Sample records for cell performance losses

  1. Computer model for electrochemical cell performance loss over time in terms of capacity, power, and conductance (CPC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gering, Kevin L.

    2015-09-01

    Available capacity, power, and cell conductance figure centrally into performance characterization of electrochemical cells (such as Li-ion cells) over their service life. For example, capacity loss in Li-ion cells is due to a combination of mechanisms, including loss of free available lithium, loss of active host sites, shifts in the potential-capacity curve, etc. Further distinctions can be made regarding irreversible and reversible capacity loss mechanisms. There are tandem needs for accurate interpretation of capacity at characterization conditions (cycling rate, temperature, etc.) and for robust self-consistent modeling techniques that can be used for diagnostic analysis of cell data as well asmore » forecasting of future performance. Analogous issues exist for aging effects on cell conductance and available power. To address these needs, a modeling capability was developed that provides a systematic analysis of the contributing factors to battery performance loss over aging and to act as a regression/prediction platform for cell performance. The modeling basis is a summation of self-consistent chemical kinetics rate expressions, which as individual expressions each covers a distinct mechanism (e.g., loss of active host sites, lithium loss), but collectively account for the net loss of premier metrics (e.g., capacity) over time for a particular characterization condition. Specifically, sigmoid-based rate expressions are utilized to describe each contribution to performance loss. Through additional mathematical development another tier of expressions is derived and used to perform differential analyses and segregate irreversible versus reversible contributions, as well as to determine concentration profiles over cell aging for affected Li+ ion inventory and fraction of active sites that remain at each time step. Reversible fade components are surmised by comparing fade rates at fast versus slow cycling conditions. The model is easily utilized for predictive calculations so that future capacity performance can be estimated. The invention covers mathematical and theoretical frameworks, and demonstrates application to various Li-ion cells covering test periods that vary in duration, and shows model predictions well past the end of test periods. Version 2.0 Enhancements: the code now covers path-dependent aging scenarios, wherein the framework allows for arbitrarily-chosen aging conditions over a timeline to accommodate prediction of battery aging over a multiplicity of changing conditions. The code framework also allows for cell conductance and power loss evaluations over cell aging, analysis of series strings that contain a thermal anomaly (hot spot), and evaluation of battery thermal management parameters that impact battery lifetimes. Lastly, a comprehensive GUI now resides in the Ver. 2.0 code.« less

  2. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    NASA Astrophysics Data System (ADS)

    Li, Guangchun; Pickup, Peter G.

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.

  3. Loss mechanisms in high-efficiency solar cells: Study of material properties and high-efficiency solar-cell performance on material composition: Project tasks

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1985-01-01

    Loss mechanisms in high-efficiency solar cells were discussed. Fundamental limitations and practical solutions were stressed. Present cell efficiency is limited by many recombination sites: emitter, base, contacts, and oxide/silicon interface. Use of polysilicon passivation was suggested. After reduction of these losses, a 25% efficient cell could be built. A floating emitter cell design was shown that had the potential of low recombination losses.

  4. Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies.

    PubMed

    Zuo, Lijian; Shi, Xueliang; Jo, Sae Byeok; Liu, Yun; Lin, Fracis; Jen, Alex K-Y

    2018-04-01

    Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and V OC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub-cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Grid-Optimization Program for Photovoltaic Cells

    NASA Technical Reports Server (NTRS)

    Daniel, R. E.; Lee, T. S.

    1986-01-01

    CELLOPT program developed to assist in designing grid pattern of current-conducting material on photovoltaic cell. Analyzes parasitic resistance losses and shadow loss associated with metallized grid pattern on both round and rectangular solar cells. Though performs sensitivity studies, used primarily to optimize grid design in terms of bus bar and grid lines by minimizing power loss. CELLOPT written in APL.

  6. Proton exchange membrane fuel cell model for aging predictions: Simulated equivalent active surface area loss and comparisons with durability tests

    NASA Astrophysics Data System (ADS)

    Robin, C.; Gérard, M.; Quinaud, M.; d'Arbigny, J.; Bultel, Y.

    2016-09-01

    The prediction of Proton Exchange Membrane Fuel Cell (PEMFC) lifetime is one of the major challenges to optimize both material properties and dynamic control of the fuel cell system. In this study, by a multiscale modeling approach, a mechanistic catalyst dissolution model is coupled to a dynamic PEMFC cell model to predict the performance loss of the PEMFC. Results are compared to two 2000-h experimental aging tests. More precisely, an original approach is introduced to estimate the loss of an equivalent active surface area during an aging test. Indeed, when the computed Electrochemical Catalyst Surface Area profile is fitted on the experimental measures from Cyclic Voltammetry, the computed performance loss of the PEMFC is underestimated. To be able to predict the performance loss measured by polarization curves during the aging test, an equivalent active surface area is obtained by a model inversion. This methodology enables to successfully find back the experimental cell voltage decay during time. The model parameters are fitted from the polarization curves so that they include the global degradation. Moreover, the model captures the aging heterogeneities along the surface of the cell observed experimentally. Finally, a second 2000-h durability test in dynamic operating conditions validates the approach.

  7. Understanding charge transport and recombination losses in high performance polymer solar cells with non-fullerene acceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xuning; Zuo, Xiaobing; Xie, Shenkun

    Photovoltaic characteristics, recombination and charge transport properties are investigated. The determined recombination reduction factor can reconcile the supreme device performance in organic solar cells using non-fullerene ITIC acceptor and severe carrier losses in all-polymer devices with P(NDI2OD-T2).

  8. Hawaii Energy and Environmental Technologies (HEET) Initiative

    DTIC Science & Technology

    2009-05-01

    current density measured in a PEM fuel cell ( PEMFC ) represents the average of the local reaction rates. Depending on cell design and operating...loss mechanisms determine the spatial and overall performance of a PEMFC : activation, concentration, ohmic, and mass transfer losses. Activation losses...distribution of these various losses in a PEMFC using a six-channel serpentine flow-field. Voltage losses were attributed to each of the mechanisms at each

  9. Thin film module electrical configuration versus electrical performance

    NASA Technical Reports Server (NTRS)

    Morel, D. L.

    1985-01-01

    The as made and degraded states of thin film silicon (TFS) based modules have been modelled in terms of series resistance losses. The origins of these losses lie in interface and bulk regions of the devices. When modules degrade under light exposure, increases occur in both the interface and bulk components of the loss based on series resistance. Actual module performance can thus be simulated by use of only one unknown parameter, shunt losses. Use of the simulation to optimize module design indicates that the current design of 25 cells per linear foot is near optimum. Degradation performance suggests a shift to approx. 35 cells to effect maximum output for applications not constrained to 12 volts. Earlier studies of energy based performance and tandem structures should be updated to include stability factors, not only the initial loss factor tested here, but also appropriate annealing factors.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reshetenko, T. V.; Bender, G.; Bethune, K.

    The overall current density that is measured in a proton exchange membrane fuel cell (PEMFC) represents the average of the local reaction rates. The overall and local PEMFC performances are determined by several primary loss mechanisms, namely activation, ohmic, and mass transfer. Spatial performance and loss variabilities are significant and depend on the cell design and operating conditions. A segmented cell system was used to quantify different loss distributions along the gas channel to understand the effects of gas humidification. A reduction in the reactant stream humidification decreased cell performance and resulted in non-uniform distributions of overpotentials and performance alongmore » the flow field. Activation and ohmic overpotentials increased with a relative humidity decrease due to insufficient membrane and catalyst layer hydration. The relative humidity of the cathode had a strong impact on the mass transfer overpotential due to a lower oxygen permeability through the dry Nafion film covering the catalyst surface. The mass transfer loss distribution was non-uniform, and the mass transfer overpotential increased for the outlet segments due to the oxygen consumption at the inlet segments, which reduced the oxygen concentration downstream, and a progressive water accumulation from upstream segments. Electrochemical impedance spectroscopy (EIS) and an equivalent electric circuit (EEC) facilitated the analysis and interpretation of the segmented cell data.« less

  11. Evaluation of Mismatch Losses due to Shunts in industrial Silicon Photovoltaic Modules

    NASA Astrophysics Data System (ADS)

    Somasundaran, P.; Shilpi, M.; Gupta, R.

    2017-05-01

    In order to achieve higher efficiencies in photovoltaic module technology, it is important to characterize the shunts and other defects which degrade the performance of cells and modules as well as decrease their efficiency. These shunts also affect the reliability of cells and modules. It is important to understand how much fill factor and power loss is caused by the presence of shunts in the module. Shunts not only reduce the module power output, but also affect the I-V characteristics of the cell and hence the characteristics of the shunted cells are different from those of the shunt-free cells connected in the module leading to the mismatch effect. This is an interesting effect which has been systematically investigated in the present work. Moreover, the flow of increased shunt current will give rise to increased temperature in the region of shunt, which will affect the cell and hence module performance. In the present study, the distributed diode model has been extended to the module level and applied to evaluate the electrical mismatch losses and thermal mismatch losses due to shunts in industrial Silicon PV modules.

  12. Voltage instability in a simulated fuel cell stack correlated to cathode water accumulation

    NASA Astrophysics Data System (ADS)

    Owejan, J. P.; Trabold, T. A.; Gagliardo, J. J.; Jacobson, D. L.; Carter, R. N.; Hussey, D. S.; Arif, M.

    Single fuel cells running independently are often used for fundamental studies of water transport. It is also necessary to assess the dynamic behavior of fuel cell stacks comprised of multiple cells arranged in series, thus providing many paths for flow of reactant hydrogen on the anode and air (or pure oxygen) on the cathode. In the current work, the flow behavior of a fuel cell stack is simulated by using a single-cell test fixture coupled with a bypass flow loop for the cathode flow. This bypass simulates the presence of additional cells in a stack and provides an alternate path for airflow, thus avoiding forced convective purging of cathode flow channels. Liquid water accumulation in the cathode is shown to occur in two modes; initially nearly all the product water is retained in the gas diffusion layer until a critical saturation fraction is reached and then water accumulation in the flow channels begins. Flow redistribution and fuel cell performance loss result from channel slug formation. The application of in-situ neutron radiography affords a transient correlation of performance loss to liquid water accumulation. The current results identify a mechanism whereby depleted cathode flow on a single cell leads to performance loss, which can ultimately cause an operating proton exchange membrane fuel cell stack to fail.

  13. Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Oh, Kyeongmin; Ahn, Sungha; Kim, Na Young; Byeon, Ayeong; Park, Hee-Young; Lee, So Young; Park, Hyun S.; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Ju, Hyunchul; Kim, Jin Young

    2017-09-01

    Precise monitoring of electrolyte leaching in high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC) devices during lifetime tests is helpful in making a diagnosis of their quality changes and analyzing their electrochemical performance degradation. Here, we investigate electrolyte leaching in the performance degradation of phosphoric acid (PA)-doped polybenzimidazole (PBI) membrane-based HT-PEMFCs. We first perform quantitative analyses to measure PA leakage during cell operation by spectrophotometric means, and a higher PA leakage rate is detected when the current density is elevated in the cell. Second, long-term degradation tests under various current densities of the cells and electrochemical impedance spectroscopy (EIS) analysis are performed to examine the influence of PA loss on the membrane and electrodes during cell performance degradation. The combined results indicate that PA leakage affect cell performance durability, mostly due to an increase in charge transfer resistance and a decrease in the electrochemical surface area (ECSA) of the electrodes. Additionally, a three-dimensional (3-D) HT-PEMFC model is applied to a real-scale experimental cell, and is successfully validated against the polarization curves measured during various long-term experiments. The simulation results highlight that the PA loss from the cathode catalyst layer (CL) is a significant contributor to overall performance degradation.

  14. Changes in the serotonergic system and in brain-derived neurotrophic factor distribution in the main olfactory bulb of pcd mice before and after mitral cell loss.

    PubMed

    Gómez, C; Curto, G G; Baltanás, F C; Valero, J; O'Shea, E; Colado, M I; Díaz, D; Weruaga, E; Alonso, J R

    2012-01-10

    The serotonergic centrifugal system innervating the main olfactory bulb (MOB) plays a key role in the modulation of olfactory processing. We have previously demonstrated that this system suffers adaptive changes under conditions of a lack of olfactory input. The present work examines the response of this centrifugal system after mitral cell loss in the Purkinje cell degeneration (pcd) mutant mice. The distribution and density of serotonergic centrifugal axons were studied in the MOB of control and pcd mice, both before and after the loss of mitral cells, using serotonin (5-HT) and 5-HT transporter immunohistochemistry. Studies of the amount of 5-HT and its metabolite, 5-hydroxyindole acetic acid (5-HIAA), were performed by means of high-performance liquid chromatography (HPLC), and the relative amounts of brain-derived neurotrophin factor, BDNF, and its major receptor, tropomyosin-related kinase B (TrkB), were measured by Western blot. Our study revealed that the serotonergic system develops adaptive changes after, but not before, mitral cell loss. The lack of the main bulbar projection cells causes a decrease in the serotonergic input received by the MOB, whereas the number of serotonergic cells in the raphe nuclei remains constant. In addition, one of the molecules directly involved in serotonergic sprouting, the neurotrophin BDNF and its main receptor TrkB, underwent alterations in the MOBs of the pcd animals even before the loss of mitral cells. These data indicate that serotonergic function in the MOB is closely related to olfactory activity and that mitral cell loss induces serotonergic plastic responses. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells

    NASA Astrophysics Data System (ADS)

    Gunawan, Oki; Todorov, Teodor K.; Mitzi, David B.

    2010-12-01

    We present a device characterization study for hydrazine-processed kesterite Cu2ZnSn(Se,S)4 (CZTSSe) solar cells with a focus on pinpointing the main loss mechanisms limiting device efficiency. Temperature-dependent study and time-resolved photoluminescence spectroscopy on these cells, in comparison to analogous studies on a reference Cu(In,Ga)(Se,S)2 (CIGS) cell, reveal strong recombination loss at the CZTSSe/CdS interface, very low minority-carrier lifetimes, and high series resistance that diverges at low temperature. These findings help identify the key areas for improvement of these CZTSSe cells in the quest for a high-performance indium- and tellurium-free solar cell.

  16. No dramatic age-related loss of hair cells and spiral ganglion neurons in Bcl-2 over-expression mice or Bax null mice

    PubMed Central

    2010-01-01

    Age-related decline of neuronal function is associated with age-related structural changes. In the central nervous system, age-related decline of cognitive performance is thought to be caused by synaptic loss instead of neuronal loss. However, in the cochlea, age-related loss of hair cells and spiral ganglion neurons (SGNs) is consistently observed in a variety of species, including humans. Since age-related loss of these cells is a major contributing factor to presbycusis, it is important to study possible molecular mechanisms underlying this age-related cell death. Previous studies suggested that apoptotic pathways were involved in age-related loss of hair cells and SGNs. In the present study, we examined the role of Bcl-2 gene in age-related hearing loss. In one transgenic mouse line over-expressing human Bcl-2, there were no significant differences between transgenic mice and wild type littermate controls in their hearing thresholds during aging. Histological analysis of the hair cells and SGNs showed no significant conservation of these cells in transgenic animals compared to the wild type controls during aging. These data suggest that Bcl-2 overexpression has no significant effect on age-related loss of hair cells and SGNs. We also found no delay of age-related hearing loss in mice lacking Bax gene. These findings suggest that age-related hearing loss is not through an apoptotic pathway involving key members of Bcl-2 family. PMID:20637089

  17. Energy breakdown in capacitive deionization.

    PubMed

    Hemmatifar, Ali; Palko, James W; Stadermann, Michael; Santiago, Juan G

    2016-11-01

    We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately linearly with current for fixed charge transfer (resistive power loss scales as square of current and charging time scales as inverse of current). On the other hand, parasitic loss is dominant in low current cases, as the electrodes spend more time at higher voltages. We built a CDI cell with five electrode pairs and standard flow between architecture. We performed a series of experiments with various cycling currents and cut-off voltages (voltage at which current is reversed) and studied these energy losses. To this end, we measured series resistance of the cell (contact resistances, resistance of wires, and resistance of solution in spacers) during charging and discharging from voltage response of a small amplitude AC current signal added to the underlying cycling current. We performed a separate set of experiments to quantify parasitic (or leakage) current of the cell versus cell voltage. We then used these data to estimate parasitic losses under the assumption that leakage current is primarily voltage (and not current) dependent. Our results confirmed that resistive and parasitic losses respectively dominate in the limit of high and low currents. We also measured salt adsorption and report energy-normalized adsorbed salt (ENAS, energy loss per ion removed) and average salt adsorption rate (ASAR). We show a clear tradeoff between ASAR and ENAS and show that balancing these losses leads to optimal energy efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Energy breakdown in capacitive deionization

    DOE PAGES

    Hemmatifar, Ali; Palko, James W.; Stadermann, Michael; ...

    2016-08-12

    We explored the energy loss mechanisms in capacitive deionization (CDI). We hypothesize that resistive and parasitic losses are two main sources of energy losses. We measured contribution from each loss mechanism in water desalination with constant current (CC) charge/discharge cycling. Resistive energy loss is expected to dominate in high current charging cases, as it increases approximately linearly with current for fixed charge transfer (resistive power loss scales as square of current and charging time scales as inverse of current). On the other hand, parasitic loss is dominant in low current cases, as the electrodes spend more time at higher voltages.more » We built a CDI cell with five electrode pairs and standard flow between architecture. We performed a series of experiments with various cycling currents and cut-off voltages (voltage at which current is reversed) and studied these energy losses. To this end, we measured series resistance of the cell (contact resistances, resistance of wires, and resistance of solution in spacers) during charging and discharging from voltage response of a small amplitude AC current signal added to the underlying cycling current. We performed a separate set of experiments to quantify parasitic (or leakage) current of the cell versus cell voltage. We then used these data to estimate parasitic losses under the assumption that leakage current is primarily voltage (and not current) dependent. Our results confirmed that resistive and parasitic losses respectively dominate in the limit of high and low currents. We also measured salt adsorption and report energy-normalized adsorbed salt (ENAS, energy loss per ion removed) and average salt adsorption rate (ASAR). As a result, we show a clear tradeoff between ASAR and ENAS and show that balancing these losses leads to optimal energy efficiency.« less

  19. Adipose-derived stromal cells enhance auditory neuron survival in an animal model of sensory hearing loss.

    PubMed

    Schendzielorz, Philipp; Vollmer, Maike; Rak, Kristen; Wiegner, Armin; Nada, Nashwa; Radeloff, Katrin; Hagen, Rudolf; Radeloff, Andreas

    2017-10-01

    A cochlear implant (CI) is an electronic prosthesis that can partially restore speech perception capabilities. Optimum information transfer from the cochlea to the central auditory system requires a proper functioning auditory nerve (AN) that is electrically stimulated by the device. In deafness, the lack of neurotrophic support, normally provided by the sensory cells of the inner ear, however, leads to gradual degeneration of auditory neurons with undesirable consequences for CI performance. We evaluated the potential of adipose-derived stromal cells (ASCs) that are known to produce neurotrophic factors to prevent neural degeneration in sensory hearing loss. For this, co-cultures of ASCs with auditory neurons have been studied, and autologous ASC transplantation has been performed in a guinea pig model of gentamicin-induced sensory hearing loss. In vitro ASCs were neuroprotective and considerably increased the neuritogenesis of auditory neurons. In vivo transplantation of ASCs into the scala tympani resulted in an enhanced survival of auditory neurons. Specifically, peripheral AN processes that are assumed to be the optimal activation site for CI stimulation and that are particularly vulnerable to hair cell loss showed a significantly higher survival rate in ASC-treated ears. ASC transplantation into the inner ear may restore neurotrophic support in sensory hearing loss and may help to improve CI performance by enhanced AN survival. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  20. Spatial proton exchange membrane fuel cell performance under bromomethane poisoning

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; Artyushkova, Kateryna; St-Pierre, Jean

    2017-02-01

    The poisoning effects of 5 ppm CH3Br in the air on the spatial performance of a proton exchange membrane fuel cell (PEMFC) were studied using a segmented cell system. The presence of CH3Br caused performance loss from 0.650 to 0.335 V at 1 A cm-2 accompanied by local current density redistribution. The observed behavior was explained by possible bromomethane hydrolysis with the formation of Br-. Bromide and bromomethane negatively affected the oxygen reduction efficiency over a wide range of potentials because of their adsorption on Pt, which was confirmed by XPS. Moreover, the PEMFC exposure to CH3Br led to a decrease in the anode and cathode electrochemical surface area (∼52-57%) due to the growth of Pt particles through agglomeration and Ostwald ripening. The PEMFC did not restore its performance after stopping bromomethane introduction to the air stream. However, the H2/N2 purge of the anode/cathode and CV scans almost completely recovered the cell performance. The observed final loss of ∼50 mV was due to an increased activation overpotential. PEMFC exposure to CH3Br should be limited to concentrations much less than 5 ppm due to serious performance loss and lack of self-recovery.

  1. Cancer vulnerabilities unveiled by genomic loss

    PubMed Central

    Nijhawan, Deepak; Zack, Travis I.; Ren, Yin; Strickland, Matthew R.; Lamothe, Rebecca; Schumacher, Steven E.; Tsherniak, Aviad; Besche, Henrike C.; Rosenbluh, Joseph; Shehata, Shyemaa; Cowley, Glenn S.; Weir, Barbara A.; Goldberg, Alfred L.; Mesirov, Jill P.; Root, David E.; Bhatia, Sangeeta N.; Beroukhim, Rameen; Hahn, William C.

    2012-01-01

    Summary Due to genome instability, most cancers exhibit loss of regions containing tumor suppressor genes and collateral loss of other genes. To identify cancer-specific vulnerabilities that are the result of copy-number losses, we performed integrated analyses of genome-wide copy-number and RNAi profiles and identified 56 genes for which gene suppression specifically inhibited the proliferation of cells harboring partial copy-number loss of that gene. These CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes are enriched for spliceosome, proteasome and ribosome components. One CYCLOPS gene, PSMC2, encodes an essential member of the 19S proteasome. Normal cells express excess PSMC2, which resides in a complex with PSMC1, PSMD2, and PSMD5 and acts as a reservoir protecting cells from PSMC2 suppression. Cells harboring partial PSMC2 copy-number loss lack this complex and die after PSMC2 suppression. These observations define a distinct class of cancer-specific liabilities resulting from genome instability. PMID:22901813

  2. The Impact of parasitic loss on solar cells with plasmonic nano-textured rear reflectors.

    PubMed

    Disney, Claire E R; Pillai, Supriya; Green, Martin A

    2017-10-09

    Significant photocurrent enhancement has been demonstrated using plasmonic light-trapping structures comprising nanostructured metallic features at the rear of the cell. These structures have conversely been identified as suffering heightened parasitic absorption into the metal at certain resonant wavelengths severely mitigating benefits of light trapping. In this study, we undertook simulations exploring the relationship between enhanced absorption into the solar cell, and parasitic losses in the metal. These simulations reveal that resonant wavelengths associated with high parasitic losses in the metal could also be associated with high absorption enhancement in the solar cell. We identify mechanisms linking these parasitic losses and absorption enhancements, but found that by ensuring correct design, the light trapping structures will have a positive impact on the overall solar cell performance. Our results clearly show that the large angle scattering provided by the plasmonic nanostructures is the reason for the enhanced absorption observed in the solar cells.

  3. Fast determination of the current loss mechanisms in textured crystalline Si-based solar cells

    NASA Astrophysics Data System (ADS)

    Nakane, Akihiro; Fujimoto, Shohei; Fujiwara, Hiroyuki

    2017-11-01

    A quite general device analysis method that allows the direct evaluation of optical and recombination losses in crystalline silicon (c-Si)-based solar cells has been developed. By applying this technique, the current loss mechanisms of the state-of-the-art solar cells with ˜20% efficiencies have been revealed. In the established method, the optical and electrical losses are characterized from the analysis of an experimental external quantum efficiency (EQE) spectrum with very low computational cost. In particular, we have performed the EQE analyses of textured c-Si solar cells by employing the experimental reflectance spectra obtained directly from the actual devices while using flat optical models without any fitting parameters. We find that the developed method provides almost perfect fitting to EQE spectra reported for various textured c-Si solar cells, including c-Si heterojunction solar cells, a dopant-free c-Si solar cell with a MoOx layer, and an n-type passivated emitter with rear locally diffused solar cell. The modeling of the recombination loss further allows the extraction of the minority carrier diffusion length and surface recombination velocity from the EQE analysis. Based on the EQE analysis results, the current loss mechanisms in different types of c-Si solar cells are discussed.

  4. Use of FEC coding to improve statistical multiplexing performance for video transport over ATM networks

    NASA Astrophysics Data System (ADS)

    Kurceren, Ragip; Modestino, James W.

    1998-12-01

    The use of forward error-control (FEC) coding, possibly in conjunction with ARQ techniques, has emerged as a promising approach for video transport over ATM networks for cell-loss recovery and/or bit error correction, such as might be required for wireless links. Although FEC provides cell-loss recovery capabilities it also introduces transmission overhead which can possibly cause additional cell losses. A methodology is described to maximize the number of video sources multiplexed at a given quality of service (QoS), measured in terms of decoded cell loss probability, using interlaced FEC codes. The transport channel is modelled as a block interference channel (BIC) and the multiplexer as single server, deterministic service, finite buffer supporting N users. Based upon an information-theoretic characterization of the BIC and large deviation bounds on the buffer overflow probability, the described methodology provides theoretically achievable upper limits on the number of sources multiplexed. Performance of specific coding techniques using interlaced nonbinary Reed-Solomon (RS) codes and binary rate-compatible punctured convolutional (RCPC) codes is illustrated.

  5. Topical interferon-gamma neutralization prevents conjunctival goblet cell loss in experimental murine dry eye.

    PubMed

    Zhang, Xiaobo; De Paiva, Cintia S; Su, Zhitao; Volpe, Eugene A; Li, De-Quan; Pflugfelder, Stephen C

    2014-01-01

    Evidence suggests that the cytokine interferon (IFN)-γ released by natural killer and CD4(+) T cells contributes to the conjunctival goblet cell (GC) loss in dry eye. The purpose of this study was to investigate if topical neutralization of IFN-γ prevents or alleviates GC loss in an experimental desiccating stress (DS) model of dry eye. In this study, we found that topical IFN-γ neutralization significantly decreased DS-induced conjunctival GC loss. This was accompanied by decreased epithelial apoptosis, and increased IL-13 and decreased FoxA2 expression in the forniceal conjunctiva. To establish that IFN-γ produced by pathogenic CD4(+) T cells contributes to DS-induced GC loss, adoptive transfer of CD4(+) T cells isolated from DS exposed donors to naïve RAG-1(-/-) recipient mice was performed. Similar to the donor mice, topical IFN-γ neutralization decreased conjunctival GC loss, suppressed apoptosis and increased IL-13 expression in adoptive transfer recipients. In summary, this study demonstrated that topical neutralization of IFN-γ prevents GC loss via modulating apoptosis and maintaining IL-13 signaling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Limiting loss mechanisms in 23% efficient silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aberle, A.G.; Altermatt, P.P.; Heiser, G.

    1995-04-01

    The ``passivated emitter and rear locally diffused`` (PERL) silicon solar cell structure presently demonstrates the highest terrestrial performance of any silicon-based solar cell. This paper presents a detailed investigation of the limiting loss mechanisms in PERL cells exhibiting independently confirmed 1-sun efficiencies of up to 23.0%. Optical, resistive, and recombinative losses are all analyzed under the full range of solar cell operating conditions with the aid of two-dimensional (2D) device simulations. The analysis is based on measurements of the reflectance, quantum efficiency, dark and illuminated current--voltage ({ital I}--{ital V}) characteristics, and properties of the Si--SiO{sub 2} interfaces employed on thesemore » cells for surface passivation. Through the use of the 2D simulations, particular attention has been paid to the magnitudes of the spatially resolved recombination losses in these cells. It is shown that approximately 50% of the recombination losses at the 1-sun maximum power point occur in the base of the cells, followed by recombination losses at the rear and front oxidized surfaces (25% and {lt}25%, respectively). The relatively low fill factors of PERL cells are principally a result of resistive losses; however, the recombination behavior in the base and at the rear surface also contributes. This work predicts that the efficiency of 23% PERL cells could be increased by about 0.7% absolute if ohmic losses were eliminated, a further 1.1% absolute if there were no reflection losses at the nonmetallized front surface regions, about 2.0% by introducing ideal light trapping and eliminating shading losses due to the front metallization, and by about 3.7% absolute if the device had no defect-related recombination losses. New design rules for future efficiency improvements, evident from this analysis, are also presented. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less

  7. Analytical Investigation and Improvement of Performance of a Proton Exchange Membrane (Pem) Fuel Cell in Mobile Applications

    NASA Astrophysics Data System (ADS)

    Khazaee, I.

    2015-05-01

    In this study, the performance of a proton exchange membrane fuel cell in mobile applications is investigated analytically. At present the main use and advantages of fuel cells impact particularly strongly on mobile applications such as vehicles, mobile computers and mobile telephones. Some external parameters such as the cell temperature (Tcell ) , operating pressure of gases (P) and air stoichiometry (λair ) affect the performance and voltage losses in the PEM fuel cell. Because of the existence of many theoretical, empirical and semi-empirical models of the PEM fuel cell, it is necessary to compare the accuracy of these models. But theoretical models that are obtained from thermodynamic and electrochemical approach, are very exact but complex, so it would be easier to use the empirical and smi-empirical models in order to forecast the fuel cell system performance in many applications such as mobile applications. The main purpose of this study is to obtain the semi-empirical relation of a PEM fuel cell with the least voltage losses. Also, the results are compared with the existing experimental results in the literature and a good agreement is seen.

  8. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma

    PubMed Central

    Devarajan, Karthik; Parsons, Theodore; Wang, Qiong; O'Neill, Raymond; Solomides, Charalambos; Peiper, Stephen C.; Testa, Joseph R.; Uzzo, Robert; Yang, Haifeng

    2017-01-01

    Intratumoral heterogeneity (ITH) is a prominent feature of kidney cancer. It is not known whether it has utility in finding associations between protein expression and clinical parameters. We used ITH that is detected by immunohistochemistry (IHC) to aid the association analysis between the loss of SWI/SNF components and clinical parameters.160 ccRCC tumors (40 per tumor stage) were used to generate tissue microarray (TMA). Four foci from different regions of each tumor were selected. IHC was performed against PBRM1, ARID1A, SETD2, SMARCA4, and SMARCA2. Statistical analyses were performed to correlate biomarker losses with patho-clinical parameters. Categorical variables were compared between groups using Fisher's exact tests. Univariate and multivariable analyses were used to correlate biomarker changes and patient survivals. Multivariable analyses were performed by constructing decision trees using the classification and regression trees (CART) methodology. IHC detected widespread ITH in ccRCC tumors. The statistical analysis of the “Truncal loss” (root loss) found additional correlations between biomarker losses and tumor stages than the traditional “Loss in tumor (total)”. Losses of SMARCA4 or SMARCA2 significantly improved prognosis for overall survival (OS). Losses of PBRM1, ARID1A or SETD2 had the opposite effect. Thus “Truncal Loss” analysis revealed hidden links between protein losses and patient survival in ccRCC. PMID:28445125

  9. Electrochemical performance and transport properties of a Nafion membrane in a hydrogen-bromine cell environment

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    1987-01-01

    The overall energy conversion efficiency of a hydrogen-bromine energy storage system is highly dependent upon the characteristics and performance of the ion-exchange membrane utilized as a half-cell separator. The electrochemical performance and transport properties of a duPont Nafion membrane in an aqueous HBr-Br2 environment were investigated. Membrane conductivity data are presented as a function of HBr concentration and temperature for the determination of ohmic voltage losses across the membrane in an operational cell. Diffusion-controlled bromine permeation rates and permeabilities are presented as functions of solution composition and temperature. Relationships between the degree of membrane hydration and the membrane transport characteristics are discussed. The solution chemistry of an operational hydrogen-bromine cell undergoing charge from 45% HBr to 5% HBr is discussed, and, based upon the experimentally observed bromine permeation behavior, predicted cell coulombic losses due to bromine diffusion through the membrane are presented as a function of the cell state-of-charge.

  10. An easy and inexpensive method for quantitative analysis of endothelial damage by using vital dye staining and Adobe Photoshop software.

    PubMed

    Saad, Hisham A; Terry, Mark A; Shamie, Neda; Chen, Edwin S; Friend, Daniel F; Holiman, Jeffrey D; Stoeger, Christopher

    2008-08-01

    We developed a simple, practical, and inexpensive technique to analyze areas of endothelial cell loss and/or damage over the entire corneal area after vital dye staining by using a readily available, off-the-shelf, consumer software program, Adobe Photoshop. The purpose of this article is to convey a method of quantifying areas of cell loss and/or damage. Descemet-stripping automated endothelial keratoplasty corneal transplant surgery was performed by using 5 precut corneas on a human cadaver eye. Corneas were removed and stained with trypan blue and alizarin red S and subsequently photographed. Quantitative assessment of endothelial damage was performed by using Adobe Photoshop 7.0 software. The average difference for cell area damage for analyses performed by 1 observer twice was 1.41%. For analyses performed by 2 observers, the average difference was 1.71%. Three masked observers were 100% successful in matching the randomized stained corneas to their randomized processed Adobe images. Vital dye staining of corneal endothelial cells can be combined with Adobe Photoshop software to yield a quantitative assessment of areas of acute endothelial cell loss and/or damage. This described technique holds promise for a more consistent and accurate method to evaluate the surgical trauma to the endothelial cell layer in laboratory models. This method of quantitative analysis can probably be generalized to any area of research that involves areas that are differentiated by color or contrast.

  11. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer.

    PubMed

    Fraga, Mario F; Ballestar, Esteban; Villar-Garea, Ana; Boix-Chornet, Manuel; Espada, Jesus; Schotta, Gunnar; Bonaldi, Tiziana; Haydon, Claire; Ropero, Santiago; Petrie, Kevin; Iyer, N Gopalakrishna; Pérez-Rosado, Alberto; Calvo, Enrique; Lopez, Juan A; Cano, Amparo; Calasanz, Maria J; Colomer, Dolors; Piris, Miguel Angel; Ahn, Natalie; Imhof, Axel; Caldas, Carlos; Jenuwein, Thomas; Esteller, Manel

    2005-04-01

    CpG island hypermethylation and global genomic hypomethylation are common epigenetic features of cancer cells. Less attention has been focused on histone modifications in cancer cells. We characterized post-translational modifications to histone H4 in a comprehensive panel of normal tissues, cancer cell lines and primary tumors. Using immunodetection, high-performance capillary electrophoresis and mass spectrometry, we found that cancer cells had a loss of monoacetylated and trimethylated forms of histone H4. These changes appeared early and accumulated during the tumorigenic process, as we showed in a mouse model of multistage skin carcinogenesis. The losses occurred predominantly at the acetylated Lys16 and trimethylated Lys20 residues of histone H4 and were associated with the hypomethylation of DNA repetitive sequences, a well-known characteristic of cancer cells. Our data suggest that the global loss of monoacetylation and trimethylation of histone H4 is a common hallmark of human tumor cells.

  12. Patient-Reported Measures of Hearing Loss and Tinnitus in Pediatric Cancer and Hematopoietic Stem Cell Transplantation: A Systematic Review

    ERIC Educational Resources Information Center

    Stark, Daniel; Rosenberg, Abby R.; Johnston, Donna; Knight, Kristin; Caperon, Lizzie; Uleryk, Elizabeth; Frazier, A. Lindsay; Sung, Lillian

    2016-01-01

    Purpose: We identified studies that described use of any patient-reported outcome scale for hearing loss or tinnitus among children and adolescents and young adults (AYAs) with cancer or hematopoietic stem cell transplantation (HSCT) recipients. Method: In this systematic review, we performed electronic searches of OvidSP MEDLINE, EMBASE, and…

  13. Study of the aromatic hydrocarbons poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2016-11-01

    Aromatic hydrocarbons are produced and used in many industrial processes, which makes them hazardous air pollutants. Currently, air is the most convenient oxidant for proton exchange membrane fuel cells (PEMFCs), and air quality is an important consideration because airborne contaminants can negatively affect fuel cell performance. The effects of exposing the cathode of PEMFCs to benzene and naphthalene were investigated using a segmented cell system. The introduction of 2 ppm C6H6 resulted in moderate performance loss of 40-45 mV at 0.2 A cm-2 and 100-110 mV at 1.0 A cm-2 due to benzene adsorption on Pt and its subsequent electrooxidation to CO2 under operating conditions and cell voltages of 0.5-0.8 V. In contrast, PEMFC poisoning by ∼2 ppm of naphthalene led to a decrease in cell performance from 0.66 to 0.13 V at 1.0 A cm-2, which was caused by the strong adsorption of C10H8 onto Pt at cell voltages of 0.2-1.0 V. Naphthalene desorption and hydrogenation only occurred at potentials below 0.2 V. The PEMFCs' performance loss due to each contaminant was recoverable, and the obtained results demonstrated that the fuel cells' exposure to benzene and naphthalene should be limited to concentrations less than 2 ppm.

  14. Design of Organic Solar Cells as a Function of Radiative Quantum Efficiency

    NASA Astrophysics Data System (ADS)

    Godefroid, Blaise; Kozyreff, Gregory

    2017-09-01

    We study the radiative decay, or fluorescence, of excitons in organic solar cells as a function of its geometrical parameters. Contrary to their nonradiative counterpart, fluorescence losses strongly depend on the environment. By properly tuning the thicknesses of the buffer layers between the active regions of the cell and the electrodes, the exciton lifetime and, hence, the exciton diffusion length can be increased. The importance of this phenomenon depends on the radiative quantum efficiency, which is the fraction of the exciton decay that is intrinsically due to fluorescence. Besides this effect, interferences within the cell control the efficiency of sunlight injection into the active layers. The optimal cell design must rely on a consideration of these two aspects. By properly managing fluorescence losses, one can significantly improve the cell performance. To demonstrate this fact, we use realistic material parameters inspired from literature data and obtain an increase of power-conversion efficiency from 11.3% to 12.7%. Conversely, not to take into account the strong dependence of fluorescence on the environment may lead to a suboptimal cell design and a degradation of cell performance. The presence of radiative losses, however small, significantly changes the optimal set of thicknesses. We illustrate the latter situation with experimental material data.

  15. Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices.

    PubMed

    Dupré, Olivier; Niesen, Bjoern; De Wolf, Stefaan; Ballif, Christophe

    2018-01-18

    Multijunction cells may offer a cost-effective route to boost the efficiency of industrial photovoltaics. For any technology to be deployed in the field, its performance under actual operating conditions is extremely important. In this perspective, we evaluate the impact of spectrum, light intensity, and module temperature variations on the efficiency of tandem devices with crystalline silicon bottom cells with a particular focus on perovskite top cells. We consider devices with different efficiencies and calculate their energy yields using field data from Denver. We find that annual losses due to differences between operating conditions and standard test conditions are similar for single-junction and four-terminal tandem devices. The additional loss for the two-terminal tandem configuration caused by current mismatch reduces its performance ratio by only 1.7% when an optimal top cell bandgap is used. Additionally, the unusual bandgap temperature dependence of perovskites is shown to have a positive, compensating effect on current mismatch.

  16. Male Hypogonadism and Germ Cell Loss Caused by a Mutation in Polo-Like Kinase 4

    PubMed Central

    Harris, Rebecca M.; Weiss, Jeffrey

    2011-01-01

    The genetic etiologies of male infertility remain largely unknown. To identify genes potentially involved in spermatogenesis and male infertility, we performed genome-wide mutagenesis in mice with N-ethyl-N-nitrosourea and identified a line with dominant hypogonadism and patchy germ cell loss. Genomic mapping and DNA sequence analysis identified a novel heterozygous missense mutation in the kinase domain of Polo-like kinase 4 (Plk4), altering an isoleucine to asparagine at residue 242 (I242N). Genetic complementation studies using a gene trap line with disruption in the Plk4 locus confirmed that the putative Plk4 missense mutation was causative. Plk4 is known to be involved in centriole formation and cell cycle progression. However, a specific role in mammalian spermatogenesis has not been examined. PLK4 was highly expressed in the testes both pre- and postnatally. In the adult, PLK4 expression was first detected in stage VIII pachytene spermatocytes and was present through step 16 elongated spermatids. Because the homozygous Plk4I242N/I242N mutation was embryonic lethal, all analyses were performed using the heterozygous Plk4+/I242N mice. Testis size was reduced by 17%, and histology revealed discrete regions of germ cell loss, leaving only Sertoli cells in these defective tubules. Testis cord formation (embryonic day 13.5) was normal. Testis histology was also normal at postnatal day (P)1, but germ cell loss was detected at P10 and subsequent ages. We conclude that the I242N heterozygous mutation in PLK4 is causative for patchy germ cell loss beginning at P10, suggesting a role for PLK4 during the initiation of spermatogenesis. PMID:21791561

  17. The electrical power subsystem design for the high energy solar physics spacecraft concepts

    NASA Technical Reports Server (NTRS)

    Kulkarni, Milind

    1993-01-01

    This paper discusses the Electrical Power Subsystem (EPS) requirements, architecture, design description, performance analysis, and heritage of the components for two spacecraft concepts for the High Energy Solar Physics (HESP) Mission. It summarizes the mission requirements and the spacecraft subsystems and instrument power requirements, and it describes the EPS architecture for both options. A trade study performed on the selection of the solar cells - body mounted versus deployed panels - and the optimum number of panels is also presented. Solar cell manufacturing losses, array manufacturing losses, and the radiation and temperature effects on the GaAs/Ge and Si solar cells were considered part of the trade study and are included in this paper. Solar cell characteristics, cell circuit description, and the solar array area design are presented, as is battery sizing analysis performed based on the power requirements during launch and initial spacecraft operations. This paper discusses Earth occultation periods and the battery power requirements during this period as well as shunt control, battery conditioning, and bus regulation schemes. Design margins, redundancy philosophy, and predicted on-orbit battery and solar cell performance are summarized. Finally, the heritage of the components and technology risk assessment are provided.

  18. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  19. NASA Redox cell stack shunt current, pumping power, and cell performance tradeoffs

    NASA Technical Reports Server (NTRS)

    Hagedorn, N.; Hoberecht, M. A.; Thaller, L. H.

    1982-01-01

    The NASA Redox energy storage system is under active technology development. The hardware undergoing laboratory testing is either 310 sq. cm. or 929 sq. cm. (0.33 sq. ft. or 1.0 sq. ft. per cell active area with up to 40 individual cells connected to make up a modular cell stack. This size of hardware allows rather accurate projections to be made of the shunt power/pump power tradeoffs. The modeling studies that were completed on the system concept are reviewed along with the approach of mapping the performance of Redox cells over a wide range of flow rates and depths of discharge of the Redox solutions. Methods are outlined for estimating the pumping and shunt current losses for any type of cell and stack combination. These methods are applicable to a variety of pumping options that are present with Redox systems. The results show that a fully developed Redox system has acceptable parasitic losses when using a fixed flow rate adequate to meet the worst conditions of current density and depth of discharge. These losses are reduced by about 65 percent if variable flow schedules are used. The exact value of the overall parasitics will depend on the specific system requirements of current density, voltage limits, charge, discharge time, etc.

  20. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells

    PubMed Central

    2016-01-01

    Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory–motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution. PMID:26598723

  1. Loss of neurogenesis in Hydra leads to compensatory regulation of neurogenic and neurotransmission genes in epithelial cells.

    PubMed

    Wenger, Y; Buzgariu, W; Galliot, B

    2016-01-05

    Hydra continuously differentiates a sophisticated nervous system made of mechanosensory cells (nematocytes) and sensory-motor and ganglionic neurons from interstitial stem cells. However, this dynamic adult neurogenesis is dispensable for morphogenesis. Indeed animals depleted of their interstitial stem cells and interstitial progenitors lose their active behaviours but maintain their developmental fitness, and regenerate and bud when force-fed. To characterize the impact of the loss of neurogenesis in Hydra, we first performed transcriptomic profiling at five positions along the body axis. We found neurogenic genes predominantly expressed along the central body column, which contains stem cells and progenitors, and neurotransmission genes predominantly expressed at the extremities, where the nervous system is dense. Next, we performed transcriptomics on animals depleted of their interstitial cells by hydroxyurea, colchicine or heat-shock treatment. By crossing these results with cell-type-specific transcriptomics, we identified epithelial genes up-regulated upon loss of neurogenesis: transcription factors (Dlx, Dlx1, DMBX1/Manacle, Ets1, Gli3, KLF11, LMX1A, ZNF436, Shox1), epitheliopeptides (Arminins, PW peptide), neurosignalling components (CAMK1D, DDCl2, Inx1), ligand-ion channel receptors (CHRNA1, NaC7), G-Protein Coupled Receptors and FMRFRL. Hence epitheliomuscular cells seemingly enhance their sensing ability when neurogenesis is compromised. This unsuspected plasticity might reflect the extended multifunctionality of epithelial-like cells in early eumetazoan evolution. © 2015 The Authors.

  2. Patients with Dry Eye Disease and Low Subbasal Nerve Density are at High Risk for an Accelerated Corneal Endothelial Cell Loss

    PubMed Central

    Kheirkhah, Ahmad; Satitpitakul, Vannarut; Hamrah, Pedram; Dana, Reza

    2016-01-01

    Purpose To evaluate the changes in corneal endothelial cell density (CECD) over time in patients with dry eye disease (DED) and to correlate the endothelial cell loss with corneal subbasal nerve density. Methods This retrospective study included 40 eyes of 20 patients with DED. Laser in vivo confocal microscopy had been performed in the central cornea of both eyes at an initial visit and repeated after a mean follow-up of 33.2 ± 10.2 months. The densities of corneal endothelial cells and subbasal nerves were measured in both visits and compared with 13 eyes of 13 normal age-matched controls. Results At the initial visit, the DED group had lower densities of corneal endothelial cells (2620 ± 386 cells/mm2) and subbasal nerves (17.8 ± 7.5 mm/mm2) compared with the control group (2861 ± 292 cells/mm2 and 22.8 ± 3.0 mm/mm2, with P=0.08 and P=0.01, respectively). At the end of follow-up, although there was no significant change in subbasal nerve density (16.7 ± 7.2 mm/mm2, P=0.43), the mean CECD significantly decreased to 2465 ± 391 cells/mm2 (P=0.01), with a mean corneal endothelial cell loss of 2.1 ± 3.6% per year. The endothelial cell loss showed a statistically significant negative correlation with the initial subbasal nerve density (Rs= −0.55, P=0.02). Conclusion Patients with DED have an accelerated corneal endothelial cell loss which is more than what has been reported in the literature for normal aging. Those with lower subbasal nerve density, in particular, are at a higher risk for endothelial cell loss over time. PMID:28060067

  3. Photovoltaic Cell Operation on Mars

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Kerslake, Thomas; Jenkins, Phillip P.; Scheiman, David A.

    2004-01-01

    The Martian surface environment provides peculiar challenges for the operation of solar arrays: low temperature, solar flux with a significant scattered component that varies in intensity and spectrum with the amount of suspended atmospheric dust, and the possibility of performance loss due to dust deposition on the array surface. This paper presents theoretical analyses of solar cell performance on the surface of Mars and measurements of cells under Martian conditions.

  4. SiN sub x passivation of silicon surfaces

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1986-01-01

    The objectives were to perform surface characterization of high efficiency n+/p and p+/n silicon cells, to relate surface density to substrate dopant concentration, and to identify dominant current loss mechanisms in high efficiency cells. The approach was to measure density of states on homogeneously doped substrates with high frequency C-V and Al/SiN sub x/Si structures; to investigate density of states and photoresponse of high efficiency N+/P and P+/N cells; and to conduct I-V-T studies to identify current loss nechanisms in high efficiency cells. Results are given in tables and graphs.

  5. Linearity can account for the similarity among conventional, frequency-doubling, and gabor-based perimetric tests in the glaucomatous macula.

    PubMed

    Sun, Hao; Dul, Mitchell W; Swanson, William H

    2006-07-01

    The purposes of this study are to compare macular perimetric sensitivities for conventional size III, frequency-doubling, and Gabor stimuli in terms of Weber contrast and to provide a theoretical interpretation of the results. Twenty-two patients with glaucoma performed four perimetric tests: a conventional Swedish Interactive Threshold Algorithm (SITA) 10-2 test with Goldmann size III stimuli, two frequency-doubling tests (FDT 10-2, FDT Macula) with counterphase-modulated grating stimuli, and a laboratory-designed test with Gabor stimuli. Perimetric sensitivities were converted to the reciprocal of Weber contrast and sensitivities from different tests were compared using the Bland-Altman method. Effects of ganglion cell loss on perimetric sensitivities were then simulated with a two-stage neural model. The average perimetric loss was similar for all stimuli until advanced stages of ganglion cell loss, in which perimetric loss tended to be greater for size III stimuli than for frequency-doubling and Gabor stimuli. Comparison of the experimental data and model simulation suggests that, in the macula, linear relations between ganglion cell loss and perimetric sensitivity loss hold for all three stimuli. Linear relations between perimetric loss and ganglion cell loss for all three stimuli can account for the similarity in perimetric loss until advanced stages. The results do not support the hypothesis that redundancy for frequency-doubling stimuli is lower than redundancy for size III stimuli.

  6. Bifacial solar cell measurements under standard test conditions and the impact on cell-to-module loss analysis

    NASA Astrophysics Data System (ADS)

    Singh, Jai Prakash; Chai, Jing; Hsian Saw, Min; Khoo, Yong Sheng

    2017-08-01

    Bifacial cells are conventionally measured using gold-plated chuck, which is conductive and reflective. This measurement setup does not portray the actual operating conditions of the bifacial cells in a module. The reflective chuck causes an overestimation of the current due to the cell transmittance for the infrared light. The conductive chuck creates a shorter current flow path in the rear side of the cell and causes an over inflation of the fill factor measurement. In this study, we characterize and quantitatively analyze the difference between the bifacial cell measurements on different mounting chucks and calculate the cell-to-module (CTM) loss. To characterize the optical behavior of the bifacial cell and module, we perform external quantum efficiency, reflectance and transmittance measurements. The electrical behavior of the bifacial cell is studied using in-house developed software Griddler. Using Griddler, we calculate the difference in the fill factor of the bifacial cell due to the measurement using a conductive and non-conductive chuck, and estimate the corresponding CTM resistive losses.

  7. Effect of Storage on Performance of Super Nickel-Cadmium Cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna M.

    1997-01-01

    A study was undertaken to examine the capacity maintenance features of SUPER nickel-cadmium cells when stored for extended periods to determine whether the features change when the same kinds of positive plates as that used in nickel-hydrogen cells are used, The cells maintained their capacity when stored at 0 C in the discharged state and at 0 C in the charged state by continuously trickle charging. There was a capacity loss when stored in the open-circuit condition at 28 C. A cycling test at 17% depth of discharge for 2400 cycles using cells stored at various conditions showed that cells maintained good end of discharge voltage regardless of their storage history. However, the EOD voltages of stored cells were lower by 10 mV compared to those of fresh cells. The capacity at the end of the cycling test decreased for the stored cells by 2-7 Ah. The storage related capacity loss is lower for SUPER Ni-Cd cells compared to that of Ni-H2 cells containing a hydrogen precharge. The results suggest the pivotal role of hydrogen pressure in the capacity loss phenomenon.

  8. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  9. Relationships between PEMFC Cathode Kinetic Losses and Contaminants’ Dipole Moment and Adsorption Energy on Pt

    DOE PAGES

    St-Pierre, Jean; Zhai, Yunfeng; Ge, Junjie

    2016-01-05

    A database summarizing the effects of 21 contaminants on the performance of proton exchange membrane fuel cells (PEMFCs) was used to examine relationships between cathode kinetic losses and contaminant physicochemical parameters. Impedance spectroscopy data were employed to obtain oxygen reduction kinetic resistances by fitting data in the 10-158 Hz range to a simplified equivalent circuit. The contaminant dipole moment and the adsorption energy of the contaminant on a Pt surface were chosen as parameters. Dipole moments did not correlate with dimensionless cathode kinetic resistances. In contrast, adsorption energies were quantitatively and linearly correlated with minimum dimensionless cathode kinetic resistances. Contaminantsmore » influence the oxygen reduction for contaminant adsorption energies smaller than -24.5 kJ mol -1, a value near the high limit of the adsorption energy of O 2 on Pt. Dimensionless cathode kinetic resistances linearly increase with decreasing O 2 adsorption energies below -24.5 kJ mol -1. Measured total cell voltage losses are mostly larger than the cathode kinetic losses calculated from kinetic resistance changes, which indicates the existence of other sources of performance degradation. Modifications to the experimental procedure are proposed to ensure that data are comparable on a similar basis and improve the correlation between contaminant adsorption energy and kinetic cell voltage losses.« less

  10. Relationships between PEMFC Cathode Kinetic Losses and Contaminants’ Dipole Moment and Adsorption Energy on Pt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    St-Pierre, Jean; Zhai, Yunfeng; Ge, Junjie

    A database summarizing the effects of 21 contaminants on the performance of proton exchange membrane fuel cells (PEMFCs) was used to examine relationships between cathode kinetic losses and contaminant physicochemical parameters. Impedance spectroscopy data were employed to obtain oxygen reduction kinetic resistances by fitting data in the 10-158 Hz range to a simplified equivalent circuit. The contaminant dipole moment and the adsorption energy of the contaminant on a Pt surface were chosen as parameters. Dipole moments did not correlate with dimensionless cathode kinetic resistances. In contrast, adsorption energies were quantitatively and linearly correlated with minimum dimensionless cathode kinetic resistances. Contaminantsmore » influence the oxygen reduction for contaminant adsorption energies smaller than -24.5 kJ mol -1, a value near the high limit of the adsorption energy of O 2 on Pt. Dimensionless cathode kinetic resistances linearly increase with decreasing O 2 adsorption energies below -24.5 kJ mol -1. Measured total cell voltage losses are mostly larger than the cathode kinetic losses calculated from kinetic resistance changes, which indicates the existence of other sources of performance degradation. Modifications to the experimental procedure are proposed to ensure that data are comparable on a similar basis and improve the correlation between contaminant adsorption energy and kinetic cell voltage losses.« less

  11. Performance of a vanadium redox flow battery with tubular cell design

    NASA Astrophysics Data System (ADS)

    Ressel, Simon; Laube, Armin; Fischer, Simon; Chica, Antonio; Flower, Thomas; Struckmann, Thorsten

    2017-07-01

    We present a vanadium redox flow battery with a tubular cell design which shall lead to a reduction of cell manufacturing costs and the realization of cell stacks with reduced shunt current losses. Charge/discharge cycling and polarization curve measurements are performed to characterize the single test cell performance. A maximum current density of 70 mAcm-2 and power density of 142 Wl-1 (per cell volume) is achieved and Ohmic overpotential is identified as the dominant portion of the total cell overpotential. Cycling displays Coulomb efficiencies of ≈95% and energy efficiencies of ≈55%. During 113 h of operation a stable Ohmic cell resistance is observed.

  12. Qualification testing of secondary sterilizable silver-zinc cells for use in the Jupiter atmospheric entry probe

    NASA Technical Reports Server (NTRS)

    Manzo, M. A.

    1981-01-01

    A series of qualification tests were run on the secondary, sterilizable silver oxide - zinc cell developed at the NASA Lewis Research Center to determine if the cell was capable of providing mission power requirements for the Jupiter atmospheric entry probe. The cells were tested for their ability to survive radiation at the levels predicted for the Jovian atmosphere with no loss of performance. Cell performance was evaluated under various temperature and loading conditions, and the cells were tested under various environmental conditions related to launch and to deceleration into the Jovian atmosphere. The cell performed acceptably except under the required loading at low temperatures. The cell was redesigned to improve low-temperature performance and energy density. The modified cells improved performance at all temperatures. Results of testing cells of both the original and modified designs are discussed.

  13. Power loss for high-voltage solar-cell arrays

    NASA Technical Reports Server (NTRS)

    Parker, L. W.

    1979-01-01

    Electric field particle collection and power loss are calculated in program written in FORTRAN IV for use on UNIVAC 1100/40 computer. Program incorporates positive and negative and negative charge flows and balance between positive and negative flows is performed by iteration.

  14. Utilizing hot electrons

    DOE PAGES

    Nozik, Arthur J.

    2018-03-01

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  15. Utilizing hot electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nozik, Arthur J.

    In current solar cells, any photon energy exceeding the semiconductor bandgap is lost before being collected, limiting the cell performance. Hot carrier solar cells could avoid these losses. Now, a detailed experimental study and analysis shows that this strategy could lead to an improvement of the photoconversion efficiency in practice.

  16. Optoelectronic Evaluation and Loss Analysis of PEDOT:PSS/Si Hybrid Heterojunction Solar Cells.

    PubMed

    Yang, Zhenhai; Fang, Zebo; Sheng, Jiang; Ling, Zhaoheng; Liu, Zhaolang; Zhu, Juye; Gao, Pingqi; Ye, Jichun

    2017-12-01

    The organic/silicon (Si) hybrid heterojunction solar cells (HHSCs) have attracted considerable attention due to their potential advantages in high efficiency and low cost. However, as a newly arisen photovoltaic device, its current efficiency is still much worse than commercially available Si solar cells. Therefore, a comprehensive and systematical optoelectronic evaluation and loss analysis on this HHSC is therefore highly necessary to fully explore its efficiency potential. Here, a thoroughly optoelectronic simulation is provided on a typical planar polymer poly (3,4-ethylenedioxy thiophene):polystyrenesulfonate (PEDOT:PSS)/Si HHSC. The calculated spectra of reflection and external quantum efficiency (EQE) match well with the experimental results in a full-wavelength range. The losses in current density, which are contributed by both optical losses (i.e., reflection, electrode shield, and parasitic absorption) and electrical recombination (i.e., the bulk and surface recombination), are predicted via carefully addressing the electromagnetic and carrier-transport processes. In addition, the effects of Si doping concentrations and rear surface recombination velocities on the device performance are fully investigated. The results drawn in this study are beneficial to the guidance of designing high-performance PEDOT:PSS/Si HHSCs.

  17. Influence of heat losses on nonlinear fingering dynamics of exothermic autocatalytic fronts

    NASA Astrophysics Data System (ADS)

    D'Hernoncourt, J.; De Wit, A.

    2010-06-01

    Across traveling exothermic autocatalytic fronts, a density jump can be observed due to changes in composition and temperature. These density changes are prone to induce buoyancy-driven convection around the front when the propagation takes place in absence of gel within the gravity field. Most recent experiments devoted to studying such reaction-diffusion-convection dynamics are performed in Hele-Shaw cells, two glass plates separated by a thin gap width and filled by the chemical solutions. We investigate here the influence of heat losses through the walls of such cells on the nonlinear fingering dynamics of exothermic autocatalytic fronts propagating in vertical Hele-Shaw cells. We show that these heat losses increase tip splittings and modify the properties of the flow field. A comparison of the differences between the dynamics in reactors with respectively insulating and conducting walls is performed as a function of the Lewis number Le, the Newton cooling coefficient α quantifying the amplitude of heat losses and the width of the system. We find that tip splitting is enhanced for intermediate values of α while coarsening towards one single finger dominates for insulated systems or large values of α leading to situations equivalent to isothermal ones.

  18. TiO2-nanowire/MWCNT composite with enhanced performance and durability for polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Selvaganesh, S. Vinod; Dhanasekaran, P.; Bhat, Santoshkumar D.

    2017-12-01

    Durability is a major issue and has been the growing focus of research for the commercialization of polymer electrolyte fuel cells (PEFCs). Corrosion of carbon support is a key parameter as it triggers the Pt catalyst degradation and affects cell performance, which in turn affects the longevity of the cells. Herein, we describe a hybrid composite support of TiO2-nanowires and Multiwalled carbon nanotubes (MWCNTs) that offers resistance to corrosion under stressful operating conditions. Titania nanowireswhich have been shown to be more efficient and catalytically active than spherically shaped TiO2. TiO2-MWCNT composites are prepared through a hydrothermal method, followed by Pt deposition using a polyol method. Crystal structure, morphology, and oxidation state are examined through various characterization techniques. Electrochemical performance of TiO2-nanowire/MWCNT composite-supported Pt at various ratios of TiO2/MWCNT is assessed in PEFCs. Pt on support with optimum composition of TiO2-nanowires to MWCNTs exhibits fuel cell performance superior to Pt onMWCNTs. Accelerated stress testing (AST) between 1 and 1.5 V reveals that the designed catalyst on nanocomposite support possesses superior electrochemical activity and shows only 16% loss in catalytic activity in relation to 35% for Pt/MWCNTs even after 6000 potential cycles. Subsequently, the samples were characterized after AST to correlate the loss in fuel cell performance

  19. Deep absorbing porphyrin small molecule for high-performance organic solar cells with very low energy losses.

    PubMed

    Gao, Ke; Li, Lisheng; Lai, Tianqi; Xiao, Liangang; Huang, Yuan; Huang, Fei; Peng, Junbiao; Cao, Yong; Liu, Feng; Russell, Thomas P; Janssen, René A J; Peng, Xiaobin

    2015-06-17

    We designed and synthesized the DPPEZnP-TEH molecule, with a porphyrin ring linked to two diketopyrrolopyrrole units by ethynylene bridges. The resulting material exhibits a very low energy band gap of 1.37 eV and a broad light absorption to 907 nm. An open-circuit voltage of 0.78 V was obtained in bulk heterojunction (BHJ) organic solar cells, showing a low energy loss of only 0.59 eV, which is the first report that small molecule solar cells show energy losses <0.6 eV. The optimized solar cells show remarkable external quantum efficiency, short circuit current, and power conversion efficiency up to 65%, 16.76 mA/cm(2), and 8.08%, respectively, which are the best values for BHJ solar cells with very low energy losses. Additionally, the morphology of DPPEZnP-TEH neat and blend films with PC61BM was studied thoroughly by grazing incidence X-ray diffraction, resonant soft X-ray scattering, and transmission electron microscopy under different fabrication conditions.

  20. Cycling behavior of NCM523/graphite lithium-ion cells in the 3–4.4 V range: Diagnostic studies of full cells and harvested electrodes

    DOE PAGES

    Gilbert, James A.; Bareño, Javier; Spila, Timothy; ...

    2016-09-22

    Energy density of full cells containing layered-oxide positive electrodes can be increased by raising the upper cutoff voltage above the current 4.2 V limit. In this article we examine aging behavior of cells, containing LiNi 0.5Co 0.2Mn 0.3O 2 (NCM523)-based positive and graphite-based negative electrodes, which underwent up to ~400 cycles in the 3-4.4 V range. Electrochemistry results from electrodes harvested from the cycled cells were obtained to identify causes of cell performance loss; these results were complemented with data from X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS) measurements. Our experiments indicate that the full cell capacitymore » fade increases linearly with cycle number and results from irreversible lithium loss in the negative electrode solid electrolyte interphase (SEI) layer. The accompanying electrode potential shift reduces utilization of active material in both electrodes and causes the positive electrode to cycle at higher states-of-charge. Here, full cell impedance rise on aging arises primarily at the positive electrode and results mainly from changes at the electrode-electrolyte interface; the small growth in negative electrode impedance reflects changes in the SEI layer. Our results indicate that cell performance loss could be mitigated by modifying the electrode-electrolyte interfaces through use of appropriate electrode coatings and/or electrolyte additives.« less

  1. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells.

    PubMed

    Kranenburg, O; Scharnhorst, V; Van der Eb, A J; Zantema, A

    1995-10-01

    Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation.

  2. Inhibition of cyclin-dependent kinase activity triggers neuronal differentiation of mouse neuroblastoma cells

    PubMed Central

    1995-01-01

    Studies on the molecular mechanisms underlying neuronal differentiation are frequently performed using cell lines established from neuroblastomas. In this study we have used mouse N1E-115 neuroblastoma cells that undergo neuronal differentiation in response to DMSO. During differentiation, cyclin-dependent kinase (cdk) activities decline and phosphorylation of the retinoblastoma gene product (pRb) is lost, leading to the appearance of a pRb-containing E2F DNA-binding complex. The loss of cdk2 activity is due to a decrease in cdk2 abundance whereas loss of cdk4 activity is caused by strong association with the cdk inhibitor (CKI) p27KIP1 and concurrent loss of cdk4 phosphorylation. Moreover, neuronal differentiation can be induced by overexpression of p27KIP1 or pRb, suggesting that inhibition of cdk activity leading to loss of pRb phosphorylation, is the major determinant for neuronal differentiation. PMID:7559779

  3. Linearity Can Account for the Similarity Among Conventional, Frequency-Doubling, and Gabor-Based Perimetric Tests in the Glaucomatous Macula

    PubMed Central

    DUL, MITCHELL W.; SWANSON, WILLIAM H.

    2006-01-01

    Purposes The purposes of this study are to compare macular perimetric sensitivities for conventional size III, frequency-doubling, and Gabor stimuli in terms of Weber contrast and to provide a theoretical interpretation of the results. Methods Twenty-two patients with glaucoma performed four perimetric tests: a conventional Swedish Interactive Threshold Algorithm (SITA) 10-2 test with Goldmann size III stimuli, two frequency-doubling tests (FDT 10-2, FDT Macula) with counterphase-modulated grating stimuli, and a laboratory-designed test with Gabor stimuli. Perimetric sensitivities were converted to the reciprocal of Weber contrast and sensitivities from different tests were compared using the Bland-Altman method. Effects of ganglion cell loss on perimetric sensitivities were then simulated with a two-stage neural model. Results The average perimetric loss was similar for all stimuli until advanced stages of ganglion cell loss, in which perimetric loss tended to be greater for size III stimuli than for frequency-doubling and Gabor stimuli. Comparison of the experimental data and model simulation suggests that, in the macula, linear relations between ganglion cell loss and perimetric sensitivity loss hold for all three stimuli. Conclusions Linear relations between perimetric loss and ganglion cell loss for all three stimuli can account for the similarity in perimetric loss until advanced stages. The results do not support the hypothesis that redundancy for frequency-doubling stimuli is lower than redundancy for size III stimuli. PMID:16840860

  4. Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater.

    PubMed

    Wen, Qing; Wu, Ying; Cao, Dianxue; Zhao, Lixin; Sun, Qian

    2009-09-01

    Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD=626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m(3) (264 mW/m(2)). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m(2), reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.

  5. Effect of System Contaminants on the Performance of a Proton Exchange Membrane Fuel Cell

    DOE PAGES

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido; ...

    2016-11-10

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less

  6. Ni2P Makes Application of the PtRu Catalyst Much Stronger in Direct Methanol Fuel Cells.

    PubMed

    Chang, Jinfa; Feng, Ligang; Liu, Changpeng; Xing, Wei

    2015-10-12

    PtRu is regarded as the best catalyst for direct methanol fuel cells, but the performance decay resulting from the loss of Ru seriously hinders commercial applications. Herein, we demonstrated that the presence of Ni2 P largely reduces Ru loss, which thus makes the application of PtRu much stronger in direct methanol fuel cells. Outstanding catalytic activity and stability were observed by cyclic voltammetry. Upon integrating the catalyst material into a practical direct methanol fuel cell, the highest maximum power density was achieved on the PtRu-Ni2P/C catalyst among the reference catalysts at different temperatures. A maximum power density of 69.9 mW cm(-2) at 30 °C was obtained on PtRu-Ni2P/C, which is even higher than the power density of the state-of-the-art commercial PtRu catalyst at 70 °C (63.1 mW cm(-2)). Moreover, decay in the performance resulting from Ru loss was greatly reduced owing to the presence of Ni2 P, which is indicative of very promising applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Reliability and performance experience with flat-plate photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1982-01-01

    Statistical models developed to define the most likely sources of photovoltaic (PV) array failures and the optimum method of allowing for the defects in order to achieve a 20 yr lifetime with acceptable performance degradation are summarized. Significant parameters were the cost of energy, annual power output, initial cost, replacement cost, rate of module replacement, the discount rate, and the plant lifetime. Acceptable degradation allocations were calculated to be 0.0001 cell failures/yr, 0.005 module failures/yr, 0.05 power loss/yr, a 0.01 rate of power loss/yr, and a 25 yr module wear-out length. Circuit redundancy techniques were determined to offset cell failures using fault tolerant designs such as series/parallel and bypass diode arrangements. Screening processes have been devised to eliminate cells that will crack in operation, and multiple electrical contacts at each cell compensate for the cells which escape the screening test and then crack when installed. The 20 yr array lifetime is expected to be achieved in the near-term.

  8. Solid Polymer Electrolyte (SPE) fuel cell technology program

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Many previously demonstrated improved fuel cell features were consolidated to (1) obtain a better understanding of the observed characteristics of the operating laboratory-sized cells; (2) evaluate appropriate improved fuel cell features in 0.7 sq ft cell hardware; and (3) study the resultant fuel cell capability and determine its impact on various potential fuel cell space missions. The observed performance characteristics of the fuel cell at high temperatures and high current densities were matched with a theoretical model based on the change in Gibbs free energy voltage with respect to temperature and internal resistance change with current density. Excellent agreement between the observed and model performance was obtained. The observed performance decay with operational time on cells with very low noble metal loadings (0.05 mg/sq cm) were shown to be related to loss in surface area. Cells with the baseline amount of noble catalyst electrode loading demonstrated over 40,000 hours of stable performance.

  9. Thermal stress cycling of GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  10. Development of high efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.; Meier, D. L.; Campbell, R. B.; Schmidt, D. N.; Rai-Choudhury, P.

    1984-01-01

    Web base material is being improved with a goal toward obtaining solar cell efficiencies in excess of 18% (AM1). Carrier loss mechanisms in web silicon was investigated, techniques were developed to reduce carrier recombination in the web, and web cells were fabricated using effective surface passivation. The effect of stress on web cell performance was also investigated.

  11. Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling.

    PubMed

    Kido, Masahiro; Watanabe, Norihiko; Okazaki, Taku; Akamatsu, Takuji; Tanaka, Junya; Saga, Kazuyuki; Nishio, Akiyoshi; Honjo, Tasuku; Chiba, Tsutomu

    2008-10-01

    Because of the lack of animal models developing spontaneous autoimmune hepatitis (AIH), the molecular mechanisms involved in the development of AIH are still unclear. This study aims to examine the regulatory roles of naturally arising CD4(+)CD25(+) regulatory T (Treg) cells and programmed cell death 1 (PD-1)-mediated signaling in the development of AIH. To induce a concurrent loss of Treg cells and PD-1-mediated signaling, neonatal thymectomy (NTx), which severely reduces the number of Treg cells, was performed on PD-1(-/-) mice. After the NTx, we performed histologic examination, assessed autoantibody production and infiltrating cells in the liver, and conducted adoptive transfer experiments. In contrast to NTx mice and PD-1(-/-) mice, NTx-PD-1(-/-) mice produced antinuclear antibodies and developed fatal hepatitis characterized by a CD4(+) and CD8(+) T-cell infiltration invading the parenchyma with massive lobular necrosis. Induction of AIH in NTx-PD-1(-/-) mice was suppressed by transfer of Treg cells, even derived from PD-1(-/-) mice. Transfer of total but not CD4(+) T-cell-depleted splenocytes from NTx-PD-1(-/-) mice into RAG2(-/-) mice induced the development of severe hepatitis. In contrast, the transfer of CD8(+) T-cell-depleted splenocytes triggered only mononuclear infiltrates without massive necrosis of the parenchyma. NTx-PD-1(-/-) mice are the first mouse model of spontaneous fatal AIH. The concurrent loss of Treg cells and PD-1-mediated signaling can induce the development of fatal AIH. Autoreactive CD4(+) T cells are essential for induction of AIH, whereas CD8(+) T cells play an important role in progression to fatal hepatic damage.

  12. Ascorbate transport in pig coronary artery smooth muscle: Na(+) removal and oxidative stress increase loss of accumulated cellular ascorbate.

    PubMed

    Holmes, M E; Samson, S E; Wilson, J X; Dixon, S J; Grover, A K

    2000-01-01

    Pig deendothelialized coronary artery rings and smooth muscle cells cultured from them accumulated ascorbate from medium containing Na(+). The accumulated material was determined to be ascorbate using high-performance liquid chromatography. We further characterized ascorbate uptake in the cultured cells. The data fitted best with a Hill coefficient of 1 for ascorbate (K(asc) = 22 +/- 2 microM) and 2 for Na(+) (K(Na) = 84 +/- 10 mM). The anion transport inhibitors sulfinpyrazone and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS) inhibited the uptake. Transferring cultured cells loaded with (14)C-ascorbate into an ascorbate-free solution resulted in a biphasic loss of radioactivity - an initial sulfinpyrazone-insensitive faster phase and a late sulfinpyrazone-sensitive slower phase. Transferring loaded cells into a Na(+)-free medium increased the loss in the initial phase in a sulfinpyrazone-sensitive manner, suggesting that the ascorbate transporter is bidirectional. Including peroxide or superoxide in the solution increased the loss of radioactivity. Thus, ascorbate accumulated in coronary artery smooth muscle cells by a Na(+)-dependent transporter was lost in an ascorbate-free solution, and the loss was increased by removing Na(+) from the medium or by oxidative stress. Copyright 2000 S. Karger AG, Basel

  13. CF6-6D engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Wulf, R. H.; Kramer, W. H.; Pass, J. E.; Smith, J. J.

    1980-01-01

    Cruise cockpit recordings and test cell performance data in conjunction with hardware inspection data from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6-6D model engine. These studies successfully isolated short-term deterioration from the longer term, and defined areas where a significant reduction in aircraft energy requirements for the 1980's can be realized. Unrestored losses which remain after engine refurbishment represent over 70% of the loss at engine shop visit. Sixty-three percent of the unrestored losses are cost-effective to restore which could reduce fuel consumed by CF6-6D engines in 1980 by 10.9 million gallons.

  14. Hair loss and regeneration performed on animal models

    PubMed Central

    ORASAN, MEDA SANDRA; ROMAN, IULIA IOANA; CONEAC, ANDREI; MURESAN, ADRIANA; ORASAN, REMUS IOAN

    2016-01-01

    Research in the field of reversal hair loss remains a challenging subject. As Minoxidil 2% or 5% and Finasteride are so far the only FDA approved topical treatments for inducing hair regrowth, research is necessary in order to improve therapeutical approach in alopecia. In vitro studies have focused on cultures of a cell type - dermal papilla or organ culture of isolated cell follicles. In vivo research on this topic was performed on mice, rats, hamsters, rabbits, sheep and monkeys, taking into consideration the advantages and disadvantages of each animal model and the depilation options. Further studies are required not only to compare the efficiency of different therapies but more importantly to establish their long term safety. PMID:27547051

  15. Splenic marginal zone lymphoma.

    PubMed

    Piris, Miguel A; Onaindía, Arantza; Mollejo, Manuela

    Splenic marginal zone lymphoma (SMZL) is an indolent small B-cell lymphoma involving the spleen and bone marrow characterized by a micronodular tumoral infiltration that replaces the preexisting lymphoid follicles and shows marginal zone differentiation as a distinctive finding. SMZL cases are characterized by prominent splenomegaly and bone marrow and peripheral blood infiltration. Cells in peripheral blood show a villous cytology. Bone marrow and peripheral blood characteristic features usually allow a diagnosis of SMZL to be performed. Mutational spectrum of SMZL identifies specific findings, such as 7q loss and NOTCH2 and KLF2 mutations, both genes related with marginal zone differentiation. There is a striking clinical variability in SMZL cases, dependent of the tumoral load and performance status. Specific molecular markers such as 7q loss, p53 loss/mutation, NOTCH2 and KLF2 mutations have been found to be associated with the clinical variability. Distinction from Monoclonal B-cell lymphocytosis with marginal zone phenotype is still an open issue that requires identification of precise and specific thresholds with clinical meaning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Theoretical study of ZnS/CdS bi-layer for thin-film CdTe solar cell

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Mohamed, A. S.; Ali, H. M.

    2018-05-01

    The performance of CdTe solar cells is strongly limited by the thickness of CdS window layer. A higher short-circuit current density might be achieved by decreasing the thickness of CdS layer as a result of reducing the absorption losses that take place in this layer. However, it is difficult to obtain uniform and pin-hole free CdS layers thinner than 50 nm. This problem can be solved through increasing the band gap of the window layer by adding a wide band gap semiconductor such as ZnS. In this work, bi-layer ZnS/CdS film was studied as an improved window layer of ITO/ZnS/CdS/CdTe solar cell. The total thickness of ZnS/CdS layer was taken about 60 nm. The effect of optical losses due to reflection at different interfaces in the cell and absorption in ITO, ZnS, CdS as well as the recombination loss have been studied. Finally, the effects of the recombination losses in the space-charge region and the reflectivity from the back contact were taken into accounts. The results revealed that the optical losses of 23% were achieved at 60 nm thickness of CdS and theses losses minimized to 18% when ZnS layer of 30 nm thickness was added to CdS layer. The minimum optical and recombination losses of about 26% were obtained at 1 ns of electron life-time and ∼0.4 μm width of the space-charge region. The maximum efficiency of 18.5% was achieved for ITO/CdS/CdTe cell and the efficiency increased up to 20% for ITO/ZnS/CdS/CdTe cell.

  17. Enhancement of photovoltaic cell performance using periodic triangular gratings

    NASA Astrophysics Data System (ADS)

    Bordatchev, Evgueni; Tauhiduzzaman, Mohammed; Dey, Rajat

    2014-01-01

    The solar energy industry strives to produce more efficient and yet cost effective solar panels each consisting of an array of photovoltaic (PV) cells. The goal of this study was to enhance the performance of PV cells through increasing the cells' optical efficiency defined as a percentage of surface incident light that reaches the PV material. This was achieved through the reduction of waveguide decoupling loss and Fresnel reflection losses by integrating specific nonimaging micro-optical structures on the top surface of existing PV cells. Due to this integration, optical efficiency and performance were increased through the enhancement of light trapping, light guiding, and in-coupling functionalities. Periodic triangular gratings (PTGs) were designed, nonsequentially modeled, optimized, and fabricated in polydimethylsiloxane as proposed micro-optical structures. Then the performance of PV cells with and without integrated PTGs was evaluated and compared. Initial optical simulation results show that an original PV cell (without PTG) exhibits an average optical efficiency of 32.7% over a range of incident light angles between 15 and 90 deg. Integration of the PTG allows the capture of incoming sunlight by total internal reflection (TIR), whence it is reflected back onto the PV cell for multiple consecutive chances for absorption and PV conversion. Geometry of the PTG was optimized with respect to an angle of light incidence of {15, 30, 45, 60, 75, 90} deg. Optical efficiency of the geometrically optimized PTGs was then analyzed under the same set of incident light angles and a maximum optical efficiency of 54.1% was observed for a PV cell with integrated PTG optimized at 90 deg. This is a 53.3% relative improvement in optical performance when compared to an original PV cell. Functional PTG prototypes were then fabricated with optical surface quality (below 10 nm Ra) and integrated with PV cells demonstrating an increase in maximum power by 1.08 mW/cm (7.6% improvement in PV performance) and in short circuit current by 2.39 mA/cm (6.4% improvement).

  18. Circulating cell-derived microparticles in women with pregnancy loss.

    PubMed

    Alijotas-Reig, Jaume; Palacio-Garcia, Carles; Farran-Codina, Immaculada; Zarzoso, Cristina; Cabero-Roura, Luis; Vilardell-Tarres, Miquel

    2011-09-01

    To analyze cell-derived microparticles (cMP) in pregnancy loss (PL), both recurrent miscarriages (RM) and unexplained fetal loss (UFL). Non-matched case-control study was performed at Vall d'Hebron Hospital. Cell-derived microparticles of 53 PL cases, 30 with RM, 16 with UFL, and 7 (RM + UFL), were compared to 38 healthy pregnant women. Twenty healthy non-pregnant women act as controls. Cell-derived microparticles were analyzed through flow cytometry. Results are given as total annexin (A5+), endothelial-(CD144+/CD31+ CD41-), platelet-(CD41+), leukocyte-(CD45+) and CD41- c-MP/μL of plasma. Antiphospholipid antibodies (aPLA) were analyzed according to established methods. Comparing PL versus healthy pregnant, we observed a significant endothelial cMP decrease in PL. When comparing RM subgroup with controls, we observed significant decreases in endothelial cMP. When comparing the PL positive for aPLA versus PL-aPLA-negative, no cMP numbering differences were seen. Pregnancy loss seems to be related to endothelial cell activation and/or consumption. A relationship between aPLA and cMP could not be demonstrated. © 2011 John Wiley & Sons A/S.

  19. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway.

    PubMed

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-02-18

    Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU.

  20. Loss of Smad4 in colorectal cancer induces resistance to 5-fluorouracil through activating Akt pathway

    PubMed Central

    Zhang, B; Zhang, B; Chen, X; Bae, S; Singh, K; Washington, M K; Datta, P K

    2014-01-01

    Background: Higher frequency of Smad4 inactivation or loss of expression is observed in metastasis of colorectal cancer (CRC) leading to unfavourable survival and contributes to chemoresistance. However, the molecular mechanism of how Smad4 regulates chemosensitivity of CRC is unknown. Methods: We evaluated how the loss of Smad4 in CRC enhanced chemoresistance to 5-fluorouracil (5-FU) using two CRC cell lines in vitro and in vivo. Immunoblotting with cell and tumour lysates and immunohistochemical analyses with tissue microarray were performed. Results: Knockdown or loss of Smad4 induced tumorigenicity, migration, invasion, angiogenesis, metastasis, and 5-FU resistance. Smad4 expression in mouse tumours regulated cell-cycle regulatory proteins leading to Rb phosphorylation. Loss of Smad4 activated Akt pathway that resulted in upregulation of anti-apoptotic proteins, Bcl-2 and Bcl-w, and Survivin. Suppression of phosphatidylinositol-3-kinase (PI3K)/Akt pathway by LY294002 restored chemosensitivity of Smad4-deficient cells to 5-FU. Vascular endothelial growth factor-induced angiogenesis in Smad4-deficient cells might also lead to chemoresistance. Low levels of Smad4 expression in CRC tissues correlated with higher levels of Bcl-2 and Bcl-w and with poor overall survival as observed in immunohistochemical staining of tissue microarrays. Conclusion: Loss of Smad4 in CRC patients induces resistance to 5-FU-based therapy through activation of Akt pathway and inhibitors of this pathway may sensitise these patients to 5-FU. PMID:24384683

  1. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    PubMed

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Comparison of corneal endothelial changes following phacoemulsification with transversal and torsional phacoemulsification machines

    PubMed Central

    Ataş, Mustafa; Demircan, Süleyman; Karatepe Haşhaş, Arzu Seyhan; Gülhan, Ahmet; Zararsız, Gökmen

    2014-01-01

    AIM To compare and evaluate the phacoemulsification parameters and postoperative endothelial cell changes of two different phacoemulsification machines, each with different modes, but also to assess the relationship between postoperative endothelial cell loss and the phacoemulsification parameters, as well as the other factors in both groups. METHODS This prospective observational study was comprised of consecutive eligible cataract patients operated with phacoemulsification technique performed by the same surgeon using either a WHITESTAR Signature Ellips FX (transversal, group 1) or Infiniti OZil IP (torsional, group 2) machine. RESULTS The study included 86 patients. Baseline characteristics in the groups were similar. The median nuclear sclerosis grade was 3 (2-4) in the first group and 2 (2-4) in the second group (P=0.265). Both groups had similar phacoemulsification needle times (group 1: 60.63±36 s; group 2: 55.98±30 s; P=0.789). The percentage of endothelial cell loss 30d after surgery ranged from 3% to 15% with a median of 7% in group 1, and from 2% to 13% with a median of 6% in group 2; however, there was no statistically significant difference between the groups (P=0.407). Hexagonality (P=0.794) and the coefficient of variation (CV; P=0.142) did not differ significantly between the groups before and 30d after surgery. A significant positive correlation was found between the endothelial cell loss and nuclear sclerosis grade (group 1: P<0.001; group 2: P<0.001) and between the endothelial cell loss and average phacoemulsification power (group 1: P=0.007; group 2: P=0.008). CONCLUSION Both of these machines were efficient, with similar endothelial cell loss. This endothelial cell loss was related to the increased nuclear sclerosis grade and increased phacoemulsification power. PMID:25349800

  3. Comparison of corneal endothelial changes following phacoemulsification with transversal and torsional phacoemulsification machines.

    PubMed

    Ataş, Mustafa; Demircan, Süleyman; Karatepe Haşhaş, Arzu Seyhan; Gülhan, Ahmet; Zararsız, Gökmen

    2014-01-01

    To compare and evaluate the phacoemulsification parameters and postoperative endothelial cell changes of two different phacoemulsification machines, each with different modes, but also to assess the relationship between postoperative endothelial cell loss and the phacoemulsification parameters, as well as the other factors in both groups. This prospective observational study was comprised of consecutive eligible cataract patients operated with phacoemulsification technique performed by the same surgeon using either a WHITESTAR Signature Ellips FX (transversal, group 1) or Infiniti OZil IP (torsional, group 2) machine. The study included 86 patients. Baseline characteristics in the groups were similar. The median nuclear sclerosis grade was 3 (2-4) in the first group and 2 (2-4) in the second group (P=0.265). Both groups had similar phacoemulsification needle times (group 1: 60.63±36 s; group 2: 55.98±30 s; P=0.789). The percentage of endothelial cell loss 30d after surgery ranged from 3% to 15% with a median of 7% in group 1, and from 2% to 13% with a median of 6% in group 2; however, there was no statistically significant difference between the groups (P=0.407). Hexagonality (P=0.794) and the coefficient of variation (CV; P=0.142) did not differ significantly between the groups before and 30d after surgery. A significant positive correlation was found between the endothelial cell loss and nuclear sclerosis grade (group 1: P<0.001; group 2: P<0.001) and between the endothelial cell loss and average phacoemulsification power (group 1: P=0.007; group 2: P=0.008). Both of these machines were efficient, with similar endothelial cell loss. This endothelial cell loss was related to the increased nuclear sclerosis grade and increased phacoemulsification power.

  4. Heat loss distribution: Impedance and thermal loss analyses in LiFePO4/graphite 18650 electrochemical cell

    NASA Astrophysics Data System (ADS)

    Balasundaram, Manikandan; Ramar, Vishwanathan; Yap, Christopher; Lu, Li; Tay, Andrew A. O.; Palani, Balaya

    2016-10-01

    We report here thermal behaviour and various components of heat loss of 18650-type LiFePO4/graphite cell at different testing conditions. In this regard, the total heat generated during charging and discharging processes at various current rates (C) has been quantified in an Accelerating Rate Calorimeter experiment. Irreversible heat generation, which depends on applied current and internal cell resistance, is measured under corresponding charge/discharge conditions using intermittent pulse techniques. On the other hand, reversible heat generation which depends on entropy changes of the electrode materials during the cell reaction is measured from the determination of entropic coefficient at various states of charge/discharge. The contributions of irreversible and reversible heat generation to the total heat generation at both high and low current rates are evaluated. At every state of charge/discharge, the nature of the cell reaction is found to be either exothermic or endothermic which is especially evident at low C rates. In addition, electrochemical impedance spectroscopy measurements are performed on above 18650 cells at various states of charge to determine the components of internal resistance. The findings from the impedance and thermal loss analysis are helpful for understanding the favourable states of charge/discharge for battery operation, and designing better thermal management systems.

  5. Capacity Loss Studies on High Capacity Li-ion Cells for the Orbiter Advanced Hydraulic Power System

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Irlbeck, Bradley W.

    2004-01-01

    Contents include the following: Introduction. Physical and electrochemical characteristics. Performance evaluation. Rate performance. Internal resistance. Performance at different temperatures. Safety evaluation. Overcharge. Overdischarge. External short. Simulated internal short. Heat-to-vent. Vibration. Drop rest. Vent and burst pressure.

  6. Highly efficient light management for perovskite solar cells

    PubMed Central

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells. PMID:26733112

  7. Highly efficient light management for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  8. Highly efficient light management for perovskite solar cells.

    PubMed

    Wang, Dong-Lin; Cui, Hui-Juan; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2016-01-06

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  9. Develop and test fuel cell powered on-site integrated total energy systems

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Pudick, S.; Wang, C. L.; Werth, J.; Whelan, J. A.

    1984-01-01

    On-going testing of an 11 cell, 10.7 in. x 14 in. stack (about 1 kW) reached 2600 hours on steady load. Nonmetallic cooling plates and an automated electrolyte replenishment system continued to perform well. A 10 cell, 10.7 in. x 14 in. stack was constructed with a modified electrolyte matrix configuration for the purpose of reducing cell IR loss. The desired effect was achieved, but the general cell performance level was irregular. Evaluation is continuing. Preparations for a long term 25 cell, 13 in. x 23 in. test stack (about 4 kW) approached completion. Start up in early May 1984 is expected.

  10. High Beginning-of-Life Efficiency p/n InP Solar Cells

    NASA Technical Reports Server (NTRS)

    Hoffman, Richard W., Jr.; Fatemi, Navid S.; Weizer, Victor G.; Jenkins, Phillip P.; Ringel, Steven A.; Scheiman, David A.; Wilt, David M.; Brinker, David J.

    2004-01-01

    We have achieved a new record efficiency of 17.6%, (AM0) for a p/n InP homo-epitaxy solar cell. In addition, we have eliminated a previously observed photo-degradation of cell performance, which was due to losses in J(sub sc). Cells soaked in AM0 spectrum at one-sun intensity for an hour showed no significant change in cell performance. We have discovered carrier passivation effects when using Zn as the p-type dopant in the OMVPE growth of InP and have found a method to avoid the unexpected effects which result from typical operation of OMVPE cell growth.

  11. Effects of external pressure on the performance and ageing of single-layer lithium-ion pouch cells

    NASA Astrophysics Data System (ADS)

    Mussa, Abdilbari Shifa; Klett, Matilda; Lindbergh, Göran; Lindström, Rakel Wreland

    2018-05-01

    The effects of external compression on the performance and ageing of NMC(1/3)/Graphite single-layer Li-ion pouch cells are investigated using a spring-loaded fixture. The influence of pressure (0.66, 0.99, 1.32, and 1.98 MPa) on impedance is characterized in fresh cells that are subsequently cycled at the given pressure levels. The aged cells are analyzed for capacity fade and impedance rise at the cell and electrode level. The effect of pressure distribution that may occur in large-format cells or in a battery pack is simulated using parallel connected cells. The results show that the kinetic and mass transport resistance increases with pressure in a fresh cell. An optimum pressure around 1.3 MPa is shown to be beneficial to reduce cyclable-lithium loss during cycling. The minor active mass losses observed in the electrodes are independent of the ageing pressure, whereas ageing pressure affects the charge transfer resistance of both NMC and graphite electrodes and the ohmic resistance of the cell. Pressure distribution induces current distribution but the enhanced current throughput at lower pressures cell does not accelerate its ageing. Conclusions from this work can explain some of the discrepancies in non-uniform ageing reported in the literature and indicate coupling between electrochemistry and mechanics.

  12. Energy Level Tuning of Poly(phenylene-alt-dithienobenzothiadiazole)s for Low Photon Energy Loss Solar Cells.

    PubMed

    Heuvel, Ruurd; van Franeker, Jacobus J; Janssen, René A J

    2017-03-01

    Six poly(phenylene- alt -dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The best performance is found for the polymer-fullerene combination with distinct phase separation and crystalline domains. This improves the maximum external quantum efficiency for charge formation and collection to 66%. The resulting higher photocurrent compensates for the relatively large energy loss per photon ( E loss = 0.97 eV) in achieving a high PCE. By contrast, the poly-mer that provides a reduced energy loss ( E loss = 0.49 eV) gives a lower photocurrent and a reduced PCE of 1.8% because the external quantum efficiency of 17% is limited by a suboptimal morphology and a reduced driving force for charge transfer.

  13. A Microfluidic Cell Concentrator

    PubMed Central

    Warrick, Jay; Casavant, Ben; Frisk, Megan; Beebe, David

    2010-01-01

    Cell concentration via centrifugation is a ubiquitous step in many cell culture procedures. At the macroscale, centrifugation suffers from a number of limitations particularly when dealing with small numbers of cells (e.g., less than 50,000). On the other hand, typical microscale methods for cell concentration can affect cell physiology and bias readouts of cell behavior and function. In this paper, we present a microfluidic concentrator device that utilizes the effects of gravity to allow cells to gently settle out of a suspension into a collection region without the use of specific adhesion ligands. Dimensional analysis was performed to compare different device designs and was verified with flow modeling to optimize operational parameters. We are able to concentrate low-density cell suspensions in a microfluidic chamber, achieving a cell loss of only 1.1 ± 0.6% (SD, n=7) with no observed loss during a subsequent cell staining protocol which incorporates ~36 complete device volume replacements. This method provides a much needed interface between rare cell samples and microfluidic culture assays. PMID:20843010

  14. Technique for Low Amperage Potline Operation for Electricity Grid Storage

    NASA Astrophysics Data System (ADS)

    Taylor, Mark P.; Chen, John J. J.

    2015-03-01

    Following a critical review and analysis of steady-state energy balance windows for large modern cell technologies [ Taylor et al ., Met. Mat. Transactions E, 9th Sept. 2014], the issue of a substantial reduction in energy input and heat output to a specific cell technology is addressed in this paper. To investigate the feasibility of such a reduction, the dynamic response to substantial changes in cell amperage and energy input must be quantified. If large amperage reductions can be shown to be feasible and to have no major detrimental affects, a flexible amperage operating philosophy would allow the use of smelting cells as an energy reservoir in the following way: in times of high electricity demand the cells would operate at reduced amperage, releasing electricity to the grid, while in times of low demand or an over-supply of electricity on the grid, the cells would store the surplus electricity in the form of additional aluminum metal. However, to take the above concept out of the realms of the theoretical, it will first be necessary to demonstrate an ability to predict and control the response of the cell to such changes in energy input through regulating the heat losses from the cell. The process of regulation of cell heat loss is quite foreign to operators of aluminum smelters, because the technology to regulate heat loss from smelting cells has not existed previously. This technology does now exist in the form of patented heat exchangers [ Taylor et al ., US Patent 7,901,617 B2, Mar. 8, 2011], but its impact on smelter cell walls must be examined in a dynamic analysis to determine the effect on the molten bath temperature and liquid mass within the cell. The objective of this paper therefore is to perform a first-order analysis of this problem, and to identify the key scientific issues in regulating cell heat loss and in the operating philosophy of heat loss regulation.

  15. Radiation and temperature effects in gallium arsenide, indium phosphide and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.

    1987-01-01

    The effects of radiation on performance are determined for both n(+)p and p(+)n GaAs and InP cells and for silicon n(+)p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1 MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation induced boron-oxygen defect. Comparison of radiation damage in both p(+)n and n(+)p GaAs cells yields a decreased radiation resistance for the n(+)p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n(+)p configuration is found to have greater radiation resistance than the p(+)n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/cT which predicts that increased Voc should results in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP a result which is attributed to variations in cell processing.

  16. Radiation and temperature effects in gallium arsenide, indium phosphide, and silicon solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Statler, R. L.

    1987-01-01

    The effects of radiation on performance are determined for both n+p and p+n GaAs and InP cells and for silicon n+p cells. It is found that the radiation resistance of InP is greater than that of both GaAs and Si under 1-MeV electron irradiation. For silicon, the observed decreased radiation resistance with decreased resistivity is attributed to the presence of a radiation-induced boron-oxygen defect. Comparison of radiation damage in both p+n and n+p GaAs cells yields a decreased radiation resistance for the n+p cell attributable to increased series resistance, decreased shunt resistance, and relatively greater losses in the cell's p-region. For InP, the n+p configuration is found to have greater radiation resistance than the p+n cell. The increased loss in this latter cell is attributed to losses in the cell's emitter region. Temperature dependency results are interpreted using a theoretical relation for dVoc/dT, which predicts that increased Voc should result in decreased numerical values for dPm/dT. The predicted correlation is observed for GaAs but not for InP, a result which is attributed to variations in cell processing.

  17. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators.

    PubMed

    Bernardi, Michael P; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-06-26

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses.

  18. Impacts of propagating, frustrated and surface modes on radiative, electrical and thermal losses in nanoscale-gap thermophotovoltaic power generators

    PubMed Central

    Bernardi, Michael P.; Dupré, Olivier; Blandre, Etienne; Chapuis, Pierre-Olivier; Vaillon, Rodolphe; Francoeur, Mathieu

    2015-01-01

    The impacts of radiative, electrical and thermal losses on the performances of nanoscale-gap thermophotovoltaic (nano-TPV) power generators consisting of a gallium antimonide cell paired with a broadband tungsten and a radiatively-optimized Drude radiator are analyzed. Results reveal that surface mode mediated nano-TPV power generation with the Drude radiator outperforms the tungsten radiator, dominated by frustrated modes, only for a vacuum gap thickness of 10 nm and if both electrical and thermal losses are neglected. The key limiting factors for the Drude- and tungsten-based devices are respectively the recombination of electron-hole pairs at the cell surface and thermalization of radiation with energy larger than the cell absorption bandgap. A design guideline is also proposed where a high energy cutoff above which radiation has a net negative effect on nano-TPV power output due to thermal losses is determined. It is shown that the power output of a tungsten-based device increases by 6.5% while the cell temperature decreases by 30 K when applying a high energy cutoff at 1.45 eV. This work demonstrates that design and optimization of nano-TPV devices must account for radiative, electrical and thermal losses. PMID:26112658

  19. Impedance based time-domain modeling of lithium-ion batteries: Part I

    NASA Astrophysics Data System (ADS)

    Gantenbein, Sophia; Weiss, Michael; Ivers-Tiffée, Ellen

    2018-03-01

    This paper presents a novel lithium-ion cell model, which simulates the current voltage characteristic as a function of state of charge (0%-100%) and temperature (0-30 °C). It predicts the cell voltage at each operating point by calculating the total overvoltage from the individual contributions of (i) the ohmic loss η0, (ii) the charge transfer loss of the cathode ηCT,C, (iii) the charge transfer loss and the solid electrolyte interface loss of the anode ηSEI/CT,A, and (iv) the solid state and electrolyte diffusion loss ηDiff,A/C/E. This approach is based on a physically meaningful equivalent circuit model, which is parametrized by electrochemical impedance spectroscopy and time domain measurements, covering a wide frequency range from MHz to μHz. The model is exemplarily parametrized to a commercial, high-power 350 mAh graphite/LiNiCoAlO2-LiCoO2 pouch cell and validated by continuous discharge and charge curves at varying temperature. For the first time, the physical background of the model allows the operator to draw conclusions about the performance-limiting factor at various operating conditions. Not only can the model help to choose application-optimized cell characteristics, but it can also support the battery management system when taking corrective actions during operation.

  20. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    DOE PAGES

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; ...

    2018-03-04

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less

  1. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this paper, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency thanmore » those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Finally, Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.« less

  2. What makes lithium substituted polyacrylic acid a better binder than polyacrylic acid for silicon-graphite composite anodes?

    NASA Astrophysics Data System (ADS)

    Hays, Kevin A.; Ruther, Rose E.; Kukay, Alexander J.; Cao, Pengfei; Saito, Tomonori; Wood, David L.; Li, Jianlin

    2018-04-01

    Lithium substituted polyacrylic acid (LiPAA) has previously been demonstrated as a superior binder over polyacrylic acid (PAA) for Si anodes, but from where does this enhanced performance arise? In this study, full cells are assembled with PAA and LiPAA based Si-graphite composite anodes that dried at temperatures from 100 °C to 200 °C. The performance of full cells containing PAA based Si-graphite anodes largely depend on the secondary drying temperature, as decomposition of the binder is correlated to increased electrode moisture and a rise in cell impedance. Full cells containing LiPAA based Si-graphite composite electrodes display better Coulombic efficiency than those with PAA, because of the electrochemical reduction of the PAA binder. This is identified by attenuated total reflectance Fourier transform infrared spectrometry and observed gassing during the electrochemical reaction. Coulombic losses from the PAA and Si SEI, along with depletion of the Si capacity in the anode results in progressive underutilization of the cathode and full cell capacity loss.

  3. Visual acuity, refractive error, and endothelial cell density 6 and 12 months after deep lamellar endothelial keratoplasty.

    PubMed

    Fillmore, Parley D; Sutphin, John E; Goins, Kenneth M

    2010-06-01

    To report the visual acuity, refractive outcome, and endothelial cell density (ECD) up to 1 year after deep lamellar endothelial keratoplasty (DLEK) in a large prospective series. Eighty-six DLEK procedures were performed and evaluated in a prospective interventional case series. Subgroup analysis was performed to compare results from large-incision (9 mm) DLEK (n = 7), small-incision (5-8 mm) DLEK (n = 70), and penetrating keratoplasty (PKP) conversion (n = 9). Outcome measures included best-corrected visual acuity (BCVA), manifest refraction, corneal topographic astigmatism, and ECD. The percentage of eyes that achieved a BCVA of 20/40 or better after DLEK was 55% at 6 months, increasing to 61% at 1 year. Topographic astigmatism and spherical equivalent were not significantly different than preoperative measurements up to 1 year after DLEK (P > 0.05). An endothelial cell loss of 40% at 6 months and 48% by 1 year was observed. The mean ECD after DLEK was 1831 +/- 472 cells per square millimeter at 6 months and 1569 +/- 601 cells per square millimeter at 12 months. When evaluated by incision size, the ECD was better at 2066 +/- 558 cells per square millimeter with a 9-mm incision compared with only 1516 +/- 585 cells per square millimeter with a smaller incision at 1 year, although this did not reach significance (P = 0.075). The endothelial cell loss after penetrating keratoplasty conversion was similar to that in the large-incision group (P > 0.05). DLEK provides good visual acuity (> or =20/40) for the majority of patients at 1 year with stable refractive error compared with baseline. Refractive stability was observed with both large- and small-incision DLEKs; however, worrisome endothelial cell loss was observed, especially with a small-incision technique.

  4. Dose-dependent effects of ouabain on spiral ganglion neurons and Schwann cells in mouse cochlea.

    PubMed

    Zhang, Zhi-Jian; Guan, Hong-Xia; Yang, Kun; Xiao, Bo-Kui; Liao, Hua; Jiang, Yang; Zhou, Tao; Hua, Qing-Quan

    2017-10-01

    This study aimed in fully investigating the toxicities of ouabain to mouse cochlea and the related cellular environment, and providing an optimal animal model system for cell transplantation in the treatment of auditory neuropathy (AN) and sensorineural hearing loss (SNHL). Different dosages of ouabain were applied to mouse round window. The auditory brainstem responses and distortion product otoacoustic emissions were used to evaluate the cochlear function. The immunohistochemical staining and cochlea surface preparation were performed to detect the spiral ganglion neurons (SGNs), Schwann cells and hair cells. Ouabain at the dosages of 0.5 mM, 1 mM and 3 mM selectively and permanently destroyed SGNs and their functions, while leaving the hair cells relatively intact. Ouabain at 3 mM resulted in the most severe SGNs loss and induced significant loss of Schwann cells started as early as 7 days and with further damages at 14 and 30 days after ouabain exposure. The application of ouabain to mouse round window induces damages of SGNs and Schwann cells in a dose- and time-dependent manner, this study established a reliable and accurate animal model system of AN and SNHL.

  5. Further insight on recombination losses in the intrinsic layer of a-Si:H solar cells using computer modeling tools

    NASA Astrophysics Data System (ADS)

    Rubinelli, Francisco A.; Ramirez, Helena; Ruiz, Carlos M.; Schmidt, Javier A.

    2017-05-01

    Recombination losses of a-Si:H based p-i-n solar cells in the annealed state are analyzed with device computer modeling. Under AM1.5 illumination, the recombination rate in the intrinsic layer is shown to be controlled by a combination of losses through defect and tail states. The influence of the defect concentration on the characteristic parameters of a solar cell is analyzed. The impact on the light current-voltage characteristic curve of adopting very low free carrier mobilities and a high density of states at the band edge is explored under red and AM1.5 illumination. The distribution of trapped charge, electric field, and recombination loses inside the intrinsic layer is examined, and their influence on the solar cell performance is discussed. Solar cells with intrinsic layers deposited with and without hydrogen dilution are examined. It is found that the photocurrent at -2 V is not always a good approximation of the saturated reverse-bias photocurrent in a-Si:H p-i-n solar cells at room temperature. The importance of using realistic electrical parameters in solar cell simulations is emphasized.

  6. Outcomes of cataract surgery in eyes with a low corneal endothelial cell density.

    PubMed

    Yamazoe, Katsuya; Yamaguchi, Takefumi; Hotta, Kazuki; Satake, Yoshiyuki; Konomi, Kenji; Den, Seika; Shimazaki, Jun

    2011-12-01

    To evaluate the surgical outcomes of cataract surgery in eyes with a low preoperative corneal endothelial cell density (ECD) and analyze factors affecting the prognosis. Tokyo Dental College, Ichikawa General Hospital, Chiba, Japan. Noncomparative case series. Eyes with a preoperative ECD of less than 1000 cells/mm(2) that had cataract surgery between 2006 and 2010 were identified. Standard phacoemulsification with intraocular lenses was performed using the soft-shell technique. The rate of endothelial cell loss, incidence of bullous keratopathy, and risk factors were retrospectively assessed. Sixty-one eyes (53 patients) with a low preoperative ECD were identified. Preoperative diagnoses or factors regarded as causing endothelial cell loss included Fuchs dystrophy (20 eyes), laser iridotomy (16 eyes), keratoplasty (10 eyes), traumatic injury (3 eyes), trabeculectomy (3 eyes), corneal endotheliitis (2 eyes), and other (7 eyes). The corrected distance visual acuity improved from 0.59 ± 0.49 logMAR preoperatively to 0.32 ± 0.48 logMAR postoperatively (P<.001). The mean ECD was 693 ± 172 cells/mm(2) and 611 ± 203 cells/mm(2), respectively (P=.001). The mean rate of endothelial cell loss was 11.5% ± 23.4%. Greater ECD loss was associated with a shorter axial length (AL) (<23.0 mm) and diabetes mellitus. Bullous keratopathy developed in 9 eyes (14.8%) and was associated with posterior capsule rupture. The results suggest that modern techniques for cataract surgery provide excellent visual rehabilitation in many patients with a low preoperative ECD. Shorter AL, diabetes mellitus, and posterior capsule rupture were risk factors for greater ECD loss and bullous keratopathy. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  7. The overall pathological status of the left hippocampus determines preoperative verbal memory performance in left mesial temporal lobe epilepsy.

    PubMed

    Witt, Juri-Alexander; Coras, Roland; Schramm, Johannes; Becker, Albert J; Elger, Christian E; Blümcke, Ingmar; Helmstaedter, Christoph

    2014-04-01

    Studies on hippocampal cell loss in epilepsy have produced diverging evidence as to which subfields are specifically related to memory. This may be due to rather small and often heterogeneous samples, or to different memory measures. Therefore, the current study examined hippocampal cell densities and memory in a large sample of patients with solely mesial temporal lobe epilepsy (mTLE), employing measures with proven sensitivity to mesiotemporal pathology. In 104 patients who had undergone epilepsy surgery for mTLE, we evaluated the role of segmental hippocampal cell loss and its underlying factor structure with regard to presurgical verbal and figural memory while controlling for side-of-surgery and hemispheric dominance. First of all, patients showed material-specific memory impairment concordant with the lateralization of epilepsy. Factor analysis of segmental cell loss revealed a single factor reflecting the overall integrity of the hippocampus. The overall pathological status of the left hippocampus correlated with verbal memory parameters (r = 0.33-0.34, P < 0.05), especially when controlling for atypical hemispheric dominance (r = 0.50-0.57, P < 0.01), and explained up to 33% of the observed variance. Further analyses revealed no superior role of a single subfield or cell loss pattern for memory performance. No systematic relations between neuronal cell densities of the right hippocampus and memory function were found, nor did left or right hippocampal pathology explain figural memory parameters. The results suggest that the overall pathological status of the left hippocampus - rather than a specific subfield pathology - is predictive for verbal memory in mTLE. The finding that figural memory parameters, although sensitive to right mTLE, were not related to neuronal cell densities of the right hippocampus, puts the left/right hippocampus verbal/nonverbal memory dichotomy into perspective. Copyright © 2013 Wiley Periodicals, Inc.

  8. The South Asian cataract management study: complications, vision outcomes, and corneal endothelial cell loss in a randomized multicenter clinical trial comparing intracapsular cataract extraction with and without anterior chamber intraocular lens implantation.

    PubMed

    Snellingen, T; Shrestha, J K; Huq, F; Husain, R; Koirala, S; Rao, G N; Pokhrel, R P; Kolstad, A; Upadhyay, M P; Apple, D J; Arnesen, E; Cheng, H; Olsen, E G; Vogel, M

    2000-02-01

    To determine clinical outcomes of primary intracapsular cataract surgery with and without implantation of anterior chamber lenses. A multicenter randomized clinical trial. One thousand two hundred twenty-nine male and female patients 40-75 years of age with senile cataract. Study patients were recruited from screening eye camps and outpatient clinics. Randomization to the two treatment groups was performed after screening for predetermined inclusion and exclusion criteria. Demographics, visual acuity, intraocular pressures, and corneal endothelial cell data were recorded before surgery and at 6 weeks, 12 months, and 24 months after surgery. Monitoring of the study was secured by a standardized image documentation procedure on all patients using the IMAGEnet digital imaging system. Analysis of corneal endothelial cell images was performed with the Cell Soft software (Topcon Corporation, Japan). Visual acuity and central corneal endothelial cell loss. The patients were randomized to intraocular lens (IOL; n = 616) and no IOL (n = 613) implantation. Surgical complications were reported in 177 (14.4%) patients (IOL = 14.8%; no IOL = 14.0%). The most frequent complication observed was vitreous loss which occurred in 10.3% of eyes (IOL = 11.2%; no IOL = 9.5%). At the final examination (2 years after surgery), 88% of the operated eyes had a best corrected vision of 6/18 or better (IOL = 88.8%; no IOL = 86.6%). Analysis of corneal endothelial cell data showed a small but significantly greater cell loss 6 weeks after surgery in eyes with IOL compared with those without IOL, but no overall difference was found between the treatment groups in the long term follow-up. The findings indicate that there is a rationale for the use of anterior chamber intraocular lenses in primary intracapsular cataract surgery.

  9. Cycling Performance of the Iron-Chromium Redox Energy Storage System

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.

    1985-01-01

    Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.

  10. Cycling performance of the iron-chromium redox energy storage system

    NASA Technical Reports Server (NTRS)

    Gahn, R. F.; Hagedorn, N. H.; Johnson, J. A.

    1985-01-01

    Extended charge-discharge cycling of this electrochemical storage system at 65 C was performed on 14.5 sq cm single cells and a four cell, 867 sq cm bipolar stack. Both the anolyte and catholyte reactant fluids contained 1 molar concentrations of iron and chromium chlorides in hydrochloric acid and were separated by a low-selectivity, cation-exchange membrane. The effect of cycling on the chromium electrode and the cation-exchange membrane was determined. Bismuth and bismuth-lead catalyzed chromium electrodes and a radiation-grafted polyethylene membrane were evaluated by cycling between 5 and 85 percent state-of-charge at 80 mA/sq cm and by periodic charge-discharge polarization measurements to 140 mA/sq cm. Gradual performance losses were observed during cycling but were recoverable by completely discharging the system. Good scale-up to the 867 sq cm stack was achieved. The only difference appeared to be an unexplained resistive-type loss which resulted in a 75 percent W-hr efficiency (at 80 mA/sq cm versus 81 percent for the 14.5 sq cm cell). A new rebalance cell was developed to maintain reactant ionic balance. The cell successfully reduced ferric ions in the iron reactant stream to ferrous ions while chloride ions were oxidized to chlorine gas.

  11. Assessment of genetic and epigenetic variation during long-term Taxus cell culture.

    PubMed

    Fu, Chunhua; Li, Liqin; Wu, Wenjuan; Li, Maoteng; Yu, Xiaoqing; Yu, Longjiang

    2012-07-01

    Gradual loss of secondary metabolite production is a common obstacle in the development of a large-scale plant cell production system. In this study, cell morphology, paclitaxel (Taxol®) biosynthetic ability, and genetic and epigenetic variations in the long-term culture of Taxus media cv Hicksii cells were assessed over a 5-year period to evaluate the mechanisms of the loss of secondary metabolites biosynthesis capacity in Taxus cell. The results revealed that morphological variations, gradual loss of paclitaxel yield and decreased transcriptional level of paclitaxel biosynthesis key genes occurred during long-term subculture. Genetic and epigenetic variations in these cultures were also studied at different times during culture using amplified fragment-length polymorphism (AFLP), methylation-sensitive amplified polymorphism (MSAP), and high-performance liquid chromatography (HPLC) analyses. A total of 32 primer combinations were used in AFLP amplification, and none of the AFLP loci were found to be polymorphic, thus no major genetic rearrangements were detected in any of the tested samples. However, results from both MSAP and HPLC indicated that there was a higher level of DNA methylation in the low-paclitaxel yielding cell line after long-term culture. Based on these results, we proposed that accumulation of paclitaxel in Taxus cell cultures might be regulated by DNA methylation. To our knowledge, this is the first report of increased methylation with the prolongation of culture time in Taxus cell culture. It provides substantial clues for exploring the gradual loss of the taxol biosynthesis capacity of Taxus cell lines during long-term subculture. DNA methylation maybe involved in the regulation of paclitaxel biosynthesis in Taxus cell culture.

  12. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions

    PubMed Central

    2017-01-01

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells. PMID:28920081

  13. Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions.

    PubMed

    Futscher, Moritz H; Ehrler, Bruno

    2017-09-08

    Perovskite/Si tandem solar cells have the potential to considerably out-perform conventional solar cells. Under standard test conditions, perovskite/Si tandem solar cells already outperform the Si single junction. Under realistic conditions, however, as we show, tandem solar cells made from current record cells are hardly more efficient than the Si cell alone. We model the performance of realistic perovskite/Si tandem solar cells under real-world climate conditions, by incorporating parasitic cell resistances, nonradiative recombination, and optical losses into the detailed-balance limit. We show quantitatively that when optimizing these parameters in the perovskite top cell, perovskite/Si tandem solar cells could reach efficiencies above 38% under realistic conditions, even while leaving the Si cell untouched. Despite the rapid efficiency increase of perovskite solar cells, our results emphasize the need for further material development, careful device design, and light management strategies, all necessary for highly efficient perovskite/Si tandem solar cells.

  14. Improved Performance in Mammalian Cell Perfusion Cultures by Growth Inhibition.

    PubMed

    Wolf, Moritz K F; Closet, Aurélie; Bzowska, Monika; Bielser, Jean-Marc; Souquet, Jonathan; Broly, Hervé; Morbidelli, Massimo

    2018-05-21

    Mammalian cell perfusion cultures represent a promising alternative to the current fed-batch technology for the production of various biopharmaceuticals. Long-term operation at a fixed viable cell density (VCD) requires a viable culture and a constant removal of excessive cells. Product loss in the cell removing bleed stream deteriorates the process yield. In this study, the authors investigate the use of chemical and environmental growth inhibition on culture performance by either adding valeric acid (VA) to the production media or by reducing the culture temperature (33.0 °C) with respect to control conditions (36.5 °C, no VA). Low temperature significantly reduces cellular growth, thus, resulting in lower bleed rates accompanied by a reduced product loss of 11% compared to 26% under control conditions. Additionally, the cell specific productivity of the target protein improves and maintained stable leading to media savings per mass of product. VA shows initially an inhibitory effect on cellular growth. However, cells seemed to adapt to the presence of the inhibitor resulting in a recovery of the cellular growth. Cell cycle and Western blot analyses support the observed results. This work underlines the role of temperature as a key operating variable for the optimization of perfusion cultures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Calendar aging of a graphite/LiFePO4 cell

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Bernard, J.; Revel, R.; Pélissier, S.; Duclaud, F.; Delacourt, C.

    2012-06-01

    Graphite/LFP commercial cells are stored under 3 different conditions of temperature (30 °C, 45 °C, and 60 °C) and SOC (30%, 65%, and 100%) during up to 8 months. Several non-destructive electrochemical tests are performed at different storage times in order to understand calendar aging phenomena. After storage, all the cells except those stored at 30 °C exhibited capacity fade. The extent of capacity fade strongly increases with storage temperature and to a lesser extent with the state of charge. From in-depth data analysis, cyclable lithium loss was identified as the main source of capacity fade. This loss arises from side reactions taking place at the anode, e.g. solvent decomposition leading to the growth of the solid electrolyte interphase. However, the existence of reversible capacity loss also suggests the presence of side reactions occurring at the cathode, which are less prominent than those at the anode. The analyses do not show any evidence about active-material loss in the electrodes. The cells do not suffer substantial change in internal resistance. According to EIS analysis, the overall impedance increase is 70% or less.

  16. The cell-in-series method: A technique for accelerated electrode degradation in redox flow batteries

    DOE PAGES

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.; ...

    2015-11-21

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  17. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  18. Design guideline for Si/organic hybrid solar cell with interdigitated back contact structure

    NASA Astrophysics Data System (ADS)

    Bimo Prakoso, Ari; Rusli; Li, Zeyu; Lu, Chenjin; Jiang, Changyun

    2018-03-01

    We study the design of Si/organic hybrid (SOH) solar cells with interdigitated back contact (IBC) structure. SOH solar cells formed between n-Si and poly(3,4-ethylenedioxythiophene): polystyrenesulphonate (PEDOT:PSS) is a promising concept that combines the excellent electronic properties of Si with the solution-based processing advantage of an organic polymer. The IBC cell structure is employed to minimize parasitic absorption losses in the organic polymer, eliminate grid shadowing losses, and allow excellent passivation of the front Si surface in one step over a large area. The influence of Si thickness, doping concentration and contact geometry are simulated in this study to optimize the performance of the SOH-IBC solar cell. We found that a high power conversion efficiency of >20% can be achieved for optimized SOH-IBC cell based on a thin c-Si substrate of 40 μm thickness.

  19. Simulation analysis of a novel high efficiency silicon solar cell

    NASA Technical Reports Server (NTRS)

    Mokashi, Anant R.; Daud, T.; Kachare, A. H.

    1985-01-01

    It is recognized that crystalline silicon photovoltaic module efficiency of 15 percent or more is required for cost-effective photovoltaic energy utilization. This level of module efficiency requires large-area encapsulated production cell efficiencies in the range of 18 to 20 percent. Though the theoretical maximum of silicon solar cell efficiency for an idealized case is estimated to be around 30 percent, practical performance of cells to-date are considerably below this limit. This is understood to be largely a consequence of minority carrier losses in the bulk as well as at all surfaces including those under the metal contacts. In this paper a novel device design with special features to reduce bulk and surface recombination losses is evaluated using numerical analysis technique. Details of the numerical model, cell design, and analysis results are presented.

  20. Genomic characterization of Imatinib resistance in CD34+ cell populations from chronic myeloid leukaemia patients.

    PubMed

    Joha, Sami; Dauphin, Véronique; Leprêtre, Frédéric; Corm, Sélim; Nicolini, Franck E; Roumier, Christophe; Nibourel, Olivier; Grardel, Nathalie; Maguer-Satta, Véronique; Idziorek, Thierry; Figeac, Martin; Laï, Jean-Luc; Quesnel, Bruno; Etienne, Gabriel; Guilhot, François; Lippert, Eric; Preudhomme, Claude; Roche-Lestienne, Catherine

    2011-04-01

    To ascertain genomic alterations associated with Imatinib resistance in chronic myeloid leukaemia, we performed high resolution genomic analysis of CD34(+) cells from 25 Imatinib (IM) resistant and 11 responders CML patients. Using patients' T-cells as reference, we found significant association between number of acquired cryptic copy number alterations (CNA) and disease phase (p=0.036) or loss of IM response for patients diagnosed in chronic phase (CP) (p=0.04). Recurrent cryptic losses were identified on chromosomes 7, 12 and 13. On chromosome 7, recurrent deletions of the IKZF1 locus were detected, for the first time, in 4 patients in CP. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Electrochemically Produced Graphene for Microporous Layers in Fuel Cells.

    PubMed

    Najafabadi, Amin Taheri; Leeuwner, Magrieta J; Wilkinson, David P; Gyenge, Előd L

    2016-07-07

    The microporous layer (MPL) is a key cathodic component in proton exchange membrane fuel cells owing to its beneficial influence on two-phase mass transfer. However, its performance is highly dependent on material properties such as morphology, porous structure, and electrical resistance. To improve water management and performance, electrochemically exfoliated graphene (EGN) microsheets are considered as an alternative to the conventional carbon black (CB) MPLs. The EGN-based MPLs decrease the kinetic overpotential and the Ohmic potential loss, whereas the addition of CB to form a composite EGN+CB MPL improves the mass-transport limiting current density drastically. This is reflected by increases of approximately 30 and 70 % in peak power densities at 100 % relative humidity (RH) compared with those for CB- and EGN-only MPLs, respectively. The composite EGN+CB MPL also retains the superior performance at a cathode RH of 20 %, whereas the CB MPL shows significant performance loss. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Procedure for minimizing the cost per watt of photovoltaic systems

    NASA Technical Reports Server (NTRS)

    Redfield, D.

    1977-01-01

    A general analytic procedure is developed that provides a quantitative method for optimizing any element or process in the fabrication of a photovoltaic energy conversion system by minimizing its impact on the cost per watt of the complete system. By determining the effective value of any power loss associated with each element of the system, this procedure furnishes the design specifications that optimize the cost-performance tradeoffs for each element. A general equation is derived that optimizes the properties of any part of the system in terms of appropriate cost and performance functions, although the power-handling components are found to have a different character from the cell and array steps. Another principal result is that a fractional performance loss occurring at any cell- or array-fabrication step produces that same fractional increase in the cost per watt of the complete array. It also follows that no element or process step can be optimized correctly by considering only its own cost and performance

  3. Loss of the LIM-only protein Fhl2 impairs inflammatory reaction and scar formation after cardiac ischemia leading to better hemodynamic performance.

    PubMed

    Goltz, Diane; Hittetiya, Kanishka; Gevensleben, Heidrun; Kirfel, Jutta; Diehl, Linda; Meyer, Rainer; Büttner, Reinhard

    2016-04-15

    The pathogenesis of myocardial ischemia-reperfusion injury (MI/R) involves an inflammatory response. Since the four-and-a-half LIM domain-containing protein 2 (Fhl2) has been observed to modulate immune cell migration, we aimed to study the consequences of Fhl2(-/-) under MI/R with respect to immune reaction, scar formation, and hemodynamic performance. In a closed chest model of 1h MI/R, immune cell invasion of phagocytic monocytes was characterized by flow cytometry and immunohistochemistry. In addition, infarct size was assessed by triphenyltetrazolium chloride/Masson trichrome staining 24h/21days after reperfusion and a set of hemodynamic parameters was recorded by catheterisation in Fhl2(-/-) mice and controls. While flow cytometry did not reveal differences in myocardial CD45(high) immune cell infiltrate, histological analysis showed that infiltrating immune cells in Fhl2(-/-) animals were preferentially located in the perivascular area, whereas in wild type, immune cells were well dispersed within the area at risk. After 24h and 21days of reperfusion, infarct size was significantly reduced in Fhl2(-/-) compared to WT animals. In addition, hemodynamic performance was better in Fhl2(-/-) mice, compared to WT mice up to day 21 of reperfusion. The loss of Fhl2 leads to an altered immune response to myocardial ischemia, which results in smaller infarcts and better hemodynamic performance up to 21days after myocardial ischemia reperfusion. Immune cell invasion plays a pivotal role in the context of MI/R. Fhl2 significantly influences immune cell function and immune cell interaction with injured cardiac tissue leading to altered scar composition. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Solid electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Isaacs, H. S.

    Progress in the development of functioning solid electrolyte fuel cells is summarized. The solid electrolyte cells perform at 1000 C, a temperature elevated enough to indicate high efficiencies are available, especially if the cell is combined with a steam generator/turbine system. The system is noted to be sulfur tolerant, so coal containing significant amounts of sulfur is expected to yield satisfactory performances with low parasitic losses for gasification and purification. Solid oxide systems are electrically reversible, and are usable in both fuel cell and electrolysis modes. Employing zirconium and yttrium in the electrolyte provides component stability with time, a feature not present with other fuel cells. The chemical reactions producing the cell current are reviewed, along with materials choices for the cathodes, anodes, and interconnections.

  5. Expression and Functional Significance of HtrA1 Loss in Endometrial Cancer

    PubMed Central

    Mullany, Sally A.; Moslemi-Kebria, Mehdi; Rattan, Ramandeep; Khurana, Ashwani; Clayton, Amy; Ota, Takayo; Mariani, Andrea; Podratz, Karl C.; Chien, Jeremy; Shridhar, Viji

    2010-01-01

    Purpose The purpose of this study was to determine if loss of serine protease HtrA1 in endometrial cancer will promote the invasive potential of EC cell lines. Experimental design Western blot analysis and immunohistochemistry methods were used to determine HtrA1 expression in EC cell lines and primary tumors, respectively. Migration, invasion assays and in vivo xenograft experiment were performed to compare the extent of metastasis between HtrA1 expressing and HtrA-1 knocked down clones. Results Western blot analysis of HtrA1 in 13 EC cell lines revealed complete loss of HtrA1 expression in all 7 papillary serous EC cell lines. Downregulation of HtrA1 in Hec1A and Hec1B cell lines resulted in a 3-4 fold increase in the invasive potential. Exogenous expression of HtrA1 in Ark 1 and Ark 2 cells resulted in 3-4 fold decrease in both invasive and migration potential of these cells. There was an increased rate of metastasis to the lungs associated with HtrA1 downregulation in Hec1B cells compared to control cells with endogenous HtrA1 expression. Enhanced expression of HtrA1 in Ark 2 cells resulted in significantly less tumor nodules metastasizing to the lungs compared to parental or protease deficient (SA mutant) Ark 2 cells. Immunohistochemical (IHC) analysis showed 57% (105/184) of primary EC tumors had low HtrA1 expression. The association of low HtrA1 expression with high-grade endometrioid tumors was statistically significant (p=0.016). Conclusions Collectively, these data indicate loss of HtrA1 may contribute to the aggressiveness and metastatic ability of endometrial tumors. PMID:21098697

  6. Apoptosis of Corneal Epithelial Cells Caused by Ultraviolet B-induced Loss of K+ is Inhibited by Ba2+

    PubMed Central

    Glupker, Courtney D.; Boersma, Peter M.; Schotanus, Mark P.; Haarsma, Loren D.; Ubels, John L.

    2017-01-01

    UVB exposure at ambient outdoor levels triggers rapid K+ loss and apoptosis in human corneal limbal epithelial (HCLE) cells cultured in medium containing 5.5 mM K+, but considerably less apoptosis occurs when the medium contains the high K+ concentration that is present in tears (25 mM). Since Ba2+ blocks several K+ channels, we tested whether Ba2+-sensitive K+ channels are responsible for some or all of the UVB-activated K+ loss and subsequent activation of the caspase cascade and apoptosis. Corneal epithelial cells in culture were exposed to UVB at 80 or 150 mJ/cm2. Patch-clamp recording was used to measure UVB-induced K+ currents. Caspase-activity and TUNEL assays were performed on HCLE cells exposed to UVB followed by incubation in the presence or absence of Ba2+. K+ currents were activated in HCLE cells following UVB-exposure. These currents were reversibly blocked by 5 mM Ba2+. When HCLE cells were incubated with 5 mM Ba2+ after exposure to UVB, activation of caspases-9, -8, and -3 and DNA fragmentation were significantly decreased. The data confirm that UVB-induced K+ current activation and loss of intracellular K+ leads to activation of the caspase cascade and apoptosis. Extracellular Ba2+ inhibits UVB-induced apoptosis by preventing loss of intracellular K+ when K+ channels are activated. Ba2+ therefore has effects similar to elevated extracellular K+ in protecting HCLE cells from UVB-induced apoptosis. This supports our overall hypothesis that elevated K+ in tears contributes to protection of the corneal epithelium from adverse effects of ambient outdoor UVB. PMID:27189864

  7. Visual acuity, refractive error, and endothelial cell density six months after Descemet stripping and automated endothelial keratoplasty (DSAEK).

    PubMed

    Koenig, Steven B; Covert, Douglas J; Dupps, William J; Meisler, David M

    2007-07-01

    To evaluate visual acuity, refractive outcomes, and endothelial cell density 6 months after Descemet stripping and automated endothelial keratoplasty (DSAEK). We performed an institutional review board-approved prospective study of a surgical case series of 34 patients at 2 institutions undergoing DSAEK for Fuchs endothelial dystrophy, pseudophakic bullous keratopathy, or aphakic bullous keratopathy with or without simultaneous phacoemulsification and intraocular lens implantation. Clinical outcomes, including best spectacle-corrected visual acuity (BSCVA), spherical equivalent refraction, and refractive astigmatism and topographic or keratometric astigmatism, were assessed at the 6-month postoperative examination and compared with preoperative values with paired Student t tests. The change in endothelial cell density from the eye bank examination to 6 months after transplantation was similarly evaluated. BSCVA averaged 20/99 preoperatively and 20/42 postoperatively (P < 0.0001). After DSAEK, 30 (88.2%) of 34 patients showed improved BSCVA, and 21 (61.8%) of the 34 patients achieved a BSCVA of 20/40 or better. For patients not undergoing simultaneous phacoemulsification and intraocular lens implantation, a hyperopic shift in refraction of 1.19 +/- 1.32 D was noted. Refractive astigmatism, topographic astigmatism, and keratometry showed no statistically significant change. Endothelial cell density of donor corneas averaged 2826 +/- 370 cells/mm, whereas the mean postoperative density was 1396 +/- 440 cells/mm. This finding corresponded to an average loss of 1426 cells/mm (50% loss; P = 0.0001). The first half of cases experienced an average cell loss of 1674 cells/mm (59% loss) compared with 1181 (41% loss) in the second half of cases (P = 0.005). Three (9%) of 34 grafts experienced iatrogenic graft failure and required reoperation with new donor tissue. Also, 9 (27%) of 34 grafts experienced dislocation in the early postoperative period and required repositioning. In this prospective study of DSAEK for bullous keratopathy and Fuchs endothelial corneal dystrophy, improvement of visual acuity was achieved with only a mild tendency toward hyperopic shift and without significant induced astigmatism. Endothelial cell loss was significant, however, and may be related to surgical experience.

  8. Structural design considerations for micromachined solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark

    Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.

  9. Descemet stripping automated endothelial keratoplasty 3-year graft and endothelial cell survival compared with penetrating keratoplasty

    PubMed Central

    Price, Marianne O.; Gorovoy, Mark; Price, Francis W.; Benetz, Beth A.; Menegay, Harry J.; Lass, Jonathan H.

    2012-01-01

    Purpose To assess 3-year outcomes of Descemet stripping automated endothelial keratoplasty (DSAEK) in comparison with penetrating keratoplasty (PKP) from the Cornea Donor Study (CDS). Design Prospective, multicenter, nonrandomized clinical trial. Participants A total of 173 subjects undergoing DSAEK for a moderate risk condition (principally Fuchs’ dystrophy or pseudophakic corneal edema) compared with 1101 subjects undergoing PKP from the CDS. Methods The DSAEK procedures were performed by two experienced surgeons using the same donor and similar recipient criteria as for the CDS PKP procedures, performed by 68 surgeons. Graft success was assessed by Kaplan Meier survival analysis. Central endothelial cell density (ECD) was determined from baseline donor and postoperative central endothelial images by the reading center used in the CDS Specular Microscopy Ancillary Study. Main Outcome Measures Graft clarity and endothelial cell density Results The donor and recipient demographics were comparable in the DSAEK and PKP groups, except the proportion of Fuchs’ dystrophy cases was higher in the DSAEK cohort. The 3-year survival rate did not differ significantly between DSAEK and PKP procedures performed for either Fuchs’ dystrophy (96% for both, P=0.81) or non-Fuchs cases (86% vs. 84%, respectively, P=0.41). Principal causes of graft failure/regraft within 3 years after DSAEK and PKP were immunologic graft rejection (0.6% vs. 3.1%), endothelial decompensation in the absence of documented rejection (1.7% vs 2.1%), unsatisfactory visual or refractive outcome (1.7% vs. 0.5%), and infection (0% vs. 1.1%), respectively. The 3-year predicted probability of a rejection episode was 9% with DSAEK vs. 20% with PKP (P=0.0005). The median 3-year cell loss for DSAEK and PKP was 46% and 51%, respectively (P=0.33) in Fuchs’s dystrophy cases, and 59% and 61%, respectively (P=0.70), in the non-Fuchs’ cases. At 3 years, use of a smaller DSAEK insertion incision was associated with significantly higher cell loss (60% vs. 33% for 3.2- and 5.0-mm incisions, respectively, P=0.0007) but not a significant difference in graft survival (P=0.45). Conclusions The graft success rate and endothelial cell loss were comparable at 3 years for DSAEK and PKP procedures. A 5-mm DSAEK incision width was associated with significantly less cell loss than a 3.2-mm incision. PMID:23107581

  10. In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.

    Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.

  11. Effects of naturalistic cell phone conversations on driving performance.

    PubMed

    Rakauskas, Michael E; Gugerty, Leo J; Ward, Nicholas J

    2004-01-01

    The prevalence of automobile drivers talking on cell phones is growing, but the effect of that behavior on driving performance is unclear. Also unclear is the relationship between the difficulty level of a phone conversation and the resulting distraction. This study used a driving simulator to determine the effect that easy and difficult cell phone conversations have on driving performance. Cell phone use caused participants to have higher variation in accelerator pedal position, drive more slowly with more variation in speed, and report a higher level of workload regardless of conversation difficulty level. Drivers may cope with the additional stress of phone conversations by enduring higher workloads or setting reduced performance goals. Because an increasing number of people talk on the phone while driving, crashes caused by distracted drivers using cell phones will cause disruptions in business, as well as injury, disability, and permanent loss of personnel.

  12. Performance characteristics of lithium primary cells after controlled storage. [on-orbit for energy power supply

    NASA Technical Reports Server (NTRS)

    Deligiannis, F.; Shen, D. H.; Halpert, G.; Ang, V.; Donley, S.

    1991-01-01

    A program was initiated to investigate the effects of storage on the performance of lithium primary cells. Two types of liquid cathode cells were chosen to investigate these effects. The cell types included Li-SOCl2/BCX cells, Li-SO2 cells from two different manufacturers, and a small sample size of 8-year-old Li-SO2 cells. The following measurements are performed at each test interval: open circuit voltage, resistance and weight, microcalorimetry, ac impedance, capacity, and voltage delay. The authors examine the performance characteristics of these cells after one year of controlled storage at two temperatures (10 and 30 C). The Li-SO2 cells experienced little to no voltage and capacity degradation after one year storage. The Li-SOCl2/BCX cells exhibited significant voltage and capacity degradation after 30 C storage. Predischarging shortly prior to use appears to be an effective method of reducing the initial voltage drop. Studies are in progress to correlate ac impedance and microcalorimetry measurements with capacity losses and voltage delay.

  13. ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition | Office of Cancer Genomics

    Cancer.gov

    Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome-scale CRISPR-Cas9 loss-of-function screens in two KRAS mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, ETV4, and ETV5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages.

  14. Development of high-efficiency solar cells on silicon web

    NASA Technical Reports Server (NTRS)

    Meier, D. L.; Greggi, J.; Okeeffe, T. W.; Rai-Choudhury, P.

    1986-01-01

    Work was performed to improve web base material with a goal of obtaining solar cell efficiencies in excess of 18% (AM1). Efforts in this program are directed toward identifying carrier loss mechanisms in web silicon, eliminating or reducing these mechanisms, designing a high efficiency cell structure with the aid of numerical models, and fabricating high efficiency web solar cells. Fabrication techniques must preserve or enhance carrier lifetime in the bulk of the cell and minimize recombination of carriers at the external surfaces. Three completed cells were viewed by cross-sectional transmission electron microscopy (TEM) in order to investigate further the relation between structural defects and electrical performance of web cells. Consistent with past TEM examinations, the cell with the highest efficiency (15.0%) had no dislocations but did have 11 twin planes.

  15. Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles

    PubMed Central

    Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay

    2014-01-01

    We report a unique and highly stable electrocatalyst—platinum (Pt) supported on titanium–ruthenium oxide (TRO)—for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile—namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst—Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm−2 at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm−2 for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern. PMID:24367118

  16. Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles.

    PubMed

    Parrondo, Javier; Han, Taehee; Niangar, Ellazar; Wang, Chunmei; Dale, Nilesh; Adjemian, Kev; Ramani, Vijay

    2014-01-07

    We report a unique and highly stable electrocatalyst-platinum (Pt) supported on titanium-ruthenium oxide (TRO)-for hydrogen fuel cell vehicles. The Pt/TRO electrocatalyst was exposed to stringent accelerated test protocols designed to induce degradation and failure mechanisms identical to those seen during extended normal operation of a fuel cell automobile-namely, support corrosion during vehicle startup and shutdown, and platinum dissolution during vehicle acceleration and deceleration. These experiments were performed both ex situ (on supports and catalysts deposited onto a glassy carbon rotating disk electrode) and in situ (in a membrane electrode assembly). The Pt/TRO was compared against a state-of-the-art benchmark catalyst-Pt supported on high surface-area carbon (Pt/HSAC). In ex situ tests, Pt/TRO lost only 18% of its initial oxygen reduction reaction mass activity and 3% of its oxygen reduction reaction-specific activity, whereas the corresponding losses for Pt/HSAC were 52% and 22%. In in situ-accelerated degradation tests performed on membrane electrode assemblies, the loss in cell voltage at 1 A · cm(-2) at 100% RH was a negligible 15 mV for Pt/TRO, whereas the loss was too high to permit operation at 1 A · cm(-2) for Pt/HSAC. We clearly show that electrocatalyst support corrosion induced during fuel cell startup and shutdown is a far more potent failure mode than platinum dissolution during fuel cell operation. Hence, we posit that the need for a highly stable support (such as TRO) is paramount. Finally, we demonstrate that the corrosion of carbon present in the gas diffusion layer of the fuel cell is only of minor concern.

  17. Survey on aging on electrodes and electrocatalysts in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Hochmuth, J.

    1981-01-01

    The processes which contribute to the decay in performance of electrodes used in phosphoric acid fuel cell systems are discussed. Loss of catalytic surface area, corrosion of the carbon support, electrode structure degradation, electrolyte degradation, and impurities in the reactant streams are identified as the major areas for concern.

  18. Effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues.

    PubMed

    Phothiset, Suphatta; Charoenrein, Sanguansri

    2014-01-30

    During storage, frozen fruit may be thawed and refrozen many times before consumption, which may be extremely damaging to the texture of the frozen fruit and reverse the advantage of fast freezing. The effects of freezing and thawing on texture, microstructure and cell wall composition changes in papaya tissues were investigated. The frozen-thawed papayas had an increase in drip loss and a decrease in firmness with increasing number of freeze-thaw cycles. Light microscopy showed irregular shapes and cell damage in parenchyma cells of frozen-thawed papayas, whereas transmission electron microscopy showed loss of cell wall materials in middle lamella. Moreover, destruction of cell wall was observed after being subjected to five freeze-thaw cycles. These changes related with a significant decrease in alcohol-insoluble solids, Na₂CO₃- and 24% KOH-soluble fractions and an increase in the water-, EDTA- and 4% KOH-soluble fractions. This was due to a decrease in the molecular mass of pectic and hemicellulosic polymers in frozen-thawed papayas using high-performance size-exclusion chromatography. The freezing and thawing processes caused fine structural damage and cell wall composition changes which contributed to a loss of drip volume and firmness of papaya tissues. © 2013 Society of Chemical Industry.

  19. A novel differential electrochemical mass spectrometry method to determine the product distribution from parasitic Methanol oxidation reaction on oxygen reduction reaction catalysts

    NASA Astrophysics Data System (ADS)

    Jurzinsky, Tilman; Kurzhals, Philipp; Cremers, Carsten

    2018-06-01

    The oxygen reduction reaction is in research focus since several decades due to its importance for the overall fuel cell performance. In direct methanol fuel cells, the crossover of methanol and its subsequent parasitic oxidation are main issues when it comes to preventing fuel cell performance losses. In this work, we present a novel differential electrochemical mass spectrometry method to evaluate oxygen reduction reaction catalysts on their tolerance to methanol being present at the cathode. Besides this, the setup allows to measure under more realistic fuel cell conditions than typical rotating disc electrode measurements, because the oxygen reduction reaction is evaluated in gaseous phase and a gas diffusion electrode is used as working electrode. Due to the new method, it was possible to investigate the oxygen reduction reaction on two commonly used catalysts (Pt/C and Pt3Co/C) in absence and presence of methanol. It was found, that Pt3Co/C is less prone to parasitic current losses due to methanol oxidation reaction. By connecting a mass spectrometer to the electrochemical cell, the new method allows to determine the products formed on the catalysts due to parasitic methanol electrooxidation.

  20. Parameter setting and analysis of a dynamic tubular SOFC model

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Fang, Ruixian; Khan, Jamil A.; Dougal, Roger A.

    An improved one-dimensional dynamic model of a tubular SOFC stack capable of system simulation in the virtual test bed (VTB) simulation environment is presented in this paper. This model is based on the electrochemical and thermal modeling, accounting for the voltage losses and temperature dynamics. The modeling of an external reformer is also included in this study. A detailed parametric analysis of working conditions and cell configuration of the solid oxide fuel cell (SOFC) stack is the main focus of this paper. The following operating parameters are investigated: pressure ratio, temperature, mass flow rate, external reforming degree and stream to carbon (S/C) ratio. The cell geometric parameters studied include cell diameter and cell length. Elevated operating pressure improves the cell performance. Whereas, higher operating temperature decreases both the Nernst potential and the irreversible losses, resulting in an initial increase then a decrease in cell efficiency. It was found that a higher S/C ratio yields a lower H 2 concentration and partial pressure, which has a negative effect on the Nernst potential. Increased cell diameter is found to increase the power due to a larger activation area at the same time and due to longer current path length there is an increase in the ohmic loss. Increased length of the cell has the undesired affect of an increased pressure drop.

  1. Red cell exchange to mitigate a delayed hemolytic transfusion reaction in a patient transfused with incompatible red blood cells.

    PubMed

    Irani, Mehraboon S; Karafin, Matthew S; Ernster, Luke

    2017-02-01

    A red cell exchange was performed to prevent a potentially fatal hemolytic transfusion reaction in a patient with anti-e who was transfused with e-antigen unscreened red blood cells during liver transplant surgery. A 64-year-old woman with cirrhosis due to hepatitis C was scheduled to receive a liver transplant. She had a previously documented anti-e, an antibody to the Rh(e)-antigen that is known to cause delayed hemolytic transfusion reactions. Pre-operatively and intra-operatively, she had massive hemorrhage which required transfusion of 34 e-antigen unscreened red blood cells (RBCs) most of which were incompatible. The hemoglobin dropped from 9.1 g/dL on post-operative day (POD)1 to 6.6 g/dL on POD6, with no evidence of blood loss. The bilirubin also increased from 5.0 mg/dL on POD 1 to 11.0 mg/dL on POD 6. As she was also becoming more hemodynamically unstable, a red cell exchange with 10 units of e-negative RBCs was performed on POD 6. She improved clinically and was extubated the following day. A few residual transfused e-positive red cells were detected after the red cell exchange until POD 13. This case illustrates how a red cell exchange can mitigate the potentially harmful effects of a delayed hemolytic transfusion reaction caused by red cell antibodies. With massive intraoperative blood loss it may not be possible to have antigen-negative RBCs immediately available, particularly for the e-antigen, which is present in 98% of the donor population. The ability to perform such a procedure may be life-saving in such patients. J. Clin. Apheresis 32:59-61, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Capacity decline of ambient temperature secondary Li-TiS2 cells

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Shen, D. H.; Huang, C.-K.; Deligiannis, F.; Halpert, G.; Peled, E.

    1990-01-01

    The main objective of the study described was to identify the causes responsible for the capacity losses observed during cycling of secondary Li-TiS2 cells. Experimental Li-TiS2 cells were fabricated and tested for their cycle life performance. The open circuit voltage of the cells was monitored during the rest period between the charging and discharging. The polarization at the Li and TiS2 electrodes was also monitored during cycling. Cycled cells were disassembled and the cathodes were analyzed by various analytical techniques. The results of the study indicate that the observed capacity loss is almost entirely due to the increased polarization of the TiS2 electrode with cycling. The electrolyte was found to degrade during cycling and the degradation products were found to deposit at the TiS2 electrode, which probably lead to the higher polarization.

  3. Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues.

    PubMed

    Pei, Wuhong; Xu, Lisha; Huang, Sunny C; Pettie, Kade; Idol, Jennifer; Rissone, Alberto; Jimenez, Erin; Sinclair, Jason W; Slevin, Claire; Varshney, Gaurav K; Jones, MaryPat; Carrington, Blake; Bishop, Kevin; Huang, Haigen; Sood, Raman; Lin, Shuo; Burgess, Shawn M

    2018-01-01

    Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration.

  4. Loss of HIF-1α in the notochord results in cell death and complete disappearance of the nucleus pulposus.

    PubMed

    Merceron, Christophe; Mangiavini, Laura; Robling, Alexander; Wilson, Tremika LeShan; Giaccia, Amato J; Shapiro, Irving M; Schipani, Ernestina; Risbud, Makarand V

    2014-01-01

    The intervertebral disc (IVD) is one of the largest avascular organs in vertebrates. The nucleus pulposus (NP), a highly hydrated and proteoglycan-enriched tissue, forms the inner portion of the IVD. The NP is surrounded by a multi-lamellar fibrocartilaginous structure, the annulus fibrosus (AF). This structure is covered superior and inferior side by cartilaginous endplates (CEP). The NP is a unique tissue within the IVD as it results from the differentiation of notochordal cells, whereas, AF and CEP derive from the sclerotome. The hypoxia inducible factor-1α (HIF-1α) is expressed in NP cells but its function in NP development and homeostasis is largely unknown. We thus conditionally deleted HIF-1α in notochordal cells and investigated how loss of this transcription factor impacts NP formation and homeostasis at E15.5, birth, 1 and 4 months of age, respectively. Histological analysis, cell lineage studies, and TUNEL assay were performed. Morphologic changes of the mutant NP cells were identified as early as E15.5, followed, postnatally, by the progressive disappearance and replacement of the NP with a novel tissue that resembles fibrocartilage. Notably, lineage studies and TUNEL assay unequivocally proved that NP cells did not transdifferentiate into chondrocyte-like cells but they rather underwent massive cell death, and were completely replaced by a cell population belonging to a lineage distinct from the notochordal one. Finally, to evaluate the functional consequences of HIF-1α deletion in the NP, biomechanical testing of mutant IVD was performed. Loss of the NP in mutant mice significantly reduced the IVD biomechanical properties by decreasing its ability to absorb mechanical stress. These findings are similar to the changes usually observed during human IVD degeneration. Our study thus demonstrates that HIF-1α is essential for NP development and homeostasis, and it raises the intriguing possibility that this transcription factor could be involved in IVD degeneration in humans.

  5. Handover Control Method Using Resource Reservation in Mobile Multimedia Networks

    NASA Astrophysics Data System (ADS)

    Lee, Dong Chun; Lee, Jong Chan

    When handover events occur during the transmission of multimedia traffic, efficient handover control procedures and radio resource allocation are necessary to maintain the same QoS of transmitted multimedia traffic because the QoS may be degraded by additional delay and information loss. In this paper we propose a new handover control method for the next generation mobile multimedia networks, in which the handover setup process is done in advance of a handover request by predicting the handover cell from mobile terminal's current position. The handover procedures for real-time sessions are performed based on the handover cell information and the resource reservation condition. The radio resources in the estimated adjacent cells should be reserved and allocated to guarantee the continuity of the real-time sessions. We conduct a simulation model that is focused on the handover failure rate and packet loss rate. The simulation results show that our proposed method provides better performance than the previous methods.

  6. Reversible Poisoning of the Nickel/Zirconia Solid Oxide Fuel Cell Anodes by Hydrogen Chloride in Coal Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marina, Olga A.; Pederson, Larry R.; Thomsen, Edwin C.

    2010-10-15

    The performance of anode-supported solid oxide fuel cells (SOFC) was evaluated in synthetic coal gas containing HCl in the temperature range 650 to 850oC. Exposure to up to 800 ppm HCl resulted in reversible poisoning of the Ni/zirconia anode by chlorine species adsorption, the magnitude of which decreased with increased temperature. Performance losses increased with the concentration of HCl to ~100 ppm, above which losses were insensitive to HCl concentration. Cell voltage had no effect on poisoning. No evidence was found for long-term degradation that can be attributed to HCl exposure. Similarly, no evidence of microstructural changes or formation ofmore » new solid phases as a result of HCl exposure was found. From thermodynamic calculations, solid nickel chloride phase formation was shown to be highly unlikely in coal gas. Further, the presence of HCl at even the highest anticipated concentrations in coal gas would minimally increase the volatility of nickel.« less

  7. A theoretical analysis of the current-voltage characteristics of solar cells. [and their energy conversion efficiency

    NASA Technical Reports Server (NTRS)

    Dunbar, P. M.; Hauser, J. R.

    1976-01-01

    Various mechanisms which limit the conversion efficiency of silicon solar cells were studied. The effects of changes in solar cell geometry such as layer thickness on performance were examined. The effects of various antireflecting layers were also examined. It was found that any single film antireflecting layer results in a significant surface loss of photons. The use of surface texturing techniques or low loss antireflecting layers can enhance by several percentage points the conversion efficiency of silicon cells. The basic differences between n(+)-p-p(+) and p(+)-n-n(+) cells are treated. A significant part of the study was devoted to the importance of surface region lifetime and heavy doping effects on efficiency. Heavy doping bandgap reduction effects are enhanced by low surface layer lifetimes, and conversely, the reduction in solar cell efficiency due to low surface layer lifetime is further enhanced by heavy doping effects. A series of computer studies is reported which seeks to determine the best cell structure and doping levels for maximum efficiency.

  8. Descemet’s Stripping Automated Endothelial Keratoplasty Outcomes Compared with Penetrating Keratoplasty from the Cornea Donor Study

    PubMed Central

    Price, Marianne O.; Gorovoy, Mark; Benetz, Beth A.; Price, Francis W.; Menegay, Harry J.; Debanne, Sara M.; Lass, Jonathan H.

    2010-01-01

    Purpose To assess outcomes 1 year after Descemet’s stripping automated endothelial keratoplasty (DSAEK) in comparison with penetrating keratoplasty (PKP) from the Specular Microscopy Ancillary Study (SMAS) of the Cornea Donor Study. Design Multicenter, prospective, nonrandomized clinical trial. Participants A total of 173 subjects undergoing DSAEK for a moderate risk condition (principally Fuchs’ dystrophy or pseudophakic/aphakic corneal edema) compared with 410 subjects undergoing PKP from the SMAS who had clear grafts with at least 1 postoperative specular image within a 15-month follow-up period. Methods The DSAEK procedures were performed by 2 experienced surgeons per their individual techniques, using the same donor and similar recipient criteria as for the PKP procedures in the SMAS performed by 68 surgeons at 45 sites, with donors provided from 31 eye banks. Graft success and complications for the DSAEK group were assessed and compared with the SMAS group. Endothelial cell density (ECD) was determined from baseline donor, 6-month (range, 5–7 months), and 12-month (range, 9–15 months) postoperative central endothelial images by the same reading center used in the SMAS. Main Outcome Measures Endothelial cell density and graft survival at 1 year. Results Although the DSAEK recipient group criteria were similar to the PKP group, Fuchs’ dystrophy was more prevalent in the DSAEK group (85% vs. 64%) and pseudophakic corneal edema was less prevalent (13% vs. 32%, P<0.001). The regraft rate within 15 months was 2.3% (DSAEK group) and 1.3% (PKP group) (P = 0.50). Percent endothelial cell loss was 34±22% versus 11±20% (6 months) and 38±22% versus 20±23% (12 months) in the DSAEK and PKP groups, respectively (both P<0.001). Preoperative diagnosis affected endothelial cell loss over time; in the PKP group, the subjects with pseudophakic/aphakic corneal edema experienced significantly higher 12-month cell loss than the subjects with Fuchs’ dystrophy (28% vs. 16%, P = 0.01), whereas in the DSAEK group, the 12-month cell loss was comparable for the 2 diagnoses (41% vs. 37%, P = 0.59). Conclusions One year post-transplantation, overall graft success was comparable for DSAEK and PKP procedures and endothelial cell loss was higher with DSAEK. PMID:20031230

  9. Loss of aPKCλ in Differentiated Neurons Disrupts the Polarity Complex but Does Not Induce Obvious Neuronal Loss or Disorientation in Mouse Brains

    PubMed Central

    Yamanaka, Tomoyuki; Tosaki, Asako; Kurosawa, Masaru; Akimoto, Kazunori; Hirose, Tomonori; Ohno, Shigeo; Hattori, Nobutaka; Nukina, Nobuyuki

    2013-01-01

    Cell polarity plays a critical role in neuronal differentiation during development of the central nervous system (CNS). Recent studies have established the significance of atypical protein kinase C (aPKC) and its interacting partners, which include PAR-3, PAR-6 and Lgl, in regulating cell polarization during neuronal differentiation. However, their roles in neuronal maintenance after CNS development remain unclear. Here we performed conditional deletion of aPKCλ, a major aPKC isoform in the brain, in differentiated neurons of mice by camk2a-cre or synapsinI-cre mediated gene targeting. We found significant reduction of aPKCλ and total aPKCs in the adult mouse brains. The aPKCλ deletion also reduced PAR-6β, possibly by its destabilization, whereas expression of other related proteins such as PAR-3 and Lgl-1 was unaffected. Biochemical analyses suggested that a significant fraction of aPKCλ formed a protein complex with PAR-6β and Lgl-1 in the brain lysates, which was disrupted by the aPKCλ deletion. Notably, the aPKCλ deletion mice did not show apparent cell loss/degeneration in the brain. In addition, neuronal orientation/distribution seemed to be unaffected. Thus, despite the polarity complex disruption, neuronal deletion of aPKCλ does not induce obvious cell loss or disorientation in mouse brains after cell differentiation. PMID:24391875

  10. Investigation of polymer electrolyte membrane fuel cell internal behaviour during long term operation and its use in prognostics

    NASA Astrophysics Data System (ADS)

    Mao, Lei; Jackson, Lisa; Jackson, Tom

    2017-09-01

    This paper investigates the polymer electrolyte membrane (PEM) fuel cell internal behaviour variation at different operating condition, with characterization test data taken at predefined inspection times, and uses the determined internal behaviour evolution to predict the future PEM fuel cell performance. For this purpose, a PEM fuel cell behaviour model is used, which can be related to various fuel cell losses. By matching the model to the collected polarization curves from the PEM fuel cell system, the variation of fuel cell internal behaviour can be obtained through the determined model parameters. From the results, the source of PEM fuel cell degradation during its lifetime at different conditions can be better understood. Moreover, with determined fuel cell internal behaviour, the future fuel cell performance can be obtained by predicting the future model parameters. By comparing with prognostic results using adaptive neuro fuzzy inference system (ANFIS), the proposed prognostic analysis can provide better predictions for PEM fuel cell performance at dynamic condition, and with the understanding of variation in PEM fuel cell internal behaviour, mitigation strategies can be designed to extend the fuel cell performance.

  11. Effect of calf death loss on cloned cattle herd derived from somatic cell nuclear transfer: clones with congenital defects would be removed by the death loss.

    PubMed

    Watanabe, Shinya

    2013-09-01

    To increase public understanding on cloned cattle derived from somatic cell nuclear transfer (SCNT), the present review describes the effect of calf death loss on an SCNT cattle herd. The incidence of death loss in SCNT cattle surviving more than 200 days reached the same level as that in conventionally bred cattle. This process could be considered as removal of SCNT cattle with congenital defects caused by calf death loss. As a result of comparative studies of SCNT cattle and conventionally bred cattle, the substantial equivalences in animal health status, milk and meat productive performance have been confirmed. Both sexes of SCNT cattle surviving to adulthood were fertile and their reproductive performance, including efficiency of progeny production, was the same as that in conventionally bred cattle. The presence of substantial equivalence between their progeny and conventionally bred cattle also existed. Despite these scientific findings, the commercial use of food products derived from SCNT cattle and their progeny has not been allowed by governments for reasons including the lack of public acceptance of these products and the low efficiency of animal SCNT. To overcome this situation, communication of the low risk of SCNT technology and research to improve SCNT efficiency are required. © 2013 Japanese Society of Animal Science.

  12. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    PubMed

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  13. Treadmill exercise alleviates short-term memory impairment in 6-hydroxydopamine-induced Parkinson's rats.

    PubMed

    Cho, Han-Sam; Shin, Mal-Soon; Song, Wook; Jun, Tae-Won; Lim, Baek-Vin; Kim, Young-Pyo; Kim, Chang-Ju

    2013-01-01

    Progressive loss of dopaminergic neurons in substantia nigra is a key pathogenesis of Parkinson's disease. In the present study, we investigated the effects of treadmill exercise on short-term memory, apoptotic dopaminergic neuronal cell death and fiber loss in the nigrostriatum, and cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. Parkinson's rats were made by injection of 6-hydroxydopamine (6-OHDA) into the striatum using stereotaxic instrument. Four weeks after 6-OHDA injection, the rats in the 6-OHDA-injection group exhibited significant rotational asymmetry following apomorphine challenge. The rats in the exercise groups were put on the treadmill to run for 30 min once a day for 14 consecutive days starting 4 weeks after 6-OHDA injection. In the present results, extensive degeneration of the dopaminergic neurons in the substantia nigra with loss of dopaminergic fibers in the striatum were produced in the rats without treadmill running, which resulted in short-term memory impairment. However, the rats performing treadmill running for 2 weeks alleviated nigrostriatal dopaminergic cell loss and alleviated short-term memory impairment with increasing cell proliferation in the hippocampal dentate gyrus of Parkinson's rats. The present results show that treadmill exercise may provide therapeutic value for the Parkinson's disease.

  14. Controlling Mitochondrial Dynamics to Mitigate Noise-Induced Hearing Loss

    DTIC Science & Technology

    2016-10-01

    exposure significantly reduced noise-induced auditory threshold shifts in our mouse model of NIHL. Additionally, protection against outer hair cell...and at 6 hours post-noise exposure. ‐ Perform analysis of outer auditory hair cells and synaptic ribbons from the different treatment groups...have made progress towards the completion of the outer hair cell counts (OHC) for this Subtask, particularly for study groups (1) mdivi-1/vehicle, and

  15. Impurities in silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.

    1985-01-01

    Metallic impurities, both singly and in combinations, affect the performance of silicon solar cells. Czochralski silicon web crystals were grown with controlled additions of secondary impurities. The primary electrical dopants were boron and phosphorus. The silicon test ingots were grown under controlled and carefully monitored conditions from high-purity charge and dopant material to minimize unintentional contamination. Following growth, each crystal was characterized by chemical, microstructural, electrical, and solar cell tests to provide a detailed and internally consistent description of the relationships between silicon impurity concentration and solar cell performance. Deep-level spectroscopy measurements were used to measure impurity concentrations at levels below the detectability of other techniques and to study thermally-induced changes in impurity activity. For the majority of contaminants, impurity-induced performance loss is due to a reduction of the base diffusion length. From these observations, a semi-empirical model which predicts cell performance as a function of metal impurity concentration was formulated. The model was then used successfully to predict the behavior of solar cells bearing as many as 11 different impurities.

  16. SLC44A4 mutation causes autosomal dominant hereditary postlingual non-syndromic mid-frequency hearing loss.

    PubMed

    Ma, Zhaoxin; Xia, Wenjun; Liu, Fei; Ma, Jing; Sun, Shaoyang; Zhang, Jin; Jiang, Nan; Wang, Xu; Hu, Jiongjiong; Ma, Duan

    2017-01-15

    Clinical, genetic, and functional investigations were performed to identify the causative mutation in a distinctive Chinese family with postlingual non-syndromic mid-frequency sensorineural hearing loss. Whole-exome sequencing revealed SLC44A4, which encodes the choline transport protein, as the pathogenic gene in this family. In the zebrafish model, downregulation of slc44a4 using morpholinos led to significant abnormalities in the zebrafish inner ear and lateral line neuromasts and contributed, to some extent, to disabilities in hearing and balance. SH-SY5Y cells transfected with SLC44A4 showed higher choline uptake and acetylcholine release than that of cells transfected with mutant SLC44A4. We concluded that mutation of SLC44A4 may cause defects in the Choline- acetylcholine system, which is crucial to the efferent innervation of hair cells in the olivocochlear bundle for the maintenance of physiological function of outer hair cells and the protection of hair cells from acoustic injury, leading to hearing loss. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Visualization of Hierarchical Nanodomains in Polymer/Fullerene Bulk Heterojunction Solar Cells

    DOE PAGES

    Wen, Jianguo; Miller, Dean J.; Chen, Wei; ...

    2014-06-20

    Here, traditional electron microscopy techniques such as bright-field imaging provide poor contrast for organic films and identification of structures in amorphous material can be problematic, particularly in high-performance organic solar cells. By combining energy-filtered corrected transmission electron microscopy, together with electron energy loss and X-ray energy-dispersive hyperspectral imaging, we have imaged PTB7/ PC 61BM blended polymer optical photovoltaic films, and were able to identify domains ranging in size from several hundred nanometers to several nanometers in extent. This work verifies that microstructural domains exist in bulk heterojunctions in PTB7/PC 61BM polymeric solar cells at multiple length scales and expands ourmore » understanding of optimal device performance providing insight for the design of even higher performance cells.« less

  18. Dimethyl fumarate–induced lymphopenia in MS due to differential T-cell subset apoptosis

    PubMed Central

    Ghadiri, Mahtab; Rezk, Ayman; Li, Rui; Evans, Ashley; Luessi, Felix; Zipp, Frauke; Giacomini, Paul S.; Antel, Jack

    2017-01-01

    Objective: To examine the mechanism underlying the preferential CD8+ vs CD4+ T-cell lymphopenia induced by dimethyl fumarate (DMF) treatment of MS. Methods: Total lymphocyte counts and comprehensive T-cell subset analyses were performed in high-quality samples obtained from patients with MS prior to and serially following DMF treatment initiation. Random coefficient mixed-effects analysis was used to model the trajectory of T-cell subset losses in vivo. Survival and apoptosis of distinct T-cell subsets were assessed following in vitro exposure to DMF. Results: Best-fit modeling indicated that the DMF-induced preferential reductions in CD8+ vs CD4+ T-cell counts nonetheless followed similar depletion kinetics, suggesting a similar rather than distinct mechanism involved in losses of both the CD8+ and CD4+ T cells. In vitro, DMF exposure resulted in dose-dependent reductions in T-cell survival, which were found to reflect apoptotic cell death. This DMF-induced apoptosis was greater for CD8+ vs CD4+, as well as for memory vs naive, and conventional vs regulatory T-cell subsets, a pattern which mirrored preferential T-cell subset losses that we observed during in vivo treatment of patients. Conclusions: Differential apoptosis mediated by DMF may underlie the preferential lymphopenia of distinct T-cell subsets, including CD8+ and memory T-cell subsets, seen in treated patients with MS. This differential susceptibility of distinct T-cell subsets to DMF-induced apoptosis may contribute to both the safety and efficacy profiles of DMF in patients with MS. PMID:28377940

  19. HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.

    PubMed

    Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Satoh, Motonobu; Kohara, Arihiro

    2018-05-17

    Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.

  20. Space radiation effects in InP solar cells

    NASA Astrophysics Data System (ADS)

    Walters, R. J.; Messenger, S. R.; Summers, G. P.; Burke, E. A.; Keavney, C. J.

    1991-12-01

    InP solar cells and mesa diodes grown by metalorganic chemical vapor deposition (MOCVD) were irradiated with electrons and protons at room temperature. The radiation-induced defects (RIDs) were characterized by deep level transient spectroscopy (DLTS), and the degradation of the solar cell performance was determined through I-V measurements. The nonionizing energy loss (NIEL) of electrons and protons in InP was calculated as a function of energy from 1 to 200 MeV and compared to the measured defect introduction rates. A linear dependence was evident. InP solar cells showed significantly more radiation resistance than c-Si or GaAs/Ge cells under 1 MeV electron irradiation. Using the calculated InP damage rates and measured damage factors, the performance of InP solar cells as a function of orbital altitude and time in orbit was predicted and compared with the performance of c-Si solar cells in the same environment. In all cases, the InP cells showed highly superior radiation resistance.

  1. An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels

    NASA Astrophysics Data System (ADS)

    Langfeldt, F.; Gleine, W.; von Estorff, O.

    2018-03-01

    A new analytical model for the oblique incidence sound transmission loss prediction of baffled panels with multiple subwavelength sized membrane-type acoustic metamaterial (MAM) unit cells is proposed. The model employs a novel approach via the concept of the effective surface mass density and approximates the unit cell vibrations in the form of piston-like displacements. This yields a coupled system of linear equations that can be solved efficiently using well-known solution procedures. A comparison with results from finite element model simulations for both normal and diffuse field incidence shows that the analytical model delivers accurate results as long as the edge length of the MAM unit cells is smaller than half the acoustic wavelength. The computation times for the analytical calculations are 100 times smaller than for the numerical simulations. In addition to that, the effect of flexible MAM unit cell edges compared to the fixed edges assumed in the analytical model is studied numerically. It is shown that the compliance of the edges has only a small impact on the transmission loss of the panel, except at very low frequencies in the stiffness-controlled regime. The proposed analytical model is applied to investigate the effect of variations of the membrane prestress, added mass, and mass eccentricity on the diffuse transmission loss of a MAM panel with 120 unit cells. Unlike most previous investigations of MAMs, these results provide a better understanding of the acoustic performance of MAMs under more realistic conditions. For example, it is shown that by varying these parameters deliberately in a checkerboard pattern, a new anti-resonance with large transmission loss values can be introduced. A random variation of these parameters, on the other hand, is shown to have only little influence on the diffuse transmission loss, as long as the standard deviation is not too large. For very large random variations, it is shown that the peak transmission loss value can be greatly diminished.

  2. Fullerene-Free Organic Solar Cells with an Efficiency of 10.2% and an Energy Loss of 0.59 eV Based on a Thieno[3,4-c]Pyrrole-4,6-dione-Containing Wide Band Gap Polymer Donor.

    PubMed

    Hadmojo, Wisnu Tantyo; Wibowo, Febrian Tri Adhi; Ryu, Du Yeol; Jung, In Hwan; Jang, Sung-Yeon

    2017-09-27

    Although the combination of wide band gap polymer donors and narrow band gap small-molecule acceptors achieved state-of-the-art performance as bulk heterojunction (BHJ) active layers for organic solar cells, there have been only several of the wide band gap polymers that actually realized high-efficiency devices over >10%. Herein, we developed high-efficiency, low-energy-loss fullerene-free organic solar cells using a weakly crystalline wide band gap polymer donor, PBDTTPD-HT, and a nonfullerene small-molecule acceptor, ITIC. The excessive intermolecular stacking of ITIC is efficiently suppressed by the miscibility with PBDTTPD-HT, which led to a well-balanced nanomorphology in the PBDTTPD-HT/ITIC BHJ active films. The favorable optical, electronic, and energetic properties of PBDTTPD-HT with respect to ITIC achieved panchromatic photon-to-current conversion with a remarkably low energy loss (0.59 eV).

  3. Quantifying the flow efficiency in constant-current capacitive deionization.

    PubMed

    Hawks, Steven A; Knipe, Jennifer M; Campbell, Patrick G; Loeb, Colin K; Hubert, McKenzie A; Santiago, Juan G; Stadermann, Michael

    2018-02-01

    Here we detail a previously unappreciated loss mechanism inherent to capacitive deionization (CDI) cycling operation that has a substantial role determining performance. This mechanism reflects the fact that desalinated water inside a cell is partially lost to re-salination if desorption is carried out immediately after adsorption. We describe such effects by a parameter called the flow efficiency, and show that this efficiency is distinct from and yet multiplicative with other highly-studied adsorption efficiencies. Flow losses can be minimized by flowing more feed solution through the cell during desalination; however, this also results in less effluent concentration reduction. While the rationale outlined here is applicable to all CDI cell architectures that rely on cycling, we validate our model with a flow-through electrode CDI device operated in constant-current mode. We find excellent agreement between flow efficiency model predictions and experimental results, thus giving researchers simple equations by which they can estimate this distinct loss process for their operation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part II: Aging mitigation strategies based on water management and nitrogen crossover

    NASA Astrophysics Data System (ADS)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.

  5. Bromomethane Contamination in the Cathode of Proton Exchange Membrane Fuel Cells.

    PubMed

    Zhai, Yunfeng; Baturina, Olga; Ramaker, David E; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen E

    2016-09-20

    The effects of bromomethane (BrCH 3 ), an airborne contaminant, on the performance of a single PEMFC are compared with that of another halocarbon, chlorobenzene. Under a constant current of 1 A cm -2 and at 45 °C, 20 ppm bromomethane causes approximately 30% cell voltage loss in approximately 30 h, as opposed to much more rapid performance degradation observed with chlorobenzene. Electrochemical impedance spectroscopy, cyclic voltammetry, linear scanning voltammetry, and polarization measurements are applied to characterize the temporary electrochemical reaction effect and permanent performance effects. X-ray absorption spectroscopy is used to confirm that Br is adsorbed on the Pt electrocatalyst surface. We conclude that airborne bromomethane poisons a PEMFC in a different way from chlorobenzene because it is largely hydrolyzed to bromide, Br - , which is then excluded from the Pt catalyst by the negatively charged Nafion ionomer. The little Br - and bromomethane that adsorbs on the Pt surface can be partially removed by cycling but causes some irreversible surface area loss.

  6. Bromomethane Contamination in the Cathode of Proton Exchange Membrane Fuel Cells

    PubMed Central

    Baturina, Olga; Ramaker, David E.; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen E.

    2016-01-01

    The effects of bromomethane (BrCH3), an airborne contaminant, on the performance of a single PEMFC are compared with that of another halocarbon, chlorobenzene. Under a constant current of 1 A cm−2 and at 45 °C, 20 ppm bromomethane causes approximately 30% cell voltage loss in approximately 30 h, as opposed to much more rapid performance degradation observed with chlorobenzene. Electrochemical impedance spectroscopy, cyclic voltammetry, linear scanning voltammetry, and polarization measurements are applied to characterize the temporary electrochemical reaction effect and permanent performance effects. X-ray absorption spectroscopy is used to confirm that Br is adsorbed on the Pt electrocatalyst surface. We conclude that airborne bromomethane poisons a PEMFC in a different way from chlorobenzene because it is largely hydrolyzed to bromide, Br−, which is then excluded from the Pt catalyst by the negatively charged Nafion ionomer. The little Br− and bromomethane that adsorbs on the Pt surface can be partially removed by cycling but causes some irreversible surface area loss. PMID:27695133

  7. Flat-plate solar array project. Volume 4: High-efficiency solar cells

    NASA Technical Reports Server (NTRS)

    Leipold, M.; Cheng, L.; Daud, T.; Mokashi, A.; Burger, D.; Christensen, E. (Editor); Murry, J. (Editor); Bengelsdorf, I. (Editor)

    1986-01-01

    The High Efficiency Solar Cell Task was assigned the objective of understanding and developing high efficiency solar cell devices that would meet the cost and performance goals of the Flat Plate Solar Array (FSA) Project. The need for research dealing with high efficiency devices was considered important because of the role efficiency plays in reducing price per watt of generated energy. The R&D efforts conducted during the 1982 to 1986 period are summarized to provide understanding and control of energy conversion losses associated with crystalline silicon solar cells. New levels of conversion efficiency were demonstrated. Major contributions were made both to the understanding and reduction of bulk and surface losses in solar cells. For example, oxides, nitrides, and polysilicon were all shown to be potentially useful surface passivants. Improvements in measurement techniques were made and Auger coefficients and spectral absorption data were obtained for unique types of silicon sheets. New modelling software was developed including a program to optimize a device design based on input characteristics of a cell.

  8. Dysregulated B Cell Expression of RANKL and OPG Correlates with Loss of Bone Mineral Density in HIV Infection

    PubMed Central

    Titanji, Kehmia; Vunnava, Aswani; Sheth, Anandi N.; Delille, Cecile; Lennox, Jeffrey L.; Sanford, Sara E.; Foster, Antonina; Knezevic, Andrea; Easley, Kirk A.

    2014-01-01

    HIV infection is associated with high rates of osteopenia and osteoporosis, but the mechanisms involved are unclear. We recently reported that bone loss in the HIV transgenic rat model was associated with upregulation of B cell expression of the key osteoclastogenic cytokine receptor-activator of NF-κB ligand (RANKL), compounded by a simultaneous decline in expression of its physiological moderator, osteoprotegerin (OPG). To clinically translate these findings we performed cross-sectional immuno-skeletal profiling of HIV-uninfected and antiretroviral therapy-naïve HIV-infected individuals. Bone resorption and osteopenia were significantly higher in HIV-infected individuals. B cell expression of RANKL was significantly increased, while B cell expression of OPG was significantly diminished, conditions favoring osteoclastic bone resorption. The B cell RANKL/OPG ratio correlated significantly with total hip and femoral neck bone mineral density (BMD), T- and/or Z-scores in HIV infected subjects, but revealed no association at the lumbar spine. B cell subset analyses revealed significant HIV-related increases in RANKL-expressing naïve, resting memory and exhausted tissue-like memory B cells. By contrast, the net B cell OPG decrease in HIV-infected individuals resulted from a significant decline in resting memory B cells, a population containing a high frequency of OPG-expressing cells, concurrent with a significant increase in exhausted tissue-like memory B cells, a population with a lower frequency of OPG-expressing cells. These data validate our pre-clinical findings of an immuno-centric mechanism for accelerated HIV-induced bone loss, aligned with B cell dysfunction. PMID:25393853

  9. Thickness dependences of solar cell performance

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1982-01-01

    The significance of including factors such as the base resistivity loss for solar cells thicker than 100 microns and emitter and BSF layer recombination for thin cells in predicting the fill factor and efficiency of solar cells is demonstrated analytically. A model for a solar cell is devised with the inclusion of the dopant impurity concentration profile, variation of the electron and hole mobility with dopant concentration, the concentration and thermal capture and emission rates of the recombination center, device temperature, the AM1 spectra and the Si absorption coefficient. Device equations were solved by means of the transmission line technique. The analytical results were compared with those of low-level theory for cell performance. Significant differences in predictions of the fill factor resulted, and inaccuracies in the low-level approximations are discussed.

  10. Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Chen, Jincan

    A theoretical modeling approach is presented, which describes the behavior of a typical fuel cell-heat engine hybrid system in steady-state operating condition based on an existing solid oxide fuel cell model, to provide useful fundamental design characteristics as well as potential critical problems. The different sources of irreversible losses, such as the electrochemical reaction, electric resistances, finite-rate heat transfer between the fuel cell and the heat engine, and heat-leak from the fuel cell to the environment are specified and investigated. Energy and entropy analyses are used to indicate the multi-irreversible losses and to assess the work potentials of the hybrid system. Expressions for the power output and efficiency of the hybrid system are derived and the performance characteristics of the system are presented and discussed in detail. The effects of the design parameters and operating conditions on the system performance are studied numerically. It is found that there exist certain optimum criteria for some important parameters. The results obtained here may provide a theoretical basis for both the optimal design and operation of real fuel cell-heat engine hybrid systems. This new approach can be easily extended to other fuel cell hybrid systems to develop irreversible models suitable for the investigation and optimization of similar energy conversion settings and electrochemistry systems.

  11. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  12. RTEL1 dismantles T loops and counteracts telomeric G4-DNA to maintain telomere integrity.

    PubMed

    Vannier, Jean-Baptiste; Pavicic-Kaltenbrunner, Visnja; Petalcorin, Mark I R; Ding, Hao; Boulton, Simon J

    2012-05-11

    T loops and telomeric G-quadruplex (G4) DNA structures pose a potential threat to genome stability and must be dismantled to permit efficient telomere replication. Here we implicate the helicase RTEL1 in the removal of telomeric DNA secondary structures, which is essential for preventing telomere fragility and loss. In the absence of RTEL1, T loops are inappropriately resolved by the SLX4 nuclease complex, resulting in loss of the telomere as a circle. Depleting SLX4 or blocking DNA replication abolished telomere circles (TCs) and rescued telomere loss in RTEL1(-/-) cells but failed to suppress telomere fragility. Conversely, stabilization of telomeric G4-DNA or loss of BLM dramatically enhanced telomere fragility in RTEL1-deficient cells but had no impact on TC formation or telomere loss. We propose that RTEL1 performs two distinct functions at telomeres: it disassembles T loops and also counteracts telomeric G4-DNA structures, which together ensure the dynamics and stability of the telomere. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Determining the Effects of Environment and Atmospheric Parameters on PV Field Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheli, Leonardo; Muller, Matthew; Kurtz, Sarah

    2016-11-21

    The performance losses due to soiling occurring on any photovoltaic (PV) device are caused by a complex mechanism that involves numerous factors and their interactions. For this reason, the present work analyzes the outputs of reference PV cells installed in various locations, with the aim of contributing to the identification of the most important factors influencing the accumulation of dust on a PV surface. Parameters such as the air-quality indexes, the recurrence and the amount of rainfall and the climate zone are investigated and related to the soiling losses of the PV device.

  14. Proteogenomic analysis of NCC-S1M, a gastric cancer stem cell-like cell line that responds to anti-PD-1.

    PubMed

    Park, Jun Won; Um, Hyejin; Yang, Hanna; Ko, Woori; Kim, Dae-Yong; Kim, Hark Kyun

    2017-03-11

    To elucidate signaling pathways that regulate gastric cancer stem cell (CSC) phenotypes and immune checkpoint, we performed a proteogenomic analysis of NCC-S1M, which is a gastric cancer cell line with CSC-like characteristics and is the only syngeneic gastric tumor cell line transplant model created in the scientific community. We found that the NCC-S1M allograft was responsive to anti-PD-1 treatment, and overexpressed Cd274 encoding PD-L1. PD-L1 was transcriptionally activated by loss of the TGF-β signaling. Il1rl1 protein was overexpressed in NCC-S1M cells compared with NCC-S1 cells that are less tumorigenic and less chemoresistant. Il1rl1 knockdown in NCC-S1M cells reduced tumorigenic potential and in vivo chemoresistance. Our proteogenomic analysis demonstrates a role of Smad4 loss in the PD-L1 immune evasion, as well as Il1rl1's role in CSC-like properties of NCC-S1M. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. In situ Van der Pauw measurements of the Ni/YSZ anode during exposure to syngas with phosphine contaminant

    NASA Astrophysics Data System (ADS)

    Demircan, Oktay; Xu, Chunchuan; Zondlo, John; Finklea, Harry O.

    Solid oxide fuel cells (SOFCs) represent an option to provide a bridging technology for energy conversion (coal syngas) as well as a long-term technology (hydrogen from biomass). Whether the fuel is coal syngas or hydrogen from biomass, the effect of impurities on the performance of the anode is a vital question. The anode resistivity during SOFC operation with phosphine-contaminated syngas was studied using the in situ Van der Pauw method. Commercial anode-supported solid oxide fuel cells (Ni/YSZ composite anodes, YSZ electrolytes) were exposed to a synthetic coal syngas mixture (H 2, H 2O, CO, and CO 2) at a constant current and their performance evaluated periodically with electrochemical methods (cyclic voltammetry, impedance spectroscopy, and polarization curves). In one test, after 170 h of phosphine exposure, a significant degradation of cell performance (loss of cell voltage, increase of series resistance and increase of polarization resistance) was evident. The rate of voltage loss was 1.4 mV h -1. The resistivity measurements on Ni/YSZ anode by the in situ Van der Pauw method showed that there were no significant changes in anode resistivity both under clean syngas and syngas with 10 ppm PH 3. XRD analysis suggested that Ni 5P 2 and P 2O 5 are two compounds accumulated on the anode. XPS studies provided support for the presence of two phosphorus phases with different oxidation states on the external anode surface. Phosphorus, in a positive oxidation state, was observed in the anode active layer. Based on these observations, the effect of 10 ppm phosphine impurity (or its reaction products with coal syngas) is assigned to the loss of performance of the Ni/YSZ active layer next to the electrolyte, and not to any changes in the thick Ni/YSZ support layer.

  16. APC/β-catenin-rich complexes at membrane protrusions regulate mammary tumor cell migration and mesenchymal morphology

    PubMed Central

    2013-01-01

    Background The APC tumor suppressor is mutated or downregulated in many tumor types, and is prominently localized to punctate clusters at protrusion tips in migratory cells, such as in astrocytes where it has been implicated in directed cell motility. Although APC loss is considered an initiating event in colorectal cancer, for example, it is less clear what role APC plays in tumor cell motility and whether loss of APC might be an important promoter of tumor progression in addition to initiation. Methods The localization of APC and β-catenin was analyzed in multiple cell lines, including non-transformed epithelial lines treated with a proteasome inhibitor or TGFβ to induce an epithelial-to-mesenchymal transition (EMT), as well as several breast cancer lines, by immunofluorescence. APC expression was knocked down in 4T07 mammary tumor cells using lentiviral-mediated delivery of APC-specific short-hairpin (sh) RNAs, and assessed using quantitative (q) reverse-transcriptase (RT)-PCR and western blotting. Tumor cell motility was analyzed by performing wound-filling assays, and morphology via immunofluorescence (IF) and phase-contrast microscopy. Additionally, proliferation was measured using BrdU incorporation, and TCF reporter assays were performed to determine β-catenin/TCF-mediated transcriptional activity. Results APC/β-catenin-rich complexes were observed at protrusion ends of migratory epithelial cells treated with a proteasome inhibitor or when EMT has been induced and in tumor cells with a mesenchymal, spindle-like morphology. 4T07 tumor cells with reduced APC levels were significantly less motile and had a more rounded morphology; yet, they did not differ significantly in proliferation or β-catenin/TCF transcriptional activity. Furthermore, we found that APC/β-catenin-rich complexes at protrusion ends were dependent upon an intact microtubule cytoskeleton. Conclusions These findings indicate that membrane protrusions with APC/β-catenin-containing puncta control the migratory potential and mesenchymal morphology of mammary tumor cells and suggest that APC loss during later stages of tumor progression might impact tumor cell dissemination or colonization. PMID:23302090

  17. Assessing corrosion problems in photovoltaic cells via electrochemical stress testing

    NASA Technical Reports Server (NTRS)

    Shalaby, H.

    1985-01-01

    A series of accelerated electrochemical experiments to study the degradation properties of polyvinylbutyral-encapsulated silicon solar cells has been carried out. The cells' electrical performance with silk screen-silver and nickel-solder contacts was evaluated. The degradation mechanism was shown to be electrochemical corrosion of the cell contacts; metallization elements migrate into the encapsulating material, which acts as an ionic conducting medium. The corrosion products form a conductive path which results in a gradual loss of the insulation characteristics of the encapsulant. The precipitation of corrosion products in the encapsulant also contributes to its discoloration which in turn leads to a reduction in its transparency and the consequent optical loss. Delamination of the encapsulating layers could be attributed to electrochemical gas evolution reactions. The usefulness of the testing technique in qualitatively establishing a reliability difference between metallizations and antireflection coating types is demonstrated.

  18. Liquid Water Saturation and Oxygen Transport Resistance in Polymer Electrolyte Membrane Fuel Cell Gas Diffusion Layers

    NASA Astrophysics Data System (ADS)

    Muirhead, Daniel

    In this thesis, the relative humidity (RH) of the cathode reactant gas was investigated as a factor which influences gas diffusion layer (GDL) liquid water accumulation and mass transport-related efficiency losses over a range of operating current densities in a polymer electrolyte membrane (PEM) fuel cell. Limiting current measurements were used to characterize fuel cell oxygen transport resistance while simultaneous measurements of liquid water accumulation were conducted using synchrotron X-ray radiography. GDL porosity distributions were characterized with micro-computed tomography (microCT). The work presented here can be used by researchers to develop improved numerical models to predict GDL liquid water accumulation and to inform the design of next-generation GDL materials to mitigate mass transport-related efficiency losses. This work also contributes an extensive set of concurrent performance and liquid water visualization data to the PEM fuel cell field that can be used for validating multiphase transport models.

  19. Development of advanced fuel cell system, phase 3

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1975-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Gradual wetting of the anode structure and subsequent long-term performance loss was determined to be caused by deposition of a silicon-containing material on the anode. This deposit was attributed to degradation of the asbestos matrix, and attention was therefore placed on development of a substitute matrix of potassium titanate. An 80 percent gold 20 percent platinum catalyst cathode was developed which has the same performance and stability as the standard 90 percent gold - 10 percent platinum cathode but at half the loading. A hybrid polysulfone/epoxy-glass fiber frame was developed which combines the resistance to the cell environment of pure polysulfone with the fabricating ease of epoxy-glass fiber laminate. These cell components were evaluated in various configurations of full-size cells. The ways in which the baseline engineering model system would be modified to accommodate the requirements of the space tug application are identified.

  20. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  1. Progress in Tandem Solar Cells Based on Hybrid Organic-Inorganic Perovskites

    DOE PAGES

    Chen, Bo; Zheng, Xiaopeng; Bai, Yang; ...

    2017-03-06

    Owing to their high efficiency, low-cost solution-processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic-inorganic perovskite (HOIP) thin films are promising top-cell candidates for integration with bottom-cells based on Si or other low-bandgap solar-cell materials to boost the power conversion efficiency (PCE) beyond the Shockley-Quiesser (S-Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically-stacked, optical coupling, and monolithically-integrated with PSCs as top-cells are described in detail. Highly-efficient semitransparent PSC top-cells with high transmittance inmore » near-infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet-resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide-bandgap PSCs with good photo-stability are discussed. In conclusion, the PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC-based tandem solar cells.« less

  2. Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.

    PubMed

    Kucinski, Aaron; Sarter, Martin

    2015-04-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  3. Two-dimensional high efficiency thin-film silicon solar cells with a lateral light trapping architecture.

    PubMed

    Fang, Jia; Liu, Bofei; Zhao, Ying; Zhang, Xiaodan

    2014-08-22

    Introducing light trapping structures into thin-film solar cells has the potential to enhance their solar energy harvesting as well as the performance of the cells; however, current strategies have been focused mainly on harvesting photons without considering the light re-escaping from cells in two-dimensional scales. The lateral out-coupled solar energy loss from the marginal areas of cells has reduced the electrical yield indeed. We therefore herein propose a lateral light trapping structure (LLTS) as a means of improving the light-harvesting capacity and performance of cells, achieving a 13.07% initial efficiency and greatly improved current output of a-Si:H single-junction solar cell based on this architecture. Given the unique transparency characteristics of thin-film solar cells, this proposed architecture has great potential for integration into the windows of buildings, microelectronics and other applications requiring transparent components.

  4. iNOS-Derived Nitric Oxide Stimulates Osteoclast Activity and Alveolar Bone Loss in Ligature-Induced Periodontitis in Rats

    PubMed Central

    Herrera, Bruno S.; Martins-Porto, Rodrigo; Maia-Dantas, Aline; Campi, Paula; Spolidorio, Luis C.; Costa, Soraia K.P.; Van Dyke, Thomas E.; Gyurko, Robert; Muscara, Marcelo N.

    2012-01-01

    Background Inflammatory stimuli activate inducible nitric oxide synthase (iNOS) in a variety of cell types, including osteoclasts (OC) and osteoblasts, resulting in sustained NO production. In this study, we evaluate the alveolar bone loss in rats with periodontitis under long-term iNOS inhibition, and the differentiation and activity of OC from iNOS-knockout (KO) mice in vitro. Methods Oral aminoguanidine (an iNOS inhibitor) or water treatment was started 2 weeks before induction of periodontitis. Rats were sacrificed 3, 7, or 14 days after ligature placement, and alveolar bone loss was evaluated. In vitro OC culture experiments were also performed to study the differentiation of freshly isolated bone marrow cells from both iNOS KO and wild-type C57BL/6 mice. OC were counted 6 days later after tartrate-resistant acid phosphatase staining (a marker of osteoclast identity), and bone resorption activity was assessed by counting the number of resorption pits on dentin disks. Results Rats with ligature showed progressive and significant alveolar bone loss compared to sham animals, and aminoguanidine treatment significantly inhibited ligature-induced bone loss at 7 and 14 days after the induction. In comparison to bone marrow cells from wild-type mice, cells from iNOS KO mice showed decreased OC growth and the resulting OC covered a smaller culture dish area and generated fewer resorption pit counts. Conclusion Our results demonstrate that iNOS inhibition prevents alveolar bone loss in a rat model of ligature-induced periodontitis, thus confirming that iNOS-derived NO plays a crucial role in the pathogenesis of periodontitis, probably by stimulating OC differentiation and activity. PMID:21417589

  5. Comparison of photovoltaic cell temperatures in modules operating with exposed and enclosed back surfaces

    NASA Technical Reports Server (NTRS)

    Namkoong, D.; Simon, F. F.

    1981-01-01

    Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.

  6. Regulatory T cells decrease invariant natural killer T cell-mediated pregnancy loss in mice.

    PubMed

    Li, L; Tu, J; Jiang, Y; Zhou, J; Schust, D J

    2017-05-01

    Pregnancy loss is the commonest complication of pregnancy. The causes of pregnancy loss are poorly understood. It has been reported that stimulation of invariant natural killer T (iNKT) cells using α-galactosylceramide (αGC) induces pregnancy loss in mice. Here we investigated the mechanisms, especially the role of regulatory T (Treg) cells, in iNKT cell-mediated pregnancy loss. We found that injection of αGC rapidly induced fetal resorption, activated decidual iNKT cells, decreased the percentage of decidual Treg cells and their interleukin (IL)-10 and transforming growth factor (TGF)-β production, and upregulated the levels of interferon (IFN)-γ, tumor necrosis factor-α, IL-4, and IL-10 in serum. Adoptive transfer of iNKT cells from wild-type (WT) and IL-4 -/- mice but not IFN-γ -/- mice into αGC-treated iNKT cell-deficient Jα18 -/- mice restored αGC-induced pregnancy loss. Adoptive transfer of Treg cells downregulated α-GC-induced pregnancy loss in WT mice. Finally, co-culture with αGC-stimulated decidual iNKT cells decreased the production of IL-10 and TGF-β in decidual Treg cells and inhibited their suppressive activity. These findings suggest that activation of iNKT cells induces pregnancy loss in mice in an IFN-γ-dependent manner. In addition, inhibition of the function of decidual Treg cells has an important role in iNKT cell-mediated pregnancy loss.

  7. A new strategy to mitigate the initial capacity loss of lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xin; Lin, Chikai; Wang, Xiaoping

    2016-08-01

    Hard carbon (non-graphitizable) and related materials, like tin, tin oxide, silicon, and silicon oxide, have a high theoretical lithium delivery capacity (>550 mAh/g depending on their structural and chemical properties) but unfortunately they also exhibit a large initial capacity loss (ICL) that overrides the true reversible capacity in a full cell. Overcoming the large ICL of hard carbon in a full-cell lithium-ion battery (LIB) necessitates a new strategy wherein a sacrificial lithium source additive, such as, Li5FeO4 (LFO), is inserted on the cathode side. Full batteries using hard carbon coupled with LFO-LiCoO2 (LCO) are currently under development at our laboratory.more » We find that the reversible capacity of a cathode containing LFO can be increased by 14%. Furthermore, the cycle performance of full cells with LFO additive is improved from <90% to >95%. We show that the LFO additive not only can address the irreversible capacity loss of the anode, but can also provide the additional lithium ion source required to mitigate the lithium loss caused by side reactions. In addition, we have explored the possibility to achieve higher capacity with hard carbon, whereby the energy density of full cells can be increased from ca. 300 Wh/kg to >400 Wh/kg.« less

  8. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos

    PubMed Central

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-01-01

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei. PMID:28038458

  9. Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†

    PubMed Central

    Mukherjee, Kusumika; Ishii, Kana; Pillalamarri, Vamsee; Kammin, Tammy; Atkin, Joan F.; Hickey, Scott E.; Xi, Qiongchao J.; Zepeda, Cinthya J.; Gusella, James F.; Talkowski, Michael E.; Morton, Cynthia C.; Maas, Richard L.; Liao, Eric C.

    2016-01-01

    CAPZB is an actin-capping protein that caps the growing end of F-actin and modulates the cytoskeleton and tethers actin filaments to the Z-line of the sarcomere in muscles. Whole-genome sequencing was performed on a subject with micrognathia, cleft palate and hypotonia that harbored a de novo, balanced chromosomal translocation that disrupts the CAPZB gene. The function of capzb was analyzed in the zebrafish model. capzb−/− mutants exhibit both craniofacial and muscle defects that recapitulate the phenotypes observed in the human subject. Loss of capzb affects cell morphology, differentiation and neural crest migration. Differentiation of both myogenic stem cells and neural crest cells requires capzb. During palate morphogenesis, defective cranial neural crest cell migration in capzb−/− mutants results in loss of the median cell population, creating a cleft phenotype. capzb is also required for trunk neural crest migration, as evident from melanophores disorganization in capzb−/− mutants. In addition, capzb over-expression results in embryonic lethality. Therefore, proper capzb dosage is important during embryogenesis, and regulates both cell behavior and tissue morphogenesis. PMID:26758871

  10. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos.

    PubMed

    Zhang, Tianwei; Lv, Lei; Huang, Yun; Ren, Xiaohui; Shi, Qinghua

    2017-02-14

    Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.

  11. Target sequencing and CRISPR/Cas editing reveal simultaneous loss of UTX and UTY in urothelial bladder cancer.

    PubMed

    Ahn, Jinwoo; Kim, Kwang Hyun; Park, Sanghui; Ahn, Young-Ho; Kim, Ha Young; Yoon, Hana; Lee, Ji Hyun; Bang, Duhee; Lee, Dong Hyeon

    2016-09-27

    UTX is a histone demethylase gene located on the X chromosome and is a frequently mutated gene in urothelial bladder cancer (UBC). UTY is a paralog of UTX located on the Y chromosome. We performed target capture sequencing on 128 genes in 40 non-metastatic UBC patients. UTX was the most frequently mutated gene (30%, 12/40). Of the genetic alterations identified, 75% were truncating mutations. UTY copy number loss was detected in 8 male patients (22.8%, 8/35). Of the 9 male patients with UTX mutations, 6 also had copy number loss (66.7%). To evaluate the functional roles of UTX and UTY in tumor progression, we designed UTX and UTY single knockout and UTX-UTY double knockout experiments using a CRISPR/Cas9 lentiviral system, and compared the proliferative capacities of two UBC cell lines in vitro. Single UTX or UTY knockout increased cell proliferation as compared to UTX-UTY wild-type cells. UTX-UTY double knockout cells exhibited greater proliferation than single knockout cells. These findings suggest both UTX and UTY function as dose-dependent suppressors of UBC development. While UTX escapes X chromosome inactivation in females, UTY may function as a male homologue of UTX, which could compensate for dosage imbalances.

  12. High-LET radiation induces inflammation and persistent changes in markers of hippocampal neurogenesis.

    PubMed

    Rola, Radoslaw; Sarkissian, Vahe; Obenaus, Andre; Nelson, Gregory A; Otsuka, Shinji; Limoli, Charles L; Fike, John R

    2005-10-01

    Exposure to heavy-ion radiation is considered a potential health risk in long-term space travel. It may result in the loss of critical cellular components in complex systems like the central nervous system (CNS), which could lead to performance decrements that ultimately could compromise mission goals and long-term quality of life. Specific hippocampal-dependent cognitive impairment occurs after whole-body 56Fe-particle irradiation, and while the pathogenesis of this effect is not yet clear, it may involve damage to neural precursor cells in the hippocampal dentate gyrus. We irradiated mice with 1-3 Gy of 12C or 56Fe ions and 9 months later quantified proliferating cells and immature neurons in the dentate subgranular zone (SGZ). Our results showed that reductions in these cells were dependent on the dose and LET. When compared with data for mice that were studied 3 months after 56Fe-particle irradiation, our current data suggest that these changes are not only persistent but may worsen with time. Loss of precursor cells was also associated with altered neurogenesis and a robust inflammatory response. These results indicate that high-LET radiation has a significant and long-lasting effect on the neurogenic population in the hippocampus that involves cell loss and changes in the microenvironment.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrabadi, Bahareh Alsadat Tavakoli; Dinh, Huyen N.; Bender, Guido

    The performance loss and recovery of the fuel cell due to Balance of Plant (BOP) contaminants was identified via a combination of experimental data and a mathematical model. The experiments were designed to study the influence of organic contaminants (e.g. those from BOP materials) on the resistance of the catalyst, ionomer and membrane, and a mathematical model was developed that allowed us to separate these competing resistances from the data collected on an operating fuel cell. For this reason, based on the functional groups, four organic contaminants found in BOP materials, diethylene glycol monoethyl ether (DGMEE), diethylene glycol monoethyl ethermore » acetate (DGMEA), benzyl alcohol (BzOH) and 2,6-diaminotoluene (2,6-DAT) were infused separately to the cathode side of the fuel cell. The cell voltage and high frequency impedance resistance was measured as a function of time. The contaminant feed was then discontinued and voltage recovery was measured. It was determined that compounds with ion exchange properties like 2,6-DAT can cause voltage loss with non-reversible recovery, so this compound was studied in more detail. Finally, the degree of voltage loss increased with an increase in concentration, and/or infusion time, and increased with a decrease in catalyst loadings.« less

  14. Analysis of the reflective multibandgap solar cell concept

    NASA Technical Reports Server (NTRS)

    Stern, T. G.

    1983-01-01

    A new and unique approach to improving photovoltaic conversion efficiency, the reflective multiband gap solar cell concept, was examined. This concept uses back surface reflectors and light trapping with several physically separated cells of different bandgaps to make more effective use of energy from different portions of the solar spectrum. Preliminary tests performed under General Dynamics Independent Research and Development (IRAD) funding have demonstrated the capability for achieving in excess of 20% conversion efficiency with aluminum gallium arsenide and silicon. This study analyzed the ultimate potential for high conversion efficiency with 2, 3, 4, and 5 different bandgap materials, determined the appropriate bandgaps needed to achieve this optimized efficiency, and identified potential problems or constraints. The analysis indicated that an improvement in efficiency of better than 40% could be attained in this multibandgap approach, compared to a single bandgap converter under the same assumptions. Increased absorption loss on the back surface reflector was found to incur a minimal penalty on efficiency for two and three bandgap systems. Current models for bulk absorption losses in 3-5 materials were found to be inadequate for explaining laboratory observed transmission losses. Recommendations included the continued development of high bandgap back surface reflector cells and basic research on semiconductor absorption mechanisms.

  15. Comparison of torsional and microburst longitudinal phacoemulsification: a prospective, randomized, masked clinical trial.

    PubMed

    Vasavada, Abhay R; Raj, Shetal M; Patel, Udayan; Vasavada, Vaishali; Vasavada, Viraj

    2010-01-01

    To compare intraoperative performance and postoperative outcome of three phacoemulsification technologies in patients undergoing microcoaxial phacoemulsification through 2.2-mm corneal incisions. The prospective, randomized, single-masked study included 360 eyes randomly assigned to torsional (Infiniti Vision System; Alcon Laboratories, Fort Worth, TX), microburst with longitudinal (Infiniti), or microburst with longitudinal (Legacy Everest, Alcon Laboratories) ultrasound. Assessments included surgical clock time, fluid volume, and intraoperative complications, central corneal thickness on day 1 and months 1 and 3 postoperatively, and endothelial cell density at 3 months postoperatively. Comparisons among groups were conducted. Torsional ultrasound required significantly less surgical clock time and fluid volume than the other groups. There were no intraoperative complications. Change in central corneal thickness and endothelial cell loss was significantly lower in the torsional ultrasound group at all postoperative visits (P < .001, Kruskal-Wallis test) compared to microburst longitudinal ultrasound modalities. Torsional ultrasound demonstrated quantitatively superior intraoperative performance and showed less increase in corneal thickness and less endothelial cell loss compared to microburst longitudinal ultrasound. Copyright 2010, SLACK Incorporated.

  16. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  17. Activity and Durability of Iridium Nanoparticles in the Oxygen Evolution Reaction

    DOE PAGES

    Alia, Shaun M.; Rasimick, Brian; Ngo, Chilan; ...

    2016-07-15

    Unsupported iridium (Ir) nanoparticles, that serve as standard oxygen evolution reaction (OER) catalysts in acidic electrolyzers, were investigated for electrochemical performance and durability in rotating disk electrode (RDE) half-cells. Fixed potential holds and potential cycling were applied to probe the durability of Ir nanoparticles, and performance losses were found to be driven by particle growth (coarsening) at moderate potential (1.4 to 1.6 V) and Ir dissolution at higher potential (>/=1.8 V). Several different commercially available samples were evaluated and standardized conditions for performance comparison are reported. In conclusion, the electrocatalyst RDE results have also been compared to results obtained formore » performance and durability in electrolysis cells.« less

  18. From coin cells to 400 mAh pouch cells: Enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication

    NASA Astrophysics Data System (ADS)

    Trask, Stephen E.; Li, Yan; Kubal, Joseph J.; Bettge, Martin; Polzin, Bryant J.; Zhu, Ye; Jansen, Andrew N.; Abraham, Daniel P.

    2014-08-01

    In this article we describe efforts to improve performance and cycle life of cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes. Initial work to identify high-performing materials, compositions, fabrication variables, and cycling conditions is conducted in coin cells. The resulting information is then used for the preparation of double-sided electrodes, assembly of pouch cells, and electrochemical testing. We report the cycling performance of cells with electrodes prepared under various conditions. Our data indicate that cells with positive electrodes containing 92 wt.% Li1.2Ni0.15Mn0.55Co0.1O2, 4 wt.% carbons (no graphite), and 4 wt.% PVdF (92-4-4) show ∼20% capacity fade after 1000 cycles in the 2.5-4.4 V range, significantly better than our baseline cells that show the same fade after only 450 cycles. Our analyses indicate that the major contributors to cell energy fade are capacity loss and impedance rise. Therefore incorporating approaches that minimize capacity fade and impedance rise, such as electrode coatings and electrolyte additives, can significantly enhance calendar and cycle life of this promising cell chemistry.

  19. From coin cells to 400 mAh pouch cells: Enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trask, Stephen E.; Li, Yan; Kubal, Joseph J.

    2014-08-01

    In this article we describe efforts to improve performance and cycle life of cells containing Li1.2Ni0.15Mn0.55Co0.1O2-based positive and graphite-based negative electrodes. Initial work to identify high-performing materials, compositions, fabrication variables, and cycling conditions is conducted in coin cells. The resulting information is then used for the preparation of double-sided electrodes, assembly of pouch cells, and electrochemical testing. We report the cycling performance of cells with electrodes prepared under various conditions. Our data indicate that cells with positive electrodes containing 92 wt% Li1.2Ni0.15Mn0.55Co0.1O2, 4 wt% carbons (no graphite), and 4 wt% PVdF (92-4-4) show ~20% capacity fade after 1000 cycles inmore » the 2.5-4.4V range, significantly better than our baseline cells that show the same fade after only 450 cycles. Our analyses indicate that the major contributors to cell energy fade are capacity loss and impedance rise. Therefore incorporating approaches that minimize capacity fade and impedance rise, such as electrode coatings and electrolyte additives, can significantly enhance calendar and cycle life of this promising cell chemistry.« less

  20. Dictyostelium RasG Is Required for Normal Motility and Cytokinesis, But Not Growth

    PubMed Central

    Tuxworth, Richard I.; Cheetham, Janet L.; Machesky, Laura M.; Spiegelmann, George B.; Weeks, Gerald; Insall, Robert H.

    1997-01-01

    RasG is the most abundant Ras protein in growing Dictyostelium cells and the closest relative of mammalian Ras proteins. We have generated null mutants in which expression of RasG is completely abolished. Unexpectedly, RasG − cells are able to grow at nearly wild-type rates. However, they exhibit defective cell movement and a wide range of defects in the control of the actin cytoskeleton, including a loss of cell polarity, absence of normal lamellipodia, formation of unusual small, punctate polymerized actin structures, and a large number of abnormally long filopodia. Despite their lack of polarity and abnormal cytoskeleton, mutant cells perform normal chemotaxis. However, rasG − cells are unable to perform normal cytokinesis, becoming multinucleate when grown in suspension culture. Taken together, these data suggest a principal role for RasG in coordination of cell movement and control of the cytoskeleton. PMID:9245789

  1. [Effect of chronic sensorineural hearing loss on several indicators of immune and endocrine systems of 7-11 year-old children].

    PubMed

    Beschasnyĭ, S P

    2013-01-01

    We investigated the effects of chronic bilateral sensorineural hearing loss of III-IV degree on the performance of interleukins, immunoglobulins serum and saliva, the functional activity of granulocyte-monocyte cell immunity, evaluated the activity of the hypothalamic-pituitary-adrenal system in children aged 7-11 years. It was found that due to stress activation of the sympathetic-adrenal system the function of granulocytes and monocytes is suppressed, with a predominance of production of anti-inflammatory interleukins. This leads to the dominance of T-helper type 2. Products granulocytes and T-helper type-2 anti-inflammatory interleukins IL-4, IL-5, IL-10, IL-13 leads to the activation of B-cells. Thus, in children 7-11 years of age with congenital bilateral sensorineural hearing loss is a decrease of non-specific humoral immunity dominated type of immune response to increased levels of IgG.

  2. The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells

    PubMed Central

    Philippa, Bronson; Stolterfoht, Martin; Burn, Paul L.; Juška, Gytis; Meredith, Paul; White, Ronald D.; Pivrikas, Almantas

    2014-01-01

    A typical signature of charge extraction in disordered organic systems is dispersive transport, which implies a distribution of charge carrier mobilities that negatively impact on device performance. Dispersive transport has been commonly understood to originate from a time-dependent mobility of hot charge carriers that reduces as excess energy is lost during relaxation in the density of states. In contrast, we show via photon energy, electric field and film thickness independence of carrier mobilities that the dispersive photocurrent in organic solar cells originates not from the loss of excess energy during hot carrier thermalization, but rather from the loss of carrier density to trap states during transport. Our results emphasize that further efforts should be directed to minimizing the density of trap states, rather than controlling energetic relaxation of hot carriers within the density of states. PMID:25047086

  3. Degradation effects on charge carrier transport in P3HT:PCBM solar cells studied by Photo-CELIV and ToF

    NASA Astrophysics Data System (ADS)

    Stephen, M.; Karuthedath, S.; Sauermann, T.; Genevičius, K.; Juška, G.

    2014-10-01

    Oxygen induced degradation is one of the major problems in the field of organic photovoltaics. Photo-degradation impacts on performance of inverted bulk hetero junction poly(3-hexylthiophene) : phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells has been investigated by means of charge extraction by linearly increasing voltage (CELIV) and time of flight (ToF) methods. The irreversible loss in short circuit current (Jsc) can be attributed to a combination of adverse effects such as loss in mobility of the charge carrires, increase in trapping effect and sheilding of electric field by equilibrium carriers upon degradation.

  4. Performance and Safety Testing of Cylindrical Moli Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Deng, Yi; Rehm, Ray; Tracinski, Walter A.; Bragg, Bobby J.

    2002-01-01

    The Moli lithium-ion cells were tested under normal and abuse conditions. The cells exhibit only 50% of their original capacity at about -10 C. The optimum charge/discharge rate with the least percentage loss in capacity is C/2 charge and C/4 discharge. The cells did not explode or go into a thermal runaway during venting at very high temperatures. They exhibited good tolerance under the vibration conditions tested and could potentially be used in the build up of large batteries that have high current pulse (up to 3C) applications.

  5. Performance of the CHIRON high-resolution Echelle spectrograph

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Spronck, Julien F. P.; Tokovinin, Andrei; Szymkowiak, Andrew; Giguere, Matthew; Fischer, Debra A.

    2012-09-01

    CHIRON is a fiber-fed Echelle spectrograph with observing modes for resolutions from 28,000 to 120,000, built primarily for measuring precise radial velocities (RVs). We present the instrument performance as determined during integration and commissioning. We discuss the PSF, the effect of glass inhomogeneity on the cross-dispersion prism, temperature stabilization, stability of the spectrum on the CCD, and detector characteristics. The RV precision is characterized, with an iodine cell or a ThAr lamp as the wavelength reference. Including all losses from the sky to the detector, the overall efficiency is about 6%; the dominant limitation is coupling losses into the fiber due to poor guiding.

  6. Factors affecting the open-circuit voltage and electrode kinetics of some iron/titanium redox flow cells

    NASA Technical Reports Server (NTRS)

    Reid, M. A.; Gahn, R. F.

    1977-01-01

    Performance of the iron-titanium redox flow cell was studied as a function of acid concentration. Anion permeable membranes separated the compartments. Electrodes were graphite cloth. Current densities ranged up to 25 mA/square centimeter. Open-circuit and load voltages decreased as the acidity was increased on the iron side as predicted. On the titanium side, open-circuit voltages decreased as the acidity was increased in agreement with theory, but load voltages increased due to decreased polarization with increasing acidity. High acidity on the titanium side coupled with low acidity on the iron side gives the best load voltage, but such cells show voltage losses as they are repeatedly cycled. Analyses show that the bulk of the voltage losses are due to diffusion of acid through the membrane.

  7. Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests

    DOE PAGES

    Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph; ...

    2018-03-15

    Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less

  8. Carbon Corrosion in PEM Fuel Cells and the Development of Accelerated Stress Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macauley, Natalia; Papadias, Dennis D.; Fairweather, Joseph

    Here, carbon corrosion is an important degradation mechanism that can impair PEMFC performance through the destruction of catalyst connectivity, collapse of the electrode pore structure, loss of hydrophobic character, and an increase of the catalyst particle size. In this study, carbon corrosion was quantified in situ by measurement of carbon dioxide in the fuel cell exhaust gases through non-dispersive infrared spectroscopy during simulated drive cycle operations consisting of potential cycling with varying upper and lower potential limits. These studies were conducted for three different types of carbon supports. A reduction in the catalyst layer thickness was observed during a simulatedmore » drive cycle operation with a concomitant decrease in catalyst layer porosity, which led to performance losses due to increased mass transport limitations. The observed thickness reduction was primarily due to compaction of the catalyst layer, with the actual mass of carbon oxidation (loss) contributing only a small fraction (< 20%). The dynamics of carbon corrosion are presented along with a model that simulates the transient and dynamic corrosion rates observed in our experiments. Accelerated carbon corrosion stress tests are presented and their effects are compared to those observed for the drive cycle test.« less

  9. [Therapeutic effect of insulin-like growth factor-1 injection into the inner ears through scala tympani fenestration on gentamicin-induced hearing loss in guinea pigs].

    PubMed

    Li, Yong-he; Chen, Hao; Guo, Meng-he

    2008-02-01

    To study the therapeutic effect of insulin-like growth factor-1 (IGF-1) injection into the inner ears through a scala tympani fenestration on sensorineural deafness in a guinea pig model of gentamicin-induced hearing loss. Twenty guinea pigs with gentamicin-induced hearing loss were randomized equally into IGF-1 group and control group. In both groups, scala tympani fenestration was performed for injection of IGF-1 (10 microl) or artificial perilymphatic fluid (10 microl). Auditory brainstem responses (ABR) test was performed before and 7 and 14 days after surgery, respectively, and the cochlea was removed by decollation of 3 guinea pigs from each group after ABR test for observing the changes in the hair cells using scanning electron microscope. Significant reduction in the ABR response threshold (RT) occurred in IGF-1 group 7 and 14 days after the surgery, and on day 14, ABR RT showed significant difference between IGF-1 group and the control group. Scanning electron microscopy revealed severer damages of the hair cells in the control group, and in the IGF-1 group, finger-like microvilli was detected on the surface of the damaged hair cells. IGF-1 injection in the inner ear through the scala tympani fenestration may ameliorate the damages of the auditory function and relieve sustained toxicity of gentamicin in guinea pigs possibly by protection and partial repair of the damaged cochlea hair cells as well as protection of the afferent nerves.

  10. Electrochemical testing of suspension plasma sprayed solid oxide fuel cell electrolytes

    NASA Astrophysics Data System (ADS)

    Waldbillig, D.; Kesler, O.

    Electrochemical performance of metal-supported plasma sprayed (PS) solid oxide fuel cells (SOFCs) was tested for three nominal electrolyte thicknesses and three electrolyte fabrication conditions to determine the effects of electrolyte thickness and microstructure on open circuit voltage (OCV) and series resistance (R s). The measured OCV values were approximately 90% of the Nernst voltages, and electrolyte area specific resistances below 0.1 Ω cm 2 were obtained at 750 °C for electrolyte thicknesses below 20 μm. Least-squares fitting was used to estimate the contributions to R s of the YSZ bulk material, its microstructure, and the contact resistance between the current collectors and the cells. It was found that the 96% dense electrolyte layers produced from high plasma gas flow rate conditions had the lowest permeation rates, the highest OCV values, and the smallest electrolyte-related voltage losses. Optimal electrolyte thicknesses were determined for each electrolyte microstructure that would result in the lowest combination of OCV loss and voltage loss due to series resistance for operating voltages of 0.8 V and 0.7 V.

  11. Contribution of macrophages in the contrast loss in iron oxide-based MRI cancer cell tracking studies

    PubMed Central

    Danhier, Pierre; Deumer, Gladys; Joudiou, Nicolas; Bouzin, Caroline; Levêque, Philippe; Haufroid, Vincent; Jordan, Bénédicte F.; Feron, Olivier; Sonveaux, Pierre; Gallez, Bernard

    2017-01-01

    Magnetic resonance imaging (MRI) cell tracking of cancer cells labeled with superparamagnetic iron oxides (SPIO) allows visualizing metastatic cells in preclinical models. However, previous works showed that the signal void induced by SPIO on T2(*)-weighted images decreased over time. Here, we aim at characterizing the fate of iron oxide nanoparticles used in cell tracking studies and the role of macrophages in SPIO metabolism. In vivo MRI cell tracking of SPIO positive 4T1 breast cancer cells revealed a quick loss of T2* contrast after injection. We next took advantage of electron paramagnetic resonance (EPR) spectroscopy and inductively coupled plasma mass spectroscopy (ICP-MS) for characterizing the evolution of superparamagnetic and non-superparamagnetic iron pools in 4T1 breast cancer cells and J774 macrophages after SPIO labeling. These in vitro experiments and histology studies performed on 4T1 tumors highlighted the quick degradation of iron oxides by macrophages in SPIO-based cell tracking experiments. In conclusion, the release of SPIO by dying cancer cells and the subsequent uptake of iron oxides by tumor macrophages are limiting factors in MRI cell tracking experiments that plead for the use of (MR) reporter-gene based imaging methods for the long-term tracking of metastatic cells. PMID:28467814

  12. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution.

    PubMed

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C; Beilman, Greg J; Chipman, Jeffrey G; Schacker, Timothy W; Silvestri, Guido; Haase, Ashley T

    2012-08-30

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1-infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution.

  13. Improved uniformity in high-performance organic photovoltaics enabled by (3-aminopropyl)triethoxysilane cathode functionalization.

    PubMed

    Luck, Kyle A; Shastry, Tejas A; Loser, Stephen; Ogien, Gabriel; Marks, Tobin J; Hersam, Mark C

    2013-12-28

    Organic photovoltaics have the potential to serve as lightweight, low-cost, mechanically flexible solar cells. However, losses in efficiency as laboratory cells are scaled up to the module level have to date impeded large scale deployment. Here, we report that a 3-aminopropyltriethoxysilane (APTES) cathode interfacial treatment significantly enhances performance reproducibility in inverted high-efficiency PTB7:PC71BM organic photovoltaic cells, as demonstrated by the fabrication of 100 APTES-treated devices versus 100 untreated controls. The APTES-treated devices achieve a power conversion efficiency of 8.08 ± 0.12% with histogram skewness of -0.291, whereas the untreated controls achieve 7.80 ± 0.26% with histogram skewness of -1.86. By substantially suppressing the interfacial origins of underperforming cells, the APTES treatment offers a pathway for fabricating large-area modules with high spatial performance uniformity.

  14. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    PubMed

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  15. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers

    NASA Astrophysics Data System (ADS)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-01

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  16. A Victim of Halide Ion Segregation. How Light Soaking Affects Solar Cell Performance of Mixed Halide Lead Perovskites

    DOE PAGES

    Samu, Gergely F.; Janaky, Csaba; Kamat, Prashant V.

    2017-07-24

    Photoinduced segregation in mixed halide perovskites has a direct influence on decreasing the solar cell efficiency as segregated I-rich domains serve as charge recombination centers. Here, the changes in the external quantum efficiency mirror the spectral loss in the absorption; however, the time scale of the IPCE recovery in the dark is slower than the absorption recovery, showing the intricate nature of the photoinduced halide segregation and charge collection in solar cell devices.

  17. High Efficiency Large Area Polysilicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Johnson, S. M.; Winter, C.

    1985-01-01

    Large area (100 sq cm) polysilicon solar cells having efficiencies of up to 14.1% (100 mW/sq cm, 25 C) were fabricated and a detailed analysis was performed to identify the efficiency loss mechanisms. The 1-5 characteristics of the best cell were dominated by recombination in the quasi-neutral base due to the combination of minority carrier diffusion length and base resistivity. An analysis of the microstructural defects present in the material and their effect on the electrical properties is presented.

  18. The design of a Li-ion full cell battery using a nano silicon and nano multi-layer graphene composite anode

    NASA Astrophysics Data System (ADS)

    Eom, KwangSup; Joshi, Tapesh; Bordes, Arnaud; Do, Inhwan; Fuller, Thomas F.

    2014-03-01

    In this study, a Si-graphene composite, which is composed of nano Si particles and nano-sized multi-layer graphene particles, and micro-sized multi-layer graphene plate conductor, was used as the anode for Li-ion battery. The Si-graphene electrode showed the high capacity and stable cyclability at charge/discharge rate of C/2 in half cell tests. Nickel cobalt aluminum material (NCA) was used as a cathode in the full cell to evaluate the practicality of the new Si-graphene material. Although the Si-graphene anode has more capacity than the NCA cathode in this designed full cell, the Si-graphene anode had a greater effect on the full-cell performance due to its large initial irreversible capacity loss and continuous SEI formation during cycling. When fluoro-ethylene carbonate was added to the electrolyte, the cyclability of the full cell was much improved due to less SEI formation, which was confirmed by the decreases in the 1st irreversible capacity loss, overpotential for the 1st lithiation, and the resistance of the SEI.

  19. Causes and Consequences of Sensory Hair Cell Damage and Recovery in Fishes.

    PubMed

    Smith, Michael E; Monroe, J David

    2016-01-01

    Sensory hair cells are the mechanotransductive receptors that detect gravity, sound, and vibration in all vertebrates. Damage to these sensitive receptors often results in deficits in vestibular function and hearing. There are currently two main reasons for studying the process of hair cell loss in fishes. First, fishes, like other non-mammalian vertebrates, have the ability to regenerate hair cells that have been damaged or lost via exposure to ototoxic chemicals or acoustic overstimulation. Thus, they are used as a biomedical model to understand the process of hair cell death and regeneration and find therapeutics that treat or prevent human hearing loss. Secondly, scientists and governmental natural resource managers are concerned about the potential effects of intense anthropogenic sounds on aquatic organisms, including fishes. Dr. Arthur N. Popper and his students, postdocs and research associates have performed pioneering experiments in both of these lines of fish hearing research. This review will discuss the current knowledge regarding the causes and consequences of both lateral line and inner ear hair cell damage in teleost fishes.

  20. Engine diagnostics program: CF6-50 engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Wulf, R. H.

    1980-01-01

    Cockpit cruise recordings and test cell data in conjunction with hardware inspection results from airline overhaul shops were analyzed to define the extent and magnitude of performance deterioration of the General Electric CF6-50 high bypass turbofan engine. The magnitude of short term deterioration was isolated from the long term, and the individual damage mechanisms that were the cause for the majority of the performance deterioration was identified. It was determined that the long term engine performance deterioration characteristics were different for the 3 aircraft types currently powered by the CF6-50 engine, but these differences were due to operational considerations (flight length and takeoff derate) and not to differences associated with the aircraft type. Unrestored losses, that is, performance deterioration which remains after engine refurbishment, represents over 70 percent of the total performance deterioration at engine shop visit. Superficial damage, such as, increased surface roughness, leading edge shape changes on airfoils, and increases in the average clearances between rotating and stationary components is the major contributor to these losses. Seventy one percent of the unrestored losses are cost effective to restore, and if implemented could reduce fuel consumed by CF6-50 engines by 26 million gallons in 1980.

  1. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit.

    PubMed

    Atkinson, Ross G; Sutherland, Paul W; Johnston, Sarah L; Gunaseelan, Kularajathevan; Hallett, Ian C; Mitra, Deepali; Brummell, David A; Schröder, Roswitha; Johnston, Jason W; Schaffer, Robert J

    2012-08-02

    While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in 'Royal Gala' apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. PG1-suppressed 'Royal Gala' apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. These findings confirm PG1's role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss.

  2. High-efficiency silicon solar-cell design and practical barriers

    NASA Technical Reports Server (NTRS)

    Mokashi, A.

    1985-01-01

    A numerical evaluation technique is used to study the impact of practical barriers, such as heavy doping effects (Auger recombination, band gap narrowing), surface recombination, shadowing losses and minority-carrier lifetime (Tau), on a high efficiency silicon solar cell performance. Considering a high Tau of 1 ms, efficiency of a silicon solar cell of the hypothetical case is estimated to be around 29%. This is comparable with (detailed balance limit) maximum efficiency of a p-n junction solar cell of 30%. Value of Tau is varied from 1 second to 20 micro. Heavy doping effects, and realizable values of surface recombination velocities and shadowing, are then considered in succession and their influence on cell efficiency is evaluated and quantified. These practical barriers cause the cell efficiency to reduce from the maximum value of 29% to the experimentally achieved value of about 19%. Improvement in open circuit voltage V sub oc is required to achieve cell efficiency greater than 20%. Increased value of Tau reduces reverse saturation current and, hence, improves V sub oc. Control of surface recombination losses becomes critical at higher V sub oc. Substantial improvement in Tau and considerable reduction in surface recombination velocities is essential to achieve cell efficiencies greater than 20%.

  3. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Astrophysics Data System (ADS)

    Dinetta, L. C.; Hannon, M. H.

    1995-10-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  4. Monolithically interconnected GaAs solar cells: A new interconnection technology for high voltage solar cell output

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.

    1995-01-01

    Photovoltaic linear concentrator arrays can benefit from high performance solar cell technologies being developed at AstroPower. Specifically, these are the integration of thin GaAs solar cell and epitaxial lateral overgrowth technologies with the application of monolithically interconnected solar cell (MISC) techniques. This MISC array has several advantages which make it ideal for space concentrator systems. These are high system voltage, reliable low cost monolithically formed interconnections, design flexibility, costs that are independent of array voltage, and low power loss from shorts, opens, and impact damage. This concentrator solar cell will incorporate the benefits of light trapping by growing the device active layers over a low-cost, simple, PECVD deposited silicon/silicon dioxide Bragg reflector. The high voltage-low current output results in minimal 12R losses while properly designing the device allows for minimal shading and resistance losses. It is possible to obtain open circuit voltages as high as 67 volts/cm of solar cell length with existing technology. The projected power density for the high performance device is 5 kW/m for an AMO efficiency of 26% at 1 5X. Concentrator solar cell arrays are necessary to meet the power requirements of specific mission platforms and can supply high voltage power for electric propulsion systems. It is anticipated that the high efficiency, GaAs monolithically interconnected linear concentrator solar cell array will enjoy widespread application for space based solar power needs. Additional applications include remote man-portable or ultra-light unmanned air vehicle (UAV) power supplies where high power per area, high radiation hardness and a high bus voltage or low bus current are important. The monolithic approach has a number of inherent advantages, including reduced cost per interconnect and increased reliability of array connections. There is also a high potential for a large number of consumer products. Dual-use applications can include battery chargers and remote power supplies for consumer electronics products such as portable telephones/beepers, portable radios, CD players, dashboard radar detectors, remote walkway lighting, etc.

  5. DE-FG02-08ER64658 (OASIS) - Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharman, Jonathan

    Project OASIS (Operation of Advanced Structures, Interfaces and Sub-components for MEAs) was a 12 month project that ran from 1st September 2008 to 31st August 2009, and was managed by the Department of Energy Office of Science, Chicago Office, as Award No DE-FG02-08ER64658, with Johnson Matthey Fuel Cells Inc. as the sole contractor. The project was completed on schedule, with technical successes (details below) and payment of the full grant award made by DOE. The aim of the project was the development of membrane electrode assemblies (MEAs) for H2/air polymer electrolyte membrane (PEM) fuel cells that would give higher performancemore » under hot/dry and dry operating conditions, ideally with no loss of performance under wet conditions. Reducing or eliminating the need for humidifying the incoming gases will allow significant system cost and size reduction for many fuel cell applications including automotive, stationary and back-up power, and portable systems. Portable systems are also of particular interest in military markets. In previous work Johnson Matthey Fuel Cells had developed very stable, corrosion-resistant catalysts suitable for resisting degradation by carbon corrosion in particular. These materials were applied within the OASIS project as they are considered necessary for systems such as automotive where multiple start-stop events are experienced. These catalysts were contrasted with more conventional materials in the design of catalyst layers and novel microporous layers (MPLs) and gas diffusion layer (GDL) combinations were also explored. Early on in the work it was shown how much more aggressive high temperature operation is than dry operation. At the same humidity, tests at 110?C caused much more dehydration than tests at 80?C and the high temperature condition was much more revealing of improvements made to MEA design. Alloy catalysts were introduced and compared with Pt catalysts with a range of particle sizes. It was apparent that the larger particle sizes of the alloy catalysts led to a reduction in performance that offset much of their kinetic advantage. The Pt-only materials clearly showed that small particles are beneficial to good performance under hot/dry conditions, because of their higher surface area, although they are known to be less stable to cyclic operation. An ex-situ water vapour sorption technique was developed that showed a very clear correlation with in-cell performance: catalyst powders that absorbed more water gave better performance in-cell. It was shown that alloy catalysts could give a 25 mV advantage over Pt-only at 1 Acm-2. GDL design was also shown to influence performance and more permeable GDLs on the anode allowed better membrane hydration and therefore conductivity. A very impermeable GDL on the cathode caused cathode flooding even under dry conditions, but a novel cathode MPL incorporating ionomer and operating at 110?C, 33/17% RH showed a 150 mV gain at 800 mAcm-2 over the conventional MPL. This project has increased the understanding of the factors that influence performance loss under dry conditions, including the development of an insightful ex-situ characterisation technique (Dynamic Vapour Sorption). All the approaches investigated can be readily implemented in state-of the-art MEAs, although optimisation would be needed to integrate the new designs with existing MEA types and to tune to the exact range of operating conditions. The work is thus expected to benefit the public by feeding through more condition-tolerant production MEAs to a range of applications and thereby accelerate the commercialisation of fuel cell technology. In summary, a number of specific catalyst, catalyst layer, MPL and GDL improvements were made during this project. Often the best designs under dry conditions translated to some performance loss under wet conditions, but compromise situations were also found where dry performance was improved with no loss of wet performance.« less

  6. Biocarriers Improve Bioaugmentation Efficiency of a Rapid Sand Filter for the Treatment of 2,6-Dichlorobenzamide-Contaminated Drinking Water.

    PubMed

    Horemans, Benjamin; Raes, Bart; Vandermaesen, Johanna; Simanjuntak, Yanti; Brocatus, Hannelore; T'Syen, Jeroen; Degryse, Julie; Boonen, Jos; Wittebol, Janneke; Lapanje, Ales; Sørensen, Sebastian R; Springael, Dirk

    2017-02-07

    Aminobacter sp. MSH1 immobilized in an alginate matrix in porous stones was tested in a pilot system as an alternative inoculation strategy to the use of free suspended cells for biological removal of micropollutant concentrations of 2,6-dichlorobenzamide (BAM) in drinking water treatment plants (DWTPs). BAM removal rates and MSH1 cell numbers were recorded during operation and assessed with specific BAM degradation rates obtained in lab conditions using either freshly grown cells or starved cells to explain reactor performance. Both reactors inoculated with either suspended or immobilized cells showed immediate BAM removal under the threshold of 0.1 μg/L, but the duration of sufficient BAM removal was 2-fold (44 days) longer for immobilized cells. The longer sufficient BAM removal in case of immobilized cells compared to suspended cells was mainly explained by a lower initial loss of MSH1 cells at operational start due to volume replacement and shear. Overall loss of activity in the reactors though was due to starvation, and final removal rates did not differ between reactors inoculated with immobilized and suspended cells. Management of assimilable organic carbon, in addition to cell immobilization, appears crucial for guaranteeing long-term BAM degradation activity of MSH1 in DWTP units.

  7. Architecture for improved mass transport and system performance in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Houser, Jacob; Pezeshki, Alan; Clement, Jason T.; Aaron, Douglas; Mench, Matthew M.

    2017-05-01

    In this work, electrochemical performance and parasitic losses are combined in an overall system-level efficiency metric for a high performance, all-vanadium redox flow battery. It was found that pressure drop and parasitic pumping losses are relatively negligible for high performance cells, i.e., those capable of operating at a high current density while at a low flow rate. Through this finding, the Equal Path Length (EPL) flow field architecture was proposed and evaluated. This design has superior mass transport characteristics in comparison with the standard serpentine and interdigitated designs at the expense of increased pressure drop. An Aspect Ratio (AR) design is discussed and evaluated, which demonstrates decreased pressure drop compared to the EPL design, while maintaining similar electrochemical performance under most conditions. This AR design is capable of leading to improved system energy efficiency for flow batteries of all chemistries.

  8. Long-term CF6 engine performance deterioration: Evaluation of engine S/N 451-380

    NASA Technical Reports Server (NTRS)

    Kramer, W. H.; Smith, J. J.

    1978-01-01

    The performance testing and analytical teardown of CF6-6D engine serial number 451-380 which was recently removed from a DC-10 aircraft is summarized. The investigative test program was conducted inbound prior to normal overhaul/refurbishment. The performance testing included an inbound test, a test following cleaning of the low pressure turbine airfoils, and a final test after leading edge rework and cleaning the stage one fan blades. The analytical teardown consisted of detailed disassembly inspection measurements and airfoil surface finish checks of the as-received deteriorated hardware. Aspects discussed include the analysis of the test cell performance data, a complete analytical teardown report with a detailed description of all observed hardware distress, and an analytical assessment of the performance loss (deterioration) relating measured hardware conditions to losses in both specific fuel comsumption and exhaust gas temperature.

  9. Long-term CF6 engine performance deterioration: Evaluation of engine S/N 451-479

    NASA Technical Reports Server (NTRS)

    Kramer, W. H.; Smith, J. J.

    1978-01-01

    The performance testing and analytical teardown of CF6-6D engine is summarized. This engine had completed its initial installation on DC-10 aircraft. The investigative test program was conducted inbound prior to normal overhaul/refurbishment. The performance testing included an inbound test, a test following cleaning of the low pressure turbine airfoils, and a final test after leading edge rework and cleaning the stage one fan blades. The analytical teardown consisted of detailed disassembly inspection measurements and airfoil surface finish checks of the as received deteriorated hardware. Included in this report is a detailed analysis of the test cell performance data, a complete analytical teardown report with a detailed description of all observed hardware distress, and an analytical assessment of the performance loss (deterioration) relating measured hardware conditions to losses in both SFC (specific fuel consumption) and EGT (exhaust gas temperature).

  10. Multijunction Solar Cell Technology for Mars Surface Applications

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mardesich, Nick; Ewell, Richard C.; Mueller, Robert L.; Endicter, Scott; Aiken, Daniel; Edmondson, Kenneth; Fetze, Chris

    2006-01-01

    Solar cells used for Mars surface applications have been commercial space qualified AM0 optimized devices. Due to the Martian atmosphere, these cells are not optimized for the Mars surface and as a result operate at a reduced efficiency. A multi-year program, MOST (Mars Optimized Solar Cell Technology), managed by JPL and funded by NASA Code S, was initiated in 2004, to develop tools to modify commercial AM0 cells for the Mars surface solar spectrum and to fabricate Mars optimized devices for verification. This effort required defining the surface incident spectrum, developing an appropriate laboratory solar simulator measurement capability, and to develop and test commercial cells modified for the Mars surface spectrum. This paper discusses the program, including results for the initial modified cells. Simulated Mars surface measurements of MER cells and Phoenix Lander cells (2007 launch) are provided to characterize the performance loss for those missions. In addition, the performance of the MER rover solar arrays is updated to reflect their more than two (2) year operation.

  11. Experimental investigations, modeling, and analyses of high-temperature devices for space applications: Part 1. Final report, June 1996--December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.; El-Genk, M.S.; Huang, L.

    1999-01-01

    The Institute of Space and Nuclear Power Studies at the University of New Mexico has developed a computer simulation of cylindrical geometry alkali metal thermal-to-electric converter cells using a standard Fortran 77 computer code. The objective and use of this code was to compare the experimental measurements with computer simulations, upgrade the model as appropriate, and conduct investigations of various methods to improve the design and performance of the devices for improved efficiency, durability, and longer operational lifetime. The Institute of Space and Nuclear Power Studies participated in vacuum testing of PX series alkali metal thermal-to-electric converter cells and developedmore » the alkali metal thermal-to-electric converter Performance Evaluation and Analysis Model. This computer model consisted of a sodium pressure loss model, a cell electrochemical and electric model, and a radiation/conduction heat transfer model. The code closely predicted the operation and performance of a wide variety of PX series cells which led to suggestions for improvements to both lifetime and performance. The code provides valuable insight into the operation of the cell, predicts parameters of components within the cell, and is a useful tool for predicting both the transient and steady state performance of systems of cells.« less

  12. Experimental investigations, modeling, and analyses of high-temperature devices for space applications: Part 2. Final report, June 1996--December 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.; El-Genk, M.S.; Huang, L.

    1999-01-01

    The Institute of Space and Nuclear Power Studies at the University of New Mexico has developed a computer simulation of cylindrical geometry alkali metal thermal-to-electric converter cells using a standard Fortran 77 computer code. The objective and use of this code was to compare the experimental measurements with computer simulations, upgrade the model as appropriate, and conduct investigations of various methods to improve the design and performance of the devices for improved efficiency, durability, and longer operational lifetime. The Institute of Space and Nuclear Power Studies participated in vacuum testing of PX series alkali metal thermal-to-electric converter cells and developedmore » the alkali metal thermal-to-electric converter Performance Evaluation and Analysis Model. This computer model consisted of a sodium pressure loss model, a cell electrochemical and electric model, and a radiation/conduction heat transfer model. The code closely predicted the operation and performance of a wide variety of PX series cells which led to suggestions for improvements to both lifetime and performance. The code provides valuable insight into the operation of the cell, predicts parameters of components within the cell, and is a useful tool for predicting both the transient and steady state performance of systems of cells.« less

  13. Radiation heat transfer in multitube, alkaline-metal thermal-to-electric converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.M.P.; El-Genk, M.S.

    Vapor anode, multitube Alkali-Metal Thermal-to-Electric Converters (AMTECs) are being considered for a number of space missions, such as the NASA Pluto/Express (PX) and Europa missions, scheduled for the years 2004 and 2005, respectively. These static converters can achieve a high fraction of Carnot efficiency at relatively low operating temperatures. An optimized cell can potentially provide a conversion efficiency between 20 and 30 percent, when operated at a hot-side temperature of 1000--1200 K and a cold-side temperature of 550--650 K. A comprehensive modeling and testing program of vapor anode, multitube AMTEC cells has been underway for more than three years atmore » the Air Force Research Laboratory`s Power and Thermal Group (AFRL/VSDVP), jointly with the University of New Mexico`s Institute for Space and Nuclear Power Studies. The objective of this program is to demonstrate the readiness of AMTECs for flight on future US Air Force space missions. A fast, integrated AMTEC Performance and Evaluation Analysis Model (APEAM) has been developed to support ongoing vacuum tests at AFRL and perform analyses and investigate potential design changes to improve the PX-cell performance. This model consists of three major components (Tournier and El-Genk 1998a, b): (a) a sodium vapor pressure loss model, which describes continuum, transition and free-molecule flow regimes in the low-pressure cavity of the cell; (b) an electrochemical and electrical circuit model; and (c) a radiation/conduction heat transfer model, for calculating parasitic heat losses. This Technical Note describes the methodology used to calculate the radiation view factors within the enclosure of the PX-cells, and the numerical procedure developed in this work to determine the radiation heat transport and temperatures within the cell cavity.« less

  14. Coping with cancer - hair loss

    MedlinePlus

    Cancer treatment - alopecia; Chemotherapy - hair loss; Radiation - hair loss ... Many chemotherapy drugs attack fast-growing cells. This is because cancer cells divide rapidly. Since the cells in hair ...

  15. Analyzing Study of Path loss Propagation Models in Wireless Communications at 0.8 GHz

    NASA Astrophysics Data System (ADS)

    Kadhim Hoomod, Haider; Al-Mejibli, Intisar; Issa Jabboory, Abbas

    2018-05-01

    The paths loss propagation model is an important tool in wireless network planning, allowing network planner to optimize the cell towers distribution and meet expected service level requirements. However, each type of path loss propagation model is designed to predict path loss in a particular environment that may be inaccurate in other different environment. In this research different propagation models (Hata Model, ICC-33 Model, Ericson Model and Coast-231 Model) have been analyzed and compared based on the measured data. The measured data represent signal strength of two cell towers placed in two different environments which obtained by a drive test of them. First one in AL-Habebea represents an urban environment (high-density region) and the second in AL-Hindea district represents a rural environment (low-density region) with operating frequency 0.8 GHz. The results of performing the analysis and comparison conclude that Hata model and Ericsson model shows small deviation from real measurements in urban environment and Hata model generally gives better prediction in the rural environment.

  16. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels

    PubMed Central

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0–100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane. PMID:22291556

  17. Performance Characteristics of a PEM Fuel Cell with Parallel Flow Channels at Different Cathode Relative Humidity Levels.

    PubMed

    Lee, Pil Hyong; Hwang, Sang Soon

    2009-01-01

    In fuel cells flow configuration and operating conditions such as cell temperature, humidity at each electrode and stoichiometric number are very crucial for improving performance. Too many flow channels could enhance the performance but result in high parasite loss. Therefore a trade-off between pressure drop and efficiency of a fuel cell should be considered for optimum design. This work focused on numerical simulation of the effects of operating conditions, especially cathode humidity, with simple micro parallel flow channels. It is known that the humidity at the cathode flow channel becomes very important for enhancing the ion conductivity of polymer membrane because fully humidified condition was normally set at anode. To investigate the effect of humidity on the performance of a fuel cell, in this study humidification was set to 100% at the anode flow channel and was changed by 0-100% at the cathode flow channel. Results showed that the maximum power density could be obtained under 60% humidified condition at the cathode where oxygen concentration was moderately high while maintaining high ion conductivity at a membrane.

  18. Advances in Studies of Electrode Kinetics and Mass Transport in AMTEC Cells (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Kisor, A.; O'Connor, D.; Kikkert, S.

    1993-01-01

    Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.

  19. Critical role of CD4 T cells in maintaining lymphoid tissue structure for immune cell homeostasis and reconstitution

    PubMed Central

    Zeng, Ming; Paiardini, Mirko; Engram, Jessica C.; Beilman, Greg J.; Chipman, Jeffrey G.; Schacker, Timothy W.; Silvestri, Guido

    2012-01-01

    Loss of the fibroblastic reticular cell (FRC) network in lymphoid tissues during HIV-1 infection has been shown to impair the survival of naive T cells and limit immune reconstitution after antiretroviral therapy. What causes this FRC loss is unknown. Because FRC loss correlates with loss of both naive CD4 and CD8 T-cell subsets and decreased lymphotoxin-β, a key factor for maintenance of FRC network, we hypothesized that loss of naive T cells is responsible for loss of the FRC network. To test this hypothesis, we assessed the consequences of antibody-mediated depletion of CD4 and CD8 T cells in rhesus macaques and sooty mangabeys. We found that only CD4 T-cell depletion resulted in FRC loss in both species and that this loss was caused by decreased lymphotoxin-β mainly produced by the CD4 T cells. We further found the same dependence of the FRC network on CD4 T cells in HIV-1–infected patients before and after antiretroviral therapy and in other immunodeficiency conditions, such as CD4 depletion in cancer patients induced by chemotherapy and irradiation. CD4 T cells thus play a central role in the maintenance of lymphoid tissue structure necessary for their own homeostasis and reconstitution. PMID:22613799

  20. HIV-specific cytotoxic T lymphocyte precursors exist in a CD28-CD8+ T cell subset and increase with loss of CD4 T cells.

    PubMed

    Lewis, D E; Yang, L; Luo, W; Wang, X; Rodgers, J R

    1999-06-18

    To determine whether the CD28-CD8+ T cells that develop during HIV infection contain HIV-specific cytotoxic precursor cells. CD8 subpopulations from six asymptomatic HIV-positive adults, with varying degrees of CD4 T cell loss, were sorted by flow cytometry and HIV-specific precursor cytotoxic T lymphocyte frequencies were measured. Three populations of CD8 T cells were tested: CD28+CD5-- T cells, CD28-CD57+ T cells (thought to be memory cells) and CD28-CD57- T cells (function unknown). Sorted CD8 subsets were stimulated with antigen presenting cells expressing HIV-1 Gag/Pol molecules. Cytotoxic T cell assays on Gag/Pol expressing 51Cr-labeled Epstein-Barr virus transformed autologous B cells lines or control targets were performed after 2 weeks. Specific lysis and precursor frequencies were calculated. Both CD28 positive and CD28-CD57+ populations contained appreciable numbers of precursors (9-1720 per 10(6) CD8+ T cells). However, the CD28-CD57- population had fewer precursors in five out of six people studied. More CD28 positive HIV-specific cytotoxic T lymphocyte precursors were found in patients with CD4:CD8 ratios > 1, whereas more CD28-CD57+ precursors were found in patients whose CD4:CD8 ratios were < 1 (r2, 0.68). Memory HIV-specific precursor cytotoxic T lymphocytes are found in both CD28 positive and CD28-CD8+ cells, however, a CD28-CD57- subpopulation had fewer. Because CD28-CD57+ cells are antigen-driven with limited diversity, the loss of CD28 on CD8 T cells during disease progression may reduce the response to new HIV mutations; this requires further testing.

  1. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines

    PubMed Central

    Hofving, Tobias; Arvidsson, Yvonne; Almobarak, Bilal; Inge, Linda; Pfragner, Roswitha; Persson, Marta; Stenman, Göran; Kristiansson, Erik; Johanson, Viktor; Nilsson, Ola

    2018-01-01

    Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2. Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors. PMID:29444910

  2. Biomedical research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Biomedical problems encountered by man in space which have been identified as a result of previous experience in simulated or actual spaceflight include cardiovascular deconditioning, motion sickness, bone loss, muscle atrophy, red cell alterations, fluid and electrolyte loss, radiation effects, radiation protection, behavior, and performance. The investigations and the findings in each of these areas were reviewed. A description of how biomedical research is organized within NASA, how it is funded, and how it is being reoriented to meet the needs of future manned space missions is also provided.

  3. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina.

    PubMed

    White, David T; Sengupta, Sumitra; Saxena, Meera T; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai; Mumm, Jeff S

    2017-05-02

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration-i.e., selective cell-loss paradigms akin to degenerative disease-are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of ( i ) rod cell clearance, ( ii ) MG/progenitor cell proliferation, and ( iii ) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions.

  4. Immunomodulation-accelerated neuronal regeneration following selective rod photoreceptor cell ablation in the zebrafish retina

    PubMed Central

    White, David T.; Sengupta, Sumitra; Saxena, Meera T.; Xu, Qingguo; Hanes, Justin; Ding, Ding; Ji, Hongkai

    2017-01-01

    Müller glia (MG) function as inducible retinal stem cells in zebrafish, completely repairing the eye after damage. The innate immune system has recently been shown to promote tissue regeneration in which classic wound-healing responses predominate. However, regulatory roles for leukocytes during cellular regeneration—i.e., selective cell-loss paradigms akin to degenerative disease—are less well defined. To investigate possible roles innate immune cells play during retinal cell regeneration, we used intravital microscopy to visualize neutrophil, macrophage, and retinal microglia responses to induced rod photoreceptor apoptosis. Neutrophils displayed no reactivity to rod cell loss. Peripheral macrophage cells responded to rod cell loss, as evidenced by morphological transitions and increased migration, but did not enter the retina. Retinal microglia displayed multiple hallmarks of immune cell activation: increased migration, translocation to the photoreceptor cell layer, proliferation, and phagocytosis of dying cells. To test function during rod cell regeneration, we coablated microglia and rod cells or applied immune suppression and quantified the kinetics of (i) rod cell clearance, (ii) MG/progenitor cell proliferation, and (iii) rod cell replacement. Coablation and immune suppressants applied before cell loss caused delays in MG/progenitor proliferation rates and slowed the rate of rod cell replacement. Conversely, immune suppressants applied after cell loss had been initiated led to accelerated photoreceptor regeneration kinetics, possibly by promoting rapid resolution of an acute immune response. Our findings suggest that microglia control MG responsiveness to photoreceptor loss and support the development of immune-targeted therapeutic strategies for reversing cell loss associated with degenerative retinal conditions. PMID:28416692

  5. Ni-MH storage test and cycle life test

    NASA Technical Reports Server (NTRS)

    Dell, R. Dan; Klein, Glenn C.; Schmidt, David F.

    1994-01-01

    Gates Aerospace Batteries is conducting two long term test programs to fully characterize the NiMH cell technology for aerospace applications. The first program analyzes the effects of long term storage upon cell performance. The second program analyzes cycle life testing and preliminary production lot testing. This paper summarizes these approaches to testing the NiMH couple and culminates with initial storage and testing recommendations. Long term storage presents challenges to deter the adverse condition of capacity fade in NiMH cells. Elevated but stabilized pressures and elevated but stabilized end-of-charge voltages also appear to be a characteristic phenomenon of long term storage modes. However, the performance degradation is dependent upon specific characteristics of the metal-hydride alloy. To date, there is no objective evidence with which to recommend the proper method for storage and handling of NiMH cells upon shipment. This is particularly critical due to limited data points that indicate open circuit storage at room temperature for 60 to 90 days will result in irrecoverable capacity loss. Accordingly a test plan was developed to determine what method of mid-term to long-term storage will prevent irrecoverable capacity loss. The explicit assumption is that trickle charging at some rate above the self-discharge rate will prevent the irreversible chemical changes to the negative electrode that result in the irrecoverable capacity loss. Another premise is that lower storage temperatures, typically 0 C for aerospace customers, will impede any negative chemical reactions. Three different trickle charge rates are expected to yield a fairly flat response with respect to recoverable capacity versus baseline cells in two different modes of open circuit. Specific attributes monitored include: end-of-charge voltage, end-of-charge pressure, mid-point discharge voltage, capacity, and end-of-discharge pressure. Cycle life testing and preliminary production lot testing continue to dominate the overall technology development effort at GAB. The cell life test program reflects continuing improvements in baseline cell designs. Performance improvements include lower and more stable charge voltages and pressures. The continuing review of production lot testing assures conformance to the design criteria and expectations. This is especially critical during this period of transferring technology from research and development status to production.

  6. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes

    PubMed Central

    Berber, Mohamed R.; Hafez, Inas H.; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-01-01

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm2 (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs. PMID:26594045

  7. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.

    PubMed

    Berber, Mohamed R; Hafez, Inas H; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2015-11-23

    Driven by the demand for the commercialization of fuel cell (FC) technology, we describe the design and fabrication of a highly durable FC electrocatalyst based on double-polymer-coated carbon nanotubes for use in polymer electrolyte membrane fuel cells. The fabricated electrocatalyst is composed of Pt-deposited polybenzimidazole-coated carbon nanotubes, which are further coated with Nafion. By using this electrocatalyst, a high FC performance with a power density of 375 mW/cm(2) (at 70 ˚C, 50% relative humidity using air (cathode)/H2(anode)) was obtained, and a remarkable durability of 500,000 accelerated potential cycles was recorded with only a 5% loss of the initial FC potential and 20% loss of the maximum power density, which were far superior properties compared to those of the membrane electrode assembly prepared using carbon black in place of the carbon nanotubes. The present study indicates that the prepared highly durable fuel cell electrocatalyst is a promising material for the next generation of PEMFCs.

  8. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W cm(-2) at 550 °C.

    PubMed

    Lee, Jin Goo; Park, Jeong Ho; Shul, Yong Gun

    2014-06-04

    Low-temperature operation is necessary for next-generation solid oxide fuel cells due to the wide variety of their applications. However, significant increases in the fuel cell losses appear in the low-temperature solid oxide fuel cells, which reduce the cell performance. To overcome this problem, here we report Gd0.1Ce0.9O1.95-based low-temperature solid oxide fuel cells with nanocomposite anode functional layers, thin electrolytes and core/shell fibre-structured Ba0.5Sr0.5Co0.8Fe0.2O3-δ-Gd0.1Ce0.9O1.95 cathodes. In particular, the report describes the use of the advanced electrospinning and Pechini process in the preparation of the core/shell-fibre-structured cathodes. The fuel cells show a very high performance of 2 W cm(-2) at 550 °C in hydrogen, and are stable for 300 h even under the high current density of 1 A cm(-2). Hence, the results suggest that stable and high-performance solid oxide fuel cells at low temperatures can be achieved by modifying the microstructures of solid oxide fuel cell components.

  9. Single-cell genomic profiling of acute myeloid leukemia for clinical use: A pilot study

    PubMed Central

    Yan, Benedict; Hu, Yongli; Ban, Kenneth H.K.; Tiang, Zenia; Ng, Christopher; Lee, Joanne; Tan, Wilson; Chiu, Lily; Tan, Tin Wee; Seah, Elaine; Ng, Chin Hin; Chng, Wee-Joo; Foo, Roger

    2017-01-01

    Although bulk high-throughput genomic profiling studies have led to a significant increase in the understanding of cancer biology, there is increasing awareness that bulk profiling approaches do not completely elucidate tumor heterogeneity. Single-cell genomic profiling enables the distinction of tumor heterogeneity, and may improve clinical diagnosis through the identification and characterization of putative subclonal populations. In the present study, the challenges associated with a single-cell genomics profiling workflow for clinical diagnostics were investigated. Single-cell RNA-sequencing (RNA-seq) was performed on 20 cells from an acute myeloid leukemia bone marrow sample. Putative blasts were identified based on their gene expression profiles and principal component analysis was performed to identify outlier cells. Variant calling was performed on the single-cell RNA-seq data. The present pilot study demonstrates a proof of concept for clinical single-cell genomic profiling. The recognized limitations include significant stochastic RNA loss and the relatively low throughput of the current proposed platform. Although the results of the present study are promising, further technological advances and protocol optimization are necessary for single-cell genomic profiling to be clinically viable. PMID:28454300

  10. Quantifying losses and thermodynamic limits in nanophotonic solar cells

    NASA Astrophysics Data System (ADS)

    Mann, Sander A.; Oener, Sebastian Z.; Cavalli, Alessandro; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.; Garnett, Erik C.

    2016-12-01

    Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).

  11. Corneal endothelial morphology and function after torsional and longitudinal ultrasound mode phacoemulsification.

    PubMed

    Módis, László Jr; Szalai, Eszter; Flaskó, Zsuzsa; Németh, Gábor

    2016-01-01

    To study the endothelial cell morphology and corneal thickness changes after phacoemulsification by using the OZil torsional and longitudinal ultrasound techniques (Infiniti Vision System, Alcon Laboratories). Department of Ophthalmology, Clinical Center, University of Debrecen, Debrecen, Hungary. 52 patients with cataract were randomly assigned to longitudinal ultrasound and torsional mode group. All surgeries were performed through a 2.2 mm clear corneal incision, the method employed being divide and conquer. The endothelial morphometry such as cell density (ECD), mean cell area, coefficient of variation of cell area, and central corneal thickness were examined with specular microscopy (EM-1000, Tomey) preoperatively and 4, 8 weeks postoperatively. ECD values decreased significantly in both surgical groups (P < .001, repeated- mesures ANOVA), the postoperative endothelial cell loss was higher in the longitudinal ultrasound mode group (3.5% and 6.5%, at 4 and 8 weeks after surgery) than in the torsional group (3.3% and 5.5%, at 4 and 8 weeks after surgery), the difference not being significant between the two groups (P = .164 and P = .479, at 4 and 8 weeks after surgery, Mann-Whitney test). There was no statistically significant difference in any of the assessed parameters between the two surgical groups (P > .05). No significant correlation was found between the endothelial cell loss and the nucleus density. Both phacoemulsification techniques were safe and effective. The torsional handpiece performs oscillatory movements and delivers less energy into the eye than the longitudinal ultrasound technique, therefore providing more favorable energy and thermal safety profile.

  12. Electrochemical and thermodynamic studies of the electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Bang, Hyun Joo

    A series of graphite samples were tested for their electrochemical performance as anode material for lithium ion cells. Specially treated natural graphite samples showed good reversible capacities and relatively small irreversible capacity losses. The good performance of these samples can be explained by the low surface area associated with the rounded edges and absence of exfoliation due to the presence of the rhombohedral phase and defects in the grain boundaries. Graphitized cokes showed larger irreversible capacity losses while mesophase carbons showed lower reversible capacity. The treated natural graphite samples, especially LBG25 were found to be high performance, low cost anode materials for the lithium ion cells. The electrochemical and thermal behaviors of the spinels---LiMn 2O4, LiCo1/6Mn11/6O4, LiFe 1/6Mn11/6O4, and LiNi1/6Mn11/6 O4 were studied using electrochemical and thermochemical techniques. The electrochemical techniques included cyclic voltammetry, charge/discharge cycling of 2016 coin cells and diffusion coefficient measurements using Galvanostatic Intermittent Titration Technique. Better capacity retention(GITT) was observed for the substituted spinels (0.11% loss/cycle for LiCo1/6Mn 11/6O4; 0.3% loss/cycle for LiFe1/6Mn11/6 O4; and 0.2% loss/cycle for LiNi1/6Mn11/6 O4) than for the lithium manganese dioxide spinel (1.6% loss/cycle for first 10 cycles, 0.9% loss/cycle for 33 cycles) during 33 cycles. The Differential Scanning Calorimetry (DSC) results showed that the cobalt substituted spinel has better thermal stability than the lithium manganese oxide and other substituted spinels. The thermal profile of LiMn2O4 and LiAl0.17 Mn1.83O3.97S0.03 was measured in an isothermal micro-calorimeter. The heat contributions are discussed in terms of reversible and irreversible heat generation, in combination with the entropy change directly obtained by the dE/dT measurements and the over-potential measurements. The endothermic and exothermic heat profiles observed during the charge and discharge processes are related to the Li insertion/extraction reaction in the spinel host structure for both materials. The reversible heat generation due to the lithium insertion/extraction reaction in the host electrode is estimated on the basis of the cell entropy change. The heat generation calculated from DeltaS and the open circuit potential results is consistent with the heat profile (exothermic/endothermic) generated during the charge/discharge process and with the magnitude of the heat generation from the experimental results obtained from the IMC at a slow charge/discharge rate. The irreversible heat generation dependence on the current rate is discussed at different discharge rates.

  13. Gene targeting and cloning in pigs using fetal liver derived cells.

    PubMed

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness

    PubMed Central

    Yue, Shuhua; Li, Junjie; Lee, Seung-Young; Lee, Hyeon Jeong; Shao, Tian; Song, Bing; Cheng, Liang; Masterson, Timothy A.; Liu, Xiaoqi; Ratliff, Timothy L.; Cheng, Ji-Xin

    2014-01-01

    Summary Altered lipid metabolism is increasingly recognized as a signature of cancer cells. Enabled by label-free Raman spectromicroscopy, we performed quantitative analysis of lipogenesis at single cell level in human patient cancerous tissues. Our imaging data revealed an unexpected, aberrant accumulation of esterified cholesterol in lipid droplets of high-grade prostate cancer and metastases. Biochemical study showed that such cholesteryl ester accumulation was a consequence of loss of tumor suppressor PTEN and subsequent activation of PI3K/AKT pathway in prostate cancer cells. Furthermore, we found that such accumulation arose from significantly enhanced uptake of exogenous lipoproteins and required cholesterol esterification. Depletion of cholesteryl ester storage significantly reduced cancer proliferation, impaired cancer invasion capability, and suppressed tumor growth in mouse xenograft models with negligible toxicity. These findings open opportunities for diagnosing and treating prostate cancer by targeting the altered cholesterol metabolism. PMID:24606897

  15. Space Station and the life sciences

    NASA Technical Reports Server (NTRS)

    White, R. J.; Leonard, J. I.; Cramer, D. B.; Bishop, W. P.

    1983-01-01

    Previous fundamental research in space life sciences is examined, and consideration is devoted to studies relevant to Space Station activities. Microgravity causes weight loss, hemoconcentration, and orthostatic intolerance when astronauts returns to earth. Losses in bone density, bone calcium, and muscle nitrogen have also been observed, together with cardiovascular deconditioning, fluid-electrolyte metabolism alteration, and space sickness. Experiments have been performed with plants, bacteria, fungi, protozoa, tissue cultures, invertebrate species, and with nonhuman vertebrates, showing little effect on simple cell functions. The Spacelab first flight will feature seven life science experiments and the second flight, two. Further studies will be performed on later flights. Continued life science studies to optimize human performance in space are necessary for the efficient operation of a Space Station and the assembly of large space structures, particularly in interaction with automated machinery.

  16. Efficacy and Safety of Stroke Volume Variation-Guided Fluid Therapy for Reducing Blood Loss and Transfusion Requirements During Radical Cystectomy: A Randomized Clinical Trial.

    PubMed

    Kong, Yu-Gyeong; Kim, Ji Yoon; Yu, Jihion; Lim, Jinwook; Hwang, Jai-Hyun; Kim, Young-Kug

    2016-05-01

    Radical cystectomy, which is performed to treat muscle-invasive bladder tumors, is among the most difficult urological surgical procedures and puts patients at risk of intraoperative blood loss and transfusion. Fluid management via stroke volume variation (SVV) is associated with reduced intraoperative blood loss. Therefore, we evaluated the efficacy and safety of SVV-guided fluid therapy for reducing blood loss and transfusion requirements in patients undergoing radical cystectomy.This study included 48 patients who underwent radical cystectomy, and these patients were randomly allocated to the control group and maintained at <10% SVV (n = 24) or allocated to the trial group and maintained at 10% to 20% SVV (n = 24). The primary endpoints were comparisons of the amounts of intraoperative blood loss and transfused red blood cells (RBCs) between the control and trial groups during radical cystectomy. Intraoperative blood loss was evaluated through the estimated blood loss and estimated red cell mass loss. The secondary endpoints were comparisons of the postoperative outcomes between groups.A total of 46 patients were included in the final analysis: 23 patients in the control group and 23 patients in the trial group. The SVV values in the trial group were significantly higher than in the control group. Estimated blood loss, estimated red cell mass loss, and RBC transfusion requirements in the trial group were significantly lower than in the control group (734.3 ± 321.5 mL vs 1096.5 ± 623.9 mL, P = 0.019; 274.1 ± 207.8 mL vs 553.1 ± 298.7 mL, P <0.001; 0.5 ± 0.8 units vs 1.9 ± 2.2 units, P = 0.005). There were no significant differences in postoperative outcomes between the two groups.SVV-guided fluid therapy (SVV maintained at 10%-20%) can reduce blood loss and transfusion requirements in patients undergoing radical cystectomy without resulting in adverse outcomes. These findings provide useful information for optimal fluid management during radical cystectomy.

  17. Origin of Open-Circuit Voltage Loss in Polymer Solar Cells and Perovskite Solar Cells.

    PubMed

    Kim, Hyung Do; Yanagawa, Nayu; Shimazaki, Ai; Endo, Masaru; Wakamiya, Atsushi; Ohkita, Hideo; Benten, Hiroaki; Ito, Shinzaburo

    2017-06-14

    Herein, the open-circuit voltage (V OC ) loss in both polymer solar cells and perovskite solar cells is quantitatively analyzed by measuring the temperature dependence of V OC to discuss the difference in the primary loss mechanism of V OC between them. As a result, the photon energy loss for polymer solar cells is in the range of about 0.7-1.4 eV, which is ascribed to temperature-independent and -dependent loss mechanisms, while that for perovskite solar cells is as small as about 0.5 eV, which is ascribed to a temperature-dependent loss mechanism. This difference is attributed to the different charge generation and recombination mechanisms between the two devices. The potential strategies for the improvement of V OC in both solar cells are further discussed on the basis of the experimental data.

  18. Atg6/UVRAG/Vps34-Containing Lipid Kinase Complex Is Required for Receptor Downregulation through Endolysosomal Degradation and Epithelial Polarity during Drosophila Wing Development

    PubMed Central

    Szatmári, Zsuzsanna; Sass, Miklós

    2014-01-01

    Atg6 (Beclin 1 in mammals) is a core component of the Vps34 PI3K (III) complex, which promotes multiple vesicle trafficking pathways. Atg6 and Vps34 form two distinct PI3K (III) complexes in yeast and mammalian cells, either with Atg14 or with UVRAG. The functions of these two complexes are not entirely clear, as both Atg14 and UVRAG have been suggested to regulate both endocytosis and autophagy. In this study, we performed a microscopic analysis of UVRAG, Atg14, or Atg6 loss-of-function cells in the developing Drosophila wing. Both autophagy and endocytosis are seriously impaired and defective endolysosomes accumulate upon loss of Atg6. We show that Atg6 is required for the downregulation of Notch and Wingless signaling pathways; thus it is essential for normal wing development. Moreover, the loss of Atg6 impairs cell polarity. Atg14 depletion results in autophagy defects with no effect on endocytosis or cell polarity, while the silencing of UVRAG phenocopies all but the autophagy defect of Atg6 depleted cells. Thus, our results indicate that the UVRAG-containing PI3K (III) complex is required for receptor downregulation through endolysosomal degradation and for the establishment of proper cell polarity in the developing wing, while the Atg14-containing complex is involved in autophagosome formation. PMID:25006588

  19. Genetic relationships between detailed reproductive traits and performance traits in Holstein-Friesian dairy cattle.

    PubMed

    Carthy, T R; Ryan, D P; Fitzgerald, A M; Evans, R D; Berry, D P

    2016-02-01

    The objective of the study was to estimate the genetic relationships between detailed reproductive traits derived from ultrasound examination of the reproductive tract and a range of performance traits in Holstein-Friesian dairy cows. The performance traits investigated included calving performance, milk production, somatic cell score (i.e., logarithm transformation of somatic cell count), carcass traits, and body-related linear type traits. Detailed reproductive traits included (1) resumed cyclicity at the time of examination, (2) multiple ovulations, (3) early ovulation, (4) heat detection, (5) ovarian cystic structures, (6) embryo loss, and (7) uterine score, measured on a 1 (little or no fluid with normal tone) to 4 (large quantity of fluid with a flaccid tone) scale, based on the tone of the uterine wall and the quantity of fluid present in the uterus. (Co)variance components were estimated using a repeatability animal linear mixed model. Genetic merit for greater milk, fat, and protein yield was associated with a reduced ability to resume cyclicity postpartum (genetic correlations ranged from -0.25 to -0.15). Higher genetic merit for milk yield was also associated with a greater genetic susceptibility to multiple ovulations. Genetic predisposition to elevated somatic cell score was associated with a decreased likelihood of cyclicity postpartum (genetic correlation of -0.32) and a greater risk of both multiple ovulations (genetic correlation of 0.25) and embryo loss (genetic correlation of 0.32). Greater body condition score was genetically associated with an increased likelihood of resumption of cyclicity postpartum (genetic correlation of 0.52). Genetically heavier, fatter carcasses with better conformation were also associated with an increased likelihood of resumed cyclicity by the time of examination (genetic correlations ranged from 0.24 to 0.41). Genetically heavier carcasses were associated with an inferior uterine score as well as a greater predisposition to embryo loss. Despite the overall antagonistic relationship between reproductive performance and both milk and carcass traits, not all detailed aspects of reproduction performance exhibited an antagonistic relationship. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Monitoring α4β7 integrin expression on circulating CD4+ T cells as a surrogate marker for tracking intestinal CD4+ T cell loss in SIV infection

    PubMed Central

    Wang, Xiaolei; Xu, Huanbin; Gill, Amy F.; Pahar, Bapi; Kempf, Doty; Rasmussen, Terri; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Intestinal CD4+ T cells are rapidly and profoundly depleted in HIV-infected patients and SIV-infected macaques. However, monitoring intestinal cells in humans is difficult, and identifying surrogate markers in the blood, which correlate with loss or restoration of intestinal CD4+ T cells could be helpful in monitoring the success of therapeutic strategies and vaccine candidates. Recent studies indicate HIV utilizes the intestinal homing molecule α4β7 for attachment and signaling of CD4+ T cells, suggesting this molecule may play a central role in HIV pathogenesis. Here we compared β7HIGH integrin expression on CD4+ T cells in blood with loss of CD4+ T cells in the intestine of macaques throughout SIV infection. The loss of β7HIGH CD4+ T cells in blood closely paralleled the loss of intestinal CD4+ T cells, and proved to be a more reliable marker of intestinal CD4+ T cell loss than monitoring CCR5+ memory CD4+ T cells. These data are consistent with a recent hypothesis that α4β7 plays a role in the selective depletion of intestinal CD4+ T cells, and indicate that monitoring β7HIGH expression on CD4+ T cells in the blood may be a useful surrogate for estimating intestinal CD4+ T cell loss and restoration in HIV-infected patients. PMID:19710637

  1. Solar energy conversion in a photoelectrochemical biofuel cell.

    PubMed

    Hambourger, Michael; Kodis, Gerdenis; Vaughn, Michael D; Moore, Gary F; Gust, Devens; Moore, Ana L; Moore, Thomas A

    2009-12-07

    A photoelectrochemical biofuel cell has been developed which incorporates aspects of both an enzymatic biofuel cell and a dye-sensitized solar cell. Photon absorption at a porphyrin-sensitized n-type semiconductor electrode gives rise to a charge-separated state. Electrons and holes are shuttled to appropriate cathodic and anodic catalysts, respectively, allowing the production of electricity, or a reduced fuel, via the photochemical oxidation of a biomass-derived substrate. The operation of this device is reviewed. The use of alternate anodic redox mediators provides insight regarding loss mechanisms in the device. Design strategies for enhanced performance are discussed.

  2. CRISPRi and CRISPRa: New Functional Genomics Tools Provide Complementary Insights into Cancer Biology and Therapeutic Strategies | Office of Cancer Genomics

    Cancer.gov

    A central goal of research for targeted cancer therapy, or precision oncology, is to reveal the intrinsic vulnerabilities of cancer cells and exploit them as therapeutic targets. Examples of cancer cell vulnerabilities include driver oncogenes that are essential for the initiation and progression of cancer, or non-oncogene addictions resulting from the cancerous state of the cell. To identify vulnerabilities, scientists perform genetic “loss-of-function” and “gain-of-function” studies to better understand the roles of specific genes in cancer cells.

  3. Characterizing Electrolyte and Platinum Interface in PEM Fuel Cells Using CO Displacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrick, Taylor R.; Moylan, Thomas E.; Yarlagadda, Venkata

    Relatively large O 2 transport resistance at the ionomer and Pt interface has been thought to be responsible for the large performance loss at high power for a low Pt loading proton-exchange-membrane fuel cell. A facile method to characterize the interface in the fuel cell electrode is needed. In this study, the CO displacement method was explored on polycrystalline Pt and carbon-supported Pt nanoparticles. The displacement charge coverages were used to quantify the adsorption of perchlorate, sulfate, and perfluorosulfonic acid ionomer. The application of this method in a fuel cell electrode was demonstrated.

  4. Characterizing Electrolyte and Platinum Interface in PEM Fuel Cells Using CO Displacement

    DOE PAGES

    Garrick, Taylor R.; Moylan, Thomas E.; Yarlagadda, Venkata; ...

    2016-12-13

    Relatively large O 2 transport resistance at the ionomer and Pt interface has been thought to be responsible for the large performance loss at high power for a low Pt loading proton-exchange-membrane fuel cell. A facile method to characterize the interface in the fuel cell electrode is needed. In this study, the CO displacement method was explored on polycrystalline Pt and carbon-supported Pt nanoparticles. The displacement charge coverages were used to quantify the adsorption of perchlorate, sulfate, and perfluorosulfonic acid ionomer. The application of this method in a fuel cell electrode was demonstrated.

  5. General contamination criteria for optical surfaces. [instrument performance losses in spaceborne conditions

    NASA Technical Reports Server (NTRS)

    Bremer, J. C.

    1982-01-01

    Physical models are developed for establishing criteria to decide on the acceptable contamination level of optical devices in space-borne conditions. Optical systems can be degraded in terms of decreased throughput, i.e., transmissivity or reflectivity, or increases in the total integrated scatter (TIS). Performance losses can be caused by particulate accretion, molecular film accretion, and impact cratering. A quantitative relationship is defined for film thickness and loss of throughput. Formulas are also developed for cases where induced surface defects are larger than the desired viewing wavelengths, or smaller or of the same order of the observed wavelengths. The techniques are used to quantify the degradation of a VUV solar coronagraph, a VUV stellar telescope, and a solar cell due to TIS. Applications are projected for estimating the contamination sensitivity of specific instruments, assessing the contamination hazard from known particulates, or to define clean room standards.

  6. Improvement of the recombination and infrared light losses by rear surface chemical polishing in silicon heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Xueliang; Zhang, Yi; Li, Feng; Sun, Yun

    2017-06-01

    Rear surface chemical polishing (RSCP) was investigated for the improvement of the internal reflection and surface passivation of heterojunction solar cells with intrinsic thin layers (HIT). The HIT solar cells without or with RSCP treatment were prepared by plasma-enhanced chemical vapor deposition and physical vapor deposition techniques. Scanning electron microscopy results showed that rounding of the spires and V-groove bottom of the pyramid as well as smoothing of incline surface of the pyramid were achieved. These effects would decrease the loss of infrared light transmittance and interface recombination at the rear surface of the cells. To experimentally corroborate these two points, two special geometries, ITO/c-Si/hydrogenated amorphous silicon (a-Si:H)/ITO and a-Si:H/c-Si/a-Si:H, were introduced as a test of the reflectance/transmittance spectra and the minority carrier lifetime. Weakened transmittance and enhanced lifetime were observed for the sample with RSCP, which are responsible for the improvement of J sc and V oc, respectively. Therefore, RSCP is a promising candidate for improving the performance of HIT solar cells.

  7. Processing technology for high efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.; Keavney, C. J.

    1985-01-01

    Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented.

  8. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    PubMed Central

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-01-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade. PMID:27767185

  9. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain.

    PubMed

    Parkins, Katie M; Hamilton, Amanda M; Makela, Ashley V; Chen, Yuanxin; Foster, Paula J; Ronald, John A

    2016-10-21

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  10. A multimodality imaging model to track viable breast cancer cells from single arrest to metastasis in the mouse brain

    NASA Astrophysics Data System (ADS)

    Parkins, Katie M.; Hamilton, Amanda M.; Makela, Ashley V.; Chen, Yuanxin; Foster, Paula J.; Ronald, John A.

    2016-10-01

    Cellular MRI involves sensitive visualization of iron-labeled cells in vivo but cannot differentiate between dead and viable cells. Bioluminescence imaging (BLI) measures cellular viability, and thus we explored combining these tools to provide a more holistic view of metastatic cancer cell fate in mice. Human breast carcinoma cells stably expressing Firefly luciferase were loaded with iron particles, injected into the left ventricle, and BLI and MRI were performed on days 0, 8, 21 and 28. The number of brain MR signal voids (i.e., iron-loaded cells) on day 0 significantly correlated with BLI signal. Both BLI and MRI signals decreased from day 0 to day 8, indicating a loss of viable cells rather than a loss of iron label. Total brain MR tumour volume on day 28 also correlated with BLI signal. Overall, BLI complemented our sensitive cellular MRI technologies well, allowing us for the first time to screen animals for successful injections, and, in addition to MR measures of cell arrest and tumor burden, provided longitudinal measures of cancer cell viability in individual animals. We predict this novel multimodality molecular imaging framework will be useful for evaluating the efficacy of emerging anti-cancer drugs at different stages of the metastatic cascade.

  11. Rapamycin toxicity in MIN6 cells and rat and human islets is mediated by the inhibition of mTOR complex 2 (mTORC2).

    PubMed

    Barlow, A D; Xie, J; Moore, C E; Campbell, S C; Shaw, J A M; Nicholson, M L; Herbert, T P

    2012-05-01

    Rapamycin (sirolimus) is one of the primary immunosuppressants for islet transplantation. Yet there is evidence that the long-term treatment of islet-transplant patients with rapamycin may be responsible for subsequent loss of islet graft function and viability. Therefore, the primary objective of this study was to elucidate the molecular mechanism of rapamycin toxicity in beta cells. Experiments were performed on isolated rat and human islets of Langerhans and MIN6 cells. The effects of rapamycin and the roles of mammalian target of rapamycin complex 2 (mTORC2)/protein kinase B (PKB) on beta cell signalling, function and viability were investigated using cell viability assays, insulin ELISA assays, kinase assays, western blotting, pharmacological inhibitors, small interfering (si)RNA and through the overproduction of a constitutively active mutant of PKB. Rapamycin treatment of MIN6 cells and islets of Langerhans resulted in a loss of cell function and viability. Although rapamycin acutely inhibited mTOR complex 1 (mTORC1), the toxic effects of rapamycin were more closely correlated to the dissociation and inactivation of mTORC2 and the inhibition of PKB. Indeed, the overproduction of constitutively active PKB protected islets from rapamycin toxicity whereas the inhibition of PKB led to a loss of cell viability. Moreover, the selective inactivation of mTORC2 using siRNA directed towards rapamycin-insensitive companion of target of rapamycin (RICTOR), mimicked the toxic effects of chronic rapamycin treatment. This report provides evidence that rapamycin toxicity is mediated by the inactivation of mTORC2 and the inhibition of PKB and thus reveals the molecular basis of rapamycin toxicity and the essential role of mTORC2 in maintaining beta cell function and survival.

  12. Impact of cell design and operating conditions on the performances of SOFC fuelled with methane

    NASA Astrophysics Data System (ADS)

    Laurencin, J.; Lefebvre-Joud, F.; Delette, G.

    An in-house-model has been developed to study the thermal and electrochemical behaviour of a planar SOFC fed directly with methane and incorporated in a boiler. The usual Ni-YSZ cermet has been considered for the anode material. It has been found that methane reforming into hydrogen occurs only at the cell inlet in a limited depth within the anode. A sensitivity analysis has allowed establishing that anode thicknesses higher than ∼400-500 μm are required to achieve both the optimal methane conversion and electrochemical performances. The direct internal reforming (DIR) mechanisms and the impact of operating conditions on temperature gradients and SOFC electrical efficiencies have been investigated considering the anode supported cell configuration. It has been shown that the temperature gradient is minimised in the autothermal mode of cell operation. Thermal equilibrium in the stack has been found to be strongly dependent on radiative heat losses with the stack envelope. Electrochemical performance and cell temperature maps have been established as a function of methane flow rates and cell voltages.

  13. High performance of SDC and GDC core shell type composite electrolytes using methane as a fuel for low temperature SOFC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz

    Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less

  14. Parasitic heat loss reduction in AMTEC cells by heat shield optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borkowski, C.A.; Svedberg, R.C.; Hendricks, T.J.

    1997-12-31

    Alkali metal thermal to electric conversion (AMTEC) cell performance can be increased by the proper design of thermal radiative shielding internal to the AMTEC cell. These heat shields essentially lower the radiative heat transfer between the heat input zone of the cell and the heat rejection zone of the cell. In addition to lowering the radiative heat transfer between the heat input and heat rejection surfaces of the cell, the shields raise the AMTEC cell performance by increasing the temperature of the beta alumina solid electrolyte (BASE). This increase in temperature of the BASE tube allows the evaporator temperature tomore » be increased without sodium condensing within the BASE tubes. Experimental testing and theoretical analysis have been performed to compare the relative merits of two candidate heat shield packages: (1) chevron, and (2) cylindrical heat shields. These two heat shield packages were compared to each other and a baseline cell which had no heat shields installed. For the two heat shield packages, the reduction in total heat transfer is between 17--27% for the heat input surface temperature varying from 700 C, 750 C, and 800 C with the heat rejection surface temperature kept at 300 C.« less

  15. Performance of a single layer fuel cell based on a mixed proton-electron conducting composite

    NASA Astrophysics Data System (ADS)

    Zagórski, Krzysztof; Wachowski, Sebastian; Szymczewska, Dagmara; Mielewczyk-Gryń, Aleksandra; Jasiński, Piotr; Gazda, Maria

    2017-06-01

    Many of the challenges in solid oxide fuel cell technology stem from chemical and mechanical incompatibilities between the anode, cathode and electrolyte materials. Numerous attempts have been made to identify compatible materials. Here, these challenges are circumvented by the introduction of a working single layer fuel cell, fabricated from a composite of proton conducting BaCe0.6Zr0.2Y0.2O3-δ and a mixture of semiconducting oxides - Li2O, NiO, and ZnO. Structural and electrical properties of the composite, related to its fuel cell performance are investigated. The single layer fuel cell shows a maximum OCV of 0.83 V and a peak power density of 3.86 mW cm-2 at 600 °C. Activation and mass transport losses are identified as the major limiting factor for efficiency and power output.

  16. SMAD4 Loss Is Associated with Cetuximab Resistance and Induction of MAPK/JNK Activation in Head and Neck Cancer Cells.

    PubMed

    Ozawa, Hiroyuki; Ranaweera, Ruchira S; Izumchenko, Evgeny; Makarev, Eugene; Zhavoronkov, Alex; Fertig, Elana J; Howard, Jason D; Markovic, Ana; Bedi, Atul; Ravi, Rajani; Perez, Jimena; Le, Quynh-Thu; Kong, Christina S; Jordan, Richard C; Wang, Hao; Kang, Hyunseok; Quon, Harry; Sidransky, David; Chung, Christine H

    2017-09-01

    Purpose: We previously demonstrated an association between decreased SMAD4 expression and cetuximab resistance in head and neck squamous cell carcinoma (HNSCC). The purpose of this study was to further elucidate the clinical relevance of SMAD4 loss in HNSCC. Experimental Design: SMAD4 expression was assessed by IHC in 130 newly diagnosed and 43 patients with recurrent HNSCC. Correlative statistical analysis with clinicopathologic data was also performed. OncoFinder, a bioinformatics tool, was used to analyze molecular signaling in TCGA tumors with low or high SMAD4 mRNA levels. The role of SMAD4 was investigated by shRNA knockdown and gene reconstitution of HPV-negative HNSCC cell lines in vitro and in vivo Results: Our analysis revealed that SMAD4 loss was associated with an aggressive, HPV-negative, cetuximab-resistant phenotype. We found a signature of prosurvival and antiapoptotic pathways that were commonly dysregulated in SMAD4 -low cases derived from TCGA-HNSCC dataset and an independent oral cavity squamous cell carcinoma (OSCC) cohort obtained from GEO. We show that SMAD4 depletion in an HNSCC cell line induces cetuximab resistance and results in worse survival in an orthotopic mouse model in vivo We implicate JNK and MAPK activation as mediators of cetuximab resistance and provide the foundation for the concomitant EGFR and JNK/MAPK inhibition as a potential strategy for overcoming cetuximab resistance in HNSCCs with SMAD4 loss. Conclusions: Our study demonstrates that loss of SMAD4 expression is a signature characterizing the cetuximab-resistant phenotype and suggests that SMAD4 expression may be a determinant of sensitivity/resistance to EGFR/MAPK or EGFR/JNK inhibition in HPV-negative HNSCC tumors. Clin Cancer Res; 23(17); 5162-75. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. Assessment of Human Visual Performance with a Swept Evoked Potential Technique

    DTIC Science & Technology

    1984-07-01

    obtained in naive patients. Retinitis pigmentosa patients with < 20/50 vision have shown contrast sensitivity losses at the higher spatial frequencies...X and Y visual subsystems The new visual duplicity. Th« observation that cat retinal ganglion cells can be divided into those which sum luminous...bias in retinal ganglion cells (cat: Levick & Thibos, 1980; monkey: DeMonasterio, 1978). The bias is weak. In cat, when the stimulus orientation was

  18. Surgical treatment of limbic epilepsy associated with extrahippocampal lesions: the problem of dual pathology.

    PubMed

    Lévesque, M F; Nakasato, N; Vinters, H V; Babb, T L

    1991-09-01

    The authors present their review of 178 patients who underwent en bloc temporal lobectomies as surgical treatment for intractable epilepsy. Hippocampal cell density was quantitatively analyzed and the histology of the anterior temporal lobe was reviewed. Fifty-four patients (30.3%) had evidence of extrahippocampal lesions in addition to neuronal cell loss within the hippocampus (the dual pathology group). The pattern of cell loss was analyzed in the remaining 124 cases (69.7%) with no extrahippocampal pathology, and compared with that of the dual pathology group and a control group of four nonepileptic patients. Hippocampal cell loss was found in almost all epileptic patients compared to the control group. Severe cell loss greater than 30% of control values was found in 88.7% of patients without extrahippocampal lesions, but in only 51.8% of patients with dual pathology. The difference between these two groups was statistically significant (p less than 0.001). In the dual pathology group, lesions of different pathology had a significant relationship with the degree of hippocampal cell loss: all 12 patients with glioma had mild cell loss, whereas all 13 patients with heterotopia were associated with severe cell loss. Severity of hippocampal cell loss was also analyzed in relation to seizure history: a prior severe head injury was associated with severe cell loss. Other factors such as seizure duration, secondary generalization, or family history of seizures were not associated with hippocampal damage. Dual pathology may produce a combination of neocortical and temporolimbic epilepsies that warrants a precise definition of the true epileptogenic area prior to surgical treatment.

  19. Down-regulation of POLYGALACTURONASE1 alters firmness, tensile strength and water loss in apple (Malus x domestica) fruit

    PubMed Central

    2012-01-01

    Background While there is now a significant body of research correlating apple (Malus x domestica) fruit softening with the cell wall hydrolase ENDO-POLYGALACTURONASE1 (PG1), there is currently little knowledge of its physiological effects in planta. This study examined the effect of down regulation of PG1 expression in ‘Royal Gala’ apples, a cultivar that typically has high levels of PG1, and softens during fruit ripening. Results PG1-suppressed ‘Royal Gala’ apples harvested from multiple seasons were firmer than controls after ripening, and intercellular adhesion was higher. Cell wall analyses indicated changes in yield and composition of pectin, and a higher molecular weight distribution of CDTA-soluble pectin. Structural analyses revealed more ruptured cells and free juice in pulled apart sections, suggesting improved integrity of intercellular connections and consequent cell rupture due to failure of the primary cell walls under stress. PG1-suppressed lines also had reduced expansion of cells in the hypodermis of ripe apples, resulting in more densely packed cells in this layer. This change in morphology appears to be linked with reduced transpirational water loss in the fruit. Conclusions These findings confirm PG1’s role in apple fruit softening and suggests that this is achieved in part by reducing cellular adhesion. This is consistent with previous studies carried out in strawberry but not with those performed in tomato. In apple PG1 also appears to influence other fruit texture characters such as juiciness and water loss. PMID:22856470

  20. EMPOWERING ADULT STEM CELLS FOR MYOCARDIAL REGENERATION

    PubMed Central

    Mohsin, Sadia; Siddiqi, Sailay; Collins, Brett; Sussman, Mark A.

    2012-01-01

    Treatment strategies for heart failure remain a high priority for ongoing research due to the profound unmet need in clinical disease coupled with lack of significant translational progress. The underlying issue is the same whether the cause is acute damage, chronic stress from disease, or aging: progressive loss of functional cardiomyocytes and diminished hemodynamic output. To stave off cardiomyocyte losses, a number of strategic approaches have been embraced in recent years involving both molecular and cellular approaches to augment myocardial structure and performance. Resultant excitement surrounding regenerative medicine in the heart has been tempered by realizations that reparative processes in the heart are insufficient to restore damaged myocardium to normal functional capacity and that cellular cardiomyoplasty is hampered by poor survival, proliferation, engraftment and differentiation of the donated population. To overcome these limitations, a combination of molecular and cellular approaches needs to be adopted involving use of genetic engineering to enhance resistance to cell death and increase regenerative capacity. This review will highlight biological properties of approached to potentiate stem cell-mediated regeneration to promote enhanced myocardial regeneration, persistence of donated cells, and long lasting tissue repair. Optimizing cell delivery and harnessing the power of survival signaling cascades for ex vivo genetic modification of stem cells prior to reintroduction into the patient will be critical to enhance the efficacy of cellular cardiomyoplasty. Once this goal is achieved, then cell-based therapy has great promise for treatment of heart failure to combat the loss of cardiac structure and function associated with acute damage, chronic disease or aging. PMID:22158649

  1. Losartan Treatment Protects Retinal Ganglion Cells and Alters Scleral Remodeling in Experimental Glaucoma

    PubMed Central

    Pitha, Ian F.; Nguyen, Cathy; Steinhart, Matthew R.; Nguyen, Thao D.; Pease, Mary Ellen; Oglesby, Ericka N.; Berlinicke, Cynthia A.; Mitchell, Katherine L.; Kim, Jessica; Jefferys, Joan J.

    2015-01-01

    Purpose To determine if oral losartan treatment decreases the retinal ganglion cell (RGC) death caused by experimental intraocular pressure (IOP) elevation in mice. Methods We produced IOP increase in CD1 mice and performed unilateral optic nerve crush. Mice received oral losartan, spironolactone, enalapril, or no drug to test effects of inhibiting angiotensin receptors. IOP was monitored by Tonolab, and blood pressure was monitored by tail cuff device. RGC loss was measured in masked axon counts and RGC bodies by β-tubulin labeling. Scleral changes that could modulate RGC injury were measured including axial length, scleral thickness, and retinal layer thicknesses, pressure-strain behavior in inflation testing, and study of angiotensin receptors and pathways by reverse transcription polymerase chain reaction, Western blot, and immunohistochemistry. Results Losartan treatment prevented significant RGC loss (median loss = 2.5%, p = 0.13), while median loss with water, spironolactone, and enalapril treatments were 26%, 28% and 43%; p < 0.0001). The lower RGC loss with losartan was significantly less than the loss with spironolactone or enalapril (regression model p = 0.001; drug treatment group term p = 0.01). Both losartan and enalapril significantly lowered blood pressure (p< 0.001), but losartan was protective, while enalapril led to worse than water-treated RGC loss. RGC loss after crush injury was unaffected by losartan treatment (difference from control p = 0.9). Survival of RGC in cell culture was not prolonged by sartan treatment. Axonal transport blockade after 3 day IOP elevations was less in losartan-treated than in control glaucoma eyes (p = 0.007). Losartan inhibited effects of glaucoma, including reduction in extracellular signal-related kinase activity and modification of glaucoma-related changes in scleral thickness and creep under controlled IOP. Conclusions The neuroprotective effect of losartan in mouse glaucoma is associated with adaptive changes in the sclera expressed at the optic nerve head. PMID:26505191

  2. Local and Systemic CD4+ T Cell Exhaustion Reverses with Clinical Resolution of Pulmonary Sarcoidosis

    PubMed Central

    Hawkins, Charlene; Shaginurova, Guzel; Shelton, D. Auriel; Herazo-Maya, Jose D.; Oswald-Richter, Kyra A.; Young, Anjuli; Celada, Lindsay J.; Kaminski, Naftali; Sevin, Carla

    2017-01-01

    Investigation of the Th1 immune response in sarcoidosis CD4+ T cells has revealed reduced proliferative capacity and cytokine expression upon TCR stimulation. In other disease models, such cellular dysfunction has been associated with a step-wise, progressive loss of T cell function that results from chronic antigenic stimulation. T cell exhaustion is defined by decreased cytokine production upon TCR activation, decreased proliferation, increased expression of inhibitory cell surface receptors, and increased susceptibility to apoptosis. We characterized sarcoidosis CD4+ T cell immune function in systemic and local environments among subjects undergoing disease progression compared to those experiencing disease resolution. Spontaneous and TCR-stimulated Th1 cytokine expression and proliferation assays were performed in 53 sarcoidosis subjects and 30 healthy controls. PD-1 expression and apoptosis were assessed by flow cytometry. Compared to healthy controls, sarcoidosis CD4+ T cells demonstrated reductions in Th1 cytokine expression, proliferative capacity (p < 0.05), enhanced apoptosis (p < 0.01), and increased PD-1 expression (p < 0.001). BAL-derived CD4+ T cells also demonstrated multiple facets of T cell exhaustion (p < 0.05). Reversal of CD4+ T cell exhaustion was observed in subjects undergoing spontaneous resolution (p < 0.05). Sarcoidosis CD4+ T cells exhibit loss of cellular function during progressive disease that follows the archetype of T cell exhaustion. PMID:29234685

  3. Investigation of the characteristics of a stacked direct borohydride fuel cell for portable applications

    NASA Astrophysics Data System (ADS)

    Kim, Cheolhwan; Kim, Kyu-Jung; Ha, Man Yeong

    To investigate the possibility of the portable application of a direct borohydride fuel cell (DBFC), weight reduction of the stack and high stacking of the cells are investigated for practical running conditions. For weight reduction, carbon graphite is adopted as the bipolar plate material even though it has disadvantages in tight stacking, which results in stacking loss from insufficient material strength. For high stacking, it is essential to have a uniform fuel distribution among cells and channels to maintain equal electric load on each cell. In particular, the design of the anode channel is important because active hydrogen generation causes non-uniformity in the fuel flow-field of the cells and channels. To reduce the disadvantages of stacking force margin and fuel maldistribution, an O-ring type-sealing system with an internal manifold and a parallel anode channel design is adopted, and the characteristics of a single and a five-cell fuel cell stack are analyzed. By adopting carbon graphite, the stack weight can be reduced by 4.2 times with 12% of performance degradation from the insufficient stacking force. When cells are stacked, the performance exceeds the single-cell performance because of the stack temperature increase from the reduction of the radiation area from the narrow stacking of cells.

  4. Loss of Highly Branched Arabinans and Debranching of Rhamnogalacturonan I Accompany Loss of Firm Texture and Cell Separation during Prolonged Storage of Apple1

    PubMed Central

    Peña, María J.; Carpita, Nicholas C.

    2004-01-01

    Growth and maturation of the edible cortical cells of apples (Malus domestica Borkh) are accompanied by a selective loss of pectin-associated (1→4)-β-d-galactan from the cell walls, whereas a selective loss of highly branched (1→5)-α-l-arabinans occurs after ripening and in advance of the loss of firm texture. The selective loss of highly branched arabinans occurs during the overripening of apples of four cultivars (Gala, Red Delicious, Firm Gold, and Gold Rush) that varied markedly in storage life, but, in all instances, the loss prestages the loss of firm texture, measured by both breaking strength and compression resistance. The unbranched (1→5)-linked arabinans remain associated with the major pectic polymer, rhamnogalacturonan I, and their content remains essentially unchanged during overripening. However, the degree of rhamnogalacturonan I branching at the rhamnosyl residues also decreases, but only after extensive loss of the highly branched arabinans. In contrast to the decrease in arabinan content, the loss of the rhamnogalacturonan I branching is tightly correlated with loss of firm texture in all cultivars, regardless of storage time. In vitro cell separation assays show that structural proteins, perhaps via their phenolic residues, and homogalacturonans also contribute to cell adhesion. Implications of these cell wall modifications in the mechanisms of apple cortex textural changes and cell separation are discussed. PMID:15247384

  5. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, Branko N.; Weidner, John

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H 2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure resultsmore » in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H 2O 2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mg PGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H 2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm 2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm 2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an initial power density (rated) of 0.174 g PGM/kW. Excellent activity and stability of the catalyst are due to synergistic effect of the catalytic activity and stability of ACCS-2, its enhanced hydrophobicity as well as activity of compressive Pt* lattice catalysts. For the first time, we report a carbon based support which is stable under simulated start-up/shut down operating conditions. Five 25cm 2 MEA’s were fabricated at USC using Pt*/ACCS-2 cathode catalyst for independent evaluation at National Renewable Energy. In the Final NREL report they summarize their results as follow: (1) Initial ORR activity and performance of the USC MEA’s Pt*/ACCS-2 under oxygen air, evaluated at NREL were comparable to that measured and reported by USC in their report: (2) Cyclic durability studies indicate that Pt*/ACCS-2 catalysts has minimal losses in activity and performant under 1-1.5 V potential cycling indicating a robust corrosion resistant support.« less

  6. Loss of expression of BAP1 is a useful adjunct, which strongly supports the diagnosis of mesothelioma in effusion cytology

    PubMed Central

    Andrici, Juliana; Sheen, Amy; Sioson, Loretta; Wardell, Kathryn; Clarkson, Adele; Watson, Nicole; Ahadi, Mahsa S; Farzin, Mahtab; Toon, Christopher W; Gill, Anthony J

    2015-01-01

    Although most mesotheliomas present with pleural effusions, it is controversial whether mesothelioma can be diagnosed with confidence in effusion cytology. Therefore, an ancillary marker of malignant mesothelial cells applicable in effusions would be clinically valuable. BRCA-1-associated protein (BAP1) is a tumor suppressor gene, which shows biallelic inactivation in approximately half of all mesotheliomas. We investigated whether loss of BAP1 expression by immunohistochemistry can be used to support a diagnosis of mesothelioma in effusion cytology. Immunohistochemistry for BAP1 was performed on cell blocks and interpreted blinded. 43 of 75 (57%) effusions associated with confirmed mesothelioma showed negative staining with positive internal controls. Of 57 effusions considered to have atypical mesothelial cells in the absence of a definitive diagnosis of mesothelioma, 8 cases demonstrated negative staining for BAP1. On follow-up six of these patients received a definitive diagnosis of mesothelioma in the subsequent 14 months (two were lost to follow-up immediately, and mesothelioma could not be excluded). Only 5 of 100 consecutive benign effusions were interpreted as BAP1 negative. One of these patients died soon after and mesothelioma could not be excluded. On unblinded review the four other patients with apparently negative BAP1 staining but no malignancy lacked convincing positive staining in non-neoplastic cells suggesting that BAP1 immunohistochemistry may have initially been misinterpreted. 47 effusions with adenocarcinoma were BAP1 positive. We conclude that loss of BAP1 expression, while not definitive, can be used to support the diagnosis of mesothelioma in effusion cytology. We caution that interpretation of BAP1 immunohistochemistry on cell block may be difficult and that convincing positive staining in non-neoplastic cells is required before atypical cells are considered negative. We also note that BAP1 loss is not a sensitive test as it occurs in only half of all mesotheliomas and cannot be used to exclude the diagnosis. PMID:26226841

  7. Carbon dioxide and water vapor high temperature electrolysis

    NASA Technical Reports Server (NTRS)

    Isenberg, Arnold O.; Verostko, Charles E.

    1989-01-01

    The design, fabrication, breadboard testing, and the data base obtained for solid oxide electrolysis systems that have applications for planetary manned missions and habitats are reviewed. The breadboard tested contains sixteen tubular cells in a closely packed bundle for the electrolysis of carbon dioxide and water vapor. The discussion covers energy requirements, volume, weight, and operational characteristics related to the measurement of the reactant and product gas compositions, temperature distribution along the electrolyzer tubular cells and through the bundle, and thermal energy losses. The reliability of individual cell performance in the bundle configuration is assessed.

  8. Loss of PTEN as a Predictive Biomarker of Response to Lithium Chloride, A Potential Targeted Treatment for Breast Cancer

    DTIC Science & Technology

    2012-06-01

    infected cells, we were unable to produce HCC712 and HCC1187 cell lines with knocked out PTEN. We hypothesize that this is due to the high level of...Growth Factor Receptor in MCF-10A human breast epithelial cells. Western blot demonstrating levels of total EGFR in parental MCF-10A, and three stably...overexpression of EGFR. We performed western blot analyses to determine the degree of MAPK and PI3K pathway activation by comparing relative levels of

  9. A cell cycle-independent, conditional gene inactivation strategy for differentially tagging wild-type and mutant cells.

    PubMed

    Nagarkar-Jaiswal, Sonal; Manivannan, Sathiya N; Zuo, Zhongyuan; Bellen, Hugo J

    2017-05-31

    Here, we describe a novel method based on intronic MiMIC insertions described in Nagarkar-Jaiswal et al. (2015) to perform conditional gene inactivation in Drosophila . Mosaic analysis in Drosophila cannot be easily performed in post-mitotic cells. We therefore, therefore, developed Flip-Flop, a flippase -dependent in vivo cassette-inversion method that marks wild-type cells with the endogenous EGFP-tagged protein, whereas mutant cells are marked with mCherry upon inversion. We document the ease and usefulness of this strategy in differential tagging of wild-type and mutant cells in mosaics. We use this approach to phenotypically characterize the loss of SNF4Aγ , encoding the γ subunit of the AMP Kinase complex. The Flip-Flop method is efficient and reliable, and permits conditional gene inactivation based on both spatial and temporal cues, in a cell cycle-, and developmental stage-independent fashion, creating a platform for systematic screens of gene function in developing and adult flies with unprecedented detail.

  10. Optimization of Native and Formaldehyde iPOND Techniques for Use in Suspension Cells.

    PubMed

    Wiest, Nathaniel E; Tomkinson, Alan E

    2017-01-01

    The isolation of proteins on nascent DNA (iPOND) technique developed by the Cortez laboratory allows a previously unparalleled ability to examine proteins associated with replicating and newly synthesized DNA in mammalian cells. Both the original, formaldehyde-based iPOND technique and a more recent derivative, accelerated native iPOND (aniPOND), have mostly been performed in adherent cell lines. Here, we describe modifications to both protocols for use with suspension cell lines. These include cell culture, pulse, and chase conditions that optimize sample recovery in both protocols using suspension cells and several key improvements to the published aniPOND technique that reduce sample loss, increase signal to noise, and maximize sample recovery. Additionally, we directly and quantitatively compare the iPOND and aniPOND protocols to test the strengths and limitations of both. Finally, we present a detailed protocol to perform the optimized aniPOND protocol in suspension cell lines. © 2017 Elsevier Inc. All rights reserved.

  11. The relationship between cell phone use and management of driver fatigue: It's complicated.

    PubMed

    Saxby, Dyani Juanita; Matthews, Gerald; Neubauer, Catherine

    2017-06-01

    Voice communication may enhance performance during monotonous, potentially fatiguing driving conditions (Atchley & Chan, 2011); however, it is unclear whether safety benefits of conversation are outweighed by costs. The present study tested whether personalized conversations intended to simulate hands-free cell phone conversation may counter objective and subjective fatigue effects elicited by vehicle automation. A passive fatigue state (Desmond & Hancock, 2001), characterized by disengagement from the task, was induced using full vehicle automation prior to drivers resuming full control over the driving simulator. A conversation was initiated shortly after reversion to manual control. During the conversation an emergency event occurred. The fatigue manipulation produced greater task disengagement and slower response to the emergency event, relative to a control condition. Conversation did not mitigate passive fatigue effects; rather, it added worry about matters unrelated to the driving task. Conversation moderately improved vehicle control, as measured by SDLP, but it failed to counter fatigue-induced slowing of braking in response to an emergency event. Finally, conversation appeared to have a hidden danger in that it reduced drivers' insights into performance impairments when in a state of passive fatigue. Automation induced passive fatigue, indicated by loss of task engagement; yet, simulated cell phone conversation did not counter the subjective automation-induced fatigue. Conversation also failed to counter objective loss of performance (slower braking speed) resulting from automation. Cell phone conversation in passive fatigue states may impair drivers' awareness of their performance deficits. Practical applications: Results suggest that conversation, even using a hands-free device, may not be a safe way to reduce fatigue and increase alertness during transitions from automated to manual vehicle control. Copyright © 2017 Elsevier Ltd and National Safety Council. All rights reserved.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pezeshki, Alan M.; Sacci, Robert L.; Veith, Gabriel M.

    Here, we demonstrate a novel method to accelerate electrode degradation in redox flow batteries and apply this method to the all-vanadium chemistry. Electrode performance degradation occurred seven times faster than in a typical cycling experiment, enabling rapid evaluation of materials. This method also enables the steady-state study of electrodes. In this manner, it is possible to delineate whether specific operating conditions induce performance degradation; we found that both aggressively charging and discharging result in performance loss. Post-mortem x-ray photoelectron spectroscopy of the degraded electrodes was used to resolve the effects of state of charge (SoC) and current on the electrodemore » surface chemistry. For the electrode material tested in this work, we found evidence that a loss of oxygen content on the negative electrode cannot explain decreased cell performance. Furthermore, the effects of decreased electrode and membrane performance on capacity fade in a typical cycling battery were decoupled from crossover; electrode and membrane performance decay were responsible for a 22% fade in capacity, while crossover caused a 12% fade.« less

  13. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions.

    PubMed

    Doutres, Olivier; Atalla, Noureddine; Osman, Haisam

    2015-06-01

    Porous materials are widely used for improving sound absorption and sound transmission loss of vibrating structures. However, their efficiency is limited to medium and high frequencies of sound. A solution for improving their low frequency behavior while keeping an acceptable thickness is to embed resonant structures such as Helmholtz resonators (HRs). This work investigates the absorption and transmission acoustic performances of a cellular porous material with a two-dimensional periodic arrangement of HR inclusions. A low frequency model of a resonant periodic unit cell based on the parallel transfer matrix method is presented. The model is validated by comparison with impedance tube measurements and simulations based on both the finite element method and a homogenization based model. At the HR resonance frequency (i) the transmission loss is greatly improved and (ii) the sound absorption of the foam can be either decreased or improved depending on the HR tuning frequency and on the thickness and properties of the host foam. Finally, the diffuse field sound absorption and diffuse field sound transmission loss performance of a 2.6 m(2) resonant cellular material are measured. It is shown that the improvements observed at the Helmholtz resonant frequency on a single cell are confirmed at a larger scale.

  14. Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability

    DOE PAGES

    Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary; ...

    2017-06-06

    Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less

  15. Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary

    Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less

  16. Quenching Mo optical losses in CIGS solar cells by a point contacted dual-layer dielectric spacer: a 3-D optical study.

    PubMed

    Rezaei, Nasim; Isabella, Olindo; Vroon, Zeger; Zeman, Miro

    2018-01-22

    A 3-D optical modelling was calibrated to calculate the light absorption and the total reflection of fabricated CIGS solar cells. Absorption losses at molybdenum (Mo) / CIGS interface were explained in terms of plasmonic waves. To quench these losses, we assumed the insertion of a lossless dielectric spacer between Mo and CIGS, whose optical properties were varied. We show that such a spacer with low refractive index and proper thickness can significantly reduce absorption in Mo in the long wavelength regime and improve the device's rear reflectance, thus leading to enhanced light absorption in the CIGS layer. Therefore, we optimized a realistic two-layer MgF 2 / Al 2 O 3 dielectric spacer to exploit (i) the passivation properties of ultra-thin Al 2 O 3 on the CIGS side for potential high open-circuit voltage and (ii) the low refractive index of MgF 2 on the Mo side to reduce its optical losses. Combining our realistic spacer with optically-optimized point contacts increases the implied photocurrent density of a 750 nm-thick CIGS layer by 10% for the wavelengths between 700 and 1150 nm with respect to the reference cell. The elimination of plasmonic resonances in the new structure leads to a higher electric field magnitude at the bottom of CIGS layer and justifies the improved optical performance.

  17. Fast charge separation in a non-fullerene organic solar cell with a small driving force

    NASA Astrophysics Data System (ADS)

    Liu, Jing; Chen, Shangshang; Qian, Deping; Gautam, Bhoj; Yang, Guofang; Zhao, Jingbo; Bergqvist, Jonas; Zhang, Fengling; Ma, Wei; Ade, Harald; Inganäs, Olle; Gundogdu, Kenan; Gao, Feng; Yan, He

    2016-07-01

    Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driving force, defined as the offset between the bandgap (Egap) of the donor/acceptor materials and the energy of the charge transfer (CT) state (ECT), which is typically greater than 0.3 eV. The large driving force causes a relatively large voltage loss that hinders performance. Here, we report non-fullerene OSCs that exhibit ultrafast and efficient charge separation despite a negligible driving force, as ECT is nearly identical to Egap. Moreover, the small driving force is found to have minimal detrimental effects on charge transfer dynamics of the OSCs. We demonstrate a non-fullerene OSC with 9.5% efficiency and nearly 90% internal quantum efficiency despite a low voltage loss of 0.61 V. This creates a path towards highly efficient OSCs with a low voltage loss.

  18. Alzheimer's disease: a correlative study.

    PubMed Central

    Neary, D; Snowden, J S; Mann, D M; Bowen, D M; Sims, N R; Northen, B; Yates, P O; Davison, A N

    1986-01-01

    In a study of 17 patients with histologically proven Alzheimer's disease the relationship between psychological, pathological and chemical measures of disorder was examined. Severity of dementia, determined by mental test performance, correlated highly with pathological change in large cortical neurons (cell loss and reduction in nuclear and nucleolar volume and cytoplasmic RNA content), to a lesser extent with cortical senile plaque and neurofibrillary tangle frequency and reduction in acetylcholine (ACh) synthesis, and not with reduction in choline acetyltransferase (CAT) activity. A strongly significant relationship was demonstrated between cell loss and reductions in nuclear and nucleolar volume and cytoplasmic RNA content. Reduction in CAT activity and senile plaque frequency were significantly correlated, thereby linking changes in the sub-cortical projection system of the nucleus basalis with the cortical pathology. The pattern of correlations suggests that the dementia of Alzheimer's disease is largely a reflection of the state of large cortical neurons, and it is argued that abnormalities in the latter may not be directly related to primary loss of cholinergic neurons in the subcortex. PMID:2420941

  19. Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells.

    PubMed

    Stadler, Mira; Scherzer, Martin; Walter, Stefanie; Holzner, Silvio; Pudelko, Karoline; Riedl, Angelika; Unger, Christine; Kramer, Nina; Weil, Beatrix; Neesen, Jürgen; Hengstschläger, Markus; Dolznig, Helmut

    2018-01-18

    Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.

  20. Amorphous silicon research. Final technical progress report, 1 August 1994--28 February 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guha, S

    1998-05-01

    This report describes the status and accomplishments of work performed under this subcontract by United Solar Systems. United Solar researchers explored several new deposition regimes/conditions to investigate their effect on material/device performance. To facilitate optimum ion bombardment during growth, a large parameter space involving chamber pressure, rf power, and hydrogen dilution were investigated. United Solar carried out a series of experiments using discharge modulation at various pulsed-plasma intervals to study the effect of Si-particle incorporation on solar cell performance. Hydrogen dilution during deposition is found to improve both the initial and stable performance of a-Si and a-SiGe alloy cells. Researchersmore » conducted a series of temperature-ramping experiments on samples prepared with high and low hydrogen dilutions to study the effect of hydrogen effusion on solar cell performance. Using an internal photoemission method, the electrical bandgap of a microcrystalline p layer used in high-efficiency solar cells was measured to be 1.6 eV. New measurement techniques were developed to evaluate the interface and bulk contributions of losses to solar cell performance. Researchers replaced hydrogen with deuterium and found deuterated amorphous silicon alloy solar cells exhibit reduced light-induced degradation. The incorporation of a microcrystalline n layer in a multijunction cell is seen to improve cell performance. United Solar achieved a world-record single-junction a-Si alloy stable cell efficiency of 9.2% with an active area of 0.25 cm{sup 2} grown with high hydrogen dilution. They also achieved a world-record triple-junction, stable, active-area cell efficiency of 13.0% with an active area of 0.25 cm{sup 2}.« less

  1. Silicon MINP solar cells

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.; Addis, F. W.; Miller, W. A.

    1985-01-01

    The MINP solar cell concept refers to a cell structure designed to be a base region dominated device. Thus, it is desirable that recombination losses are reduced to the point that they occur only in the base region. The most unique feature of the MINP cell design is that a tunneling contact is utilized for the metallic contact on the front surface. The areas under the collector grid and bus bar are passivated by a thin oxide of tunneling thickness. Efforts must also be taken to minimize recombination at the surface between grid lines, at the junction periphery and within the emitter. Results of both theoretical and experimental studies of silicon MINP cells are given. Performance calculations are described which give expected efficiencies as a function of base resistivity and junction depth. Fabrication and characterization of cells are discussed which are based on 0.2 ohm-cm substrates, diffused emitters on the order of 0.15 to 0.20 microns deep, and with Mg MIS collector grids. A total area AM 1 efficiency of 16.8% was achieved. Detailed analyses of photocurrent and current loss mechanisms are presented and utilized to discuss future directions of research. Finally, results reported by other workers are discussed.

  2. Degradation Study by Start-Up/Shut-Down Cycling of Superhydrophobic Electrosprayed Catalyst Layers Using a Localized Reference Electrode Technique.

    PubMed

    Ferreira-Aparicio, Paloma; Chaparro, Antonio M; Folgado, M Antonia; Conde, Julio J; Brightman, Edward; Hinds, Gareth

    2017-03-29

    Degradation of a polymer electrolyte membrane fuel cell (PEMFC) with electrosprayed cathode catalyst layers is investigated during cyclic start-up and shut-down events. The study is carried out within a single cell incorporating an array of reference electrodes that enables measurement of cell current as a function of local cathode potential (localized polarization curves). Accelerated degradation of the cell by start-up/shut-down cycling gives rise to inhomogeneous performance loss, which is more severe close to the gas outlet and occurs predominantly during start-up. The degradation consists primarily of loss of cathode catalyst activity and increase in cell internal resistance, which is attributed to carbon corrosion and Pt aggregation in both anode and cathode. Cells with an electrosprayed cathode catalyst layer show lower degradation rates during the first 100 cycles, compared with those of a conventional gas diffusion electrode. This difference in behavior is attributed to the high hydrophobicity of the electrosprayed catalyst layer microstructure, which retards the kinetics of corrosion of the carbon support. In the long term, however, the degradation rate is dominated by the Pt/C ratio in the cathode catalyst layer.

  3. Monolithic Solid Oxide Fuel Cell development

    NASA Technical Reports Server (NTRS)

    Myles, K. M.; Mcpheeters, C. C.

    1989-01-01

    The Monolithic Solid Oxide Fuel Cell (MSOFC) is an oxide-ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/L, at fuel efficienceis over 50 percent, because of small cell size and low resistive losses in the materials. The MSOFC operates in the range of 700 to 1000 C, at which temperatures rapid reform of hydrocarbon fuels is expected within the nickel-YSZ fuel channels. Tape casting and hot roll calendering are used to fabricate the MSOFC structure. The performance of the MSOFC has improved significantly during the course of development. The limitation of this system, based on materials resistance alone without interfacial resistances, is 0.093 ohm-sq cm area-specific resistance (ASR). The current typical performance of MSOFC single cells is characterized by ASRs of about 0.4 to 0.5 ohm-sq cm. With further development the ASR is expected to be reduced below 0.2 ohm-sq cm, which will result in power levels greater than 1.4 W/sq cm. The feasibility of the MSOFC concept was proven, and the performance was dramatically improved. The differences in thermal expansion coefficients and firing shrinkages among the fuel cell materials were minimized. As a result of good matching of these properties, the MSOFC structure was successfully fabricated with few defects, and the system shows excellent promise for development into a practical power source.

  4. Emitter/absorber interface of CdTe solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Tao; Kanevce, Ana; Sites, James R.

    The performance of CdTe solar cells can be very sensitive to their emitter/absorber interfaces, especially for high-efficiency cells with improved bulk properties. When interface defect states are located at efficient recombination energies, performance losses from acceptor-type interface defects can be significant. Numerical simulations show that the emitter/absorber band alignment, the emitter doping and thickness, and the defect properties of the interface (i.e. defect density, defect type, and defect energy) can all play significant roles in the interface recombination. In particular, a type I heterojunction with small conduction-band offset (0.1 eV /= 0.4 eV), however, can impede electron transport and leadmore » to a reduction of photocurrent and fill-factor. In contrast to the spike, a 'cliff' (.delta..EC < 0 eV) is likely to allow many holes in the vicinity of the interface, which will assist interface recombination and result in a reduced open-circuit voltage. In addition, a thin and highly-doped emitter can invert the absorber, form a large hole barrier, and decrease device performance losses due to high interface defect density. CdS is the most common emitter material used in CdTe solar cells, but the CdS/CdTe interface is in the cliff category and is not favorable from the band-offset perspective. Other n-type emitter choices, such as (Mg,Zn)O, Cd(S,O), or (Cd,Mg)Te, can be tuned by varying the elemental ratio for an optimal positive value of ..delta..EC. These materials are predicted to yield higher voltages and would therefore be better candidates for the CdTe-cell emitter.« less

  5. Study of the acetonitrile poisoning of platinum cathodes on proton exchange membrane fuel cell spatial performance using a segmented cell system

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana V.; St-Pierre, Jean

    2015-10-01

    Due to the wide applications of acetonitrile as a solvent in the chemical industry, acetonitrile can be present in the air and should be considered a possible pollutant. In this work, the spatial proton exchange membrane fuel cell performance exposed to air with 20 ppm CH3CN was studied using a segmented cell system. The injection of CH3CN led to performance losses of 380 mV at 0.2 A cm-2 and 290 mV at 1.0 A cm-2 accompanied by a significant change in the current density distribution. The observed local currents behavior is likely attributed to acetonitrile chemisorption and the subsequent two consecutive reduction/oxidation reactions. The hydrolysis of CH3CN and its intermediate imine species resulted in NH4+ formation, which increased the high-frequency resistance of the cell and affected oxygen reduction and performance. Other products of hydrolysis can be oxidized to CO2 under the operating conditions. The reintroduction of pure air completely recovered cell performance within 4 h at 1.0 A cm-2, while at 0.2 A cm-2 the cell recovery was only partial. A detailed analysis of the current density distribution, its correlation with spatial electrochemical impedance spectroscopy data, possible CH3CN oxidation/reduction mechanisms and mitigation strategies are presented and discussed.

  6. Noise-Induced Loss of Hair Cells and Cochlear Synaptopathy Are Mediated by the Activation of AMPK

    PubMed Central

    Hill, Kayla; Yuan, Hu; Wang, Xianren

    2016-01-01

    Noise-induced hearing loss (NIHL) is a major unresolved public health problem. Here, we investigate pathomechanisms of sensory hair cell death and suggest a novel target for protective intervention. Cellular survival depends upon maintenance of energy homeostasis, largely by AMP-activated protein kinase (AMPK). In response to a noise exposure in CBA/J mice, the levels of phosphorylated AMPKα increased in hair cells in a noise intensity-dependent manner. Inhibition of AMPK via siRNA or the pharmacological inhibitor compound C attenuated noise-induced loss of outer hair cells (OHCs) and synaptic ribbons, and preserved auditory function. Additionally, noise exposure increased the activity of the upstream AMPK kinase liver kinase B1 (LKB1) in cochlear tissues. The inhibition of LKB1 by siRNA attenuated the noise-increased phosphorylation of AMPKα in OHCs, reduced the loss of inner hair cell synaptic ribbons and OHCs, and protected against NIHL. These results indicate that noise exposure induces hair cell death and synaptopathy by activating AMPK via LKB1-mediated pathways. Targeting these pathways may provide a novel route to prevent NIHL. SIGNIFICANCE STATEMENT Our results demonstrate for the first time that the activation of AMP-activated protein kinase (AMPK) α in sensory hair cells is noise intensity dependent and contributes to noise-induced hearing loss by mediating the loss of inner hair cell synaptic ribbons and outer hair cells. Noise induces the phosphorylation of AMPKα1 by liver kinase B1 (LKB1), triggered by changes in intracellular ATP levels. The inhibition of AMPK activation by silencing AMPK or LKB1, or with the pharmacological inhibitor compound C, reduced outer hair cell and synaptic ribbon loss as well as noise-induced hearing loss. This study provides new insights into mechanisms of noise-induced hearing loss and suggests novel interventions for the prevention of the loss of sensory hair cells and cochlear synaptopathy. PMID:27413159

  7. Protective effect of Korean Red Ginseng against glucocorticoid-induced osteoporosis in vitro and in vivo

    PubMed Central

    Kim, Jinhee; Lee, Hyejin; Kang, Ki Sung; Chun, Kwang-Hoon; Hwang, Gwi Seo

    2014-01-01

    Background Glucocorticoids (GCs) are commonly used in many chemotherapeutic protocols and play an important role in the normal regulation of bone remodeling. However, the prolonged use of GCs results in osteoporosis, which is partially due to apoptosis of osteoblasts and osteocytes. In this study, effects of Korean Red Ginseng (KRG) on GC-treated murine osteoblastic MC3T3-E1 cells and a GC-induced osteoporosis mouse model were investigated. Methods MC3T3-E1 cells were exposed to dexamethasone (Dex) with or without KRG and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction was performed to evaluate the apoptotic gene expression; osteogenic gene expression and alkaline phosphatase (ALP) activity were also measured. Western blotting was performed to evaluate the mitogen-activated protein kinase (MAPK) proteins. A GC-induced osteoporosis animal model was used for in vivo study. Results and conclusion The MTT assay revealed that Korean Red Ginseng (KRG) prevents loss of cell viability caused by Dex-induced apoptosis in MC3T3E1 cells. Real-time polymerase chain reaction data showed that groups treated with both Dex and KRG exhibited lower mRNA levels of caspase-3 and -9, whereas the mRNA levels of Bcl2, IAPs, and XIAP increased. Moreover, groups treated with both Dex and KRG demonstrated increased mRNA levels of ALP, RUNX2, and bone morphogenic proteins as well as increased ALP activity in MC3T3-E1 cells, compared to cells treated with Dex only. In addition, KRG increased protein kinase B (AKT) phosphorylation and decreased c-Jun N-terminal kinase (JNK) phosphorylation. Moreover, microcomputed tomography analysis of the femurs showed that GC implantation caused trabecular bone loss. However, a significant reduction of bone loss was observed in the KRG-treated group. These results suggest that the molecular mechanism of KRG in the GC-induced apoptosis may lead to the development of therapeutic strategies to prevent and/or delay osteoporosis. PMID:25535476

  8. Quantum Efficiency Loss after PID Stress: Wavelength Dependence on Cell Surface and Cell Edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Bowden, Stuart; TamizhMani, GovindaSamy

    2015-06-14

    It is known that the potential induced degradation (PID) stress of conventional p-base solar cells affects power, shunt resistance, junction recombination, and quantum efficiency (QE). One of the primary solutions to address the PID issue is a modification of chemical and physical properties of antireflection coating (ARC) on the cell surface. Depending on the edge isolation method used during cell processing, the ARC layer near the edges may be uniformly or non-uniformly damaged. Therefore, the pathway for sodium migration from glass to the cell junction could be either through all of the ARC surface if surface and edge ARC havemore » low quality or through the cell edge if surface ARC has high quality but edge ARC is defective due to certain edge isolation process. In this study, two PID susceptible cells from two different manufacturers have been investigated. The QE measurements of these cells before and after PID stress were performed at both surface and edge. We observed the wavelength dependent QE loss only in the first manufacturer's cell but not in the second manufacturer's cell. The first manufacturer's cell appeared to have low quality ARC whereas the second manufacturer's cell appeared to have high quality ARC with defective edge. To rapidly screen a large number of cells for PID stress testing, a new but simple test setup that does not require laminated cell coupon has been developed and is used in this investigation.« less

  9. Chronic treadmill exercise in rats delicately alters the Purkinje cell structure to improve motor performance and toxin resistance in the cerebellum.

    PubMed

    Huang, Tung-Yi; Lin, Lung-Sheng; Cho, Keng-Chi; Chen, Shean-Jen; Kuo, Yu-Min; Yu, Lung; Wu, Fong-Sen; Chuang, Jih-Ing; Chen, Hsiun-Ing; Jen, Chauying J

    2012-09-01

    Although exercise usually improves motor performance, the underlying cellular changes in the cerebellum remain to be elucidated. This study aimed to investigate whether and how chronic treadmill exercise in young rats induced Purkinje cell changes to improve motor performance and rendered the cerebellum less vulnerable to toxin insults. After 1-wk familiarization of treadmill running, 6-wk-old male Wistar rats were divided into exercise and sedentary groups. The exercise group was then subjected to 8 wk of exercise training at moderate intensity. The rotarod test was carried out to evaluate motor performance. Purkinje cells in cerebellar slices were visualized by lucifer yellow labeling in single neurons and by calbindin immunostaining in groups of neurons. Compared with sedentary control rats, exercised rats not only performed better in the rotarod task, but also showed finer Purkinje cell structure (higher dendritic volume and spine density with the same dendritic field). The exercise-improved cerebellar functions were further evaluated by monitoring the long-lasting effects of intraventricular application of OX7-saporin. In the sedentary group, OX7-saporin treatment retarded the rotarod performance and induced ∼60% Purkinje cell loss in 3 wk. As a comparison, the exercise group showed much milder injuries in the cerebellum by the same toxin treatment. In conclusion, exercise training in young rats increased the dendritic density of Purkinje cells, which might play an important role in improving the motor performance. Furthermore, as Purkinje cells in the exercise group were relatively toxin resistant, the exercised rats showed good motor performance, even under toxin-treated conditions.

  10. Abnormal strong burn-in degradation of highly efficient polymer solar cells caused by spinodal donor-acceptor demixing

    PubMed Central

    Li, Ning; Perea, José Darío; Kassar, Thaer; Richter, Moses; Heumueller, Thomas; Matt, Gebhard J.; Hou, Yi; Güldal, Nusret S.; Chen, Haiwei; Chen, Shi; Langner, Stefan; Berlinghof, Marvin; Unruh, Tobias; Brabec, Christoph J.

    2017-01-01

    The performance of organic solar cells is determined by the delicate, meticulously optimized bulk-heterojunction microstructure, which consists of finely mixed and relatively separated donor/acceptor regions. Here we demonstrate an abnormal strong burn-in degradation in highly efficient polymer solar cells caused by spinodal demixing of the donor and acceptor phases, which dramatically reduces charge generation and can be attributed to the inherently low miscibility of both materials. Even though the microstructure can be kinetically tuned for achieving high-performance, the inherently low miscibility of donor and acceptor leads to spontaneous phase separation in the solid state, even at room temperature and in the dark. A theoretical calculation of the molecular parameters and construction of the spinodal phase diagrams highlight molecular incompatibilities between the donor and acceptor as a dominant mechanism for burn-in degradation, which is to date the major short-time loss reducing the performance and stability of organic solar cells. PMID:28224984

  11. Hippocampus-dependent spatial memory impairment due to molar tooth loss is ameliorated by an enriched environment.

    PubMed

    Kondo, Hiroko; Kurahashi, Minori; Mori, Daisuke; Iinuma, Mitsuo; Tamura, Yasuo; Mizutani, Kenmei; Shimpo, Kan; Sonoda, Shigeru; Azuma, Kagaku; Kubo, Kin-ya

    2016-01-01

    Teeth are crucial, not only for mastication, but for overall nutrition and general health, including cognitive function. Aged mice with chronic stress due to tooth loss exhibit impaired hippocampus-dependent learning and memory. Exposure to an enriched environment restores the reduced hippocampal function. Here, we explored the effects of an enriched environment on learning deficits and hippocampal morphologic changes in aged senescence-accelerated mouse strain P8 (SAMP8) mice with tooth loss. Eight-month-old male aged SAMP8 mice with molar intact or with molars removed were housed in either a standard environment or enriched environment for 3 weeks. The Morris water maze was performed for spatial memory test. The newborn cell proliferation, survival, and differentiation in the hippocampus were analyzed using 5-Bromodeoxyuridine (BrdU) immunohistochemical method. The hippocampal brain-derived neurotrophic factor (BDNF) levels were also measured. Mice with upper molars removed (molarless) exhibited a significant decline in the proliferation and survival of newborn cells in the dentate gyrus (DG) as well as in hippocampal BDNF levels. In addition, neuronal differentiation of newly generated cells was suppressed and hippocampus-dependent spatial memory was impaired. Exposure of molarless mice to an enriched environment attenuated the reductions in the hippocampal BDNF levels and neuronal differentiation, and partially improved the proliferation and survival of newborn cells, as well as the spatial memory ability. These findings indicated that an enriched environment could ameliorate the hippocampus-dependent spatial memory impairment induced by molar tooth loss. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications.

    PubMed

    Houchins, Cassidy; Kleen, Greg J; Spendelow, Jacob S; Kopasz, John; Peterson, David; Garland, Nancy L; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C

    2012-12-18

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed.

  13. 14 CFR 31.19 - Performance: Uncontrolled descent.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... single failure of the heater assembly, fuel cell system, gas value system, or maneuvering vent system, or from any single tear in the balloon envelope between tear stoppers: (1) The maximum vertical velocity attained. (2) The altitude loss from the point of failure to the point at which maximum vertical velocity...

  14. Water Splitting with Series-Connected Polymer Solar Cells.

    PubMed

    Esiner, Serkan; van Eersel, Harm; van Pruissen, Gijs W P; Turbiez, Mathieu; Wienk, Martijn M; Janssen, René A J

    2016-10-12

    We investigate light-driven electrochemical water splitting with series-connected polymer solar cells using a combined experimental and modeling approach. The expected maximum solar-to-hydrogen conversion efficiency (η STH ) for light-driven water splitting is modeled for two, three, and four series-connected polymer solar cells. In the modeling, we assume an electrochemical water splitting potential of 1.50 V and a polymer solar cell for which the external quantum efficiency and fill factor are both 0.65. The minimum photon energy loss (E loss ), defined as the energy difference between the optical band gap (E g ) and the open-circuit voltage (V oc ), is set to 0.8 eV, which we consider a realistic value for polymer solar cells. Within these approximations, two series-connected single junction cells with E g = 1.73 eV or three series-connected cells with E g = 1.44 eV are both expected to give an η STH of 6.9%. For four series-connected cells, the maximum η STH is slightly less at 6.2% at an optimal E g = 1.33 eV. Water splitting was performed with series-connected polymer solar cells using polymers with different band gaps. PTPTIBDT-OD (E g = 1.89 eV), PTB7-Th (E g = 1.56 eV), and PDPP5T-2 (E g = 1.44 eV) were blended with [70]PCBM as absorber layer for two, three, and four series-connected configurations, respectively, and provide η STH values of 4.1, 6.1, and 4.9% when using a retroreflective foil on top of the cell to enhance light absorption. The reasons for deviations with experiments are analyzed and found to be due to differences in E g and E loss . Light-driven electrochemical water splitting was also modeled for multijunction polymer solar cells with vertically stacked photoactive layers. Under identical assumptions, an η STH of 10.0% is predicted for multijunction cells.

  15. Re-activation of degraded nickel cermet anodes - Nano-particle formation via reverse current pulses

    NASA Astrophysics Data System (ADS)

    Hauch, A.; Marchese, M.; Lanzini, A.; Graves, C.

    2018-02-01

    The Ni/yttria-stabilized-zirconia (YSZ) cermet is the most commonly applied fuel electrode for solid oxide cells (SOCs). Loss of Ni/YSZ electrode activity is a key life-time limiting factor of the SOC. Developing means to mitigate this loss of performance or re-activate a fuel electrode is therefore important. In this work, we report a series of five tests on state-of-the-art Ni/YSZ-YSZ-CGObarrier-LSC/CGO cells. All cells were deliberately degraded via gas stream impurities in CO2/CO or harsh steam electrolysis operation. The cells were re-activated via a variety of reverse current treatments (RCTs). Via electrochemical impedance spectroscopy, we found that the Ni/YSZ electrode performance could be recovered via RCT, but not via constant fuel cell operation. For optimized RCT, we obtained a lower Ni/YSZ electrode resistance than the initial resistance. E.g. at 700 °C we measured fuel electrode resistance of 180 mΩ cm2, 390 mΩ cm2, and 159 mΩ cm2 before degradation, after degradation and after re-activation via RCT, respectively. Post-test SEM revealed that the RCT led to formation of nano-particles in the fuel electrode. Besides the remarkable improvement, the results also showed that RCTs can weaken Ni/YSZ interfaces and the electrode/electrolyte interface. This indicates that finding an optimum RCT profile is crucial for achieving maximum benefit.

  16. Solution-Processed Small-Molecule Bulk Heterojunctions: Leakage Currents and the Dewetting Issue for Inverted Solar Cells.

    PubMed

    Destouesse, Elodie; Chambon, Sylvain; Courtel, Stéphanie; Hirsch, Lionel; Wantz, Guillaume

    2015-11-11

    In organic photovoltaic (PV) devices based on solution-processed small molecules, we report here that the physicochemical properties of the substrate are critical for achieving high-performances organic solar cells. Three different substrates were tested: ITO coated with PSS, ZnO sol-gel, and ZnO nanoparticles. PV performances are found to be low when the ZnO nanoparticles layer is used. This performance loss is attributed to the formation of many dewetting points in the active layer, because of a relatively high roughness of the ZnO nanoparticles layer, compared to the other layers. We successfully circumvented this phenomenon by adding a small quantity of polystyrene (PS) in the active layer. The introduction of PS improves the quality of film forming and reduces the dark currents of solar cells. Using this method, high-efficiency devices were achieved, even in the case of substrates with higher roughness.

  17. Metal based gas diffusion layers for enhanced fuel cell performance at high current densities

    NASA Astrophysics Data System (ADS)

    Hussain, Nabeel; Van Steen, Eric; Tanaka, Shiro; Levecque, Pieter

    2017-01-01

    The gas diffusion layer strongly influences the performance and durability of polymer electrolyte fuel cells. A major drawback of current carbon fiber based GDLs is the non-controlled variation in porosity resulting in a random micro-structure. Moreover, when subjected to compression these materials show significant reduction in porosity and permeability leading to water management problems and mass transfer losses within the fuel cell. This study investigated the use of uniform perforated metal sheets as GDLs in conjunction with microchannel flowfields. A metal sheet design with a pitch of 110 μm and a hole diameter of 60 μm in combination with an MPL showed superior performance in the high current density region compared to a commercially available carbon paper based GDL in a single cell environment. Fuel cell testing with different oxidants (air, heliox and oxygen) indicate that the metal sheet offers both superior diffusion and reduced flooding in comparison to the carbon based GDL. The presence of the MPL has been found to be critical to the functionality of the metal sheet suggesting that the MPL design may represent an important optimisation parameter for further improvements in performance.

  18. ATM QoS Experiments Using TCP Applications: Performance of TCP/IP Over ATM in a Variety of Errored Links

    NASA Technical Reports Server (NTRS)

    Frantz, Brian D.; Ivancic, William D.

    2001-01-01

    Asynchronous Transfer Mode (ATM) Quality of Service (QoS) experiments using the Transmission Control Protocol/Internet Protocol (TCP/IP) were performed for various link delays. The link delay was set to emulate a Wide Area Network (WAN) and a Satellite Link. The purpose of these experiments was to evaluate the ATM QoS requirements for applications that utilize advance TCP/IP protocols implemented with large windows and Selective ACKnowledgements (SACK). The effects of cell error, cell loss, and random bit errors on throughput were reported. The detailed test plan and test results are presented herein.

  19. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  20. Defining a Cancer Dependency Map | Office of Cancer Genomics

    Cancer.gov

    Most human epithelial tumors harbor numerous alterations, making it difficult to predict which genes are required for tumor survival. To systematically identify cancer dependencies, we analyzed 501 genome-scale loss-of-function screens performed in diverse human cancer cell lines. We developed DEMETER, an analytical framework that segregates on- from off-target effects of RNAi. 769 genes were differentially required in subsets of these cell lines at a threshold of six SDs from the mean.

  1. Experimental Results of Thin-Film Photovoltaic Cells in a Low Density LEO Plasma Environment: Ground Tests

    NASA Technical Reports Server (NTRS)

    Galofaro, Joel T.; Vayner, Boris V.

    2006-01-01

    Plasma ground testing results, conducted at the Glenn Research Center (GRC) National Plasma Interaction (N-PI) Facility, are presented for a number of thin-film photovoltaic cells. The cells represent a mix of promising new technologies identified by the Air Force Research Laboratory (AFRL) under the CYGNUS Space Science Technology Experiment (SSTE-4) Program. The current ground tests are aimed at characterizing the performance and survivability of thin film technologies in the harsh low earth orbital space environment where they will be flown. Measurements of parasitic current loss, charging/dielectric breakdown of cover-slide coatings and arcing threshold tests are performed for each individual cell. These measurements are followed by a series of experiments designed to test for catastrophic arc failure mechanisms. A special type of power supply, called a solar array simulator (SAS) with adjustable voltage and current limits on the supply s output, is employed to bias two adjacent cells at a predetermined voltage and current. The bias voltage is incrementally ramped up until a sustained arc results. Sustained arcs are precursors to catastrophic arc failure where the arc current rises to a maximum value for long timescales often ranging between 30 to 100 sec times. Normal arcs by comparison, are short lived events with a timescale between 10 to 30 sec. Sustained arcs lead to pyrolization with extreme cell damage and have been shown to cause the loss of entire array strings in solar arrays. The collected data will be used to evaluate the suitability of thin-film photovoltaic technologies for future space operations.

  2. Corneal endothelial morphology and function after torsional and longitudinal ultrasound mode phacoemulsification

    PubMed Central

    Módis, László Jr.; Szalai, Eszter; Flaskó, Zsuzsa; Németh, Gábor

    2016-01-01

    Purpose. To study the endothelial cell morphology and corneal thickness changes after phacoemulsification by using the OZil torsional and longitudinal ultrasound techniques (Infiniti Vision System, Alcon Laboratories). Setting. Department of Ophthalmology, Clinical Center, University of Debrecen, Debrecen, Hungary. Methods. 52 patients with cataract were randomly assigned to longitudinal ultrasound and torsional mode group. All surgeries were performed through a 2.2 mm clear corneal incision, the method employed being divide and conquer. The endothelial morphometry such as cell density (ECD), mean cell area, coefficient of variation of cell area, and central corneal thickness were examined with specular microscopy (EM-1000, Tomey) preoperatively and 4, 8 weeks postoperatively. Results. ECD values decreased significantly in both surgical groups (P < .001, repeated- mesures ANOVA), the postoperative endothelial cell loss was higher in the longitudinal ultrasound mode group (3.5% and 6.5%, at 4 and 8 weeks after surgery) than in the torsional group (3.3% and 5.5%, at 4 and 8 weeks after surgery), the difference not being significant between the two groups (P = .164 and P = .479, at 4 and 8 weeks after surgery, Mann-Whitney test). There was no statistically significant difference in any of the assessed parameters between the two surgical groups (P > .05). No significant correlation was found between the endothelial cell loss and the nucleus density. Conclusions. Both phacoemulsification techniques were safe and effective. The torsional handpiece performs oscillatory movements and delivers less energy into the eye than the longitudinal ultrasound technique, therefore providing more favorable energy and thermal safety profile. PMID:29450332

  3. FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry

    PubMed Central

    Arrigucci, Riccardo; Bushkin, Yuri; Radford, Felix; Lakehal, Karim; Vir, Pooja; Pine, Richard; Martin, December; Sugarman, Jeffrey; Zhao, Yanlin; Yap, George S; Lardizabal, Alfred A; Tyagi, Sanjay; Gennaro, Maria Laura

    2017-01-01

    We describe a flow-cytometry-based protocol for intracellular mRNA measurements in nonadherent mammalian cells using fluorescence in situ hybridization (FISH) probes. The method, which we call FISH-Flow, allows for high-throughput multiparametric measurements of gene expression, a task that was not feasible with earlier, microscopy-based approaches. The FISH-Flow protocol involves cell fixation, permeabilization and hybridization with a set of fluorescently labeled oligonucleotide probes. In this protocol, surface and intracellular protein markers can also be stained with fluorescently labeled antibodies for simultaneous protein and mRNA measurement. Moreover, a semiautomated, single-tube version of the protocol can be performed with a commercially available cell-wash device that reduces cell loss, operator time and interoperator variability. It takes ~30 h to perform this protocol. An example of FISH-Flow measurements of cytokine mRNA induction by ex vivo stimulation of primed T cells with specific antigens is described. PMID:28518171

  4. Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits.

    PubMed

    Truszkowski, Torrey L S; James, Eric J; Hasan, Mashfiq; Wishard, Tyler J; Liu, Zhenyu; Pratt, Kara G; Cline, Hollis T; Aizenman, Carlos D

    2016-08-08

    Fragile X Syndrome is the leading monogenetic cause of autism and most common form of intellectual disability. Previous studies have implicated changes in dendritic spine architecture as the primary result of loss of Fragile X Mental Retardation Protein (FMRP), but recent work has shown that neural proliferation is decreased and cell death is increased with either loss of FMRP or overexpression of FMRP. The purpose of this study was to investigate the effects of loss of FMRP on behavior and cellular activity. We knocked down FMRP expression using morpholino oligos in the optic tectum of Xenopus laevis tadpoles and performed a series of behavioral and electrophysiological assays. We investigated visually guided collision avoidance, schooling, and seizure propensity. Using single cell electrophysiology, we assessed intrinsic excitability and synaptic connectivity of tectal neurons. We found that FMRP knockdown results in decreased swimming speed, reduced schooling behavior and decreased seizure severity. In single cells, we found increased inhibition relative to excitation in response to sensory input. Our results indicate that the electrophysiological development of single cells in the absence of FMRP is largely unaffected despite the large neural proliferation defect. The changes in behavior are consistent with an increase in inhibition, which could be due to either changes in cell number or altered inhibitory drive, and indicate that FMRP can play a significant role in neural development much earlier than previously thought.

  5. Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior

    PubMed Central

    Gantois, Ilse; Fang, Ke; Jiang, Luning; Babovic, Daniela; Lawrence, Andrew J.; Ferreri, Vincenzo; Teper, Yaroslav; Jupp, Bianca; Ziebell, Jenna; Morganti-Kossmann, Cristina M.; O'Brien, Terence J.; Nally, Rachel; Schütz, Günter; Waddington, John; Egan, Gary F.; Drago, John

    2007-01-01

    Huntington's disease is characterized by death of striatal projection neurons. We used a Cre/Lox transgenic approach to generate an animal model in which D1 dopamine receptor (Drd1a)+ cells are progressively ablated in the postnatal brain. Striatal Drd1a, substance P, and dynorphin expression is progressively lost, whereas D2 dopamine receptor (Drd2) and enkephalin expression is up-regulated. Magnetic resonance spectroscopic analysis demonstrated early elevation of the striatal choline/creatine ratio, a finding associated with extensive reactive striatal astrogliosis. Sequential MRI demonstrated a progressive reduction in striatal volume and secondary ventricular enlargement confirmed to be due to loss of striatal cells. Mutant mice had normal gait and rotarod performance but displayed hindlimb dystonia, locomotor hyperactivity, and handling-induced electrographically verified spontaneous seizures. Ethological assessment identified an increase in rearing and impairments in the oral behaviors of sifting and chewing. In line with the limbic seizure profile, cell loss, astrogliosis, microgliosis, and down-regulated dynorphin expression were seen in the hippocampal dentate gyrus. This study specifically implicates Drd1a+ cell loss with tail suspension hindlimb dystonia, hyperactivity, and abnormal oral function. The latter may relate to the speech and swallowing disturbances and the classic sign of tongue-protrusion motor impersistence observed in Huntington's disease. In addition, the findings of this study support the notion that Drd1a and Drd2 are segregated on striatal projection neurons. PMID:17360497

  6. Embryonic Stem Cell Specific “Master” Replication Origins at the Heart of the Loss of Pluripotency

    PubMed Central

    Julienne, Hanna; Audit, Benjamin; Arneodo, Alain

    2015-01-01

    Epigenetic regulation of the replication program during mammalian cell differentiation remains poorly understood. We performed an integrative analysis of eleven genome-wide epigenetic profiles at 100 kb resolution of Mean Replication Timing (MRT) data in six human cell lines. Compared to the organization in four chromatin states shared by the five somatic cell lines, embryonic stem cell (ESC) line H1 displays (i) a gene-poor but highly dynamic chromatin state (EC4) associated to histone variant H2AZ rather than a HP1-associated heterochromatin state (C4) and (ii) a mid-S accessible chromatin state with bivalent gene marks instead of a polycomb-repressed heterochromatin state. Plastic MRT regions (≲ 20% of the genome) are predominantly localized at the borders of U-shaped timing domains. Whereas somatic-specific U-domain borders are gene-dense GC-rich regions, 31.6% of H1-specific U-domain borders are early EC4 regions enriched in pluripotency transcription factors NANOG and OCT4 despite being GC poor and gene deserts. Silencing of these ESC-specific “master” replication initiation zones during differentiation corresponds to a loss of H2AZ and an enrichment in H3K9me3 mark characteristic of late replicating C4 heterochromatin. These results shed a new light on the epigenetically regulated global chromatin reorganization that underlies the loss of pluripotency and lineage commitment. PMID:25658386

  7. A figure of merit for AMTEC electrodes

    NASA Technical Reports Server (NTRS)

    Underwood, M. L.; Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.

    1991-01-01

    As a method to compare the results of alkali metal thermoelectric converter (AMTEC) electrode performance measured under different conditions, an AMTEC figure of merit called ZA is proposed. This figure of merit is the ratio of the experimental maximum power for an electrode to a calculated maximum power density as determined from a recently published electrode performance model. The calculation of a maximum power density assumes that certain loss terms in the electrode can be reduced to essentially zero by improved cell design and construction, and that the electrochemical exchange current is determined from a standard value. Other losses in the electrode are considered inherent to the electrode performance. Thus, these terms remain in the determination of the calculated maximum power. A value of ZA near one, then, indicates an electrode performance near the maximum possible performance. The primary limitation of this calculation is that the small electrode effect cannot be included. This effect leads to anomalously high values of ZA. Thus, the electrode area should be reported along with the figure of merit.

  8. Loss of membranous Ep-CAM in budding colorectal carcinoma cells.

    PubMed

    Gosens, Marleen J E M; van Kempen, Léon C L; van de Velde, Cornelis J H; van Krieken, J Han J M; Nagtegaal, Iris D

    2007-02-01

    Tumor budding is a histological feature that reflects loss of adhesion of tumor cells and is associated with locoregional metastasis of colorectal carcinoma. Although nuclear localization of beta-catenin is associated with tumor budding, the molecular mechanism remains largely elusive. In this study, we hypothesize that the epithelial cell adhesion molecule (Ep-CAM) is involved in tumor budding. In order to address this question, we performed immunohistochemistry on Ep-CAM using three different antibodies (monoclonal antibodies Ber-ep4 and 311-1K1 and a polyclonal antibody) and a double staining on beta-catenin and Ep-CAM. In addition, Ep-CAM mRNA was monitored with mRNA in situ hybridization. Subsequently, we determined the effect of Ep-CAM staining patterns on tumor spread in rectal cancer. In contrast to the tumor mass, budding cells of colorectal carcinoma displayed lack of membranous but highly increased cytoplasmic Ep-CAM staining and nuclear translocation of beta-catenin. mRNA in situ hybridization suggested no differences in Ep-CAM expression between the invasive front and the tumor mass. Importantly, reduced Ep-CAM staining at the invasive margin of rectal tumor specimens (n=133) correlated significantly with tumor budding, tumor grade and an increased risk of local recurrence (P=0.001, P=0.04 and P=0.03, respectively). These data demonstrate abnormal processing of Ep-CAM at the invasive margin of colorectal carcinomas. Our observations indicate that loss of membranous Ep-CAM is associated with nuclear beta-catenin localization and suggest that this contributes to reduced cell-cell adhesions, increased migratory potential and tumor budding.

  9. Stem cells isolated from adipose tissue of obese patients show changes in their transcriptomic profile that indicate loss in stemcellness and increased commitment to an adipocyte-like phenotype

    PubMed Central

    2013-01-01

    Background The adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and “stemcellness” has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells. Results Transcriptomics, in silico analysis, real-time polymerase chain reaction (PCR) and western blots were performed on isolated stem cells from subcutaneous abdominal WAT of morbidly obese patients (ASCmo) and of non-obese individuals (ASCn). ASCmo and ASCn gene expression clustered separately from each other. ASCmo showed downregulation of “stemness” genes and upregulation of adipogenic and inflammatory genes with respect to ASCn. Moreover, the application of bioinformatics and Ingenuity Pathway Analysis (IPA) showed that the transcription factor Smad3 was tentatively affected in obese ASCmo. Validation of this target confirmed a significantly reduced Smad3 nuclear translocation in the isolated ASCmo. Conclusions The transcriptomic profile of the stem cells reservoir in obese subcutaneous WAT is highly modified with significant changes in genes regulating stemcellness, lineage commitment and inflammation. In addition to body mass index, cardiovascular risk factor clustering further affect the ASC transcriptomic profile inducing loss of multipotency and, hence, capacity for tissue repair. In summary, the stem cells in the subcutaneous WAT niche of obese patients are already committed to adipocyte differentiation and show an upregulated inflammatory gene expression associated to their loss of stemcellness. PMID:24040759

  10. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs

    NASA Astrophysics Data System (ADS)

    Chen, Kongfa; Lü, Zhe; Ai, Na; Chen, Xiangjun; Hu, Jinyan; Huang, Xiqiang; Su, Wenhui

    Sm 0.2Ce 0.8O 1.9 (SDC)-impregnated La 0.7Sr 0.3MnO 3 (LSM) composite cathodes were fabricated on anode-supported yttria-stabilized zirconia (YSZ) thin films. Electrochemical performances of the solid oxide fuel cells (SOFCs) were investigated in the present study. Four single cells, i.e., Cell-1, Cell-2, Cell-3 and Cell-4 were obtained after the fabrication of four different cathodes, i.e., pure LSM and SDC/LSM composites in the weight ratios of 25/75, 36/64 and 42/58, respectively. Impedance spectra under open-circuit conditions showed that the cathode performance was gradually improved with the increasing SDC loading. Similarly, the maximum power densities (MPD) of the four cells were increased with the SDC amount below 700 °C. Whereas, the cell performance of Cell-4 was lower than that of Cell-3 at 800 °C, arising from the increased concentration polarization at high current densities. This was caused by the lowered porosity with the impregnation cycle. This disadvantage could be suppressed by lowering the operating temperature or by increasing the oxygen concentration at the cathode side. The ratio of electrode polarization loss in the total voltage drop versus current density showed that the cell performance was primarily determined by the electrode polarization. The contribution of the ohmic resistance was increased when the operating temperature was lowered. When a 100 ml min -1 oxygen flow was introduced to the cathode side, Cell-3 produced MPDs of 1905, 1587 and 1179 mW cm -2 at 800, 750 and 700 °C, respectively. The high cell outputs demonstrated the merits of the novel and effective SDC-impregnated LSM cathodes.

  11. Genomic correlates of response to immune checkpoint therapies in clear cell renal cell carcinoma.

    PubMed

    Miao, Diana; Margolis, Claire A; Gao, Wenhua; Voss, Martin H; Li, Wei; Martini, Dylan J; Norton, Craig; Bossé, Dominick; Wankowicz, Stephanie M; Cullen, Dana; Horak, Christine; Wind-Rotolo, Megan; Tracy, Adam; Giannakis, Marios; Hodi, Frank Stephen; Drake, Charles G; Ball, Mark W; Allaf, Mohamad E; Snyder, Alexandra; Hellmann, Matthew D; Ho, Thai; Motzer, Robert J; Signoretti, Sabina; Kaelin, William G; Choueiri, Toni K; Van Allen, Eliezer M

    2018-02-16

    Immune checkpoint inhibitors targeting the programmed cell death 1 receptor (PD-1) improve survival in a subset of patients with clear cell renal cell carcinoma (ccRCC). To identify genomic alterations in ccRCC that correlate with response to anti-PD-1 monotherapy, we performed whole-exome sequencing of metastatic ccRCC from 35 patients. We found that clinical benefit was associated with loss-of-function mutations in the PBRM1 gene ( P = 0.012), which encodes a subunit of the PBAF switch-sucrose nonfermentable (SWI/SNF) chromatin remodeling complex. We confirmed this finding in an independent validation cohort of 63 ccRCC patients treated with PD-1 or PD-L1 (PD-1 ligand) blockade therapy alone or in combination with anti-CTLA-4 (cytotoxic T lymphocyte-associated protein 4) therapies ( P = 0.0071). Gene-expression analysis of PBAF-deficient ccRCC cell lines and PBRM1 -deficient tumors revealed altered transcriptional output in JAK-STAT (Janus kinase-signal transducers and activators of transcription), hypoxia, and immune signaling pathways. PBRM1 loss in ccRCC may alter global tumor-cell expression profiles to influence responsiveness to immune checkpoint therapy. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  12. Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.

    PubMed

    Heckl, Dirk; Wicke, Daniel C; Brugman, Martijn H; Meyer, Johann; Schambach, Axel; Büsche, Guntram; Ballmaier, Matthias; Baum, Christopher; Modlich, Ute

    2011-04-07

    Thpo/Mpl signaling plays an important role in the maintenance of hematopoietic stem cells (HSCs) in addition to its role in megakaryopoiesis. Patients with inactivating mutations in Mpl develop thrombocytopenia and aplastic anemia because of progressive loss of HSCs. Yet, it is unknown whether this loss of HSCs is an irreversible process. In this study, we used the Mpl knockout (Mpl(-/-)) mouse model and expressed Mpl from newly developed lentiviral vectors specifically in the physiologic Mpl target populations, namely, HSCs and megakaryocytes. After validating lineage-specific expression in vivo using lentiviral eGFP reporter vectors, we performed bone marrow transplantation of transduced Mpl(-/-) bone marrow cells into Mpl(-/-) mice. We show that restoration of Mpl expression from transcriptionally targeted vectors prevents lethal adverse reactions of ectopic Mpl expression, replenishes the HSC pool, restores stem cell properties, and corrects platelet production. In some mice, megakaryocyte counts were atypically high, accompanied by bone neo-formation and marrow fibrosis. Gene-corrected Mpl(-/-) cells had increased long-term repopulating potential, with a marked increase in lineage(-)Sca1(+)cKit(+) cells and early progenitor populations in reconstituted mice. Transcriptome analysis of lineage(-)Sca1(+)cKit(+) cells in Mpl-corrected mice showed functional adjustment of genes involved in HSC self-renewal.

  13. Oxidative stress induction by (+)-cordiaquinone J triggers both mitochondria-dependent apoptosis and necrosis in leukemia cells.

    PubMed

    Marinho-Filho, José Delano B; Bezerra, Daniel P; Araújo, Ana J; Montenegro, Raquel C; Pessoa, Claudia; Diniz, Jaécio C; Viana, Francisco A; Pessoa, Otília D L; Silveira, Edilberto R; de Moraes, Manoel O; Costa-Lotufo, Letícia V

    2010-02-12

    (+)-Cordiaquinone J is a 1,4-naphthoquinone isolated from the roots of Cordia leucocephala that has antifungal and larvicidal effects. However, the cytotoxic effects of (+)-cordiaquinone J have never being explored. In the present study, the effect of (+)-cordiaquinone J on tumor cells viability was investigated, showing IC(50) values in the range of 2.7-6.6muM in HL-60 and SF-295 cells, respectively. Studies performed in HL-60 leukemia cells indicated that (+)-cordiaquinone J (1.5 and 3.0muM) reduces cell viability and 5-bromo-2-deoxyuridine incorporation after 24h of incubation. (+)-Cordiaquinone J showed rapid induction of apoptosis, as indicated by phosphatidylserine externalization, caspase activation, DNA fragmentation, morphologic changes, and rapid induction of necrosis, as indicated by the loss of membrane integrity and morphologic changes. (+)-Cordiaquinone J altered the redox potential of cells by inducing the depletion of reduced GSH intracellular content, the generation of reactive oxygen species and the loss of mitochondrial membrane potential. However, pre-treatment of cells with N-acetyl-l-cysteine abolished most of the observed effects related to (+)-cordiaquinone J treatment, including those involving apoptosis and necrosis induction. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  14. Candidate's thesis: Platelet-activating factor-induced hearing loss: mediated by nitric oxide?

    PubMed

    Rhee, Chung-Ku

    2003-12-01

    Platelet-activating factor (PAF)in middle ear effusion is thought to induce hearing loss. The purpose of this study is to investigate the role of nitric oxide (NO) in the mechanism of PAF-induced hearing loss by studying the effects of PAF application on the round window membrane (RWM) with and without PAF-antagonist NO-blocker. Longitudinal study on randomized guinea pigs using PAF to induce hearing loss. METHODS Guinea pigs were divided into four groups: PBS, PAF, PAF-antagonist, and L-NAME. The PBS group received phosphate buffered saline (PBS) and the PAF groups received 10, 20, and 40 microg of PAF soaked into gelfoam and placed on the RWM. PAF-antagonist (WEB 2170) and NOS inhibitor NG-nitro-l-arginine-methylester (L-NAME) were injected intraperitoneally prior to PAF 20 microg application on the RWM. The following three tests were performed on each animal group: Hearing was tested with an auditory brainstem response (ABR) test over 24 hours. At the end of 24 hours, cochlear hair cells were examined by scanning electron microscopy (SEM) and immunohistochemistry was carried out on the cochlea to test the expression of inducible nitric oxide synthase (iNOS). The PAF group developed significant elevation of ABR threshold and cochlear hair cell damage in the SEM group as compared with the PBS control group. The PAF-antagonist (WEB 2170) and the L-NAME groups did not show significant elevation of ABR threshold and cochlear hair cell damage compared with the group administered PAF 20 microg, but in the PAF-antagonist group, the elevation of ABR threshold was significant compared with that of the PBS control group, whereas it was not significant compared with the PBS group in the L-NAME group. Strong expression of iNOS on cochlea was observed in the PAF group and lighter expression was seen in PBS, WEB 2170, and L-NAME groups. This study demonstrated that PAF placed on the RWM induced hearing loss and cochlear hair cell damage. The PAF-antagonists and L-NAME prevented the PAF-induced hearing loss and inhibited iNOS expression in the cochlea. These findings suggest that the PAF-induced hearing loss caused by cochlear hair cell damage may have been mediated by NO. PAF-antagonists and L-NAME may have future therapeutic implications in preventing sensorineural hearing loss associated with chronic otitis media. The results of this study have significant potential clinical application.

  15. Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhai, Y.; Bender, G.; Bethune, K.; Rocheleau, R.

    2014-02-01

    The effects of temperature on sulfur dioxide (SO2) contamination in PEMFCs are investigated by operating single cells with 2 ppm SO2 in the cathode at different temperatures. Cell performance response shows that voltage degradation was delayed and appears a transition of multiple processes at low temperatures; a similar performance loss is observed when performances reached steady state. The restored performance from the reversible and the irreversible degradations highly depends on temperature. At low temperature, the performance recovery is only negligible with neat air operation (self-recovery), while full recovery is observed after cyclic voltammetry (CV) scanning. As temperature increased, so did the self-recovery performance. However, the total recovery performance decreased. Electrochemical impedance spectroscopy analysis indicates that the potential-dependent poisoning process was delayed at low temperature, and the removal of the sulfur species from Pt/C was inhibited during the self-recovery. Water balance analysis implies that the delay could be attributed to the effect of liquid water scavenging and the mass transport of SO2 in the membrane electrode assemblies. The CV analysis confirms that the decomposition/desorption of the sulfur adsorbates was inhibited and indicates that the SO2 crossover from the cathode to the anode side was also mitigated at low temperature.

  16. Efficiency enhancement in DIBSQ:PC71BM organic photovoltaic cells by using Liq-doped Bphen as a cathode buffer layer

    NASA Astrophysics Data System (ADS)

    Chen, Guo; Si, Changfeng; Zhang, Pengpeng; Guo, Kunping; Pan, Saihu; Zhu, Wenqing; Wei, Bin

    2017-09-01

    We have improved the photovoltaic performance of 2,4-bis[4-(N,Ndiisobutylamino)- 2,6-dihydroxyphenyl] squaraine:[6,6]-phenyl C71-butyric acid methyl ester (DIBSQ:PC71BM) organic photovoltaic (OPV) cells via incorporating Liq-doped Bphen (Bphen-Liq) as a cathode buffer layer (CBL). Based on the Bphen-Liq CBL, a DIBSQ:PC71BM OPV cell possessed an optimal power conversion efficiency of 4.90%, which was 13% and 60% higher than those of the devices with neat Bphen as CBL and without CBL, respectively. The enhancement of the device performance could be attributed to the enhanced electron mobility and improved electrode/active layer contact and thus the improved photocurrent extraction by incorporating the Bphen-Liq CBL. Light-intensity dependent device performance analysis indicates that the incorporating of the Bphen-Liq CBL can remarkably improve the charge transport of the DIBSQ:PC71BM OPV cell and thus decrease the recombination losses of the device, resulting in enhanced device performance. Our finding indicates that the doped Bphen-Liq CBL has great potential for high-performance solution-processed small-molecule OPVs.

  17. Systems, methods and computer readable media for estimating capacity loss in rechargeable electrochemical cells

    DOEpatents

    Gering, Kevin L.

    2013-06-18

    A system includes an electrochemical cell, monitoring hardware, and a computing system. The monitoring hardware periodically samples charge characteristics of the electrochemical cell. The computing system periodically determines cell information from the charge characteristics of the electrochemical cell. The computing system also periodically adds a first degradation characteristic from the cell information to a first sigmoid expression, periodically adds a second degradation characteristic from the cell information to a second sigmoid expression and combines the first sigmoid expression and the second sigmoid expression to develop or augment a multiple sigmoid model (MSM) of the electrochemical cell. The MSM may be used to estimate a capacity loss of the electrochemical cell at a desired point in time and analyze other characteristics of the electrochemical cell. The first and second degradation characteristics may be loss of active host sites and loss of free lithium for Li-ion cells.

  18. Reprogramming of single-cell derived mesenchymal stem cells into hair cell-like cells

    PubMed Central

    Lin, Zhaoyu; Perez, Philip; Sun, Zhenyu; Liu, Jan-Jan; Shin, June Ho; Hyrc, Krzysztof L.; Samways, Damien; Egan, Terry; Holley, Matthew C.; Bao, Jianxin

    2012-01-01

    Hypothesis Adult mesenchymal stem cells (MSCs) can be converted into hair cell-like cells by transdetermination. Background Given the fundamental role sensory hair cells play in sound detection and the irreversibility of their loss in mammals, much research has focused on developing methods to generate new hair cells as a means of treating permanent hearing loss. Although MSCs can differentiate into multiple cell lineages, no efficient means of reprogramming them into sensory hair cells exists. Earlier work has shown that the transcription factor Atoh1 is necessary for early development of hair cells, but it is not clear whether Atoh1 can be used to convert MSCs into hair cells. Methods Clonal MSC cell lines were established and reprogrammed into hair cell-like cells by a combination of protein transfer, adenoviral based gene transfer and co-culture with neurons. During transdetermination, inner ear molecular markers were analyzed by RT-PCR, and cell structures were examined by immunocytochemistry. Results Atoh1 overexpression in MSCs failed to convert MSCs into hair cell-like cells, suggesting that the ability of Atoh1 to induce hair cell differentiation is context dependent. Because Atoh1 overexpression successfully transforms VOT-E36 cells into hair cell-like cells, we modified the cell context of MSCs by performing a total protein transfer from VOT-E36 cells prior to overexpressing Atoh1. The modified MSCs were transformed into hair cell-like cells and attracted contacts from spiral ganglion neurons in a co-culture model. Conclusion We established a new procedure, consisting of VOT-E36 protein transfer, Atoh1 overexpression, and co-culture with spiral ganglion neurons, which can transform MSCs into hair cell-like cells. PMID:23111404

  19. Integrated sequencing of exome and mRNA of large-sized single cells.

    PubMed

    Wang, Lily Yan; Guo, Jiajie; Cao, Wei; Zhang, Meng; He, Jiankui; Li, Zhoufang

    2018-01-10

    Current approaches of single cell DNA-RNA integrated sequencing are difficult to call SNPs, because a large amount of DNA and RNA is lost during DNA-RNA separation. Here, we performed simultaneous single-cell exome and transcriptome sequencing on individual mouse oocytes. Using microinjection, we kept the nuclei intact to avoid DNA loss, while retaining the cytoplasm inside the cell membrane, to maximize the amount of DNA and RNA captured from the single cell. We then conducted exome-sequencing on the isolated nuclei and mRNA-sequencing on the enucleated cytoplasm. For single oocytes, exome-seq can cover up to 92% of exome region with an average sequencing depth of 10+, while mRNA-sequencing reveals more than 10,000 expressed genes in enucleated cytoplasm, with similar performance for intact oocytes. This approach provides unprecedented opportunities to study DNA-RNA regulation, such as RNA editing at single nucleotide level in oocytes. In future, this method can also be applied to other large cells, including neurons, large dendritic cells and large tumour cells for integrated exome and transcriptome sequencing.

  20. Aging behavior of lithium iron phosphate based 18650-type cells studied by in situ neutron diffraction

    NASA Astrophysics Data System (ADS)

    Paul, Neelima; Wandt, Johannes; Seidlmayer, Stefan; Schebesta, Sebastian; Mühlbauer, Martin J.; Dolotko, Oleksandr; Gasteiger, Hubert A.; Gilles, Ralph

    2017-03-01

    The aging behavior of commercially produced 18650-type Li-ion cells consisting of a lithium iron phosphate (LFP) based cathode and a graphite anode based on either mesocarbon microbeads (MCMB) or needle coke (NC) is studied by in situ neutron diffraction and standard electrochemical techniques. While the MCMB cells showed an excellent cycle life with only 8% relative capacity loss (i.e., referenced to the capacity after formation) after 4750 cycles and showed no capacity loss on storage for two years, the needle coke cells suffered a 23% relative capacity loss after cycling and a 11% loss after storage. Based on a combination of neutron diffraction and electrochemical characterization, it is shown that the entire capacity loss for both cell types is dominated by the loss of active lithium; no other aging mechanisms like structural degradation of anode or cathode active materials or deactivation of active material could be found, highlighting the high structural stability of the active material and the excellent quality of the investigated cells.

  1. Developmental status and system studies of the monolithic solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Myles, K. M.

    The monolithic solid oxide fuel cell (MSOFC) was invented at the Argonne National Laboratory in 1983 and is currently being developed by a team consisting of Argonne National Laboratory and Allied-Signal Aerospace/AiResearch. The MSOFC is an oxide ceramic structure in which appropriate electronic and ionic conductors are fabricated in a honeycomb shape similar to a block of corrugated paperboard. The electrolyte, which conducts oxygens ions from the air side to the fuel side, is yttria-stabilized zirconia (YSZ). All the other materials, that is, the nickel-YSZ anode, the strontium-doped lanthanum manganite cathode, and the doped lanthanum chromite interconnect (bipolar plate), are electronic conductors. These electronic and ionic conductors are arranged to provide short conduction paths to minimize resistive losses. The power density achievable with the MSOFC is expected to be about 8 kW/kg or 4 kW/l at fuel efficiencies over 50 percent, because of small cell size and low resistive losses in the materials. These performances have been approached in laboratory test fuel cell stacks of nominal 125-W capacities.

  2. Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells.

    PubMed

    Boccard, Mathieu; Battaglia, Corsin; Hänni, Simon; Söderström, Karin; Escarré, Jordi; Nicolay, Sylvain; Meillaud, Fanny; Despeisse, Matthieu; Ballif, Christophe

    2012-03-14

    The challenge for all photovoltaic technologies is to maximize light absorption, to convert photons with minimal losses into electric charges, and to efficiently extract them to the electrical circuit. For thin-film solar cells, all these tasks rely heavily on the transparent front electrode. Here we present a multiscale electrode architecture that allows us to achieve efficiencies as high as 14.1% with a thin-film silicon tandem solar cell employing only 3 μm of silicon. Our approach combines the versatility of nanoimprint lithography, the unusually high carrier mobility of hydrogenated indium oxide (over 100 cm(2)/V/s), and the unequaled light-scattering properties of self-textured zinc oxide. A multiscale texture provides light trapping over a broad wavelength range while ensuring an optimum morphology for the growth of high-quality silicon layers. A conductive bilayer stack guarantees carrier extraction while minimizing parasitic absorption losses. The tunability accessible through such multiscale electrode architecture offers unprecedented possibilities to address the trade-off between cell optical and electrical performance. © 2012 American Chemical Society

  3. Loss of c-KIT expression in thyroid cancer cells.

    PubMed

    Franceschi, Sara; Lessi, Francesca; Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression.

  4. Loss of c-KIT expression in thyroid cancer cells

    PubMed Central

    Panebianco, Federica; Tantillo, Elena; La Ferla, Marco; Menicagli, Michele; Aretini, Paolo; Apollo, Alessandro; Naccarato, Antonio Giuseppe; Marchetti, Ivo; Mazzanti, Chiara Maria

    2017-01-01

    Papillary thyroid carcinoma is the most frequent histologic type of thyroid tumor. Few studies investigated the role of c-KIT expression in thyroid tumors, suggesting a role for this receptor and its ligand in differentiation and growth control of thyroid epithelium and a receptor loss following malignant transformation. We investigated and correlated c-KIT expression levels and two known markers of thyrocytes differentiation, PAX8 and TTF-1, in malignant and benign cytological thyroid samples. Moreover, we performed functional studies on human papillary thyroid carcinoma cell line to associated c-KIT expression to thyrocytes differentiation and tumor proliferation. c-KIT and PAX8 expression resulted higher in benign samples compared to the malignant ones, and the expression levels of these two genes were significantly correlated to each other. We also observed that c-KIT overexpression led to an increase of PAX8 expression level together with a decrease of proliferation. Furthermore, c-KIT overexpressing cells showed a regression of typical morphological features of malignancy. Taken together these results suggest that c-KIT could be involved in the differentiation of thyroid cells and in tumor progression. PMID:28301608

  5. Electrode behavior RE-visited: Monitoring potential windows, capacity loss, and impedance changes in Li 1.03 (Ni 0.5Co 0.2Mn 0.3) 0.97O 2/silicon-graphite full cells

    DOE PAGES

    Klett, Matilda; Gilbert, James A.; Trask, Stephen E.; ...

    2016-03-04

    Here, the capacity and power performance of lithium-ion battery cells evolve over time. The mechanisms leading to these changes can often be identified through knowledge of electrode potentials, which contain information about electrochemical processes at the electrode-electrolyte interfaces. In this study we monitor electrode potentials within full cells containing a Li 1.03(Ni 0.5Co 0.2Mn 0.3) 0.97O 2–based (NCM523) positive electrode, a silicon-graphite negative electrode, and an LiPF6-bearing electrolyte, with and without fluoroethylene carbonate (FEC) or vinylene carbonate (VC) additives. The electrode potentials are monitored with a Li-metal reference electrode (RE) positioned besides the electrode stack; changes in these potentials aremore » used to examine electrode state-of-charge (SOC) shifts, material utilization, and loss of electrochemically active material. Electrode impedances are obtained with a Li xSn RE located within the stack; the data display the effect of cell voltage and electrode SOC changes on the measured values after formation cycling and after aging. Our measurements confirm the beneficial effect of FEC and VC electrolyte additives in reducing full cell capacity loss and impedance rise after cycling in a 3.0–4.2 V range. Comparisons with data from a full cell containing a graphite-based negative highlight the consequences of including silicon in the electrode. Our observations on electrode potentials, capacity, and impedance changes on cycling are crucial to designing long-lasting, silicon-bearing, lithium-ion cells.« less

  6. Adaptive changes in pancreas post Roux-en-Y gastric bypass induced weight loss.

    PubMed

    Lautenbach, A; Wernecke, M; Riedel, N; Veigel, J; Yamamura, J; Keller, S; Jung, R; Busch, P; Mann, O; Knop, F K; Holst, J J; Meier, J J; Aberle, J

    2018-05-16

    Obesity has been shown to trigger adaptive increases in pancreas parenchymal and fat volume. Consecutively, pancreatic steatosis may lead to beta-cell dysfunction. However, it is not known, whether the pancreatic tissue components decrease with weight loss and pancreatic steatosis is reversible following RYGB. Therefore, the objective of the study was to investigate the effects of RYGB-induced weight loss on pancreatic volume and glucose homeostasis. 11 patients were recruited in the Obesity Centre of the University Medical Centre Hamburg-Eppendorf. Before and 6 months after RYGB, total GLP-1 levels were measured during OGTT. To assess changes in visceral adipose tissue and pancreatic volume, MRI was performed. Measures of glucose homeostasis and insulin indices were assessed. Fractional beta-cell area was estimated by correlation with the C-peptide-to-glucose ratio, beta-cell mass was calculated by the product of beta-cell area and pancreas parenchymal weight. Pancreas volume decreased from 83.8 (75.7-92.0) to 70.5 (58.8-82.3) cm 3 [mean (95% CI), p=0.001]. The decrease in total volume was associated with a significant decrease in fat volume. Fasting insulin and C-peptide were lower post RYGB. HOMA-IR levels decreased, whereas insulin sensitivity increased (p=0.03). This was consistent with a reduction in the estimated beta-cell area and mass. Following RYGB, pancreatic volume and steatosis adaptively decreased to "normal" levels with accompanying improvement in glucose homeostasis. Moreover, obesity-driven beta-cell expansion seems to be reversible, however future studies must define a method to more accurately estimate functional beta-cell mass to increase our understanding of glucose homeostasis after RYGB. This article is protected by copyright. All rights reserved.

  7. Non-Kinetic Losses Caused by Electrochemical Carbon Corrosion in PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Seh Kyu; Shao, Yuyan; Viswanathan, Vilayanur V.

    2012-05-01

    This paper presented non-kinetic losses in PEM fuel cells under an accelerated stress test of catalyst support. The cathode with carbon-supported Pt catalyst was prepared and characterized with potential hold at 1.2 V vs. SHE in PEM fuel cells. Irreversible losses caused by carbon corrosion were evaluated using a variety of electrochemical characterizations including cyclic voltammetry, linear sweep voltammetry, electrochemical impedance spectroscopy, and polarization technique. Ohmic losses at the cathode with potential hold were determined using its capacitive responses. Concentration losses in PEM fuel cells were analyzed in terms of Tafel behavior and thin film/flooded-agglomerate dynamics.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yoo-Shin; Lee, Tae Hoon; O'Neill, Brian E., E-mail: BEOneill@houstonmethodist.org

    Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models.more » In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit. - Highlights: • Non-lethal hyperthermia treatment of cancer cells is shown to cause a reduction in rates of tumor initiation and metastasis. • Dynamic imaging of cells during heat treatment shows temporary changes in cell shape, cell migration, and cell proliferation. • Loss of adhesion may lead to the observed effect, which may disproportionately impact the tumor initiating cell fraction. • Loss or suppression of the tumor initiating cell fraction results in the observed loss of metastatic potential in vivo. • This result may lead to new approaches to synergizing hyperthermia with surgery, radiation, and chemotherapy.« less

  9. Defining the extent of cables loss in endometrial cancer subtypes and its effectiveness as an inhibitor of cell proliferation in malignant endometrial cells in vitro and in vivo.

    PubMed

    DeBernardo, Robert L; Littell, Ramey D; Luo, Hongwei; Duska, Linda R; Oliva, Esther; Kirley, Sandra D; Lynch, Maureen P; Zukerberg, Lawrence R; Rueda, Bo R

    2005-01-01

    Loss of Cables expression is associated with a high incidence of endometrial hyperplasia and endometrial adenocarcinoma in humans. The Cables mutant mouse develops endometrial hyperplasia and following exposure to chronic estrogen develops early endometrial adenocarcinoma. The objectives of the current study were to determine if: (1) loss of Cables expression occurred in high grade endometrioid adenocarcinoma, uterine serous and clear cell carcinoma as observed in endometrial hyperplasia and low grade endometrial adenocarcinoma; (2) overexpression of Cables inhibited cell proliferation in endometrial cancer (EC) cells in vitro and in vivo; and (3) progesterone could regulate the expression of Cables mRNA. Hyperplastic endometrium and low and high grade endometrioid adenocarcinoma showed loss of Cables expression when compared to benign control secretory endometrium. Loss of Cables expression in serous and clear cell tumors was similar to that observed in endometrioid adenocarcinomas with greater than 80% showing loss of protein expression. Treatment of EC lines with progesterone increased cables expression in low-grade EC whereas it had no effect on cables expression in cells derived from high-grade EC. The progesterone-induced increase in cables was abrogated in the presence of a progesterone receptor (PR) antagonist, suggesting the PR mediates the increase. Cables overexpression inhibited cell proliferation of well differentiated EC cells and had no effect on the poorly differentiated EC cells. The capacity to form tumors was dramatically reduced in the Cables overexpressing cell lines compared to those cells containing the control vector. Collectively these results suggest that Cables is an important regulator of cell proliferation and loss of Cables expression contributes to the development of all types of EC.

  10. Factors affecting the loss of MED12-mutated leiomyoma cells during in vitro growth.

    PubMed

    Bloch, Jeannine; Holzmann, Carsten; Koczan, Dirk; Helmke, Burkhard Maria; Bullerdiek, Jörn

    2017-05-23

    Uterine leiomyomas (UL) are the most prevalent symptomatic human tumors at all and somatic mutations of the gene encoding mediator subcomplex 12 (MED12) constitute the most frequent driver mutations in UL. Recently, a rapid loss of mutated cells during in vitro growth of UL-derived cell cultures was reported, resulting in doubts about the benefits of UL-derived cell cultures. To evaluate if the rapid loss of MED12-mutated cells in UL cell cultures depends on in vitro passaging, we set up cell cultures from nine UL from 40-50 year old Caucasian patients with at least one UL. Cultured UL cells were investigated for loss of MED12-mutated cells. Genetic characterization of native tumor samples and adjacent myometrium was done by array analysis. "Aged" primary cultures without passaging were compared to cells of three subsequent passages. Comparative analyses of the mutated/non-mutated ratios between native tissue, primary cells, and cultured tumor cells revealed a clear decrease of MED12-mutated cells. None of the tumors showed gross alterations of the array profiles, excluding the presence of gross genomic imbalances besides the MED12 mutations as a reason for the intertumoral variation in the loss of MED12-mutated cells. Albeit at a lesser rate, loss of MED12-mutated cells from cell cultures of UL occurs even without passaging thus indicating the requirement of soluble factors or matrix components lacking in vitro. Identification of these factors can help to understand the mechanisms of the growth of the most frequent type of uterine leiomyomas and to decipher novel drug targets.

  11. Coupled electrochemical and heat/mass transport characteristics in passive direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Rong

    This thesis presents both experimental and theoretical investigations of coupled heat/mass transfer and electrochemical characteristics in the passive DMFC. Unlike active fuel cells, which can be operated under stabilized operating conditions, the discharging behavior of the passive DMFC usually varies with time, as the methanol concentration in the fuel reservoir decreases with time. This poses a difficulty in characterizing the performance of the passive DMFC under relatively stable operating conditions. In this work, we found that the performance of the passive DMFC became relatively stable as the cell operating temperature rose to a relatively stable value. This finding indicates that the performance of the passive DMFC can be characterized by collecting polarization data at the instance when the cell operating temperature under the open-circuit condition rises to a relatively stable value. With this proposed standard of passive DMFC performance characterization, the effects of two important parameters, including methanol concentration and cell orientation, on the passive DMFC performance were then investigated. It is found that the cell performance increased with methanol concentration. Unlike previous studies that attributed the improved performance as a result of increasing methanol concentration to the reduced anode mass transport polarization, our experimental results revealed that the improved cell performance was primarily due to the increased cell operating temperature as a result of the increased rate of methanol crossover with high methanol concentration operation. We also found that the performance was sensitive to the cell orientation. The vertical operation always yielded better performance than did the horizontal operation. This can be attributed to the increased operating temperature as a result of a higher rate of methanol crossover, which resulted from the stronger natural convection in the vertical orientation. These parametric studies indicated that the thermal management is a key factor for improving the performance of the passive DMFC. To enhance oxygen transport on the air-breathing cathode and to reduce the heat loss from the cathode, a porous current collector for the passive DMFC was proposed to replace conventional perforated-plate current collectors. Because of its high specific area of transport and effectiveness in removing the liquid water as a result of the capillary action in the porous structure, the porous current collector enables a significant enhancement of oxygen supply to the fuel cell. In addition, because of the lower effective thermal conductivity of the porous structure, the heat loss from the fuel cell to ambient air can be reduced. The experimental results showed that the passive DMFC having the porous current collector yielded much higher and much more stable performance than did the cell having the conventional perforated-plate current collector with high methanol concentration operation. As a following up to oxygen transport enhancement, a new design of membrane electrode assembly (MEA) was proposed, in which the conventional cathode gas diffusion layer (CGDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. Moreover, the measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded higher and much more stable performance than did the cell having the conventional MEA. Besides the experimental investigations, to further theoretically study the thermal effect on the cell performance, a one-dimension single-phase model is developed by considering inherently coupled heat and mass transport along with the electrochemical reactions occurring in passive DMFCs. The analytical solutions predicting the performance of this type of fuel cell operating with different methanol concentrations are obtained. It was further revealed that the improved performance with higher methanol concentrations is due primarily to the increased operating temperature resulting from the exothermic reaction between the permeated methanol and oxygen on the cathode. In addition, to further reflect the effect of two-phase heat and mass transport on the performance of the passive DMFC, we then developed a two-phase two-dimensional thermal model. With this model, the effects of methanol concentration, open ratio and channel and rib width on cell performance were investigated. It was found that although the larger open ratio and smaller channel and rib width exhibit the lower cell operating temperature as a result of the lower heat generation rate, the cell performance is still higher as a result of the increased mass transfer rate on both the anode and cathode. Keywords: Passive Direct Methanol Fuel Cell; Cell Performance; Thermal Effect; Open-circuit Condition; Methanol Concentration; Cell Orientation; Metal Foam, Effective Thermal Conductivity; Oxygen Transport; Mass Transfer Resistance; Two-phase Transport; Open Ratio; Channel and Rib Width.

  12. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    NASA Astrophysics Data System (ADS)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  13. Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson's disease model.

    PubMed

    Ham, Sangwoo; Lee, Yun-Il; Jo, Minkyung; Kim, Hyojung; Kang, Hojin; Jo, Areum; Lee, Gum Hwa; Mo, Yun Jeong; Park, Sang Chul; Lee, Yun Song; Shin, Joo-Ho; Lee, Yunjong

    2017-04-03

    Dysfunctional parkin due to mutations or post-translational modifications contributes to dopaminergic neurodegeneration in Parkinson's disease (PD). Overexpression of parkin provides protection against cellular stresses and prevents dopamine cell loss in several PD animal models. Here we performed an unbiased high-throughput luciferase screening to identify chemicals that can increase parkin expression. Among promising parkin inducers, hydrocortisone possessed the most favorable profiles including parkin induction ability, cell protection ability, and physicochemical property of absorption, distribution, metabolism, and excretion (ADME) without inducing endoplasmic reticulum stress. We found that hydrocortisone-induced parkin expression was accountable for cell protection against oxidative stress. Hydrocortisone-activated parkin expression was mediated by CREB pathway since gRNA to CREB abolished hydrocortisone's ability to induce parkin. Finally, hydrocortisone treatment in mice increased brain parkin levels and prevented 6-hydroxy dopamine induced dopamine cell loss when assessed at 4 days after the toxin's injection. Our results showed that hydrocortisone could stimulate parkin expression via CREB pathway and the induced parkin expression was accountable for its neuroprotective effect. Since glucocorticoid is a physiological hormone, maintaining optimal levels of glucocorticoid might be a potential therapeutic or preventive strategy for Parkinson's disease.

  14. H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells.

    PubMed

    Han, D K; Khaing, Z Z; Pollock, R A; Haudenschild, C C; Liau, G

    1996-03-01

    H19 is a developmentally regulated gene with putative tumor suppressor activity, and loss of H19 expression may be involved in Wilms' tumorigenesis. In this report, we have performed in situ hybridization analysis of H19 expression during normal rabbit development and in human atherosclerotic plaques. We have also used cultured smooth muscle cells to identify H19 regulatory factors. Our data indicate that H19 expression in the developing skeletal and smooth muscles correlated with specific differentiation events in these tissues. Expression of H19 in the skeletal muscle correlated with nonproliferative, actin-positive muscle cells. In the prenatal blood vessel, H19 expression was both temporally and spatially regulated with initial loss of expression in the inner smooth muscle layers adjacent to the lumen. We also identified H19-positive cells within the adult atherosclerotic lesion and we suggest that these cells may recapitulate earlier developmental events. These results, along with the identification of the insulin family of growth factors as potent regulatory molecules for H19 expression, provide additional clues toward understanding the physiological regulation and function of H19.

  15. H19, a marker of developmental transition, is reexpressed in human atherosclerotic plaques and is regulated by the insulin family of growth factors in cultured rabbit smooth muscle cells.

    PubMed Central

    Han, D K; Khaing, Z Z; Pollock, R A; Haudenschild, C C; Liau, G

    1996-01-01

    H19 is a developmentally regulated gene with putative tumor suppressor activity, and loss of H19 expression may be involved in Wilms' tumorigenesis. In this report, we have performed in situ hybridization analysis of H19 expression during normal rabbit development and in human atherosclerotic plaques. We have also used cultured smooth muscle cells to identify H19 regulatory factors. Our data indicate that H19 expression in the developing skeletal and smooth muscles correlated with specific differentiation events in these tissues. Expression of H19 in the skeletal muscle correlated with nonproliferative, actin-positive muscle cells. In the prenatal blood vessel, H19 expression was both temporally and spatially regulated with initial loss of expression in the inner smooth muscle layers adjacent to the lumen. We also identified H19-positive cells within the adult atherosclerotic lesion and we suggest that these cells may recapitulate earlier developmental events. These results, along with the identification of the insulin family of growth factors as potent regulatory molecules for H19 expression, provide additional clues toward understanding the physiological regulation and function of H19. PMID:8636440

  16. Cold-start characteristics of polymer electrolyte fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishler, Jeff; Mukundan, Rangachary; Wang, Yun

    2010-01-01

    In this paper, we investigate the electrochemical reaction kinetics, species transport, and solid water dynamics in a polymer electrolyte fuel cell (PEFC) during cold start. A simplitied analysis is developed to enable the evaluation of the impact of ice volume fraction on cell performance during coldstart. Supporting neutron imaging data are also provided to reveal the real-time water evolution. Temperature-dependent voltage changes due to the reaction kinetics and ohmic loss are also analyzed based on the ionic conductivity of the membrane at subfreezing temperature. The analysis is valuable for the fundamental study of PEFC cold-start.

  17. Identification of differentially expressed proteins during human urinary bladder cancer progression.

    PubMed

    Memon, Ashfaque A; Chang, Jong W; Oh, Bong R; Yoo, Yung J

    2005-01-01

    Comparative proteome analysis was performed between RT4 (grade-1) and T24 (grade-3) bladder cancer cell lines, in an attempt to identify differentially expressed proteins during bladder cancer progression. Among those relatively abundant proteins, seven spots changed more than two-fold reproducibly and identified by peptide mass fingerprinting using mass spectrometry and database search. We found most extensive and reproducible down-regulation of NADP dependent isocitrate dehydrogenase cytoplasmic (IDPc) and peroxiredoxin-II (Prx-II), in poorly differentiated T24 compared to well-differentiated RT4 bladder cancer cell line. Subsequent Western blotting analysis of human biopsy samples from bladder cancer patient revealed significant loss of IDPc and Prx-II in more advance tumor samples, in agreement with data on cell lines. These results suggest that loss of IDPc and Prx-II during tumor development may involve in tumor progression and metastasis. However, additional investigations are needed on large number of human samples to further verify these findings.

  18. Importance of genetics in fetal alcohol effects: null mutation of the nNOS gene worsens alcohol-induced cerebellar neuronal losses and behavioral deficits

    PubMed Central

    Bonthius, Daniel J.; Winters, Zachary; Karacay, Bahri; Bousquet, Samantha Larimer; Bonthius, Daniel J.

    2014-01-01

    The cerebellum is a major target of alcohol-induced damage in the developing brain. However, the cerebella of some children are much more seriously affected than others by prenatal alcohol exposure. As a consequence of in utero alcohol exposure, some children have substantial reductions in cerebellar volume and corresponding neurodevelopmental problems, including microencephaly, ataxia, and balance deficits, while other children who were exposed to similar alcohol quantities are spared. One factor that likely plays a key role in determining the impact of alcohol on the fetal cerebellum is genetics. However, no specific gene variant has yet been identified that worsens cerebellar function as a consequence of developmental alcohol exposure. Previous studies have revealed that mice carrying a homozygous mutation of the gene for neuronal nitric oxide synthase (nNOS−/− mice) have more severe acute alcohol-induced neuronal losses from the cerebellum than wild type mice. Therefore, the goals of this study were to determine whether alcohol induces more severe cerebellum-based behavioral deficits in nNOS−/− mice than in wild type mice and to determine whether these worsened behavior deficits are associated with worsened cerebellar neuronal losses. nNOS−/− mice and their wild type controls received alcohol (0.0, 2.2, or 4.4 mg/g) daily over postnatal days 4–9. In adulthood, the mice underwent behavioral testing, followed by neuronal quantification. Alcohol caused dose-related deficits in rotarod and balance beam performance in both nNOS−/− and wild type mice. However, the alcohol-induced behavioral deficits were substantially worse in the nNOS−/− mice than in wild type. Likewise, alcohol exposure led to losses of Purkinje cells and cerebellar granule cells in mice of both genotypes, but the cell losses were more severe in the nNOS−/− mice than in wild type. Behavioral performances were correlated with neuronal number in the nNOS−/− mice, but not in wild type. Thus, homozygous mutation of the nNOS gene increases vulnerability to alcohol-induced cerebellar dysfunction and neuronal loss. nNOS is the first gene identified whose mutation worsens alcohol-induced cerebellar behavioral deficits. PMID:25511929

  19. Mutagenic cost of ribonucleotides in bacterial DNA

    PubMed Central

    Schroeder, Jeremy W.; Randall, Justin R.; Hirst, William G.; O’Donnell, Michael E.; Simmons, Lyle A.

    2017-01-01

    Replicative DNA polymerases misincorporate ribonucleoside triphosphates (rNTPs) into DNA approximately once every 2,000 base pairs synthesized. Ribonucleotide excision repair (RER) removes ribonucleoside monophosphates (rNMPs) from genomic DNA, replacing the error with the appropriate deoxyribonucleoside triphosphate (dNTP). Ribonucleotides represent a major threat to genome integrity with the potential to cause strand breaks. Furthermore, it has been shown in the bacterium Bacillus subtilis that loss of RER increases spontaneous mutagenesis. Despite the high rNTP error rate and the effect on genome integrity, the mechanism underlying mutagenesis in RER-deficient bacterial cells remains unknown. We performed mutation accumulation lines and genome-wide mutational profiling of B. subtilis lacking RNase HII, the enzyme that incises at single rNMP residues initiating RER. We show that loss of RER in B. subtilis causes strand- and sequence-context–dependent GC → AT transitions. Using purified proteins, we show that the replicative polymerase DnaE is mutagenic within the sequence context identified in RER-deficient cells. We also found that DnaE does not perform strand displacement synthesis. Given the use of nucleotide excision repair (NER) as a backup pathway for RER in RNase HII-deficient cells and the known mutagenic profile of DnaE, we propose that misincorporated ribonucleotides are removed by NER followed by error-prone resynthesis with DnaE. PMID:29078353

  20. Chlorobenzene Poisoning and Recovery of Platinum-Based Cathodes in Proton Exchange Membrane Fuel Cells

    PubMed Central

    Zhai, Yunfeng; Baturina, Olga; Ramaker, David; Farquhar, Erik; St-Pierre, Jean; Swider-Lyons, Karen

    2015-01-01

    The platinum electrocatalysts found in proton exchange membrane fuel cells are poisoned both reversibly and irreversibly by air pollutants and residual manufacturing contaminants. In this work, the poisoning of a Pt/C PEMFC cathode was probed by a trace of chlorobenzene in the air feed. Chlorobenzene inhibits the oxygen reduction reaction and causes significant cell performance loss. The performance loss is largely restored by neat air operation and potential cycling between 0.08 V and 1.2 V under H2/N2 (anode/cathode). The analysis of emissions, in situ X-ray absorption spectroscopy and electrochemical impedance spectra show the chlorobenzene adsorption/reaction and molecular orientation on Pt surface depend on the electrode potential. At low potentials, chlorobenzene deposits either on top of adsorbed H atoms or on the Pt surface via the benzene ring and is converted to benzene (ca. 0.1 V) or cyclohexane (ca. 0 V) upon Cl removal. At potentials higher than 0.2 V, chlorobenzene binds to Pt via the Cl atom and can be converted to benzene (less than 0.3 V) or desorbed. Cl− is created and remains in the membrane electrode assembly. Cl− binds to the Pt surface much stronger than chlorobenzene, but can slowly be flushed out by liquid water. PMID:26388963

  1. Interfacial Passivation of the p-Doped Hole-Transporting Layer Using General Insulating Polymers for High-Performance Inverted Perovskite Solar Cells.

    PubMed

    Zhang, Fan; Song, Jun; Hu, Rui; Xiang, Yuren; He, Junjie; Hao, Yuying; Lian, Jiarong; Zhang, Bin; Zeng, Pengju; Qu, Junle

    2018-05-01

    Organic-inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy-loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p-doped hole transport layers (HTLs), since the F4-TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open-circuit voltages (V OC ). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the V OC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Electrolytes for Use in High Energy Lithium-ion Batteries with Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Ratnakumar, B. V.; West, W. C.; Whitcanack, L. D.; Huang, C.; Soler, J.; Krause, F. C.

    2012-01-01

    Met programmatic milestones for program. Demonstrated improved performance with wide operating temperature electrolytes containing ester co-solvents (i.e., methyl butyrate) containing electrolyte additives in A123 prototype cells: Previously demonstrated excellent low temperature performance, including 11C rates at -30 C and the ability to perform well down to -60 C. Excellent cycle life at room temperature has been displayed, with over 5,000 cycles being demonstrated. Good high temperature cycle life performance has also been achieved. Demonstrated improved performance with methyl propionate-containing electrolytes in large capacity prototype cells: Demonstrated the wide operating temperature range capability in large cells (12 Ah), successfully scaling up technology from 0.25 Ah size cells. Demonstrated improved performance at low temperature and good cycle life at 40 C with methyl propionate-based electrolyte containing increasing FEC content and the use of LiBOB as an additive. Utilized three-electrode cells to investigate the electrochemical characteristics of high voltage systems coupled with wide operating temperature range electrolytes: From Tafel polarization measurements on each electrode, it is evident the NMC-based cathode displays poor lithium kinetics (being the limiting electrode). The MB-based formulations containing LiBOB delivered the best rate capability at low temperature, which is attributed to improved cathode kinetics. Whereas, the use of lithium oxalate as an additive lead to the highest reversible capacity and lower irreversible losses.

  3. Performance Mapping Studies in Redox Flow Cells

    NASA Technical Reports Server (NTRS)

    Hoberecht, M. A.; Thaller, L. H.

    1981-01-01

    Pumping power requirements in any flow battery system constitute a direct parasitic energy loss. It is therefore useful to determine the practical lower limit for reactant flow rates. Through the use of a theoretical framework based on electrochemical first principles, two different experimental flow mapping techniques were developed to evaluate and compare electrodes as a function of flow rate. For the carbon felt electrodes presently used in NASA-Lewis Redox cells, a flow rate 1.5 times greater than the stoichiometric rate seems to be the required minimum.

  4. Enhanced sequential reaction time task performance in a rat model of mesial temporal lobe epilepsy with classic hippocampal sclerosis.

    PubMed

    Will, Johanna L; Eckart, Moritz T; Rosenow, Felix; Bauer, Sebastian; Oertel, Wolfgang H; Schwarting, Rainer K W; Norwood, Braxton A

    2013-06-15

    The human serial reaction time task (SRTT) has widely been used to study the neural basis of implicit learning. It is well documented, in both human and animal studies, that striatal dopaminergic processes play a major role in this task. However, findings on the role of the hippocampus - which is mainly associated with declarative memory - in implicit learning and performance are less univocal. We used a SRTT to evaluate implicit learning and performance in rats with perforant pathway stimulation-induced hippocampal neuron loss; a clinically-relevant animal model of mesial temporal lobe epilepsy (MTLS-HS). As has been previously reported for the Sprague-Dawley strain, 8h of continuous stimulation in male Wistar rats reliably induced widespread neuron loss in areas CA3 and CA1 with a characteristic sparing of CA2 and the granule cells. Histological analysis revealed that hippocampal volume was reduced by an average of 44%. Despite this severe hippocampal injury, rats showed superior performance in our instrumental SRTT, namely shorter reaction times, and without a loss in accuracy, especially during the second half of our 16-days testing period. These results demonstrate that a hippocampal lesion can improve performance in a rat SRTT, which is probably due to enhanced instrumental performance. In line with our previous findings based on ibotenic-acid induced hippocampal lesion, these data support the hypothesis that loss or impairment of hippocampal function can enhance specific task performance, especially when it is dependent on procedural (striatum-dependent) mechanisms with minimal spatial requirements. As the animal model used here exhibits the defining characteristics of MTLE-HS, these findings may have implications for the study and management of patients with MTLE. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Effects of DDT and Triclosan on Tumor-cell Binding Capacity and Cell-Surface Protein Expression of Human Natural Killer Cells

    PubMed Central

    Hurd-Brown, Tasia; Udoji, Felicia; Martin, Tamara; Whalen, Margaret M.

    2012-01-01

    1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and triclosan (TCS) are organochlorine (OC) compounds that contaminate the environment, are found in human blood, and have been shown to decrease the tumor-cell killing (lytic) function of human natural killer (NK) cells. NK cells defend against tumor cells and virally infected cells. They bind to these targets, utilizing a variety of cell surface proteins. This study examined concentrations of DDT and TCS that decrease lytic function for alteration of NK binding to tumor targets. Levels of either compound that caused loss of binding function were then examined for effects on expression of cell-surface proteins needed for binding. NK cells exposed to 2.5 μM DDT for 24 h (which caused a greater than 55% loss of lytic function) showed a decrease in NK binding function of about 22%, and a decrease in CD16 cell-surface protein of 20%. NK cells exposed to 5 μM TCS for 24 h showed a decrease in ability to bind tumor cells of 37% and a decrease in expression of CD56 of about 34%. This same treatment caused a decrease in lytic function of greater than 87%. These results indicated that only a portion of the loss of NK lytic function seen with exposures to these compounds could be accounted for by loss of binding function. They also showed that loss of binding function is accompanied by a loss cell-surface proteins important in binding function. PMID:22729613

  6. Enhancing Near Zero Volt Storage Tolerance of Lithium-ion Batteries

    NASA Astrophysics Data System (ADS)

    Crompton, Kyle R.

    There are inherent safety risks associated with inactive lithium ion batteries leading to greater restrictions and regulations on shipping and storage. Maintaining all cells of a lithium ion battery at near zero voltage with an applied fixed resistive load is one promising approach which can lessen (and potentially eliminate) the risk of a lithium ion battery entering thermal runaway when in an inactive state. However, in a conventional lithium ion cell, a near zero cell voltage can be damaging if the anode electrochemical potential increases to greater than the potential where dissolution of the standard copper current collector occurs (i.e. 3.1 V vs. Li/Li+ at room temperature). Past approaches to yield lithium ion cells that are resilient to a near zero volt state of charge involve use of secondary active materials or alternative current collectors which have anticipated tradeoffs in terms of cell performance and cost. In the the present dissertation work the approach of managing the amount of reversible lithium in a cell during construction to prevent the anode potential from increasing to greater than 3.1 V vs. Li/Li+ during near zero volt storage is introduced. Anode pre-lithiation was used in LiCoO 2/MCMB pouch cells to appropriately manage the amount of reversible lithium so that there is excess reversible lithium compared to the cathodes intercalation capacity (reversible lithium excess cell or RLE cell). RLE LiCoO 2/MCMB cells maintained 99% of their original capacity after three, 3-day and three, 7-day storage periods at near zero volts under fixed load. A LiCoO2/MCMB pouch cell fabricated with a pre-lithiated anode also maintained its original discharge performance after three, 3-day storage periods under fixed load at 45°C. The strong recharge performance after near zero volt storage is attributed to the anode potential remaining below the copper dissolution potential during near zero volt storage as informed by reference electrode measurements. Pulse discharge measurements were performed and show that double layer capacitance likely plays a major role in determining the behavior of electrode potentials during near zero volt storage. To further the viability of the anode pre-lithiation method in LiCoO2/MCMB cells, stabilization coatings on the cathode materials are being investigated to increase the tolerance of the cathode to the low potentials it may experience during near zero volt storage of an RLE lithium ion cell. Results show that an AlPO4 coating prevents cation exhange in the cathode crystal structure and substantially increases the cathode's resilience to low electrochemical potentials. Investigations into applying anode pre-lithiation to cells utilizing LiNiCoAlO2 (NCA) cathodes have also been initiated and found to maintain the anode potential below the copper dissolution potential during near zero volt storage. RLE NCA/MCMB cells showed strong recharge performance and improved rate capability retention over a conventional NCA/MCMB cell after ten, 3-day near zero volt storage periods. Scale up of reversible lithium management to NCA/MCMB x3450 pouch cells was achieved using bath lithium addition and rendered a cell that retained 100% of its discharge performance after a 14 day period at near zero volts under fixed load. The near zero volt storage tolerance of lithium ion cells utilizing an advanced, high energy density lithium rich cathode material (0.49Li2MnO3˙0.51LiNi 0.37Co0.24Mn0.39O2 or HE5050) has also been studied and found to be high at room temperature without the need for anode pre-lithiation. HE5050/MCMB cells maintained 100% of their discharge capacity after five, 3-day and five, 7-day near zero volt storage periods at room temperature. HE5050/MCMB also maintained 99% of their discharge capacity after two, 3-day near zero volt storage periods at 40°C. The high first cycle loss and lower intercalation potential of the HE5050 cathode lead to the anode potential remaining <2.8 V vs. Li/Li+ during near zero volt storage and as such, no copper dissolution is expected to be occurring. Finally, Carbon Nanotube (CNT) papers have been shown to be stable up to high potentials vs. Li/Li+ and thus, using them as an anode current collector in place of standard copper can generate lithium ion cells that can tolerate near zero volt storage. However, CNT papers suffer from significant irreversible loss due to their high surface area. An Al2O3 coating deposited by atomic layer deposition is investigated for its effect in reducing the irreversible losses of a CNT paper. The Al2O3 coating was found to reduce irreversible loss by 55% over 50 cycles and still serve as an effective current collector for a graphitic anode composite.

  7. Engineering sciences area and module performance and failure analysis area

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.; Runkle, L. D.

    1982-01-01

    Photovoltaic-array/power-conditioner interface studies are updated. An experiment conducted to evaluate different operating-point strategies, such as constant voltage and pilot cells, and to determine array energy losses when the array is operated off the maximum power points is described. Initial results over a test period of three and a half weeks showed a 2% energy loss when the array is operated at a fixed voltage. Degraded-array studies conducted at NE RES that used a range of simulated common types of degraded I-V curves are reviewed. The instrumentation installed at the JPL field-test site to obtain the irradiance data was described. Experiments using an optical filter to adjust the spectral irradiance of the large-area pulsed solar simulator (LAPSS) to AM1.5 are described. Residential-array research activity is reviewed. Voltage isolation test results are described. Experiments performed on one type of module to determine the relationship between leakage current and temperature are reviewed. An encapsulated-cell testing approach is explained. The test program, data reduction methods, and initial results of long-duration module testing are described.

  8. Adsorptive loss of secreted recombinant proteins in transgenic rice cell suspension cultures.

    PubMed

    Kwon, Jun-Young; Lee, Kyoung-Hoon; Cheon, Su-Hwan; Ryu, Hyun-Nam; Kim, Sun Jin; Kim, Dong-Il

    2012-03-01

    Adsorptive loss of human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) in transgenic rice cell suspension cultures was investigated using glass flasks, plastic flasks, disposable vessels, and stainless steel vessels. When hCTLA4Ig was added to the glass flasks containing sterile AA medium, a rapid decrease in the concentration of hCTLA4Ig, independent on pH, was observed resulting in more than 90% of the protein loss within 1 h due to the surface adsorption. When the same experiments were performed on four different types of culture equipments mentioned above, the lowest adsorption level was observed in the plastic flasks and the highest level was observed in the glass flasks. The use of the plastic flasks retarded the adsorptive loss of hCTLA4Ig at the early stage of the protein production. There was a significant increase in the production of hCTLA4Ig when the flasks were coated with bovine serum albumin. However, the spike test of purified hCTLA4Ig at two different concentrations of 15 and 100 mg L(-1) in 500-mL spinner flasks confirmed that the amount of hCTLA4Ig adsorbed was dependent on the surface area of the flasks but not on the concentrations. In conclusion, although the protein adsorption affected the total amount of the protein yielded to some extent, it could be regarded as a minor factor in transgenic plant cell cultures with higher titer.

  9. Gamma Interferon-Induced T-Cell Loss in Virulent Mycobacterium avium Infection

    PubMed Central

    Flórido, Manuela; Pearl, John E.; Solache, Alejandra; Borges, Margarida; Haynes, Laura; Cooper, Andrea M.; Appelberg, Rui

    2005-01-01

    Infection by virulent Mycobacterium avium caused progressive severe lymphopenia in C57BL/6 mice due to increased apoptosis rates. T-cell depletion did not occur in gamma interferon (IFN-γ)-deficient mice which showed increased T-cell numbers and proliferation; in contrast, deficiency in nitric oxide synthase 2 did not prevent T-cell loss. Although T-cell loss was IFN-γ dependent, expression of the IFN-γ receptor on T cells was not required for depletion. Similarly, while T-cell loss was optimal if the T cells expressed IFN-γ, CD8+ T-cell depletion could occur in the absence of T-cell-derived IFN-γ. Depletion did not require that the T cells be specific for mycobacterial antigen and was not affected by deficiencies in the tumor necrosis factor receptors p55 or p75, the Fas receptor (CD95), or the respiratory burst enzymes or by forced expression of bcl-2 in hematopoietic cells. PMID:15908387

  10. Impact of perinatal asphyxia on the GABAergic and locomotor system.

    PubMed

    Van de Berg, W D J; Kwaijtaal, M; de Louw, A J A; Lissone, N P A; Schmitz, C; Faull, R L M; Blokland, A; Blanco, C E; Steinbusch, H W M

    2003-01-01

    Perinatal asphyxia can cause neuronal loss and depletion of neurotransmitters within the striatum. The striatum plays an important role in motor control, sensorimotor integration and learning. In the present study we investigated whether perinatal asphyxia leads to motor deficits related to striatal damage, and in particular to the loss of GABAergic neurons. Perinatal asphyxia was induced in time-pregnant Wistar rats on the day of delivery by placing the uterus horns, containing the pups, in a 37 degrees C water bath for 20 min. Three motor performance tasks (open field, grip test and walking pattern) were performed at 3 and 6 weeks of age. Antibodies against calbindin and parvalbumin were used to stain GABAergic striatal projection neurons and interneurons, respectively. The motor tests revealed subtle effects of perinatal asphyxia, i.e. small decrease in motor activity. Analysis of the walking pattern revealed an increase in stride width at 6 weeks of age after perinatal asphyxia. Furthermore, a substantial loss of calbindin-immunoreactive (-22%) and parvalbumin-immunoreactive (-43%) cells was found in the striatum following perinatal asphyxia at two months of age. GABA(A) receptor autoradiography revealed no changes in GABA binding activity within the striatum, globus pallidus or substantia nigra. We conclude that perinatal asphyxia resulted in a loss of GABAergic projection neurons and interneurons in the striatum without alteration of GABA(A) receptor affinity. Despite a considerable loss of striatal neurons, only minor deficits in motor performance were found after perinatal asphyxia.

  11. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells.

    PubMed

    Milush, Jeffrey M; Mir, Kiran D; Sundaravaradan, Vasudha; Gordon, Shari N; Engram, Jessica; Cano, Christopher A; Reeves, Jacqueline D; Anton, Elizabeth; O'Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S; Brenchley, Jason M; Else, James G; Silvestri, Guido; Sodora, Donald L

    2011-03-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4(+) T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3(+)CD4(-)CD8(-) T cells (double-negative T cells) partially compensates for CD4(+) T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4(+) T cells to SIV-negative animals resulted in rapid loss of CD4(+) T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4(+) T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4(+) T cell-like helper functions upon SIV-induced CD4(+) T cell depletion in this species.

  12. Development of small scale cell culture models for screening poloxamer 188 lot-to-lot variation.

    PubMed

    Peng, Haofan; Hall, Kaitlyn M; Clayton, Blake; Wiltberger, Kelly; Hu, Weiwei; Hughes, Erik; Kane, John; Ney, Rachel; Ryll, Thomas

    2014-01-01

    Shear protectants such as poloxamer 188 play a critical role in protecting cells during cell culture bioprocessing. Lot-to-lot variation of poloxamer 188 was experienced during a routine technology transfer across sites of similar scale and equipment. Cell culture medium containing a specific poloxamer 188 lot resulted in an unusual drop in cell growth, viability, and titer during manufacturing runs. After switching poloxamer lots, culture performance returned to the expected level. In order to control the quality of poloxamer 188 and thus maintain better consistency in manufacturing, multiple small scale screening models were developed. Initially, a 5L bioreactor model was established to evaluate cell damage by high sparge rates with different poloxamer 188 lots. Subsequently, a more robust, simple, and efficient baffled shake flask model was developed. The baffled shake flask model can be performed in a high throughput manner to investigate the cell damage in a bubbling environment. The main cause of the poor performance was the loss of protection, rather than toxicity. It was also suggested that suspicious lots can be identified using different cell line and media. The screening methods provide easy, yet remarkable models for understanding and controlling cell damage due to raw material lot variation as well as studying the interaction between poloxamer 188 and cells. © 2014 American Institute of Chemical Engineers.

  13. Hematopoietic stem cell loss and hematopoietic failure in severe aplastic anemia is driven by macrophages and aberrant podoplanin expression.

    PubMed

    McCabe, Amanda; Smith, Julianne N P; Costello, Angelica; Maloney, Jackson; Katikaneni, Divya; MacNamara, Katherine C

    2018-05-17

    Severe aplastic anemia results from profound hematopoietic stem cell loss. T cells and interferon gamma have long been associated with severe aplastic anemia, yet the underlying mechanisms driving hematopoietic stem cell loss remain unknown. Using a mouse model of severe aplastic anemia, we demonstrate that interferon gamma-dependent hematopoietic stem cell loss required macrophages. Interferon gamma was necessary for bone marrow macrophage persistence, despite loss of other myeloid cells and hematopoietic stem cells. Depleting macrophages or abrogating interferon gamma signaling specifically in macrophages did not impair T cell activation or interferon gamma production in the bone marrow but rescued hematopoietic stem cells and reduced mortality. Thus, macrophages are not required for induction of interferon gamma in severe aplastic anemia and rather act as sensors of interferon gamma. Macrophage depletion rescued thrombocytopenia, increased bone marrow megakaryocytes, preserved platelet-primed stem cells, and increased the platelet-repopulating capacity of transplanted hematopoietic stem cells. In addition to the hematopoietic effects, severe aplastic anemia induced loss of non-hematopoietic stromal populations, including podoplanin-positive stromal cells. However, a subset of podoplanin-positive macrophages was increased during disease, and blockade of podoplanin in mice was sufficient to rescue disease. Our data further our understanding of disease pathogenesis demonstrating a novel role for macrophages as sensors of interferon gamma, thus illustrating an important role for the microenvironment in pathogenesis of severe aplastic anemia. Copyright © 2018, Ferrata Storti Foundation.

  14. Analysis of Triplet Exciton Loss Pathways in PTB7:PC71BM Bulk Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Kraus, Hannes; Heiber, Michael C.; Väth, Stefan; Kern, Julia; Deibel, Carsten; Sperlich, Andreas; Dyakonov, Vladimir

    2016-07-01

    A strategy for increasing the conversion efficiency of organic photovoltaics has been to increase the VOC by tuning the energy levels of donor and acceptor components. However, this opens up a new loss pathway from an interfacial charge transfer state to a triplet exciton (TE) state called electron back transfer (EBT), which is detrimental to device performance. To test this hypothesis, we study triplet formation in the high performing PTB7:PC71BM blend system and determine the impact of the morphology-optimizing additive 1,8-diiodoctane (DIO). Using photoluminescence and spin-sensitive optically detected magnetic resonance (ODMR) measurements at low temperature, we find that TEs form on PC71BM via intersystem crossing from singlet excitons and on PTB7 via EBT mechanism. For DIO blends with smaller fullerene domains, an increased density of PTB7 TEs is observed. The EBT process is found to be significant only at very low temperature. At 300 K, no triplets are detected via ODMR, and electrically detected magnetic resonance on optimized solar cells indicates that TEs are only present on the fullerenes. We conclude that in PTB7:PC71BM devices, TE formation via EBT is impacted by fullerene domain size at low temperature, but at room temperature, EBT does not represent a dominant loss pathway.

  15. Advanced technology lightweight fuel cell program

    NASA Technical Reports Server (NTRS)

    Martin, R. E.

    1981-01-01

    The potential of the alkaline electrolyte fuel cell as the power source in a multi hundred kilowatt orbital energy storage system was studied. The total system weight of an electrolysis cell energy storage system was determined. The tests demonstrated: (1) the performance stability of a platinum on carbon anode catalyst configuration after 5000 hours of testing has no loss in performance; (2) capability of the alkaline fuel cell to operate to a cyclical load profile; (3) suitability of a lightweight graphite electrolyte reservoir plate for use in the alkaline fuel cell; (4) long life potential of a hybrid polysulfone cell edge frame construction; and (5) long term stability of a fiber reinforced potassium titanate matrix structure. The power section tested operates with passive water removal eliminating the requirement for a dynamic hydrogen pump water separator thereby allowing a powerplant design with reduced weight, lower parasite power, and a potential for high reliability and extended endurance. It is concluded that two perovskites are unsuitable for use as a catalyst or as a catalyst support at the cathode of an alkaline fuel cell.

  16. Why do hair cells and spiral ganglion neurons in the cochlea die during aging?

    PubMed Central

    Perez, Philip; Bao, Jianxin

    2011-01-01

    Age-related decline of cochlear function is mainly due to the loss of hair cells and spiral ganglion neurons (SGNs). Recent findings clearly indicate that survival of these two cell types during aging depends on genetic and environmental interactions, and this relationship is seen at the systemic, tissue, cellular, and molecular levels. At cellular and molecular levels, age-related loss of hair cells and SGNs can occur independently, suggesting distinct mechanisms for the death of each during aging. This mechanistic independence is also observed in the loss of medial olivocochlear efferent innervation and outer hair cells during aging, pointing to a universal independent cellular mechanism for age-related neuronal death in the peripheral auditory system. While several molecular signaling pathways are implicated in the age-related loss of hair cells and SGNs, studies with the ability to locally modify gene expression in these cell types are needed to address whether these signaling pathways have direct effects on hair cells and SGNs during aging. Finally, the issue of whether age-related loss of these cells occurs via typical apoptotic pathways requires further examination. As new studies in the field of aging reshape the framework for exploring these underpinnings, understanding of the loss of hair cells and SGNs associated with age and the interventions that can treat and prevent these changes will result in dramatic benefits for an aging population. PMID:22396875

  17. Loss of strength capacity is associated with mortality, but resistance exercise training promotes only modest effects during cachexia progression.

    PubMed

    das Neves, Willian; Alves, Christiano Robles Rodrigues; de Almeida, Ney Robson; Guimarães, Fátima Lúcia Rodrigues; Ramires, Paulo Rizzo; Brum, Patricia Chakur; Lancha, Antonio Herbert

    2016-10-15

    Resistance exercise training (RET) has been adopted as non-pharmacological anti-catabolic strategy. However, the role of RET to counteract cancer cachexia is still speculative. This study aimed to verify whether short-term RET would counteract skeletal muscle wasting in a severe cancer cachexia rat model. Wistar rats were randomly allocated into four experimental groups; 1) untrained control rats (control), 2) rats submitted to RET (control+RET), 3) untrained rats injected with Walker 256 tumor cells in the bone marrow (tumor) and 4) rats injected with Walker 256 tumor cells in the bone marrow and submitted to RET (tumor+RET). Tumor group displayed skeletal muscle atrophy fifteen days post tumor cells injection as assessed by plantaris (-20.5%) and EDL (-20.0%) muscle mass. EDL atrophy was confirmed showing 43.8% decline in the fiber cross sectional area. Even though RET increased the lactate dehydrogenase protein content and fully restored phosphorylated form of 4EBP-1 to the control levels in skeletal muscle, it failed to rescue muscle morphology in tumor-bearing rats. Indeed, RET did not mitigated loss of muscle function, anorexia, tumor growth or mortality rate. However, loss of strength capacity (assessed by 1-RM test performance) demonstrated a negative correlation with rats' survival (p=0.02; r=0.40), suggesting that loss of strength capacity might predict cancer mortality. These results demonstrated that bone marrow injection of Walker 256 tumor cells in rats induces cancer cachexia, strength capacity is associated with cancer survival and short-term RET promotes only modest effects during cachexia progression. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Loss of Desmocollin 3 in Skin Tumor Development and Progression

    PubMed Central

    Chen, Jiangli; O’Shea, Charlene; Fitzpatrick, James E.; Koster, Maranke I.; Koch, Peter J.

    2011-01-01

    Desmocollin 3 (DSC3) is a desmosomal cadherin that is required for maintaining cell adhesion in the epidermis as demonstrated by the intra-epidermal blistering observed in Dsc3 null skin. Recently, it has been suggested that deregulated expression of DSC3 occurs in certain human tumor types. It is not clear whether DSC3 plays a role in the development or progression of cancers arising in stratified epithelia such as the epidermis. To address this issue, we generated a mouse model in which Dsc3 expression is ablated in K-Ras oncogene-induced skin tumors. Our results demonstrate that loss of Dsc3 leads to an increase in K-Ras induced skin tumors. We hypothesize that acantholysis-induced epidermal hyperplasia in the Dsc3 null epidermis facilitates Ras-induced tumor development. Further, we demonstrate that spontaneous loss of DSC3 expression is a common occurrence during human and mouse skin tumor progression. This loss occurs in tumor cells invading the dermis. Interestingly, other desmosomal proteins are still expressed in tumor cells that lack DSC3, suggesting a specific function of DSC3 loss in tumor progression. While loss of DSC3 on the skin surface leads to epidermal blistering, it does not appear to induce loss of cell-cell adhesion in tumor cells invading the dermis, most likely due to a protection of these cells within the dermis from mechanical stress. We thus hypothesize that DSC3 can contribute to the progression of tumors both by cell adhesion-dependent (skin surface) and likely by cell adhesion-independent (invading tumor cells) mechanisms. PMID:21681825

  19. Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C60 bilayer solar cells

    PubMed Central

    Jenatsch, Sandra; Geiger, Thomas; Heier, Jakob; Kirsch, Christoph; Nüesch, Frank; Paracchino, Adriana; Rentsch, Daniel; Ruhstaller, Beat; C Véron, Anna; Hany, Roland

    2015-01-01

    Simple bilayer organic solar cells rely on very thin coated films that allow for effective light absorption and charge carrier transport away from the heterojunction at the same time. However, thin films are difficult to coat on rough substrates or over large areas, resulting in adverse shorting and low device fabrication yield. Chemical p-type doping of organic semiconductors can reduce Ohmic losses in thicker transport layers through increased conductivity. By using a Co(III) complex as chemical dopant, we studied doped cyanine dye/C60 bilayer solar cell performance for increasing dye film thickness. For films thicker than 50 nm, doping increased the power conversion efficiency by more than 30%. At the same time, the yield of working cells increased to 80%. We addressed the fate of the doped cyanine dye, and found no influence of doping on solar cell long term stability. PMID:27877804

  20. OAO-3 end of mission power subsystem evaluation

    NASA Technical Reports Server (NTRS)

    Tasevoli, M.

    1982-01-01

    End of mission tests were performed on the OAO-3 power subsystem in three component areas: solar array, nickel-cadmium batteries and the On-Board Processor (OBP) power boost operation. Solar array evaluation consisted of analyzing array performance characteristics and comparing them to earlier flight data. Measured solar array degradation of 14.1 to 17.7% after 8 1/3 years is in good agreement with theortical radiation damage losses. Battery discharge characteristics were compared to results of laboratory life cycle tests performed on similar cells. Comparison of cell voltage profils reveals close correlation and confirms the validity of real time life cycle simulation. The successful operation of the system in the OBP/power boost regulation mode demonstrates the excellent life, reliability and greater system utilization of power subsystems using maximum power trackers.

  1. Different allocation of carbohydrates and phenolics in dehydrated leaves of triticale.

    PubMed

    Hura, Tomasz; Dziurka, Michał; Hura, Katarzyna; Ostrowska, Agnieszka; Dziurka, Kinga

    2016-09-01

    Carbohydrates are used in plant growth processes, osmotic regulation and secondary metabolism. A study of the allocation of carbohydrates to a target set of metabolites during triticale acclimation to soil drought was performed. The study included a semi-dwarf cultivar 'Woltario' and a long-stemmed cultivar 'Moderato', differing in the activity of the photosynthetic apparatus under optimum growth conditions. Differences were found in the quantitative and qualitative composition of individual carbohydrates and phenolic compounds, depending on the developmental stage and water availability. Soluble carbohydrates in the semi-dwarf 'Woltario' cv. under soil drought were utilized for synthesis of starch, soluble phenolic compounds and an accumulation of cell wall carbohydrates. In the typical 'Moderato' cv., soluble carbohydrates were primarily used for the synthesis of phenolic compounds that were then incorporated into cell wall structures. Increased content of cell wall-bound phenolics in 'Moderato' cv. improved the cell wall tightness and reduced the rate of leaf water loss. In 'Woltario' cv., the increase in cell osmotic potential due to an enhanced concentration of carbohydrates and proline was insufficient to slow down the rate of leaf water loss. The mechanism of cell wall tightening in response to leaf desiccation may be the main key in the process of triticale acclimation to soil drought. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. Realization of 13.6% Efficiency on 20 μm Thick Si/Organic Hybrid Heterojunction Solar Cells via Advanced Nanotexturing and Surface Recombination Suppression.

    PubMed

    He, Jian; Gao, Pingqi; Liao, Mingdun; Yang, Xi; Ying, Zhiqin; Zhou, Suqiong; Ye, Jichun; Cui, Yi

    2015-06-23

    Hybrid silicon/polymer solar cells promise to be an economically feasible alternative energy solution for various applications if ultrathin flexible crystalline silicon (c-Si) substrates are used. However, utilization of ultrathin c-Si encounters problems in light harvesting and electronic losses at surfaces, which severely degrade the performance of solar cells. Here, we developed a metal-assisted chemical etching method to deliver front-side surface texturing of hierarchically bowl-like nanopores on 20 μm c-Si, enabling an omnidirectional light harvesting over the entire solar spectrum as well as an enlarged contact area with the polymer. In addition, a back surface field was introduced on the back side of the thin c-Si to minimize the series resistance losses as well as to suppress the surface recombination by the built high-low junction. Through these improvements, a power conversion efficiency (PCE) up to 13.6% was achieved under an air mass 1.5 G irradiation for silicon/organic hybrid solar cells with the c-Si thickness of only about 20 μm. This PCE is as high as the record currently reported in hybrid solar cells constructed from bulk c-Si, suggesting a design rule for efficient silicon/organic solar cells with thinner absorbers.

  3. Genetic and Molecular Analysis of the X Chromosomal Region 14b17-14c4 in Drosophila Melanogaster: Loss of Function in Nona, a Nuclear Protein Common to Many Cell Types, Results in Specific Physiological and Behavioral Defects

    PubMed Central

    Stanewsky, R.; Rendahl, K. G.; Dill, M.; Saumweber, H.

    1993-01-01

    We have performed a genetic analysis of the 14C region of the X chromosome of Drosophila melanogaster to isolate loss of function alleles of no-on-transient A (nonA; 14C1-2; 1-52.3). NONA is a nuclear protein common to many cell types, which is present in many puffs on polytene chromosomes. Sequence data suggest that the protein contains a pair of RNA binding motifs (RRM) found in many single-strand nucleic acid binding proteins. Hypomorphic alleles of this gene, which lead to aberrant visual and courtship song behavior, still contain normally distributed nonA RNA and NONA protein in embryos, and in all available alleles NONA protein is present in puffs of third instar larval polytene chromosomes. We find that complete loss of this general nuclear protein is semilethal in hemizygous males and homozygous cell lethal in the female germline. Surviving males show more extreme defects in nervous system function than have been described for the hypomorphic alleles. Five other essential genes that reside within this region have been partially characterized. PMID:8244005

  4. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

    PubMed Central

    Milush, Jeffrey M.; Mir, Kiran D.; Sundaravaradan, Vasudha; Gordon, Shari N.; Engram, Jessica; Cano, Christopher A.; Reeves, Jacqueline D.; Anton, Elizabeth; O’Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S.; Brenchley, Jason M.; Else, James G.; Silvestri, Guido; Sodora, Donald L.

    2011-01-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4+ T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3+CD4–CD8– T cells (double-negative T cells) partially compensates for CD4+ T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4+ T cells to SIV-negative animals resulted in rapid loss of CD4+ T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4+ T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4+ T cell–like helper functions upon SIV-induced CD4+ T cell depletion in this species. PMID:21317533

  5. Fundamental modeling the performance and degradation of HEV Lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Fang, Weifang

    Li-ion battery is now replacing nickel-metal hydride (NiMH) for hybrid electric vehicles (HEV). The advantages of Li-ion battery over NiMH are that it can provide longer life, higher cell voltage and higher energy density, etc. However, there are still some issues unsolved for Li-ion battery to fully satisfy the HEV requirement. At high temperature, thermal runaway may cause safety issues. At low temperature, however, its performance is dramatically reduced and also Li deposition may occur. Furthermore, degradation due to side reactions in the electrodes during cycling and storage results in capacity loss and impedance rise. An electrochemical-thermal coupled model is first used to predict performance of individual electrodes of Li-ion cells under HEV conditions that encompass a wide range of ambient temperatures. The model is validated against experimental data of not only the full cell but also individual electrodes and then used to study lithium deposition on the negative electrode during charging Li-ion battery at subzero temperature. The simulated property evolution, e.g. Li concentrations in electrode and electrolyte, shows that either low temperature or high charge rate may force Li insertion (into the negative carbon electrode) to occur in a narrow region near the separator. Therefore, Li deposition is mostly like to happen in this location. Modeling simulation shows that reduction of the negative electrode particle size can reduce Li deposition, which has same effect as improvement of the Li diffusion coefficient in the negative electrode. The model is also used to study charge protocols at subzero temperature. Model simulation shows that employing pulse current can improve cell temperature by the heat generated inside the cell, thus this designed charge protocol is able to reduce Li deposition and improve the charge efficiency as well. Individual aging mechanism is then implemented into each electrode to study Li-ion battery degradation during accelerated aging tests. The experimentally observed aging phenomena are interpreted using the degradation model. The simulated results show that the positive electrode active material loss is the main cause of capacity loss and impedance growth. And this is the key step for a model to well catch the experimentally observed aging phenomena in the two electrodes. In the future work, the degradation model will further help to prolong battery life through engineering and optimization in HEV applications.

  6. Paraquat initially damages cochlear support cells leading to anoikis-like hair cell death.

    PubMed

    Zhang, Jianhui; Sun, Hong; Salvi, Richard; Ding, Dalian

    2018-07-01

    Paraquat (PQ), one of the most widely used herbicides, is extremely dangerous because it generates the highly toxic superoxide radical. When paraquat was applied to cochlear organotypic cultures, it not only damaged the outer hair cells (OHCs) and inner hair cells (IHCs), but also caused dislocation of the hair cell rows. We hypothesized that the dislocation arose from damage to the support cells (SCs) that anchors hair cells within the epithelium. To test this hypothesis, rat postnatal cochlear cultures were treated with PQ. Shortly after PQ treatment, the rows of OHCs separated from one another and migrated radially away from IHCs suggesting loss of cell-cell adhesion that hold the hair cells in proper alignment. Hair cells dislocation was associated with extensive loss of SCs in the organ of Corti, loss of tympanic border cells (TBCs) beneath the basilar membrane, the early appearance of superoxide staining and caspase-8 labeling in SCs below the OHCs and disintegration of E-cadherin and β-catenin in the organ of Corti. Damage to the TBCs and SCs occurred prior to loss of OHC or IHC loss suggesting a form of detachment-induced apoptosis referred to as anoikis. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Dependence of the photovoltaic performance of pseudomorphic InGaN/GaN multiple-quantum-well solar cells on the active region thickness

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhtarova, Anna; Valdueza-Felip, Sirona; Redaelli, Luca

    2016-04-18

    We investigate the photovoltaic performance of pseudomorphic In{sub 0.1}Ga{sub 0.9}N/GaN multiple-quantum well (MQW) solar cells as a function of the total active region thickness. An increase in the number of wells from 5 to 40 improves the short-circuit current and the open-circuit voltage, resulting in a 10-fold enhancement of the overall conversion efficiency. Further increasing the number of wells leads to carrier collection losses due to an incomplete depletion of the active region. Capacitance-voltage measurements point to a hole diffusion length of 48 nm in the MQW region.

  8. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  9. Cataract surgery in eyes with low corneal endothelial cell density.

    PubMed

    Hayashi, Ken; Yoshida, Motoaki; Manabe, Shin-ichi; Hirata, Akira

    2011-08-01

    To compare corneal endothelial damage after cataract surgery in eyes with low endothelial cell density (ECD) and eyes with normal ECD. Hayashi Eye Hospital, Fukuoka, Japan. Case-control study. Cataract surgery was performed in eyes with a low ECD (500 to 1000 cells/mm(2)) (low-density group) and control eyes with a normal ECD. The ECD and central corneal thickness (CCT) were measured preoperatively and 1 and 3 months postoperatively, and the percentage cell loss and increase in CCT were compared. The low-density group and control group each comprised 50 eyes. In the low-density group, 39 eyes had nonprogressive endothelial pathology and 11 had Fuchs dystrophy. The mean ECD was significantly less and the CCT significantly greater in the low-density group than in the control group throughout the follow-up (P ≤.0066). However, no significant difference in the percentage of cell loss was found between groups at 1 or 3 months (5.1%, low-density group; 4.2%, control group) (P ≥.1477). The percentage increase in CCT was significantly greater in the low-density group than in the control group at 1 month (P<.0001), although there was no significant difference at 3 months (0.4% and -0.4%, respectively) (P=.2172). Corneal endothelial damage after cataract surgery in eyes with low ECD was slight and comparable to that in healthy eyes, which suggests that cataract surgery alone (without corneal transplantation) should be performed first. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  10. Estrogen prevents bone loss through transforming growth factor β signaling in T cells

    PubMed Central

    Gao, Yuhao; Qian, Wei-Ping; Dark, Kimberly; Toraldo, Gianluca; Lin, Angela S. P.; Guldberg, Robert E.; Flavell, Richard A.; Weitzmann, M. Neale; Pacifici, Roberto

    2004-01-01

    Estrogen (E) deficiency leads to an expansion of the pool of tumor necrosis factor (TNF)-producing T cells through an IFN-γ-dependent pathway that results in increased levels of the osteoclastogenic cytokine TNF in the bone marrow. Disregulated IFN-γ production is instrumental for the bone loss induced by ovariectomy (ovx), but the responsible mechanism is unknown. We now show that mice with T cell-specific blockade of type β transforming growth factor (TGFβ) signaling are completely insensitive to the bone-sparing effect of E. This phenotype results from a failure of E to repress IFN-γ production, which, in turn, leads to increased T cell activation and T cell TNF production. Furthermore, ovx blunts TGFβ levels in the bone marrow, and overexpression of TGFβ in vivo prevents ovx-induced bone loss. These findings demonstrate that E prevents bone loss through a TGFβ-dependent mechanism, and that TGFβ signaling in T cells preserves bone homeostasis by blunting T cell activation. Thus, stimulation of TGFβ production in the bone marrow is a critical “upstream” mechanism by which E prevents bone loss, and enhancement of TGFβ levels in vivo may constitute a previously undescribed therapeutic approach for preventing bone loss. PMID:15531637

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bednarz, Natalia; Eltze, Elke; Semjonow, Axel

    A recent study concluded that serum prostate specific antigen (PSA)-based screening is beneficial for reducing the lethality of PCa, but was also associated with a high risk of 'overdiagnosis'. Nevertheless, also PCa patients who suffered from organ confined tumors and had negative bone scans succumb to distant metastases after complete tumor resection. It is reasonable to assume that those tumors spread to other organs long before the overt manifestation of metastases. Our current results confirm that prostate tumors are highly heterogeneous. Even a small subpopulation of cells bearing BRCA1 losses can initiate PCa cell regional and distant dissemination indicating thosemore » patients which might be at high risk of metastasis. A preliminary study performed on a small cohort of multifocal prostate cancer (PCa) detected BRCA1 allelic imbalances (AI) among circulating tumor cells (CTCs). The present analysis was aimed to elucidate the biological and clinical role of BRCA1 losses on metastatic spread and tumor progression in prostate cancer patients. Experimental Design: To map molecular progression in PCa outgrowth we used FISH analysis of tissue microarrays (TMA), lymph node sections and CTC from peripheral blood. We found that 14% of 133 tested patients carried monoallelic BRCA1 loss in at least one tumor focus. Extended molecular analysis of chr17q revealed that this aberration was often a part of larger cytogenetic rearrangement involving chr17q21 accompanied by AI of the tumor suppressor gene PTEN and lack of the BRCA1 promoter methylation. The BRCA1 losses correlated with advanced T stage (p < 0.05), invasion to pelvic lymph nodes (LN, p < 0.05) as well as BR (p < 0.01). Their prevalence was twice as high within 62 LN metastases (LNMs) as in primary tumors (27%, p < 0.01). The analysis of 11 matched primary PCa-LNM pairs confirmed the suspected transmission of genetic abnormalities between those two sites. In 4 of 7 patients with metastatic disease, BRCA1 losses appeared in a minute fraction of cytokeratin- and vimentin-positive CTCs. Small subpopulations of PCa cells bearing BRCA1 losses might be one confounding factor initiating tumor dissemination and might provide an early indicator of shortened disease-free survival.« less

  12. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss

    PubMed Central

    Newton, Joseph M.; Schofield, Desmond; Vlahopoulou, Joanna

    2016-01-01

    Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction‐point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069–1076, 2016 PMID:27111912

  13. Effect of pH in a Pd-based ethanol membraneless air breathing nanofluidic fuel cell with flow-through electrodes

    NASA Astrophysics Data System (ADS)

    López-Rico, C. A.; Galindo-de-la-Rosa, J.; Ledesma-García, J.; Arriaga, L. G.; Guerra-Balcázar, M.; Arjona, N.

    2015-12-01

    In this work, a nanofluidic fuel cell (NFC) in which streams flow through electrodes was used to investigate the role of pH in the cell performance using ethanol as fuel and two Pd nanoparticles as electrocatalysts: one commercially available (Pd/C from ETEK) and other synthesized using ionic liquids (Pd/C IL). The cell performances for both electrocatalysts in acid/acid (anodic/cathodic) streams were of 18.05 and 9.55 mW cm-2 for Pd/C ETEK and Pd/C IL. In alkaline/alkaline streams, decrease to 15.94 mW cm-2 for Pd/C ETEK and increase to 15.37 mW cm-2 for Pd/C IL. In alkaline/acidic streams both electrocatalysts showed similar cell voltages (up to 1 V); meanwhile power densities were of 87.6 and 99.4 mW cm-2 for Pd/C ETEK and Pd/C IL. The raise in cell performance can be related to a decrease in activation losses, the combined used of alkaline and acidic streams and these high values compared with flow-over fuel cells can be related to the enhancement of the cathodic mass transport by using three dimensional porous electrodes and two sources of oxygen: from air and from a saturated solution.

  14. U.S. DOE Progress Towards Developing Low-Cost, High Performance, Durable Polymer Electrolyte Membranes for Fuel Cell Applications

    PubMed Central

    Houchins, Cassidy; Kleen, Greg J.; Spendelow, Jacob S.; Kopasz, John; Peterson, David; Garland, Nancy L.; Ho, Donna Lee; Marcinkoski, Jason; Martin, Kathi Epping; Tyler, Reginald; Papageorgopoulos, Dimitrios C.

    2012-01-01

    Low cost, durable, and selective membranes with high ionic conductivity are a priority need for wide-spread adoption of polymer electrolyte membrane fuel cells (PEMFCs) and direct methanol fuel cells (DMFCs). Electrolyte membranes are a major cost component of PEMFC stacks at low production volumes. PEMFC membranes also impose limitations on fuel cell system operating conditions that add system complexity and cost. Reactant gas and fuel permeation through the membrane leads to decreased fuel cell performance, loss of efficiency, and reduced durability in both PEMFCs and DMFCs. To address these challenges, the U.S. Department of Energy (DOE) Fuel Cell Technologies Program, in the Office of Energy Efficiency and Renewable Energy, supports research and development aimed at improving ion exchange membranes for fuel cells. For PEMFCs, efforts are primarily focused on developing materials for higher temperature operation (up to 120 °C) in automotive applications. For DMFCs, efforts are focused on developing membranes with reduced methanol permeability. In this paper, the recently revised DOE membrane targets, strategies, and highlights of DOE-funded projects to develop new, inexpensive membranes that have good performance in hot and dry conditions (PEMFC) and that reduce methanol crossover (DMFC) will be discussed. PMID:24958432

  15. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy.

    PubMed

    Schwab, Andrew J; Ebert, Allison D

    2014-01-01

    Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.

  16. Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling.

    PubMed

    Eshraghi, Adrien A; Gupta, Chhavi; Van De Water, Thomas R; Bohorquez, Jorge E; Garnham, Carolyn; Bas, Esperanza; Talamo, Victoria Maria

    2013-03-01

    To investigate the molecular mechanisms involved in electrode insertion trauma (EIT) and to test the otoprotective effect of locally delivered AM-111. An animal model of cochlear implantation. Guinea pigs' hearing thresholds were measured by auditory brainstem response (ABR) before and after cochlear implantation in four groups: EIT; pretreated with hyaluronate gel 30 minutes before EIT (EIT+Gel); pretreated with hyaluronate gel/AM-111 30 minutes before EIT (EIT+AM-111); and unoperated contralateral ears as controls. Neurofilament, synapsin, and fluorescein isothiocyanate (FITC)-phalloidin staining for hair cell counts were performed at 90 days post-EIT. Immunostaining for 4-hydroxy-2-nonenal (HNE), activated caspase-3, CellROX, and phospho-c-Jun were performed at 24 hours post-EIT. ABR thresholds increased post-EIT in the cochleae of EIT only and EIT+Gel treated animals. There was no significant increase in hearing thresholds in cochleae from either EIT+AM-111 treated or unoperated control ears. AM-111 protection of organ of Corti sensory elements (i.e., hair cells [HCs], supporting cells [SCs], nerve fibers, and synapses) was documented at 3 months post-EIT. Immunostaining of 24-hour post-EIT specimens demonstrated increased levels of HNE in HCs and SCs; increased levels of CellROX and activation of caspase-3 was observed only in SCs, and phosphorylation of c-Jun occurred only in HCs of the EIT-only and EIT+Gel specimens. There was no immunostaining for either HNE, CellROX, caspase-3, or phospho-c-Jun in the organ of Corti specimens from AM-111 treated cochleae. Molecular mechanisms involved in programmed cell death of HCs are different than the ones involved in programmed cell death of SCs. Local delivery of AM-111 provided a significant level of protection against EIT-induced hearing losses, HC losses, and damage to neural elements. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  17. miR-27a induced by colon cancer cells in HLECs promotes lymphangiogenesis by targeting SMAD4

    PubMed Central

    Zhang, Chen-Peng; Xiao, Qian; Lin, Xiao-Lin

    2017-01-01

    Aim Metastasis of tumor cells occurs through lymphatic vessels, blood vessels and transcoelomic spreading. Growing evidence from in vivo and in vitro studies has indicated that tumor lymphangiogenesis facilitates metastasis. However, the regulation of lymphangiogenesis in colon cancer remains unclear. The aims of this study were to identify key miRNAs in colon cancer lymphangiogenesis and to investigate its target and mechanism. Methods miRNA microarray analysis was conducted to identify miRNAs in human lymphatic endothelial cells (HLECs) that were regulated by co-cultured human colon cancer cells. Gain- and loss-of-function studies were performed to determine the function of miR-27a, a top hint, on lymphangiogenesis and migration in HLECs. Furthermore, bioinformatics prediction and experimental validation were performed to identify miR-27a target genes in lymphangiogenesis. Results We found that expression of miR-27a in HLECs was induced by co-culturing with colon cancer cells. Over-expression of miR-27a in HLECs enhanced lymphatic tube formation and migration, whereas inhibition of miR-27a reduced lymphatic tube formation and migration. Luciferase reporter assays showed that miR-27a directly targeted SMAD4, a pivotal component of the TGF-β pathway. In addition, gain-of-function and loss-of-function experiments showed that SMAD4 negatively regulated the length of lymphatic vessels formed by HLECs and migration. Conclusions Our data indicated that colon cancer cell induced the expression of miR-27a in HLECs, which promoted lymphangiogenesis by targeting SMAD4. Our finding implicated miR-27a as a potential target for new anticancer therapies in colon cancer. PMID:29065177

  18. Rugate filter for light-trapping in solar cells.

    PubMed

    Fahr, Stephan; Ulbrich, Carolin; Kirchartz, Thomas; Rau, Uwe; Rockstuhl, Carsten; Lederer, Falk

    2008-06-23

    We suggest a design for a coating that could be applied on top of any solar cell having at least one diffusing surface. This coating acts as an angle and wavelength selective filter, which increases the average path length and absorptance at long wavelengths without altering the solar cell performance at short wavelengths. The filter design is based on a continuous variation of the refractive index in order to minimize undesired reflection losses. Numerical procedures are used to optimize the filter for a 10 microm thick monocrystalline silicon solar cell, which lifts the efficiency above the Auger limit for unconcentrated illumination. The feasibility to fabricate such filters is also discussed, considering a finite available refractive index range.

  19. Near zero reflection by nanostructured anti-reflection coating design for Si substrates

    NASA Astrophysics Data System (ADS)

    Al-Fandi, Mohamed; Makableh, Yahia F.; Khasawneh, Mohammad; Rabady, Rabi

    2018-05-01

    The nanostructure design of near zero reflection coating for Si substrates by using ZnO Nanoneedles (ZnONN) is performed and optimized for the visible spectral range. The design investigates the ZnONN tip to body ratio effect on the anti-reflection coating properties. Different tip to body ratios are used on Si substrates. Around zero reflection is achieved by the Nanoneedles structure design presented in this work, leading to minimal reflection losses from the Si surface. The current design evolves a solution to optical losses and surface contamination effects associated with Si solar cells.

  20. Complementary Information Derived from CRISPR Cas9 Mediated Gene Deletion and Suppression. | Office of Cancer Genomics

    Cancer.gov

    CRISPR-Cas9 provides the means to perform genome editing and facilitates loss-of-function screens. However, we and others demonstrated that expression of the Cas9 endonuclease induces a gene-independent response that correlates with the number of target sequences in the genome. An alternative approach to suppressing gene expression is to block transcription using a catalytically inactive Cas9 (dCas9). Here we directly compare genome editing by CRISPR-Cas9 (cutting, CRISPRc) and gene suppression using KRAB-dCas9 (CRISPRi) in loss-of-function screens to identify cell essential genes.

  1. [A Case of Collision Tumor of Gastric Malignant Lymphoma and Gastric Cancer].

    PubMed

    Inoue, Keisuke; Fujiwara, Yoshiyuki; Kogata, Shuhei; Kanaizumi, Hirofumi; Fukuda, Shuichi; Takeyama, Hiroshi; Kitani, Kotaro; Tsujie, Masanori; Yukawa, Masao; Wakasa, Tomoko; Ohta, Yoshio; Inoue, Masatoshi

    2016-11-01

    A 71-year-old man with anemia, weight loss, and loss of appetite was admitted. Ultrasound examination found thickening of the wall of the stomach. A type 3 gastric tumor was detected in the greater curvature of the gastric corpus via upper gastrointestinal endoscopy. Total gastrectomy, transverse colon resection, and Roux-en-Y anastomosis reconstruction was performed. In the postoperative pathological results, adenocarcinoma, tub2, and diffuse large B cell lymphoma collision was found. The patient underwent chemotherapy for malignant lymphoma and although it was a relatively advanced neoplasia, he is alive without a recurrence.

  2. Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells.

    PubMed

    Lang, Felix; Gluba, Marc A; Albrecht, Steve; Rappich, Jörg; Korte, Lars; Rech, Bernd; Nickel, Norbert H

    2015-07-16

    Perovskite solar cells with transparent contacts may be used to compensate for thermalization losses of silicon solar cells in tandem devices. This offers a way to outreach stagnating efficiencies. However, perovskite top cells in tandem structures require contact layers with high electrical conductivity and optimal transparency. We address this challenge by implementing large-area graphene grown by chemical vapor deposition as a highly transparent electrode in perovskite solar cells, leading to identical charge collection efficiencies. Electrical performance of solar cells with a graphene-based contact reached those of solar cells with standard gold contacts. The optical transmission by far exceeds that of reference devices and amounts to 64.3% below the perovskite band gap. Finally, we demonstrate a four-terminal tandem device combining a high band gap graphene-contacted perovskite top solar cell (Eg = 1.6 eV) with an amorphous/crystalline silicon bottom solar cell (Eg = 1.12 eV).

  3. Diketopyrrolopyrrole Polymers for Organic Solar Cells.

    PubMed

    Li, Weiwei; Hendriks, Koen H; Wienk, Martijn M; Janssen, René A J

    2016-01-19

    Conjugated polymers have been extensively studied for application in organic solar cells. In designing new polymers, particular attention has been given to tuning the absorption spectrum, molecular energy levels, crystallinity, and charge carrier mobility to enhance performance. As a result, the power conversion efficiencies (PCEs) of solar cells based on conjugated polymers as electron donor and fullerene derivatives as electron acceptor have exceeded 10% in single-junction and 11% in multijunction devices. Despite these efforts, it is notoriously difficult to establish thorough structure-property relationships that will be required to further optimize existing high-performance polymers to their intrinsic limits. In this Account, we highlight progress on the development and our understanding of diketopyrrolopyrrole (DPP) based conjugated polymers for polymer solar cells. The DPP moiety is strongly electron withdrawing and its polar nature enhances the tendency of DPP-based polymers to crystallize. As a result, DPP-based conjugated polymers often exhibit an advantageously broad and tunable optical absorption, up to 1000 nm, and high mobilities for holes and electrons, which can result in high photocurrents and good fill factors in solar cells. Here we focus on the structural modifications applied to DPP polymers and rationalize and explain the relationships between chemical structure and organic photovoltaic performance. The DPP polymers can be tuned via their aromatic substituents, their alkyl side chains, and the nature of the π-conjugated segment linking the units along the polymer chain. We show that these building blocks work together in determining the molecular conformation, the optical properties, the charge carrier mobility, and the solubility of the polymer. We identify the latter as a decisive parameter for DPP-based organic solar cells because it regulates the diameter of the semicrystalline DPP polymer fibers that form in the photovoltaic blends with fullerenes via solution processing. The width of these fibers and the photon energy loss, defined as the energy difference between optical band gap and open-circuit voltage, together govern to a large extent the quantum efficiency for charge generation in these blends and thereby the power conversion efficiency of the photovoltaic devices. Lowering the photon energy loss and maintaining a high quantum yield for charge generation is identified as a major pathway to enhance the performance of organic solar cells. This can be achieved by controlling the structural purity of the materials and further control over morphology formation. We hope that this Account contributes to improved design strategies of DPP polymers that are required to realize new breakthroughs in organic solar cell performance in the future.

  4. Effect of photoanode surface coverage by a sensitizer on the photovoltaic performance of titania based CdS quantum dot sensitized solar cells.

    PubMed

    Prasad, Rajendra M B; Pathan, Habib M

    2016-04-08

    In spite of the promising design and architecture, quantum dot sensitized solar cells (QDSSCs) have a long way to go before they attain the actual projected photoconversion efficiencies. Such an inferior performance displayed by QDSSCs is primarily because of many unwanted recombination losses of charge carriers at various interfaces of the cell. Electron recombination due to back electron transfer at the photoanode/electrolyte interface is an important one that needs to be addressed, to improve the efficiency of these third generation nanostructured solar cells. The present work highlights the importance of conformal coverage of CdS quantum dots (QDs) on the surface of the nanocrystalline titania photoanode in arresting such recombinations, leading to improvement in the performance of the cells. Using the successive ionic layer adsorption and reaction (SILAR) process, photoanodes are subjected to different amounts of CdS QD sensitization by varying the number of cycles of deposition. The sensitized electrodes are characterized using UV-visible spectroscopy, cyclic voltammetry and transmission electron microscopy to evaluate the extent of surface coverage of titania electrodes by QDs. Sandwich solar cells are then fabricated using these electrodes and characterized employing electrochemical impedance spectroscopy and J-V characteristics. It is observed that maximum solar cell efficiency is obtained for photoanodes with conformal coating of QDs and any further deposition of sensitizer leads to QD aggregation and so reduces the performance of the solar cells.

  5. Treating hearing disorders with cell and gene therapy

    NASA Astrophysics Data System (ADS)

    Gillespie, Lisa N.; Richardson, Rachael T.; Nayagam, Bryony A.; Wise, Andrew K.

    2014-12-01

    Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of paramount importance to address this unmet clinical need. Most forms of hearing loss are progressive in nature and therefore an opportunity exists to develop novel therapeutic approaches to slow or halt hearing loss progression, or even repair or replace lost hearing function. Numerous emerging technologies have potential as therapeutic options. This paper details the potential of cell- and gene-based therapies to provide therapeutic agents to protect sensory and neural cells from various insults known to cause hearing loss; explores the potential of replacing lost sensory and nerve cells using gene and stem cell therapy; and describes the considerations for clinical translation and the challenges that need to be overcome.

  6. Study on photoelectric parameter measurement method of high capacitance solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, Junchao; Xiong, Limin; Meng, Haifeng; He, Yingwei; Cai, Chuan; Zhang, Bifeng; Li, Xiaohui; Wang, Changshi

    2018-01-01

    The high efficiency solar cells usually have high capacitance characteristic, so the measurement of their photoelectric performance usually requires long pulse width and long sweep time. The effects of irradiance non-uniformity, probe shielding and spectral mismatch on the IV curve measurement are analyzed experimentally. A compensation method for irradiance loss caused by probe shielding is proposed, and the accurate measurement of the irradiance intensity in the IV curve measurement process of solar cell is realized. Based on the characteristics that the open circuit voltage of solar cell is sensitive to the junction temperature, an accurate measurement method of the temperature of solar cell under continuous irradiation condition is proposed. Finally, a measurement method with the characteristic of high accuracy and wide application range for high capacitance solar cell is presented.

  7. Platelet rich plasma for the management of hair loss: Better alone or in combination?

    PubMed

    Anitua, Eduardo; Pino, Ander; Jaén, Pedro; Navarro, Mª Rogelia

    2018-06-14

    Platelet-rich plasma (PRP) and autologous protein-based treatments have recently emerged as a potential therapeutic approach for hair loss-related disorders including androgenetic alopecia and alopecia areata. The safety and efficacy of repeated intradermal injections of PRP has proved to promote hair growth in a number of randomized clinical trials. Biologically active proteins and cytokines released upon platelet activation have shown to induce folliculogenesis and activate the anagen growing phase of dormant bulbs. Interestingly, further studies have revealed that combining PRP with other hair loss-related products may enhance the final performance of the treatment. These synergistic approaches include Food and Drug Administration (FDA) approved drugs such as finasteride or minoxidil, bioactive macromolecules and cell-based therapies. Here, recent research involving alone or combined therapy with platelet-rich plasma for the management of hair loss-related disorders are outlined and future prospects are discussed. © 2018 Wiley Periodicals, Inc.

  8. Scanning transmission ion microscopy mass measurements for quantitative trace element analysis within biological samples and validation using atomic force microscopy thickness measurements

    NASA Astrophysics Data System (ADS)

    Devès, Guillaume; Cohen-Bouhacina, Touria; Ortega, Richard

    2004-10-01

    We used the nuclear microprobe techniques, micro-PIXE (particle-induced X-ray emission), micro-RBS (Rutherford backscattering spectrometry) and scanning transmission ion microscopy (STIM) in order to perform the characterization of trace element content and spatial distribution within biological samples (dehydrated cultured cells, tissues). The normalization of PIXE results was usually expressed in terms of sample dry mass as determined by micro-RBS recorded simultaneously to micro-PIXE. However, the main limit of RBS mass measurement is the sample mass loss occurring during irradiation and which could be up to 30% of the initial sample mass. We present here a new methodology for PIXE normalization and quantitative analysis of trace element within biological samples based on dry mass measurement performed by mean of STIM. The validation of STIM cell mass measurements was obtained in comparison with AFM sample thickness measurements. Results indicated the reliability of STIM mass measurement performed on biological samples and suggested that STIM should be performed for PIXE normalization. Further information deriving from direct confrontation of AFM and STIM analysis could as well be obtained, like in situ measurements of cell specific gravity within cells compartment (nucleolus and cytoplasm).

  9. Comprehensive high-resolution genomic profiling and cytogenetics of human chondrocyte cultures by GTG-banding, locus-specific FISH, SKY and SNP array.

    PubMed

    Wallenborn, M; Petters, O; Rudolf, D; Hantmann, H; Richter, M; Ahnert, P; Rohani, L; Smink, J J; Bulwin, G C; Krupp, W; Schulz, R M; Holland, H

    2018-04-23

    In the development of cell-based medicinal products, it is crucial to guarantee that the application of such an advanced therapy medicinal product (ATMP) is safe for the patients. The consensus of the European regulatory authorities is: "In conclusion, on the basis of the state of art, conventional karyotyping can be considered a valuable and useful technique to analyse chromosomal stability during preclinical studies". 408 chondrocyte samples (84 monolayers and 324 spheroids) from six patients were analysed using trypsin-Giemsa staining, spectral karyotyping and fluorescence in situ hybridisation, to evaluate the genetic stability of chondrocyte samples from non-clinical studies. Single nucleotide polymorphism (SNP) array analysis was performed on chondrocyte spheroids from five of the six donors. Applying this combination of techniques, the genetic analyses performed revealed no significant genetic instability until passage 3 in monolayer cells and interphase cells from spheroid cultures at different time points. Clonal occurrence of polyploid metaphases and endoreduplications were identified associated with prolonged cultivation time. Also, gonosomal losses were observed in chondrocyte spheroids, with increasing passage and duration of the differentiation phase. Interestingly, in one of the donors, chromosomal aberrations that are also described in extraskeletal myxoid chondrosarcoma were identified. The SNP array analysis exhibited chromosomal aberrations in two donors and copy neutral losses of heterozygosity regions in four donors. This study showed the necessity of combined genetic analyses at defined cultivation time points in quality studies within the field of cell therapy.

  10. Hair cell counts in a rat model of sound damage: Effects of tissue preparation & identification of regions of hair cell loss.

    PubMed

    Neal, Christopher; Kennon-McGill, Stefanie; Freemyer, Andrea; Shum, Axel; Staecker, Hinrich; Durham, Dianne

    2015-10-01

    Exposure to intense sound can damage or kill cochlear hair cells (HC). This loss of input typically manifests as noise induced hearing loss, but it can also be involved in the initiation of other auditory disorders such as tinnitus or hyperacusis. In this study we quantify changes in HC number following exposure to one of four sound damage paradigms. We exposed adult, anesthetized Long-Evans rats to a unilateral 16 kHz pure tone that varied in intensity (114 dB or 118 dB) and duration (1, 2, or 4 h) and sacrificed animals 2-4 weeks later. We compared two different methods of tissue preparation, plastic embedding/sectioning and whole mount dissection, for quantifying hair cell loss as a function of frequency. We found that the two methods of tissue preparation produced largely comparable cochleograms, with whole mount dissections allowing a more rapid evaluation of hair cell number. Both inner and outer hair cell loss was observed throughout the length of the cochlea irrespective of sound damage paradigm. Inner HC loss was either equal to or greater than outer HC loss. Increasing the duration of sound exposures resulted in more severe HC loss, which included all HC lesions observed in an analogous shorter duration exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Erbin loss promotes cancer cell proliferation through feedback activation of Akt-Skp2-p27 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hao; Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004; Song, Yuhua

    2015-07-31

    Erbin localizes at the basolateral membrane to regulate cell junctions and polarity in epithelial cells. Dysregulation of Erbin has been implicated in tumorigenesis, and yet it is still unclear if and how disrupted Erbin regulates the biological behavior of cancer cells. We report here that depletion of Erbin leads to cancer cell excessive proliferation in vitro and in vivo. Erbin deficiency accelerates S-phase entry by down-regulating CDK inhibitors p21 and p27 via two independent mechanisms. Mechanistically, Erbin loss promotes p27 degradation by enhancing E3 ligase Skp2 activity though augmenting Akt signaling. Interestingly, we also show that Erbin is an unstable protein whenmore » the Akt-Skp2 signaling is aberrantly activated, which can be specifically destructed by SCF-Skp2 ligase. Erbin loss facilitates cell proliferation and migration in Skp2-dependent manner. Thus, our finding illustrates a novel negative feedback loop between Erbin and Akt-Skp2 signaling. It suggests disrupted Erbin links polarity loss, hyperproliferation and tumorigenesis. - Highlights: • Erbin loss leads to cancer cell excessive proliferation in vitro and in vivo. • Erbin loss accelerates cell cycle though down-regulating p21 and p27 expression. • Erbin is a novel negative modulator of Akt1-Skp2-p27 signaling pathway. • Our study suggests that Erbin loss contributes to Skp2 oncogenic function.« less

  12. Manipulating Water in High-Performance Hydroxide Exchange Membrane Fuel Cells through Asymmetric Humidification and Wetproofing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaspar, RB; Letterio, MP; Wittkopf, JA

    Hydroxide exchange membrane fuel cells (HEMFCs) are an emerging low-cost alternative to conventional proton exchange membrane fuel cells. In addition to producing water at the anode, HEMFCs consume water at the cathode, leading to distinctive water transport behavior. We report that gas diffusion layer (GDL) wetproofing strictly lowers cell performance, but that the penalty is much higher when the anode side is wetproofed compared to the cathode side. We attribute this penalty primarily to mass transport losses from anode flooding, suggesting that cathode humidification may be more beneficial than anode humidification for this device. GDLs with little or no wetproofingmore » perform best, yielding a competitive peak power density of 737 mW cm(-2). (C) The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 License (CC BY, hup://creativecommons.orgilicenses/by/4.0/), which permits unrestricted reuse of the work in any medium, provided the original work is properly cited. All rights reserved.« less

  13. Bmi1 regulates auditory hair cell survival by maintaining redox balance.

    PubMed

    Chen, Y; Li, L; Ni, W; Zhang, Y; Sun, S; Miao, D; Chai, R; Li, H

    2015-01-22

    Reactive oxygen species (ROS) accumulation are involved in noise- and ototoxic drug-induced hair cell loss, which is the major cause of hearing loss. Bmi1 is a member of the Polycomb protein family and has been reported to regulate mitochondrial function and ROS level in thymocytes and neurons. In this study, we reported the expression of Bmi1 in mouse cochlea and investigated the role of Bmi1 in hair cell survival. Bmi1 expressed in hair cells and supporting cells in mouse cochlea. Bmi1(-/-) mice displayed severe hearing loss and patched outer hair cell loss from postnatal day 22. Ototoxic drug-induced hair cells loss dramatically increased in Bmi1(-/-) mice compared with that in wild-type controls both in vivo and in vitro, indicating Bmi1(-/-) hair cells were significantly more sensitive to ototoxic drug-induced damage. Cleaved caspase-3 and TUNEL staining demonstrated that apoptosis was involved in the increased hair cell loss of Bmi1(-/-) mice. Aminophenyl fluorescein and MitoSOX Red staining showed the level of free radicals and mitochondrial ROS increased in Bmi1(-/-) hair cells due to the aggravated disequilibrium of antioxidant-prooxidant balance. Furthermore, the antioxidant N-acetylcysteine rescued Bmi1(-/-) hair cells from neomycin injury both in vitro and in vivo, suggesting that ROS accumulation was mainly responsible for the increased aminoglycosides sensitivity in Bmi1(-/-) hair cells. Our findings demonstrate that Bmi1 has an important role in hair cell survival by controlling redox balance and ROS level, thus suggesting that Bmi1 may work as a new therapeutic target for the prevention of hair cell death.

  14. High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jani, Ashish; Shaikh, Fauzia; Barton, Sunjay

    Purpose: To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials: The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results: HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis ofmore » tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions: HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.« less

  15. Organic content influences sediment microbial fuel cell performance and community structure.

    PubMed

    Zhao, Qing; Li, Ruying; Ji, Min; Ren, Zhiyong Jason

    2016-11-01

    This study constructed sediment microbial fuel cells (SMFCs) with different organic loadings without the amendment of external substrates, and it investigated how such variation affects electricity generation and microbial community structure. Results found sediment characteristics significantly influenced SMFC performance and appropriate organic content is important to maintain stable power outputs. SMFCs with loss of ignition (LOI) of 5% showed the most reliable performance in this study, while high organic content (LOI 10-16%) led to higher but very unstable voltage output because of biogas accumulation and worm activities. SMFCs with low organic content (1-3%) showed low power output. Different bacterial communities were found in SMFCs shown various power generation performance even those with similar organic contents. Thermodesulfovibrionaceae was found closely related to the system startup and Desulfobulbaceae showed great abundance in SMFCs with high power production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. The fate of mitochondrial loci in rho minus mutants induced by ultraviolet irradiation of Saccharomyces cerevisiae: effects of different post-irradiation treatments.

    PubMed

    Heude, M; Moustacchi, E

    1979-09-01

    Three main features regarding the loss of mitochondrial genetic markers among rho- mutants induced by ultraviolet irradiation are reported: (a) the frequency of loss of six loci examined increases with UV dose; (b) preferential loss of one region of the mitochondrial genome observed in spontaneous rho- mutants is enhanced by UV; and (c) the loss of each marker results from large deletions. Marker loss in rho- mutants was also investigated under conditions that modulate rho- induction. Liquid holding of irradiated exponential or stationary phase cells, as well as a split-dose regime applied to stationary phase cells, results in rho- mutants in which the loss of markers is correlated with rho- induction: the more sensitive the cells are to rho- induction, the more frequent are the marker losses among rho- clones derived from these cells. This correlation is not found in exponential-phase cells submitted to a split-dose treatment, suggesting that a different mechanism is involved in the latter case. It is known that UV-induced pyrimidine dimers are not excised in a controlled manner in mitochondrial DNA. However, our studies indicate that an accurate repair mechanism (of the recombinational type ?) can lead to the restoration of mitochondrial genetic information in growing cells.

  17. A polymer tandem solar cell with 10.6% power conversion efficiency.

    PubMed

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2',3'-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm(-2), IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%.

  18. A polymer tandem solar cell with 10.6% power conversion efficiency

    PubMed Central

    You, Jingbi; Dou, Letian; Yoshimura, Ken; Kato, Takehito; Ohya, Kenichiro; Moriarty, Tom; Emery, Keith; Chen, Chun-Chao; Gao, Jing; Li, Gang; Yang, Yang

    2013-01-01

    An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-performance low bandgap polymer (bandgap <1.4 eV), poly[2,7-(5,5-bis-(3,7-dimethyloctyl)-5H-dithieno[3,2-b:2′,3′-d]pyran)-alt-4,7-(5,6-difluoro-2,1,3-benzothia diazole)] with a bandgap of 1.38 eV, high mobility, deep highest occupied molecular orbital. As a result, a single-junction device shows high external quantum efficiency of >60% and spectral response that extends to 900 nm, with a power conversion efficiency of 7.9%. The polymer enables a solution processed tandem solar cell with certified 10.6% power conversion efficiency under standard reporting conditions (25 °C, 1,000 Wm−2, IEC 60904-3 global), which is the first certified polymer solar cell efficiency over 10%. PMID:23385590

  19. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    PubMed

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  20. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis

    PubMed Central

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D.

    2016-01-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance—replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. Significance This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. PMID:26987353

  1. Allelic loss in amalgam-associated oral lichenoid lesions compared to oral lichen planus and mucosa.

    PubMed

    Rodrigues, L N; Sousa, S F; Silva, Rcc; Abreu, Mhg; Pires, F R; Mesquita, R A; Bastos-Rodrigues, L; De Marco, L; Gomes, C C; Gomez, R S; Bernardes, V F

    2017-05-01

    The amalgam-associated oral lichenoid lesion (AAOLL) shows clinical and histopathological features similar to oral lichen planus (OLP). Molecular researches to improve knowledge of pathogenesis and clinical behavior of AAOLL are still scarce. We investigated for the first time the use of loss of heterozygosity (LOH) as a molecular approach for genetic characterization of AAOLL in comparison with OLP and evaluated the cell proliferation index. The sample comprised nine AAOLLs, 10 OLPs, and eight NOMs matched by patients' gender and age. LOH was assessed using polymorphic microsatellite markers at chromosomes 9p (D9S157, D9S162, D9S171), 11q (D11S1369), and 17p (TP53, AFM238WF2). Cell proliferation was assessed by immunohistochemical expression of Ki-67 (MIB-1). The association between LOH and Ki-67 was investigated. Loss of heterozygosity occurred in 5/9 AAOLLs and in 2/10 OLPs in at least one marker each, while NOM showed no LOH. Cell proliferation index in AAOLL ranged from 2 to 23%. There was no association between cell proliferation and LOH, independent of the marker. Our study shows that the profile of molecular changes in AAOLL and OLP, evaluated by LOH and Ki-67 expression, is similar. Additional studies including larger samples should be performed to confirm or to refute our findings. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes

    PubMed Central

    Shields, Emily J.; Lam, Carol J.; Cox, Aaron R.; Rankin, Matthew M.; Van Winkle, Thomas J.; Hess, Rebecka S.; Kushner, Jake A.

    2015-01-01

    The pathophysiology of canine diabetes remains poorly understood, in part due to enigmatic clinical features and the lack of detailed histopathology studies. Canine diabetes, similar to human type 1 diabetes, is frequently associated with diabetic ketoacidosis at onset or after insulin omission. However, notable differences exist. Whereas human type 1 diabetes often occurs in children, canine diabetes is typically described in middle age to elderly dogs. Many competing theories have been proposed regarding the underlying cause of canine diabetes, from pancreatic atrophy to chronic pancreatitis to autoimmune mediated β-cell destruction. It remains unclear to what extent β-cell loss contributes to canine diabetes, as precise quantifications of islet morphometry have not been performed. We used high-throughput microscopy and automated image processing to characterize islet histology in a large collection of pancreata of diabetic dogs. Diabetic pancreata displayed a profound reduction in β-cells and islet endocrine cells. Unlike humans, canine non-diabetic islets are largely comprised of β-cells. Very few β-cells remained in islets of diabetic dogs, even in pancreata from new onset cases. Similarly, total islet endocrine cell number was sharply reduced in diabetic dogs. No compensatory proliferation or lymphocyte infiltration was detected. The majority of pancreata had no evidence of pancreatitis. Thus, canine diabetes is associated with extreme β-cell deficiency in both new and longstanding disease. The β-cell predominant composition of canine islets and the near-total absence of β-cells in new onset elderly diabetic dogs strongly implies that similar to human type 1 diabetes, β-cell loss underlies the pathophysiology of canine diabetes. PMID:26057531

  3. Effect of an estrogen-deficient state and alendronate therapy on bone loss resulting from experimental periapical lesions in rats.

    PubMed

    Xiong, Haofei; Peng, Bin; Wei, Lili; Zhang, Xiaolei; Wang, Li

    2007-11-01

    The aim of the research was to evaluate the impact of an estrogen-deficient state and alendronate (ALD) therapy on bone loss resulting from experimental periapical lesions in rats. Periapical lesions were induced on ovariectomized (OVX) and sham-ovariectomized (Sham) rats. After sample preparation, histologic and radiographic examination for periapical bone loss area and an enzyme histochemical test for tartrate-resistant acid phosphatase (TRAP) were performed. The results showed that OVX significantly increased bone loss resulting from periradicular lesions. After daily subcutaneous injection of ALD, the bone loss area and the number of TRAP-positive cells (osteoclasts) were reduced. These findings suggested that alendronate may protect against increased bone loss from experimental periapical lesions in estrogen-deficient rats. Given recent recognition of adverse effects of bisphosphonates, including an increased risk for osteonecrosis, the findings from this study should not be interpreted as a new indication for ALD treatment. However, they may offer insight into understanding and predicting outcomes in female postmenopausal patients already on ALD therapy for medical indications.

  4. Serial corneal endothelial cell loss with lathe-cut and injection-molded posterior chamber intraocular lenses.

    PubMed

    Kraff, M C; Sanders, D R; Lieberman, H L

    1983-01-01

    We compared endothelial cell loss of patients implanted with lathe-cut posterior chamber lenses and those implanted with injection-molded lenses over a three-year postoperative period. Results were based on more than 2,500 measurements of corneal endothelial density. Although the technique of cataract extraction (anterior chamber phacoemulsification, posterior chamber phacoemulsification, or planned extracapsular extraction) significantly affected cell loss (P less than .01), the type of implant (lathe-cut or injection-molded) did not. Significant continuing endothelial cell loss did not occur during the first three postoperative years with injection-molded lenses. There was, however, a statistically significant 7% to 15% additional cell loss after surgery over the first two to three postoperative years with lathe-cut implants. There have been no cases of corneal endothelial decompensation developing after implantation of injection-molded or lathe-cut lenses. Because a standard field clinical specular microscope was used in this study, cell counting errors cannot be ruled out as a cause of these findings.

  5. Solid Oxide Fuel Cell short stack performance testing - part B: Operation in carbon capture applications and degradation issues

    NASA Astrophysics Data System (ADS)

    Mastropasqua, L.; Campanari, S.; Brouwer, J.

    2017-12-01

    The need to experimentally understand the performance of Solid Oxide Fuel Cells (SOFC) stacks under Carbon Capture and Storage (CCS) mode operating conditions, hence with anode recirculation, has prompted this two-part study. The steady state performance of a 6-cell short stack of Y2O3 stabilised Zirconia (YSZ) with Ni/YSZ anodes and composite Sr-doped LaMnO3 (LSM)/YSZ cathodes is experimentally evaluated. In Part A, the electrical and environmental performance are assessed and the results are compared with the commercial full-scale micro-Combined Heat and Power system, which comprises the same cells. In Part B of this work, a specific set of stack operating conditions important to CCS applications is explored. The experimental inlet composition is changed in order to reproduce a simulated syngas in CCS mode operation for different fuel utilisation factors. Operation with the simulated anode recycle syngas leads to lower voltage when the anode recycle is lower, mainly due to higher internal reforming and polarisation losses. A clear voltage trend is observed when the amount of CO content in the inlet fuel is increased, signalling an improvement of the polarisation performance at constant current density and fixed inlet equivalent hydrogen content. Stack degradation is measured and results in line with manufacturer's data.

  6. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment.

    PubMed

    Faraghat, Shabnam A; Hoettges, Kai F; Steinbach, Max K; van der Veen, Daan R; Brackenbury, William J; Henslee, Erin A; Labeed, Fatima H; Hughes, Michael P

    2017-05-02

    Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.

  7. Histone Deacetylase Inhibitors Are Protective in Acute but Not in Chronic Models of Ototoxicity.

    PubMed

    Yang, Chao-Hui; Liu, Zhiqi; Dong, Deanna; Schacht, Jochen; Arya, Dev; Sha, Su-Hua

    2017-01-01

    Previous studies have reported that modification of histones alters aminoglycoside-induced hair cell death and hearing loss. In this study, we investigated three FDA-approved histone deacetylase (HDAC) inhibitors (vorinostat/SAHA, belinostat, and panobinostat) as protectants against aminoglycoside-induced ototoxicity in murine cochlear explants and in vivo in both guinea pigs and CBA/J mice. Individually, all three HDAC inhibitors reduced gentamicin (GM)-induced hair cell loss in a dose-dependent fashion in explants. In vivo , however, treatment with SAHA attenuated neither GM-induced hearing loss and hair cell loss in guinea pigs nor kanamycin (KM)-induced hearing loss and hair cell loss in mice under chronic models of ototoxicity. These findings suggest that treatment with the HDAC inhibitor SAHA attenuates aminoglycoside-induced ototoxicity in an acute model, but not in chronic models, cautioning that one cannot rely solely on in vitro experiments to test the efficacy of otoprotectant compounds.

  8. Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss.

    PubMed

    Newton, Joseph M; Schofield, Desmond; Vlahopoulou, Joanna; Zhou, Yuhong

    2016-07-08

    Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction-point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069-1076, 2016. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  9. Generating mouse models of degenerative diseases using Cre/lox-mediated in vivo mosaic cell ablation

    PubMed Central

    Fujioka, Masato; Tokano, Hisashi; Fujioka, Keiko Shiina; Okano, Hideyuki; Edge, Albert S.B.

    2011-01-01

    Most degenerative diseases begin with a gradual loss of specific cell types before reaching a threshold for symptomatic onset. However, the endogenous regenerative capacities of different tissues are difficult to study, because of the limitations of models for early stages of cell loss. Therefore, we generated a transgenic mouse line (Mos-iCsp3) in which a lox-mismatched Cre/lox cassette can be activated to produce a drug-regulated dimerizable caspase-3. Tissue-restricted Cre expression yielded stochastic Casp3 expression, randomly ablating a subset of specific cell types in a defined domain. The limited and mosaic cell loss led to distinct responses in 3 different tissues targeted using respective Cre mice: reversible, impaired glucose tolerance with normoglycemia in pancreatic β cells; wound healing and irreversible hair loss in the skin; and permanent moderate deafness due to the loss of auditory hair cells in the inner ear. These mice will be important for assessing the repair capacities of tissues and the potential effectiveness of new regenerative therapies. PMID:21576819

  10. DNA hypermethylation profiles in squamous cell carcinoma of the vulva.

    PubMed

    Stephen, Josena K; Chen, Kang Mei; Raitanen, Misa; Grénman, Seija; Worsham, Maria J

    2009-01-01

    Gene silencing through promoter hypermethylation is a growing concept in the development of human cancers. In this study, we examined the contribution of aberrant methylation of promoter regions in methylation-prone tumor suppressors to the pathogenesis of vulvar cancer. Thirteen cell lines from 12 patients with squamous cell carcinoma of the vulva were evaluated for aberrant methylation status and gene copy number alterations, concomitantly, using the methylation-specific multiplex ligation-dependent probe amplification assay. Of the 22 tumor suppressor genes examined, aberrant methylation was observed for 9 genes: tumor protein p73 (TP73), fragile histidine triad (FHIT), von Hippel-Lindau (VHL), adenomatosis polyposis coli (APC), estrogen receptor 1 (ESR1), cyclin-dependent kinase inhibitor 2B (CDKN2B), death-associated protein kinase 1 (DAPK1), glutathione S-transferase pi (GSTP1), and immunoglobin superfamily, member 4 (IGSF4). The most frequently methylated genes included TP73 in 9 of 13 cell lines, and IGSF4, DAPK1, and FHIT in 3 of 13 cell lines. Methylation-specific polymerase chain reaction was performed for TP73 and FHIT to confirm aberrant methylation by methylation-specific multiplex ligation-dependent probe amplification. In the context of gene copy number and methylation status, both copies of the TP73 gene were hypermethylated. Loss or decreased mRNA expression of TP73 and IGSF4 by reverse transcription polymerase chain reaction confirmed aberrant methylation. Frequent genetic alterations of loss and gain of gene copy number included gain of GSTP1 and multiple endocrine neoplasia type 1 (MEN1), and loss of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) and IGSF4 in over 50% of the squamous cell carcinoma of the vulva cell lines. These findings underscore the contribution of both genetic and epigenetic events to the underlying pathogenesis of squamous cell carcinoma of the vulva.

  11. Controlling the Flow past a Semicircular Airfoil at Zero Angle of Attack Using Slot Suction in One or Two Vortex Cells for Attaining Extremal Lift

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Baranov, P. A.; Sudakov, A. G.; Popov, I. A.; Usachov, A. E.

    2017-12-01

    Calculations using multiblock computational technologies and a model of shear-stress transport modified with allowance for the curvature of streamlines in turbulent airflow were performed at a zero angle of attack for a semicircular airfoil containing one or two surface vortex cells with slot suction. The results showed evidence of stabilization of a nearly undetached flow and attainment of an extremal lift of C y = 5.2 and a lift-to-drag ratio of K = 24 with allowance for energy losses for suction in the vortex cells.

  12. Aqueous lithium air batteries

    DOEpatents

    Visco, Steven J.; Nimon, Yevgeniy S.; De Jonghe, Lutgard C.; Petrov, Alexei; Goncharenko, Nikolay

    2017-05-23

    Aqueous Li/Air secondary battery cells are configurable to achieve high energy density and prolonged cycle life. The cells include a protected a lithium metal or alloy anode and an aqueous catholyte in a cathode compartment. The aqueous catholyte comprises an evaporative-loss resistant and/or polyprotic active compound or active agent that partakes in the discharge reaction and effectuates cathode capacity for discharge in the acidic region. This leads to improved performance including one or more of increased specific energy, improved stability on open circuit, and prolonged cycle life, as well as various methods, including a method of operating an aqueous Li/Air cell to simultaneously achieve improved energy density and prolonged cycle life.

  13. GSTP1 Loss results in accumulation of oxidative DNA base damage and promotes prostate cancer cell survival following exposure to protracted oxidative stress.

    PubMed

    Mian, Omar Y; Khattab, Mohamed H; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M; Veeraswamy, Ravi K; Brooks, James D; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G; Yegnasubramanian, Srinivasan; DeWeese, Theodore L

    2016-02-01

    Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1- transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. © 2015 Wiley Periodicals, Inc.

  14. GSTP1 Loss Results in Accumulation of Oxidative DNA Base Damage and Promotes Prostate Cancer Cell Survival Following Exposure to Protracted Oxidative Stress

    PubMed Central

    Mian, Omar Y.; Khattab, Mohamed H.; Hedayati, Mohammad; Coulter, Jonathan; Abubaker-Sharif, Budri; Schwaninger, Julie M.; Veeraswamy, Ravi K.; Brooks, James D.; Hopkins, Lisa; Shinohara, Debika Biswal; Cornblatt, Brian; Nelson, William G.; Yegnasubramanian, Srinivasan; DeWeese, Theodore L.

    2016-01-01

    BACKGROUND Epigenetic silencing of glutathione S-transferase π (GSTP1) is a hallmark of transformation from normal prostatic epithelium to adenocarcinoma of the prostate. The functional significance of this loss is incompletely understood. The present study explores the effects of restored GSTP1 expression on glutathione levels, accumulation of oxidative DNA damage, and prostate cancer cell survival following oxidative stress induced by protracted, low dose rate ionizing radiation (LDR). METHODS GSTP1 protein expression was stably restored in LNCaP prostate cancer cells. The effect of GSTP1 restoration on protracted LDR-induced oxidative DNA damage was measured by GC-MS quantitation of modified bases. Reduced and oxidized glutathione levels were measured in control and GSTP1 expressing populations. Clonogenic survival studies of GSTP1-transfected LNCaP cells after exposure to protracted LDR were performed. Global gene expression profiling and pathway analysis were performed. RESULTS GSTP1 expressing cells accumulated less oxidized DNA base damage and exhibited decreased survival compared to control LNCaP-Neo cells following oxidative injury induced by protracted LDR. Restoration of GSTP1 expression resulted in changes in modified glutathione levels that correlated with GSTP1 protein levels in response to protracted LDR-induced oxidative stress. Survival differences were not attributable to depletion of cellular glutathione stores. Gene expression profiling and pathway analysis following GSTP1 restoration suggests this protein plays a key role in regulating prostate cancer cell survival. CONCLUSIONS The ubiquitous epigenetic silencing of GSTP1 in prostate cancer results in enhanced survival and accumulation of potentially promutagenic DNA adducts following exposure of cells to protracted oxidative injury suggesting a protective, anti-neoplastic function of GSTP1. The present work provides mechanistic backing to the tumor suppressor function of GSTP1 and its role in prostate carcinogenesis. PMID:26447830

  15. Widespread heterogeneous neuronal loss across the cerebral cortex in Huntington's disease.

    PubMed

    Nana, Alissa L; Kim, Eric H; Thu, Doris C V; Oorschot, Dorothy E; Tippett, Lynette J; Hogg, Virginia M; Synek, Beth J; Roxburgh, Richard; Waldvogel, Henry J; Faull, Richard L M

    2014-01-01

    Huntington's disease is an autosomal dominant neurodegenerative disease characterized by neuronal degeneration in the basal ganglia and cerebral cortex, and a variable symptom profile. Although progressive striatal degeneration is known to occur and is related to symptom profile, little is known about the cellular basis of symptom heterogeneity across the entire cerebral cortex. To investigate this, we have undertaken a double blind study using unbiased stereological cell counting techniques to determine the pattern of cell loss in six representative cortical regions from the frontal, parietal, temporal, and occipital lobes in the brains of 14 Huntington's disease cases and 15 controls. The results clearly demonstrate a widespread loss of total neurons and pyramidal cells across all cortical regions studied, except for the primary visual cortex. Importantly, the results show that cell loss is remarkably variable both within and between Huntington's disease cases. The results also show that neuronal loss in the primary sensory and secondary visual cortices relate to Huntington's disease motor symptom profiles, and neuronal loss across the associational cortices in the frontal, parietal and temporal lobes is related to both Huntington's disease motor and to mood symptom profiles. This finding considerably extends a previous study (Thu et al., Brain, 2010; 133:1094-1110) which showed that neuronal loss in the primary motor cortex was related specifically to the motor symptom profiles while neuronal loss in the anterior cingulate cortex was related specifically to mood symptom profiles. The extent of cortical cell loss in the current study was generally related to the striatal neuropathological grade, but not to CAG repeat length on the HTT gene. Overall our findings show that Huntington's disease is characterized by a heterogeneous pattern of neuronal cell loss across the entire cerebrum which varies with symptom profile.

  16. Estimating milk yield and value losses from increased somatic cell count on US dairy farms.

    PubMed

    Hadrich, J C; Wolf, C A; Lombard, J; Dolak, T M

    2018-04-01

    Milk loss due to increased somatic cell counts (SCC) results in economic losses for dairy producers. This research uses 10 mo of consecutive dairy herd improvement data from 2013 and 2014 to estimate milk yield loss using SCC as a proxy for clinical and subclinical mastitis. A fixed effects regression was used to examine factors that affected milk yield while controlling for herd-level management. Breed, milking frequency, days in milk, seasonality, SCC, cumulative months with SCC greater than 100,000 cells/mL, lactation, and herd size were variables included in the regression analysis. The cumulative months with SCC above a threshold was included as a proxy for chronic mastitis. Milk yield loss increased as the number of test days with SCC ≥100,000 cells/mL increased. Results from the regression were used to estimate a monetary value of milk loss related to SCC as a function of cow and operation related explanatory variables for a representative dairy cow. The largest losses occurred from increased cumulative test days with a SCC ≥100,000 cells/mL, with daily losses of $1.20/cow per day in the first month to $2.06/cow per day in mo 10. Results demonstrate the importance of including the duration of months above a threshold SCC when estimating milk yield losses. Cows with chronic mastitis, measured by increased consecutive test days with SCC ≥100,000 cells/mL, resulted in higher milk losses than cows with a new infection. This provides farm managers with a method to evaluate the trade-off between treatment and culling decisions as it relates to mastitis control and early detection. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation

    NASA Astrophysics Data System (ADS)

    Derr, Igor; Bruns, Michael; Langner, Joachim; Fetyan, Abdulmonem; Melke, Julia; Roth, Christina

    2016-09-01

    Electrochemical degradation (ED) of carbon felt electrodes was investigated by cycling of a flow through all-vanadium redox flow battery (VRFB) and conducting half-cell measurements with two reference electrodes inside the test bench. ED was detected using half-cell and full-cell electrochemical impedance spectroscopy (EIS) at different states of charge (SOC). Reversing the polarity of the battery to recover cell performance was performed with little success. Renewing the electrolyte after a certain amount of cycles restored the capacity of the battery. X-ray photoelectron spectroscopy (XPS) reveals that the amount of surface functional increases by more than a factor of 3 for the negative side as well as for the positive side. Scanning electron microscope (SEM) images show a peeling of the fiber surface after cycling the felts, which leads to a loss of electrochemically active surface area (ECSA). Long term cycling shows that ED has a stronger impact on the negative half-cell [V(II)/V(III)] than the positive half-cell [V(IV)/V(V)] and that the negative half-cell is the rate-determining half-cell for the VRFB.

  18. An electrical model of vapor-anode, multitube AMTEC cells[Alkali Metal Thermal to Electric Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tournier, J.M.; El-Genk, M.S.

    1998-07-01

    A two-dimensional electrical model of vapor-anode, multi-tube AMTEC cells was developed, which included four options of current collector configurations. Simulation results of several cells tested at AFRL showed that electrical losses in the current collector networks and the connecting leads were negligible. The polarization/concentration losses in the TiN electrodes were significant, amounting to 25%--50% of the cell theoretical power, while the contact and BASE ionic losses amounted to less than 16% of the cell theoretical power.

  19. The effect of tranexamic acid on blood loss and maternal outcome in the treatment of persistent postpartum hemorrhage: A nationwide retrospective cohort study.

    PubMed

    Gillissen, Ada; Henriquez, Dacia D C A; van den Akker, Thomas; Caram-Deelder, Camila; Wind, Merlijn; Zwart, Joost J; van Roosmalen, Jos; Eikenboom, Jeroen; Bloemenkamp, Kitty W M; van der Bom, Johanna G

    2017-01-01

    Recent results show a protective effect of tranexamic acid on death due to bleeding in patients with postpartum hemorrhage in low- and middle-resource countries. We quantify the association between early administration of tranexamic acid compared to late or no administration and severe acute maternal morbidity and blood loss among women suffering from persistent severe postpartum hemorrhage in a high-income country. We performed a nationwide retrospective cohort study in 61 hospitals in the Netherlands. The study population consisted of 1260 women with persistent postpartum hemorrhage who had received at least four units of red cells, or fresh frozen plasma or platelets in addition to red cells. A review of medical records was performed and cross-referenced with blood bank data. The composite endpoint comprised maternal morbidity (hysterectomy, ligation of the uterine arteries, emergency B-Lynch suture, arterial embolization or admission into an intensive care unit) and mortality. 247 women received early tranexamic acid treatment. After adjustment for confounding, odds ratio for the composite endpoint for early tranexamic acid (n = 247) versus no/late tranexamic acid (n = 984) was 0.92 (95% confidence interval (CI) 0.66 to 1.27). Propensity matched analysis confirmed the absence of a difference between women with and without tranexamic acid. Blood loss after administration of first line therapy did not differ significantly between the two groups (adjusted difference -177 mL, CI -509.4 to +155.0). Our findings suggest that in a high-resource country the effect of tranexamic acid on both blood loss and the combined endpoint of maternal mortality and morbidity may be disappointing.

  20. The effect of tranexamic acid on blood loss and maternal outcome in the treatment of persistent postpartum hemorrhage: A nationwide retrospective cohort study

    PubMed Central

    Henriquez, Dacia D. C. A.; van den Akker, Thomas; Wind, Merlijn; Zwart, Joost J.; van Roosmalen, Jos; Eikenboom, Jeroen; Bloemenkamp, Kitty W. M.; van der Bom, Johanna G.

    2017-01-01

    Background Recent results show a protective effect of tranexamic acid on death due to bleeding in patients with postpartum hemorrhage in low- and middle-resource countries. We quantify the association between early administration of tranexamic acid compared to late or no administration and severe acute maternal morbidity and blood loss among women suffering from persistent severe postpartum hemorrhage in a high-income country. Methods and findings We performed a nationwide retrospective cohort study in 61 hospitals in the Netherlands. The study population consisted of 1260 women with persistent postpartum hemorrhage who had received at least four units of red cells, or fresh frozen plasma or platelets in addition to red cells. A review of medical records was performed and cross-referenced with blood bank data. The composite endpoint comprised maternal morbidity (hysterectomy, ligation of the uterine arteries, emergency B-Lynch suture, arterial embolization or admission into an intensive care unit) and mortality. Results 247 women received early tranexamic acid treatment. After adjustment for confounding, odds ratio for the composite endpoint for early tranexamic acid (n = 247) versus no/late tranexamic acid (n = 984) was 0.92 (95% confidence interval (CI) 0.66 to 1.27). Propensity matched analysis confirmed the absence of a difference between women with and without tranexamic acid. Blood loss after administration of first line therapy did not differ significantly between the two groups (adjusted difference -177 mL, CI -509.4 to +155.0). Conclusions Our findings suggest that in a high-resource country the effect of tranexamic acid on both blood loss and the combined endpoint of maternal mortality and morbidity may be disappointing. PMID:29107951

  1. Intralaminar nuclei of the thalamus in Lewy body diseases.

    PubMed

    Brooks, Daniel; Halliday, Glenda M

    2009-02-16

    Although the intralaminar thalamus is a target of alpha-synuclein pathology in Parkinson's disease, the degree of neuronal loss in Lewy body diseases has not been assessed. We have used unbiased stereological techniques to quantify neuronal loss in intralaminar thalamic nuclei concentrating alpha-synuclein pathology (the anterodorsal, cucullar, parataenial, paraventricular, central medial, central lateral and centre-median/parafascicular complex) in different clinical forms of Lewy body disease (Parkinson's disease with and without dementia, and dementia with Lewy bodies, N=21) compared with controls (N=5). Associations were performed in the Lewy body cases between intralaminar cell loss and the main diagnostic clinical (parkinsonism, dementia, fluctuation in consciousness, and visual hallucinations) and pathological (Braak stage of Parkinson's disease) features of these diseases, as well as between cell loss and the scaled severity of the alpha-synuclein deposition within the intralaminar thalamus. As expected, significant alpha-synuclein accumulation occurred in the intralaminar thalamus in the cases with Lewy body disease. Pathology concentrated anteriorly and in the central lateral and paraventricular nuclei was related to the Braak stage of Parkinson's disease, ageing, and the presence of dementia. Across all types of Lewy body cases there was substantial atrophy and neuronal loss in the central lateral, cucullar and parataenial nuclei, and neuronal loss without atrophy in the centre-median/parafascicular complex. Cases with visual hallucinations showed a greater degree of atrophy of the cucullar nucleus, possibly due to amygdala denervation. The significant degeneration demonstrated in the intralaminar thalamus is likely to contribute to the movement and cognitive dysfunction observed in Lewy body disorders.

  2. ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition

    PubMed Central

    Wang, Belinda; Krall, Elsa Beyer; Aguirre, Andrew James; Kim, Miju; Widlund, Hans Ragnar; Doshi, Mihir Bhavik; Sicinska, Ewa; Sulahian, Rita; Goodale, Amy; Cowley, Glenn Spencer; Piccioni, Federica; Doench, John Gerard; Root, David Edward; Hahn, William Chun

    2017-01-01

    SUMMARY Intrinsic resistance and RTK-RAS-MAPK pathway reactivation has limited the effectiveness of MEK and RAF inhibitors (MAPKi) in RAS- and RAF-mutant cancers. To identify genes that modulate sensitivity to MAPKi, we performed genome scale CRISPR-Cas9 loss-of-function screens in two KRAS-mutant pancreatic cancer cell lines treated with the MEK1/2 inhibitor trametinib. Loss of CIC, a transcriptional repressor of ETV1, 4, and 5, promoted survival in the setting of MAPKi in cancer cells derived from several lineages. ATXN1L deletion, which reduces CIC protein, or ectopic expression of ETV1, 4, or 5 also modulated sensitivity to trametinib. ATXN1L expression inversely correlates with response to MAPKi inhibition in clinical studies. These observations identify the ATXN1L-CIC-ETS transcription factor axis as a mediator of resistance to MAPKi. PMID:28178529

  3. A Physiological Signal Transmission Model to be Used for Specific Diagnosis of Cochlear Impairments

    NASA Astrophysics Data System (ADS)

    Saremi, Amin; Stenfelt, Stefan

    2011-11-01

    Many of the sophisticated characteristics of human auditory system are attributed to cochlea. Also, most of patients with a hearing loss suffer from impairments that originate from cochlea (sensorineural). Despite this, today's clinical diagnosis methods do not probe the specific origins of such cochlear lesions. The aim of this research is to introduce a physiological signal transmission model to be clinically used as a tool for diagnosis of cochlear losses. This model enables simulation of different bio-mechano-electrical processes which occur in the auditory organ of Corti inside the cochlea. What makes this model different from many available computational models is its loyalty to physiology since the ultimate goal is to model each single physiological phenomenon. This includes passive BM vibration, outer hair cells' performances such as nonlinear mechanoelectrical transduction (MET), active amplifications by somatic motor, as well as vibration to neural conversion at the inner hair cells.

  4. Where is the lithium? Quantitative determination of the lithium distribution in lithium ion battery cells: Investigations on the influence of the temperature, the C-rate and the cell type

    NASA Astrophysics Data System (ADS)

    Vortmann-Westhoven, Britta; Winter, Martin; Nowak, Sascha

    2017-04-01

    With lithium being the capacity determining species in lithium-ion battery (LIB) cells, the local quantification is of enormous importance for understanding of the cell performance. The investigation of the lithium distribution in LIB full cells is performed with two different cell types, T-cells of the Swagelok® type and pouch bag cells with lithium nickel cobalt manganese oxide and mesocarbon microbead graphite as the active materials as well as a lithium hexafluorophosphate based organic carbonate solvent electrolyte. The lithium content of/at the individual components of the cells is analyzed for different states of charge (SOCs) by inductively coupled plasma-optical emission spectrometry (ICP-OES) and the lithium distribution as well as the loss of active lithium within the cells is calculated after cycling. With increasing the SOC, the lithium contents decrease in the cathodes and simultaneously increase in the anodes. The temperature increase shows a clear shift of the lithium content in the direction of the anode for the T-cells. The comparison of the C-rate influence shows that the lower the C-rate, the more the lithium content on the electrodes is shifted into the direction of the anode.

  5. Manipulating cell fate in the cochlea: a feasible therapy for hearing loss

    PubMed Central

    Fujioka, Masato; Okano, Hideyuki; Edge, Albert SB

    2015-01-01

    Mammalian auditory hair cells do not spontaneously regenerate, unlike hair cells in lower vertebrates including fish and birds. In mammals, hearing loss due to the loss of hair cells is thus permanent and intractable. Recent studies in the mouse have demonstrated spontaneous hair cell regeneration during a short postnatal period, but this regenerative capacity is lost in the adult cochlea. Reduced regeneration coincides with a transition that results in a decreased pool of progenitor cells in the cochlear sensory epithelium. Here, we review the signaling cascades involved in hair cell formation and morphogenesis of the organ of Corti in developing mammals, the changing status of progenitor cells in the cochlea, and the regeneration of auditory hair cells in adult mammals. PMID:25593106

  6. Performance study of sugar-yeast-ethanol bio-hybrid fuel cells

    NASA Astrophysics Data System (ADS)

    Jahnke, Justin P.; Mackie, David M.; Benyamin, Marcus; Ganguli, Rahul; Sumner, James J.

    2015-05-01

    Renewable alternatives to fossil hydrocarbons for energy generation are of general interest for a variety of political, economic, environmental, and practical reasons. In particular, energy from biomass has many advantages, including safety, sustainability, and the ability to be scavenged from native ecosystems or from waste streams. Microbial fuel cells (MFCs) can take advantage of microorganism metabolism to efficiently use sugar and other biomolecules as fuel, but are limited by low power densities. In contrast, direct alcohol fuel cells (DAFCs) take advantage of proton exchange membranes (PEMs) to generate electricity from alcohols at much higher power densities. Here, we investigate a novel bio-hybrid fuel cell design prepared using commercial off-the-shelf DAFCs. In the bio-hybrid fuel cells, biomass such as sugar is fermented by yeast to ethanol, which can be used to fuel a DAFC. A separation membrane between the fermentation and the DAFC is used to purify the fermentate while avoiding any parasitic power losses. However, shifting the DAFCs from pure alcohol-water solutions to filtered fermented media introduces complications related to how the starting materials, fermentation byproducts, and DAFC waste products affect both the fermentation and the long-term DAFC performance. This study examines the impact of separation membrane pore size, fermentation/fuel cell byproducts, alcohol and salt concentrations, and load resistance on fuel cell performance. Under optimized conditions, the performance obtained is comparable to that of a similar DAFC run with a pure alcohol-water mixture. Additionally, the modified DAFC can provide useable amounts of power for weeks.

  7. Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma

    PubMed Central

    Landreville, Solange; Agapova, Olga A.; Matatall, Katie A.; Kneass, Zachary T.; Onken, Michael D.; Lee, Ryan S.; Bowcock, Anne M.; Harbour, J. William

    2011-01-01

    Purpose Metastasis is responsible for the death of most cancer patients, yet few therapeutic agents are available which specifically target the molecular events that lead to metastasis. We recently showed that inactivating mutations in the tumor suppressor gene BAP1 are closely associated with loss of melanocytic differentiation in uveal melanoma and metastasis (UM). The purpose of this study was to identify therapeutic agents that reverse the phenotypic effects of BAP1 loss in UM. Experimental Design In silico screens were performed to identify therapeutic compounds predicted to differentiate UM cells using Gene Set Enrichment Analysis and Connectivity Map databases. Valproic acid, trichostatin A, LBH-589 and suberoylanilide hydroxamic acid were evaluated for their effects on UM cells using morphologic evaluation, MTS viability assays, BrdU incorporation, flow cytometry, clonogenic assays, gene expression profiling, histone acetylation and ubiquitination assays, and a murine xenograft tumorigenicity model. Results HDAC inhibitors induced morphologic differentiation, cell cycle exit, and a shift to a differentiated, melanocytic gene expression profile in cultured UM cells. Valproic acid inhibited the growth of UM tumors in vivo. Conclusions These findings suggest that HDAC inhibitors may have therapeutic potential for inducing differentiation and prolonged dormancy of micrometastatic disease in UM. PMID:22038994

  8. Inflammation- and tumor-induced anorexia and weight loss require MyD88 in hematopoietic/myeloid cells but not in brain endothelial or neural cells.

    PubMed

    Ruud, Johan; Wilhelms, Daniel Björk; Nilsson, Anna; Eskilsson, Anna; Tang, Yan-Juan; Ströhle, Peter; Caesar, Robert; Schwaninger, Markus; Wunderlich, Thomas; Bäckhed, Fredrik; Engblom, David; Blomqvist, Anders

    2013-05-01

    Loss of appetite is a hallmark of inflammatory diseases. The underlying mechanisms remain undefined, but it is known that myeloid differentiation primary response gene 88 (MyD88), an adaptor protein critical for Toll-like and IL-1 receptor family signaling, is involved. Here we addressed the question of determining in which cells the MyD88 signaling that results in anorexia development occurs by using chimeric mice and animals with cell-specific deletions. We found that MyD88-knockout mice, which are resistant to bacterial lipopolysaccharide (LPS)-induced anorexia, displayed anorexia when transplanted with wild-type bone marrow cells. Furthermore, mice with a targeted deletion of MyD88 in hematopoietic or myeloid cells were largely protected against LPS-induced anorexia and displayed attenuated weight loss, whereas mice with MyD88 deletion in hepatocytes or in neural cells or the cerebrovascular endothelium developed anorexia and weight loss of similar magnitude as wild-type mice. Furthermore, in a model for cancer-induced anorexia-cachexia, deletion of MyD88 in hematopoietic cells attenuated the anorexia and protected against body weight loss. These findings demonstrate that MyD88-dependent signaling within the brain is not required for eliciting inflammation-induced anorexia. Instead, we identify MyD88 signaling in hematopoietic/myeloid cells as a critical component for acute inflammatory-driven anorexia, as well as for chronic anorexia and weight loss associated with malignant disease.

  9. Water and electrolytes. [in human bodies

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Harrison, M. H.

    1986-01-01

    It has been found that the performance of the strongest and fittest people will deteriorate rapidly with dehydration. The present paper is concerned with the anatomy of the fluid spaces in the body, taking into account also the fluid shifts and losses during exercise and their effects on performance. Total body water is arbitrarily divided into that contained within cells (cellular) and that located outside the cells (extracellular). The anatomy of body fluid compartments is considered along with the effects of exercise on body water, fluid shifts with exercise, the consequences of sweating, dehydration and exercise, heat acclimatization and endurance training, the adverse effects of dehydration, thirst and drinking during exercise, stimuli for drinking, and water, electrolyte, and carbohydrate replacement during exercise. It is found that the deterioration of physical exercise performance due to dehydration begins when body weight decreases by about 1 percent.

  10. The UPSF code: a metaprogramming-based high-performance automatically parallelized plasma simulation framework

    NASA Astrophysics Data System (ADS)

    Gao, Xiatian; Wang, Xiaogang; Jiang, Binhao

    2017-10-01

    UPSF (Universal Plasma Simulation Framework) is a new plasma simulation code designed for maximum flexibility by using edge-cutting techniques supported by C++17 standard. Through use of metaprogramming technique, UPSF provides arbitrary dimensional data structures and methods to support various kinds of plasma simulation models, like, Vlasov, particle in cell (PIC), fluid, Fokker-Planck, and their variants and hybrid methods. Through C++ metaprogramming technique, a single code can be used to arbitrary dimensional systems with no loss of performance. UPSF can also automatically parallelize the distributed data structure and accelerate matrix and tensor operations by BLAS. A three-dimensional particle in cell code is developed based on UPSF. Two test cases, Landau damping and Weibel instability for electrostatic and electromagnetic situation respectively, are presented to show the validation and performance of the UPSF code.

  11. High-energy lithium-ion battery using substituted LiCoPO4: From coin type to 1 Ah cell

    NASA Astrophysics Data System (ADS)

    Liu, D.; Zhu, W.; Kim, C.; Cho, M.; Guerfi, A.; Delp, S. A.; Allen, J. L.; Jow, T. R.; Zaghib, K.

    2018-06-01

    Cr, Fe and Si were added to improve the performance of olivine LiCoPO4 in cathodes for lithium-ion batteries. A substituted-LiCoPO4 in a half cell delivered a reversible capacity of 125 mAh/g at C/3 rate, with no capacity loss after over 100 cycles at 25 °C. The well-known capacity fade of LiCoPO4-based cathodes was almost completely eliminated by substituting Cr, Fe and Si.

  12. Kinetic experiments for evaluating the Nernst-Monod model for anode-respiring bacteria (ARB) in a biofilm anode.

    PubMed

    Torres, César I; Marcus, Andrew Kato; Parameswaran, Prathap; Rittmann, Bruce E

    2008-09-01

    Anode-respiring bacteria (ARB) are able to transfer electrons from reduced substrates to a solid electrode. Previously, we developed a biofilm model based on the Nernst-Monod equation to describe the anode potential losses of ARB that transfer electrons through a solid conductive matrix. In this work, we develop an experimental setup to demonstrate how well the Nernst-Monod equation is able to represent anode potential losses in an ARB biofilm. We performed low-scan cyclic voltammetry (LSCV) throughout the growth phase of an ARB biofilm on a graphite electrode growing on acetate in continuous mode. The (j)V response of 9 LSCVs corresponded well to the Nernst-Monod equation, and the half-saturation potential (E(KA)) was -0.425 +/- 0.002 V vs Ag/AgCl at 30 degrees C (-0.155 +/- 0.002 V vs SHE). Anode-potential losses from the potential of acetate reached approximately 0.225 V at current density saturation, and this loss was determined by our microbial community's E(KA) value. The LSCVs at high current densities showed no significant deviation from the Nernst-Monod ideal shape, indicating that the conductivity of the biofilm matrix (kappa(bio)) was high enough (> or = 0.5 mS/cm) that potential loss did not affect the performance of the biofilm anode. Our results confirm the applicability of the Nernst-Monod equation for a conductive biofilm anode and give insights of the processes that dominate anode potential losses in microbial fuel cells.

  13. Efficacy of three drugs for protecting against gentamicin-induced hair cell and hearing losses

    PubMed Central

    Bas, E; Van De Water, TR; Gupta, C; Dinh, J; Vu, L; Martínez-Soriano, F; Láinez, JM; Marco, J

    2012-01-01

    BACKGROUND AND PURPOSE Exposure to an ototoxic level of an aminoglycoside can result in hearing loss. In this we study investigated the otoprotective efficacy of dexamethasone (DXM), melatonin (MLT) and tacrolimus (TCR) in gentamicin (GM)-treated animals and cultures. EXPERIMENTAL APPROACH Wistar rats were divided into controls (treated with saline); exposed to GM only (GM); and three GM-exposed groups treated with either DXM, MLT or TCR. Auditory function and cochlear surface preparations were studied. In vitro studies of oxidative stress, pro-inflammatory cytokine mRNA levels, the MAPK pathway and caspase-3 activation were performed in organ of Corti explants from 3-day-old rats. KEY RESULTS DXM, MLT and TCR decreased levels of reactive oxygen species in GM-exposed explants. The mRNA levels of TNF-α, IL-1β and TNF-receptor type 1 were significantly reduced in GM + DXM and GM + MLT groups. Phospho-p38 MAPK levels decreased in GM + MLT and GM + TCR groups, while JNK phosphorylation was reduced in GM + DXM and GM + MLT groups. Caspase-3 activation decreased in GM + DXM, GM + MLT and GM + TCR groups. These results were consistent with in vivo results. Local treatment of GM-exposed rat cochleae with either DXM, MLT or TCR preserved auditory function and prevented auditory hair cell loss. CONCLUSIONS AND IMPLICATIONS In organ of Corti explants, GM increased oxidative stress and initiated an inflammatory response that led to the activation of MAPKs and apoptosis of hair cells. The three compounds tested demonstrated otoprotective properties that could be beneficial in the treatment of ototoxicity-induced hearing loss. PMID:22320124

  14. Gastric clearance of serum albumin in normal man and in certain gastroduodenal disorders

    PubMed Central

    Brassinne, A.

    1974-01-01

    Serum albumin gastric loss was estimated from the measurement of non-dialysable radioactivity of the gastric juice after intravenous injection of radioiodinated serum albumin (RISA). Immunochemical quantitation of serum albumin was performed in some of the samples. In the control group, the mean gastric clearance of albumin was 1·71 ml per hour with a range of 0·41 to 4·41 ml per hour. This represented a gastric loss of 1·9 gram of albumin per day and 11% of the daily degradation of albumin. There was no significant change in the gastric albumin loss after stimulating the gastric secretion. No significant difference in the gastric albumin leakage was found between normal subjects and patients with gastric or duodenal ulcer. In pernicious anaemia albumin loss into the stomach was greater (mean: 3·72 ml per hour; SD 1·52 ml) than in the normal group and accounted for the greater albumin fractional catabolic rate. This fact had never been proved before. In both patients with giant rugae of the gastric mucosa the gastric clearance of serum albumin was also increased. It is concluded first that albumin is not secreted by the chief and parietal cells of the mucosa and probably passes through the gastric wall between the cells of the mucosa, perhaps during the exfoliation of the surface epithelial cells, and secondly that the stomach is one of the sites of serum albumin breakdown, a fact that supports the view that the gastrointestinal tract plays a major role in the catabolism of serum albumin. PMID:4210183

  15. Predicting efficiency of solar cells based on transparent conducting electrodes

    NASA Astrophysics Data System (ADS)

    Kumar, Ankush

    2017-01-01

    Efficiency of a solar cell is directly correlated with the performance of its transparent conducting electrodes (TCEs) which dictates its two core processes, viz., absorption and collection efficiencies. Emerging designs of a TCE involve active networks of carbon nanotubes, silver nanowires and various template-based techniques providing diverse structures; here, voids are transparent for optical transmittance while the conducting network acts as a charge collector. However, it is still not well understood as to which kind of network structure leads to an optimum solar cell performance; therefore, mostly an arbitrary network is chosen as a solar cell electrode. Herein, we propose a new generic approach for understanding the role of TCEs in determining the solar cell efficiency based on analysis of shadowing and recombination losses. A random network of wires encloses void regions of different sizes and shapes which permit light transmission; two terms, void fraction and equivalent radius, are defined to represent the TCE transmittance and wire spacings, respectively. The approach has been applied to various literature examples and their solar cell performance has been compared. To obtain high-efficiency solar cells, optimum density of the wires and their aspect ratio as well as active layer thickness are calculated. Our findings show that a TCE well suitable for one solar cell may not be suitable for another. For high diffusion length based solar cells, the void fraction of the network should be low while for low diffusion length based solar cells, the equivalent radius should be lower. The network with less wire spacing compared to the diffusion length behaves similar to continuous film based TCEs (such as indium tin oxide). The present work will be useful for architectural as well as material engineering of transparent electrodes for improvisation of solar cell performance.

  16. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS

    PubMed Central

    Suzuki, Masatoshi; McHugh, Jacalyn; Tork, Craig; Shelley, Brandon; Hayes, Antonio; Bellantuono, Ilaria; Aebischer, Patrick; Svendsen, Clive N.

    2008-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle leading to paralysis. To maintain muscle connections in a rat model of familial ALS, we performed intramuscular transplantation with human mesenchymal stem cells (hMSC) as “Trojan horses” to deliver growth factors to the terminals of motor neurons as well as the skeletal muscles. hMSC engineered to secrete glial cell line derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid stages of the disease. Furthermore, intramuscular transplantation with hMSC-GDNF could ameliorate motor neuron loss within the spinal cord which connected to the limb muscles with transplants. While disease onset was similar in all animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the longest effects on survival noted for this rat model of familial ALS. This pre-clinical data provides a novel and practical approach towards ex vivo gene therapy for ALS. PMID:18797452

  17. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS.

    PubMed

    Suzuki, Masatoshi; McHugh, Jacalyn; Tork, Craig; Shelley, Brandon; Hayes, Antonio; Bellantuono, Ilaria; Aebischer, Patrick; Svendsen, Clive N

    2008-12-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle, leading to paralysis. In order to maintain muscle connections in a rat model of familial ALS (FALS), we performed intramuscular transplantation with human mesenchymal stem cells (hMSCs) used as "Trojan horses" to deliver growth factors to the terminals of motor neurons and to the skeletal muscles. hMSCs engineered to secrete glial cell line-derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid-stages of the disease. Further, intramuscular transplantation with hMSC-GDNF was found to ameliorate motor neuron loss within the spinal cord where it connects with the limb muscles receiving transplants. While disease onset was similar in all the animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the largest effects on survival noted for this rat model of FALS. This preclinical data provides a novel and practical approach toward ex vivo gene therapy for ALS.

  18. Comparison of ``AA`` nickel metal hydride cells with ``AA`` Ni-Cd cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alminauskas, V.; Johnson, W.

    1996-12-31

    This paper compares ``AA`` size nickel metal hydride (Ni-HM) cells with comparable ``AA;; nickel cadmium (Ni-Cd) cells both of which were obtained in 1993. The Ni-MH cells were found to be a suitable substitute for conventional Ni-Cd cells. Both these cell types have similar voltages and discharge characteristics. The Ni-MH cells, though had nearly twice the capacity as comparable Ni-Cd cells. There was no significant difference in self discharge between the two types of cells. The Ni-MH cells also performed as well as Ni-Cd cells at rates lower than 5 amperes and at temperatures higher than 0 C (32 F).more » The most interesting finding is that the Ni-MH cells showed an irreversible decay of the discharge voltage with each cycle which was more noticeable during pulses. Eventually the Ni-MH packs fail, not because of loss of capacity, but because of low voltage during the pulse.« less

  19. Selective inner hair cell loss in prematurity: a temporal bone study of infants from a neonatal intensive care unit.

    PubMed

    Amatuzzi, Monica; Liberman, M Charles; Northrop, Clarinda

    2011-10-01

    Premature birth is a well-known risk factor for sensorineural hearing loss in general and auditory neuropathy in particular. However, relatively little is known about the underlying causes, in part because there are so few relevant histopathological studies. Here, we report on the analysis of hair cell loss patterns in 54 temporal bones from premature infants and a control group of 46 bones from full-term infants, all of whom spent time in the neonatal intensive care unit at the Hospital de Niños in San Jose, Costa Rica, between 1977 and 1993. The prevalence of significant hair cell loss was higher in the preterm group than the full-term group (41% vs. 28%, respectively). The most striking finding was the frequency of selective inner hair cell loss, an extremely rare histopathological pattern, in the preterm vs. the full-term babies (27% vs. 3%, respectively). The findings suggest that a common cause of non-genetic auditory neuropathy is selective loss of inner hair cells rather than primary damage to the cochlear nerve.

  20. Expression of the estrogen receptor GPER by testicular peritubular cells is linked to sexual maturation and male fertility

    PubMed Central

    Sandner, F; Welter, H; Schwarzer, JU; Köhn, FM; Urbanski, HF; Mayerhofer, A

    2014-01-01

    Besides the two nuclear estrogen receptors (ESR1/ESR2), the G protein-coupled estrogen receptor (GPER) was described in the human testis but little is known about testicular GPER during development or male infertility. We performed an immunohistochemical analysis using human and rhesus monkey testicular samples. The results obtained in adult primate testes showed GPER in interstitial and vascular cells as well as in the smooth muscle-like peritubular cells, which build the wall of seminiferous tubules. Expression of GPER was also found in cultured human testicular peritubular cells (HPTCs) by Western blotting and RT-PCR/sequencing. Furthermore, as seen in time-lapse videos of cultured cells, addition of a specific GPER agonist (G1) significantly reduced the numbers of HTPCs within 24 h. A GPER antagonist (G15) prevented this action, implying a role for GPER related to the control of cell proliferation or cell death of peritubular cells. Peritubular cell functions and their phenotype change, for example, during postnatal development and in cases of male infertility. The study of non-human primate samples revealed that GPER in peritubular cells was detectable only from the time of puberty onwards, while in samples from infantile and prepubertal monkeys only interstitial cells showed immunopositive staining. In testicular biopsies of men with mixed atrophy a reduction or loss of immunoreactive GPER was found in peritubular cells surrounding those tubules, in which spermatogenesis was impaired. In other cases of impaired spermatogenesis, namely when the tubular wall was fibrotically remodeled, a complete loss of GPER was seen. Thus, the observed inverse relation between the state of fertility and GPER expression by peritubular cells implies that the regulation of primate testicular peritubular cells by estrogens is mediated by GPER in both, health and disease. PMID:25052196

  1. Simian virus 40-related antigens in three human meningiomas with defined chromosome loss.

    PubMed Central

    Weiss, A F; Portmann, R; Fischer, H; Simon, J; Zang, K D

    1975-01-01

    Two out of seven meningiomas tested in early cell cultures by indirect immunofluorescence staining showed simian virus 40 (SV40)-related tumor (T) antigen. In one tumor 90% of the cells were positive. An additional SV40-related antigen (U) was found in 10% of cells of a third tumor. These findings indicate that the meningioma cells showing a positive reaction are transformed by a papova virus that has at least partly the same antigenic properties as SV40 virus. SV40-related viral capsid (V) antigen was absent in all the meningiomas tested. No virus infectious for African green monkey kidney (AGMK) cells could be isolated. The tumors positive for T and U antigens showed the chromosome aberration typical for human meningiomas, i.e., the loss of one chromosome, G-22. The T-antigen-positive tumors showed further hypodiploidization. Experiments to rescue virus from the T-antigen-positive tumors showed further hypodiploidization. Experiments to rescue virus from the T-antigen-positive meningioma cells were performed: fusion of cells pretreated with 8-azaguanine with cells premissive for SV40 led to a low percentage (0.01-0.05%) of V-antigen-positive nuclei in heterokaryon cultures. On the basis of these results, the possibility of a correlation between the meningioma, a relatively common intracranial tumor in man, and an SV40-related papova virus must be considered. It remains to be shown whether this virus is a causative agent for human meningiomas. Images PMID:164660

  2. Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging.

    PubMed

    Young, Kira; Borikar, Sneha; Bell, Rebecca; Kuffler, Lauren; Philip, Vivek; Trowbridge, Jennifer J

    2016-10-17

    Declining immune function with age is associated with reduced lymphoid output of hematopoietic stem cells (HSCs). Currently, there is poor understanding of changes with age in the heterogeneous multipotent progenitor (MPP) cell compartment, which is long lived and responsible for dynamically regulating output of mature hematopoietic cells. In this study, we observe an early and progressive loss of lymphoid-primed MPP cells (LMPP/MPP4) with aging, concomitant with expansion of HSCs. Transcriptome and in vitro functional analyses at the single-cell level reveal a concurrent increase in cycling of aging LMPP/MPP4 with loss of lymphoid priming and differentiation potential. Impaired lymphoid differentiation potential of aged LMPP/MPP4 is not rescued by transplantation into a young bone marrow microenvironment, demonstrating cell-autonomous changes in the MPP compartment with aging. These results pinpoint an age and cellular compartment to focus further interrogation of the drivers of lymphoid cell loss with aging. © 2016 Young et al.

  3. Cargo self-assembly rescues affinity of cell-penetrating peptides to lipid membranes

    NASA Astrophysics Data System (ADS)

    Weinberger, Andreas; Walter, Vivien; MacEwan, Sarah R.; Schmatko, Tatiana; Muller, Pierre; Schroder, André P.; Chilkoti, Ashutosh; Marques, Carlos M.

    2017-03-01

    Although cationic cell-penetrating peptides (CPPs) are able to bind to cell membranes, thus promoting cell internalization by active pathways, attachment of cargo molecules to CPPs invariably reduces their cellular uptake. We show here that CPP binding to lipid bilayers, a simple model of the cell membrane, can be recovered by designing cargo molecules that self-assemble into spherical micelles and increase the local interfacial density of CPP on the surface of the cargo. Experiments performed on model giant unilamellar vesicles under a confocal laser scanning microscope show that a family of thermally responsive elastin-like polypeptides that exhibit temperature-triggered micellization can promote temperature triggered attachment of the micelles to membranes, thus rescuing by self-assembly the cargo-induced loss of the CPP affinity to bio-membranes.

  4. Research opportunities in loss of red blood cell mass in space flight

    NASA Technical Reports Server (NTRS)

    Talbot, J. M.; Fisher, K. D.

    1985-01-01

    Decreases of red blood cell mass and plasma volume have been observed consistently following manned space flights. Losses of red cell mass by United States astronauts have averaged 10 to 15% (range: 2 to 21%). Based on postflight estimates of total hemoglobin, Soviet cosmonauts engaged in space missions lasting from 1 to 7 months have exhibited somewhat greater losses. Restoration of red cell mass requires from 4 to 6 weeks following return to Earth, regardless of the duration of space flight.

  5. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  6. Measurement of mismatch loss in CPV modul

    NASA Astrophysics Data System (ADS)

    Liu, Mingguo; Kinsey, Geoffrey S.; Bagienski, Will; Nayak, Adi; Garboushian, Vahan

    2012-10-01

    A setup capable of simultaneously measuring I-V curves of a full string and its individual cells has been developed. This setup enables us to measure mismatch loss from individual cells in concert with various string combinations under varying field conditions. Mismatch loss from cells to plates at different off-track angles and mismatch from plates to strings in Amonix system during normal operation have been investigated.

  7. A CRISPR-Based Toolbox for Studying T Cell Signal Transduction

    PubMed Central

    Chi, Shen; Weiss, Arthur; Wang, Haopeng

    2016-01-01

    CRISPR/Cas9 system is a powerful technology to perform genome editing in a variety of cell types. To facilitate the application of Cas9 in mapping T cell signaling pathways, we generated a toolbox for large-scale genetic screens in human Jurkat T cells. The toolbox has three different Jurkat cell lines expressing distinct Cas9 variants, including wild-type Cas9, dCas9-KRAB, and sunCas9. We demonstrated that the toolbox allows us to rapidly disrupt endogenous gene expression at the DNA level and to efficiently repress or activate gene expression at the transcriptional level. The toolbox, in combination with multiple currently existing genome-wide sgRNA libraries, will be useful to systematically investigate T cell signal transduction using both loss-of-function and gain-of-function genetic screens. PMID:27057542

  8. The dynamic and steady state behavior of a PEM fuel cell as an electric energy source

    NASA Astrophysics Data System (ADS)

    Costa, R. A.; Camacho, J. R.

    The main objective of this work is to extract information on the internal behavior of three small polymer electrolyte membrane fuel cells under static and dynamic load conditions. A computational model was developed using Scilab [SCILAB 4, Scilab-a free scientific software package, http://www.scilab.org/, INRIA, France, December, 2005] to simulate the static and dynamic performance [J.M. Correa, A.F. Farret, L.N. Canha, An analysis of the dynamic performance of proton exchange membrane fuel cells using an electrochemical model, in: 27th Annual Conference of IEEE Industrial Electronics Society, 2001, pp. 141-146] of this particular type of fuel cell. This dynamic model is based on electrochemical equations and takes into consideration most of the chemical and physical characteristics of the device in order to generate electric power. The model takes into consideration the operating, design parameters and physical material properties. The results show the internal losses and concentration effects behavior, which are of interest for power engineers and researchers.

  9. Micromachined evaporators for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less

  10. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance.

    PubMed

    Pecho, Omar M; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J; Holzer, Lorenz

    2015-10-21

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance ( R pol ). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance . However, the quantitative results also show that there is no simplistic relationship between TPB and R pol . The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and R pol . In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPB active by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPB active , effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer.

  11. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    PubMed Central

    Pecho, Omar M.; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer. PMID:28793624

  12. Imaging and elemental mapping of biological specimens with a dual-EDS dedicated scanning transmission electron microscope

    PubMed Central

    Wu, J.S.; Kim, A. M.; Bleher, R.; Myers, B.D.; Marvin, R. G.; Inada, H.; Nakamura, K.; Zhang, X.F.; Roth, E.; Li, S.Y.; Woodruff, T. K.; O'Halloran, T. V.; Dravid, Vinayak P.

    2013-01-01

    A dedicated analytical scanning transmission electron microscope (STEM) with dual energy dispersive spectroscopy (EDS) detectors has been designed for complementary high performance imaging as well as high sensitivity elemental analysis and mapping of biological structures. The performance of this new design, based on a Hitachi HD-2300A model, was evaluated using a variety of biological specimens. With three imaging detectors, both the surface and internal structure of cells can be examined simultaneously. The whole-cell elemental mapping, especially of heavier metal species that have low cross-section for electron energy loss spectroscopy (EELS), can be faithfully obtained. Optimization of STEM imaging conditions is applied to thick sections as well as thin sections of biological cells under low-dose conditions at room- and cryogenic temperatures. Such multimodal capabilities applied to soft/biological structures usher a new era for analytical studies in biological systems. PMID:23500508

  13. Anion exchange membrane fuel cell modelling

    NASA Astrophysics Data System (ADS)

    Fragiacomo, P.; Astorino, E.; Chippari, G.; De Lorenzo, G.; Czarnetzki, W. T.; Schneider, W.

    2018-04-01

    A parametric model predicting the performance of a solid polymer electrolyte, anion exchange membrane fuel cell (AEMFC), has been developed, in Matlab environment, based on interrelated electrical and thermal models. The electrical model proposed is developed by modelling an AEMFC open-circuit output voltage, irreversible voltage losses along with a mass balance, while the thermal model is based on the energy balance. The proposed model of the AEMFC stack estimates its dynamic behaviour, in particular the operating temperature variation for different discharge current values. The results of the theoretical fuel cell (FC) stack are reported and analysed in order to highlight the FC performance and how it varies by changing the values of some parameters such as temperature and pressure. Both the electrical and thermal FC models were validated by comparing the model results with experimental data and the results of other models found in the literature.

  14. Cellular mechanisms of cyclophosphamide-induced taste loss in mice

    PubMed Central

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J.

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system’s capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake. PMID:28950008

  15. Cellular mechanisms of cyclophosphamide-induced taste loss in mice.

    PubMed

    Mukherjee, Nabanita; Pal Choudhuri, Shreoshi; Delay, Rona J; Delay, Eugene R

    2017-01-01

    Many commonly prescribed chemotherapy drugs such as cyclophosphamide (CYP) have adverse side effects including disruptions in taste which can result in loss of appetite, malnutrition, poorer recovery and reduced quality of life. Previous studies in mice found evidence that CYP has a two-phase disturbance in taste behavior: a disturbance immediately following drug administration and a second which emerges several days later. In this study, we examined the processes by which CYP disturbs the taste system by examining the effects of the drug on taste buds and cells responsible for taste cell renewal using immunohistochemical assays. Data reported here suggest CYP has direct cytotoxic effects on lingual epithelium immediately following administration, causing an early loss of taste sensory cells. Types II and III cells in fungiform taste buds appear to be more susceptible to this effect than circumvallate cells. In addition, CYP disrupts the population of rapidly dividing cells in the basal layer of taste epithelium responsible for taste cell renewal, manifesting a disturbance days later. The loss of these cells temporarily retards the system's capacity to replace Type II and Type III taste sensory cells that survived the cytotoxic effects of CYP and died at the end of their natural lifespan. The timing of an immediate, direct loss of taste cells and a delayed, indirect loss without replacement of taste sensory cells are broadly congruent with previously published behavioral data reporting two periods of elevated detection thresholds for umami and sucrose stimuli. These findings suggest that chemotherapeutic disturbances in the peripheral mechanisms of the taste system may cause dietary challenges at a time when the cancer patient has significant need for well balanced, high energy nutritional intake.

  16. Quantitative in vivo detection of brain cell death after hypoxia ischemia using the lipid peak at 1.3 ppm of proton magnetic resonance spectroscopy in neonatal rats.

    PubMed

    Ahn, So Yoon; Yoo, Hye Soo; Lee, Jang Hoon; Sung, Dong Kyung; Jung, Yu Jin; Sung, Se In; Lim, Keun Ho; Chang, Yun Sil; Lee, Jung Hee; Kim, Ki Soo; Park, Won Soon

    2013-07-01

    This study was performed to determine the accuracy of proton magnetic spectroscopy ((1)H-MRS) lipid peak as a noninvasive tool for quantitative in vivo detection of brain cell death. Seven day-old Sprague Dawley rats were subjected to 8% oxygen following a unilateral carotid artery ligation. For treatment, cycloheximide was given immediately after hypoxic ischemia (HI). Lipid peak was measured using (1)H-MRS at 24 hr after HI, and then brains were harvested for fluorocytometric analyses with annexin V/propidium iodide (PI) and fluorescent probe JC-1, and for adenosine-5'-triphosphate (ATP) and lactate. Increased lipid peak at 1.3 ppm measured with (1)H-MRS, apoptotic and necrotic cells, and loss of mitochondrial membrane potential (ΔΨ) at 24 hr after HI were significantly improved with cycloheximide treatment. Significantly reduced brain ATP and increased lactate levels observed at 24 hr after HI showed a tendency to improve without statistical significance with cycloheximide treatment. Lipid peak at 1.3 ppm showed significant positive correlation with both apoptotic and necrotic cells and loss of ΔΨ, and negative correlation with normal live cells. Lipid peak at 1.3 ppm measured by (1)H-MRS might be a sensitive and reliable diagnostic tool for quantitative in vivo detection of brain cell death after HI.

  17. Privacy-preserving data cube for electronic medical records: An experimental evaluation.

    PubMed

    Kim, Soohyung; Lee, Hyukki; Chung, Yon Dohn

    2017-01-01

    The aim of this study is to evaluate the effectiveness and efficiency of privacy-preserving data cubes of electronic medical records (EMRs). An EMR data cube is a complex of EMR statistics that are summarized or aggregated by all possible combinations of attributes. Data cubes are widely utilized for efficient big data analysis and also have great potential for EMR analysis. For safe data analysis without privacy breaches, we must consider the privacy preservation characteristics of the EMR data cube. In this paper, we introduce a design for a privacy-preserving EMR data cube and the anonymization methods needed to achieve data privacy. We further focus on changes in efficiency and effectiveness that are caused by the anonymization process for privacy preservation. Thus, we experimentally evaluate various types of privacy-preserving EMR data cubes using several practical metrics and discuss the applicability of each anonymization method with consideration for the EMR analysis environment. We construct privacy-preserving EMR data cubes from anonymized EMR datasets. A real EMR dataset and demographic dataset are used for the evaluation. There are a large number of anonymization methods to preserve EMR privacy, and the methods are classified into three categories (i.e., global generalization, local generalization, and bucketization) by anonymization rules. According to this classification, three types of privacy-preserving EMR data cubes were constructed for the evaluation. We perform a comparative analysis by measuring the data size, cell overlap, and information loss of the EMR data cubes. Global generalization considerably reduced the size of the EMR data cube and did not cause the data cube cells to overlap, but incurred a large amount of information loss. Local generalization maintained the data size and generated only moderate information loss, but there were cell overlaps that could decrease the search performance. Bucketization did not cause cells to overlap and generated little information loss; however, the method considerably inflated the size of the EMR data cubes. The utility of anonymized EMR data cubes varies widely according to the anonymization method, and the applicability of the anonymization method depends on the features of the EMR analysis environment. The findings help to adopt the optimal anonymization method considering the EMR analysis environment and goal of the EMR analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice

    PubMed Central

    Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan

    2018-01-01

    Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence. PMID:29721087

  19. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice.

    PubMed

    Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan

    2018-01-01

    Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence.

  20. The controlling mechanism for potential loss in CH 3NH 3PbBr 3 hybrid solar cells

    DOE PAGES

    Zheng, Xiaojia; Chen, Bo; Yang, Mengjin; ...

    2016-07-25

    In this study, we investigated moisture and thermal stability of MAPbBr 3 perovskite material. Cubic MAPbBr 3 was found to be moisture-insensitive and can avoid the thermal stability issues introduced by low-temperature phase transition in MAPbI 3. MAPbBr 3 and MAPbI 3 hybrid solar cells with efficiencies of ~7.1% and ~15.5%, respectively, were fabricated, and we identified the correlation between the working temperature, light intensity, and the photovoltaic performance. No charge-carrier transport barriers were found in the MAPbBr 3 and MAPbI 3 solar cells. The MAPbBr 3 solar cell displays a better stability under high working temperature because of itsmore » close-packed crystal structure. Temperature-dependent photocurrent-voltage characteristics indicate that, unlike the MAPbI 3 solar cell with an activation energy (E A) nearly equal to its band gap (E g), the E A for the MAPbBr 3 solar cell is much lower than its E g. This indicates that a high interface recombination process limits the photovoltage and consequently the device performance of the MAPbBr 3 solar cell.« less

  1. Reduced Carrier Recombination in PbS - CuInS2 Quantum Dot Solar Cells

    PubMed Central

    Sun, Zhenhua; Sitbon, Gary; Pons, Thomas; Bakulin, Artem A.; Chen, Zhuoying

    2015-01-01

    Energy loss due to carrier recombination is among the major factors limiting the performance of TiO2/PbS colloidal quantum dot (QD) heterojunction solar cells. In this work, enhanced photocurrent is achieved by incorporating another type of hole-transporting QDs, Zn-doped CuInS2 (Zn-CIS) QDs into the PbS QD matrix. Binary QD solar cells exhibit a reduced charge recombination associated with the spatial charge separation between these two types of QDs. A ~30% increase in short-circuit current density and a ~20% increase in power conversion efficiency are observed in binary QD solar cells compared to cells built from PbS QDs only. In agreement with the charge transfer process identified through ultrafast pump/probe spectroscopy between these two QD components, transient photovoltage characteristics of single-component and binary QDs solar cells reveal longer carrier recombination time constants associated with the incorporation of Zn-CIS QDs. This work presents a straightforward, solution-processed method based on the incorporation of another QDs in the PbS QD matrix to control the carrier dynamics in colloidal QD materials and enhance solar cell performance. PMID:26024021

  2. Improvement of performance in low temperature solid oxide fuel cells operated on ethanol and air mixtures using Cu-ZnO-Al2O3 catalyst layer

    NASA Astrophysics Data System (ADS)

    Morales, M.; Espiell, F.; Segarra, M.

    2015-10-01

    Anode-supported single-chamber solid oxide fuel cells with and without Cu-ZnO-Al2O3 catalyst layers deposited on the anode support have been operated on ethanol and air mixtures. The cells consist of gadolinia-doped ceria electrolyte, Ni-doped ceria anode, and La0.6Sr0.4CoO3-δ-doped ceria cathode. Catalyst layers with different Cu-ZnO-Al2O3 ratios are deposited and sintered at several temperatures. Since the performance of single-chamber fuel cells strongly depends on catalytic properties of electrodes for partial oxidation of ethanol, the cells are electrochemically characterized as a function of the temperature, ethanol-air molar ratio and gas flow rate. In addition, catalytic activities of supported anode, catalytic layer-supported anode and cathode for partial oxidation of ethanol are analysed. Afterwards, the effect of composition and sintering temperature of catalyst layer on the cell performance are determined. The results indicate that the cell performance can be significantly enhanced using catalyst layers of 30:35:35 and 40:30:30 wt.% Cu-ZnO-Al2O3 sintered at 1100 °C, achieving power densities above 50 mW cm-2 under 0.45 ethanol-air ratio at temperatures as low as 450 °C. After testing for 15 h, all cells present a gradual loss of power density, without carbon deposition, which is mainly attributed to the partial re-oxidation of Ni at the anode.

  3. When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome?

    PubMed

    Van Saen, D; Vloeberghs, V; Gies, I; Mateizel, I; Sermon, K; De Schepper, Jean; Tournaye, H; Goossens, E

    2018-06-01

    When does germ cell loss and fibrosis occur in patients with Klinefelter syndrome (KS)? In KS, germ cell loss is not observed in testicular tissue from fetuses in the second semester of pregnancy but present at a prepubertal age when the testicular architecture is still normal, while fibrosis is highly present at an adolescent age. Most KS patients are azoospermic at adult age because of a massive germ cell loss. However, the timing when this germ cell loss starts is not known. It is assumed that germ cell loss increases at puberty. Therefore, testicular sperm extraction (TESE) at an adolescent age has been suggested to increase the chances of sperm retrieval at onset of spermatogenesis. However, recent data indicate that testicular biopsies from peripubertal KS patients contain only a few germ cells. In this study, we give an update on fertility preservation in adolescent KS patients and evaluate whether fertility preservation would be beneficial at prepubertal age. The possibility of retrieving testicular spermatozoa by TESE was evaluated in adolescent and adult KS men. The presence of spermatogonia and the degree of fibrosis were also analysed in testicular biopsies from KS patients at different ages. The patients were divided into four age groups: foetal (n = 5), prepubertal (aged 4-7 years; n = 4), peripubertal (aged 12-16 years; n = 20) and adult (aged 18-41 years; n = 27) KS patients. In peripubertal and adult KS patients, retrieval of spermatozoa was attempted by semen analysis after masturbation, vibrostimulation, electroejaculation or by TESE. MAGE-A4 immunohistochemistry was performed to evaluate the presence of germ cells in testicular biopsies from foetal, prepubertal, peripubertal and adult KS patients. Tissue morphology was evaluated by haematoxylin-periodic acid Schiff (H/PAS) staining. Testicular spermatozoa were collected by TESE in 48.1% of the adult KS patients, while spermatozoa were recovered after TESE in only one peripubertal patient (5.0%). Germ cells were detectable in testicular biopsies from 21% of adult men for whom no spermatozoa could be retrieved by TESE and in 31.5% of peripubertal KS boys. Very small numbers of spermatogonia (0.03-0.06 spermatogonia/tubule) were detected in three out of four (75%) prepubertal patients. At a foetal age, the number of germ cells was similar for KS and control samples. Increased signs of fibrosis were not present at foetal and prepubertal ages, but peripubertal and adult KS patients showed high levels of fibrosis. N/A. Only four prepubertal biopsies were included in this study, but they all showed a very low germ cell number. A high variability in the number of spermatogonia per mm2 was observed in the limited (n = 5) number of foetal biopsies. However, testicular biopsies from prepubertal and foetal Klinefelter patients are difficult to obtain. Testicular tissue banking at a prepubertal age has been suggested as a potential method for fertility preservation in early diagnosed KS boys. However, our results show that a reduction in germ cell number has already taken place in childhood. Therefore, offering testicular tissue banking in young KS boys to prevent subsequent sterility might be a questionable strategy. However, this should be confirmed in a larger study population. This project was funded by the scientific Fund Willy Gepts from the UZ Brussel (D.V.S., J.D.S.), grants from the Vrije Universiteit Brussel (E.G.) and a Methusalem grant (K.S.). D.V.S is a post-doctoral fellow of the Fonds Wetenschappelijk Onderzoek (FWO; 12M2815N). No conflict of interest is declared.

  4. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta).

    PubMed

    Valero, M D; Burton, J A; Hauser, S N; Hackett, T A; Ramachandran, R; Liberman, M C

    2017-09-01

    Cochlear synaptopathy can result from various insults, including acoustic trauma, aging, ototoxicity, or chronic conductive hearing loss. For example, moderate noise exposure in mice can destroy up to ∼50% of synapses between auditory nerve fibers (ANFs) and inner hair cells (IHCs) without affecting outer hair cells (OHCs) or thresholds, because the synaptopathy occurs first in high-threshold ANFs. However, the fiber loss likely impairs temporal processing and hearing-in-noise, a classic complaint of those with sensorineural hearing loss. Non-human primates appear to be less vulnerable to noise-induced hair-cell loss than rodents, but their susceptibility to synaptopathy has not been studied. Because establishing a non-human primate model may be important in the development of diagnostics and therapeutics, we examined cochlear innervation and the damaging effects of acoustic overexposure in young adult rhesus macaques. Anesthetized animals were exposed bilaterally to narrow-band noise centered at 2 kHz at various sound-pressure levels for 4 h. Cochlear function was assayed for up to 8 weeks following exposure via auditory brainstem responses (ABRs) and otoacoustic emissions (OAEs). A moderate loss of synaptic connections (mean of 12-27% in the basal half of the cochlea) followed temporary threshold shifts (TTS), despite minimal hair-cell loss. A dramatic loss of synapses (mean of 50-75% in the basal half of the cochlea) was seen on IHCs surviving noise exposures that produced permanent threshold shifts (PTS) and widespread hair-cell loss. Higher noise levels were required to produce PTS in macaques compared to rodents, suggesting that primates are less vulnerable to hair-cell loss. However, the phenomenon of noise-induced cochlear synaptopathy in primates is similar to that seen in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Milk losses associated with somatic cell counts by parity and stage of lactation.

    PubMed

    Gonçalves, Juliano L; Cue, Roger I; Botaro, Bruno G; Horst, José A; Valloto, Altair A; Santos, Marcos V

    2018-05-01

    The reduction of milk production caused by subclinical mastitis in dairy cows was evaluated through the regression of test-day milk yield on log-transformed somatic cell counts (LnSCC). Official test-day records (n = 1,688,054) of Holstein cows (n = 87,695) were obtained from 719 herds from January 2010 to December 2015. Editing was performed to ensure both reliability and consistency for the statistical analysis, and the final data set comprised 232,937 test-day records from 31,692 Holstein cows in 243 herds. A segmented regression was fitted to estimate the cutoff point in the LnSCC scale where milk yield started to be affected by mastitis. The statistical model used to explain daily milk yield included the effect of herd as a random effect and days in milk and LnSCC as fixed effects regressions, and analyses were performed by parity and stage of lactation. The cutoff point where milk yield starts to be affected by changes in LnSCC was estimated to be around 2.52 (the average of all estimates of approximately 12,400 cells/mL) for Holsteins cows from Brazilian herds. For first-lactation cows, milk losses per unit increase of LnSCC had estimates around 0.68 kg/d in the beginning of the lactation [5 to 19 d in milk (DIM)], 0.55 kg/d in mid-lactation (110 to 124 DIM), and 0.97 kg/d at the end of the lactation (289 to 304 DIM). For second-lactation cows, milk losses per unit increase of LnSCC had estimates around 1.47 kg/d in the beginning of the lactation (5 to 19 DIM), 1.09 kg/d in mid-lactation (110 to 124 DIM), and 2.45 kg/d at the end of the lactation (289 to 304 DIM). For third-lactation cows, milk losses per unit increase of LnSCC had estimates around 2.22 kg/d in the beginning of the lactation (5 to 19 DIM), 1.13 kg/d in mid-lactation (140 to 154 DIM), and 2.65 kg/d at the end of the lactation (289 to 304 DIM). Daily milk losses caused by increased LnSCC were dependent on parity and stage of lactation, and these factors should be considered when estimating losses associated with subclinical mastitis. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Smad3 contributes to positioning of proliferating cells in colonic crypts by inducing EphB receptor protein expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furukawa, Kiyoshi; Sato, Toru; Katsuno, Tatsuro, E-mail: katsuno@faculty.chiba-u.jp

    2011-02-25

    Research highlights: {yields} Smad3{sup -/-} mice showed an increased number of proliferating epithelial cells in colonic crypts. {yields} Proliferating epithelial cells showed activated Wnt/{beta}-catenin pathway. {yields} Smad3{sup -/-} mice also showed intermingling of proliferating cells with differentiated cells. {yields} Loss of EphB receptor expression was observed in the colonic crypts of Smad3{sup -/-} mice. {yields} Loss of EphB receptor expression is likely responsible for cell intermingling. -- Abstract: Deficiency of Smad3, an intracellular mediator of TGF-{beta}, was shown to significantly accelerate re-epithelialization of the colonic mucosa. This study was performed to investigate the molecular mechanisms by which Smad3 controls colonicmore » epithelial cell proliferation and crypt formation. Smad3{sup ex8/ex8} C57BL/6 mice were used in this study and wild-type littermates served as controls. The number of proliferating cells in the isolated colonic epithelium of Smad3{sup -/-} mice was significantly increased compared to that in wild-type littermates. Protein levels of the cell cycle inhibitors p21 and p27 were significantly decreased, while that of c-Myc was increased in the isolated colonic epithelium from Smad3{sup -/-} mice. In the colonic tissue of wild-type mice, cell proliferation was restricted to the bottom of the crypts in accordance with nuclear {beta}-catenin staining, whereas proliferating cells were located throughout the crypts in Smad3{sup -/-} mice in accordance with nuclear {beta}-catenin staining, suggesting that Smad3 is essential for locating proliferating cells at the bottom of the colonic crypts. Notably, in Smad3{sup -/-} mice, there was loss of EphB2 and EphB3 receptor protein expression, critical regulators of proliferating cell positioning, while EphB receptor protein expression was confirmed at the bottom of the colonic crypts in wild-type mice. These observations indicated that disturbance of the EphB/ephrin B system brings about mispositioning of proliferating cells in the colonic crypts of Smad3{sup -/-} mice. In conclusion, Smad3 is essential for controlling number and positioning of proliferating cells in the colonic crypts and contributes to formation of a 'proliferative zone' at the bottom of colonic crypts in the normal colon.« less

  7. Genetic and pharmacological intervention for treatment/prevention of hearing loss

    PubMed Central

    Cotanche, Douglas A.

    2008-01-01

    Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. Learning outcomes The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea. PMID:18455177

  8. Genetic and pharmacological intervention for treatment/prevention of hearing loss.

    PubMed

    Cotanche, Douglas A

    2008-01-01

    Twenty years ago it was first demonstrated that birds could regenerate their cochlear hair cells following noise damage or aminoglycoside treatment. An understanding of how this structural and functional regeneration occurred might lead to the development of therapies for treatment of sensorineural hearing loss in humans. Recent experiments have demonstrated that noise exposure and aminoglycoside treatment lead to apoptosis of the hair cells. In birds, this programmed cell death induces the adjacent supporting cells to undergo regeneration to replace the lost hair cells. Although hair cells in the mammalian cochlea undergo apoptosis in response to noise damage and ototoxic drug treatment, the supporting cells do not possess the ability to undergo regeneration. However, current experiments on genetic manipulation, gene therapy, and stem cell transplantation suggest that regeneration in the mammalian cochlea may eventually be possible and may 1 day provide a therapeutic tool for hearing loss in humans. The reader should be able to: (1) Describe the anatomy of the avian and mammalian cochlea, identify the individual cell types in the organ of Corti, and distinguish major features that participate in hearing function, (2) Demonstrate a knowledge of how sound damage and aminoglycoside poisoning induce apoptosis of hair cells in the cochlea, (3) Define how hair cell loss in the avian cochlea leads to regeneration of new hair cells and distinguish this from the mammalian cochlea where there is no regeneration following damage, and (4) Interpret the potential for new approaches, such as genetic manipulation, gene therapy and stem cell transplantation, could provide a therapeutic approach to hair cell loss in the mammalian cochlea.

  9. Ultra-thin silicon solar cells for high performance panel applications

    NASA Technical Reports Server (NTRS)

    Gay, C. F.

    1978-01-01

    Solar cells have been fabricated which achieved the highest power to mass ratios and radiation stability yet reported for silicon devices. The thinnest cells (.04 mm) had initial efficiencies in excess of 2 watts per gram (AMO) and 1.7 watts per gram after an irradiation of 1 x 10 to the 15th equivalent 1 MeV electrons per square centimeter. The cells have been successfully interconnected by welding and filtered using a FEP bonded, ceria-doped microsheet of six mil thickness. Handling losses during cell manufacture and panel assembly may be minimized through the use of an integral reinforcing perimeter or ribs which remove almost all restrictions on cell thickness and area. Such a cell is typically composed of a main section which can be as thin as 0.015 mm and is supported at the edge by a thicker border (0.20 mm) of silicon.

  10. Exosomes Secreted from Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells Prevent Osteonecrosis of the Femoral Head by Promoting Angiogenesis.

    PubMed

    Liu, Xiaolin; Li, Qing; Niu, Xin; Hu, Bin; Chen, Shengbao; Song, Wenqi; Ding, Jian; Zhang, Changqing; Wang, Yang

    2017-01-01

    Background: Local ischemia is the main pathological performance in osteonecrosis of the femoral head (ONFH). There is currently no effective therapy to promote angiogenesis in the femoral head. Recent studies revealed that exosomes secreted by induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSC-Exos) have great therapeutic potential in ischemic tissues, but whether they could promote angiogenesis in ONFH has not been reported, and little is known regarding the underlying mechanism. Methods: iPS-MSC-Exos were intravenously injected to a steroid-induced rat osteonecrosis model. Samples of the femoral head were obtained 3 weeks after all the injections. The effects were assessed by measuring local angiogenesis and bone loss through histological and immunohistochemical (IHC) staining, micro-CT and three-dimensional microangiography. The effects of exosomes on endothelial cells were studied through evaluations of proliferation, migration and tube-forming analyses. The expression levels of angiogenic related PI3K/Akt signaling pathway of endothelial cells were evaluated following stimulation of iPS-MSC-Exos. The promoting effects of exosomes were re-evaluated following blockade of PI3K/Akt. Results: The in vivo study revealed that administration of iPS-MSC-Exos significantly prevented bone loss, and increased microvessel density in the femoral head compared with control group. We found that iPS-MSC-Exos significantly enhanced the proliferation, migration and tube-forming capacities of endothelial cells in vitro . iPS-MSC-Exos could activate PI3K/Akt signaling pathway in endothelial cells. Moreover, the promoting effects of iPS-MSC-Exos were abolished after blockade of PI3K/Akt on endothelial cells. Conclusions: Our findings suggest that transplantation of iPS-MSC-Exos exerts a preventative effect on ONFH by promoting local angiogenesis and preventing bone loss. The promoting effect might be attributed to activation of the PI3K/Akt signaling pathway on endothelial cells. The data provide the first evidence for the potential of iPS-MSC-Exos in treating ONFH.

  11. Ethanol extract of Piper longum L. attenuates gentamicin-induced hair cell loss in neonatal cochlea cultures.

    PubMed

    Du, Xiao Fei; Song, Jae-Jun; Hong, Seungug; Kim, Jihye

    2012-06-01

    Piper longum L. (PL), also as known as long pepper, a well-known spice and traditional medicine in Asia and Pacific islands, has been reported to exhibit wide spectrum activity including antioxidant activity. However, little information is available on its protective effect on gentamicin (GM) induced ototoxicity which is commonly regarded as being mediated by reactive oxygen species and reactive nitrogen species. This study was undertaken to investigate the protective effect of PL ethanol extract on gentamicin-induced hair cell loss in neonatal cochlea cultures. Cochlea cultures from postnatal day 2-3 mice were used for analysis of the protective effects of PL against gentamicin-induced hair cell loss by phalloidin staining. E. coil cultures were used to determine whether PL interferes with the antibiotic activity of GM. Nitric oxide (NO)-scavenging activity of PL was also measured in vitro. GM induced significant dose-dependent hair cell loss in cochlea cultures. However, without interfering with the antibiotic activity of GM, PL showed a significant and concentration-dependent protective effect against GM-induced hair cell loss, and hair cells retained their stereocilia well. In addition, PL expressed direct scavenging activity toward NO radical liberated within solution of sodium nitroprusside. These findings demonstrate the protective effect of PL on GM-induced hair cell loss in neonatal cochlea cultures, and suggest that it might be of therapeutic benefit for treatment of GM-induced ototoxicity.

  12. Lithium-ion battery structure that self-heats at low temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-01

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the ‘all-climate battery’ cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  13. Lithium-ion battery structure that self-heats at low temperatures.

    PubMed

    Wang, Chao-Yang; Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Ji, Yan; Yang, Xiao-Guang; Leng, Yongjun

    2016-01-28

    Lithium-ion batteries suffer severe power loss at temperatures below zero degrees Celsius, limiting their use in applications such as electric cars in cold climates and high-altitude drones. The practical consequences of such power loss are the need for larger, more expensive battery packs to perform engine cold cranking, slow charging in cold weather, restricted regenerative braking, and reduction of vehicle cruise range by as much as 40 per cent. Previous attempts to improve the low-temperature performance of lithium-ion batteries have focused on developing additives to improve the low-temperature behaviour of electrolytes, and on externally heating and insulating the cells. Here we report a lithium-ion battery structure, the 'all-climate battery' cell, that heats itself up from below zero degrees Celsius without requiring external heating devices or electrolyte additives. The self-heating mechanism creates an electrochemical interface that is favourable for high discharge/charge power. We show that the internal warm-up of such a cell to zero degrees Celsius occurs within 20 seconds at minus 20 degrees Celsius and within 30 seconds at minus 30 degrees Celsius, consuming only 3.8 per cent and 5.5 per cent of cell capacity, respectively. The self-heated all-climate battery cell yields a discharge/regeneration power of 1,061/1,425 watts per kilogram at a 50 per cent state of charge and at minus 30 degrees Celsius, delivering 6.4-12.3 times the power of state-of-the-art lithium-ion cells. We expect the all-climate battery to enable engine stop-start technology capable of saving 5-10 per cent of the fuel for 80 million new vehicles manufactured every year. Given that only a small fraction of the battery energy is used for self-heating, we envisage that the all-climate battery cell may also prove useful for plug-in electric vehicles, robotics and space exploration applications.

  14. Quantification and Patterns of Endothelial Cell Loss Due to Eye Bank Preparation and Injector Method in Descemet Membrane Endothelial Keratoplasty Tissues.

    PubMed

    Schallhorn, Julie M; Holiman, Jeffrey D; Stoeger, Christopher G; Chamberlain, Winston

    2016-03-01

    To evaluate endothelial cell damage after eye bank preparation and passage through 1 of 2 different injectors for Descemet membrane endothelial keratoplasty grafts. Eighteen Descemet membrane endothelial keratoplasty grafts were prepared by Lions VisionGift with the standard partial prepeel technique and placement of an S-stamp for orientation. The grafts were randomly assigned to injection with either a glass-modified Jones tube injector (Gunther Weiss Scientific Glass) or a closed-system intraocular lens injector (Viscoject 2.2; Medicel). After injection, the grafts were stained with the vital fluorescent dye Calcein AM and digitally imaged. The percentage of cell loss was calculated by measuring the area of nonfluorescent pixels and dividing it by the total graft area pixels. Grafts injected using the modified Jones tube injector had an overall cell loss of 27% ± 5% [95% confidence interval, 21%-35%]. Grafts injected using the closed-system intraocular lens injector had a cell loss of 32% ± 8% (95% confidence interval, 21%-45%). This difference was not statistically significant (P = 0.3). Several damage patterns including damage due to S-stamp placement were observed, but they did not correlate with injector type. In this in vitro study, there was no difference in the cell loss associated with the injector method. Grafts in both groups sustained significant cell loss and displayed evidence of graft preparation and S-stamp placement. Improvement in graft preparation and injection methods may improve cell retention.

  15. Loss of Optineurin In Vivo Results in Elevated Cell Death and Alters Axonal Trafficking Dynamics

    PubMed Central

    Paulus, Jeremiah D.; Link, Brian A.

    2014-01-01

    Mutations in Optineurin have been associated with ALS, glaucoma, and Paget’s disease of bone in humans, but little is known about how these mutations contribute to disease. Most of the cellular consequences of Optineurin loss have come from in vitro studies, and it remains unclear whether these same defects would be seen in vivo. To answer this question, we assessed the cellular consequences of Optineurin loss in zebrafish embryos to determine if they showed the same defects as have been described in the in vitro studies. We found that loss of Optineurin resulted in increased cell death, as well as subtle cell morphology, cell migration and vesicle trafficking defects. However, unlike experiments on cells in culture, we found no indication that the Golgi apparatus was disrupted or that NF-κB target genes were upregulated. Therefore, we conclude that in vivo loss of Optineurin shows some, but not all, of the defects seen in in vitro work. PMID:25329564

  16. Three-dimensional graphene nanosheets as cathode catalysts in standard and supercapacitive microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Santoro, Carlo; Kodali, Mounika; Kabir, Sadia; Soavi, Francesca; Serov, Alexey; Atanassov, Plamen

    2017-07-01

    Three-dimensional graphene nanosheets (3D-GNS) were used as cathode catalysts for microbial fuel cells (MFCs) operating in neutral conditions. 3D-GNS catalysts showed high performance towards oxygen electroreduction in neutral media with high current densities and low hydrogen peroxide generation compared to activated carbon (AC). 3D-GNS was incorporated into air-breathing cathodes based on AC with three different loadings (2, 6 and 10 mgcm-2). Performances in MFCs showed that 3D-GNS had the highest performances with power densities of 2.059 ± 0.003 Wm-2, 1.855 ± 0.007 Wm-2 and 1.503 ± 0.005 Wm-2 for loading of 10, 6 and 2 mgcm-2 respectively. Plain AC had the lowest performances (1.017 ± 0.009 Wm-2). The different cathodes were also investigated in supercapacitive MFCs (SC-MFCs). The addition of 3D-GNS decreased the ohmic losses by 14-25%. The decrease in ohmic losses allowed the SC-MFC with 3D-GNS (loading 10 mgcm-2) to have the maximum power (Pmax) of 5.746 ± 0.186 Wm-2. At 5 mA, the SC-MFC featured an "apparent" capacitive response that increased from 0.027 ± 0.007 F with AC to 0.213 ± 0.026 F with 3D-GNS (loading 2 mgcm-2) and further to 1.817 ± 0.040 F with 3D-GNS (loading 10 mgcm-2).

  17. Size uniformity of animal cells is actively maintained by a p38 MAPK-dependent regulation of G1-length.

    PubMed

    Liu, Shixuan; Ginzberg, Miriam Bracha; Patel, Nish; Hild, Marc; Leung, Bosco; Li, Zhengda; Chen, Yen-Chi; Chang, Nancy; Wang, Yuan; Tan, Ceryl; Diena, Shulamit; Trimble, William; Wasserman, Larry; Jenkins, Jeremy L; Kirschner, Marc W; Kafri, Ran

    2018-03-29

    Animal cells within a tissue typically display a striking regularity in their size. To date, the molecular mechanisms that control this uniformity are still unknown. We have previously shown that size uniformity in animal cells is promoted, in part, by size-dependent regulation of G1 length. To identify the molecular mechanisms underlying this process, we performed a large-scale small molecule screen and found that the p38 MAPK pathway is involved in coordinating cell size and cell cycle progression. Small cells display higher p38 activity and spend more time in G1 than larger cells. Inhibition of p38 MAPK leads to loss of the compensatory G1 length extension in small cells, resulting in faster proliferation, smaller cell size and increased size heterogeneity. We propose a model wherein the p38 pathway responds to changes in cell size and regulates G1 exit accordingly, to increase cell size uniformity. © 2017, Liu et al.

  18. Clonal evolution through loss of chromosomes and subsequent polyploidization in chondrosarcoma.

    PubMed

    Olsson, Linda; Paulsson, Kajsa; Bovée, Judith V M G; Nord, Karolin H

    2011-01-01

    Near-haploid chromosome numbers have been found in less than 1% of cytogenetically reported tumors, but seem to be more common in certain neoplasms including the malignant cartilage-producing tumor chondrosarcoma. By a literature survey of published karyotypes from chondrosarcomas we could confirm that loss of chromosomes resulting in hyperhaploid-hypodiploid cells is common and that these cells may polyploidize. Sixteen chondrosarcomas were investigated by single nucleotide polymorphism (SNP) array and the majority displayed SNP patterns indicative of a hyperhaploid-hypodiploid origin, with or without subsequent polyploidization. Except for chromosomes 5, 7, 19, 20 and 21, autosomal loss of heterozygosity was commonly found, resulting from chromosome loss and subsequent duplication of monosomic chromosomes giving rise to uniparental disomy. Additional gains, losses and rearrangements of genetic material, and even repeated rounds of polyploidization, may affect chondrosarcoma cells resulting in highly complex karyotypes. Loss of chromosomes and subsequent polyploidization was not restricted to a particular chondrosarcoma subtype and, although commonly found in chondrosarcoma, binucleated cells did not seem to be involved in these events.

  19. Selection and Neutral Mutations Drive Pervasive Mutability Losses in Long-Lived Anti-HIV B-Cell Lineages

    PubMed Central

    Vieira, Marcos C; Zinder, Daniel; Cobey, Sarah

    2018-01-01

    Abstract High-affinity antibodies arise within weeks of infection from the evolution of B-cell receptors under selection to improve antigen recognition. This rapid adaptation is enabled by the distribution of highly mutable “hotspot” motifs in B-cell receptor genes. High mutability in antigen-binding regions (complementarity determining regions [CDRs]) creates variation in binding affinity, whereas low mutability in structurally important regions (framework regions [FRs]) may reduce the frequency of destabilizing mutations. During the response, loss of mutational hotspots and changes in their distribution across CDRs and FRs are predicted to compromise the adaptability of B-cell receptors, yet the contributions of different mechanisms to gains and losses of hotspots remain unclear. We reconstructed changes in anti-HIV B-cell receptor sequences and show that mutability losses were ∼56% more frequent than gains in both CDRs and FRs, with the higher relative mutability of CDRs maintained throughout the response. At least 21% of the total mutability loss was caused by synonymous mutations. However, nonsynonymous substitutions caused most (79%) of the mutability loss in CDRs. Because CDRs also show strong positive selection, this result suggests that selection for mutations that increase binding affinity contributed to loss of mutability in antigen-binding regions. Although recurrent adaptation to evolving viruses could indirectly select for high mutation rates, we found no evidence of indirect selection to increase or retain hotspots. Our results suggest mutability losses are intrinsic to both the neutral and adaptive evolution of B-cell populations and might constrain their adaptation to rapidly evolving pathogens such as HIV and influenza. PMID:29688540

  20. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.

    PubMed

    Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J

    2015-04-30

    This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

Top