protein. Our findings suggest that in immune cattle a C. ruminantium-specific T-cell response is induced and that infected endothelial cells and monocytes may present C. ruminantium antigens to specific T lymphocytes in vivo during infection and thereby play a role in induction of protective immune responses to the pathogen. PMID:9573061

  19. Altered immune responses in broiler chicken husbandry workers and their association with endotoxin exposure

    PubMed Central

    GAUTAM, Ravi; HEO, Yong; LIM, GyeongDong; SONG, EunSeob; ROQUE, Katharine; LEE, JaeHee; KIM, YeonGyeong; CHO, AhRang; SHIN, SoJung; KIM, ChangYul; BANG, GiHwan; BAHNG, JiYun; KIM, HyoungAh

    2017-01-01

    Exposure to bioaerosols in indoor animal farms associates with respiratory illnesses, but little is known about the immune modulation to chicken farmers. This study aimed to compare the general immunity of chicken farmers with those of control subjects with non-agricultural jobs. Blood taken from the farmers and controls was subjected to plasma IgE and IgG subclass measurements. Isolated peripheral blood mononuclear cells (PBMC) were stimulated and cytokine production was measured. Indoor total and respirable dust levels and their endotoxin (LPS) and aflatoxin (AF) levels in the farms were measured. In total, 29 chicken farmers on 19 farms and 14 age- and sex-matched office workers participated. Hematological differences were not observed. The farmers tended to have higher serum IgE and IgG subclass levels with significance for IgG1. The cytokines released by PBMC from farmers indicated skewing toward Type-2 helper T-cell responses: interferon (IFN)-γ:interleukin (IL)-4 and IFNγ:IL-13 ratios were significantly lower than for control PBMC. The farms had 707.1 EU/m3 LPS in total dust, and 15.8 EU/m3 LPS in respirable dust. Farmers exhibited immune skewing towards allergic immune responses that correlated with the LPS levels on their farms. Chicken farmers may be at risk of respiratory allergies due to occupational endotoxin exposure. PMID:28835578

  20. Granulysin-Expressing CD4+ T Cells as Candidate Immune Marker for Tuberculosis during Childhood and Adolescence

    PubMed Central

    Mueller, Henrik; Faé, Kellen C.; Magdorf, Klaus; Ganoza, Christian A.; Wahn, Ulrich; Guhlich, Ute; Feiterna-Sperling, Cornelia; Kaufmann, Stefan H. E.

    2011-01-01

    Background Granulysin produced by cytolytic T cells directly contributes to immune defense against tuberculosis (TB). We investigated granulysin as a candidate immune marker for childhood and adolescent TB. Methods Peripheral blood mononuclear cells (PBMC) from children and adolescents (1–17 years) with active TB, latent TB infection (LTBI), nontuberculous mycobacteria (NTM) infection and from uninfected controls were isolated and restimulated in a 7-day restimulation assay. Intracellular staining was then performed to analyze antigen-specific induction of activation markers and cytotoxic proteins, notably, granulysin in CD4+ CD45RO+ memory T cells. Results CD4+ CD45RO+ T cells co-expressing granulysin with specificity for Mycobacterium tuberculosis (Mtb) were present in high frequency in TB-experienced children and adolescents. Proliferating memory T cells (CFSElowCD4+CD45RO+) were identified as main source of granulysin and these cells expressed both central and effector memory phenotype. PBMC from study participants after TB drug therapy revealed that granulysin-expressing CD4+ T cells are long-lived, and express several activation and cytotoxicity markers with a proportion of cells being interferon-gamma-positive. In addition, granulysin-expressing T cell lines showed cytolytic activity against Mtb-infected target cells. Conclusions Our data suggest granulysin expression by CD4+ memory T cells as candidate immune marker for TB infection, notably, in childhood and adolescence. PMID:22216262

  1. Anti-Inflammatory Activity in the Low Molecular Weight Fraction of Commercial Human Serum Albumin (LMWF5A).

    PubMed

    Thomas, Gregory W; Rael, Leonard T; Mains, Charles W; Slone, Denetta; Carrick, Matthew M; Bar-Or, Raphael; Bar-Or, David

    2016-01-01

    The innate immune system is increasingly being recognized as a critical component in osteoarthritis (OA) pathophysiology. An ex vivo immunoassay utilizing human peripheral blood mononuclear cells (PBMC) was developed in order to assess the OA anti-inflammatory properties of the low molecular weight fraction (<5 kDa) of commercial human serum albumin (LMWF5A). PBMC from various donors were pre-incubated with LMWF5A before LPS stimulation. TNFα release was measured by ELISA in supernatants after an overnight incubation. A ≥ 30% decrease in TNFα release was observed. This anti-inflammatory effect is potentially useful in assessing potency of LMWF5A for the treatment of OA.

  2. Comparative immune responses against Psoroptes ovis in two cattle breeds with different susceptibility to mange.

    PubMed

    Sarre, Charlotte; González-Hernández, Ana; Van Coppernolle, Stefanie; Grit, Rika; Grauwet, Korneel; Van Meulder, Frederik; Chiers, Koen; Van den Broeck, Wim; Geldhof, Peter; Claerebout, Edwin

    2015-11-19

    The sheep scab mite, Psoroptes ovis, is a major problem in the beef cattle industry, especially in Belgian Blue (BB) cattle. This breed is naturally more predisposed to psoroptic mange but reasons for this high susceptibility remain unknown. Different immune responses could be a potential cause; thus in this study, the cutaneous immune response and in vitro cellular immune response after antigen re-stimulation were examined in naturally infested BB. Cytokine production in the skin and in circulating re-stimulated peripheral blood mononuclear cells (PBMC) demonstrated a mixed pro-inflammatory Th2/Th17 profile, with transcription of IL-4, IL-13, IL-6 and IL-17. Strong IL-17 up-regulation in the skin of BB was associated with an influx of eosinophils and other immune cells, potentially leading towards more severe symptoms. Virtually no changes in cutaneous IFN-γ transcription were detected, while there was substantial IFN-γ up-regulation in re-stimulated PBMC from infested and uninfested animals, potentially indicating a role of this pro-inflammatory cytokine in the innate immune response. In Holstein-Friesian (HF) cattle, generally more resistant to P. ovis infection, a largely similar immunologic response was observed. Differences between HF and BB were the lack of cutaneous IL-17 response in infested HF and low transcription levels of IFN-γ and high IL-10 transcription in re-stimulated PBMC from both infested and uninfested animals. Further research is needed to identify potential cell sources and biological functions for these cytokines and to fully unravel the basis of this different breed susceptibility to P. ovis.

  3. Cocoa procyanidins and human cytokine transcription and secretion.

    PubMed

    Mao, T; Van De Water, J; Keen, C L; Schmitz, H H; Gershwin, M E

    2000-08-01

    We examined whether cocoa, in its isolated procyanidin fractions (monomer through decamer), would modulate cytokine production at the levels of transcription and protein secretion in both resting and phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (PBMC). In resting cells, interleukin (IL)-1beta and IL-4 gene expression from cocoa-treated cells varied markedly among the subjects tested. However, at the protein level, the larger fractions (pentamer through decamer) stimulated a dramatic increase in IL-1beta concentration (up to ninefold) with increasing degree of polymerization. Similarly, these larger fractions augmented IL-4 concentration by as much as 2 pg/ml, whereas the control displayed levels nearly undetectable. In the presence of PHA, gene expression also seemed to be most affected by the larger procyanidin fractions. The pentameric through decameric fractions increased IL-1 beta expression by 7-19% compared with PHA control, whereas the hexameric through decameric fractions significantly inhibited PHA-induced IL-4 transcription in the range of 71-86%. This observation at the transcription level for IL-1 beta was reflected at the protein level in PHA-stimulated PBMC. Significant reductions in mitogen-induced IL-4 production were also seen at the protein level with the hexamer, heptamer and octamer. Individual oligomeric cocoa fractions were unstimulatory for IL-2 in resting PBMC. However, when induced with PHA, the pentamer, hexamer and heptamer fractions caused a 61-73% inhibition in IL-2 gene expression. This study offers additional data for the consideration of the health benefits of dietary polyphenols from a wide variety of foods, including those benefits associated specifically with cocoa and chocolate consumption.

  4. Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows

    NASA Astrophysics Data System (ADS)

    Lacetera, Nicola; Bernabucci, Umberto; Ronchi, Bruno; Scalia, Daniela; Nardone, Alessandro

    2002-02-01

    The study was undertaken during spring and summer months in a territory representative of the Mediterranean climate to assess the effects of season on some immunological parameters of dairy cows. Twenty Holstein cows were used. Eleven of those cows gave birth during spring; the remaining nine cows gave birth in summer. The two groups of cows were homogeneous for parity. Values of air temperatures and relative humidity were recorded both during spring and summer, and were utilized to calculate the temperature humidity index (THI). One week before the expected calving, rectal temperatures and respiratory rates of the cows were recorded (1500 hours), and cell-mediated immunity was assessed by measuring the proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMC). Within 3 h of calving, one colostrum sample was taken from each cow and analysed to determine content of immunoglobulin (Ig) G1, IgG2, IgM and IgA. At 48 h after birth, passive immunization of the calves was assessed by measuring total serum IgG. During summer, daytime (0900-2000 hours) THI values were above the upper critical value of 72 [75.2, (SD 2.6)] indicating conditions that could represent moderate heat stress. That THI values were able to predict heat stress was confirmed by the values of rectal temperatures and respiratory rates, which were higher ( P < 0.05 and P < 0.001 respectively) during summer. Proliferation of PBMC, the colostral concentration of Ig fractions and serum levels of IgG in their respective offspring did not differ between spring and summer cows. Results indicated that moderate heat stress due to the hot Mediterranean summer does not modify cell-mediated immunity, the protective value of colostrum and passive immunization of the offspring in dairy cows.

  5. Effects of strenuous exercise on Th1/Th2 gene expression from human peripheral blood mononuclear cells of marathon participants.

    PubMed

    Xiang, Lianbin; Rehm, Kristina E; Marshall, Gailen D

    2014-08-01

    Physical stressors, such as strenuous exercise, can have numerous effects on the human body including the immune system. The aim of this study was to evaluate the gene expression profile of Th1/Th2 cytokines and related transcription factor genes in order to investigate possible immune imbalances before and after a marathon. Blood samples were collected from 16 normal volunteers 24-48 h before and one week after completing a marathon race. Gene expression of Th1 and Th2 related cytokines from human peripheral blood mononuclear cells (PBMC) was analyzed using Human Th1-Th2-Th3 RT(2) Profiler PCR Array and qRT-PCR that measured the transcript levels of 84 genes related to T cell activation. We found that PBMC express a characteristic Th2-like gene profile one week post-marathon compared to pre-marathon. The majority of genes up-regulated one week post-marathon such as IL-4, GATA3, and CCR4 were Th2 associated. For Th1-related genes, CXCR3 and IRF1 were up-regulated one week post-marathon. There was a trend of down-regulation of two Th1 related genes, T-bet and STAT1. Th3-related gene expression patterns did not change in the study. The ratios of both IFN-γ/IL-4 and T-bet/GATA3 gene expressions were significantly lower one week after marathon. These findings suggest that a Th1/Th2 immune imbalance persisted at least 1 week after completion of a marathon which offers a mechanistic rationale for the increased risk of upper respiratory tract infections often reported after strenuous exercise. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    PubMed

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  7. Dietary Human Milk Oligosaccharides but Not Prebiotic Oligosaccharides Increase Circulating Natural Killer Cell and Mesenteric Lymph Node Memory T Cell Populations in Noninfected and Rotavirus-Infected Neonatal Piglets.

    PubMed

    Comstock, Sarah S; Li, Min; Wang, Mei; Monaco, Marcia H; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Donovan, Sharon M

    2017-06-01

    Background: Human milk oligosaccharides (HMOs) have antimicrobial and immunomodulatory actions. It has previously been reported that these oligosaccharides contribute to the reduced duration of rotavirus-induced diarrhea in pigs. Objective: We measured the effects of HMOs and prebiotic oligosaccharides on immune cell populations from noninfected and rotavirus-infected pigs. We hypothesized that dietary HMOs would modulate systemic and gastrointestinal immunity. Methods: Colostrum-deprived newborn pigs were fed formula, formula with 4 g HMOs/L (2'-fucosyllactose, lacto- N -neotetraose, 6'-sialyllactose, 3'-sialyllactose, and free sialic acid), or formula with 3.6 g short-chain galactooligosaccharides/L and 0.4 g long-chain fructooligosaccharides/L. On day 10, half of the pigs were infected with the porcine rotavirus strain OSU. Peripheral blood mononuclear cell (PBMC), mesenteric lymph node (MLN), and ileal Peyer's patch immune cell populations were assessed with the use of flow cytometry 5 d postinfection. Interferon-γ (IFN-γ)-producing cells were assessed with the use of Enzyme-Linked ImmunoSpot assay. Results: Infection changed immune cell populations with more systemic natural killer (NK) cells, memory effector T cells, and major histocompatibility complex II + cells in infected than noninfected pigs ( P < 0.06). Regardless of infection status, HMO-fed pigs had nearly twice as many PBMC NK cells, 36% more MLN effector memory T cells, and 5 times more PBMC basophils than formula-fed pigs ( P < 0.04). These populations were intermediate in pigs fed prebiotics. PBMCs from HMO-fed noninfected pigs had twice as many IFN-γ-producing cells as did those from formula-fed noninfected pigs ( P = 0.017). The PBMCs and MLNs of formula-fed noninfected pigs had 3 times more plasmacytoid dendritic cells (pDCs) than those of HMO-fed noninfected and formula-fed infected pigs ( P < 0.04). In the MLNs, the formula-fed noninfected pigs had more macrophages, pDCs, and mature DCs ( P < 0.04) but fewer immature DCs than HMO-fed noninfected pigs ( P = 0.022). Conclusions: Dietary HMOs were more effective than prebiotics in altering systemic and gastrointestinal immune cells in pigs. These altered immune cell populations may mediate the effects of dietary HMOs on rotavirus infection susceptibility. © 2017 American Society for Nutrition.

  8. Ki-67 expression reveals strong, transient influenza specific CD4 T cell responses after adult vaccination.

    PubMed

    Li, Xi; Miao, Hongyu; Henn, Alicia; Topham, David J; Wu, Hulin; Zand, Martin S; Mosmann, Tim R

    2012-06-29

    Although previous studies have found minimal changes in CD4 T cell responses after vaccination of adults with trivalent inactivated influenza vaccine, daily sampling and monitoring of the proliferation marker Ki-67 have now been used to reveal that a substantial fraction of influenza-specific CD4 T cells respond to vaccination. At 4-6 days after vaccination, there is a sharp rise in the numbers of Ki-67-expressing PBMC that produce IFNγ, IL-2 and/or TNFα in vitro in response to influenza vaccine or peptide. Ki-67(+) cell numbers then decline rapidly, and 10 days after vaccination, both Ki-67(+) and overall influenza-specific cell numbers are similar to pre-vaccination levels. These results provide a tool for assessing the quality and quantity of CD4 T cell responses to different influenza vaccines, and raise the possibility that the anti-influenza T cell memory response may be qualitatively altered by vaccination, even if the overall memory cell numbers do not change significantly. Copyright © 2012. Published by Elsevier Ltd.

  9. Polysaccharides Isolated from Açaí Fruit Induce Innate Immune Responses

    PubMed Central

    Holderness, Jeff; Schepetkin, Igor A.; Freedman, Brett; Kirpotina, Liliya N.; Quinn, Mark T.; Hedges, Jodi F.; Jutila, Mark A.

    2011-01-01

    The Açaí (Acai) fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease. PMID:21386979

  10. Induction of expression of iNOS by N-nitrosodimethylamine (NDMA) in human leukocytes.

    PubMed

    Ratajczak-Wrona, Wioletta; Jablonska, Ewa; Jablonski, Jakub; Marcinczyk, Magdalena

    2009-01-01

    The aim of this study was to assess the influence of N-nitrosodimethylamine (NDMA) on expression of inducible nitric oxide synthase (iNOS), as well as production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) by human neutrophils (PMN) and peripheral blood mononuclear cells (PBMC), and the participation of the p38 MAPK kinase in this process. Furthermore, the ability of neutrophils to release superoxide anion was determined. The influence of N-nitrosodimethylamine on iNOS expression was determined in isolated PMN and PBMC cells from peripheral blood of healthy individuals. The mononuclear cells showed higher sensitivity to NDMA. Moreover, cytotoxic effect of NDMA can be influenced in some way by the impact of this xenobiotic on nitric oxide and superoxide anion release from human leukocytes. Furthermore, increased generation of these radicals by human leukocytes suggest that neutrophils and mononuclear cells that are exposed to NDMA activity can play a key role in endogenous NDMA generation. However the relationship between iNOS expression and phospho-p38 MAPK in neutrophils and mononuclear cells shows that p38 MAPK pathway participates in induction of iNOS expression in the presence of NDMA.

  11. DNA damage and apoptosis induction by the pesticide Mancozeb in rat cells: Involvement of the oxidative mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calviello, Gabriella; Piccioni, Elisabetta; Boninsegna, Alma

    The DNA damaging and proapoptotic effects of Mancozeb, a widely used fungicide of the ethylene-bis-dithiocarbamate (EBDC) group, were studied in RAT-1 fibroblasts cultured in vitro and in peripheral blood mononucleated cells (PBMC) isolated from Wistar rats. After 1 h exposition to Mancozeb (up to 500 ng/ml), cells produced a dose-dependent induction in DNA single strand break (SSB) formation, measured by single cell gel electrophoresis (SCGE). Concomitantly, a concentration-dependent increase in the levels of the oxidative markers of DNA oxidation, the DNA adduct 8-hydroxy-2'-deoxyguanosine (8-OHdG) and of reactive oxygen species (ROS) were observed, suggesting a prooxidant action of Mancozeb. PBMC weremore » less responsive than fibroblasts to the oxidative insult carried out by Mancozeb, as shown by the lower increase in the levels of ROS, 8-OHdG adducts and SSB measured in these cells after exposure to the pesticide. A 4-h treatment with Mancozeb induced also apoptosis in both PBMC and RAT-1 cells, even though leukocytes were less sensitive than fibroblasts to the proapoptotic action. This effect was dose-dependent and was inhibited by the action of the antioxidant {alpha}-tocopherol. The proapoptotic effect was accompanied by the altered expression of several proteins involved in the regulation of apoptosis, such as the prosurvival protein BCL-2 and the proapoptotic protein c-MYC. Exposition of cells to higher concentrations of Mancozeb or for longer periods (>4 h) caused post-apoptotic, necrotic alterations in cell membrane integrity. The data herein presented demonstrate the oxidative effect of Mancozeb and suggest that its prooxidant action may be involved in the proapoptotic effect exerted by this compound in rat cells. It appears possible that the observed oxidative and genotoxic damage may be involved in the pathogenesis of various pathologies associated with the chronic exposition to Mancozeb, including cancer. On the other hand, the proapoptotic effect of Mancozeb suggests its possible relevance in the pathogenesis of neurodegenerative diseases, often related to the exposition of pesticides.« less

  12. Reciprocal Regulation of Substance P and IL-12/IL-23 and the Associated Cytokines, IFNγ/IL-17: A Perspective on the Relevance of This Interaction to Multiple Sclerosis.

    PubMed

    Vilisaar, Janek; Kawabe, Kiyokazu; Braitch, Manjit; Aram, Jehan; Furtun, Yasemin; Fahey, Angela J; Chopra, Mark; Tanasescu, Radu; Tighe, Patrick J; Gran, Bruno; Pothoulakis, Charalabos; Constantinescu, Cris S

    2015-09-01

    The neuropeptide substance P (SP) exhibits cytokine-like properties and exerts different effects in autoimmune inflammation. Various immune cells express SP and its neurokinin-1 receptor (NK1R) isoforms. A role for SP has been demonstrated in a number of autoimmune conditions, including multiple sclerosis (MS). In this work, we studied the role of SP and NK1R in human immune cells with a focus on their relationship with IL-12/IL-23 family cytokines and the associated IFN-γ/IL-17. (1) To determine the role of SP mediated effects on induction of various inflammatory cytokines in peripheral blood mononuclear cells (PBMC); (2) to investigate the expression of SP and its receptor in T cells and the effects of stimulation with IL-12 and IL-23. Quantitative real-time PCR, flow cytometry, ELISA, promoter studies on PBMC and primary T cells from healthy volunteers, and Jurkat cell line. Treatment with SP significantly increased the expression of IL-12/IL-23 subunit p40, IL-23 p19 and IL-12 p35 mRNA in human PBMC. Expression of NK1R and SP in T cells was upregulated by IL-23 but a trend was observed with IL-12. The IL-23 effect likely involves IL-17 production that additionally mediates IL-23 effects. Mutual interactions exist with SP enhancing the cytokines IL-23 and IL-12, and SP and NK1R expression being differentially but potentially synergistically regulated by these cytokines. These findings suggest a proinflammatory role for SP in autoimmune inflammation. We propose a model whereby immunocyte derived SP stimulates Th1 and Th17 autoreactive cells migrating to the central nervous system (CNS), enhances their crossing the blood brain barrier and perpetuates inflammation in the CNS by being released from damaged nerves and activating both resident glia and infiltrating immune cells. SP may be a therapeutic target in MS.

  13. Macrophage interactions with polylactic acid and chitosan scaffolds lead to improved recruitment of human mesenchymal stem/stromal cells: a comprehensive study with different immune cells

    PubMed Central

    Quelhas, Pedro

    2016-01-01

    Despite the importance of immune cell–biomaterial interactions for the regenerative outcome, few studies have investigated how distinct three-dimensional biomaterials modulate the immune cell-mediated mesenchymal stem/stromal cells (MSC) recruitment and function. Thus, this work compares the response of varied primary human immune cell populations triggered by different model scaffolds and describes its functional consequence on recruitment and motility of bone marrow MSC. It was found that polylactic acid (PLA) and chitosan scaffolds lead to an increase in the metabolic activity of macrophages but not of peripheral blood mononuclear cells (PBMC), natural killer (NK) cells or monocytes. PBMC and NK cells increase their cell number in PLA scaffolds and express a secretion profile that does not promote MSC recruitment. Importantly, chitosan increases IL-8, MIP-1, MCP-1 and RANTES secretion by macrophages while PLA stimulates IL-6, IL-8 and MCP-1 production, all chemokines that can lead to MSC recruitment. This secretion profile of macrophages in contact with biomaterials correlates with the highest MSC invasion. Furthermore, macrophages enhance stem cell motility within chitosan scaffolds by 44% but not in PLA scaffolds. Thus, macrophages are the cells that in contact with engineered biomaterials become activated to secrete bioactive molecules that stimulate MSC recruitment. PMID:27628173

  14. Organs on chip approach: a tool to evaluate cancer -immune cells interactions.

    PubMed

    Biselli, Elena; Agliari, Elena; Barra, Adriano; Bertani, Francesca Romana; Gerardino, Annamaria; De Ninno, Adele; Mencattini, Arianna; Di Giuseppe, Davide; Mattei, Fabrizio; Schiavoni, Giovanna; Lucarini, Valeria; Vacchelli, Erika; Kroemer, Guido; Di Natale, Corrado; Martinelli, Eugenio; Businaro, Luca

    2017-10-06

    In this paper we discuss the applicability of numerical descriptors and statistical physics concepts to characterize complex biological systems observed at microscopic level through organ on chip approach. To this end, we employ data collected on a microfluidic platform in which leukocytes can move through suitably built channels toward their target. Leukocyte behavior is recorded by standard time lapse imaging. In particular, we analyze three groups of human peripheral blood mononuclear cells (PBMC): heterozygous mutants (in which only one copy of the FPR1 gene is normal), homozygous mutants (in which both alleles encoding FPR1 are loss-of-function variants) and cells from 'wild type' donors (with normal expression of FPR1). We characterize the migration of these cells providing a quantitative confirmation of the essential role of FPR1 in cancer chemotherapy response. Indeed wild type PBMC perform biased random walks toward chemotherapy-treated cancer cells establishing persistent interactions with them. Conversely, heterozygous mutants present a weaker bias in their motion and homozygous mutants perform rather uncorrelated random walks, both failing to engage with their targets. We next focus on wild type cells and study the interactions of leukocytes with cancerous cells developing a novel heuristic procedure, inspired by Lyapunov stability in dynamical systems.

  15. Naturally induced secretions of the potato cyst nematode co-stimulate the proliferation of both tobacco leaf protoplasts and human peripheral blood mononuclear cells.

    PubMed

    Goverse, A; Rouppe van der Voort, J; Roppe van der Voort, C; Kavelaars, A; Smant, G; Schots, A; Bakker, J; Helder, J

    1999-10-01

    Naturally induced secretions from infective juveniles of the potato cyst nematode Globodera rostochiensis co-stimulate the proliferation of tobacco leaf protoplasts in the presence of the synthetic phytohormones alpha-naphthaleneacetic acid (NAA) and 6-benzylaminopurine (BAP). With the use of a protoplast-based bioassay, a low-molecular-weight peptide(s) (< 3 kDa) was shown to be responsible for the observed effect. This mitogenic oligopeptide(s) is functionally dissimilar to auxin and cytokinin and, in addition, it does not change the sensitivity of the protoplasts toward these phytohormones. In combination with the mitogen phytohemagglutinin (PHA), cyst nematode secretions also co-stimulated mitogenesis in human peripheral blood mononuclear cells (PBMC). The stimulation of plant cells isolated from nontarget tissue--these nematodes normally invade the roots of potato plants--suggests the activation of a general signal transduction mechanism(s) by an oligopeptide(s) secreted by the nematode. Whether a similar oligopeptide-induced mechanism underlies human PBMC activation remains to be investigated. Reactivation of the cell cycle is a crucial event in feeding cell formation by cyst nematodes. The secretion of a mitogenic low-molecular-weight peptide(s) by infective juveniles of the potato cyst nematode could contribute to the redifferentiation of plant cells into such a feeding cell.

  16. Gamma delta T cells are early responders to Mycobacterium avium subsp. paratuberculosis in colostrum-replete Holstein calves

    USDA-ARS?s Scientific Manuscript database

    Peripheral blood mononuclear and mesenteric lymph node cells (PBMC and MNL, respectively) were obtained from 30 calves that were assigned randomly at birth to one of six treatment groups: 1) colostrum deprived (CD), no vitamins; 2) colostrum replacer (CR), no vitamins; 3) CR, vitamin A; 4) CR, vitam...

  17. Infection of PBMC with HIV-1 impairs effector function of Mycobacteria-specific CD8+ T cells from tuberculin-reactive donors

    USDA-ARS?s Scientific Manuscript database

    Tuberculosis is the most common opportunistic infection in individuals living with human immunodeficiency virus (HIV). The HIV crisis has further aided in the development of multi- or extensively- drug resistant TB (MDR-, XDR-TB). In addition to CD4+ T cell depletion, HIV infection compromises the f...

  18. Establishment and characterization of Macaca fascicularis lymphoblastoid cell lines.

    PubMed

    Manning, C H; Heise, E R

    1992-01-01

    A panel of cynomolgus macaque lymphoblastoid cell lines (LCL) was established by transforming peripheral blood mononuclear cells (PBMC) with Herpesvirus papio (HVP), and selected lines were examined by flow cytometry. Results indicate that HVP-transformed macaque LCL are phenotypically heterogeneous and resemble human Epstein-Barr virus (EBV)-transformed LCL in the abundant expression of major histocompatibility complex (MHC) class I and class II molecules. At least some lines are of B cell origin.

  19. Immune responses to novel allergens and modulation of inflammation by vitamin K3 analogue: a ROS dependent mechanism.

    PubMed

    Kohli, Vineet; Sharma, Deepak; Sandur, Santosh Kumar; Suryavanshi, Shweta; Sainis, Krishna B

    2011-02-01

    The possibility of newer allergens being responsible for atopy needs to be explored at regional level due to environmental variables. Current studies were undertaken to identify common environmental allergens causing atopy in a defined population of India and to correlate the presence of various risk factors with the clinical presentation of allergy. Newer allergens like human dander and rice grain dust were identified and reported as the most common cause of atopy in this region. Atopy, elevated serum total IgE and familial tendency, was observed in 88%, 69% and 58% of allergic patients respectively. Further, allergen-specific immune responses like lymphocyte proliferation and cytokine secretion were studied in vitro using peripheral blood mononuclear cells (PBMC) isolated from both allergic and non-allergic individuals. Although, some allergens induced significant lymphocyte proliferation in vitro, allergen-induced cytokine secretion except that of TNF-α was not seen. Significantly higher ratio of secreted IL-4/IFN-γ cytokines was observed in PBMC isolated from allergic subjects in response to PHA. Plumbagin (vitamin K3 analogue) completely inhibited PHA-induced cytokine production in PBMC, in both allergic and non-allergic individuals. Plumbagin modulated the levels of intracellular reactive oxygen species and glutathione and suppressed PHA induced activation of NF-κB in human PBMC. The results thus show in human PMBC, for the first time, the anti-allergic and anti-inflammatory effects of plumbagin and underscore its therapeutic potential. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Equine PBMC Cytokines Profile after In Vitro α- and γ-EHV Infection: Efficacy of a Parapoxvirus Ovis Based-Immunomodulator Treatment

    PubMed Central

    Fortier, Christine I.; Fortier, Guillaume D.; Paillot, Romain; Raue, Rudiger; Pronost, Stéphane L.

    2017-01-01

    Equine herpesviruses (EHV) infect horses early during life and the persistence of these viruses through establishment of latency represents a real risk. A better understanding of the immune response to EHV infection is necessary to improve our methods of prevention and decrease the risk of transmission. The objectives of this study were to characterise the cytokine gene expression profile of peripheral blood mononuclear cells (PBMC) after in vitro EHV-1, EHV-4, and EHV-2 infection and to determine the efficacy of inactivated Parapoxvirus ovis (iPPVO) against these 3 viruses. PBMC were isolated from 3 horses and infected in vitro with EHV-1, EHV-4, or EHV-2 in the presence or absence of iPPVO. In vitro culture of PBMC with EHV-1, EHV-4, and iPPVO induced a significant increase of IFN-α, IFN-β, and IFN-γ gene expression. EHV-4 also triggered a significant increase of IL-6 and TNF-α mRNA. EHV-2 triggered a significant increase of IFN-α, IFN-β, IFN-γ, IL-1β, IL-6, and TNF-α mRNA. The presence of iPPVO induced an earlier and stronger expression of IFN-α, IFN-β, and IFN-γ mRNA during EHV infection and reduced the inflammatory response induced by EHV-2. In conclusion, this study suggests that the presence of iPPVO potentiates the development of the immune response to in vitro EHV infection. PMID:28925977

  1. Interferon-alpha receptor 1 mRNA expression in peripheral blood mononuclear cells is associated with response to interferon-alpha therapy of patients with chronic hepatitis C.

    PubMed

    Massirer, K B; Hirata, M H; Silva, A E B; Ferraz, M L G; Nguyen, N Y; Hirata, R D C

    2004-05-01

    Interferon (IFN)-alpha receptor mRNA expression in liver of patients with chronic hepatitis C has been shown to be a response to IFN-alpha therapy. The objective of the present study was to determine whether the expression of mRNA for subunit 1 of the IFN-alpha receptor (IFNAR1) in peripheral blood mononuclear cells (PBMC) is associated with the response to IFN-alpha in patients with chronic hepatitis C. Thirty patients with positive anti-HCV and HCV-RNA, and abnormal levels of alanine aminotransferase in serum were selected and treated with IFN-alpha 2b for one year. Those with HBV or HIV infection, or using alcohol were not included. Thirteen discontinued the treatment and were not evaluated. The IFN-alpha response was monitored on the basis of alanine aminotransferase level and positivity for HCV-RNA in serum. IFNAR1-mRNA expression in PBMC was measured by reverse transcription-polymerase chain reaction before and during the first three months of therapy. The results are reported as IFNAR1-mRNA/beta-actin-mRNA ratio (mean +/- SD). Before treatment, responder patients had significantly higher IFNAR1-mRNA expression in PBMC (0.67 +/- 0.15; N = 5; P < 0.05) compared to non-responders (0.35 +/- 0.17; N = 12) and controls (0.30 +/- 0.16; N = 9). Moreover, IFNAR1-mRNA levels were significantly reduced after 3 months of treatment in responders, whereas there were no differences in IFNAR1 expression in non-responders during IFN-alpha therapy. Basal IFNAR1-mRNA expression was not correlated with the serum level of alanine and aspartate aminotransferases or the presence of cirrhosis. The present results suggest that IFNAR1-mRNA expression in PBMC is associated with IFN-alpha response to hepatitis C and may be useful for monitoring therapy in patients with chronic hepatitis C.

  2. Chronic Ethanol consumption modulates growth factor release, mucosal cytokine production and microRNA expression in nonhuman primates

    PubMed Central

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A.; Messaoudi, Ilhem

    2013-01-01

    BACKGROUND Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. METHODS Using a nonhuman primate model of ethanol self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine and growth factor production in peripheral blood, lung and intestinal mucosa following twelve months of chronic ethanol exposure. RESULTS Ethanol exposure inhibited activation-induced production of growth factors HGF, G-CSF and VEGF by peripheral blood mononuclear cells (PBMC). Moreover, ethanol significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of ethanol-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed ethanol-dependent upregulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR181 and 221and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT-3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected CONCLUSION Chronic ethanol consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. PMID:24329418

  3. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells.

    PubMed

    El-Kassas, Seham; Odemuyiwa, Solomon; Hajishengallis, George; Connell, Terry D; Nashar, Toufic O

    2016-12-01

    Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca 2+ , indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection.

  4. Expression and Regulation of Cholecystokinin Receptor in the Chicken's Immune Organs and Cells

    PubMed Central

    El-Kassas, Seham; Odemuyiwa, Solomon; Hajishengallis, George; Connell, Terry D; Nashar, Toufic O

    2017-01-01

    Cholecystokinin (CCK) is a neuropeptide that affects growth rate in chickens by regulating appetite. CCK peptides exert their function by binding to two identified receptors, CCKAR and CCKBR in the GI tract and the brain, respectively, as well as in other organs. In mammals, CCK/CCKAR interactions affect a number of immunological parameters, including regulation of lymphocytes and functioning of monocytes. Thus, food intake and growth can potentially be altered by infection and the resulting inflammatory immune response. It is uncertain, however, whether chicken express CCKAR in immune organs and cells, and, if so, whether CCKAR expression is regulated by pathogen derived inflammatory stimuli. Herein, we identify expression of CCKAR protein in chicken peripheral blood mononuclear cells (PBMC) including monocytes, and expression of the CCKAR gene in PBMC, thymus, bursa, and spleen, in selected commercial and pure chicken breeds. Further, stimulation with various types of E. coli heat-labile enterotoxins or lipopolysaccharide significantly regulated expression of CCKAR on monocytes in the different breeds. Ligation of CCKAR with antibodies in PBMC induced mobilization of Ca2+, indicating that CCKAR is signal competent. Injection with polyinosinic: polycytidylic acid (poly I:C), a synthetic analogue of double stranded viral RNA that binds Toll-Like Receptor-3 (TLR3), also regulated gene expressions of CCKAR and proinflammatory cytokines, in the different breeds. Interestingly, variations in the expression levels of proinflammatory cytokines in the different breeds were highly correlated with CCKAR expression levels. Taken together, these findings indicate that the physiological function of CCKAR in the chicken is tightly regulated in immune organs and cells by external inflammatory stimuli, which in turn regulate growth. This is the first report CCKAR expression in immune organs and cells, in any species, and the initial observation that CCKAR is regulated by inflammatory stimuli associated with bacterial and viral infection. PMID:28149670

  5. Human T-Cell Lymphotropic Virus Type 1 Open Reading Frame II-Encoded p30II Is Required for In Vivo Replication: Evidence of In Vivo Reversion

    PubMed Central

    Silverman, Lee R.; Phipps, Andrew J.; Montgomery, Andrew; Ratner, Lee; Lairmore, Michael D.

    2004-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) causes adult T-cell leukemia/lymphoma and exhibits high genetic stability in vivo. HTLV-1 contains four open reading frames (ORFs) in its pX region. ORF II encodes two proteins, p30II and p13II, both of which are incompletely characterized. p30II localizes to the nucleus or nucleolus and has distant homology to the transcription factors Oct-1, Pit-1, and POU-M1. In vitro studies have demonstrated that at low concentrations, p30II differentially regulates cellular and viral promoters through an interaction with CREB binding protein/p300. To determine the in vivo significance of p30II, we inoculated rabbits with cell lines expressing either a wild-type clone of HTLV-1 (ACH.1) or a clone containing a mutation in ORF II, which eliminated wild-type p30II expression (ACH.30.1). ACH.1-inoculated rabbits maintained higher HTLV-1-specific antibody titers than ACH.30.1-inoculated rabbits, and all ACH.1-inoculated rabbits were seropositive for HTLV-1, whereas only two of six ACH.30.1-inoculated rabbits were seropositive. Provirus could be consistently PCR amplified from peripheral blood mononuclear cell (PBMC) DNA in all ACH.1-inoculated rabbits but in only three of six ACH.30.1-inoculated rabbits. Quantitative competitive PCR indicated higher PBMC proviral loads in ACH.1-inoculated rabbits. Interestingly, sequencing of ORF II from PBMC of provirus-positive ACH.30.1-inoculated rabbits revealed a reversion to wild-type sequence with evidence of early coexistence of mutant and wild-type sequence. Our data provide evidence that HTLV-1 must maintain its key accessory genes to survive in vivo and that in vivo pressures select for maintenance of wild-type ORF II gene products during the early course of infection. PMID:15047799

  6. Circulating rotavirus-specific T cells have a poor functional profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parra, Miguel; Herrera, Daniel; Jácome, María Fernanda

    Frequencies of circulating T cells producing IFN-γ, TNF-α, and IL-2, and percentages of T cells proliferating after stimulation with rotavirus (RV), tetanus toxoid, and influenza were evaluated in PBMC derived from healthy adults and children. In addition, the potential anergic state of RV-specific T cells was analyzed by stimulation of PBMC with RV antigen in the presence of three anergy inhibitors (rIL-2, rIL-12, or DGKα-i). The quality and magnitude of RV-T cell responses were significantly lower than those of tetanus toxoid and influenza antigens. RV-CD4 T cell response was enriched in monofunctional IFN-γ{sup +} cells, while influenza-CD4 and tetanus toxoid-CD4more » T cell responses were enriched in multifunctional T cells. Moreover, rIL-2 – unlike rIL-12 or DGKα-i – increased the frequencies of RV-CD4 TNF-α{sup +}, CD4 IFN-γ{sup +}, and CD8 IFN-γ{sup +} cells. Thus, circulating RV-T cells seem to have a relatively poor functional profile that may be partially reversed in vitro by the addition of rIL-2. - Highlights: • The quality and magnitude of circulating RV-T cell responses are relatively poor. • Circulating RV-CD4 T cells are enriched in monofunctional IFN-γ+ cells. • Treatment with rIL-2 increased the frequencies of cytokine secreting RV-T cells.« less

  7. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research.

    PubMed

    Riccio, Evelyn K P; Pratt-Riccio, Lilian R; Bianco-Júnior, Cesare; Sanchez, Violette; Totino, Paulo R R; Carvalho, Leonardo J M; Daniel-Ribeiro, Cláudio Tadeu

    2015-04-18

    The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus. Blood samples were obtained from nineteen uninfected Saimiri. Peripheral blood mononuclear cells (PBMC) from these animals and splenocytes from one splenectomized animal were cultured for 6, 12, 18, 24, 48, 72 and 96 hrs in the presence of phorbol-12-myristate-13-acetate and ionomycin. The cytokine levels in the supernatant were detected using human and NHP cytometric bead array Th1/Th2 cytokine kits, the Bio-Plex Pro Human Cytokine Th1/Th2 Assay, enzyme-linked immunosorbent assay, enzyme-linked immunospot assays and intracellular cytokine secretion assays. Cytokine gene expression was examined through TaqMan® Gene Expression Real-Time PCR using predesigned human gene-specific primers and probes or primers and probes designed based on published S. sciureus cytokine sequences. The use of five assays based on monoclonal antibodies specific for human cytokines facilitated the detection of IL-2, IL-4 and/or IFN-γ. TaqMan array plates facilitated the detection of 12 of the 28 cytokines assayed. However, only seven cytokines (IL-1A, IL-2, IL-10, IL-12B, IL-17, IFN-β, and TNF) presented relative expression levels of at least 70% of the gene expression observed in human PBMC. The use of primers and probes specific for S. sciureus cytokines facilitated the detection of transcripts that showed relative expression below the threshold of 70%. The most efficient evaluation of cytokine gene expression, in PBMC and splenocytes, was observed after 6-12 hrs of culture, except for LTA in PBMC, whose expression was best analysed after 24 hrs of culture. Real-time PCR facilitates the analysis of a large number of cytokines altered during malaria infection, and this technique is considered the best tool for the evaluation of the cellular immune response in S. sciureus.

  8. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools.

    PubMed

    Singh, Satwinder Kaur; Meyering, Maaike; Ramwadhdoebe, Tamara H; Stynenbosch, Linda F M; Redeker, Anke; Kuppen, Peter J K; Melief, Cornelis J M; Welters, Marij J P; van der Burg, Sjoerd H

    2012-11-01

    The ability to measure antigen-specific T cells at the single-cell level by intracellular cytokine staining (ICS) is a promising immunomonitoring tool and is extensively applied in the evaluation of immunotherapy of cancer. The protocols used to detect antigen-specific CD8+ T-cell responses generally work for the detection of antigen-specific T cells in samples that have undergone at least one round of in vitro pre-stimulation. Application of a common protocol but now using long peptides as antigens was not suitable to simultaneously detect antigen-specific CD8+ and CD4+ T cells directly ex vivo in cryopreserved samples. CD8 T-cell reactivity to monocytes pulsed with long peptides as antigens ranged between 5 and 25 % of that observed against monocytes pulsed with a direct HLA class I fitting minimal CTL peptide epitope. Therefore, we adapted our ICS protocol and show that the use of tenfold higher concentration of long peptides to load APC, the use of IFN-α and poly(I:C) to promote antigen processing and improve T-cell stimulation, does allow for the ex vivo detection of low-frequency antigen-specific CD8+ and CD4+ T cells in an HLA-independent setting. While most of the improvements were related to increasing the ability to measure CD8+ T-cell reactivity following stimulation with long peptides to at least 50 % of the response detected when using a minimal peptide epitope, the final analysis of blood samples from vaccinated patients successfully showed that the adapted ICS protocol also increases the ability to ex vivo detect low-frequency p53-specific CD4+ T-cell responses in cryopreserved PBMC samples.

  9. Cacao extracts suppress tryptophan degradation of mitogen-stimulated peripheral blood mononuclear cells.

    PubMed

    Jenny, M; Santer, E; Klein, A; Ledochowski, M; Schennach, H; Ueberall, F; Fuchs, D

    2009-03-18

    The fruits of Theobroma cacao L. (Sterculiaceae) have been used as food and a remedy for more than 4000 years. Today, about 100 therapeutic applications of cacao are described involving the gastrointestinal, nervous, cardiovascular and immune systems. Pro-inflammatory cytokine interferon-gamma and related biochemical pathways like tryptophan degradation by indoleamine 2,3-dioxygenase and neopterin formation are closely associated with the pathogenesis of such disorders. To determine the anti-inflammatory effect of cacao extracts on interferon-gamma and biochemical consequences in immunocompetent cells. Effects of aqueous or ethanolic extracts of cacao were examined on mitogen-induced human peripheral blood mononuclear cells (PBMC) of healthy donors and on lipopolysaccharide-stimulated myelomonocytic THP-1 cells. Antioxidant activity of extracts was determined by oxygen radical absorption capacity (ORAC) assay. In mitogen-stimulated PBMC, enhanced degradation of tryptophan, formation of neopterin and interferon-gamma were almost completely suppressed by the cacao extracts at doses of > or = 5 microg/mL. Cacao extracts had no effect on tryptophan degradation in lipopolysaccharide-stimulated THP-1 cells. There is a significant suppressive effect of cacao extracts on pro-inflammatory pathways in activated T-cells. Particularly the influence on indoleamine 2,3-dioxygenase could relate to some of the beneficial health effects ascribed to cacao.

  10. Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T-Regulatory Cell Polarized Towards T-bet and TIGIT.

    PubMed

    Gilbert, Rose M; Zhang, Xiaozhe; Sampson, Robert D; Ehrenstein, Michael R; Nguyen, Dao X; Chaudhry, Mahid; Mein, Charles; Mahmud, Nadiya; Galatowicz, Grazyna; Tomkins-Netzer, Oren; Calder, Virginia L; Lightman, Sue

    2018-01-01

    Non-infectious uveitis can cause chronic relapsing and remitting ocular inflammation, which may require high dose systemic immunosuppression to prevent severe sight loss. It has been classically described as an autoimmune disease, mediated by pro-inflammatory Th1 and Th17 T-cell subsets. Studies suggest that natural immunosuppressive CD4 + CD25 + FoxP3 + T-regulatory cells (Tregs) are involved in resolution of inflammation and may be involved in the maintenance of clinical remission. To investigate whether there is a peripheral blood immunoregulatory phenotype associated with clinical remission of sight-threatening non-infectious uveitis by comparing peripheral blood levels of Treg, Th1, and Th17, and associated DNA methylation and cytokine levels in patients with active uveitic disease, control subjects and patients (with previously active disease) in clinical remission induced by immunosuppressive drugs. Isolated peripheral blood mononuclear cells (PBMC) from peripheral blood samples from prospectively recruited subjects were analyzed by flow cytometry for CD3, CD4, FoxP3, TIGIT, T-bet, and related orphan receptor γt. Epigenetic DNA methylation levels of FOXP3 Treg-specific demethylated region (TSDR), FOXP3 promoter, TBX21, RORC2, and TIGIT loci were determined in cryopreserved PBMC using a next-generation sequencing approach. Related cytokines were measured in blood sera. Functional suppressive capacity of Treg was assessed using T-cell proliferation assays. Fifty patients with uveitis (intermediate, posterior, and panuveitis) and 10 control subjects were recruited. The frequency of CD4 + CD25 + FoxP3 + Treg, TIGIT + Treg, and T-bet + Treg and the ratio of Treg to Th1 were significantly higher in remission patients compared with patients with active uveitic disease; and TIGIT + Tregs were a significant predictor of clinical remission. Treg from patients in clinical remission demonstrated a high level of in vitro suppressive function compared with Treg from control subjects and from patients with untreated active disease. PBMC from patients in clinical remission had significantly lower methylation levels at the FOXP3 TSDR, FOXP3 promoter, and TIGIT loci and higher levels at RORC loci than those with active disease. Clinical remission was also associated with significantly higher serum levels of transforming growth factor β and IL-10, which positively correlated with Treg levels, and lower serum levels of IFNγ, IL-17A, and IL-22 compared with patients with active disease. Clinical remission of sight-threatening non-infectious uveitis has an immunoregulatory phenotype characterized by upregulation of peripheral Treg, polarized toward T-bet and TIGIT. These findings may assist with individualized therapy of uveitis, by informing whether drug therapy has induced phenotypically stable Treg associated with long-term clinical remission.

  11. Enhanced recognition of HIV-1 Cryptic Epitopes Restricted by HLA-Class I alleles Associated with a Favorable Clinical Outcome

    PubMed Central

    Bansal, Anju; Mann, Tiffanie; Sterrett, Sarah; Peng, Binghao J.; Bet, Anne; Carlson, Jonathan M.; Goepfert, Paul A.

    2015-01-01

    Background Cryptic Epitopes (CE) are peptides derived from the translation of one or more of the five alternative reading frames (ARFs; 2 sense and 3 antisense) of genes. Here, we compared response rates to HIV-1 specific CE predicted to be restricted by HLA-I alleles associated with protection against disease progression to those without any such association. Methods Peptides (9–11mer) were designed based on HLA-I binding algorithms for B*27, B*57 or B*5801 (protective alleles) and HLA-B*5301 or B*5501 (non-protective allele) in all five ARFs of the nine HIV-1 encoded proteins. Peptides with >50% probability of being an epitope (n=231) were tested for T cell responses in an IFN-γ ELISpot assay. PBMC samples from HIV-1 seronegative donors (n=42) and HIV-1 seropositive patients with chronic clade B infections (n=129) were used. Results Overall, 16%, 2%, and 2% of CHI patients had CE responses by IFN-γ ELISpot in the protective, non-protective, and seronegative groups, respectively (p=0.009, Fischer’s exact test). Twenty novel CE specific responses were mapped (median magnitude of 95 SFC/106 PBMC) and the majority were both anti-sense derived (90%) as well as represented ARFs of accessory proteins (55%). CE-specific CD8 T cells were multifunctional and proliferated when assessed by intracellular cytokine staining. Conclusions CE responses were preferentially restricted by the protective HLA-I alleles in HIV-1 infection suggesting that they may contribute to viral control in this group of patients. PMID:26322665

  12. Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells

    PubMed Central

    Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M.; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich

    2015-01-01

    Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584

  13. Cytokine Expression and Production by Purified Helicobacter pylori Urease in Human Gastric Epithelial Cells

    PubMed Central

    Tanahashi, Toshihito; Kita, Masakazu; Kodama, Tadashi; Yamaoka, Yoshio; Sawai, Naoki; Ohno, Tomoyuki; Mitsufuji, Shoji; Wei, Ya-Ping; Kashima, Kei; Imanishi, Jiro

    2000-01-01

    Cytokines have been proposed to play an important role in Helicobacter pylori-associated gastroduodenal diseases, but the exact mechanism of the cytokine induction remains unclear. H. pylori urease, a major component of the soluble proteins extracted from bacterial cells, is considered to be one of the virulence factors for the inflammation in the gastric mucosa that is produced in H. pylori infection. However, the response of human gastric epithelial cells to the stimulation of urease has not been investigated. In the present study, we used human gastric epithelial cells in a primary culture system and examined whether H. pylori urease stimulates the gastric epithelial cells to induce proinflammatory cytokines by reverse transcription-PCR and enzyme-linked immunosorbent assay. First, by using peripheral blood mononuclear cells (PBMC) and a gastric cancer cell line (MKN-45 cells), we confirmed the ability of purified H. pylori urease to induce the production of proinflammatory cytokines. Furthermore, we demonstrated that the human gastric epithelial cells produced interleukin-6 (IL-6) and tumor necrosis factor alpha, but not IL-8, following stimulation with purified urease. The patterns of cytokine induction differed among human PBMC, MKN-45 cells, and human gastric epithelial cells. These results suggest that the human gastric epithelial cells contribute to the induction of proinflammatory cytokines by the stimulation of H. pylori urease, indicating that the epithelial cells were involved in the mucosal inflammation that accompanied H. pylori infection. PMID:10639431

  14. An optimized IFN-γ ELISpot assay for the sensitive and standardized monitoring of CMV protein-reactive effector cells of cell-mediated immunity.

    PubMed

    Barabas, Sascha; Spindler, Theresa; Kiener, Richard; Tonar, Charlotte; Lugner, Tamara; Batzilla, Julia; Bendfeldt, Hanna; Rascle, Anne; Asbach, Benedikt; Wagner, Ralf; Deml, Ludwig

    2017-03-07

    In healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions. Objective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay. Optimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 10 4 and 2 × 10 5 PBMC per well upon stimulation with T-activated® IE-1 (R 2  = 0.97) and pp65 (R 2  = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3 + CD4 + (Th), CD3 + CD8 + (CTL), CD3 - CD56 + (NK) and CD3 + CD56 + (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive. The combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability.

  15. Paracetamol (acetaminophen) attenuates in vitro mast cell and peripheral blood mononucleocyte cell histamine release induced by N-acetylcysteine.

    PubMed

    Coulson, James; Thompson, John Paul

    2010-02-01

    The treatment of acute paracetamol (acetaminophen) poisoning with N-acetylcysteine (NAC) is frequently complicated by an anaphylactoid reaction to the antidote. The mechanism that underlies this reaction is unclear. We used the human mast cell line 1 (HMC-1) and human peripheral blood mononucleocytes (PBMCs) to investigate the effects of NAC and paracetamol on histamine secretion in vitro. HMC-1 and human PBMCs were incubated in the presence of increasing concentrations of NAC +/- paracetamol. Cell viability was determined by the Trypan Blue Assay, and histamine secretion was measured by ELISA. NAC was toxic to HMC-1 cells at 100 mg/mL and to PBMCs at 67 mg/mL. NAC increased HMC-1 and PBMC histamine secretion at concentrations of NAC from 20 to 50 mg/mL and 2.5 to 100 mg/mL, respectively. NAC-induced histamine secretion by both cell types was reduced by co-incubation with 2.5 mg/mL of paracetamol. Paracetamol (acetaminophen) is capable of modifying histamine secretion in vitro. This may explain the clinical observation of a lower incidence of adverse reactions to NAC in vivo when higher concentrations of paracetamol are present than when paracetamol concentrations are low. Paracetamol (acetaminophen) attenuates in vitro mast cell and PBMC cell histamine release induced by NAC.

  16. Miniaturized and High-Throughput Assays for Analysis of T-Cell Immunity Specific for Opportunistic Pathogens and HIV

    PubMed Central

    Ivaldi, Federico; Starc, Nadia; Landi, Fabiola; Locatelli, Franco; Rutella, Sergio; Tripodi, Gino; Manca, Fabrizio

    2014-01-01

    Monitoring of antigen-specific T-cell responses is valuable in numerous conditions that include infectious diseases, vaccinations, and opportunistic infections associated with acquired or congenital immune defects. A variety of assays that make use of peripheral lymphocytes to test activation markers, T-cell receptor expression, or functional responses are currently available. The last group of assays calls for large numbers of functional lymphocytes. The number of cells increases with the number of antigens to be tested. Consequently, cells may be the limiting factor, particularly in lymphopenic subjects and in children, the groups that more often require immune monitoring. We have developed immunochemical assays that measure secreted cytokines in the same wells in which peripheral blood mononuclear cells (PBMC) are cultured. This procedure lent itself to miniaturization and automation. Lymphoproliferation and the enzyme-linked immunosorbent spot (ELISPOT) assay have been adapted to a miniaturized format. Here we provide examples of immune profiles and describe a comparison between miniaturized assays based on cytokine secretion or proliferation. We also demonstrate that these assays are convenient for use in testing antigen specificity in established T-cell lines, in addition to analysis of PBMC. In summary, the applicabilities of miniaturization to save cells and reagents and of automation to save time and increase accuracy were demonstrated in this study using different methodological approaches valuable in the clinical immunology laboratory. PMID:24477854

  17. Detection of Signal Regulatory Protein α in Saimiri sciureus (Squirrel Monkey) by Anti-Human Monoclonal Antibody

    PubMed Central

    de Souza, Hugo Amorim dos Santos; Costa-Correa, Edmar Henrique; Bianco-Junior, Cesare; Andrade, Márcia Cristina Ribeiro; Lima-Junior, Josué da Costa; Pratt-Riccio, Lilian Rose; Daniel-Ribeiro, Cláudio Tadeu; Totino, Paulo Renato Rivas

    2017-01-01

    Non-human primates (NHP) are suitable models for studying different aspects of the human system, including pathogenesis and protective immunity to many diseases. However, the lack of specific immunological reagents for neo-tropical monkeys, such as Saimiri sciureus, is still a major factor limiting studies in these models. An alternative strategy to circumvent this obstacle has been the selection of immunological reagents directed to humans, which present cross-reactivity with NHP molecules. In this context and considering the key role of inhibitory immunoreceptors—such as the signal regulatory protein α (SIRPα)—in the regulation of immune responses, in the present study, we attempted to evaluate the ability of anti-human SIRPα monoclonal antibodies to recognize SIRPα in antigen-presenting S. sciureus peripheral blood mononuclear cells (PBMC). As shown by flow cytometry analysis, the profile of anti-SIRPα staining as well as the levels of SIRPα-positive cells in PBMC from S. sciureus were similar to those observed in human PBMC. Furthermore, using anti-SIRPα monoclonal antibody, it was possible to detect a decrease of the SIRPα levels on surface of S. sciureus cells after in vitro stimulation with lipopolysaccharides. Finally, using computed-based analysis, we observed a high degree of conservation of SIRPα across six species of primates and the presence of shared epitopes in the extracellular domain between humans and Saimiri genus that could be targeted by antibodies. In conclusion, we have identified a commercially available anti-human monoclonal antibody that is able to detect SIRPα of S. sciureus monkeys and that, therefore, can facilitate the study of the immunomodulatory role of SIRPα when S. sciureus is used as a model. PMID:29312325

  18. Changes in gene expression induced by histamine, fexofenadine and osthole: Expression of histamine H1 receptor, COX-2, NF-κB, CCR1, chemokine CCL5/RANTES and interleukin-1β in PBMC allergic and non-allergic patients.

    PubMed

    Kordulewska, Natalia Karolina; Kostyra, Elżbieta; Cieślińska, Anna; Matysiewicz, Michał; Fiedorowicz, Ewa; Sienkiewicz-Szłapka, Edyta

    2017-03-01

    Fexofenadine (FXF) is a third-generation antihistamine drug and osthole is assumed as a natural antihistamine alternative. This paper compares results of histamine, FXF and osthole impact on HRH-1, COX-2, NF-κB-p50, CCR1 mRNA expression. We also measured mRNA expression of IL-1β and CCL5/RANTES in incubated peripheral blood mononuclear cells (PBMC) to compared how histamine, FXF and osthole had influence on expression level and interacts on product secretion. The purpose was to investigate expression pattern in asthma PBMC. The cultures were treated 72h with FXF and osthole. We measured mRNA expression of histamine HRH-1, COX-2, NF-κB-p50, CCR1, IL-1β and CCL5/RANTES with Real-Time PCR (RT-PCR). The present study suggest that osthole may be a potential inhibitor of histamine H 1 receptor activity. We also demonstrated that cells cultured with histamine increase COX-2 mRNA expression and osthole reduce it. Allergy remains one of the most common chronic diseases in Europe and it is rapidly approaching epidemic proportions; with current predictions estimating that the number of allergy-afflicted will equal the healthy population by 2020. It is therefore paramount to find new pharmaceuticals which successfully combat allergic disease. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Transcriptome Analysis of Human Peripheral Blood Mononuclear Cells Exposed to Lassa Virus and to the Attenuated Mopeia/Lassa Reassortant 29 (ML29), a Vaccine Candidate

    PubMed Central

    Zapata, Juan Carlos; Carrion, Ricardo; Patterson, Jean L.; Crasta, Oswald; Zhang, Yan; Mani, Sachin; Jett, Marti; Poonia, Bhawna; Djavani, Mahmoud; White, David M.; Lukashevich, Igor S.; Salvato, Maria S.

    2013-01-01

    Lassa virus (LASV) is the causative agent of Lassa Fever and is responsible for several hundred thousand infections and thousands of deaths annually in West Africa. LASV and the non-pathogenic Mopeia virus (MOPV) are both rodent-borne African arenaviruses. A live attenuated reassortant of MOPV and LASV, designated ML29, protects rodents and primates from LASV challenge and appears to be more attenuated than MOPV. To gain better insight into LASV-induced pathology and mechanism of attenuation we performed gene expression profiling in human peripheral blood mononuclear cells (PBMC) exposed to LASV and the vaccine candidate ML29. PBMC from healthy human subjects were exposed to either LASV or ML29. Although most PBMC are non-permissive for virus replication, they remain susceptible to signal transduction by virus particles. Total RNA was extracted and global gene expression was evaluated during the first 24 hours using high-density microarrays. Results were validated using RT-PCR, flow cytometry and ELISA. LASV and ML29 elicited differential expression of interferon-stimulated genes (ISG), as well as genes involved in apoptosis, NF-kB signaling and the coagulation pathways. These genes could eventually serve as biomarkers to predict disease outcomes. The remarkable differential expression of thrombomodulin, a key regulator of inflammation and coagulation, suggests its involvement with vascular abnormalities and mortality in Lassa fever disease. PMID:24069471

  20. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge.

    PubMed

    Lee, Sang In; Kim, Hyun Soo; Koo, Jin Mo; Kim, In Ho

    2016-02-28

    A total of forty weaned pigs ((Landrace × Yorkshire) × Duroc) were used to evaluate the effects of Lactobacillus acidophilus on inflammatory activity after lipopolysaccharide (LPS) challenge. Experimental treatments were as follows: (T1) control diet+saline challenge; (T2) control diet with 0·1% L. acidophilus+saline challenge; (T3) control diet+LPS challenge; and (T4) control diet with 0·1% L. acidophilus+LPS challenge. On d-14, piglets were challenged with saline (T1 and T2) or LPS (T3 and T4). Blood samples were obtained at 0, 2, 4, 6 and 12 h after being challenged and analysed for immune cell cytokine production and gene expression pattern. The L. acidophilus treatment increased the average daily weight gain (ADWG) and average daily feed intake (ADFI) compared with the control diet. With the control diet, the LPS challenge (T3) increased the number of immune cells and expression of TNF-α and IL-6 compared with the saline challenge (T1). Whereas with the saline challenge L. acidophilus treatment (T2) increased the number of leucocytes and CD4 compared with the control diet (T1), with the LPS challenge L. acidophilus treatment (T4) decreased the number of leucocytes, lymphocytes, CD4+ and CD8+ and expression of TNF-α and IL-6 compared with the control diet (T3). L. acidophilus treatment decreased the expression of TRL4 and NF-κB in peripheral blood mononuclear cells (PBMC) after LPS challenge, which leads to inhibition of TNF-α, IFN-γ, IL-6, IL-8 and IL1B1 and to induction of IL-4 and IL-10. We suggested that L. acidophilus improved ADWG and ADFI and protected against LPS-induced inflammatory responses by regulating TLR4 and NF-κB expression in porcine PBMC.

  1. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans.

    PubMed

    Carroll, Judith E; Cole, Steven W; Seeman, Teresa E; Breen, Elizabeth C; Witarama, Tuff; Arevalo, Jesusa M G; Ma, Jeffrey; Irwin, Michael R

    2016-01-01

    Age-related disease risk has been linked to short sleep duration and sleep disturbances; however, the specific molecular pathways linking sleep loss with diseases of aging are poorly defined. Key cellular events seen with aging, which are thought to contribute to disease, may be particularly sensitive to sleep loss. We tested whether one night of partial sleep deprivation (PSD) would increase leukocyte gene expression indicative of DNA damage responses (DDR), the senescence-associated secretory phenotype (SASP), and senescence indicator p16(INK4a) in older adult humans, who are at increased risk for cellular senescence. Community-dwelling older adults aged 61-86years (n=29; 48% male) underwent an experimental partial sleep deprivation (PSD) protocol over 4 nights, including adaptation, an uninterrupted night of sleep, partial sleep deprivation (sleep restricted 3-7AM), and a subsequent full night of sleep. Blood samples were obtained each morning to assess peripheral blood mononuclear cell (PBMC) gene expression using Illumina HT-12 arrays. Analyses of microarray results revealed that SASP (p<.05) and DDR (p=.08) gene expression were elevated from baseline to PSD nights. Gene expression changes were also observed from baseline to PSD in NFKB2, NBS1 and CHK2 (all p's<.05). The senescence marker p16(INK4a) (CDKN2A) was increased 1day after PSD compared to baseline (p<.01), however confirmatory RT-PCR did not replicate this finding. One night of partial sleep deprivation activates PBMC gene expression patterns consistent with biological aging in this older adult sample. PSD enhanced the SASP and increased the accumulation of damage that initiates cell cycle arrest and promotes cellular senescence. These findings causally link sleep deprivation to the molecular processes associated with biological aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Immunomediator expression profiling in two beluga whale (delphinapterus leucas) clinical cases

    USDA-ARS?s Scientific Manuscript database

    Cytokines and other immunomediators can be biomarkers of inflammation. Quantitative real-time PCR (qPCR) has been used to examine cytokine gene expression in beluga whale (Delphinapterus leucas) peripheral blood mononuclear cells (PBMC). Thus, qPCR-based immunomediator assays could supplement clinic...

  3. Production of interleukin-2 (IL-2) and expression of IL-2 receptor in patients with IgA nephropathy.

    PubMed

    Lee, T W; Kim, M J

    1992-01-01

    IL-2 production has been measured in several disease including type I diabetes mellitus, systemic lupus erythematosus, acquired immunodeficiency syndrome and active pulmonary sarcoidosis and its pathogenetic role was suggested. In IgA nephropathy, altered T cell subsets were reported to be associated with increased synthesis of IgA. The altered IL-2 production and the expression of IL-2 receptor might be involved in the pathogenesis of IgA nephropathy. To investigate the role of T cell mediated immunity in the pathogenesis of IgA nephropathy, the immune parameters such as T cell subsets, NK cell activity, interleukin-2 (IL-2) production and IL-2 receptor expression on peripheral blood mononuclear cells (PBMC) were measured before and/or after phytohemagglutinin (PHA) stimulation in 15 patients with IgA nephropathy. Age and sex matched 15 healthy controls and the correlations between the IL-2 production and immune parameters were evaluated. The mean percentages of T helper/inducer cells (CD4), T suppressor/cytotoxic cells (CD8) and the CD4/CD8 ratio of the patients were not different from those of controls and the proportions of CD8 CD11b cell in the patients (21.0 +/- 3.6%) were significantly lower than those in controls (30.5 +/- 5.3%) (p < 0.005). The production of IL-2 by fresh PBMC of both patients and controls was in undetectable ranges. The production of IL-2 by PHA stimulated PBMC of patients was significantly higher than that of controls (140.03 +/- 43.2 U/ml vs 106.5 +/- 42.1 U/ml, p < 0.05). The proportions of lymphocytes expressing the IL-2 receptor (CD25) before the stimulation with PHA in patients were 1.22 +/- 1.00 percent and were not different from those in controls (1.12 +/- 0.78 percent). The correlations between the production of IL-2 and the concentrations of serum IgA, the degrees of histologic alterations and the proportions of CD8 and CD8CD11b cells were not significant. There was a weak tendency of a positive correlation (p < 0.1) between the production of IL-2 and the proportions of CD4 cells, and the CD4/CD8 ratio showed a significant correlation with the production of IL-2 (p < 0.05). After PHA stimulation, the mean percentages of lymphocytes expressing the IL-2 receptors in patients were increased to 47.6 +/- 8.9 percents which is higher than those (40.4 +/- 9.9%) in controls (p < 0.05). The NK cell activity of the patients was higher than that of controls (75.6 +/- 19.6% vs 56.1 +/- 16.2%, p < 0.005), and was well correlated with the production of IL-2 by PBMC (r = 0.89, p < 0.05). It seemed that patients with IgA nephropathy have an 'latent' cellular immunoregulatory dysfunction that becomes apparent on the stimulation of extrinsic antigens or mitogens.

  4. Identification of an HLA-A24-restricted OY-TES-1 epitope recognized by cytotoxic T-cells.

    PubMed

    Okumura, Hideo; Noguchi, Yuji; Uenaka, Akiko; Aji, Toshiki; Ono, Toshiro; Nakagawa, Kazuhiko; Aoe, Motoi; Shimizu, Nobuyoshi; Nakayama, Eiichi

    2005-01-01

    OY-TES-1 was identified as a human homologue of the mouse, guinea pig, and pig proacrosin binding protein sp32 precursor. Differential expression levels of OY-TES-1 mRNA between testis and other normal tissues, and its expression in cancers indicated that OY-TES-1 would be classified as a cancer/testis antigen and considered to be a candidate of target antigen for cancer immunotherapy. In this study, we showed identification of HLA-A24-binding OY-TES-1 peptide, TES(401-409) (KTPFVSPLL) recognized by CD8 T-cells. Purified CD8 T-cells from healthy donors stimulated in vitro with the peptide-pulsed autologous DC and PBMC produced IFNgamma in response to the peptide-pulsed PBMC and showed cytotoxicity against the peptide-pulsed autologous EBV-B specifically. Furthermore, cytotoxicity was also observed against an OY-TES-1 mRNA-expressing tumor line, LK79. The retention time of the fraction in HPLC of the acid eluate from LK79 cells that showed positive sensitization against autologous EBV-B cells in recognition by CD8 CTL was the same as that of the fraction of the TES(401-409) peptide itself, suggesting that the TES(401-409) was a naturally processed peptide on LK79.

  5. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation.

    PubMed

    Wen, Di; Peng, Yang; Liu, Di; Weizmann, Yossi; Mahato, Ram I

    2016-09-28

    Human bone marrow mesenchymal stem cells (hBMSCs) and their exosomes can suppress immune reaction and deliver small RNAs. Thus, they may improve islet transplantation by delivering small RNAs for promoting islet function and inhibiting immune rejection. Here, we proposed an hBMSC and its exosome-based therapy to overcome immune rejection and poor islet function, both of which hinder the success of islet transplantation. We found overexpressed siFas and anti-miR-375 in plasmid encoding shFas and anti-miR-375 transfected hBMSC-derived exosomes, which silenced Fas and miR-375 of human islets and improved their viability and function against inflammatory cytokines. This plasmid transfected hBMSCs downregulated Fas and miR-375 of human islets in a humanized NOD scid gamma (NSG) mouse model, whose immune reaction was inhibited by injecting hBMSC and peripheral blood mononuclear cell (PBMC) co-cultured exosomes. These exosomes suppressed immune reaction by inhibiting PBMC proliferation and enhancing regulatory T cell (Treg) function. Collectively, our studies elucidated the mechanisms of RNA delivery from hBMSCs to human islets and the immunosuppressive effect of hBMSC and peripheral blood mononuclear cell co-cultured exosomes for improving islet transplantation. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Potential immunomodulatory effects of plant lectins in Schistosoma mansoni infection.

    PubMed

    Reis, Eliana A G; Athanazio, Daniel A; Cavada, Benildo Sousa; Teixeira, Edson Holanda; de Paulo Teixeira Pinto, Vicente; Carmo, Theomira M A; Reis, Alice; Trocolli, Graziela; Croda, Julio; Harn, Donald; Barral-Netto, Manoel; Reis, Mitermayer G

    2008-01-01

    Lectins are sugar-binding glycoproteins that can stimulate, in a non-antigen-specific fashion, lymphocytes, leading to proliferation and cytokine production. Some lectins are utilized as in vitro mitogenic lymphocyte stimulators and their use as immunomodulators against infectious diseases has been evaluated experimentally. In the experimental murine model, the immune response to schistosomiasis is Th1-like during the initial stage of infection, with a shift towards a Th2-like response after oviposition. We report the response of schistosomiasis patients' (n=37) peripheral blood mononuclear cells (PBMC) to stimulation by lectins, including newly isolated lectins from Brazilian flora, and by Schistosomamansoni soluble egg antigens (SEA). Cytokine production upon lectin stimulation ex vivo was assessed in PBMC supernatants, collected at 24 and 72 h, by sandwich ELISA to IL-5, IL-10, TNF-alpha and IFN-gamma. In PBMC from infected patients all but one of the lectins induced a Th2-like cytokine response, characterized by elevated IL-5 production that was higher than that induced by SEA stimulation alone. Our results show that the Th2 environment present during schistosomiasis is not affected and that it may be further stimulated by the presence of lectins.

  7. Thoracic and cutaneous sarcoid-like reaction associated with anti-PD-1 therapy: longitudinal monitoring of PD-1 and PD-L1 expression after stopping treatment.

    PubMed

    Paolini, Léa; Poli, Caroline; Blanchard, Simon; Urban, Thierry; Croué, Anne; Rousselet, Marie-Christine; Le Roux, Sarah; Labarrière, Nathalie; Jeannin, Pascale; Hureaux, José

    2018-06-13

    Immune checkpoint inhibitors (ICI) target T cell inhibitory pathways that are responsible for cancer tolerance by down-modulating immune functions. ICI have revolutionized patients care with lung cancer. Nevertheless, restoring endogenous antitumor T-cell responses can induce immune related adverse events, such as sarcoidosis. We report here the first case of a thoracic and cutaneous sarcoid-like reaction in a patient with a relapsing unresectable non-small cell lung cancer (NSCLC) treated with nivolumab, an anti-PD-1 mAb. The expression of PD-1 and its ligands, PD-L1 and PD-L2, was assessed by flow cytometry on peripheral blood mononuclear cells (PBMC) and compared to patients who had discontinued nivolumab therapy without having developed any immune related adverse events. PD-L1 expression was transiently increased on B cells, T cells and monocytes, whereas PD-L2 expression was not modulated. PD-1 was transiently undetectable when PD-L1 was maximal, before returning to basal level. Sarcoidosis spontaneously resolved, without corticotherapy. This case sheds the light on a complex regulation of PD-L1 expression in vivo on PBMC after nivolumab arrest and triggers the question of monitoring the expression of immune checkpoint on immune cells during and after treatment with ICI.

  8. In-vitro generation of interleukin-10 secreting B-regulatory cells from donor adipose tissue derived mesenchymal stem cells and recipient peripheral blood mononuclear cells for potential cell therapy.

    PubMed

    Gupte, Kunal S; Vanikar, Aruna V; Trivedi, Hargovind L; Patel, Chetan N; Patel, Jignesh V

    2017-02-01

    Interleukin-10 secreting B-cells are a major subset of B-regulatory cells (B-regs), commonly recognized as CD19 + /38 hi /24 hi /IL10 + . They carry out immunomodulation by release of specific cytokines and/or cell-to-cell contact. We have generated B-regs in-vitro from donor adipose tissue derived mesenchymal stem cells (AD-MSC) and renal allograft recipient (RAR) peripheral blood mononuclear cells (PBMC) for potential cell therapy. Mononuclear cells separated by density gradient centrifugation from 50 ml anti-coagulated blood of 15-RAR and respective donors were analysed for baseline B-regs using appropriate antibodies. Equal amount (20 × 10 6  cells/ml) of stimulator (irradiated at 7.45 Gy/min for 10 min) and responder (non-irradiated) cells were co-cultured with in-vitro generated AD-MSC (1 × 10 6  cells/ml) in proliferation medium containing lipopolysaccharide from E. coli K12 strain at 37 °C with 5% CO 2 . Cells were harvested on day-7 and analyzed for viability, sterility, quantity, morphology and phenotyping. In-vitro generated B-reg levels were compared with baseline B-regs. In-vitro generated B-reg count increased to 16.75% from baseline count of 3.35%. B-regs can be successfully generated in-vitro from donor AD-MSC and RAR PBMC for potential cell therapy. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  9. RNA-transfection of γ/δ T cells with a chimeric antigen receptor or an α/β T-cell receptor: a safer alternative to genetically engineered α/β T cells for the immunotherapy of melanoma.

    PubMed

    Harrer, Dennis C; Simon, Bianca; Fujii, Shin-Ichiro; Shimizu, Kanako; Uslu, Ugur; Schuler, Gerold; Gerer, Kerstin F; Hoyer, Stefanie; Dörrie, Jan; Schaft, Niels

    2017-08-17

    Adoptive T-cell therapy relying on conventional T cells transduced with T-cell receptors (TCRs) or chimeric antigen receptors (CARs) has caused substantial tumor regression in several clinical trials. However, genetically engineered T cells have been associated with serious side-effects due to off-target toxicities and massive cytokine release. To obviate these concerns, we established a protocol adaptable to GMP to expand and transiently transfect γ/δ T cells with mRNA. PBMC from healthy donors were stimulated using zoledronic-acid or OKT3 to expand γ/δ T cells and bulk T cells, respectively. Additionally, CD8 + T cells and γ/δ T cells were MACS-isolated from PBMC and expanded with OKT3. Next, these four populations were electroporated with RNA encoding a gp100/HLA-A2-specific TCR or a CAR specific for MCSP. Thereafter, receptor expression, antigen-specific cytokine secretion, specific cytotoxicity, and killing of the endogenous γ/δ T cell-target Daudi were analyzed. Using zoledronic-acid in average 6 million of γ/δ T cells with a purity of 85% were generated from one million PBMC. MACS-isolation and OKT3-mediated expansion of γ/δ T cells yielded approximately ten times less cells. OKT3-expanded and CD8 + MACS-isolated conventional T cells behaved correspondingly similar. All employed T cells were efficiently transfected with the TCR or the CAR. Upon respective stimulation, γ/δ T cells produced IFNγ and TNF, but little IL-2 and the zoledronic-acid expanded T cells exceeded MACS-γ/δ T cells in antigen-specific cytokine secretion. While the cytokine production of γ/δ T cells was in general lower than that of conventional T cells, specific cytotoxicity against melanoma cell lines was similar. In contrast to OKT3-expanded and MACS-CD8 + T cells, mock-electroporated γ/δ T cells also lysed tumor cells reflecting the γ/δ T cell-intrinsic anti-tumor activity. After transfection, γ/δ T cells were still able to kill MHC-deficient Daudi cells. We present a protocol adaptable to GMP for the expansion of γ/δ T cells and their subsequent RNA-transfection with tumor-specific TCRs or CARs. Given the transient receptor expression, the reduced cytokine release, and the equivalent cytotoxicity, these γ/δ T cells may represent a safer complementation to genetically engineered conventional T cells in the immunotherapy of melanoma (Exper Dermatol 26: 157, 2017, J Investig Dermatol 136: A173, 2016).

  10. Human platelet antigen (HPA)-1a peptides do not reliably suppress anti-HPA-1a responses using a humanized severe combined immunodeficiency (SCID) mouse model

    PubMed Central

    Jackson, D J; Eastlake, J L; Kumpel, B M

    2014-01-01

    Fetal and neonatal alloimmune thrombocytopenia (FNAIT) occurs most frequently when human platelet antigen (HPA)-1a-positive fetal platelets are destroyed by maternal HPA-1a immunoglobulin (Ig)G antibodies. Pregnancies at risk are treated by administration of high-dose intravenous Ig (IVIG) to women, but this is expensive and often not well tolerated. Peptide immunotherapy may be effective for ameliorating some allergic and autoimmune diseases. The HPA-1a/1b polymorphism is Leu/Pro33 on β3 integrin (CD61), and the anti-HPA-1a response is restricted to HPA-1b1b and HLA-DRB3*0101-positive pregnant women with an HPA-1a-positive fetus. We investigated whether or not HPA-1a antigen-specific peptides that formed the T cell epitope could reduce IgG anti-HPA-1a responses, using a mouse model we had developed previously. Peripheral blood mononuclear cells (PBMC) in blood donations from HPA-1a-immunized women were injected intraperitoneally (i.p.) into severe combined immunodeficient (SCID) mice with peptides and HPA-1a-positive platelets. Human anti-HPA-1a in murine plasma was quantitated at intervals up to 15 weeks. HPA-1a-specific T cells in PBMC were identified by proliferation assays. Using PBMC of three donors who had little T cell reactivity to HPA-1a peptides in vitro, stimulation of anti-HPA-1a responses by these peptides occurred in vivo. However, with a second donation from one of these women which, uniquely, had high HPA-1a-specific T cell proliferation in vitro, marked suppression of the anti-HPA-1a response by HPA-1a peptides occurred in vivo. HPA-1a peptide immunotherapy in this model depended upon reactivation of HPA-1a T cell responses in the donor. For FNAIT, we suggest that administration of antigen-specific peptides to pregnant women might cause either enhancement or reduction of pathogenic antibodies. PMID:24261689

  11. Effect of thermal processing on T cell reactivity of shellfish allergens - Discordance with IgE reactivity.

    PubMed

    Abramovitch, Jodie B; Lopata, Andreas L; O'Hehir, Robyn E; Rolland, Jennifer M

    2017-01-01

    Crustacean allergy is a major cause of food-induced anaphylaxis. We showed previously that heating increases IgE reactivity of crustacean allergens. Here we investigate the effects of thermal processing of crustacean extracts on cellular immune reactivity. Raw and cooked black tiger prawn, banana prawn, mud crab and blue swimmer crab extracts were prepared and IgE reactivity assessed by ELISA. Mass spectrometry revealed a mix of several allergens in the raw mud crab extract but predominant heat-stable tropomyosin in the cooked extract. PBMC from crustacean-allergic and non-atopic control subjects were cultured with the crab and prawn extracts and proliferation of lymphocyte subsets was analysed by CFSE labelling and flow cytometry. Effector responses were assessed by intracellular IL-4 and IFN-γ, and regulatory T (CD4+CD25+CD127loFoxp3+) cell proportions in cultures were also compared by flow cytometry. For each crustacean species, the cooked extract had greater IgE reactivity than the raw (mud crab p<0.05, other species p<0.01). In contrast, there was a trend for lower PBMC proliferative responses to cooked compared with raw extracts. In crustacean-stimulated PBMC cultures, dividing CD4+ and CD56+ lymphocytes showed higher IL-4+/IFN-γ+ ratios for crustacean-allergic subjects than for non-atopics (p<0.01), but there was no significant difference between raw and cooked extracts. The percentage IL-4+ of dividing CD4+ cells correlated with total and allergen-specific IgE levels (prawns p<0.01, crabs p<0.05). Regulatory T cell proportions were lower in cultures stimulated with cooked compared with raw extracts (mud crab p<0.001, banana prawn p<0.05). In conclusion, cooking did not substantially alter overall T cell proliferative or cytokine reactivity of crustacean extracts, but decreased induction of Tregs. In contrast, IgE reactivity of cooked extracts was increased markedly. These novel findings have important implications for improved diagnostics, managing crustacean allergy and development of future therapeutics. Assessment of individual allergen T cell reactivity is required.

  12. Cancer cell-derived IL-1α induces CCL22 and the recruitment of regulatory T cells

    PubMed Central

    Wiedemann, Gabriela Maria; Knott, Max Martin Ludwig; Vetter, Viola Katharina; Rapp, Moritz; Haubner, Sascha; Fesseler, Julia; Kühnemuth, Benjamin; Layritz, Patrick; Thaler, Raffael; Kruger, Stephan; Ormanns, Steffen; Mayr, Doris; Endres, Stefan; Anz, David

    2016-01-01

    ABSTRACT In cancer patients, immunosuppression through regulatory T cells (Treg) is a crucial component of tumor immune evasion and contributes to disease progression. Tumor-infiltrating Treg in particular suppress local effector T cell responses and are associated with poor prognosis in tumors such as human pancreatic cancer or hepatocellular carcinoma (HCC). The chemokine CCL22 is known to recruit Treg into the tumor tissue and many types of human tumors are known to express high levels of CCL22. The mechanisms leading to intratumoral secretion of CCL22 are so far unknown. We demonstrate here that intratumoral CCL22 is induced in tumor-infiltrating immune cells through cancer cell-derived interleukin-1 (IL-1α). In pancreatic cancer and HCC, CCL22 is produced by intratumoral dendritic cells, while the cancer cells themselves do not secrete CCL22 in vitro and in vivo. Incubation of human peripheral blood mononuclear cells (PBMC) or murine splenocytes with tumor cells or tumor cell supernatants strongly induced CCL22 secretion in vitro. Tumor cell supernatants contained IL-1 and CCL22 induction in PBMC could be specifically prevented by the IL-1 receptor antagonist anakinra or by transfection of tumor cell lines with IL-1 siRNA, leading to a suppression of Treg migration. In conclusion, we identify here tumor cell-derived IL-1α as a major inducer of the Treg attracting chemokine CCL22 in human cancer cells. Therapeutic blockade of the IL-1 pathway could represent a promising strategy to inhibit tumor-induced immunosuppression. PMID:27757295

  13. Proteomic Analysis of Peripheral Blood Mononuclear Cells after a High-Fat, High-Carbohydrate Meal with Orange Juice.

    PubMed

    Chaves, Daniela F S; Carvalho, Paulo C; Brasili, Elisa; Rogero, Marcelo M; Hassimotto, Neuza A; Diedrich, Jolene K; Moresco, James J; Yates, John R; Lajolo, Franco M

    2017-11-03

    Oxidative stress and inflammation play a role in the physiopathology of insulin resistance, diabetes and cardiovascular disease. A single high-fat, high-carbohydrate (HFHC) meal induces an increase in inflammatory and oxidative stress markers in peripheral blood mononuclear cells (PBMC). Previous studies have shown that orange juice is able to prevent this response by inhibiting toll like receptors (TLR) expression and endotoxemia. Our goal was to study the proteome response in PBMC after the consumption of a HFHC meal consumed with water, orange juice or an isocaloric beverage (water with glucose). Twelve healthy individuals completed the protocol in a crossover design, and blood samples were obtained before and 1, 3, and 5 h after consumption. Proteomic profile, glucose, insulin, lipid and cytokines levels were investigated. The glycemic and insulinemic response was higher when the meal was consumed with glucose, while there was no difference in the response between water and orange juice. Proteome analysis in PBMC was carried out using TMT ten-plex. A total of 3813 proteins, originating from 15 662 peptides were identified. Three proteins showed significantly altered expression in the three treatments: apolipoprotein A-II, ceruloplasmin and hemopexin. When the HFHC meal was consumed with water there was an increase in some inflammatory pathways such as the Fc-gamma receptor dependent phagocytosis and the complement cascade, but the immune system as a whole was not significantly altered. However, when the meal was consumed with glucose, the immune system was up regulated. Among the pathways induced after 3 h were those of the adaptive immune system and cytokine signaling. Five hours after the meal, pathways of the complement cascade and classical antibody mediated complement activation were up regulated. When the meal was consumed with orange juice there was an up regulation of proteins involved in signal transduction, DNA replication and cell cycle. The promyelocytic leukemia protein (PML) showed a 28.2-fold increase. This protein was down regulated when the meal was consumed with water. Regarding the immune system, several of the pathways induced by glucose were down regulated when the meal was consumed with orange juice: proteins involved with the adaptive immune system and cytokine signaling. Therefore, we have shown that orange juice can not only suppress diet induced inflammation, but also regulate the expression of proteins such as PML, which may play a key role in the regulation of metabolism.

  14. Decreased NK-Cell Cytotoxicity after Short Flights on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Mehta, Satish K.; Grimm, Elizabeth A.; Smid, Christine; Kaur, Indreshpal; Feeback, Daniel L.; Pierson, Duane L.

    2000-01-01

    Cytotoxic activity of natural killer (NK) cells and cell surface marker expression of peripheral blood mononuclear cells (PBMCs) isolated from 11 U.S. astronauts on two different missions were determined before and after 9 or 10 days of spaceflight aboard the space shuttle. Blood samples were collected 10 and 3 days before launch, within 3 hours after landing, and 3 days after landing. All PBMC preparations were cryopreserved and analyzed simultaneously in a 4-hour cytotoxicity "Cr-release assay using NK-sensitive K-562 target cells. Compared to preflight values, NK-cell cytotoxicity (corrected for lymphopenia observed on landing day) was significantly decreased at landing (P < 0.0125). It then apparently began to recover and approached preflight values by 3 days after landing. Consistent with decreased NK-cell cytotoxicity, significant increases from preflight values were found in plasma adrenocorticotropic hormone at landing. Plasma and urinary cortisol levels did not change significantly from preflight values. Expression of major lymphocyte surface markers (CD3, CD4, CD8, CD14, CD16, CD56), determined by flow cytometric analysis, revealed no consistent phenotypic changes in relative percent of NK or other lymphoid cells after 10 days of spaceflight.

  15. High temperature affects the phagocytic activity of human peripheral blood mononuclear cells.

    PubMed

    Djaldetti, Meir; Bessler, Hanna

    2015-10-01

    The ability for engulfment of pathogens and inert particles is the key hallmark of the phagocytic cells. Phagocytes play a significant role in the modulation of local or extended inflammation. Since fever activates a number of factors linked with the immune response it was the goal of this study to examine the in vitro effect of hyperthermia on the phagocytic capacity, the number of phagocytic cells and the viability of human peripheral blood mononuclear cells (PBMC) at 37 and 40°C. PBMC were incubated with 0.8 μm polysterene latex beads, for 2 hours at 37 and 40°C. The number of phagocytic cells, and that of latex particles internalized by each individual cell was counted with a light microscope. In addition, the percentage of viable cells and the number of active metabolic cells was evaluated. A temperature of 40°C significantly increased the number of phagocytic cells and the phagocytic index by 41 and 37% respectively, as compared to cells incubated at 37°C. While the number of vital cells (trypan blue test) did not differ statistically at both temperatures, the number of active metabolic cells (XTT test) after 2 h of incubation at 40°C was 17% higher as compared with that at 37°C. However, the number of active metabolic cells after 24 h of incubation at 40°C was 51% lower compared with cells incubated at 37°C. The increased phagocytic capacity of human peripheral blood monocytes at high temperature further enlightens the immunomodulatory effect of fever in the immune responses during inflammation.

  16. Newcastle Disease Virus: Potential Therapeutic Application for Human and Canine Lymphoma

    PubMed Central

    Sánchez, Diana; Pelayo, Rosana; Medina, Luis Alberto; Vadillo, Eduardo; Sánchez, Rogelio; Núñez, Luis; Cesarman-Maus, Gabriela; Sarmiento-Silva, Rosa Elena

    2015-01-01

    Research on oncolytic viruses has mostly been directed towards the treatment of solid tumors, which has yielded limited information regarding their activity in hematological cancer. It has also been directed towards the treatment of humans, yet veterinary medicine may also benefit. Several strains of the Newcastle disease virus (NDV) have been used as oncolytics in vitro and in a number of in vivo experiments. We studied the cytolytic effect of NDV-MLS, a low virulence attenuated lentogenic strain, on a human large B-cell lymphoma cell line (SU-DHL-4), as well as on primary canine-derived B-cell lymphoma cells, and compared them to healthy peripheral blood mononuclear cells (PBMC) from both humans and dogs. NDV-MLS reduced cell survival in both human (42% ± 5%) and dog (34% ± 12%) lymphoma cells as compared to untreated controls. No significant effect on PBMC was seen. Cell death involved apoptosis as documented by flow-cytometry. NDV-MLS infections of malignant lymphoma tumors in vivo in dogs were confirmed by electron microscopy. Early (24 h) biodistribution of intravenous injection of 1 × 1012 TCID50 (tissue culture infective dose) in a dog with T-cell lymphoma showed viral localization only in the kidney, the salivary gland, the lung and the stomach by immunohistochemistry and/or endpoint PCR. We conclude that NDV-MLS may be a promising agent for the treatment of lymphomas. Future research is needed to elucidate the optimal therapeutic regimen and establish appropriate biosafety measures. PMID:26703717

  17. Antigen-specific CTLs: to produce autologous cells product for adoptive cellular therapy.

    PubMed

    Liu, Sai; Shao, Yi; Xu, Jie; Jiang, Na; Dai, Yanchao; Wang, Yu; Sun, Huanqing; Sun, Jianping; Zhang, Yonghong

    2017-06-01

    As antiretroviral therapy provides long term viral suppression but no cure, alternative therapies such as adoptive cellular therapy have thus been investigated in the anti-AIDS field. This study sought to establish a HLA-A02 specific CTL cell culture method with comparison of the effects of different cytokines used in CTL cultivation to decide the best cultivation environment. In order to produce CTLs with targeted HLA-A02 restricted antigen specificity for adoptive cellular therapy, we evaluated autologous PBMC cultivation in different cytokine environment to select a better expansion condition to produce qualified CTL production. We co-cultivated PBMC and peptides of these patients with HLA-A02 allele with different cytokines. After cultivation, multiple parameters were tested. 1) Cytokines IL-2 alone can effectively amplify HLA-A02 specific CTL cells, and the count of CTLs was >85% all through the process. 2) The HLA-A02 specific cells at the end of the cultivation were mainly CD3+CD8+ cells. 3) The interferon stimulation test had shown that the expanded CTLs secreted more IFN-γ than before cultivation (0.9% -11.70%). This model of CTL cultivation is successful in redirecting the specificity of antigen recognition and safely for HLA-A02+ patients cell adoptive therapy. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa

    PubMed Central

    Yue, Grace G. L.; Chan, Ben C. L.; Hon, Po-Ming; Lee, Mavis Y. H.; Fung, Kwok-Pui; Leung, Ping-Chung; Lau, Clara B. S.

    2010-01-01

    The rhizome of Curcuma longa (CL) has been commonly used in Asia as a potential candidate for the treatment of different diseases, including inflammatory disorders and cancers. The present study evaluated the anti-proliferative activities of the isolated compounds (3 curcuminoids and 2 turmerones) from CL, using human cancer cell lines HepG2, MCF-7 and MDA-MB-231. The immunomodulatory activities of turmerones (α and aromatic) isolated from CL were also examined using human peripheral blood mononuclear cells (PBMC). Our results showed that the curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) and α-turmerone significantly inhibited proliferation of cancer cells in dose-dependent manner. The IC50 values of these compounds in cancer cells ranged from 11.0–41.8 μg/ml. Alpha-turmerone induced MDA-MB-231 cells to undergo apoptosis, which was confirmed by annexin-V & propidium iodide staining, and DNA fragmentation assay. The caspase cascade was activated as shown by a significant decrease of procaspases-3, -8 and -9 in α-turmerone treated cells. Both α-turmerone and aromatic-turmerone showed stimulatory effects on PBMC proliferation and cytokine production. The anti-proliferative effect of α-turmerone and immunomodulatory activities of ar-turmerone were shown for the first time. The findings revealed the potential use of CL crude extract (containing curcuminoids and volatile oil including turmerones) as chemopreventive agent. PMID:20438793

  19. The kinase inhibitors sunitinib and sorafenib differentially affect NK cell antitumor reactivity in vitro.

    PubMed

    Krusch, Matthias; Salih, Julia; Schlicke, Manuela; Baessler, Tina; Kampa, Kerstin Maria; Mayer, Frank; Salih, Helmut Rainer

    2009-12-15

    Sunitinib and Sorafenib are protein kinase inhibitors (PKI) approved for treatment of patients with advanced renal cell cancer (RCC). However, long-term remissions of advanced RCC have only been observed after IL-2 treatment, which underlines the importance of antitumor immune responses in RCC patients. Because PKI, besides affecting tumor cells, also may inhibit signaling in immune effector cells, we determined how Sunitinib and Sorafenib influence antitumor immunity. We found that cytotoxicity and cytokine production of resting and IL-2-activated PBMC are inhibited by pharmacological concentrations of Sorafenib but not Sunitinib. Analysis of granule-mobilization within PBMC revealed that this was due to impaired reactivity of NK cells, which substantially contribute to antitumor immunity by directly killing target cells and shaping adaptive immune responses by secreting cytokines like IFN-gamma. Analyses with resting and IL-2-activated NK cells revealed that both PKI concentration dependently inhibit cytotoxicity and IFN-gamma production of NK cells in response to tumor targets. This was due to impaired PI3K and ERK phosphorylation which directly controls NK cell reactivity. However, while Sorafenib inhibited NK cell effector functions and signaling at levels achieved upon recommended dosing, pharmacological concentrations of Sunitinib had no effect, and this was observed upon stimulation of NK cell reactivity by tumor target cells and upon IL-2 treatment. In light of the important role of NK cells in antitumor immunity, and because multiple approaches presently aim to combine PKI treatment with immunotherapeutic strategies, our data demonstrate that choice and dosing of the most suitable PKI in cancer treatment requires careful consideration.

  20. Yeast cell-wall products containing beta-glucan plus ascorbic acid affect neonatal Bos taurus calf leukocytes and growth after a transport stressor.

    PubMed

    Eicher, S D; Wesley, I V; Sharma, V K; Johnson, T R

    2010-03-01

    The objectives were to ascertain whether a yeast cell-wall derivative that was 1.8% beta-glucan in combination with ascorbyl-2-polyphosphate could improve innate immunity and mediate transportation stress in neonatal calves, and to compare the 1.8% beta-glucan yeast cell-wall derivative with a more purified yeast cell-wall derivative (70% beta-glucan). Treatments were 1) an unsupplemented control (CNT); 2) 113 g of a 1.8% (approximately 2%) beta-glucan derivative of yeast cell walls plus 250 mg of l-ascorbic acid phosphate (BG2); or 3) 150 mg of a purified beta-glucan fraction from yeast cell walls (approximately 70% beta-glucan) plus 250 mg/feeding of l-ascorbic acid phosphate (BG70). Calves (n = 39) were transported for 4 h, placed in outdoor hutches, and randomly assigned to treatments. Treatments (mixed with a milk replacer) were individually fed twice daily for 28 d. Calves were offered calf starter, free choice, throughout the study. Weekly starter intake and BW were measured, and fecal samples were collected for Salmonella Typhimurium and Escherichia coli O157:H7 PCR analysis. Blood was collected immediately before transport (d 0) and on d 3, 7, 10, 14, 21, and 28 after transport. Starter intake and DMI were less (P < 0.05) at d 28 for the BG2 and BG70 treatments compared with the CNT treatment. Hematocrit percentages increased (P = 0.002) throughout the experiment. White blood cell counts (treatment x time interaction, P = 0.066) were less for the calves supplemented with BG70 than for those supplemented with BG2 (P = 0.01) or for CNT calves (P = 0.04) on d 28. Granulocyte counts changed (P = 0.04) throughout the experiment. A trend (P = 0.077) for a treatment x time interaction was detected for peripheral blood mononuclear cell counts (PBMC). Counts of PBMC were greater (P = 0.006) for the BG2 treatment compared with the CNT treatment on d 3. Calves given the BG70 supplement had fewer PBMC than those given the BG2 supplement on d 21 (P = 0.03) and 28 (P = 0.05). Fibrinogen concentrations were affected only by time (P = 0.002). Time effects were detected for phagocytosis (P = 0.005), oxidative burst (P < 0.001), expression of cluster of differentiation 18 (P = 0.001), and increased cluster of differentiation 18 (P = 0.006). Phagocytosis was less (P = 0.05) for calves in the BG70 group than for those in the CNT group. Percentage of calves positive for E. coli O157:H7 was greatest (P

  1. Ex vivo expansion of highly cytotoxic human NK cells by cocultivation with irradiated tumor cells for adoptive immunotherapy.

    PubMed

    Lim, Seon Ah; Kim, Tae-Jin; Lee, Jung Eun; Sonn, Chung Hee; Kim, Kwanghee; Kim, Jiyoung; Choi, Jong Gwon; Choi, Il-Kyu; Yun, Chae-Ok; Kim, Jae-Hong; Yee, Cassian; Kumar, Vinay; Lee, Kyung-Mi

    2013-04-15

    Adoptive natural killer (NK) cell therapy may offer an effective treatment regimen for cancer patients whose disease is refractory to conventional therapy. NK cells can kill a wide range of tumor cells by patterned recognition of target ligands. We hypothesized that tumor targets sensitive to NK lysis would drive vigorous expansion of NK cells from human peripheral blood mononuclear cells (PBMC). Here, we provide the basis for developing a novel ex vivo expansion process. By screening class I-negative or -mismatched tumor cell lines we identified a Jurkat T-lymphoblast subline termed KL-1, which was highly effective in specifically expanding NK cells. KL-1 addition to PBMC cultures achieved approximately 100-fold expansion of NK cells with nearly 90% purity, accompanied by reciprocal inhibition of T-cell growth. Marked elevations in expression of activation receptors, natural cytotoxicity receptors (NKp30, NKp44), and adhesion molecules (CD11a, ICAM-1) were associated with high tumor-lytic capacity, in both in vitro and in vivo models. KL-1-mediated expansion of NK cells was contact dependent and required interactions with CD16, the Fcγ receptor on NK cells, with ligands that are expressed on B cells. Indeed, B-cell depletion during culture abrogated selective NK cell expansion, while addition of EBV-transformed B cells further augmented NK expansion to approximately 740-fold. Together, our studies define a novel method for efficient activation of human NK cells that employs KL-1-lysed tumor cells and cocultured B cells, which drive a robust expansion of potent antitumor effector cells that will be useful for clinical evaluation. ©2012 AACR.

  2. Effects of increased dietary protein and energy on composition and functional capacities of blood mononuclear cells from vaccinated, neonatal calves.

    PubMed

    Foote, Monica R; Nonnecke, Brian J; Waters, W Ray; Palmer, Mitchell V; Beitz, Donald C; Fowler, Mike A; Miller, Bill L; Johnson, Tom E; Perry, H Bruce

    2005-09-01

    Effects of increased protein and energy provided by an intensified milk replacer on the antigen-specific, cell-mediated immune response of the neonatal calf were examined. Calves were fed a standard (0.45 kg/day of a 20% crude protein, 20% fat milk replacer; n=11) or intensified (1.14 kg/day of a 28% crude protein, 20% fat milk replacer; n=11) diet from 0 to 6 weeks of age. All calves were vaccinated with Mycobacterium bovis bacillus Calmette-Guerin (BCG) at 1 week of age. The daily weight gain of intensified-diet calves (0.62 kg/day) was greater than the weight gain of standard-diet calves (0.29 kg/day). Liver, kidney, heart, thymus, and subcervical lymph nodes from intensified-diet calves were heavier than the same organs from standard-diet calves. Flow cytometric analysis of peripheral blood mononuclear cell (PBMC) populations indicated that CD4+ cells, gamma delta TCR+ cells, and monocyte percentages, although unaffected by diet during the first 5 weeks of the study, were higher in intensified-diet calves at week 6. The decline in gamma delta TCR+ cell percentages and increase in B cell percentages with increasing age seen in all calves are characteristic of the maturing immune system of the calf. CD8+ T cell or B cell percentages were not affected by diet. In intensified-diet calves, percentages of CD4+ expressing interleukin-2 receptor increased and percentages of gamma delta TCR+ cells expressing interleukin-2 receptor decreased with time. The same populations in standard-diet calves did not change with time. Percentages of CD4+ and CD8+ T cells, and B cells expressing MHC class II antigen, were unaffected by diet or age. Although mitogen-induced interferon (IFN)-gamma and nitric oxide (NO) secretion increased with age for all calves, PBMC from intensified-diet calves produced less IFN-gamma and more NO than did cells from standard-diet calves at week 6 of the study. Antigen-induced secretion of IFN-gamma and NO also increased with age but was unaffected by diet. Antigen-elicited delayed-type hypersensitivity was unaffected by diet, suggesting increased dietary protein and energy did not alter adaptive immunity in vivo. Overall, these results suggest that feeding calves a commercially available, intensified milk replacer affects minimally the composition and functional capacities of PBMC populations. Additional research is necessary to determine whether these subtle effects influence the calf's susceptibility to infectious disease.

  3. Adjuvant therapeutic vaccination in patients with non-small cell lung cancer made lymphopenic and reconstituted with autologous PBMC: first clinical experience and evidence of an immune response

    PubMed Central

    Rüttinger, Dominik; van den Engel, Natasja K; Winter, Hauke; Schlemmer, Marcus; Pohla, Heike; Grützner, Stefanie; Wagner, Beate; Schendel, Dolores J; Fox, Bernard A; Jauch, K-W; Hatz, Rudolf A

    2007-01-01

    Background Given the considerable toxicity and modest benefit of adjuvant chemotherapy for non-small cell lung cancer (NSCLC), there is clearly a need for new treatment modalities in the adjuvant setting. Active specific immunotherapy may represent such an option. However, clinical responses have been rare so far. Manipulating the host by inducing lymphopenia before vaccination resulted in a magnification of the immune response in the preclinical setting. To evaluate feasibility and safety of an irradiated, autologous tumor cell vaccine given following induction of lymphopenia by chemotherapy and reinfusion of autologous peripheral blood mononuclear cells (PBMC), we are currently conducting a pilot-phase I clinical trial in patients with NSCLC following surgical resection. This paper reports on the first clinical experience and evidence of an immune response in patients suffering from NSCLC. Methods NSCLC patients stages I-IIIA are recruited. Vaccines are generated from their resected lung specimens. Patients undergo leukapheresis to harvest their PBMC prior to or following the surgical procedure. Furthermore, patients receive preparative chemotherapy (cyclophosphamide 350 mg/m2 and fludarabine 20 mg/m2 on 3 consecutive days) for induction of lymphopenia followed by reconstitution with their autologous PBMC. Vaccines are administered intradermally on day 1 following reconstitution and every two weeks for a total of up to five vaccinations. Granulocyte-macrophage-colony-stimulating-factor (GM-CSF) is given continuously (at a rate of 50 μg/24 h) at the site of vaccination via minipump for six consecutive days after each vaccination. Results To date, vaccines were successfully manufactured for 4 of 4 patients. The most common toxicities were local injection-site reactions and mild constitutional symptoms. Immune responses to chemotherapy, reconstitution and vaccination are measured by vaccine site and delayed type hypersensitivity (DTH) skin reactions. One patient developed positive DTH skin tests so far. Immunohistochemical assessment of punch biopsies taken at the local vaccine site reaction revealed a dense lymphocyte infiltrate. Further immunohistochemical differentiation showed that CD1a+ cells had been attracted to the vaccine site as well as predominantly CD4+ lymphocytes. The 3-day combination chemotherapy consisting of cyclophosphamide and fludarabine induced a profound lymphopenia in all patients. Sequential FACS analysis revealed that different T cell subsets (CD4, CD8, CD4CD25) as well as granulocytes, B cells and NK cells were significantly reduced. Here, we report on clinical safety and feasibility of this vaccination approach during lymphoid recovery and demonstrate a patient example. Conclusion Thus far, all vaccines were well tolerated. The overall trial design seems safe and feasible. Vaccine site reactions associated with infusion of GM-CSF via mini-pump are consistent with the postulated mechanism of action. More detailed immune-monitoring is required to evaluate a potential systemic immune response. Further studies to exploit homeostasis-driven T cell proliferation for the induction of a specific anti-tumor immune response in this clinical setting are warranted. PMID:17868452

  4. Correlation analyses revealed global microRNA-mRNA expression associations in human peripheral blood mononuclear cells.

    PubMed

    Wang, Lan; Zhu, Jiang; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Xiao-Wei; Xia, Wei; Xie, Fang-Fei; He, Pei; Bing, Peng-Fei; Qiu, Ying-Hua; Lin, Xiang; Lu, Xin; Zhang, Lei; Yi, Neng-Jun; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-02-01

    MicroRNAs (miRNAs) can regulate gene expression through binding to complementary sites in the 3'-untranslated regions of target mRNAs, which will lead to existence of correlation in expression between miRNA and mRNA. However, the miRNA-mRNA correlation patterns are complex and remain largely unclear yet. To establish the global correlation patterns in human peripheral blood mononuclear cells (PBMCs), multiple miRNA-mRNA correlation analyses and expression quantitative trait locus (eQTL) analysis were conducted in this study. We predicted and achieved 861 miRNA-mRNA pairs (65 miRNAs, 412 mRNAs) using multiple bioinformatics programs, and found global negative miRNA-mRNA correlations in PBMC from all 46 study subjects. Among the 861 pairs of correlations, 19.5% were significant (P < 0.05) and ~70% were negative. The correlation network was complex and highlighted key miRNAs/genes in PBMC. Some miRNAs, such as hsa-miR-29a, hsa-miR-148a, regulate a cluster of target genes. Some genes, e.g., TNRC6A, are regulated by multiple miRNAs. The identified genes tend to be enriched in molecular functions of DNA and RNA binding, and biological processes such as protein transport, regulation of translation and chromatin modification. The results provided a global view of the miRNA-mRNA expression correlation profile in human PBMCs, which would facilitate in-depth investigation of biological functions of key miRNAs/mRNAs and better understanding of the pathogenesis underlying PBMC-related diseases.

  5. Detection of HBV genome in the plasma and peripheral blood mononuclear cells of Iranian HBsAg negative patients with HIV infection: occult HBV infection.

    PubMed

    Tajik, Zahra; Bokharaei-Salim, Farah; Ghorbani, Saied; Keyvani, Hossein; Esghaei, Maryam; Monavari, Seyed Hamidreza; Ataei-Pirkooh, Angila; Garshasbi, Saba; Donyavi, Tahereh; Fakhim, Atousa

    2018-06-01

    The presence of hepatitis B virus (HBV) DNA in the absence of traceable hepatitis B surface antigen (HBsAg) in the plasma specimen of patients is defined as occult HBV infection (OBI). This study aimed to detect HBV-DNA in the plasma and peripheral blood mononuclear cells (PBMCs) of Iranian HBsAg negative patients with human immunodeficiency virus (HIV) infection. This cross-sectional study was conducted on 172 patients with HIV infection from September 2015 to August 2017. The patients were tested for serological parameters (HBsAg, HBcAb, HBeAg and HBeAb) against HBV infection. Moreover, they were tested for HBV viral load (using COBAS TaqMan 48 Kit, Roche, USA) in plasma and the presence of the HBV genome in PBMC specimens using real-time PCR. The mean age of the patients was 35.4 ± 13.4 years. Of the 172 studied patients, 109 (63.4%) were male. In this study, 151 (87.8%) patients were negative for HBsAg, 111 (64.5%) patients were negative for all HBV infection serological markers, 9 (5.2%) patients were only positive for HBsAg and 29 (16.9%) patients were only positive for HBcAb. Moreover, five (3.3%) patients with HBsAg negative had OBI (in the plasma sample of four patients and PBMC specimens of all five patients, HBV-DNA was detected). The present study revealed that 3.3% of the patients with HIV infection had occult HBV infection. Presumably, designing prospective studies to identify this infection in patients with HIV infection is informative and valuable.

  6. Effects of oral eicosapentaenoic acid versus docosahexaenoic acid on human peripheral blood mononuclear cell gene expression.

    PubMed

    Tsunoda, Fumiyoshi; Lamon-Fava, Stefania; Asztalos, Bela F; Iyer, Lakshmanan K; Richardson, Kris; Schaefer, Ernst J

    2015-08-01

    Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. The Staphyloccous aureus Eap protein activates expression of proinflammatory cytokines.

    PubMed

    Scriba, Thomas J; Sierro, Sophie; Brown, Eric L; Phillips, Rodney E; Sewell, Andrew K; Massey, Ruth C

    2008-05-01

    The extracellular adhesion protein (Eap) secreted by the major human pathogen Staphylococcus aureus is known to have several effects on human immunity. We have recently added to knowledge of these roles by demonstrating that Eap enhances interactions between major histocompatibility complex molecules and human leukocytes. Several studies have indicated that Eap can induce cytokine production by human peripheral blood mononuclear cells (PBMCs). To date, there has been no rigorous attempt to identify the breadth of cytokines produced by Eap stimulation or to identify the cell subsets that respond. Here, we demonstrate that Eap induces the secretion of the proinflammatory cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-alpha) by CD14(+) leukocytes (monocytes and macrophages) within direct ex vivo PBMC populations (note that granulocytes are also CD14(+) but are largely depleted from PBMC preparations). Anti-intercellular adhesion molecule 1 (CD54) antibodies inhibited this induction and implicated a role for this known Eap binding protein in cellular activation. IL-6 and TNF-alpha secretion by murine cells exposed to Eap was also observed. The activation of CD14(+) cells by Eap suggests that it could play a significant role in both septic shock and fever, two of the major pathological features of S. aureus infections.

  8. Chronic ethanol consumption modulates growth factor release, mucosal cytokine production, and microRNA expression in nonhuman primates.

    PubMed

    Asquith, Mark; Pasala, Sumana; Engelmann, Flora; Haberthur, Kristen; Meyer, Christine; Park, Byung; Grant, Kathleen A; Messaoudi, Ilhem

    2014-04-01

    Chronic alcohol consumption has been associated with enhanced susceptibility to both systemic and mucosal infections. However, the exact mechanisms underlying this enhanced susceptibility remain incompletely understood. Using a nonhuman primate model of ethanol (EtOH) self-administration, we examined the impact of chronic alcohol exposure on immune homeostasis, cytokine, and growth factor production in peripheral blood, lung, and intestinal mucosa following 12 months of chronic EtOH exposure. EtOH exposure inhibited activation-induced production of growth factors hepatocyte growth factor (HGF), granulocyte colony-stimulating factor (G-CSF), and vascular-endothelial growth factor (VEGF) by peripheral blood mononuclear cells (PBMC). Moreover, EtOH significantly reduced the frequency of colonic Th1 and Th17 cells in a dose-dependent manner. In contrast, we did not observe differences in lymphocyte frequency or soluble factor production in the lung of EtOH-consuming animals. To uncover mechanisms underlying reduced growth factor and Th1/Th17 cytokine production, we compared expression levels of microRNAs in PBMC and intestinal mucosa. Our analysis revealed EtOH-dependent up-regulation of distinct microRNAs in affected tissues (miR-181a and miR-221 in PBMC; miR-155 in colon). Moreover, we were able to detect reduced expression of the transcription factors STAT3 and ARNT, which regulate expression of VEGF, G-CSF, and HGF and contain targets for these microRNAs. To confirm and extend these observations, PBMC were transfected with either mimics or antagomirs of miR-181 and miR-221, and protein levels of the transcription factors and growth factors were determined. Transfection of microRNA mimics led to a reduction in both STAT3/ARNT as well as VEGF/HGF/G-CSF levels. The opposite outcome was observed when microRNA antagomirs were transfected. Chronic EtOH consumption significantly disrupts both peripheral and mucosal immune homeostasis, and this dysregulation may be mediated by changes in microRNA expression. Copyright © 2013 by the Research Society on Alcoholism.

  9. Winter to summer change in vitamin D status reduces systemic inflammation and bioenergetic activity of human peripheral blood mononuclear cells.

    PubMed

    Calton, Emily K; Keane, Kevin N; Raizel, Raquel; Rowlands, Jordan; Soares, Mario J; Newsholme, Philip

    2017-08-01

    Vitamin D status [25(OH)D] has recently been reported to be associated with altered cellular bioenergetic profiles of peripheral blood mononuclear cells (PBMCs). No study has tracked the seasonal variation of 25(OH)D and its putative influence on whole body energy metabolism, cellular bioenergetic profiles, inflammatory markers and clinical chemistry. Whole body energy metabolism and substrate utilisation were measured by indirect calorimetry. PBMCs obtained from the same subjects were isolated from whole blood, counted and freshly seeded. Bioenergetic analysis (mitochondrial stress test and glycolysis stress test) was performed using the Seahorse XF e 96 flux analyser. 25(OH)D was assessed using the Architect immunoassay method. 25(OH)D increased by a median (IQR) of 14.40 (20.13)nmol/L (p<0.001) from winter to summer and was accompanied by significant improvements in indices of insulin sensitivity, McAuley's index (p=0.019) and quantitative insulin sensitivity check index (p=0.028). PBMC mitochondrial parameters basal respiration, non-mitochondrial respiration, ATP production, proton leak, and maximal respiration decreased in summer compared to winter. Similarly, PBMC glycolytic parameters glycolytic activity, glucose response, and glycolytic capacity were all reduced in summer compared to winter. There was also a trend for absolute resting metabolic rate (RMR) to decrease (p=0.066). Markers of systemic inflammation MCP-1, IL-6, IL-8, IL-10, and IL-12p70 decreased significantly in summer compared to winter. Participants who entered winter with a low 25(OH)D (<50nmol/L), had the greatest alteration in bioenergetic parameters in summer, relative to those with winter 25(OH)D concentrations of 50-75nmol/L or >75nmol/L. The absolute change in 25(OH)D was not associated with altered bioenergetics. Seasonal improvements in 25(OH)D was associated with reduced systemic inflammation, PBMC bioenergetic profiles and whole body energy metabolism. These observational changes in PBMC bioenergetics were most pronounced in those who had insufficient 25(OH)D in winter. The data warrants confirmation through cause and effect study designs. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  10. T cell reactivity with allergoids: influence of the type of APC.

    PubMed

    Kahlert, H; Grage-Griebenow, E; Stüwe, H T; Cromwell, O; Fiebig, H

    2000-08-15

    The use of allergoids for allergen-specific immunotherapy has been established for many years. The characteristic features of these chemically modified allergens are their strongly reduced IgE binding activity compared with the native form and the retained immunogenicity. T cell reactivity of chemically modified allergens is documented in animals, but in humans indirect evidence of reactivity has been concluded from the induction of allergen-specific IgG during immunotherapy. Direct evidence of T cell reactivity was obtained recently using isolated human T cells. To obtain further insight into the mechanism of action of allergoids, we compared the Ag-presenting capacity of different APC types, including DC and macrophages, generated from CD14+ precursor cells from the blood of grass pollen allergic subjects, autologous PBMC, and B cells. These APC were used in experiments together with Phl p 5-specific T cell clones under stimulation with grass pollen allergen extract, rPhl p 5b, and the respective allergoids. Using DC and macrophages, allergoids exhibited a pronounced and reproducible T cell-stimulating capacity. Responses were superior to those with PBMC, and isolated B cells failed to present allergoids. Considerable IL-12 production was observed only when using the DC for Ag presentation of both allergens and allergoids. The amount of IL-10 in supernatants was dependent on the phenotype of the respective T cell clone. High IL-10 production was associated with suppressed IL-12 production from the DC in most cases. In conclusion, the reactivity of Th cells with allergoids is dependent on the type of the APC.

  11. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells.

    PubMed

    Costa, Patricia Marçal da; Ferreira, Paulo Michel Pinheiro; Bolzani, Vanderlan da Silva; Furlan, Maysa; de Freitas Formenton Macedo Dos Santos, Vânia Aparecida; Corsino, Joaquim; de Moraes, Manoel Odorico; Costa-Lotufo, Letícia Veras; Montenegro, Raquel Carvalho; Pessoa, Cláudia

    2008-06-01

    Pristimerin has been shown to be cytotoxic to several cancer cell lines. In the present work, the cytotoxicity of pristimerin was evaluated in human tumor cell lines and in human peripheral blood mononuclear cells (PBMC). This work also examined the effects of pristimerin (0.4; 0.8 and 1.7 microM) in HL-60 cells, after 6, 12 and 24h of exposure. Pristimerin reduced the number of viable cells and increased number of non-viable cells in a concentration-dependent manner by tripan blue test showing morphological changes consistent with apoptosis. Nevertheless, pristimerin was not selective to cancer cells, since it inhibited PBMC proliferation with an IC50 of 0.88 microM. DNA synthesis inhibition assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation in HL-60 cells was 70% and 83% for the concentrations of 0.4 and 0.8 microM, respectively. Pristimerin (10 and 20 microM) was not able to inhibit topoisomerase I. In AO/EB (acridine orange/ethidium bromide) staining, all tested concentrations reduced the number of HL-60 viable cells, with the occurrence of necrosis and apoptosis in a concentration-dependent manner, results in agreement with trypan blue exclusion findings. The analysis of membrane integrity and internucleosomal DNA fragmentation by flow cytometry in the presence of pristimerin indicated that treated cells underwent apoptosis. The present data point to the importance of pristimerin as representative of an emerging class of potential anticancer chemicals, exhibiting an antiproliferative effect by inhibiting DNA synthesis and triggering apoptosis.

  12. Vaccine-elicited SIV and HIV envelope-specific IgA and IgG memory B cells in rhesus macaque peripheral blood correlate with functional antibody responses and reduced viremia

    PubMed Central

    Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie

    2011-01-01

    An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487

  13. Transcript profiling of pattern recognition receptors in a semi domesticated breed of buffalo, Toda, of India.

    PubMed

    Vignesh, A R; Dhanasekaran, S; Raj, G Dhinakar; Balachandran, C; Pazhanivel, N; Sreekumar, C; Tirumurugaan, K G; Raja, A; Kumanan, K

    2012-06-15

    The primary objective of this study was to assess the expression profile and levels of toll-like receptor (TLR) mRNAs in the spleen, lung, mediastinal lymph node (MLN), jejunum, rectum, skin and peripheral blood mononuclear cells (PBMC) of Toda and Murrah buffalos. Spleen and PBMC had increased expression of TLR mRNAs 2, 4, 5, 6, 8, 9 and 10; lung had increased expression of TLR mRNAs 2, 4, 5, 6 and 8, MLN TLR mRNA 6, 9, 10 and decrease in TLR 3 and 7 mRNAs in skin. No significant differences were observed in the expression levels of any of the TLR mRNA in jejunum and rectum. Toda buffaloes showed significantly higher expression levels of TLR 9 mRNA in MLN, TLR mRNAs 1, 5, 6, 9 and 10 in skin and TLR mRNAs 2, 4, 7 and 9 in PBMC than Murrah buffaloes living in the vicinity. Toda and Murrah buffaloes were inoculated with TLR5 (flagellin) and TLR9 (CpG ODN) ligands in vivo and expression levels of the respective TLRs analyzed 12h later. Following CpG inoculation, Toda buffaloes had significantly higher levels of TLR 9 mRNA expression but not in Murrah. However, flagellin induction did not increase TLR 5 mRNA expression in both these breeds. Histological sections of the skin were made and infiltrating cell clusters were graded and quantified. Following CpG inoculation, Toda buffaloes showed higher numbers of infiltrating grade 1 and grade 3 cell clusters while Murrah showed lower numbers of infiltrating grade 1 cells as compared to mock-inoculated skin sections. Flagellin treatment revealed no significant differences in infiltrating cell clusters in both the breeds. The results have shown differential expression of TLR mRNAs in various tissues between two divergent buffalo breeds with the highest difference in TLR expression profile seen in the skin, the largest portal of entry of pathogens, of Toda. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress.

    PubMed

    Sindhu, Sardar; Akhter, Nadeem; Kochumon, Shihab; Thomas, Reeby; Wilson, Ajit; Shenouda, Steve; Tuomilehto, Jaakko; Ahmad, Rasheed

    2018-01-01

    Metabolic diseases such as obesity and type-2 diabetes (T2D) are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR) such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC), or primary monocytes were treated with hydrogen peroxide (H2O2) for induction of reactive oxygen species (ROS)-mediated oxidative stress. Superoxide dismutase (SOD) activity was measured using a commercial kit. Data (mean±SEM) were compared using unpaired student's t-test and P<0.05 was considered significant. The adipose tissue TLR10 gene/protein expression was found to be significantly upregulated in obesity as well as T2D which correlated with body mass index (BMI). ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB)/mitogen activated protein kinase (MAPK) signaling as well as endoplasmic reticulum (ER) stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. Oxidative stress induces the expression of TLR10 which may represent an immune marker for metabolic inflammation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  15. Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility.

    PubMed

    Stanilova, Spaska A; Miteva, Lyuba D; Karakolev, Zhivko T; Stefanov, Chavdar S

    2006-02-01

    To investigate the -1082 (A/G) polymorphism in the promoter of the IL-10 gene in terms of IL-10 production from stimulated peripheral blood mononuclear cells (PBMC) and to evaluate the relationship of this polymorphism with susceptibility to severe sepsis and the outcome of the disease. Case-control study. Research laboratory of Molecular Biology and Immunology and University Hospital ICU, Faculty of Medicine, Trakia University. A total of 53 healthy volunteers and 33 patients in ICU meeting the criteria for severe sepsis were included. The amplification refractory mutation system PCR was used for IL-10-1082 polymorphism detection. Isolated PBMC were stimulated with either C3-binding glycoprotein (C3bgp), lipopolysaccharide (LPS), phytohemagglutinin (PHA),or pokeweed mitogen (PWM). IL-10 production was measured in culture supernatants. The AA genotype was associated with lower IL-10 production in LPS-, PHA- or PWM-stimulated healthy PBMC. Patients with severe sepsis had significant elevation of A allele, compared with healthy controls (74.2% vs 52.8%; p=0.0062). Carriage of at least one copy of IL-10-1082 G allele in sepsis patients and in healthy controls resulted in a statistically significant increase in IL-10 production from stimulated PBMC. Surviving sepsis patients had a significant decrease of IL-10-1082 allele G frequency, compared with controls (17% vs 47.2%; p=0.012). An association between increased IL-10 production and poor outcome from sepsis was observed. The A allele of the -1082 polymorphism in the interleukin-10 gene promoter is associated with sepsis susceptibility, whereas G allele is associated with higher stimulated interleukin-10 production and increased mortality in severe sepsis.

  16. Enhanced LPS-induced activation of IL-27 signalling in sarcoidosis.

    PubMed

    Ringkowski, Sabine; Loke, Joshua; Huang, Shuying; Ahmadzai, Hasib; Herth, Felix J F; Thomas, Paul S; Herbert, Cristan

    2016-08-01

    Granulomas in sarcoidosis have recently been described as containing Interleukin (IL)-27, one of the members of the IL-12 family of cytokines, which also includes IL-35. Levels of these cytokines and the IL-27 receptor subunits were hypothesised to differ between patients with sarcoidosis compared to healthy controls in peripheral blood. Using a cross-sectional study design, plasma and peripheral blood mononuclear cells (PBMC) were collected from patients and control subjects. Protein and mRNA (in PBMC) levels for IL-27 and IL-35 (IL27, EBI3, IL12A subunits) as well as IL-27 receptor (IL6ST and IL27RA subunits) were assessed spontaneously and following direct (LPS) and indirect (anti-CD3/28 activation beads) macrophage stimulation using RT- PCR, ELISA and flow cytometry. Following stimulation with LPS, PBMC of patients with sarcoidosis displayed significantly enhanced expression of IL27 and EBI3 mRNA (p = 0.020 and p = 0.037 respectively) compared to PBMCs from healthy controls. There was also significantly enhanced production of IL-27 by PBMC from patients with sarcoidosis compared to healthy controls in response to LPS stimulation (p = 0.027). IL6ST mRNA and IL6ST protein were significantly lower in patients with sarcoidosis (mRNA p = 0.0002; MFI p = 0.0015) whilst IL27RA protein levels were significantly higher in patients with sarcoidosis compared to healthy controls (MFI p < 0.0001). Plasma IL-35 protein levels did not differ between control and sarcoidosis subjects (p = 0.23). These results suggest there may be exaggerated activation of IL-27 signalling in response to LPS in sarcoidosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Vaspin plasma concentrations and mRNA expressions in patients with stable and unstable angina pectoris.

    PubMed

    Li, Hai Ling; Peng, Wen Hui; Cui, Shi Tao; Lei, Hou; Wei, Yi Dong; Li, Wei Ming; Xu, Ya Wei

    2011-09-01

    Vaspin was a recently identified adipokine, playing a protective role in many metabolic diseases. The present study aimed to investigate the association between vaspin plasma level and stable angina pectoris (SAP) and unstable angina pectoris (UAP). A total of 88 patients with angiographically-proved coronary artery disease (CAD) (SAP 47, UAP 41) and 103 control subjects without cardiovascular diseases were enrolled in this study. Circulating vaspin, mRNA expression of vaspin in peripheral blood mononuclear cells (PBMC), clinical parameters, lipid profile and high-sensitivity C-reactive protein (hsCRP) were assayed. The severity of CAD was also assessed according to the number of vessels diseased. There are significant differences in circulating vaspin levels and mRNA levels of PBMC between SAP and UAP groups (SAP 0.91±0.95 ng/mL and UAP 0.43±0.38 ng/mL, p<0.01 in circulating vaspin level; SAP 1.19±0.85 and UAP 0.82±0.56, p<0.05 in mRNA level of PBMC). An inverse correlation between the number of diseased vessels and plasma vaspin concentration was observed (r=-0.350, p<0.01) in the CAD group. Construction of receiver operating characteristic curves confirmed that vaspin plasma concentrations significantly differentiated CAD patients (area under the curve=0.684, p<0.001), as well as UAP (area under the curve=0.640, p<0.05). Decreased vaspin plasma levels and mRNA levels in PBMC were observed in patients with UAP. Low vaspin concentrations correlate with CAD severity. The findings suggested that vaspin could serve as a novel biomarker of CAD as well as UAP.

  18. Elevated Expression of the NLRP3 Inflammasome and Its Correlation with Disease Activity in Adult-onset Still Disease.

    PubMed

    Hsieh, Chia-Wei; Chen, Yi-Ming; Lin, Chi-Chen; Tang, Kuo-Tung; Chen, Hsin-Hua; Hung, Wei-Ting; Lai, Kuo-Lung; Chen, Der-Yuan

    2017-08-01

    The dysregulation of the NLRP3 (NLR containing a pyrin domain) inflammasome is involved in autoinflammatory diseases. Adult-onset Still disease (AOSD) is regarded as an autoinflammatory disease. However, the pathogenic involvement of NLRP3 inflammasome in AOSD remains unclear and NLRP3 activators in AOSD are currently unknown. The mRNA expression of NLRP3 inflammasome signaling in peripheral blood mononuclear cells (PBMC) from 34 patients with AOSD and 14 healthy subjects was determined using quantitative-PCR (qPCR). The changes in mRNA and protein levels of NLRP3 inflammasome signaling in PBMC treated with the potential activator [imiquimod (IMQ)] or inhibitor of NLRP3 were evaluated using qPCR and immunoblotting, respectively. The supernatant levels of interleukin (IL)-1β and IL-18 were determined by ELISA. Significantly higher mRNA levels of NLRP3 inflammasome signaling were observed in patients with AOSD compared with healthy controls. NLRP3 expressions were positively correlated with disease activity in patients with AOSD. IMQ (an effective Toll-like receptor 7 ligand; 10 µ g/ml and 25 µ g/ml) stimulation of PBMC from patients with AOSD induced dose-dependent increases of mRNA expression of NLRP3 (mean ± standard error of the mean, 2.06 ± 0.46 and 6.05 ± 1.84, respectively), caspase-1 (1.81 ± 0.23 and 4.25 ± 0.48), IL-1β (5.68 ± 1.51 and 12.13 ± 3.71), and IL-18 (2.32 ± 0.37 and 4.81 ± 0.51) compared with controls (all p < 0.005). IMQ stimulation of PBMC from patients similarly induced greater increases in protein expressions of NLRP3 inflammasome compared with controls. The protein expressions of NLRP3, IL-1β, and IL-18 on PBMC significantly decreased after treatment with NLRP3 inhibitor in patients with AOSD. Increased expression of NLRP3 inflammasome and its positive correlation with disease activity in AOSD suggest its involvement in disease pathogenesis. IMQ upregulated expressions of NLRP3 inflammasome signaling, and IMQ might be an activator of NLRP3 inflammasome in AOSD.

  19. Steroid requirements and immune associations with vitamin D are stronger in children than adults with asthma

    PubMed Central

    Goleva, Elena; Searing, Daniel A.; Jackson, Leisa P.; Richers, Brittany N.; Leung, Donald Y.M.

    2012-01-01

    Background the effects of serum vitamin D status on atopy, steroid requirement and functional responsiveness to corticosteroids in children vs. adults with asthma have not been studied systematically. Objective to explore age-specific effects of vitamin D in asthma. Methods serum vitamin D levels were examined in a prospective study of adults and children (102 normal controls and 103 asthmatics). Peripheral blood mononuclear cells (PBMC) were cultured for 3h +/−100nM dexamethasone (DEX) and the expression of corticosteroid-regulated genes was detected by real time PCR. Serum IgE levels were measured; information about asthmatics’ steroid requirement was collected. Results 47.6% of asthmatics and 56.8% normal control subjects had deficient serum vitamin D levels (<20ng/ml) with mean ± SD of 20.7±9.8ng/ml and 19.2±7.7ng/ml, respectively. In multivariate regression models, a significant positive correlation between serum vitamin D and the expression of vitamin D regulated targets - cyp24a by PBMC (p=0.0084, pediatric asthma group only) and serum LL-37 levels (p=0.0006, pediatric; but p=0.0067 in adult asthma groups) was found. An inverse association between vitamin D and serum IgE levels was observed in the pediatric (p=0.006) asthma group. Serum vitamin D (p=0.05) as well as PBMC cyp24a expression (p=0.0312) demonstrated significant inverse relationship with daily ICS dose in the pediatric asthma group only. Cyp24a expression in PBMC correlated positively with in vitro suppression of TNFα (p=0.05) and IL-13 (p=0.0094) in PBMC by DEX only in the pediatric asthma group. Conclusions this study demonstrated significant associations between serum vitamin D status and steroid requirement and in vitro responsiveness to corticosteroids in the pediatric but not the adult asthma group. Vitamin D was also related to IgE levels in children but not in adults. Clinical Implication The results of this study suggest that vitamin D supplementation in children may enhance corticosteroid responses, control atopy and could thereby improve asthma control. PMID:22330698

  20. Spontaneous control of HIV-1 viremia in a subject with protective HLA-B plus HLA-C alleles and HLA-C associated single nucleotide polymorphisms.

    PubMed

    Moroni, Marco; Ghezzi, Silvia; Baroli, Paolo; Heltai, Silvia; De Battista, Davide; Pensieroso, Simone; Cavarelli, Mariangela; Dispinseri, Stefania; Vanni, Irene; Pastori, Claudia; Zerbi, Pietro; Tosoni, Antonella; Vicenzi, Elisa; Nebuloni, Manuela; Wong, Kim; Zhao, Hong; McHugh, Sarah; Poli, Guido; Lopalco, Lucia; Scarlatti, Gabriella; Biassoni, Roberto; Mullins, James I; Malnati, Mauro S; Alfano, Massimo

    2014-12-05

    Understanding the mechanisms by which some individuals are able to naturally control HIV-1 infection is an important goal of AIDS research. We here describe the case of an HIV-1(+) woman, CASE1, who has spontaneously controlled her viremia for the last 14 of her 20 years of infection. CASE1 has been clinically monitored since 1993. Detailed immunological, virological and histological analyses were performed on samples obtained between 2009 and 2011. As for other Elite Controllers, CASE1 is characterized by low to undetectable levels of plasma HIV-1 RNA, peripheral blood mononuclear cell (PBMC) associated HIV-1 DNA and reduced in vitro susceptibility of target cells to HIV-1 infection. Furthermore, a slow rate of virus evolution was demonstrated in spite the lack of assumption of any antiretroviral agent. CASE1 failed to transmit HIV-1 to either her sexual male partner or to her child born by vaginal delivery. Normal values and ratios of T and B cells were observed, along with normal histology of the intestinal mucosa. Attempts to isolate HIV-1 from her PBMC and gut-derived cells were unsuccessful, despite expression of normal cell surface levels of CD4, CCRC5 and CXCR4. CASE1 did not produce detectable anti-HIV neutralizing antibodies in her serum or genital mucosal fluid although she displayed potent T cell responses against HIV-1 Gag and Nef. CASE1 also possessed multiple genetic polymorphisms, including HLA alleles (B*14, B*57, C*06 and C*08.02) and HLA-C single nucleotide polymorphisms (SNPs, rs9264942 C/C and rs67384697 del/del), that have been previously individually associated with spontaneous control of plasma viremia, maintenance of high CD4(+) T cell counts and delayed disease progression. CASE1 has controlled her HIV-1 viremia below the limit of detection in the absence of antiretroviral therapy for more than 14 years and has not shown any sign of immunologic deterioration or disease progression. Co-expression of multiple protective HLA alleles, HLA-C SNPs and strong T cell responses against HIV-1 proteins are the most likely explanation of this very benign case of spontaneous control of HIV-1 disease progression.

  1. Monocyte:T cell interaction regulates human T cell activation through a CD28/CD46 crosstalk

    PubMed Central

    Charron, Lauren; Doctrinal, Axelle; Choileain, Siobhan Ni; Astier, Anne L.

    2015-01-01

    T cell activation requires engagement of the T cell receptor and of at least one costimulatory molecule. The key role of CD28 in inducing T cell activation has been reported several decades ago and the molecular mechanisms involved well described. The complement regulator CD46 also acts as a costimulatory molecule for T cells but, in contrast to CD28, has the ability to drive T cell differentiation from producing some IFNγ to secreting some potent anti-inflammatory IL-10, acquiring a so-called Type I regulatory phenotype (Tr1). Proteolytic cleavage of CD46 occurs upon costimulation and is important for T cell activation and IL-10 production. The observation that CD46 cleavage was reduced when PBMC were costimulated compared to purified naive T cells led us to hypothesize that interactions between different cell types within the PBMC were able to modulate the CD46 pathway. We show that CD46 downregulation is also reduced when CD4+ T cells are co-cultured with autologous monocytes. Indeed, monocyte:T cell co-cultures impaired CD46–mediated T cell differentiation and coactivation, by reducing downregulation of surface CD46, lowering induction of the early activation marker CD69, as well as reducing the levels of IL-10 secretion. Blocking of CD86 could partly restore CD69 expression and cytokine secretion, demonstrating that the CD28-CD86 pathway regulates CD46 activation. Direct concomitant ligation of CD28 and CD46 on CD4+ T cells also modulated CD46 expression and regulated cytokine production. These data identify a crosstalk between two main costimulatory pathways and provide novel insights into the regulation of human T cell activation. PMID:25787182

  2. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin

    PubMed Central

    Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago

    2014-01-01

    AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN-α-based therapy, modifies the immune response in chronic patients. The study provides evidence for the design of more effective therapeutic vaccine interventions against HCV. PMID:24415868

  3. [Increased IL-4 production in response to virulent Mycobacterium tuberculosis in tuberculosis patients with advanced disease].

    PubMed

    Ordway, Diane J; Martins, Marta S; Costa, Leonor M; Freire, Mónica S; Arroz, Maria J; Dockrell, Hazel M; Ventura, Fernando A

    2005-01-01

    The study was designed to compare immune responses to Mycobacterium tuberculosis bacilli and antigens in healthy Portuguese subjects and pulmonary tuberculosis patients (TB), and to correlate immune status with clinical severity of tuberculosis disease. PBMC were cultured and stimulated with live and killed M. tuberculosis H37Rv and purified protein derivative (PPD) and lymphoproliferation and production of IFN-gamma and IL-5/IL-4 by these cultures were evaluated by the use of ELISA and multi-parameter flow cytometry. PBMC from 30 tuberculosis patients demonstrated significantly reduced amounts of proliferation and IFN-gamma when stimulated with live M. tuberculosis compared the control group. Of 15 tuberculosis patients tested for intracellular IL-4 following stimulation with M. tuberculosis, 7 showed greatly increased IL-4 production in CD8+ and gammadelta+ T cells. Tuberculosis patients demonstrated an increase of intracellular IL-4 after PBMC were stimulated with live M. tuberculosis in the CD4+ phenotype, but more notably in CD8+ and gammadelta TCR+ subsets. Increased production of IL-4 in tuberculosis patients was primarily in individuals with advanced involvement of lung parenchymal with high bacterial loads in sputum. These results suggest that an alteration in type 1 and type 2 cytokine balance can occur in patients with tuberculosis at an advanced clinical stage of disease.

  4. Modeled Microgravity Inhibits Apoptosis in Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Risin, Diana; Pellis, Neal R.

    2000-01-01

    Microgravity interferes with numerous lymphocyte functions (expression of cell surface molecules, locomotion, polyclonal and antigen-specific activation, and the protein kinase C activity in signal transduction). The latter suggests that gravity may also affect programmed cell death (PCD) in lymphocyte populations. To test this hypothesis, we investigated spontaneous, activation- and radiation-induced PCD in peripheral blood mononuclear cells (PBMC) exposed to modeled microgravity using a rotating cell culture system. The results showed significant inhibition of radiation- and activation-induced apoptosis in modeled microgravity and provide insights into the potential mechanisms of this phenomenon.

  5. Association of T-cell reactivity with beta-cell function in recent onset type 1 diabetes patients.

    PubMed

    Pfleger, Christian; Meierhoff, Guido; Kolb, Hubert; Schloot, Nanette C

    2010-03-01

    The aim of the current study was to investigate whether autoantigen directed T-cell reactivity relates to beta-cell function during the first 78 weeks after diagnosis of type 1 diabetes. 50 adults and 49 children (mean age 27.3 and 10.9 years respectively) with recent onset type 1 diabetes who participated in a placebo-controlled trial of immune intervention with DiaPep277 were analyzed. Secretion of interferon (IFN)-gamma, interleukin (IL)-5, IL-13 and IL-10 by single peripheral mononuclear cells (PBMC) upon stimulation with islet antigens GAD65, heat shock protein 60 (Hsp60) protein-tyrosine-phosphatase-like-antigen (pIA2) or tetanus toxoid (TT) was determined applying ELISPOT; beta-cell function was evaluated by glucagon stimulated C-peptide. Multivariate regression analysis was applied. In general, number of islet antigen-reactive cells decreased over 78 weeks in both adults and children, whereas reactivity to TT was not reduced. In addition, there was an association between the quality of immune cell responses and beta-cell function. Overall, increased responses by IFN-gamma secreting cells were associated with lower beta-cell function whereas IL-5, IL-13 and IL-10 cytokine responses were positively associated with beta-cell function in adults and children. Essentially, the same results were obtained with three different models of regression analysis. The number of detectable islet-reactive immune cells decreases within 1-2 years after diagnosis of type 1 diabetes. Cytokine production by antigen-specific PBMC reactivity is related to beta-cell function as measured by stimulated C-peptide. Cellular immunity appears to regress soon after disease diagnosis and begin of insulin therapy. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Sexually-Transmitted/Founder HIV-1 Cannot Be Directly Predicted from Plasma or PBMC-Derived Viral Quasispecies in the Transmitting Partner

    PubMed Central

    Frange, Pierre; Meyer, Laurence; Jung, Matthieu; Goujard, Cecile; Zucman, David; Abel, Sylvie; Hochedez, Patrick; Gousset, Marine; Gascuel, Olivier; Rouzioux, Christine; Chaix, Marie-Laure

    2013-01-01

    Objective Characterization of HIV-1 sequences in newly infected individuals is important for elucidating the mechanisms of viral sexual transmission. We report the identification of transmitted/founder viruses in eight pairs of HIV-1 sexually-infected patients enrolled at the time of primary infection (“recipients”) and their transmitting partners (“donors”). Methods Using a single genome-amplification approach, we compared quasispecies in donors and recipients on the basis of 316 and 376 C2V5 env sequences amplified from plasma viral RNA and PBMC-associated DNA, respectively. Results Both DNA and RNA sequences indicated very homogeneous viral populations in all recipients, suggesting transmission of a single variant, even in cases of recent sexually transmitted infections (STIs) in donors (n = 2) or recipients (n = 3). In all pairs, the transmitted/founder virus was derived from an infrequent variant population within the blood of the donor. The donor variant sequences most closely related to the recipient sequences were found in plasma samples in 3/8 cases and/or in PBMC samples in 6/8 cases. Although donors were exclusively (n = 4) or predominantly (n = 4) infected by CCR5-tropic (R5) strains, two recipients were infected with highly homogeneous CXCR4/dual-mixed-tropic (X4/DM) viral populations, identified in both DNA and RNA. The proportion of X4/DM quasispecies in donors was higher in cases of X4/DM than R5 HIV transmission (16.7–22.0% versus 0–2.6%), suggesting that X4/DM transmission may be associated with a threshold population of X4/DM circulating quasispecies in donors. Conclusions These suggest that a severe genetic bottleneck occurs during subtype B HIV-1 heterosexual and homosexual transmission. Sexually-transmitted/founder virus cannot be directly predicted by analysis of the donor’s quasispecies in plasma and/or PBMC. Additional studies are required to fully understand the traits that confer the capacity to transmit and establish infection, and determine the role of concomitant STIs in mitigating the genetic bottleneck in mucosal HIV transmission. PMID:23874894

  7. Expressed gene sequence of the IFN-gamma-response chemokine CXCL9 of cattle, horses, and swine

    USDA-ARS?s Scientific Manuscript database

    This report describes the cloning and characterization of expressed gene sequences of bovine, equine, and swine CXCL9 from RNA obtained from peripheral blood mononuclear cell (PBMC) or other tissues. The bovine coding region was 378 nucleotides in length, while the equine and swine coding regions w...

  8. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells.

    PubMed

    Nielsen, C H; Albertsen, L; Bendtzen, K; Baslund, B

    2007-05-01

    The mechanism of action of methotrexate (MTX) in autoimmune diseases (AID) is unclear. A pro-apoptotic effect has been demonstrated in mitogen-stimulated peripheral blood mononuclear cells (PBMC), but studies employing conventional antigens have disputed a pro-apoptotic effect. CD4+ T helper (Th) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th cells took up MTX, nearly all the dividing Th cells did, and this abrogated further cell division. Among dividing Th cells, MTX induced an approximately sixfold increase over baseline levels in the proportion of apoptotic cells. This proportion could be reverted to baseline by the addition of folic acid. Exposure of CA-stimulated PBMC to MTX significantly increased their level of cleaved poly(ADP-ribose) polymerase (PARP), and a similar tendency was observed in TT-stimulated cells. Unlike CA and TT, the mitogen phytohaemagglutinin (PHA) induced proliferation of both CD4- and CD4+ T cells, and induced apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative of stimulation with self-antigens in AID, and that a pro-apoptotic effect of MTX on self-antigen-stimulated Th cells contributes to the effect of MTX in the treatment of AID.

  9. Neuroregenerative potential of intravenous G-CSF and autologous peripheral blood stem cells in children with cerebral palsy: a randomized, double-blind, cross-over study.

    PubMed

    Rah, Wee-Jin; Lee, Young-Ho; Moon, Jin-Hwa; Jun, Hyun-Ju; Kang, Hye-Ryeong; Koh, Hani; Eom, Hye Jung; Lee, Ji Young; Lee, Young Jun; Kim, Ji Young; Choi, Yun-Young; Park, Kyeongil; Kim, Mi Jung; Kim, Seung-Hyun

    2017-01-21

    We performed a randomized, double-blind, cross-over study to assess the neuroregenerative potential of intravenous granulocyte colony-stimulating factor (G-CSF) followed by infusion of mobilized peripheral blood mononuclear cells (mPBMCs) in children with cerebral palsy (CP). Children with non-severe CP were enrolled in this study. G-CSF was administered for 5 days, then mPBMCs were collected by apheresis and cryopreserved. One month later (M1), recipients were randomized to receive either mPBMCs or a placebo infusion, and these treatment groups were switched at 7 months (M7) and observed for another 6 months (M13). We assessed the efficacy of treatment by evaluating neurodevelopmental tests, as well as by brain magnetic resonance imaging-diffusion tensor imaging (MRI-DTI) and 18 F-fluorodeoxyglucose (FDG) brain positron emission tomography-computed tomography (PET-CT) scanning to evaluate the anatomical and functional changes in the brain. Fifty-seven patients aged 4.3 ± 1.9 (range 2-10) years and weighing 16.6 ± 4.9 (range 11.6-56.0) kg were enrolled in this study. The administration of G-CSF as well as the collection and reinfusion of mPBMCs were safe and tolerable. The yield of mPBMCs was comparable to that reported in studies of pediatric donors without CP and patients with nonhematologic diseases. 42.6% of the patients responded to the treatment with higher neurodevelopmental scores than would normally be expected. In addition, larger changes in neurodevelopment test scores were observed in the 1 month after G-CSF administration (M0-M1) than during the 6 months after reinfusion with mPBMCs or placebo (M1-M7 or M7-M13). Patients who received G-CSF followed by mPBMC infusion at 7 months (T7 group) demonstrated significantly more neurodevelopmental improvement than patients who received G-CSF followed by mPBMC infusion at 1 month (T1 group). In contrast to the results of neurodevelopment tests, the results of MRI-DTI at the end of this study showed greater improvement in the T1 group. Although we observed metabolic changes to the cerebellum, thalamus and cerebral cortex in the 18 F-FDG brain PET-CT scans, there were no significant differences in such changes between the mPBMC and placebo group or between the T1 and T7 group. Neurodevelopmental improvement was seen in response to intravenous G-CSF followed by mPBMC reinfusion, particularly to the G-CSF alone even without mPBMC reinfusion. Further studies using a larger number of mPBMCs for the infusion which could be collected by repeated cycles of apheresis or using repeated cycles of G-CSF alone, are needed to clarify the effect of mPBMC reinfusion or G-CSF alone (Trial registration: ClinicalTrials.gov, NCT02983708. Registered 5 December, 2016, retrospectively registered).

  10. Cryopreservation-related loss of antigen-specific IFNγ producing CD4+ T-cells can skew immunogenicity data in vaccine trials: Lessons from a malaria vaccine trial substudy.

    PubMed

    Ford, Tom; Wenden, Claire; Mbekeani, Alison; Dally, Len; Cox, Josephine H; Morin, Merribeth; Winstone, Nicola; Hill, Adrian V S; Gilmour, Jill; Ewer, Katie J

    2017-04-04

    Ex vivo functional immunoassays such as ELISpot and intracellular cytokine staining (ICS) by flow cytometry are crucial tools in vaccine development both in the identification of novel immunogenic targets and in the immunological assessment of samples from clinical trials. Cryopreservation and subsequent thawing of PBMCs via validated processes has become a mainstay of clinical trials due to processing restrictions inherent in the disparate location and capacity of trial centres, and also in the need to standardize biological assays at central testing facilities. Logistical and financial requirement to batch process samples from multiple study timepoints are also key. We used ELISpot and ICS assays to assess antigen-specific immunogenicity in blood samples taken from subjects enrolled in a phase II malaria heterologous prime-boost vaccine trial and showed that the freeze thaw process can result in a 3-5-fold reduction of malaria antigen-specific IFNγ-producing CD3 + CD4 + effector populations from PBMC samples taken post vaccination. We have also demonstrated that peptide responsive CD8 + T cells are relatively unaffected, as well as CD4 + T cell populations that do not produce IFNγ. These findings contribute to a growing body of data that could be consolidated and synthesised as guidelines for clinical trials with the aim of increasing the efficiency of vaccine development pipelines. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Immuno-Modulatory and Anti-Inflammatory Effects of Dihydrogracilin A, a Terpene Derived from the Marine Sponge Dendrilla membranosa.

    PubMed

    Ciaglia, Elena; Malfitano, Anna Maria; Laezza, Chiara; Fontana, Angelo; Nuzzo, Genoveffa; Cutignano, Adele; Abate, Mario; Pelin, Marco; Sosa, Silvio; Bifulco, Maurizio; Gazzerro, Patrizia

    2017-07-28

    We assessed the immunomodulatory and anti-inflammatory effects of 9,11-dihydrogracilin A (DHG), a molecule derived from the Antarctic marine sponge Dendrilla membranosa . We used in vitro and in vivo approaches to establish DHG properties. Human peripheral blood mononuclear cells (PBMC) and human keratinocytes cell line (HaCaT cells) were used as in vitro system, whereas a model of murine cutaneous irritation was adopted for in vivo studies. We observed that DHG reduces dose dependently the proliferative response and viability of mitogen stimulated PBMC. In addition, DHG induces apoptosis as revealed by AnnexinV staining and downregulates the phosphorylation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), signal transducer and activator of transcription (STAT) and extracellular signal-regulated kinase (ERK) at late time points. These effects were accompanied by down-regulation of interleukin 6 (IL-6) production, slight decrease of IL-10 and no inhibition of tumor necrosis factor-alpha (TNF-α) secretion. To assess potential properties of DHG in epidermal inflammation we used HaCaT cells; this compound reduces cell growth, viability and migration. Finally, we adopted for the in vivo study the croton oil-induced ear dermatitis murine model of inflammation. Of note, topical use of DHG significantly decreased mouse ear edema. These results suggest that DHG exerts anti-inflammatory effects and its anti-edema activity in vivo strongly supports its potential therapeutic application in inflammatory cutaneous diseases.

  12. Active immunotherapy with ultraviolet B-irradiated autologous whole melanoma cells plus DETOX in patients with metastatic melanoma.

    PubMed

    Eton, O; Kharkevitch, D D; Gianan, M A; Ross, M I; Itoh, K; Pride, M W; Donawho, C; Buzaid, A C; Mansfield, P F; Lee, J E; Legha, S S; Plager, C; Papadopoulos, N E; Bedikian, A Y; Benjamin, R S; Balch, C M

    1998-03-01

    Our objective was to determine the clinical activity, toxicity, and immunological effects of active immunotherapy using UVB-irradiated (UVR) autologous tumor (AT) cells plus adjuvant DETOX in metastatic melanoma patients. Eligibility included nonanergic patients fully recovered after resection of 5 or more grams of metastatic melanoma. Treatment consisted of intradermal injections of 10(7) UVR-AT plus 0.25 ml of DETOX every 2 weeks x 6, then monthly. Peripheral blood mononuclear cells (PBMCs) were harvested for cytotoxicity assays, and skin testing was performed for delayed-type hypersensitivity (DTH) determinations before the first, fourth, seventh, and subsequent treatments. Forty-two patients were treated, 18 in the adjuvant setting and 24 with measurable disease. Among the latter group, there were two durable responses in soft-tissue sites and in a bone metastasis. Treatment was well tolerated. Thirty-five patients were assessable for immunological parameters; 10 of these patients, including the 2 responders, demonstrated early induction of PBMC cytotoxicity against AT cells that persisted up to 10 months on treatment before falling to background levels. In five of seven patients, the fall-off heralded progressive disease. Late induction of a weak DTH reaction to AT cells was observed in eight patients. Active immunotherapy with UVR-AT + DETOX had modest but definite clinical activity in advanced melanoma. The induction of both PBMC cytotoxicity and DTH reactivity to AT cells supported a specific systemic immune effect of treatment, although the former more closely followed disease course in this study.

  13. [Response of peripheral blood mononuclear leukocyte to nickel stimulation in patients with systemic and contact allergy to nickel].

    PubMed

    Czarnobilska, Ewa; Thor, Piotr; Kaszuba-Zwoinska, Jolanta; Słodowska-Hajduk, Zofia; Stobiecki, Marcin; Dyga, Wojciech; Wsołek, Katarzyna; Obtułowicz, Krystyna

    2006-01-01

    Nickel is knows as the most common cause of allergic contact dermatitis, as well as diffuse eczema, allergic rhinitis and bronchial asthma. The mechanism of contact allergy to nickel is well known. In spite of numerous investigations, the mechanism of systemic allergy to nickel is still not clear. 22 patients with positive patch tests to nickel were analyzed. On basis of clinical symptoms the patients were divided into two groups: 1. with contact allergy dermatitis to nickel--8 patients 2. with systemic allergy to nickel (allergic rhinitis and/or diffuse eczema--14 patients. The control group included non-atopic patients with negative patch test to nickel--6 patients. 10 ml of blood were taken from each patient and peripheral mononuclear blood cells (PMBC) were isolated. In PBMC culture, NiSO4 and PHA were stimulated. The control group was non-stimulated cells. The supernatants were collected after 3 and 6 days of culture and the levels of cytokines IL-5, 4 and IFNgamma were measured (ELISA). The concentration of IFNgamma in supernatants from stimulated as well as non-stimulated cells from patients with contact allergy to nickel was higher in comparison to the control group. The concentration of IL-5 in this group was low. There was an increase in the production of IFNgamma and IL-5 after NiSO4 stimulation in patients with systemic allergy to nickel. The higher concentration of IFNgamma in the same groups of patients investigated was in supernatants from the third day of PBMC culture were compared to the sixth day. After 3 and 6 days of culture, the concentration of IL-4 (ELISA) was below detection level in all supernatants analyzed. IFNgamma plays an essential role in the mechanism of developing of contact allergy to nickel; and IFNgamma as well as IL-5 play a role in the mechanism of developing systemic allergy to nickel. The third day of PBMC culture is more reliable for IFNgamma estimation.

  14. The role of TRPM8 in the Guinea-pig bladder-cooling reflex investigated using a novel TRPM8 antagonist.

    PubMed

    Gardiner, Jennifer C; Kirkup, Anthony J; Curry, John; Humphreys, Sian; O'Regan, Paul; Postlethwaite, Michael; Young, Kimberley C; Kitching, Linda; Ethell, Brian T; Winpenny, David; McMurray, Gordon

    2014-10-05

    Patients with overactive bladder often exhibit abnormal bladder contractions in response to intravesical cold saline (positive ice-water test). The molecular entity involved in cold sensation within the urinary bladder is unknown, but a potential candidate is the ion channel, transient receptor potential (melastatin)-8 (TRPM8). The objective of the present study was to investigate the role of TRPM8 in a bladder-cooling reflex evoked in anaesthetised guinea-pigs that is comparable to the positive ice-water test seen in patients. Guinea-pig TRPM8 was cloned from L6 dorsal root ganglia (DRG) and expressed in HEK293 cells. Functional agonist- and cold-induced Ca2+ influx and electrophysiology assays were performed in these cells, and for comparison in HEK293 cells expressing human TRPM8, using a novel TRPM8 antagonist, the S-enantiomer of 1-phenylethyl 4-(benzyloxy)-3-methoxybenzyl (2-aminoethyl) carbamate hydrochloride (PBMC). Potency data from these assays was used to calculate intravenous infusion protocols for targeted plasma concentrations of PBMC in studies on micturition reflexes evoked by intravesical infusion of menthol or cold saline in anaesthetised guinea-pigs. Tissue expression of TRPM8 in guinea-pig bladder, urethra and in dorsal root ganglia neurones traced from the bladder was also investigated. TRPM8 mRNA and protein were detected in L6 dorsal root ganglia, bladder urothelium and smooth muscle. PBMC antagonised in vitro activation of human and guinea-pig TRPM8 and reversed menthol and cold-induced facilitation of the micturition reflex at plasma concentrations consistent with in vitro potencies. The present data suggest that the bladder-cooling reflex in the guinea-pig involves TRPM8. The potential significance of TRPM8 in bladder disease states deserves future investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. CD4 T-helper cell cytokine phenotypes and antibody response following tetanus toxoid booster immunization.

    PubMed

    Livingston, Kimberly A; Jiang, Xiaowen; Stephensen, Charles B

    2013-04-30

    Routine methods for enumerating antigen-specific T-helper cells may not identify low-frequency phenotypes such as Th2 cells. We compared methods of evaluating such responses to identify tetanus toxoid- (TT) specific Th1, Th2, Th17 and IL10(+) cells. Eight healthy subjects were given a TT booster vaccination. Blood was drawn before, 3, 7, 14, and 28days after vaccination and peripheral blood mononuclear cells (PBMC) were cultured for 7days with TT, negative control (diluent), and a positive control (Staphylococcus enterotoxin B [SEB]). Activation markers (CD25 and CD69) were measured after 44h (n=8), cytokines in supernatant after 3 and 7days, and intracellular cytokine staining (ICS) of proliferated cells (identified by dye dilution) after 7days (n=6). Vaccination increased TT-specific expression of CD25 and CD69 on CD3(+)CD4(+) lymphocytes, and TT-specific proliferation at 7, 14 and 28days post vaccination. Vaccination induced TT-specific Th1 (IFN-γ, TNF-α, and IL-2) Th2 (IL-13, IL-5, and IL-4), Th17 (IL-17A) and IL-10(+) cells as measured by ICS. TT-specific Th1 cells were the most abundant (12-15% of all TT-specific CD4(+) T-cells) while IL10(+) (1.8%) Th17 (1.1%) and Th2 cells (0.2-0.6%) were less abundant. TT-specific cytokine concentrations in PBMC supernatants followed the same pattern where a TT-specific IL-9 response was also seen. In conclusion, TT booster vaccination induced a broad T-helper cell response. This method of evaluating cytokine phenotypes may be useful in examining the impact of nutrition and environmental conditions on the plasticity of T-helper cell memory responses. Published by Elsevier B.V.

  16. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients

    PubMed Central

    Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984

  17. Methodological approach to the ex vivo expansion and detection of T. cruzi-specific T cells from chronic Chagas disease patients.

    PubMed

    Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A

    2017-01-01

    The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.

  18. Phenotypic and Functional Changes in Blood Monocytes Following Adherence to Endothelium

    PubMed Central

    Tso, Colin; Rye, Kerry-Anne; Barter, Philip

    2012-01-01

    Objective Blood monocytes are known to express endothelial-like genes during co-culture with endothelium. In this study, the time-dependent change in the phenotype pattern of primary blood monocytes after adhering to endothelium is reported using a novel HLA-A2 mistyped co-culture model. Methods and Results Freshly isolated human PBMCs were co-cultured with human umbilical vein endothelial cells or human coronary arterial endothelial cells of converse human leukocyte antigen A2 (HLA-A2) status. This allows the tracking of the PBMC-derived cells by HLA-A2 expression and assessment of their phenotype pattern over time. PBMCs that adhered to the endothelium at the start of the co-culture were predominantly CD11b+ blood monocytes. After 24 to 72 hours in co-culture, the endothelium-adherent monocytes acquired endothelial-like properties including the expression of endothelial nitric oxide synthase, CD105, CD144 and vascular endothelial growth factor receptor 2. The expression of monocyte/macrophage lineage antigens CD14, CD11b and CD36 were down regulated concomitantly. The adherent monocytes did not express CD115 after 1 day of co-culture. By day 6, the monocyte-derived cells expressed vascular cell adhesion molecule 1 in response to tumour necrosis factor alpha. Up to 10% of the PBMCs adhered to the endothelium. These monocyte-derived cells contributed up to 30% of the co-cultured cell layer and this was dose-dependent on the PBMC seeding density. Conclusions Human blood monocytes undergo rapid phenotype change to resemble endothelial cells after adhering to endothelium. PMID:22615904

  19. Monocyte-derived dendritic cells induce a house dust mite-specific Th2 allergic inflammation in the lung of humanized SCID mice: involvement of CCR7.

    PubMed

    Hammad, Hamida; Lambrecht, Bart N; Pochard, Pierre; Gosset, Philippe; Marquillies, Philippe; Tonnel, André-Bernard; Pestel, Joël

    2002-08-01

    In rodents, airway dendritic cells (DCs) capture inhaled Ag, undergo maturation, and migrate to the draining mediastinal lymph nodes (MLN) to initiate the Ag-specific T cell response. However, the role of human DCs in the pathogenesis of the Th2 cell-mediated disease asthma remains to be clarified. Here, by using SCID mice engrafted with T cells from either house dust mite (HDM)-allergic patients or healthy donors, we show that DCs pulsed with Der p 1, one of the major allergens of HDM, and injected intratracheally into naive animals migrated into the MLN. In the MLN, Der p 1-pulsed DCs from allergic patients induced the proliferation of IL-4-producing CD4(+) T cells, whereas those from healthy donors induced IFN-gamma-secreting cells. In reconstituted human PBMC-reconstituted SCID mice primed with pulsed DCs from allergic patients, repeated exposure to aerosols of HDM induced 1) a strong pulmonary inflammatory reaction rich in T cells and eosinophils, 2) an increase in IL-4 and IL-5 production in the lung lavage fluid, and 3) increased IgE production compared with that in mice primed with unpulsed DCs. All these effects were reduced following in vivo neutralization of the CCR7 ligand secondary lymphoid tissue chemokine. These data in human PBMC-reconstituted SCID mice show that monocyte-derived DCs might play a key role in the pathogenesis of the pulmonary allergic response by inducing Th2 effector function following migration to the MLN.

  20. Impact of adipose tissue or umbilical cord derived mesenchymal stem cells on the immunogenicity of human cord blood derived endothelial progenitor cells

    PubMed Central

    Tan, Kefang; Zheng, Ke; Li, Daiye; Lu, Haiyuan; Wang, Siqi; Sun, Xuan

    2017-01-01

    The application of autologous endothelial progenitor cell (EPC) transplantation is a promising approach in therapeutic cardiovascular diseases and ischemic diseases. In this study, we compared the immunogenicity of EPCs, adipose tissue (AD)-derived mesenchymal stem cells (MSCs) and umbilical cord (UC)-derived MSCs by flow cytometry and the mixed lymphocyte reaction. The impact of AD-MSCs and UC-MSCs on the immunogenicity of EPCs was analyzed by the mixed lymphocyte reaction and cytokine secretion in vitro and was further tested by allogenic peripheral blood mononuclear cell (PBMC) induced immuno-rejection on a cell/matrigel graft in an SCID mouse model. EPCs and AD-MSCs express higher levels of MHC class I than UC-MSCs. All three kinds of cells are negative for MHC class II. UC-MSCs also express lower levels of IFN-γ receptor mRNA when compared with EPCs and AD-MSCs. EPCs can stimulate higher rates of proliferation of lymphocytes than AD-MSCs and UC-MSCs. Furthermore, AD-MSCs and UC-MSCs can modulate immune response and inhibit lymphocyte proliferation induced by EPCs, mainly through inhibition of the proliferation of CD8+ T cells. Compared with UC-MSCs, AD-MSCs can significantly improve vessel formation and maintain the integrity of neovascular structure in an EPC+MSC/matrigel graft in SCID mice, especially under allo-PBMC induced immuno-rejection. In conclusion, our study shows that AD-MSC is a powerful candidate to minimize immunological rejection and improve vessel formation in EPC transplantation treatment. PMID:28562647

  1. Whole Blood Activation Results in Enhanced Detection of T Cell and Monocyte Cytokine Production by Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Crucian, Brian E.

    2001-01-01

    An excellent monitor of the immune balance of peripheral circulating cells is to determine their cytokine production patterns in response to stimuli. Using flow cytometry a positive identification of cytokine producing cells in a mixed culture may be achieved. Recently, the ability to assess cytokine production following a wholeblood activation culture has been described. We compared whole blood culture to standard PBMC culture and determined the individual cytokine secretion patterns for both T cells and monocytes via flow cytometry. For T cells cytokine assessment following PMA +ionomycin activation: (1) a significantly greater percentages of T cells producing IFNgamma and IL-2 were observed following whole-blood culture; (2) altered T cell cytokine production kinetics were observed by varying whole blood culture times. In addition, a four-color cytometric analysis was used to allow accurate phenotyping and quantitation of cytokine producing lymphocyte populations. Using this technique we found IFNgamma production to be significantly elevated in the CD3+/CD8+ T cell population as compared to the CD3+/CD8- population following five hours of whole blood activation. Conversely, IL-2 and IL-10 production were significantly elevated in the CD3+/CD8- T cell population as compared to the CD3+/CD8+ population. Monocyte cytokine production was assessed in both culture systems following LPS activation for 24 hours. A three-color flow cytometric was used to assess two cytokines in conjunction with CD 14. The cytokine pairs used for analysis were IL-1a/IL-12, and IL-10ITNFa. Nearly all monocytes were stimulated to produce IL-1a, IL-12 and TNFalpha equally well in both culture systems. Monocyte production of IL-10 was significantly elevated following whole blood culture as compared to PBMC culture. IL-12 producing monocytes appeared to be a distinct subpopulation of the IL-1a producing set, whereas IL-10 and TNFa producing monocytes were largely mutually exclusive. IL-10 and TNFa producing monocytes may represent functionally different monocyte subsets with distinct functions. Whole blood culture eliminates the need to purify cell populations prior to culture and may have significant utility for the routine monitoring of the cytokine balances of the peripheral blood T cell and monocyte populations. In addition, there are distinct advantages to performing whole-blood (WB) activation as compared to PBMC activation. These advantages would include retaining all various cell-cell interactions as well as any soluble factors present in serum that influence cell activation. It is likely that the altered cytokine production observed following whole blood culture more accurately represents the in-vivo immune balance.

  2. Properties of myelin altered peptide ligand cyclo(87-99)(Ala91,Ala96)MBP87-99 render it a promising drug lead for immunotherapy of multiple sclerosis.

    PubMed

    Deraos, George; Rodi, Maria; Kalbacher, Hubert; Chatzantoni, Kokona; Karagiannis, Fotios; Synodinos, Loukas; Plotas, Panayiotis; Papalois, Apostolos; Dimisianos, Nikolaos; Papathanasopoulos, Panagiotis; Gatos, Dimitrios; Tselios, Theodore; Apostolopoulos, Vasso; Mouzaki, Athanasia; Matsoukas, John

    2015-08-28

    Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system, and it has been established that autoreactive T helper (Th) cells play a crucial role in its pathogenesis. Myelin basic protein (MBP) epitopes are major autoantigens in MS, and the sequence MBP87-99 is an immunodominant epitope. We have previously reported that MBP87-99 peptides with modifications at principal T-cell receptor (TCR) contact sites suppressed the induction of EAE symptoms in rats and SJL/J mice, diverted the immune response from Th1 to Th2 and generated antibodies that did not cross react with the native MBP protein. In this study, the linear and cyclic analogs of the MBP87-99 epitope, namely linear (Ala91,Ala96)MBP87-99 (P2) and cyclo(87-99)(Ala91,Ala96)MBP87-99 (P3), were evaluated for their binding to HLA-DR4, stability to lysosomal enzymes, their effect on cytokine secretion by peripheral blood mononuclear cells (PBMC) derived from MS patients or healthy subjects (controls), and their effect in rat EAE. P1 peptide (wild-type, MBP87-99) was used as control. P2 and P3 did not alter significantly the cytokine secretion by control PBMC, in contrast to P1 that induced moderate IL-10 production. In MS PBMC, P2 and P3 induced the production of IL-2 and IFN-γ, with a simultaneous decrease of IL-10, whereas P1 caused a reduction of IL-10 secretion only. The cellular response to P3 indicated that cyclization did not affect the critical TCR contact sites in MS PBMC. Interestingly, the cyclic P3 analog was found to be a stronger binder to HLA-DR4 compared to linear P2. Moreover, cyclic P3 was more stable to proteolysis compared to linear P2. Finally, both P2 and P3 suppressed EAE induced by an encephalitogenic guinea pig MBP74-85 epitope in Lewis rats whereas P1 failed to do so. In conclusion, cyclization of myelin altered peptide ligand (Ala91,Ala96)MBP87-99 improved binding affinity to HLA-DR4, resistance to proteolysis and antigen-specific immunomodulation, rendering cyclo(87-99)(Ala91,Ala96)MBP87-99 an important candidate drug for MS immunotherapy. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  3. The pathogenicity and host immune response associated with H5N1 highly pathogenic avian influenza virus in quail.

    PubMed

    Uno, Yukiko; Usui, Tatsufumi; Soda, Kosuke; Fujimoto, Yoshikazu; Takeuchi, Takashi; Ito, Hiroshi; Ito, Toshihiro; Yamaguchi, Tsuyoshi

    2013-05-02

    Quail, like chickens, are susceptible to H5N1 subtype highly pathogenic avian influenza virus (HPAIV). Both birds experience high mortality, but quail usually survive a few more days than chicken. To understand why, we monitored quail and chickens after inoculation with 10(6) fifty-percent egg infectious doses of HPAIV A/whooper swan/Aomori/1/2008 (H5N1). The clinical course initiated as depression at 48 hr post inoculation (h.p.i.) in quail and at 36 h.p.i. in chicken, and all infected birds died. Mean death time of quail (91 hr) was significantly longer than that of chicken (66 hr). The virus titers of most tissue samples collected before death were not significantly different. At 24 h.p.i., interferon gamma (IFN-γ) mRNA expression in peripheral blood mononuclear cells (PBMC) was up-regulated in the quail but down-regulated in the chicken, although TLR-7 and seven other cytokines showed no significant differences between quail and chicken. The viral load in quail PBMC was significantly lower than that in chickens. These results suggest that the induction of IFN-γ after HPAIV infection in quail is related to lower titer of HPAIV. In conclusion, the different clinical courses observed between quail and chicken infected with H5N1 HPAIV might be caused by different IFN-γ responses against the HPAIV infection.

  4. Direct fed microbial supplementation repartitions host energy to the immune system.

    PubMed

    Qiu, R; Croom, J; Ali, R A; Ballou, A L; Smith, C D; Ashwell, C M; Hassan, H M; Chiang, C-C; Koci, M D

    2012-08-01

    Direct fed microbials and probiotics are used to promote health in livestock and poultry; however, their mechanism of action is still poorly understood. We previously reported that direct fed microbial supplementation in young broilers reduced ileal respiration without changing whole-body energy expenditure. The current studies were conducted to further investigate the effects of a direct fed microbial on energy metabolism in different tissues of broilers. One hundred ninety-two 1-d-old broiler chicks (16 chicks/pen) were randomly assigned to 2 dietary groups: standard control starter diet (CSD) and CSD plus direct fed microbial (DFMD; 0.3%) with 6 pens/treatment. Body weight, feed consumption, whole-body energy expenditure, organ mass, tissue respiration rates, and peripheral blood mononuclear cell (PBMC) ATP concentrations were measured to estimate changes in energy metabolism. No differences in whole body energy expenditure or BW gain were observed; however, decreased ileal O(2) respiration (P < 0.05) was measured in DFMD fed broilers. In contrast, the respiration rate of the thymus in those broilers was increased (P < 0.05). The PBMC from DFMD fed broilers had increased ATP concentrations and exhibited increased ATP turnover (P < 0.01). To determine if the increased energy consumption by PBMC corresponded with an altered immune response, broilers were immunized with sheep red blood cells (SRBC) and assayed for differences in their humoral response. The DFMD-fed broilers had a faster rate of antigen specific IgG production (P < 0.05) and an increase in total IgA (P < 0.05). Collectively, these data indicate that supplementation with the direct fed microbial used in this study resulted in energy re-partitioning to the immune system and an increase in antibody production independent of changes in whole body metabolism or growth performance.

  5. Olanzapine and aripiprazole differentially affect glucose uptake and energy metabolism in human mononuclear blood cells.

    PubMed

    Stapel, Britta; Kotsiari, Alexandra; Scherr, Michaela; Hilfiker-Kleiner, Denise; Bleich, Stefan; Frieling, Helge; Kahl, Kai G

    2017-05-01

    The use of antipsychotics carries the risk of metabolic side effects, such as weight gain and new onset type-2 diabetes mellitus. The mechanisms of the observed metabolic alterations are not fully understood. We compared the effects of two atypical antipsychotics, one known to favor weight gain (olanzapine), the other not (aripiprazole), on glucose metabolism. Primary human peripheral blood mononuclear cells (PBMC) were isolated and stimulated with olanzapine or aripiprazole for 72 h. Cellular glucose uptake was analyzed in vitro by 18F-FDG uptake. Further measurements comprised mRNA expression of glucose transporter (GLUT) 1 and 3, GLUT1 protein expression, DNA methylation of GLUT1 promoter region, and proteins involved in downstream glucometabolic processes. We observed a 2-fold increase in glucose uptake after stimulation with aripiprazole. In contrast, olanzapine stimulation decreased glucose uptake by 40%, accompanied by downregulation of the cellular energy sensor AMP activated protein kinase (AMPK). GLUT1 protein expression increased, GLUT1 mRNA expression decreased, and GLUT1 promoter was hypermethylated with both antipsychotics. Pyruvat-dehydrogenase (PDH) complex activity decreased with olanzapine only. Our findings suggest that the atypical antipsychotics olanzapine and aripiprazole differentially affect energy metabolism in PBMC. The observed decrease in glucose uptake in olanzapine stimulated PBMC, accompanied by decreased PDH point to a worsening in cellular energy metabolism not compensated by AMKP upregulation. In contrast, aripiprazole stimulation lead to increased glucose uptake, while not affecting PDH complex expression. The observed differences may be involved in the different metabolic profiles observed in aripiprazole and olanzapine treated patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Fermented Papaya Preparation Restores Age-Related Reductions in Peripheral Blood Mononuclear Cell Cytolytic Activity in Tube-Fed Patients

    PubMed Central

    Fujita, Yuhzo; Tsuno, Haruo; Nakayama, Jiro

    2017-01-01

    Tube-fed elderly patients are generally supplied with the same type of nutrition over long periods, resulting in an increased risk for micronutrient deficiencies. Dietary polyphenols promote immunity and have anti-inflammatory, anti-carcinogenic, and anti-oxidative properties. Carica papaya Linn. is rich in several polyphenols; however, these polyphenols are poorly absorbed from the digestive tract in their original polymerized form. Therefore, we determined the molecular components of a fermented Carica papaya Linn. preparation, as well as its effects on immunity and the composition of gut microbiota in tube-fed patients. Different doses of the fermented C. papaya L. preparation were administered to three groups of tube-fed patients for 30 days. Its effects on fecal microbiota composition and immunity were assessed by 16S rRNA gene sequencing and immune-marker analysis, respectively. The chemical composition of the fermented C. papaya L. preparation was analyzed by capillary electrophoresis- and liquid chromatography- time of flight mass spectrometry. The fermented C. papaya L. preparation restored peripheral blood mononuclear cell (PBMC) cytolytic activity; however, no other biomarkers of immunity were observed. Treatment with the preparation (9 g/day) significantly reduced the abundance of Firmicutes in the fecal microbiota. In particular, treatment reduced Clostridium scindens and Eggerthella lenta in most patients receiving 9 g/day. Chemical analysis identified low-molecular-weight phenolic acids as polyphenol metabolites; however, no polymerized, large-molecular-weight molecules were detected. Our study indicates that elderly patients who are tube-fed over the long-term have decreased PBMC cytolytic activity. In addition, low-molecular-weight polyphenol metabolites fermented from polymerized polyphenols restore PBMC cytolytic activity and modulate the composition of gut microbiota in tube-fed patients. PMID:28060858

  7. Comparison of gene expression of Toll-like receptors and cytokines between Piau and Commercial line (Landrace×Large White crossbred) pigs vaccinated against Pasteurella multocida type D.

    PubMed

    Sousa, Katiene Régia Silva; Ribeiro, André Mauric Frossard; Dantas, Waleska de Melo Ferreira; Oliveira, Leandro Licursi de; Gasparino, Eliane; Guimarães, Simone Eliza Facioni

    2017-10-01

    We aimed to compare Toll-like receptors (TLR) and cytokines expression in local Piau breed and a Commercial line (Landrace×Large White crossbred) pigs in response to vaccination against Pasteurella multocida type D. Seronegative gilts for Pasteurella multocida type D and Mycoplasma hyopneumoniae were used, from which peripheral blood mononuclear cells (PBMC) were collected in four time points (T0, T1, T2 and T3; before and after each vaccination dose). For bronchoalveolar lavage fluid cells (BALF), we set groups of vaccinated and unvaccinated animals for both genetic groups. Gene expression was evaluated on PBMC and BALF. In PBMC, when we analyzed time points within breeds, significant differences in expression for TLRs and cytokines, except TGFβ, were observed for Commercial animals. For the Piau pigs, only TGFβ showed differential expression. Comparing the expression among genetic groups, the Commercial pigs showed higher expression for TLRs after first vaccination dose, while for IL2, IL6, IL12 and IL13, higher expression was also observed in T3 and IL8 and IL10, in T1 and T3. Still comparing the breeds, the crossbred animals showed higher expression for TNFα in T1 and T2, while for TGFβ only in T2. For gene expression in BALF, vaccinated Commercial pigs showed higher expression of TLR6, TLR10, IL6, IL8, IL10, TNFα and TGFβ genes than vaccinated Piau pigs. The Commercial line pigs showed higher sensitivity to vaccination, while in local Piau breed lower responsiveness, which may partly explain genetic variability in immune response and will let us better understand the tolerance/susceptibility for pasteurellosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Measurement of Intracellular Ribavirin Mono-, Di- and Triphosphate Using Solid Phase Extraction and LC-MS/MS Quantification

    PubMed Central

    Jimmerson, Leah C.; Ray, Michelle L.; Bushman, Lane R.; Anderson, Peter L.; Klein, Brandon; Rower, Joseph E.; Zheng, Jia-Hua; Kiser, Jennifer J.

    2014-01-01

    Ribavirin (RBV) is a nucleoside analog used to treat a variety of DNA and RNA viruses. RBV undergoes intracellular phosphorylation to a mono- (MP), di- (DP), and triphosphate (TP). The phosphorylated forms have been associated with the mechanisms of antiviral effect observed in vitro, but the intracellular pharmacology of the drug has not been well characterized in vivo. A highly sensitive LC-MS/MS method was developed and validated for the determination of intracellular RBV MP, DP, and TP in multiple cell matrix types. For this method, the individual MP, DP, and TP fractions were isolated from lysed intracellular matrix using strong anion exchange solid phase extraction, dephosphorylated to parent RBV, desalted and concentrated and quantified using LC-MS/MS. The method utilized a stable labeled internal standard (RBV-13C5) which facilitated accuracy (% deviation within ±15%) and precision (coefficient of variation of ≤15%). The quantifiable linear range for the assay was 0.50 to 200 pmol/sample. The method was applied to the measurement of RBV MP, DP, and TP in human peripheral blood mononuclear cells (PBMC), red blood cells (RBC), and dried blood spot (DBS) samples obtained from patients taking RBV for the treatment of chronic Hepatitis C virus infection. PMID:25555148

  9. Antibody-dependent cellular cytotoxicity (ADCC) activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells

    PubMed Central

    Fantini, Massimo; Heery, Christopher R.; Gulley, James L.; Tsang, Kwong Yok; Schlom, Jeffrey

    2015-01-01

    Several anti-PD1/PD-L1 monoclonal antibodies (MAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these MAbs is to inhibit PD1 on immune cells interacting with PD-L1 on tumor cells. These MAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective MAb-mediated cancer therapies. A fully human anti-PD-L1 MAb would potentially be able to block PD-L1/PD1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 MAb. The studies reported here demonstrate (a) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (b) IFNγ can enhance tumor cell PD-L1 expression and in some cases enhance ADCC tumor cell lysis; (c) purified NK cells are potent effectors for avelumab; (d) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (e) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (f) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 MAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. PMID:26014098

  10. Antibody-Dependent Cellular Cytotoxicity Activity of a Novel Anti-PD-L1 Antibody Avelumab (MSB0010718C) on Human Tumor Cells.

    PubMed

    Boyerinas, Benjamin; Jochems, Caroline; Fantini, Massimo; Heery, Christopher R; Gulley, James L; Tsang, Kwong Yok; Schlom, Jeffrey

    2015-10-01

    Several anti-PD-1/PD-L1 monoclonal antibodies (mAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these mAbs is to inhibit PD-1 on immune cells interacting with PD-L1 on tumor cells. These mAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective mAb-mediated cancer therapies. A fully human anti-PD-L1 mAb would potentially be able to block PD-1/PD-L1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 mAb. The studies reported here demonstrate (i) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (ii) IFNγ can enhance tumor cell PD-L1 expression and, in some cases, enhance ADCC tumor cell lysis; (iii) purified NK cells are potent effectors for avelumab; (iv) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (v) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (vi) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 mAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. ©2015 American Association for Cancer Research.

  11. Effects of deoxynivalenol (DON), zearalenone (ZEN), and related metabolites on equine peripheral blood mononuclear cells (PBMC) in vitro and background occurrence of these toxins in horses.

    PubMed

    Schumann, Barbara; Winkler, Janine; Mickenautsch, Nicola; Warnken, Tobias; Dänicke, Sven

    2016-08-01

    Both deoxynivalenol (DON), zearalenone (ZEN), and their metabolites are known to modulate immune cells in various species whereby viability and proliferation are influenced. Such effects were rarely examined in horses. Therefore, one aim of the present study was to titrate the inhibitory concentrations of DON, 3-acetyl-DON (3AcDON), de-epoxy-DON (DOM-1), ZEN, and α- and β-zearalenol (ZEL) at which viability and proliferation of equine PBMC were reduced by 50 % (IC50) and 10 % (IC10) in vitro. For evaluation of practical relevance of the in vitro findings, a further aim was to screen horses for the background occurrence of DON, ZEN, and their metabolites in systemic circulation and to relate toxin residues both to the inhibitory toxin concentrations and to hematological and clinical-chemical characteristics.The IC50 (μM) for DON, 3AcDON, β-ZEL, α-ZEL, and ZEN were determined at 3.09, 25.90, 75.44, 97.44, and 98.15 in unstimulated cells, respectively, while in proliferating cells, the corresponding IC50 values were 0.73, 6.89, 45.16, 75.96, and 82.51. Neither viability nor proliferation was influenced by DOM-1 up to a concentration of 100 μM.The in vivo screening (N = 49) revealed the occurrence of ZEN (N = 24), α-ZEL (N = 3), β-ZEL (N = 37), DON, and DOM-1 (N = 2). The detected concentrations were much lower than the corresponding IC50 while the IC10 of DON and β-ZEL for proliferating PBMC corresponded to approximately 26 and 35 ng/mL which might be relevant when contaminated diets are fed.Clinical-chemical and hematological traits were not related to mycotoxin residue levels excepting blood urea nitrogen which was positively correlated to the sum of β-ZEL, α-ZEL, and ZEN concentration. Whether this reflects simply the feeding history of the horses or renal failures giving rise to a prolonged half-life of the toxins needs to be clarified further.

  12. Pre-emptive rituximab for Epstein-Barr virus reactivation after haplo-hematopoietic stem cell transplantation.

    PubMed

    Kobayashi, Shogo; Sano, Hideki; Mochizuki, Kazuhiro; Ohara, Yoshihiro; Takahashi, Nobuhisa; Ohto, Hitoshi; Kikuta, Atsushi

    2017-09-01

    Epstein-Barr virus-related post-transplantation lymphoproliferative disease (EBV-PTLD) is a serious complication in hematopoietic stem cell transplantation (HSCT) recipients. We conducted a retrospective study to investigate the incidence and potential risk factors for EBV reactivation and to assess the efficacy of the management of EBV reactivation with pre-emptive rituximab in children who had T-cell-replete haploidentical HSCT (TCR-haplo-SCT) with low-dose anti-thymocyte globulin (ATG). EBV-DNA level in peripheral blood (PB) was measured when suspected EBV reactivation were observed. When the EBV-DNA level in PB increased to >1,000 copies/10 6 peripheral blood mononuclear cells (PBMC), patients were pre-emptively treated with rituximab (375 mg/m 2 /dose). A total of 19 (50%) of 38 patients received rituximab infusion at a median time of 56 days after HSCT (range, 17-270 days). The median viral load at initiation of therapy was 2,900 copies/10 6 PBMC (range, 1,000-650 000). Pre-emptive therapy was started after a median of 2 days (range, 0-7 days). The median number of weekly treatment cycles was 2 (range, 1-3). None of the patients developed PTLD or other EBV-associated diseases. Pre-emptive rituximab therapy could be a useful strategy for EBV-PTLD in TCR-haplo-SCT recipients with low-dose ATG. © 2017 Japan Pediatric Society.

  13. TiO2 nanoparticles and bulk material stimulate human peripheral blood mononuclear cells☆

    PubMed Central

    Becker, Kathrin; Schroecksnadel, Sebastian; Geisler, Simon; Carriere, Marie; Gostner, Johanna M.; Schennach, Harald; Herlin, Nathalie; Fuchs, Dietmar

    2014-01-01

    Nanomaterials are increasingly produced and used throughout recent years. Consequently the probability of exposure to nanoparticles has risen. Because of their small 1–100 nm size, the physicochemical properties of nanomaterials may differ from standard bulk materials and may pose a threat to human health. Only little is known about the effects of nanoparticles on the human immune system. In this study, we investigated the effects of TiO2 nanoparticles and bulk material in the in vitro model of human peripheral blood mononuclear cells (PBMC) and cytokine-induced neopterin formation and tryptophan breakdown was monitored. Both biochemical processes are closely related to the course of diseases like infections, atherogenesis and neurodegeneration. OCTi60 (25 nm diameter) TiO2 nanoparticles and bulk material increased neopterin production in unstimulated PBMC and stimulated cells significantly, the effects were stronger for OCTi60 compared to bulk material, while P25 TiO2 (25 nm diameter) nanoparticles had only little influence. No effect of TiO2 nanoparticles on tryptophan breakdown was detected in unstimulated cells, whereas in stimulated cells, IDO activity and IFN-γ production were suppressed but only at the highest concentrations tested. Because neopterin was stimulated and tryptophan breakdown was suppressed in parallel, data suggests that the total effect of particles would be strongly pro-inflammatory. PMID:24361406

  14. Normal Distribution of CD8+ T-Cell-Derived ELISPOT Counts within Replicates Justifies the Reliance on Parametric Statistics for Identifying Positive Responses.

    PubMed

    Karulin, Alexey Y; Caspell, Richard; Dittrich, Marcus; Lehmann, Paul V

    2015-03-02

    Accurate assessment of positive ELISPOT responses for low frequencies of antigen-specific T-cells is controversial. In particular, it is still unknown whether ELISPOT counts within replicate wells follow a theoretical distribution function, and thus whether high power parametric statistics can be used to discriminate between positive and negative wells. We studied experimental distributions of spot counts for up to 120 replicate wells of IFN-γ production by CD8+ T-cell responding to EBV LMP2A (426 - 434) peptide in human PBMC. The cells were tested in serial dilutions covering a wide range of average spot counts per condition, from just a few to hundreds of spots per well. Statistical analysis of the data using diagnostic Q-Q plots and the Shapiro-Wilk normality test showed that in the entire dynamic range of ELISPOT spot counts within replicate wells followed a normal distribution. This result implies that the Student t-Test and ANOVA are suited to identify positive responses. We also show experimentally that borderline responses can be reliably detected by involving more replicate wells, plating higher numbers of PBMC, addition of IL-7, or a combination of these. Furthermore, we have experimentally verified that the number of replicates needed for detection of weak responses can be calculated using parametric statistics.

  15. Comparison of variable region 3 sequences of human immunodeficiency virus type 1 from infected children with the RNA and DNA sequences of the virus populations of their mothers.

    PubMed Central

    Scarlatti, G; Leitner, T; Halapi, E; Wahlberg, J; Marchisio, P; Clerici-Schoeller, M A; Wigzell, H; Fenyö, E M; Albert, J; Uhlén, M

    1993-01-01

    We have compared the variable region 3 sequences from 10 human immunodeficiency virus type 1 (HIV-1)-infected infants to virus sequences from the corresponding mothers. The sequences were derived from DNA of uncultured peripheral blood mononuclear cells (PBMC), DNA of cultured PBMC, and RNA from serum collected at or shortly after delivery. The infected infants, in contrast to the mothers, harbored homogeneous virus populations. Comparison of sequences from the children and clones derived from DNA of the corresponding mothers showed that the transmitted virus represented either a minor or a major virus population of the mother. In contrast to an earlier study, we found no evidence of selection of minor virus variants during transmission. Furthermore, the transmitted virus variant did not show any characteristic molecular features. In some cases the transmitted virus was more related to the virus RNA population of the mother and in other cases it was more related to the virus DNA population. This suggests that either cell-free or cell-associated virus may be transmitted. These data will help AIDS researchers to understand the mechanism of transmission and to plan strategies for prevention of transmission. PMID:8446584

  16. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3.

    PubMed

    Urry, Zoe L; Richards, David F; Black, Cheryl; Morales, Maria; Carnés, Jerónimo; Hawrylowicz, Catherine M; Robinson, Douglas S

    2014-05-29

    Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT.

  17. Depigmented-polymerised allergoids favour regulatory over effector T cells: enhancement by 1α, 25-dihydroxyvitamin D3

    PubMed Central

    2014-01-01

    Background Allergen immunotherapy (SIT) is the only treatment for allergic disease capable of modifying disease long term. To reduce the risk of anaphylaxis from SIT, allergen-extracts have been modified by polymerisation with glutaraldehyde to reduce IgE binding. It is suggested that these allergoid extracts also have reduced T cell activity, which could compromise clinical efficacy. Effective SIT is thought to act through regulatory T cells (Tregs) rather than activation of effector T cells. There is no published data on the activity of modified extracts on Tregs. Results We compared the capacity of modified (depigmented-polymerised) versus unmodified (native) allergen extracts of grass pollen and house dust mite to stimulate proliferation/cytokine production and to modulate Treg/effector T cell frequency in cultures of peripheral blood mononuclear cells (PBMC), from volunteers sensitised to both allergens in vitro. Depigmented-polymerised allergen extracts stimulated less proliferation of PBMC, and reduced effector cell numbers after 7 days in culture than did native extracts. However, the frequency of Foxp3+ Tregs in cultures were similar to those seen with native extract so that ratios of regulatory to effector T cells were significantly increased in cultures stimulated with depigmented-polymerised extracts. Addition of 1α, 25-dihydroxyvitamin D3 further favoured Treg, and reduced effector cytokine production, but not interleukin-10. Conclusions Depigmented-polymerised allergen extracts appear to favour Treg expansion over activation of effector T cells and this may relate to their demonstrated efficacy and safety in SIT. 1α, 25-dihydroxyvitamin D3 further reduces effector T cell activation by allergen extracts and may be a useful adjuvant for SIT. PMID:24884430

  18. Ara h 1 CD4+ T cell epitope-based peptides: candidates for a peanut allergy therapeutic.

    PubMed

    Prickett, S R; Voskamp, A L; Phan, T; Dacumos-Hill, A; Mannering, S I; Rolland, J M; O'Hehir, R E

    2013-06-01

    Peanut allergy is a life-threatening condition; there is currently no cure. While whole allergen extracts are used for specific immunotherapy for many allergies, they can cause severe reactions and even fatalities in peanut allergy. To identify short, HLA-degenerate CD4(+) T cell epitope-based peptides of the major peanut allergen Ara h 1 that target allergen-specific T cells without causing IgE-mediated inflammatory cell activation, as candidates for safe peanut-specific immunotherapy. Ara h 1-specific CD4(+) T cell lines (TCL) were generated from peripheral blood mononuclear cells (PBMC) of peanut-allergic subjects using CFSE-based methodology. T cell epitopes were identified using CFSE and thymidine-based proliferation assays. Epitope HLA-restriction was investigated using blocking antibodies, HLA-genotyping and epitope prediction algorithms. Functional peanut-specific IgE reactivity to peptides was assessed by basophil activation assay. A total of 145 Ara h 1-specific TCL were generated from 18 HLA-diverse peanut-allergic subjects. The TCL recognized 20-mer peptides throughout Ara h 1. Nine 20-mers containing the most frequently recognized epitopes were selected and their recognition confirmed in 18 additional peanut-allergic subjects. Ten core epitopes were mapped within these 20-mers. These were HLA-DQ and/or HLA-DR restricted, with each presented on at least two different HLA-molecules. Seven short (≤ 20 aa) non-basophil-reactive peptides encompassing all core epitopes were designed and validated in peanut-allergic donor PBMC T cell assays. Short CD4(+) T cell epitope-based Ara h 1 peptides were identified as novel candidates for a safe, T cell targeted peanut-specific immunotherapy for HLA-diverse populations. © 2013 John Wiley & Sons Ltd.

  19. Speeding up pyrogenicity testing: Identification of suitable cell components and readout parameters for an accelerated monocyte activation test (MAT).

    PubMed

    Stoppelkamp, Sandra; Würschum, Noriana; Stang, Katharina; Löder, Jasmin; Avci-Adali, Meltem; Toliashvili, Leila; Schlensak, Christian; Wendel, Hans Peter; Fennrich, Stefan

    2017-02-01

    Pyrogen testing represents a crucial safety measure for parental drugs and medical devices, especially in direct contact with blood or liquor. The European Pharmacopoeia regulates these quality control measures for parenterals. Since 2010, the monocyte activation test (MAT) has been an accepted pyrogen test that can be performed with different human monocytic cell sources: whole blood, isolated monocytic cells or monocytic cell lines with IL1β, IL6, or TNFα as readout cytokines. In the present study, we examined the three different cell sources and cytokine readout parameters with the scope of accelerating the assay time. We could show that despite all cell types being able to detect pyrogens, primary cells were more sensitive than the monocytic cell line. Quantitative real-time PCR revealed IL6 mRNA transcripts having the largest change in Ct-values upon LPS-stimulation compared to IL1β and TNFα, but quantification was unreliable. IL6 protein secretion from whole blood or peripheral blood mononuclear cells (PBMC) was also best suited for an accelerated assay with a larger linear range and higher signal-to-noise ratios upon LPS-stimulation. The unique combination with propan-2-ol or a temperature increase could additionally increase the cytokine production for earlier detection in PBMC. The increased incubation temperature could finally increase not only responses to lipopolysaccharides (LPS) but also other pyrogens by up to 13-fold. Therefore, pyrogen detection can be accelerated considerably by using isolated primary blood cells with an increased incubation temperature and IL6 as readout. These results could expedite assay time and thus help to promote further acceptance of the MAT. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. The effects of omega-3 and vitamin E co-supplementation on parameters of mental health and gene expression related to insulin and inflammation in subjects with polycystic ovary syndrome.

    PubMed

    Jamilian, Mehri; Shojaei, Azadeh; Samimi, Mansooreh; Afshar Ebrahimi, Faraneh; Aghadavod, Esmat; Karamali, Maryam; Taghizadeh, Mohsen; Jamilian, Hamidreza; Alaeinasab, Somayeh; Jafarnejad, Sadegh; Asemi, Zatollah

    2018-03-15

    The aim of this study was to evaluate the effects of omega-3 and vitamin E co-supplementation on parameters of mental health and gene expression related to insulin and inflammation in subjects with polycystic ovary syndrome (PCOS). Forty PCOS women were allocated into two groups and treated with 1000mg omega-3 fatty acids plus 400 IU vitamin E supplements (n = 20) or placebo (n = 20) per day for 12 weeks. Parameters of mental health were recorded at baseline and after the 12-week intervention. Gene expression related to insulin and inflammation were measured in blood samples of PCOS women. After the 12-week intervention, compared with the placebo, omega-3 and vitamin E co-supplementation led to significant improvements in beck depression inventory total score (- 2.2 ± 2.0 vs. - 0.2 ± 1.3, P = 0.001), general health questionnaire scores (- 5.5 ± 4.6 vs. - 1.0 ± 2.3, P < 0.001) and depression anxiety and stress scale scores (- 7.2 ± 5.2 vs. - 1.3 ± 1.3, P < 0.001). Compared with the placebo, omega-3 and vitamin E co-supplementation could up-regulate peroxisome proliferator-activated receptor gamma (PPAR-γ) expression (P = 0.04) in peripheral blood mononuclear cells (PBMC) of PCOS women. In addition, compared with the placebo, omega-3 and vitamin E co-supplementation down-regulated interleukin-8 (IL-8) (P = 0.003) and tumor necrosis factor alpha (TNF-α) expression (P = 0.001) in PBMC of PCOS women. There were no significant difference between-group changes in glucose transporter 1 (GLUT-1), IL-6 and transforming growth factor beta (TGF-β) in PBMC of PCOS women. Omega-3 and vitamin E co-supplementation was effective in improving parameters of mental health, and gene expression of PPAR-γ, IL-8 and TNF-α of women with PCOS. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Unique Monoclonal Antibody Recognizing the Third Extracellular Loop of CXCR4 Induces Lymphocyte Agglutination and Enhances Human Immunodeficiency Virus Type 1-Mediated Syncytium Formation and Productive Infection

    PubMed Central

    Tanaka, Reiko; Yoshida, Atsushi; Murakami, Tsutomu; Baba, Eishi; Lichtenfeld, Julliane; Omori, Takeru; Kimura, Tohru; Tsurutani, Naomi; Fujii, Nobutaka; Wang, Zi-Xuan; Peiper, Stephen C.; Yamamoto, Naoki; Tanaka, Yuetsu

    2001-01-01

    To increase insight into the structural basis of CXCR4 utilization in human immunodeficiency virus type 1 (HIV-1) infection, a new generation of three monoclonal antibodies (MAbs) was developed in WKA rats. The A80 MAb, which binds an epitope in the third extracellular loop (ECL3) of CXCR4, has unique biologic properties that provide novel insights into CXCR4 function. This agent enhanced syncytium formation in activated human peripheral blood mononuclear cells (PBMC) infected with X4 or R5 and CEM cells infected with X4 HIV-1 strains. Exposure to A80 increased the productive infection of activated CD4+ T cells and CEM cells with R5 and X4 viruses, respectively. This antibody uniquely induced agglutination of PBMC and CEM cells but did not activate calcium mobilization. Agglutination induced by A80 was inhibited by stromal cell-derived factor 1, T22, and phorbol 12-myristate 13-acetate but was not significantly altered by pretreatment of cells with pertussis toxin, wortmannin, or MAbs to LFA-1, ICAM-1, ICAM-2, and ICAM-3. The binding of the A145 and A120 MAbs was mapped to the N-terminal extracellular domain and a conformational epitope involving ECL1 and ECL2, respectively. Both of these MAbs inhibited HIV-1 infection and lacked the novel properties of A80. These results suggest a new role for CXCR4 in homologous lymphocyte adhesion that is ligand independent and in HIV-1 infection. PMID:11689635

  2. IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17.

    PubMed

    Yago, Toru; Nanke, Yuki; Ichikawa, Naomi; Kobashigawa, Tsuyoshi; Mogi, Makio; Kamatani, Naoyuki; Kotake, Shigeru

    2009-11-01

    IL-17 is a proinflammatory cytokine crucial for osteoclastic bone resorption in the presence of osteoblasts or synoviocytes in rheumatoid arthritis. However, the role of IL-17 in osteoclastogenesis from human monocytes alone remains unclear. Here, we investigated the role of IL-17 in osteoclastogenesis from human monocytes alone and the direct effect of infliximab on the osteoclastogenesis induced by IL-17. Human peripheral blood mononuclear cells (PBMC) were cultured for 3 days with M-CSF. After non-adherent cells were removed, IL-17 was added with either infliximab or osteoprotegerin (OPG). Seven days later, adherent cells were stained for vitronectin receptor. On the other hand, CD11b-positive monocytes purified from PBMC were also cultured and stained as described above. CD11b-positive cells were cultured with TNF-alpha and receptor activator of NF-kappaB ligand (RANKL). In the cultures of both adherent cells and CD11b-positive cells, IL-17 dose-dependently induced osteoclastogenesis in the absence of soluble-RANKL. OPG or infliximab inhibited IL-17-induced osteoclastogenesis. Interestingly, in the culture of CD11b-positive cells, the osteoclastogenesis was more potently inhibited by infliximab than by OPG. TNF-alpha and RANKL synergistically induced osteoclastogenesis. The present study clearly demonstrated the novel mechanism by which IL-17 directly induces osteoclastogenesis from human monocytes alone. In addition, infliximab potently inhibits the osteoclastogenesis directly induced by IL-17. (c) 2009 Wiley-Liss, Inc.

  3. Toll like receptor expression induced by exercise in obesity and metabolic syndrome: A systematic review.

    PubMed

    Rada, Isabel; Deldicque, Louise; Francaux, Marc; Zbinden-Foncea, Hermann

    2018-01-01

    Obesity and metabolic syndrome are disorders that correlate with the activation of pro-inflammatory pathways and cytokine production, to which Toll like receptors (TLR) contribute. Exercise may act as an anti-inflammatory modulator, but there is no consensus about the role of the TLR in this tuning. The present styudy aims to systematically review the current evidence on exercise-induced TLR regulation in animals and humans suffering from obesity and metabolic syndrome. Pubmed and Scopus databases were searched for publications from 1990 to September 2015. Search terms included: "Toll like Receptor", "TLR", "exercise", "obesity", "diabetes", and "metabolic syndrome". Elegibility criteria comprised: randomized control trials, cross-sectional and cohort studies; human or animal models with metabolic syndrome; any type of exercise; TLR expression measurement in any tissue by a clearly reported technique. The quality of selected studies was assessed using a modified version of the Downs and Black Quality Assessment Checklist. Data of study design; population; exercise type, timing and training elements; measurement technique, tissue analyzed and main outcome were extracted and categorized to facilitate data synthesis. 17 studies were included, of which 11 publications obtained a high, 5 a moderate and 1 a low score for quality assessment. A total of 8 human studies were analyzed: 6 studies used endurance continuous or interval training protocols, 1 study resistance training and the remaining study was performed following a marathon race. Blood cells were analyzed in seven studies, of which four studies sampled peripheral blood mononuclear cells (PBMC), three analyzed whole blood and one study sampled skeletal muscle. Nine animal studies were included: 8 used endurance training and 1 acute aerobic exercise. A variety of tissues samples were explored such as PBMC, skeletal muscle, adipose, vascular and nervous tissue. Globally, the animal studies showed a marked tendency towards a down-regulation of TLR2 and 4 expression accompagnied with, a reduced activation of nuclear factorkappaB (NF-κB) signaling and cytokine production, and an improvement in insulin sensitivity and body composition. While animal studies showed a marked tendency towards TLR2 and 4 down-regulation after chronic endurance exercise, the current evidence in human is not sufficiently robust to conclude any role of TLR in the anti-inflammatory properties of exercise. Copyright © 2016 International Society of Exercise and Immunology. All rights reserved.

  4. Imbalance of tumor necrosis factor receptors during progression in bovine leukemia virus infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konnai, Satoru; Usui, Tatsufumi; Ikeda, Manabu

    2005-09-01

    Previously, we found an up-regulation of tumor necrosis factor alpha (TNF)-{alpha} and an imbalance of TNF receptors in sheep experimentally infected with bovine leukemia virus (BLV). In order to investigate the different TNF-{alpha}-induced responses, in this study we examined the TNF-{alpha}-induced proliferative response and the expression levels of two distinct TNF receptors on peripheral blood mononuclear cells (PBMC) derived from BLV-uninfected cattle and BLV-infected cattle that were aleukemic (AL) or had persistent lymphocytosis (PL). The proliferative response of PBMC isolated from those cattle with PL in the presence of recombinant bovine TNF-{alpha} (rTNF-{alpha}) was significantly higher than those from ALmore » cattle and uninfected cattle and the cells from PL cattle expressed significantly higher mRNA levels of TNF receptor type II (TNF-RII) than those from AL and BLV-uninfected cattle. No difference was found in TNF-RI mRNA levels. Most cells expressing TNF-RII in PL cattle were CD5{sup +} or sIgM{sup +} cells and these cells showed resistance to TNF-{alpha}-induced apoptosis. Additionally, there were significant positive correlations between the changes in provirus load and TNF-RII mRNA levels, and TNF-{alpha}-induced proliferation and TNF-RII mRNA levels. These data suggest that imbalance in the expression of TNF receptors could at least in part contribute to the progression of lymphocytosis in BLV infection.« less

  5. Regulation of adaptive NK cells and CD8 T cells by HLA-C correlates with allogeneic hematopoietic cell transplantation and with CMV reactivation1

    PubMed Central

    Horowitz, Amir; Guethlein, Lisbeth A.; Nemat-Gorgani, Neda; Norman, Paul J.; Cooley, Sarah; Miller, Jeffrey S.; Parham, Peter

    2015-01-01

    Mass cytometry was used to investigate the effect of CMV reactivation on lymphocyte reconstitution in hematopoietic cell transplant patients. For eight transplant recipients, four CMV negative and four CMV positive, we studied peripheral blood mononuclear cells (PBMC) obtained six months after unrelated donor hematopoietic cell transplantation (HCT). Forty cell-surface markers, distinguishing all major leukocyte populations in PBMC, were analyzed by mass cytometry. These included 34 NK cell markers. Compared to healthy controls, transplant recipients had higher HLA-C expression on CD56−CD16+ NK cells, B cells, CD33bright myeloid cells and CD4CD8 T cells. The increase in HLA-C expression was greater for CMV-positive HCT recipients than CMV negative recipients. Present in CMV-positive HCT recipients, but not in CMV-negative HCT recipients or controls, is a population of KIR-expressing CD8 T cells not previously described. These CD8 T cells co-express CD56, CD57 and NKG2C. The HCT recipients also have a population of CD57+NKG2A+ NK cells that preferentially express KIR2DL1. An inverse correlation was observed between the frequencies of CD57+NKG2C+ NK cells and CD57+NKG2A+ NK cells. Although CD57+NKG2A+ NK cells are less abundant in CMV-positive recipients, their phenotype is of a more activated cell than the CD57+NKG2A+ NK cells of controls and CMV-negative HCT recipients. These data demonstrate that HCT and CMV reactivation are associated with an increased expression of HLA-C. This could influence NK cell education during lymphocyte reconstitution. The increased inhibitory KIR expression by proliferating CMV-specific CD8 T cells suggests regulatory interactions between HLA-C and KIR might promote GVL effects following transplantation. PMID:26416275

  6. The Generation of Human γδT Cell-Derived Induced Pluripotent Stem Cells from Whole Peripheral Blood Mononuclear Cell Culture.

    PubMed

    Watanabe, Daisuke; Koyanagi-Aoi, Michiyo; Taniguchi-Ikeda, Mariko; Yoshida, Yukiko; Azuma, Takeshi; Aoi, Takashi

    2018-01-01

    γδT cells constitute a small proportion of lymphocytes in peripheral blood. Unlike αβT cells, the anti-tumor activities are exerted through several different pathways in a MHC-unrestricted manner. Thus, immunotherapy using γδT cells is considered to be effective for various types of cancer. Occasionally, however, ex vivo expanded cells are not as effective as expected due to cell exhaustion. To overcome the issue of T-cell exhaustion, researchers have generated induced pluripotent stem cells (iPSCs) that harbor the same T-cell receptor (TCR) genes as their original T-cells, which provide nearly limitless sources for antigen-specific cytotoxic T lymphocytes (CTLs). However, these technologies have focused on αβT cells and require a population of antigen-specific CTLs, which are purified by cell sorting with HLA-peptide multimer, as the origin of iPS cells. In the present study, we aimed to develop an efficient and convenient system for generating iPSCs that harbor rearrangements of the TCRG and TCRD gene regions (γδT-iPSCs) without cell-sorting. We stimulated human whole peripheral blood mononuclear cell (PBMC) culture using Interleukin-2 and Zoledronate to activate γδT cells. Gene transfer into those cells with the Sendai virus vector resulted in γδT cell-dominant expression of exogenous genes. The introduction of reprogramming factors into the stimulated PBMC culture allowed us to establish iPSC lines. Around 70% of the established lines carried rearrangements at the TCRG and TCRD gene locus. The γδT-iPSCs could differentiate into hematopoietic progenitors. Our technology will pave the way for new avenues toward novel immunotherapy that can be applied for various types of cancer. Stem Cells Translational Medicine 2018;7:34-44. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  7. Low levels of CD36 in peripheral blood monocytes in subclinical atherosclerosis in rheumatoid arthritis: a cross-sectional study in a Mexican population.

    PubMed

    Gómez-Bañuelos, Eduardo; Martín-Márquez, Beatriz Teresita; Martínez-García, Erika Aurora; Figueroa-Sanchez, Mauricio; Nuñez-Atahualpa, Lourdes; Rocha-Muñoz, Alberto Daniel; Sánchez-Hernández, Pedro Ernesto; Navarro-Hernandez, Rosa Elena; Madrigal-Ruiz, Perla Monserrat; Saldaña-Millan, Adan Alberto; Duran-Barragan, Sergio; Gonzalez-Lopez, Laura; Gamez-Nava, Jorge Ivan; Vázquez-Del Mercado, Mónica

    2014-01-01

    Patients with rheumatoid arthritis (RA) have a higher risk for atherosclerosis. There is no clinical information about scavenger receptor CD36 and the development of subclinical atherosclerosis in patients with RA. The aim of this study was to evaluate the association between membrane expression of CD36 in peripheral blood mononuclear cells (PBMC) and carotid intima-media thickness (cIMT) in patients with RA. We included 67 patients with RA from the Rheumatology Department of Hospital Civil "Dr. Juan I. Menchaca," Guadalajara, Jalisco, Mexico. We evaluated the cIMT, considering subclinical atherosclerosis when >0.6 mm. Since our main objective was to associate the membrane expression of CD36 with subclinical atherosclerosis, other molecules related with cardiovascular risk such as ox-LDL, IL-6, and TNFα were tested. We found low CD36 membrane expression in PBMC from RA patients with subclinical atherosclerosis (P < 0.001). CD36 mean fluorescence intensity had negative correlations with cIMT (r = -0.578, P < 0.001), ox-LDL (r = -0.427, P = 0.05), TNFα (r = -0.729, P < 0.001), and IL-6 (r = -0.822, P < 0.001). RA patients with subclinical atherosclerosis showed low membrane expression of CD36 in PBMC and increased serum proinflammatory cytokines. Further studies are needed to clarify the regulation of CD36 in RA.

  8. Effects of dietary uridine 5'-monophosphate on immune responses in newborn calves.

    PubMed

    Mashiko, T; Nagafuchi, S; Kanbe, M; Obara, Y; Hagawa, Y; Takahashi, T; Katoh, K

    2009-03-01

    When compared with normal milk, bovine colostrum contains a large amount of uridine 5'-monophosphate (UMP) and its derivatives. In the present study, we carried out 2 experiments to determine the effects of dietary UMP (2 g/d) on the immune status of newborn calves. In Exp. 1, newborn Holstein bull calves were fed milk replacer alone (control group) or milk replacer supplemented with UMP (UMP group) from d 4 to 10 after birth. The increase in interferon-gamma concentration by peripheral blood mononuclear cells (PBMC) on d 24 tended to be greater in the UMP group than in the control group (P = 0.06). The IgA concentration of the ileal mucosa was greater in the UMP group than in the control group (P < 0.05), although there was no difference between groups in the jejunal mucosa. In Exp. 2, newborn Holstein bull calves were fed milk replacer alone (control group) or milk replacer supplemented with UMP (UMP group) from d 4 to 56 after birth. The proliferation of PBMC was greater in the UMP group than in the control group on d 14, 28, and 42 (P < 0.01). The increase in interferon-gamma concentration by PBMC was greater in the UMP group than in the control group on d 28 and 42 (P < 0.05). From these results, we concluded that dietary UMP affected the immune responses of newborn calves.

  9. Performance evaluation of FlowCytomix assays to quantify cytokines in patients with rheumatoid arthritis

    PubMed Central

    Wang, Xuefeng; Dong, Liyang; Liang, Yong; Ni, Hongchang; Tang, Jun; Xu, Chengcheng; Zhou, Yuepeng; Su, Yuting; Wang, Jun; Chen, Deyu; Mao, Chaoming

    2015-01-01

    Objectives: To compare the cytokine profile in RA patients and healthy control by using two methods-FlowCytomix assay and traditional ELISA. Methods: Cytokine levels were evaluated by FlowCytomix assay and ELISA in serum and supernatants of peripheral blood mononuclear cells (PBMC) cultures with and without stimulation by phytohaemagglutinin (PHA). Results: The levels of IL-6, IL-1β, and TNF-α were significantly higher in sera of RA patients than those of healthy controls. The levels of IL-22, IL-6, IL-1β, TNF-α, and IL-10 were higher in unstimulated PBMC culture supernatant of RA patients than those of healthy controls. PHA stimulation significantly increased the production of proinflammatory cytokines from PBMC with RA patients. Compared with detectable cytokine levels in sera, cytokine concentration in the supernatant of PBMCs was remarkably higher. FlowCytomix and ELISA showed significant correlation in detecting cytokines. However, the FlowCytomix assay detected more cytokines than ELISA. Conclusion: The supernatant of PBMCs provide a fine condition for the study of cytokine production because of the lack of interference factors in sera. The FlowCytomix assay is more sensitive than ELISA in detecting cytokines from RA patients. Multiple cytokine signatures using FlowCytomix assay may represent a more realistic approach in the future of personalized medicine in RA. PMID:26629129

  10. Responses of human birch pollen allergen-reactive T cells to chemically modified allergens (allergoids).

    PubMed

    Dormann, D; Ebner, C; Jarman, E R; Montermann, E; Kraft, D; Reske-Kunz, A B

    1998-11-01

    Allergoids are widely used in specific immunotherapy for the treatment of IgE-mediated allergic diseases. The aim of this study was to analyse whether a modification of birch pollen allergens with formaldehyde affects the availability of T-cell epitopes. Efficient modification of the allergens was verified by determining IgE and IgG binding activity using ELISA inhibition tests. T-cell responses to birch pollen allergoids were analysed in polyclonal systems, using peripheral blood mononuclear cells (PBMC) of five birch pollen-allergic individuals, as well as birch pollen extract-reactive T-cell lines (TCL), established from the peripheral blood of 14 birch pollen-allergic donors. To determine whether the modification of natural (n)Bet v 1 with formaldehyde or maleic anhydride results in epitope-specific changes in T-cell reactivities, 22 Bet v 1-specific T-cell clones (TCC), established from nine additional birch pollen-allergic individuals, were tested for their reactivity with these products. The majority of PBMC and TCL showed a reduced response to the birch pollen extract allergoid. Bet v 1-specific TCC could be divided into allergoid-reactive and -non-reactive TCC. No simple correlation between possible modification sites of formaldehyde in the respective T-cell epitopes and the stimulatory potential of the allergoid was observed. Mechanisms of suppression or of anergy induction were excluded as an explanation for the non-reactivity of representative TCC. All TCC could be stimulated by maleylated and unmodified nBet v 1 to a similar extent. These results demonstrate differences in the availability of T-cell epitopes between allergoids and unmodified allergens, which are most likely due to structural changes within the allergen molecule.

  11. Human regulatory T cells do not suppress the antitumor immunity in the bone marrow: a role for bone marrow stromal cells in neutralizing regulatory T cells.

    PubMed

    Guichelaar, Teun; Emmelot, Maarten E; Rozemuller, Henk; Martini, Bianka; Groen, Richard W J; Storm, Gert; Lokhorst, Henk M; Martens, Anton C; Mutis, Tuna

    2013-03-15

    Regulatory T cells (Tregs) are potent tools to prevent graft-versus-host disease (GVHD) induced after allogeneic stem cell transplantation or donor lymphocyte infusions. Toward clinical application of Tregs for GVHD treatment, we investigated the impact of Tregs on the therapeutic graft-versus-tumor (GVT) effect against human multiple myeloma tumors with various immunogenicities, progression rates, and localizations in a humanized murine model. Immunodeficient Rag2(-/-)γc(-/-) mice, bearing various human multiple myeloma tumors, were treated with human peripheral blood mononuclear cell (PBMC) alone or together with autologous ex vivo cultured Tregs. Mice were analyzed for the in vivo engraftment, homing of T-cell subsets, development of GVHD and GVT. In additional in vitro assays, Tregs that were cultured together with bone marrow stromal cells were analyzed for phenotype and functions. Treatment with PBMC alone induced variable degrees of antitumor response, depending on the immunogenicity and the growth rate of the tumor. Coinfusion of Tregs did not impair the antitumor response against tumors residing within the bone marrow, irrespective of their immunogenicity or growth rates. In contrast, Tregs readily inhibited the antitumor effect against tumors growing outside the bone marrow. Exploring this remarkable phenomenon, we discovered that bone marrow stroma neutralizes the suppressive activity of Tregs in part via production of interleukin (IL)-1β/IL-6. We furthermore found in vitro and in vivo evidence of conversion of Tregs into IL-17-producing T cells in the bone marrow environment. These results provide new insights into the Treg immunobiology and indicate the conditional benefits of future Treg-based therapies.

  12. Fruit and vegetable consumption and proinflammatory gene expression from peripheral blood mononuclear cells in young adults: a translational study

    PubMed Central

    2010-01-01

    Background Fruits and vegetables are important sources of fiber and nutrients with a recognized antioxidant capacity, which could have beneficial effects on the proinflammatory status as well as some metabolic syndrome and cardiovascular disease features. The current study assessed the potential relationships of fruit and vegetable consumption with the plasma concentrations and mRNA expression values of some proinflammatory markers in young adults. Methods One-hundred and twenty healthy subjects (50 men/70 women; 20.8 ± 2.6 y; 22.3 ± 2.8 kg/m2) were enrolled. Experimental determinations included anthropometry, blood pressure and lifestyle features as well as blood biochemical and inflammatory measurements. The mRNA was isolated from peripheral blood mononuclear cells (PBMC) and the gene expression concerning selected inflammatory markers was assessed by quantitative real-time PCR. Nutritional intakes were estimated by a validated semi-quantitative food-frequency questionnaire. Results The highest tertile of energy-adjusted fruit and vegetable consumption (>660 g/d) was associated with lower plasma concentrations of C-reactive protein (CRP) and homocysteine and with lower ICAM1, IL1R1, IL6, TNFα and NFκB1 gene expression in PBMC (P for trend < 0.05), independently of gender, age, energy intake, physical activity, smoking, body mass index, systolic blood pressure and circulating non-esterified fatty acids. In addition, plasma CRP, homocysteine and TNFα concentrations and ICAM1, TNFα and NFκB1 gene expression in PBMC showed a descending trend as increased fiber intake (>19.5 g/d) from fruits and vegetables (P for trend < 0.05). Furthermore, the participants within the higher tertile (>11.8 mmol/d) of dietary total antioxidant capacity showed lower plasma CRP and mRNA values of ICAM1, IL1R1, IL6, TNFα and NFκB1 genes (P for trend < 0.05). The inverse association between fruit and vegetable consumption and study proinflammatory markers followed the same trend and remained statistically significant, after the inclusion of other foods/nutrients in the linear regression models. Conclusion A higher fruit and vegetable consumption was independently associated not only with reduced CRP and homocysteine concentrations but also with a lower mRNA expression in PBMC of some relevant proinflammatory markers in healthy young adults. PMID:20465828

  13. Revisiting the IFN-γ release assay: Whole blood or PBMC cultures? - And other factors of influence.

    PubMed

    Hartmann, Sofie Bruun; Emnéus, Jenny; Wolff, Anders; Jungersen, Gregers

    2016-07-01

    The interferon-γ release assay (IGRA) is a widely used test for the presence of a cell-mediated immune (CMI) response in vitro. This measure is used to test for infection with intracellular pathogens or for validating vaccine efficacy, and it is a widely used test for both human as well as cattle. However, there is no consensus whether to use whole blood cultures or purified PBMCs for the assay, and both cell populations are being used and results compared. Therefore the aim of this study was to compare different culture settings using immune cells from previously vaccinated calves, and to shed light on external factors that could influence the read out in terms of IFN-γ levels. It was found that optimal culture conditions varied between individual animals; when polyclonal activated, cells from whole blood cultures were most responsive, but when activated specifically, the optimal cell concentration/population varied with whole blood, 10×10(6)cells/ml PBMC and 5×10(6)cells/ml PBMC being the highest performing conditions. A further investigation of the distribution of cell populations in PBMCs compared to whole blood was conducted, and a significant (p<0.001) decrease in the percentage of CD3(+) T lymphocytes within the PBMCs was found. More specifically, this reduction was due to a significant (p<0.01) decrease in the percentage of γδ(+) T lymphocytes. Thus measuring immune responses on purified PBMCs might not give a physiologically relevant output. Additionally, it was tested if the choice of incubation plate would interfere with the level of secreted IFN-γ in whole blood cultures from five calves. Six plates (a-f) were tested and no significant difference in absolute levels of IFN-γ was detected in the six plates when cells were polyclonal and specifically activated. However, we observed a significant (p<0.05) higher background level in a flat-bottom plate from Corning® (cat# 3595) (plate d) compared to two different flat-bottom plates from Corning® (cat# 3596) (plate b) and Nunc™ (cat# 167008) (plate a). Furthermore 4 out of 5 calves had maximum specific IFN-γ expression on plate b, and the relative-to-maximum level on this plate was significant (p<0.05) compared to plate a. Altogether these findings highlight the potential weaknesses of the IFN-γ release assay in terms of the many variables that can influence the results, including the cell culture population, the concentration of cells being cultured, and the plastic ware used for the in vitro culture. These findings stress the importance of documenting the precise assay conditions when publishing results of in vitro IFN-γ release assays. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Human mesenchymal stromal cells transiently increase cytokine production by activated T cells before suppressing T-cell proliferation: effect of interferon-γ and tumor necrosis factor-α stimulation.

    PubMed

    Cuerquis, Jessica; Romieu-Mourez, Raphaëlle; François, Moïra; Routy, Jean-Pierre; Young, Yoon Kow; Zhao, Jing; Eliopoulos, Nicoletta

    2014-02-01

    Mesenchymal stromal cells (MSCs) suppress T-cell proliferation, especially after activation with inflammatory cytokines. We compared the dynamic action of unprimed and interferon (IFN)-γ plus tumor necrosis factor (TNF)-α-pretreated human bone marrow-derived MSCs on resting or activated T cells. MSCs were co-cultured with allogeneic peripheral blood mononuclear cells (PBMCs) at high MSC-to-PBMC ratios in the absence or presence of concomitant CD3/CD28-induced T-cell activation. The kinetic effects of MSCs on cytokine production and T-cell proliferation, cell cycle and apoptosis were assessed. Unprimed MSCs increased the early production of IFN-γ and interleukin (IL)-2 by CD3/CD28-activated PBMCs before suppressing T-cell proliferation. In non-activated PBMC co-cultures, low levels of IL-2 and IL-10 synthesis were observed with MSCs in addition to low levels of CD69 expression by T cells and no T-cell proliferation. MSCs also decreased apoptosis in resting and activated T cells and inhibited the transition of these cells into the sub-G0/G1 and the S phases. With inhibition of indoleamine 2,3 dioxygenase, MSCs increased CD3/CD28-induced T-cell proliferation. After priming with IFN-γ plus TNF-α, MSCs were less potent at increasing cytokine production by CD3/CD28-activated PBMCs and more effective at inhibiting T-cell proliferation but had preserved anti-apoptotic functions. Unprimed MSCs induce a transient increase in IFN-γ and IL-2 synthesis by activated T cells. Pre-treatment of MSCs with IFN-γ plus TNF-α may increase their effectiveness and safety in vivo. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Isolation and Characterization of a Neuropathogenic Simian Immunodeficiency Virus Derived from a Sooty Mangabey

    PubMed Central

    Novembre, Francis J.; De Rosayro, Juliette; O’Neil, Shawn P.; Anderson, Daniel C.; Klumpp, Sherry A.; McClure, Harold M.

    1998-01-01

    Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease. PMID:9765429

  16. IL-12 Production Induced by Agaricus blazei Fraction H (ABH) Involves Toll-like Receptor (TLR)

    PubMed Central

    2004-01-01

    Agaricus blazei Murill is an edible fungus used in traditional medicine, which has various well-documented medicinal properties. In the present study, we investigated the effects of hemicellulase-derived mycelia extract (Agaricus blazei fraction H: ABH) on the immune system. First, we examined the cytokine-inducing activity of ABH on human peripheral mononuclear cells (PBMC). The results indicated that ABH induced expression of IL-12, a cytokine known to be a critical regulator of cellular immune responses. Flow cytometric analysis demonstrated the induction of IL-12 production by the CD14-positive cell population, consisting of monocytes/macrophages (Mo/Mφ). Furthermore, the elimination of Mo/Mφ attenuated IL-12 production in PBMC. ABH-induced IL-12 production was inhibited by anti-CD14 and anti-TLR4 antibodies but not by anti-TLR2 antibody. The activity of ABH was not inhibited by polymyxin B, while the activity of lipopolysaccharide used as a reference was inhibited. Oral administration of ABH enhanced natural killer (NK) activity in the spleen. These findings suggest that ABH activated Mo/Mφ in a manner dependent on CD14/TLR4 and NK activity. PMID:15841259

  17. The immune response against Chlamydia suis genital tract infection partially protects against re-infection.

    PubMed

    De Clercq, Evelien; Devriendt, Bert; Yin, Lizi; Chiers, Koen; Cox, Eric; Vanrompay, Daisy

    2014-09-25

    The aim of the present study was to reveal the characteristic features of genital Chlamydia suis infection and re-infection in female pigs by studying the immune response, pathological changes, replication of chlamydial bacteria in the genital tract and excretion of viable bacteria. Pigs were intravaginally infected and re-infected with C. suis strain S45, the type strain of this species. We demonstrated that S45 is pathogenic for the female urogenital tract. Chlamydia replication occurred throughout the urogenital tract, causing inflammation and pathology. Furthermore, genital infection elicited both cellular and humoral immune responses. Compared to the primo-infection of pigs with C. suis, re-infection was characterized by less severe macroscopic lesions and less chlamydial elementary bodies and inclusions in the urogenital tract. This indicates the development of a certain level of protection following the initial infection. Protective immunity against re-infection coincided with higher Chlamydia-specific IgG and IgA antibody titers in sera and vaginal secretions, higher proliferative responses of peripheral blood mononuclear cells (PBMC), higher percentages of blood B lymphocytes, monocytes and CD8⁺ T cells and upregulated production of IFN-γ and IL-10 by PBMC.

  18. Differences in immune cell function between tuberculosis positive and negative Asian elephants.

    PubMed

    Landolfi, Jennifer A; Miller, Michele; Maddox, Carol; Zuckermann, Federico; Langan, Jennifer N; Terio, Karen A

    2014-07-01

    Tuberculosis is an important health concern for Asian elephant (Elephas maximus) populations worldwide, however, mechanisms underlying susceptibility to Mycobacterium tuberculosis are unknown. Proliferative responses assessed via brominated uridine incorporation and cytokine expression measured by real-time RT-PCR were evaluated in peripheral blood mononuclear cell (PBMC) cultures from 8 tuberculosis negative and 8 positive Asian elephants. Cultures were stimulated with Mycobacterium bovis purified protein derivative (PPD-B), M. tuberculosis culture filtrate protein (CFP)-10, and Mycobacterium avium PPD (PPD-A). Following stimulation with PPD-B, proliferation was higher (α = 0.005) in positive samples; no significant differences were detected following CFP-10 or PPD-A stimulation. Tumor necrosis factor (TNF)-α, interleukin (IL)-12, and interferon (IFN)-γ expression was greater in samples from positive elephants following stimulation with PPD-B (α = 0.025) and CFP-10 (α = 0.025 TNF-α and IL-12; α = 0.005 IFN-γ). Stimulation with PPD-A also produced enhanced IL-12 expression in positive samples (α = 0.025). Findings suggested that differences in immune cell function exist between tuberculosis positive and negative elephants. Proliferative responses and expression of TNF-α, IL-12, and IFN-γ in response to stimulation with PPD-B and CFP-10 differ between tuberculosis positive and negative elephants, suggesting these parameters may be important to tuberculosis immunopathogenesis in this species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Generation of oxyradicals (O2. and H2O2), mitochondrial activity and induction of apoptosis of PBMC of Cyprinus carpio carpio treated in vivo with halomethanes and with recombinant HSP60 kDa and with LPS of Klebsiella pneumoniae.

    PubMed

    Uraga-Tovar, D Italibi; Domínguez-López, M Lilia; Madera-Sandoval, Ruth L; Nájera-Martínez, Minerva; García-Latorre, Ethel; Vega-López, Armando

    2014-10-01

    Halomethanes (HM) can be immunotoxic in mammals; however, in the fish immune system HM effects are unknown. In the current study, we evaluated the mitochondrial activity (MA) by MTT, induction of apoptosis by SubG0 technique and quantified serum ROS concentration (O2. and H2O2) and ROS production in PBMC of Cyprinus carpio carpio treated i.p. with CH2Cl2, CHCl3 and BrCHCl2 (0.004-40.0 mg/kg) for 96 h. Positive controls were recombinant heat shock protein of 60 kDa (rHSP60 kDa) of Klebsiella pneumoniae and its LPS. In addition, for in vitro PBMC cultures, two culture media and two sources of sera were tested. Both positive controls increased the MA more than 4-fold as well as the production of O2. (26-fold) and H2O2 (5-fold) compared to their controls. HM induced different effects on MA, ROS production and an induction of apoptosis, depending on the chlorination patterns and the dose; however, a systemic damage prevails. To fish treated with CH2Cl2, the apoptosis was related with serum ROS concentration and with MA. In contrast, in fish dosed with CHCl3 relationships were not found, deducing a systemic damage. However, in fish treated with BrCHCl2, serum O2. concentration and in vitro ROS generation performed by PBMC were involved in the induction of apoptosis of these cells but not with MA suggesting also immunotoxic effects. The current study demonstrated that HMs are immunomodulators increasing an acute inflammatory response and that rHSP60kDA of K. pneumoniae and its LPS are appropriate antigens to assess the immune response of C. c. carpio.

  20. Budesonide and Formoterol Reduce Early Innate Anti-Viral Immune Responses In Vitro

    PubMed Central

    Davies, Janet M.; Carroll, Melanie L.; Li, Hongzhuo; Poh, Alisa M.; Kirkegard, Darren; Towers, Michelle; Upham, John W.

    2011-01-01

    Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined. PMID:22125636

Top