NASA Astrophysics Data System (ADS)
Kang, Mi-Sun; Rhee, Seon-Min; Seo, Ji-Hyun; Kim, Myoung-Hee
2017-03-01
Patients' responses to a drug differ at the cellular level. Here, we present an image-based cell phenotypic feature quantification method for predicting the responses of patient-derived glioblastoma cells to a particular drug. We used high-content imaging to understand the features of patient-derived cancer cells. A 3D spheroid culture formation resembles the in vivo environment more closely than 2D adherent cultures do, and it allows for the observation of cellular aggregate characteristics. However, cell analysis at the individual level is more challenging. In this paper, we demonstrate image-based phenotypic screening of the nuclei of patient-derived cancer cells. We first stitched the images of each well of the 384-well plate with the same state. We then used intensity information to detect the colonies. The nuclear intensity and morphological characteristics were used for the segmentation of individual nuclei. Next, we calculated the position of each nucleus that is appeal of the spatial pattern of cells in the well environment. Finally, we compared the results obtained using 3D spheroid culture cells with those obtained using 2D adherent culture cells from the same patient being treated with the same drugs. This technique could be applied for image-based phenotypic screening of cells to determine the patient's response to the drug.
Time series modeling of live-cell shape dynamics for image-based phenotypic profiling.
Gordonov, Simon; Hwang, Mun Kyung; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A; Bathe, Mark
2016-01-01
Live-cell imaging can be used to capture spatio-temporal aspects of cellular responses that are not accessible to fixed-cell imaging. As the use of live-cell imaging continues to increase, new computational procedures are needed to characterize and classify the temporal dynamics of individual cells. For this purpose, here we present the general experimental-computational framework SAPHIRE (Stochastic Annotation of Phenotypic Individual-cell Responses) to characterize phenotypic cellular responses from time series imaging datasets. Hidden Markov modeling is used to infer and annotate morphological state and state-switching properties from image-derived cell shape measurements. Time series modeling is performed on each cell individually, making the approach broadly useful for analyzing asynchronous cell populations. Two-color fluorescent cells simultaneously expressing actin and nuclear reporters enabled us to profile temporal changes in cell shape following pharmacological inhibition of cytoskeleton-regulatory signaling pathways. Results are compared with existing approaches conventionally applied to fixed-cell imaging datasets, and indicate that time series modeling captures heterogeneous dynamic cellular responses that can improve drug classification and offer additional important insight into mechanisms of drug action. The software is available at http://saphire-hcs.org.
de Groot, Reinoud; Lüthi, Joel; Lindsay, Helen; Holtackers, René; Pelkmans, Lucas
2018-01-23
High-content imaging using automated microscopy and computer vision allows multivariate profiling of single-cell phenotypes. Here, we present methods for the application of the CISPR-Cas9 system in large-scale, image-based, gene perturbation experiments. We show that CRISPR-Cas9-mediated gene perturbation can be achieved in human tissue culture cells in a timeframe that is compatible with image-based phenotyping. We developed a pipeline to construct a large-scale arrayed library of 2,281 sequence-verified CRISPR-Cas9 targeting plasmids and profiled this library for genes affecting cellular morphology and the subcellular localization of components of the nuclear pore complex (NPC). We conceived a machine-learning method that harnesses genetic heterogeneity to score gene perturbations and identify phenotypically perturbed cells for in-depth characterization of gene perturbation effects. This approach enables genome-scale image-based multivariate gene perturbation profiling using CRISPR-Cas9. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Konen, J.; Summerbell, E.; Dwivedi, B.; Galior, K.; Hou, Y.; Rusnak, L.; Chen, A.; Saltz, J.; Zhou, W.; Boise, L. H.; Vertino, P.; Cooper, L.; Salaita, K.; Kowalski, J.; Marcus, A. I.
2017-01-01
Phenotypic heterogeneity is widely observed in cancer cell populations. Here, to probe this heterogeneity, we developed an image-guided genomics technique termed spatiotemporal genomic and cellular analysis (SaGA) that allows for precise selection and amplification of living and rare cells. SaGA was used on collectively invading 3D cancer cell packs to create purified leader and follower cell lines. The leader cell cultures are phenotypically stable and highly invasive in contrast to follower cultures, which show phenotypic plasticity over time and minimally invade in a sheet-like pattern. Genomic and molecular interrogation reveals an atypical VEGF-based vasculogenesis signalling that facilitates recruitment of follower cells but not for leader cell motility itself, which instead utilizes focal adhesion kinase-fibronectin signalling. While leader cells provide an escape mechanism for followers, follower cells in turn provide leaders with increased growth and survival. These data support a symbiotic model of collective invasion where phenotypically distinct cell types cooperate to promote their escape. PMID:28497793
Lee, Sangyeop; Chon, Hyangah; Lee, Jiyoung; Ko, Juhui; Chung, Bong Hyun; Lim, Dong Woo; Choo, Jaebum
2014-01-15
We report a surface-enhanced Raman scattering (SERS)-based cellular imaging technique to detect and quantify breast cancer phenotypic markers expressed on cell surfaces. This technique involves the synthesis of SERS nano tags consisting of silica-encapsulated hollow gold nanospheres (SEHGNs) conjugated with specific antibodies. Hollow gold nanospheres (HGNs) enhance SERS signal intensity of individual particles by localizing surface electromagnetic fields through pinholes in the hollow particle structures. This capacity to enhance imaging at the level of single molecules permits the use of HGNs to detect specific biological markers expressed in living cancer cells. In addition, silica encapsulation greatly enhances the stability of nanoparticles. Here we applied a SERS-based imaging technique using SEHGNs in the multiplex imaging of three breast cancer cell phenotypes. Expression of epidermal growth factor (EGF), ErbB2, and insulin-like growth factor-1 (IGF-1) receptors were assessed in the MDA-MB-468, KPL4 and SK-BR-3 human breast cancer cell lines. SERS imaging technology described here can be used to test the phenotype of a cancer cell and quantify proteins expressed on the cell surface simultaneously. Based on results, this technique may enable an earlier diagnosis of breast cancer than is currently possible and offer guidance in treatment. © 2013 Elsevier B.V. All rights reserved.
Unsupervised automated high throughput phenotyping of RNAi time-lapse movies.
Failmezger, Henrik; Fröhlich, Holger; Tresch, Achim
2013-10-04
Gene perturbation experiments in combination with fluorescence time-lapse cell imaging are a powerful tool in reverse genetics. High content applications require tools for the automated processing of the large amounts of data. These tools include in general several image processing steps, the extraction of morphological descriptors, and the grouping of cells into phenotype classes according to their descriptors. This phenotyping can be applied in a supervised or an unsupervised manner. Unsupervised methods are suitable for the discovery of formerly unknown phenotypes, which are expected to occur in high-throughput RNAi time-lapse screens. We developed an unsupervised phenotyping approach based on Hidden Markov Models (HMMs) with multivariate Gaussian emissions for the detection of knockdown-specific phenotypes in RNAi time-lapse movies. The automated detection of abnormal cell morphologies allows us to assign a phenotypic fingerprint to each gene knockdown. By applying our method to the Mitocheck database, we show that a phenotypic fingerprint is indicative of a gene's function. Our fully unsupervised HMM-based phenotyping is able to automatically identify cell morphologies that are specific for a certain knockdown. Beyond the identification of genes whose knockdown affects cell morphology, phenotypic fingerprints can be used to find modules of functionally related genes.
Yin, Zheng; Zhou, Xiaobo; Bakal, Chris; Li, Fuhai; Sun, Youxian; Perrimon, Norbert; Wong, Stephen TC
2008-01-01
Background The recent emergence of high-throughput automated image acquisition technologies has forever changed how cell biologists collect and analyze data. Historically, the interpretation of cellular phenotypes in different experimental conditions has been dependent upon the expert opinions of well-trained biologists. Such qualitative analysis is particularly effective in detecting subtle, but important, deviations in phenotypes. However, while the rapid and continuing development of automated microscope-based technologies now facilitates the acquisition of trillions of cells in thousands of diverse experimental conditions, such as in the context of RNA interference (RNAi) or small-molecule screens, the massive size of these datasets precludes human analysis. Thus, the development of automated methods which aim to identify novel and biological relevant phenotypes online is one of the major challenges in high-throughput image-based screening. Ideally, phenotype discovery methods should be designed to utilize prior/existing information and tackle three challenging tasks, i.e. restoring pre-defined biological meaningful phenotypes, differentiating novel phenotypes from known ones and clarifying novel phenotypes from each other. Arbitrarily extracted information causes biased analysis, while combining the complete existing datasets with each new image is intractable in high-throughput screens. Results Here we present the design and implementation of a novel and robust online phenotype discovery method with broad applicability that can be used in diverse experimental contexts, especially high-throughput RNAi screens. This method features phenotype modelling and iterative cluster merging using improved gap statistics. A Gaussian Mixture Model (GMM) is employed to estimate the distribution of each existing phenotype, and then used as reference distribution in gap statistics. This method is broadly applicable to a number of different types of image-based datasets derived from a wide spectrum of experimental conditions and is suitable to adaptively process new images which are continuously added to existing datasets. Validations were carried out on different dataset, including published RNAi screening using Drosophila embryos [Additional files 1, 2], dataset for cell cycle phase identification using HeLa cells [Additional files 1, 3, 4] and synthetic dataset using polygons, our methods tackled three aforementioned tasks effectively with an accuracy range of 85%–90%. When our method is implemented in the context of a Drosophila genome-scale RNAi image-based screening of cultured cells aimed to identifying the contribution of individual genes towards the regulation of cell-shape, it efficiently discovers meaningful new phenotypes and provides novel biological insight. We also propose a two-step procedure to modify the novelty detection method based on one-class SVM, so that it can be used to online phenotype discovery. In different conditions, we compared the SVM based method with our method using various datasets and our methods consistently outperformed SVM based method in at least two of three tasks by 2% to 5%. These results demonstrate that our methods can be used to better identify novel phenotypes in image-based datasets from a wide range of conditions and organisms. Conclusion We demonstrate that our method can detect various novel phenotypes effectively in complex datasets. Experiment results also validate that our method performs consistently under different order of image input, variation of starting conditions including the number and composition of existing phenotypes, and dataset from different screens. In our findings, the proposed method is suitable for online phenotype discovery in diverse high-throughput image-based genetic and chemical screens. PMID:18534020
Fuller, John A; Berlinicke, Cynthia A; Inglese, James; Zack, Donald J
2016-01-01
High content analysis (HCA) has become a leading methodology in phenotypic drug discovery efforts. Typical HCA workflows include imaging cells using an automated microscope and analyzing the data using algorithms designed to quantify one or more specific phenotypes of interest. Due to the richness of high content data, unappreciated phenotypic changes may be discovered in existing image sets using interactive machine-learning based software systems. Primary postnatal day four retinal cells from the photoreceptor (PR) labeled QRX-EGFP reporter mice were isolated, seeded, treated with a set of 234 profiled kinase inhibitors and then cultured for 1 week. The cells were imaged with an Acumen plate-based laser cytometer to determine the number and intensity of GFP-expressing, i.e. PR, cells. Wells displaying intensities and counts above threshold values of interest were re-imaged at a higher resolution with an INCell2000 automated microscope. The images were analyzed with an open source HCA analysis tool, PhenoRipper (Rajaram et al., Nat Methods 9:635-637, 2012), to identify the high GFP-inducing treatments that additionally resulted in diverse phenotypes compared to the vehicle control samples. The pyrimidinopyrimidone kinase inhibitor CHEMBL-1766490, a pan kinase inhibitor whose major known targets are p38α and the Src family member lck, was identified as an inducer of photoreceptor neuritogenesis by using the open-source HCA program PhenoRipper. This finding was corroborated using a cell-based method of image analysis that measures quantitative differences in the mean neurite length in GFP expressing cells. Interacting with data using machine learning algorithms may complement traditional HCA approaches by leading to the discovery of small molecule-induced cellular phenotypes in addition to those upon which the investigator is initially focusing.
Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter
2017-06-28
High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.
Pascut, Flavius C.; Goh, Huey T.; Welch, Nathan; Buttery, Lee D.; Denning, Chris; Notingher, Ioan
2011-01-01
Raman microspectroscopy (RMS) was used to detect and image molecular markers specific to cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs). This technique is noninvasive and thus can be used to discriminate individual live CMs within highly heterogeneous cell populations. Principal component analysis (PCA) of the Raman spectra was used to build a classification model for identification of individual CMs. Retrospective immunostaining imaging was used as the gold standard for phenotypic identification of each cell. We were able to discriminate CMs from other phenotypes with >97% specificity and >96% sensitivity, as calculated with the use of cross-validation algorithms (target 100% specificity). A comparison between Raman spectral images corresponding to selected Raman bands identified by the PCA model and immunostaining of the same cells allowed assignment of the Raman spectral markers. We conclude that glycogen is responsible for the discrimination of CMs, whereas myofibril proteins have a lesser contribution. This study demonstrates the potential of RMS for allowing the noninvasive phenotypic identification of hESC progeny. With further development, such label-free optical techniques may enable the separation of high-purity cell populations with mature phenotypes, and provide repeated measurements to monitor time-dependent molecular changes in live hESCs during differentiation in vitro. PMID:21190678
Label-free imaging to study phenotypic behavioural traits of cells in complex co-cultures
NASA Astrophysics Data System (ADS)
Suman, Rakesh; Smith, Gabrielle; Hazel, Kathryn E. A.; Kasprowicz, Richard; Coles, Mark; O'Toole, Peter; Chawla, Sangeeta
2016-02-01
Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.
Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms.
Liu, Tsung-Li; Upadhyayula, Srigokul; Milkie, Daniel E; Singh, Ved; Wang, Kai; Swinburne, Ian A; Mosaliganti, Kishore R; Collins, Zach M; Hiscock, Tom W; Shea, Jamien; Kohrman, Abraham Q; Medwig, Taylor N; Dambournet, Daphne; Forster, Ryan; Cunniff, Brian; Ruan, Yuan; Yashiro, Hanako; Scholpp, Steffen; Meyerowitz, Elliot M; Hockemeyer, Dirk; Drubin, David G; Martin, Benjamin L; Matus, David Q; Koyama, Minoru; Megason, Sean G; Kirchhausen, Tom; Betzig, Eric
2018-04-20
True physiological imaging of subcellular dynamics requires studying cells within their parent organisms, where all the environmental cues that drive gene expression, and hence the phenotypes that we actually observe, are present. A complete understanding also requires volumetric imaging of the cell and its surroundings at high spatiotemporal resolution, without inducing undue stress on either. We combined lattice light-sheet microscopy with adaptive optics to achieve, across large multicellular volumes, noninvasive aberration-free imaging of subcellular processes, including endocytosis, organelle remodeling during mitosis, and the migration of axons, immune cells, and metastatic cancer cells in vivo. The technology reveals the phenotypic diversity within cells across different organisms and developmental stages and may offer insights into how cells harness their intrinsic variability to adapt to different physiological environments. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery
Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O
2011-01-01
Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493
Microfluidics-based, time-resolved mechanical phenotyping of cells using high-speed imaging
NASA Astrophysics Data System (ADS)
Belotti, Yuri; Conneely, Michael; Huang, Tianjun; McKenna, Stephen; Nabi, Ghulam; McGloin, David
2017-07-01
We demonstrate a single channel hydrodynamic stretching microfluidic device that relies on high-speed imaging to allow repeated dynamic cell deformation measurements. Experiments on prostate cancer cells suggest richer data than current approaches.
Bray, Mark-Anthony; Singh, Shantanu; Han, Han; Davis, Chadwick T.; Borgeson, Blake; Hartland, Cathy; Kost-Alimova, Maria; Gustafsdottir, Sigrun M.; Gibson, Christopher C.; Carpenter, Anne E.
2016-01-01
In morphological profiling, quantitative data are extracted from microscopy images of cells to identify biologically relevant similarities and differences among samples based on these profiles. This protocol describes the design and execution of experiments using Cell Painting, a morphological profiling assay multiplexing six fluorescent dyes imaged in five channels, to reveal eight broadly relevant cellular components or organelles. Cells are plated in multi-well plates, perturbed with the treatments to be tested, stained, fixed, and imaged on a high-throughput microscope. Then, automated image analysis software identifies individual cells and measures ~1,500 morphological features (various measures of size, shape, texture, intensity, etc.) to produce a rich profile suitable for detecting subtle phenotypes. Profiles of cell populations treated with different experimental perturbations can be compared to suit many goals, such as identifying the phenotypic impact of chemical or genetic perturbations, grouping compounds and/or genes into functional pathways, and identifying signatures of disease. Cell culture and image acquisition takes two weeks; feature extraction and data analysis take an additional 1-2 weeks. PMID:27560178
NASA Astrophysics Data System (ADS)
Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi
2016-03-01
Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.
NASA Astrophysics Data System (ADS)
Mok, Aaron T. Y.; Lee, Kelvin C. M.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2018-02-01
Biophysical properties of cells could complement and correlate biochemical markers to characterize a multitude of cellular states. Changes in cell size, dry mass and subcellular morphology, for instance, are relevant to cell-cycle progression which is prevalently evaluated by DNA-targeted fluorescence measurements. Quantitative-phase microscopy (QPM) is among the effective biophysical phenotyping tools that can quantify cell sizes and sub-cellular dry mass density distribution of single cells at high spatial resolution. However, limited camera frame rate and thus imaging throughput makes QPM incompatible with high-throughput flow cytometry - a gold standard in multiparametric cell-based assay. Here we present a high-throughput approach for label-free analysis of cell cycle based on quantitative-phase time-stretch imaging flow cytometry at a throughput of > 10,000 cells/s. Our time-stretch QPM system enables sub-cellular resolution even at high speed, allowing us to extract a multitude (at least 24) of single-cell biophysical phenotypes (from both amplitude and phase images). Those phenotypes can be combined to track cell-cycle progression based on a t-distributed stochastic neighbor embedding (t-SNE) algorithm. Using multivariate analysis of variance (MANOVA) discriminant analysis, cell-cycle phases can also be predicted label-free with high accuracy at >90% in G1 and G2 phase, and >80% in S phase. We anticipate that high throughput label-free cell cycle characterization could open new approaches for large-scale single-cell analysis, bringing new mechanistic insights into complex biological processes including diseases pathogenesis.
Target identification by image analysis.
Fetz, V; Prochnow, H; Brönstrup, M; Sasse, F
2016-05-04
Covering: 1997 to the end of 2015Each biologically active compound induces phenotypic changes in target cells that are characteristic for its mode of action. These phenotypic alterations can be directly observed under the microscope or made visible by labelling structural elements or selected proteins of the cells with dyes. A comparison of the cellular phenotype induced by a compound of interest with the phenotypes of reference compounds with known cellular targets allows predicting its mode of action. While this approach has been successfully applied to the characterization of natural products based on a visual inspection of images, recent studies used automated microscopy and analysis software to increase speed and to reduce subjective interpretation. In this review, we give a general outline of the workflow for manual and automated image analysis, and we highlight natural products whose bacterial and eucaryotic targets could be identified through such approaches.
Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells.
Hart, Lori S; El-Deiry, Wafik S
2008-06-10
With evidence emerging in support of a cancer stem-cell model of carcinogenesis, it is of paramount importance to identify and image these elusive cells in their natural environment. The cancer stem-cell hypothesis has the potential to explain unresolved questions of tumorigenesis, tumor heterogeneity, chemotherapeutic and radiation resistance, and even the metastatic phenotype. Intravital imaging of cancer stem cells could be of great value for determining prognosis, as well as monitoring therapeutic efficacy and influencing therapeutic protocols. Cancer stem cells represent a rare population of cells, as low as 0.1% of cells within a human tumor, and the phenotype of isolated cancer stem cells is easily altered when placed under in vitro conditions. This represents a challenge in studying cancer stem cells without manipulation or extraction from their natural environment. Advanced imaging techniques allow for the in vivo observation of physiological events at cellular resolution. Cancer stem-cell studies must take advantage of such technology to promote a better understanding of the cancer stem-cell model in relation to tumor growth and metastasis, as well as to potentially improve on the principles by which cancers are treated. This review examines the opportunities for in vivo imaging of putative cancer stem cells with regard to currently accepted cancer stem-cell characteristics and advanced imaging technologies.
An image analysis toolbox for high-throughput C. elegans assays
Wählby, Carolina; Kamentsky, Lee; Liu, Zihan H.; Riklin-Raviv, Tammy; Conery, Annie L.; O’Rourke, Eyleen J.; Sokolnicki, Katherine L.; Visvikis, Orane; Ljosa, Vebjorn; Irazoqui, Javier E.; Golland, Polina; Ruvkun, Gary; Ausubel, Frederick M.; Carpenter, Anne E.
2012-01-01
We present a toolbox for high-throughput screening of image-based Caenorhabditis elegans phenotypes. The image analysis algorithms measure morphological phenotypes in individual worms and are effective for a variety of assays and imaging systems. This WormToolbox is available via the open-source CellProfiler project and enables objective scoring of whole-animal high-throughput image-based assays of C. elegans for the study of diverse biological pathways relevant to human disease. PMID:22522656
Collins, Adam; Huett, Alan
2018-05-15
We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are exogenously expressed.
Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl
2009-11-01
Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.
Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S
2016-10-01
3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting. © 2016 Society for Laboratory Automation and Screening.
NASA Astrophysics Data System (ADS)
Remmele, Steffen; Ritzerfeld, Julia; Nickel, Walter; Hesser, Jürgen
2011-03-01
RNAi-based high-throughput microscopy screens have become an important tool in biological sciences in order to decrypt mostly unknown biological functions of human genes. However, manual analysis is impossible for such screens since the amount of image data sets can often be in the hundred thousands. Reliable automated tools are thus required to analyse the fluorescence microscopy image data sets usually containing two or more reaction channels. The herein presented image analysis tool is designed to analyse an RNAi screen investigating the intracellular trafficking and targeting of acylated Src kinases. In this specific screen, a data set consists of three reaction channels and the investigated cells can appear in different phenotypes. The main issue of the image processing task is an automatic cell segmentation which has to be robust and accurate for all different phenotypes and a successive phenotype classification. The cell segmentation is done in two steps by segmenting the cell nuclei first and then using a classifier-enhanced region growing on basis of the cell nuclei to segment the cells. The classification of the cells is realized by a support vector machine which has to be trained manually using supervised learning. Furthermore, the tool is brightness invariant allowing different staining quality and it provides a quality control that copes with typical defects during preparation and acquisition. A first version of the tool has already been successfully applied for an RNAi-screen containing three hundred thousand image data sets and the SVM extended version is designed for additional screens.
Strong, Averey D; Daniels, Richard L
2017-08-02
The tumor-derived GL261 cell line is used as a model for studying glioblastoma and other high-grade gliomas, and can be cultured adherently or as free-floating aggregates known as neurospheres. These different culture conditions give rise to distinct phenotypes, with increased tumorigenicity displayed by neurosphere-cultured cells. An important technique for understanding GL261 pathobiology is live cell fluorescent imaging of intracellular calcium. However, live cell imaging of GL261 neurospheres presents a technical challenge, as experimental manipulations where drugs are added to the extracellular media cause the cells to move during analysis. Here we present a method to immobilize GL261 neurospheres with low melting point agarose for calcium imaging using the fluorescent calcium sensor fura-2. GL261 cells were obtained from the NCI-Frederick Cancer Research Tumor Repository and cultured as adherent cells or induced to form neurospheres by placing freshly trypsinized cells into serum-free media containing fibroblast growth factor 2, epidermal growth factor, and B-27 supplement. Prior to experiments, adherent cells were loaded with fura-2 and cultured on 8-well chamber slides. Non-adherent neurospheres were first loaded with fura-2, placed in droplets onto an 8-well chamber slide, and finally covered with a thin layer of low melting point agarose to immobilize the cells. Ratiometric pseudocolored images were obtained during treatment with ATP, capsaicin, or vehicle control. Cells were marked as responsive if fluorescence levels increased more than 30% above baseline. Differences between treatment groups were tested using Student's t-tests and one-way ANOVA. We found that cellular responses to pharmacological treatments differ based on cellular phenotype. Adherent cells and neurospheres both responded to ATP with a rise in intracellular calcium. Notably, capsaicin treatment led to robust responses in GL261 neurospheres but not adherent cells. We demonstrate the use of low melting point agarose for immobilizing GL261 cells, a method that is broadly applicable to any cell type cultured in suspension, including acutely trypsinized cells and primary tumor cells. Our results indicate that it is important to consider GL261 phenotype (adherent or neurosphere) when interpreting data regarding physiological responses to experimental compounds.
NASA Astrophysics Data System (ADS)
Walsh, Alex J.; Skala, Melissa C.
2014-02-01
The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.
Structural phenotyping of stem cell-derived cardiomyocytes.
Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit
2015-03-10
Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Cho, S; Son, J H; Park, D H; Aoki, C; Song, X; Smith, G P; Joh, T H
1996-01-01
Neurotransmitters play a variety of important roles during nervous system development. In the present study, we hypothesized that neurotransmitter phenotype of both projecting and target cells is an important factor for the final synaptic linkage and its specificity. To test this hypothesis, we used transgenic techniques to convert serotonin/melatonin-producing cells of the pineal gland into cells that also produce dopamine and investigated the innervation of the phenotypically altered target cells. This phenotypic alteration markedly reduced the noradrenergic innervation originating from the superior cervical ganglia. Although the mechanism by which the reduction occurs is presently unknown, quantitative enzyme-linked immunoassay showed the presence of the equivalent amounts of nerve growth factor (NGF) in the control and transgenic pineal glands, suggesting that it occurred in a NGF-independent manner. The results suggest that target neurotransmitter phenotype influences the formation of afferent connections during development. Images Fig. 3 Fig. 4 PMID:8610132
Synchrotron microCT imaging of soft tissue in juvenile zebrafish reveals retinotectal projections
NASA Astrophysics Data System (ADS)
Xin, Xuying; Clark, Darin; Ang, Khai Chung; van Rossum, Damian B.; Copper, Jean; Xiao, Xianghui; La Riviere, Patrick J.; Cheng, Keith C.
2017-02-01
Biomedical research and clinical diagnosis would benefit greatly from full volume determinations of anatomical phenotype. Comprehensive tools for morphological phenotyping are central for the emerging field of phenomics, which requires high-throughput, systematic, accurate, and reproducible data collection from organisms affected by genetic, disease, or environmental variables. Theoretically, complete anatomical phenotyping requires the assessment of every cell type in the whole organism, but this ideal is presently untenable due to the lack of an unbiased 3D imaging method that allows histopathological assessment of any cell type despite optical opacity. Histopathology, the current clinical standard for diagnostic phenotyping, involves the microscopic study of tissue sections to assess qualitative aspects of tissue architecture, disease mechanisms, and physiological state. However, quantitative features of tissue architecture such as cellular composition and cell counting in tissue volumes can only be approximated due to characteristics of tissue sectioning, including incomplete sampling and the constraints of 2D imaging of 5 micron thick tissue slabs. We have used a small, vertebrate organism, the zebrafish, to test the potential of microCT for systematic macroscopic and microscopic morphological phenotyping. While cell resolution is routinely achieved using methods such as light sheet fluorescence microscopy and optical tomography, these methods do not provide the pancellular perspective characteristic of histology, and are constrained by the limited penetration of visible light through pigmented and opaque specimens, as characterizes zebrafish juveniles. Here, we provide an example of neuroanatomy that can be studied by microCT of stained soft tissue at 1.43 micron isotropic voxel resolution. We conclude that synchrotron microCT is a form of 3D imaging that may potentially be adopted towards more reproducible, large-scale, morphological phenotyping of optically opaque tissues. Further development of soft tissue microCT, visualization and quantitative tool development will enhance its utility.
Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy
NASA Astrophysics Data System (ADS)
Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.
2016-04-01
Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.
Shamah, S M; Stiles, C D; Guha, A
1993-01-01
Malignant astrocytoma is the most common primary human brain tumor. Most astrocytomas express a combination of platelet-derived growth factor (PDGF) and PDGF receptor which could close an autocrine loop. It is not known whether these autocrine loops contribute to the transformed phenotype of astrocytoma cells or are incidental to that phenotype. Here we show that dominant-negative mutants of the PDGF ligand break the autocrine loop and revert the phenotype of BALB/c 3T3 cells transformed by the PDGF-A or PDGF-B (c-sis) gene. Then, we show that these mutants are selective in that they do not alter the phenotype of 3T3 cells transformed by an activated Ha-ras or v-src gene or by simian virus 40. Finally, we show that these mutants revert the transformed phenotype of two independent human astrocytoma cell lines. They have no effect on the growth of human medulloblastoma, bladder carcinoma, or colon carcinoma cell lines. These observations are consistent with the view that PDGF autocrine loops contribute to the transformed phenotype of at least some human astrocytomas. Images PMID:8246942
Cell and small animal models for phenotypic drug discovery.
Szabo, Mihaly; Svensson Akusjärvi, Sara; Saxena, Ankur; Liu, Jianping; Chandrasekar, Gayathri; Kitambi, Satish S
2017-01-01
The phenotype-based drug discovery (PDD) approach is re-emerging as an alternative platform for drug discovery. This review provides an overview of the various model systems and technical advances in imaging and image analyses that strengthen the PDD platform. In PDD screens, compounds of therapeutic value are identified based on the phenotypic perturbations produced irrespective of target(s) or mechanism of action. In this article, examples of phenotypic changes that can be detected and quantified with relative ease in a cell-based setup are discussed. In addition, a higher order of PDD screening setup using small animal models is also explored. As PDD screens integrate physiology and multiple signaling mechanisms during the screening process, the identified hits have higher biomedical applicability. Taken together, this review highlights the advantages gained by adopting a PDD approach in drug discovery. Such a PDD platform can complement target-based systems that are currently in practice to accelerate drug discovery.
Karaçalı, Bilge; Vamvakidou, Alexandra P; Tözeren, Aydın
2007-01-01
Background Three-dimensional in vitro culture of cancer cells are used to predict the effects of prospective anti-cancer drugs in vivo. In this study, we present an automated image analysis protocol for detailed morphological protein marker profiling of tumoroid cross section images. Methods Histologic cross sections of breast tumoroids developed in co-culture suspensions of breast cancer cell lines, stained for E-cadherin and progesterone receptor, were digitized and pixels in these images were classified into five categories using k-means clustering. Automated segmentation was used to identify image regions composed of cells expressing a given biomarker. Synthesized images were created to check the accuracy of the image processing system. Results Accuracy of automated segmentation was over 95% in identifying regions of interest in synthesized images. Image analysis of adjacent histology slides stained, respectively, for Ecad and PR, accurately predicted regions of different cell phenotypes. Image analysis of tumoroid cross sections from different tumoroids obtained under the same co-culture conditions indicated the variation of cellular composition from one tumoroid to another. Variations in the compositions of cross sections obtained from the same tumoroid were established by parallel analysis of Ecad and PR-stained cross section images. Conclusion Proposed image analysis methods offer standardized high throughput profiling of molecular anatomy of tumoroids based on both membrane and nuclei markers that is suitable to rapid large scale investigations of anti-cancer compounds for drug development. PMID:17822559
Katsanos, Dimitris; Koneru, Sneha L.; Mestek Boukhibar, Lamia; Gritti, Nicola; Ghose, Ritobrata; Appleford, Peter J.; Doitsidou, Maria; Woollard, Alison; van Zon, Jeroen S.; Poole, Richard J.
2017-01-01
Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens. PMID:29108019
Machine learning and computer vision approaches for phenotypic profiling.
Grys, Ben T; Lo, Dara S; Sahin, Nil; Kraus, Oren Z; Morris, Quaid; Boone, Charles; Andrews, Brenda J
2017-01-02
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. © 2017 Grys et al.
Machine learning and computer vision approaches for phenotypic profiling
Morris, Quaid
2017-01-01
With recent advances in high-throughput, automated microscopy, there has been an increased demand for effective computational strategies to analyze large-scale, image-based data. To this end, computer vision approaches have been applied to cell segmentation and feature extraction, whereas machine-learning approaches have been developed to aid in phenotypic classification and clustering of data acquired from biological images. Here, we provide an overview of the commonly used computer vision and machine-learning methods for generating and categorizing phenotypic profiles, highlighting the general biological utility of each approach. PMID:27940887
Schulze, Katja; Lang, Imke; Enke, Heike; Grohme, Diana; Frohme, Marcus
2015-04-17
Ethanol production via genetically engineered cyanobacteria is a promising solution for the production of biofuels. Through the introduction of a pyruvate decarboxylase and alcohol dehydrogenase direct ethanol production becomes possible within the cells. However, during cultivation genetic instability can lead to mutations and thus loss of ethanol production. Cells then revert back to the wild type phenotype. A method for a rapid and simple detection of these non-producing revertant cells in an ethanol producing cell population is an important quality control measure in order to predict genetic stability and the longevity of a producing culture. Several comparable cultivation experiments revealed a difference in the pigmentation for non-producing and producing cells: the accessory pigment phycocyanin (PC) is reduced in case of the ethanol producer, resulting in a yellowish appearance of the culture. Microarray and western blot studies of Synechocystis sp. PCC6803 and Synechococcus sp. PCC7002 confirmed this PC reduction on the level of RNA and protein. Based on these findings we developed a method for fluorescence microscopy in order to distinguish producing and non-producing cells with respect to their pigmentation phenotype. By applying a specific filter set the emitted fluorescence of a producer cell with a reduced PC content appeared orange. The emitted fluorescence of a non-producing cell with a wt pigmentation phenotype was detected in red, and dead cells in green. In an automated process multiple images of each sample were taken and analyzed with a plugin for the image analysis software ImageJ to identify dead (green), non-producing (red) and producing (orange) cells. The results of the presented validation experiments revealed a good identification with 98 % red cells in the wt sample and 90 % orange cells in the producer sample. The detected wt pigmentation phenotype (red cells) in the producer sample were either not fully induced yet (in 48 h induced cultures) or already reverted to a non-producing cells (in long-term photobioreactor cultivations), emphasizing the sensitivity and resolution of the method. The fluorescence microscopy method displays a useful technique for a rapid detection of non-producing single cells in an ethanol producing cell population.
Sirenko, Oksana; Hancock, Michael K; Hesley, Jayne; Hong, Dihui; Cohen, Avrum; Gentry, Jason; Carlson, Coby B; Mann, David A
2016-09-01
Cell models are becoming more complex to better mimic the in vivo environment and provide greater predictivity for compound efficacy and toxicity. There is an increasing interest in exploring the use of three-dimensional (3D) spheroids for modeling developmental and tissue biology with the goal of accelerating translational research in these areas. Accordingly, the development of high-throughput quantitative assays using 3D cultures is an active area of investigation. In this study, we have developed and optimized methods for the formation of 3D liver spheroids derived from human iPS cells and used those for toxicity assessment. We used confocal imaging and 3D image analysis to characterize cellular information from a 3D matrix to enable a multi-parametric comparison of different spheroid phenotypes. The assay enables characterization of compound toxicities by spheroid size (volume) and shape, cell number and spatial distribution, nuclear characterization, number and distribution of cells expressing viability, apoptosis, mitochondrial potential, and viability marker intensities. In addition, changes in the content of live, dead, and apoptotic cells as a consequence of compound exposure were characterized. We tested 48 compounds and compared induced pluripotent stem cell (iPSC)-derived hepatocytes and HepG2 cells in both two-dimensional (2D) and 3D cultures. We observed significant differences in the pharmacological effects of compounds across the two cell types and between the different culture conditions. Our results indicate that a phenotypic assay using 3D model systems formed with human iPSC-derived hepatocytes is suitable for high-throughput screening and can be used for hepatotoxicity assessment in vitro.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vega, Sebastián L.; Liu, Er; Arvind, Varun
Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regionsmore » of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative “imaging-derived” parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. - Highlights: • High-content analysis of nuclear shape and organization classify stem and progenitor cells poised for distinct lineages. • Early oncogenic changes in mesenchymal stem cells (MSCs) are also detected with nuclear descriptors. • A new class of cancer-mitigating biomaterials was identified based on image informatics. • Textural metrics of the nuclear structural protein NuMA are sufficient to parse emergent cell phenotypes.« less
NASA Astrophysics Data System (ADS)
Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul
The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.
MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.
Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier
2016-01-15
Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains.
Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia
2014-01-01
The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ΔaceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ΔaceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains. PMID:24465669
Milani, Donatella; Pezzani, Lidia; Tabano, Silvia; Miozzo, Monica
2014-01-01
Genomic imprinting is an epigenetically regulated mechanism leading to parental-origin allele-specific expression. Beckwith-Wiedemann syndrome (BWS) is an imprinting disease related to 11p15.5 genetic and epigenetic alterations, among them loss-of-function CDKN1C mutations. Intriguing is that CDKN1C gain-of-function variations were recently found in patients with IMAGe syndrome (intrauterine growth restriction, metaphyseal dysplasia, congenital adrenal hypoplasia, and genital anomalies). BWS and IMAGe share an imprinted mode of inheritance; familial analysis demonstrated the presence of the phenotype exclusively when the mutant CDKN1C allele is inherited from the mother. Interestingly, both IMAGe and BWS are characterized by growth disturbances, although with opposite clinical phenotypes; IMAGe patients display growth restriction whereas BWS patients display overgrowth. CDKN1C codifies for CDKN1C/KIP2, a nuclear protein and potent tight-binding inhibitor of several cyclin/Cdk complexes, playing a role in maintenance of the nonproliferative state of cells. The mirror phenotype of BWS and IMAGe can be, at least in part, explained by the effect of mutations on protein functions. All the IMAGe-associated mutations are clustered in the proliferating cell nuclear antigen-binding domain of CDKN1C and cause a dramatic increase in the stability of the protein, which probably results in a functional gain of growth inhibition properties. In contrast, BWS mutations are not clustered within a single domain, are loss-of-function, and promote cell proliferation. CDKN1C is an example of allelic heterogeneity associated with opposite syndromes.
Daily, Neil J.; Du, Zhong-Wei
2017-01-01
Abstract Electrophysiology of excitable cells, including muscle cells and neurons, has been measured by making direct contact with a single cell using a micropipette electrode. To increase the assay throughput, optical devices such as microscopes and microplate readers have been used to analyze electrophysiology of multiple cells. We have established a high-throughput (HTP) analysis of action potentials (APs) in highly enriched motor neurons and cardiomyocytes (CMs) that are differentiated from human induced pluripotent stem cells (iPSCs). A multichannel electric field stimulation (EFS) device enabled the ability to electrically stimulate cells and measure dynamic changes in APs of excitable cells ultra-rapidly (>100 data points per second) by imaging entire 96-well plates. We found that the activities of both neurons and CMs and their response to EFS and chemicals are readily discerned by our fluorescence imaging-based HTP phenotyping assay. The latest generation of calcium (Ca2+) indicator dyes, FLIPR Calcium 6 and Cal-520, with the HTP device enables physiological analysis of human iPSC-derived samples highlighting its potential application for understanding disease mechanisms and discovering new therapeutic treatments. PMID:28525289
Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Ju; Chang, Hang; Giricz, Orsi
Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associationsmore » with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.« less
Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging.
Cho, Hyeon-Yeol; Hossain, Md Khaled; Lee, Jin-Ho; Han, Jiyou; Lee, Hun Joo; Kim, Kyeong-Jun; Kim, Jong-Hoon; Lee, Ki-Bum; Choi, Jeong-Woo
2018-04-15
Circulating cancer stem cells (CCSCs), a rare circulating tumor cell (CTC) type, recently arose as a useful resource for monitoring and characterizing both cancers and their metastatic derivatives. However, due to the scarcity of CCSCs among hematologic cells in the blood and the complexity of the phenotype confirmation process, CCSC research can be extremely challenging. Hence, we report a nanoparticle-mediated Raman imaging method for CCSC characterization which profiles CCSCs based on their surface marker expression phenotypes. We have developed an integrated combinatorial Raman-Active Nanoprobe (RAN) system combined with a microfluidic chip to successfully process complete blood samples. CCSCs and CTCs were detected (90% efficiency) and classified in accordance with their respective surface marker expression via completely distinct Raman signals of RANs. Selectively isolated CCSCs (93% accuracy) were employed for both in vitro and in vivo tumor phenotyping to identify the tumorigenicity of the CCSCs. We utilized our new method to predict metastasis by screening blood samples from xenograft models, showing that upon CCSC detection, all subjects exhibited liver metastasis. Having highly efficient detection and noninvasive isolation capabilities, we have demonstrated that our RAN-based Raman imaging method will be valuable for predicting cancer metastasis and relapse via CCSC detection. Moreover, the exclusion of peak overlapping in CCSC analysis with our Raman imaging method will allow to expand the RAN families for various cancer types, therefore, increasing therapeutic efficacy by providing detailed molecular features of tumor subtypes. Copyright © 2017 Elsevier B.V. All rights reserved.
Aberrant phenotypes in peripheral T cell lymphomas.
Hastrup, N; Ralfkiaer, E; Pallesen, G
1989-01-01
Seventy six peripheral T cell lymphomas were examined immunohistologically to test their reactivity with a panel of monoclonal antibodies against 11 T cell associated antigens (CD1-8, CD27, UCHL1, and the T cell antigen receptor). Sixty two (82%) lymphomas showed aberrant phenotypes, and four main categories were distinguished as follows: (i) lack of one or several pan-T cell antigens (49, 64% of the cases); (ii) loss of both the CD4 and CD8 antigens (11, 15% of the cases); (iii) coexpression of the CD4 and CD8 antigens (13, 17% of the cases); and (iv) expression of the CD1 antigen (eight, 11% of the cases). No correlation was seen between the occurrence of aberrant phenotypes and the histological subtype. It is concluded that the demonstration of an aberrant phenotype is a valuable supplement to histological assessment in the diagnosis of peripheral T cell lymphomas. It is recommended that the panel of monoclonal antibodies against T cell differentiation antigens should be fairly large, as apparently any antigen may be lost in the process of malignant transformation. Images Figure PMID:2469701
A multi-scale convolutional neural network for phenotyping high-content cellular images.
Godinez, William J; Hossain, Imtiaz; Lazic, Stanley E; Davies, John W; Zhang, Xian
2017-07-01
Identifying phenotypes based on high-content cellular images is challenging. Conventional image analysis pipelines for phenotype identification comprise multiple independent steps, with each step requiring method customization and adjustment of multiple parameters. Here, we present an approach based on a multi-scale convolutional neural network (M-CNN) that classifies, in a single cohesive step, cellular images into phenotypes by using directly and solely the images' pixel intensity values. The only parameters in the approach are the weights of the neural network, which are automatically optimized based on training images. The approach requires no a priori knowledge or manual customization, and is applicable to single- or multi-channel images displaying single or multiple cells. We evaluated the classification performance of the approach on eight diverse benchmark datasets. The approach yielded overall a higher classification accuracy compared with state-of-the-art results, including those of other deep CNN architectures. In addition to using the network to simply obtain a yes-or-no prediction for a given phenotype, we use the probability outputs calculated by the network to quantitatively describe the phenotypes. This study shows that these probability values correlate with chemical treatment concentrations. This finding validates further our approach and enables chemical treatment potency estimation via CNNs. The network specifications and solver definitions are provided in Supplementary Software 1. william_jose.godinez_navarro@novartis.com or xian-1.zhang@novartis.com. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Chapter 17: Bioimage Informatics for Systems Pharmacology
Li, Fuhai; Yin, Zheng; Jin, Guangxu; Zhao, Hong; Wong, Stephen T. C.
2013-01-01
Recent advances in automated high-resolution fluorescence microscopy and robotic handling have made the systematic and cost effective study of diverse morphological changes within a large population of cells possible under a variety of perturbations, e.g., drugs, compounds, metal catalysts, RNA interference (RNAi). Cell population-based studies deviate from conventional microscopy studies on a few cells, and could provide stronger statistical power for drawing experimental observations and conclusions. However, it is challenging to manually extract and quantify phenotypic changes from the large amounts of complex image data generated. Thus, bioimage informatics approaches are needed to rapidly and objectively quantify and analyze the image data. This paper provides an overview of the bioimage informatics challenges and approaches in image-based studies for drug and target discovery. The concepts and capabilities of image-based screening are first illustrated by a few practical examples investigating different kinds of phenotypic changes caEditorsused by drugs, compounds, or RNAi. The bioimage analysis approaches, including object detection, segmentation, and tracking, are then described. Subsequently, the quantitative features, phenotype identification, and multidimensional profile analysis for profiling the effects of drugs and targets are summarized. Moreover, a number of publicly available software packages for bioimage informatics are listed for further reference. It is expected that this review will help readers, including those without bioimage informatics expertise, understand the capabilities, approaches, and tools of bioimage informatics and apply them to advance their own studies. PMID:23633943
Human brain microvascular endothelial cells resist elongation due to shear stress.
Reinitz, Adam; DeStefano, Jackson; Ye, Mao; Wong, Andrew D; Searson, Peter C
2015-05-01
Endothelial cells in straight sections of vessels are known to elongate and align in the direction of flow. This phenotype has been replicated in confluent monolayers of bovine aortic endothelial cells and human umbilical vein endothelial cells (HUVECs) in cell culture under physiological shear stress. Here we report on the morphological response of human brain microvascular endothelial cells (HBMECs) in confluent monolayers in response to shear stress. Using a microfluidic platform we image confluent monolayers of HBMECs and HUVECs under shear stresses up to 16 dyne cm(-2). From live-cell imaging we quantitatively analyze the cell morphology and cell speed as a function of time. We show that HBMECs do not undergo a classical transition from cobblestone to spindle-like morphology in response to shear stress. We further show that under shear stress, actin fibers are randomly oriented in the cells indicating that there is no cytoskeletal remodeling. These results suggest that HBMECs are programmed to resist elongation and alignment under shear stress, a phenotype that may be associated with the unique properties of the blood-brain barrier. Copyright © 2015 Elsevier Inc. All rights reserved.
Wang, Chuangqi; Choi, Hee June; Kim, Sung-Jin; Desai, Aesha; Lee, Namgyu; Kim, Dohoon; Bae, Yongho; Lee, Kwonmoo
2018-04-27
Cell protrusion is morphodynamically heterogeneous at the subcellular level. However, the mechanism of cell protrusion has been understood based on the ensemble average of actin regulator dynamics. Here, we establish a computational framework called HACKS (deconvolution of heterogeneous activity in coordination of cytoskeleton at the subcellular level) to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging. HACKS identifies distinct subcellular protrusion phenotypes based on machine-learning algorithms and reveals their underlying actin regulator dynamics at the leading edge. Using our method, we discover "accelerating protrusion", which is driven by the temporally ordered coordination of Arp2/3 and VASP activities. We validate our finding by pharmacological perturbations and further identify the fine regulation of Arp2/3 and VASP recruitment associated with accelerating protrusion. Our study suggests HACKS can identify specific subcellular protrusion phenotypes susceptible to pharmacological perturbation and reveal how actin regulator dynamics are changed by the perturbation.
Quantitative phase imaging for enhanced assessment of optomechanical cancer cell properties
NASA Astrophysics Data System (ADS)
Kastl, Lena; Kemper, Björn; Schnekenburger, Jürgen
2018-02-01
Optical cell stretching provides label-free investigations of cells by measuring their biomechanical properties based on deformability determination in a fiber optical two-beam trap. However, the stretching forces in this two-beam laser trap depend on the optical properties of the investigated specimen. Therefore, we characterized in parallel four cancer cell lines with varying degree of differentiation utilizing quantitative phase imaging (QPI) and optical cell stretching. The QPI data allowed enhanced assessment of the mechanical cell properties measured with the optical cell stretcher and demonstrates the high potential of cell phenotyping when both techniques are combined.
Modeling continuum of epithelial mesenchymal transition plasticity.
Mandal, Mousumi; Ghosh, Biswajoy; Anura, Anji; Mitra, Pabitra; Pathak, Tanmaya; Chatterjee, Jyotirmoy
2016-02-01
Living systems respond to ambient pathophysiological changes by altering their phenotype, a phenomenon called 'phenotypic plasticity'. This program contains information about adaptive biological dynamism. Epithelial-mesenchymal transition (EMT) is one such process found to be crucial in development, wound healing, and cancer wherein the epithelial cells with restricted migratory potential develop motile functions by acquiring mesenchymal characteristics. In the present study, phase contrast microscopy images of EMT induced HaCaT cells were acquired at 24 h intervals for 96 h. The expression study of relevant pivotal molecules viz. F-actin, vimentin, fibronectin and N-cadherin was carried out to confirm the EMT process. Cells were intuitively categorized into five distinct morphological phenotypes. A population of 500 cells for each temporal point was selected to quantify their frequency of occurrence. The plastic interplay of cell phenotypes from the observations was described as a Markovian process. A model was formulated empirically using simple linear algebra, to depict the possible mechanisms of cellular transformation among the five phenotypes. This work employed qualitative, semi-quantitative and quantitative tools towards illustration and establishment of the EMT continuum. Thus, it provides a newer perspective to understand the embedded plasticity across the EMT spectrum.
High-throughput, image-based screening of pooled genetic variant libraries
Emanuel, George; Moffitt, Jeffrey R.; Zhuang, Xiaowei
2018-01-01
Image-based, high-throughput screening of genetic perturbations will advance both biology and biotechnology. We report a high-throughput screening method that allows diverse genotypes and corresponding phenotypes to be imaged in numerous individual cells. We achieve genotyping by introducing barcoded genetic variants into cells and using massively multiplexed FISH to measure the barcodes. We demonstrated this method by screening mutants of the fluorescent protein YFAST, yielding brighter and more photostable YFAST variants. PMID:29083401
2012-08-14
Defining the molecular and biochemical pathways re- sponsible for cell death phenotypes is essential for iden- tifying critical points that could be...clearly image nuclear structure resulted in PI-positive nuclei developing an orange hue. (B) Planimetric quantitation of nuclear size measured...metabolites on undifferentiated PC12 cells: a putative structure -toxicity relationship. Chem Res Toxicol 2006, 19(10):1294–1304. 10. McNutt P, Celver J
Magnetic Levitation Coupled with Portable Imaging and Analysis for Disease Diagnostics.
Knowlton, Stephanie M; Yenilmez, Bekir; Amin, Reza; Tasoglu, Savas
2017-02-19
Currently, many clinical diagnostic procedures are complex, costly, inefficient, and inaccessible to a large population in the world. The requirements for specialized equipment and trained personnel require that many diagnostic tests be performed at remote, centralized clinical laboratories. Magnetic levitation is a simple yet powerful technique and can be applied to levitate cells, which are suspended in a paramagnetic solution and placed in a magnetic field, at a position determined by equilibrium between a magnetic force and a buoyancy force. Here, we present a versatile platform technology designed for point-of-care diagnostics which uses magnetic levitation coupled to microscopic imaging and automated analysis to determine the density distribution of a patient's cells as a useful diagnostic indicator. We present two platforms operating on this principle: (i) a smartphone-compatible version of the technology, where the built-in smartphone camera is used to image cells in the magnetic field and a smartphone application processes the images and to measures the density distribution of the cells and (ii) a self-contained version where a camera board is used to capture images and an embedded processing unit with attached thin-film-transistor (TFT) screen measures and displays the results. Demonstrated applications include: (i) measuring the altered distribution of a cell population with a disease phenotype compared to a healthy phenotype, which is applied to sickle cell disease diagnosis, and (ii) separation of different cell types based on their characteristic densities, which is applied to separate white blood cells from red blood cells for white blood cell cytometry. These applications, as well as future extensions of the essential density-based measurements enabled by this portable, user-friendly platform technology, will significantly enhance disease diagnostic capabilities at the point of care.
High content live cell imaging for the discovery of new antimalarial marine natural products
2012-01-01
Background The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. Methods A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Results Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Conclusion Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. PMID:22214291
High content live cell imaging for the discovery of new antimalarial marine natural products.
Cervantes, Serena; Stout, Paige E; Prudhomme, Jacques; Engel, Sebastian; Bruton, Matthew; Cervantes, Michael; Carter, David; Tae-Chang, Young; Hay, Mark E; Aalbersberg, William; Kubanek, Julia; Le Roch, Karine G
2012-01-03
The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, Plasmodium falciparum. A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown in vitro in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope. Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts. Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials. © 2011 Cervantes et al; licensee BioMed Central Ltd.
Imaging Intratumor Heterogeneity: Role in Therapy Response, Resistance, and Clinical Outcome
O’Connor, James P.B.; Rose, Chris J.; Waterton, John C.; Carano, Richard A.D.; Parker, Geoff J.M.; Jackson, Alan
2014-01-01
Tumors exhibit genomic and phenotypic heterogeneity which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks. These methods can establish whether one tumor is more or less heterogeneous than another and can identify sub-regions with differing biology. In this article we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, rather than be developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. PMID:25421725
Rapid analysis and exploration of fluorescence microscopy images.
Pavie, Benjamin; Rajaram, Satwik; Ouyang, Austin; Altschuler, Jason M; Steininger, Robert J; Wu, Lani F; Altschuler, Steven J
2014-03-19
Despite rapid advances in high-throughput microscopy, quantitative image-based assays still pose significant challenges. While a variety of specialized image analysis tools are available, most traditional image-analysis-based workflows have steep learning curves (for fine tuning of analysis parameters) and result in long turnaround times between imaging and analysis. In particular, cell segmentation, the process of identifying individual cells in an image, is a major bottleneck in this regard. Here we present an alternate, cell-segmentation-free workflow based on PhenoRipper, an open-source software platform designed for the rapid analysis and exploration of microscopy images. The pipeline presented here is optimized for immunofluorescence microscopy images of cell cultures and requires minimal user intervention. Within half an hour, PhenoRipper can analyze data from a typical 96-well experiment and generate image profiles. Users can then visually explore their data, perform quality control on their experiment, ensure response to perturbations and check reproducibility of replicates. This facilitates a rapid feedback cycle between analysis and experiment, which is crucial during assay optimization. This protocol is useful not just as a first pass analysis for quality control, but also may be used as an end-to-end solution, especially for screening. The workflow described here scales to large data sets such as those generated by high-throughput screens, and has been shown to group experimental conditions by phenotype accurately over a wide range of biological systems. The PhenoBrowser interface provides an intuitive framework to explore the phenotypic space and relate image properties to biological annotations. Taken together, the protocol described here will lower the barriers to adopting quantitative analysis of image based screens.
Shammas, Ronnie L; Fales, Andrew M; Crawford, Bridget M; Wisdom, Amy J; Devi, Gayathri R; Brown, David A; Vo-Dinh, Tuan; Hollenbeck, Scott T
2017-04-01
Gold nanostars are unique nanoplatforms that can be imaged in real time and transform light energy into heat to ablate cells. Adipose-derived stem cells migrate toward tumor niches in response to chemokines. The ability of adipose-derived stem cells to migrate and integrate into tumors makes them ideal vehicles for the targeted delivery of cancer nanotherapeutics. To test the labeling efficiency of gold nanostars, undifferentiated adipose-derived stem cells were incubated with gold nanostars and a commercially available nanoparticle (Qtracker), then imaged using two-photon photoluminescence microscopy. The effects of gold nanostars on cell phenotype, proliferation, and viability were assessed with flow cytometry, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide metabolic assay, and trypan blue, respectively. Trilineage differentiation of gold nanostar-labeled adipose-derived stem cells was induced with the appropriate media. Photothermolysis was performed on adipose-derived stem cells cultured alone or in co-culture with SKBR3 cancer cells. Efficient uptake of gold nanostars occurred in adipose-derived stem cells, with persistence of the luminescent signal over 4 days. Labeling efficiency and signal quality were greater than with Qtracker. Gold nanostars did not affect cell phenotype, viability, or proliferation, and exhibited stronger luminescence than Qtracker throughout differentiation. Zones of complete ablation surrounding the gold nanostar-labeled adipose-derived stem cells were observed following photothermolysis in both monoculture and co-culture models. Gold nanostars effectively label adipose-derived stem cells without altering cell phenotype. Once labeled, photoactivation of gold nanostar-labeled adipose-derived stem cells ablates neighboring cancer cells, demonstrating the potential of adipose-derived stem cells as a vehicle for the delivery of site-specific cancer therapy.
Imaging intratumor heterogeneity: role in therapy response, resistance, and clinical outcome.
O'Connor, James P B; Rose, Chris J; Waterton, John C; Carano, Richard A D; Parker, Geoff J M; Jackson, Alan
2015-01-15
Tumors exhibit genomic and phenotypic heterogeneity, which has prognostic significance and may influence response to therapy. Imaging can quantify the spatial variation in architecture and function of individual tumors through quantifying basic biophysical parameters such as CT density or MRI signal relaxation rate; through measurements of blood flow, hypoxia, metabolism, cell death, and other phenotypic features; and through mapping the spatial distribution of biochemical pathways and cell signaling networks using PET, MRI, and other emerging molecular imaging techniques. These methods can establish whether one tumor is more or less heterogeneous than another and can identify subregions with differing biology. In this article, we review the image analysis methods currently used to quantify spatial heterogeneity within tumors. We discuss how analysis of intratumor heterogeneity can provide benefit over more simple biomarkers such as tumor size and average function. We consider how imaging methods can be integrated with genomic and pathology data, instead of being developed in isolation. Finally, we identify the challenges that must be overcome before measurements of intratumoral heterogeneity can be used routinely to guide patient care. ©2014 American Association for Cancer Research.
Juul, Troels; Palm, Fredrik; Nielsen, Per Mose; Bertelsen, Lotte Bonde; Laustsen, Christoffer
2017-08-01
It has been demonstrated that hyperpolarized 13 C MR is a useful tool to study cultured cells. However, cells in culture can alter phenotype, which raises concerns regarding the in vivo significance of such findings. Here we investigate if metabolic phenotyping using hyperpolarized 13 C MR is suitable for cells isolated from kidney tissue, without prior cell culture. Isolation of tubular cells from freshly excised kidney tissue and treatment with either ouabain or antimycin A was investigated with hyperpolarized MR spectroscopy on a 9.4 Tesla preclinical imaging system. Isolation of tubular cells from less than 2 g of kidney tissue generally resulted in more than 10 million live tubular cells. This amount of cells was enough to yield robust signals from the conversion of 13 C-pyruvate to lactate, bicarbonate and alanine, demonstrating that metabolic flux by means of both anaerobic and aerobic pathways can be quantified using this technique. Ex vivo metabolic phenotyping using hyperpolarized 13 C MR in a preclinical system is a useful technique to study energy metabolism in freshly isolated renal tubular cells. This technique has the potential to advance our understanding of both normal cell physiology as well as pathological processes contributing to kidney disease. Magn Reson Med 78:457-461, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Vega, Sebastián L; Liu, Er; Arvind, Varun; Bushman, Jared; Sung, Hak-Joon; Becker, Matthew L; Lelièvre, Sophie; Kohn, Joachim; Vidi, Pierre-Alexandre; Moghe, Prabhas V
2017-02-01
Stem and progenitor cells that exhibit significant regenerative potential and critical roles in cancer initiation and progression remain difficult to characterize. Cell fates are determined by reciprocal signaling between the cell microenvironment and the nucleus; hence parameters derived from nuclear remodeling are ideal candidates for stem/progenitor cell characterization. Here we applied high-content, single cell analysis of nuclear shape and organization to examine stem and progenitor cells destined to distinct differentiation endpoints, yet undistinguishable by conventional methods. Nuclear descriptors defined through image informatics classified mesenchymal stem cells poised to either adipogenic or osteogenic differentiation, and oligodendrocyte precursors isolated from different regions of the brain and destined to distinct astrocyte subtypes. Nuclear descriptors also revealed early changes in stem cells after chemical oncogenesis, allowing the identification of a class of cancer-mitigating biomaterials. To capture the metrology of nuclear changes, we developed a simple and quantitative "imaging-derived" parsing index, which reflects the dynamic evolution of the high-dimensional space of nuclear organizational features. A comparative analysis of parsing outcomes via either nuclear shape or textural metrics of the nuclear structural protein NuMA indicates the nuclear shape alone is a weak phenotypic predictor. In contrast, variations in the NuMA organization parsed emergent cell phenotypes and discerned emergent stages of stem cell transformation, supporting a prognosticating role for this protein in the outcomes of nuclear functions. Copyright © 2017 Elsevier Inc. All rights reserved.
CellCognition: time-resolved phenotype annotation in high-throughput live cell imaging.
Held, Michael; Schmitz, Michael H A; Fischer, Bernd; Walter, Thomas; Neumann, Beate; Olma, Michael H; Peter, Matthias; Ellenberg, Jan; Gerlich, Daniel W
2010-09-01
Fluorescence time-lapse imaging has become a powerful tool to investigate complex dynamic processes such as cell division or intracellular trafficking. Automated microscopes generate time-resolved imaging data at high throughput, yet tools for quantification of large-scale movie data are largely missing. Here we present CellCognition, a computational framework to annotate complex cellular dynamics. We developed a machine-learning method that combines state-of-the-art classification with hidden Markov modeling for annotation of the progression through morphologically distinct biological states. Incorporation of time information into the annotation scheme was essential to suppress classification noise at state transitions and confusion between different functional states with similar morphology. We demonstrate generic applicability in different assays and perturbation conditions, including a candidate-based RNA interference screen for regulators of mitotic exit in human cells. CellCognition is published as open source software, enabling live-cell imaging-based screening with assays that directly score cellular dynamics.
Sánchez-Palomino, S; Rojas, J M; Martínez, M A; Fenyö, E M; Nájera, R; Domingo, E; López-Galíndez, C
1993-01-01
We have studied the extent of genetic and phenotypic diversification of human immunodeficiency virus type 1 (HIV-1) upon 15 serial passages of clonal viral populations in MT-4 cell cultures. Several genetic and phenotypic modifications previously noted during evolution of HIV-1 in infected humans were also observed upon passages of the virus in cell culture. Notably, the transition from non-syncytium-inducing to syncytium-inducing phenotype (previously observed during disease progression) and fixation of amino acid substitutions at the main antigenic loop V3 of gp120 were observed in the course of replication of the virus in MT-4 cell cultures in the absence of immune selection. Interestingly, most genetic and phenotypic alterations occurred upon passage of the virus at a low multiplicity of infection (0.001 infectious particles per cell) rather than at a higher multiplicity of infection (0.1 infectious particles per cell). The degree of genetic diversification attained by HIV-1, estimated by the RNase A mismatch cleavage method and by nucleotide sequencing, is of about 0.03% of genomic sites mutated after 15 serial passages. This value is not significantly different from previous estimates for foot-and-mouth disease virus when subjected to a similar process and analysis. We conclude that several genetic and phenotypic modifications of HIV-1 previously observed in vivo occur also in the constant environment provided by a cell culture system. Dilute passage promotes in a highly significant way the expression of deviant HIV-1 genomes. Images PMID:8474182
Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.
Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L
2017-01-01
RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.
FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis.
Kuleesha, Yadav; Puah, Wee Choo; Lin, Feng; Wasser, Martin
2014-01-01
During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis. We designed a new tool to visualize and quantify morphological changes of muscles in time-lapse images of Drosophila metamorphosis. Our in vivo imaging experiments revealed that evolutionarily conserved genes involved in Tor signalling and autophagy, perform similar functions in regulating muscle mass in mammals and Drosophila. Extending our approach to a genome-wide scale has the potential to identify new genes involved in muscle size regulation.
FMAj: a tool for high content analysis of muscle dynamics in Drosophila metamorphosis
2014-01-01
Background During metamorphosis in Drosophila melanogaster, larval muscles undergo two different developmental fates; one population is removed by cell death, while the other persistent subset undergoes morphological remodeling and survives to adulthood. Thanks to the ability to perform live imaging of muscle development in transparent pupae and the power of genetics, metamorphosis in Drosophila can be used as a model to study the regulation of skeletal muscle mass. However, time-lapse microscopy generates sizeable image data that require new tools for high throughput image analysis. Results We performed targeted gene perturbation in muscles and acquired 3D time-series images of muscles in metamorphosis using laser scanning confocal microscopy. To quantify the phenotypic effects of gene perturbations, we designed the Fly Muscle Analysis tool (FMAj) which is based on the ImageJ and MySQL frameworks for image processing and data storage, respectively. The image analysis pipeline of FMAj contains three modules. The first module assists in adding annotations to time-lapse datasets, such as genotypes, experimental parameters and temporal reference points, which are used to compare different datasets. The second module performs segmentation and feature extraction of muscle cells and nuclei. Users can provide annotations to the detected objects, such as muscle identities and anatomical information. The third module performs comparative quantitative analysis of muscle phenotypes. We applied our tool to the phenotypic characterization of two atrophy related genes that were silenced by RNA interference. Reduction of Drosophila Tor (Target of Rapamycin) expression resulted in enhanced atrophy compared to control, while inhibition of the autophagy factor Atg9 caused suppression of atrophy and enlarged muscle fibers of abnormal morphology. FMAj enabled us to monitor the progression of atrophic and hypertrophic phenotypes of individual muscles throughout metamorphosis. Conclusions We designed a new tool to visualize and quantify morphological changes of muscles in time-lapse images of Drosophila metamorphosis. Our in vivo imaging experiments revealed that evolutionarily conserved genes involved in Tor signalling and autophagy, perform similar functions in regulating muscle mass in mammals and Drosophila. Extending our approach to a genome-wide scale has the potential to identify new genes involved in muscle size regulation. PMID:25521203
Decaestecker, C; Lopes, B S; Gordower, L; Camby, I; Cras, P; Martin, J J; Kiss, R; VandenBerg, S R; Salmon, I
1997-04-01
The oligoastrocytoma, as a mixed glioma, represents a nosologic dilemma with respect to precisely defining the oligodendroglial and astroglial phenotypes that constitute the neoplastic cell lineages of these tumors. In this study, cell image analysis with Feulgen-stained nuclei was used to distinguish between oligodendroglial and astrocytic phenotypes in oligodendrogliomas and astrocytomas and then applied to mixed oligoastrocytomas. Quantitative features with respect to chromatin pattern (30 variables) and DNA ploidy (8 variables) were evaluated on Feulgen-stained nuclei in a series of 71 gliomas using computer-assisted microscopy. These included 32 oligodendrogliomas (OLG group: 24 grade II and 8 grade III tumors according to the WHO classification), 32 astrocytomas (AST group: 13 grade II and 19 grade III tumors), and 7 oligoastrocytomas (OLGAST group). Initially, image analysis with multivariate statistical analyses (Discriminant Analysis) could identify each glial tumor group. Highly significant statistical differences were obtained distinguishing the morphonuclear features of oligodendrogliomas from those of astrocytomas, regardless of their histological grade. When compared with the 7 mixed oligoastrocytomas under study, 5 exhibited DNA ploidy and chromatin pattern characteristics similar to grade II oligodendrogliomas, I to grade III oligodendrogliomas, and I to grade II astrocytomas. Using multifactorial statistical analyses (Discriminant Analysis combined with Principal Component Analysis). It was possible to quantify the proportion of "typical" glial cell phenotypes that compose grade II and III oligodendrogliomas and grade II and III astrocytomas in each mixed glioma. Cytometric image analysis may be an important adjunct to routine histopathology for the reproducible identification of neoplasms containing a mixture of oligodendroglial and astrocytic phenotypes.
Martewicz, Sebastian; Gabrel, Giulia; Campesan, Marika; Canton, Marcella; Di Lisa, Fabio; Elvassore, Nicola
2018-05-01
Analyses of cellular responses to fast oxygen dynamics are challenging and require ad hoc technological solutions, especially when decoupling from liquid media composition is required. In this work, we present a microfluidic device specifically designed for culture analyses with high resolution and magnification objectives, providing full optical access to the cell culture chamber. This feature allows fluorescence-based assays, photoactivated surface chemistry, and live cell imaging under tightly controlled pO 2 environments. The device has a simple design, accommodates three independent cell cultures, and can be employed by users with basic cell culture training in studies requiring fast oxygen dynamics, defined media composition, and in-line data acquisition with optical molecular probes. We apply this technology to produce an oxygen/glucose deprived (OGD) environment and analyze cell mortality in murine and human cardiac cultures. Neonatal rat ventricular cardiomyocytes show an OGD time-dependent sensitivity, resulting in a robust and reproducible 66 ± 5% death rate after 3 h of stress. Applying an equivalent stress to human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) provides direct experimental evidence for fetal-like OGD-resistant phenotype. Investigation on the nature of such phenotype exposed large glycogen deposits. We propose a culture strategy aimed at depleting these intracellular energy stores and concurrently activate positive regulation of aerobic metabolic molecular markers. The observed process, however, is not sufficient to induce an OGD-sensitive phenotype in hiPS-CMs, highlighting defective development of mature aerobic metabolism in vitro.
Patsalos, Andreas; Pap, Attila; Varga, Tamas; Trencsenyi, Gyorgy; Contreras, Gerardo Alvarado; Garai, Ildiko; Papp, Zoltan; Dezso, Balazs; Pintye, Eva; Nagy, Laszlo
2017-09-01
The in situ phenotypic switch of macrophages is delayed in acute injury following irradiation. The combination of bone marrow transplantation and local muscle radiation protection allows for the identification of a myeloid cell contribution to tissue repair. PET-MRI allows monitoring of myeloid cell invasion and metabolism. Altered cellular composition prior to acute sterile injury affects the in situ phenotypic transition of invading myeloid cells to repair macrophages. There is reciprocal intercellular communication between local muscle cell compartments, such as PAX7 positive cells, and recruited macrophages during skeletal muscle regeneration. Skeletal muscle regeneration is a complex interplay between various cell types including invading macrophages. Their recruitment to damaged tissues upon acute sterile injuries is necessary for clearance of necrotic debris and for coordination of tissue regeneration. This highly dynamic process is characterized by an in situ transition of infiltrating monocytes from an inflammatory (Ly6C high ) to a repair (Ly6C low ) macrophage phenotype. The importance of the macrophage phenotypic shift and the cross-talk of the local muscle tissue with the infiltrating macrophages during tissue regeneration upon injury are not fully understood and their study lacks adequate methodology. Here, using an acute sterile skeletal muscle injury model combined with irradiation, bone marrow transplantation and in vivo imaging, we show that preserved muscle integrity and cell composition prior to the injury is necessary for the repair macrophage phenotypic transition and subsequently for proper and complete tissue regeneration. Importantly, by using a model of in vivo ablation of PAX7 positive cells, we show that this radiosensitive skeletal muscle progenitor pool contributes to macrophage phenotypic transition following acute sterile muscle injury. In addition, local muscle tissue radioprotection by lead shielding during irradiation preserves normal macrophage transition dynamics and subsequently muscle tissue regeneration. Taken together, our data suggest the existence of a more extensive and reciprocal cross-talk between muscle tissue compartments, including satellite cells, and infiltrating myeloid cells upon tissue damage. These interactions shape the macrophage in situ phenotypic shift, which is indispensable for normal muscle tissue repair dynamics. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Gertych, Arkadiusz; Tajbakhsh, Jian
2013-01-01
This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns — visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis — in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors. PMID:23562889
Oh, Jin Ho; Gertych, Arkadiusz; Tajbakhsh, Jian
2013-03-01
This study reports on probing the utility of in situ chromatin texture features such as nuclear DNA methylation and chromatin condensation patterns - visualized by fluorescent staining and evaluated by dedicated three-dimensional (3D) quantitative and high-throughput cell-by-cell image analysis - in assessing the proliferative capacity, i.e. growth behavior of cells: to provide a more dynamic picture of a cell population with potential implications in basic science, cancer diagnostics/prognostics and therapeutic drug development. Two types of primary cells and four different cancer cell lines were propagated and subjected to cell-counting, flow cytometry, confocal imaging, and 3D image analysis at various points in culture. Additionally a subset of primary and cancer cells was accelerated into senescence by oxidative stress. DNA methylation and chromatin condensation levels decreased with declining doubling times when primary cells aged in culture with the lowest levels reached at the stage of proliferative senescence. In comparison, immortal cancer cells with constant but higher doubling times mostly displayed lower and constant levels of the two in situ-derived features. However, stress-induced senescent primary and cancer cells showed similar levels of these features compared with primary cells that had reached natural growth arrest. With regards to global DNA methylation and chromatin condensation levels, aggressively growing cancer cells seem to take an intermediate level between normally proliferating and senescent cells. Thus, normal cells apparently reach cancer-cell equivalent stages of the two parameters at some point in aging, which might challenge phenotypic distinction between these two types of cells. Companion high-resolution molecular profiling could provide information on possible underlying differences that would explain benign versus malign cell growth behaviors.
2017-03-01
Contribution to Project: Ian primarily focuses on developing tissue imaging pipeline and perform imaging data analysis . Funding Support: Partially...3D ReconsTruction), a multi-faceted image analysis pipeline , permitting quantitative interrogation of functional implications of heterogeneous... analysis pipeline , to observe and quantify phenotypic metastatic landscape heterogeneity in situ with spatial and molecular resolution. Our implementation
Afrimzon, E; Botchkina, G; Zurgil, N; Shafran, Y; Sobolev, M; Moshkov, S; Ravid-Hermesh, O; Ojima, I; Deutsch, M
2016-03-21
Specific phenotypic subpopulations of cancer stem cells (CSCs) are responsible for tumor development, production of heterogeneous differentiated tumor mass, metastasis, and resistance to therapies. The development of therapeutic approaches based on targeting rare CSCs has been limited partially due to the lack of appropriate experimental models and measurement approaches. The current study presents new tools and methodologies based on a hydrogel microstructure array (HMA) for identification and multiplex analyses of CSCs. Low-melt agarose integrated with type I collagen, a major component of the extracellular matrix (ECM), was used to form a solid hydrogel array with natural non-adhesive characteristics and high optical quality. The array contained thousands of individual pyramidal shaped, nanoliter-volume micro-chambers (MCs), allowing concomitant generation and measurement of large populations of free-floating CSC spheroids from single cells, each in an individual micro-chamber (MC). The optical live cell platform, based on an imaging plate patterned with HMA, was validated using CSC-enriched prostate and colon cancer cell lines. The HMA methodology and quantitative image analysis at single-element resolution clearly demonstrates several levels of tumor cell heterogeneity, including morphological and phenotypic variability, differences in proliferation capacity and in drug response. Moreover, the system facilitates real-time examination of single stem cell (SC) fate, as well as drug-induced alteration in expression of stemness markers. The technology may be applicable in personalized cancer treatment, including multiplex ex vivo analysis of heterogeneous patient-derived tumor specimens, precise detection and characterization of potentially dangerous cell phenotypes, and for representative evaluation of drug sensitivity of CSCs and other types of tumor cells.
Spagnolo, Daniel M; Al-Kofahi, Yousef; Zhu, Peihong; Lezon, Timothy R; Gough, Albert; Stern, Andrew M; Lee, Adrian V; Ginty, Fiona; Sarachan, Brion; Taylor, D Lansing; Chennubhotla, S Chakra
2017-11-01
We introduce THRIVE (Tumor Heterogeneity Research Interactive Visualization Environment), an open-source tool developed to assist cancer researchers in interactive hypothesis testing. The focus of this tool is to quantify spatial intratumoral heterogeneity (ITH), and the interactions between different cell phenotypes and noncellular constituents. Specifically, we foresee applications in phenotyping cells within tumor microenvironments, recognizing tumor boundaries, identifying degrees of immune infiltration and epithelial/stromal separation, and identification of heterotypic signaling networks underlying microdomains. The THRIVE platform provides an integrated workflow for analyzing whole-slide immunofluorescence images and tissue microarrays, including algorithms for segmentation, quantification, and heterogeneity analysis. THRIVE promotes flexible deployment, a maintainable code base using open-source libraries, and an extensible framework for customizing algorithms with ease. THRIVE was designed with highly multiplexed immunofluorescence images in mind, and, by providing a platform to efficiently analyze high-dimensional immunofluorescence signals, we hope to advance these data toward mainstream adoption in cancer research. Cancer Res; 77(21); e71-74. ©2017 AACR . ©2017 American Association for Cancer Research.
Bani, D.; Riva, A.; Bigazzi, M.; Bani Sacchi, T.
1994-01-01
Our previous studies showed that relaxin promotes differentiation of MCF-7 breast adenocarcinoma cells. In the current investigation, we aimed to elucidate whether the effect of the hormone is potentiated when MCF-7 cells are grown together with myoepithelial cells, thus creating a microenvironment reminiscent of the organised tissue architecture of the mammary parenchyma in vivo. The findings obtained reveal that most MCF-7 cells cultured alone have an undifferentiated, blast-like phenotype, only a minority showing a more differentiated phenotype with more organelles and rudimentary intercellular junctions. When co-cultured with myoepithelial cells more MCF-7 cells acquire ultrastructural features consistent with a more differentiated phenotype, such as a rich organellular complement, apical microvilli and intercellular junctions. When relaxin was added to the co-cultures, the ultrastructural signs of differentiation could be observed in even more MCF-7 cells and became more pronounced than in the absence of the hormone, judged by the appearance of a clear-cut polarisation of cytoplasmic organelles, an almost continuous coat of apical microvilli and numerous intracellular pseudolumina. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7947095
Superparamagnetic iron oxide nanoparticles regulate smooth muscle cell phenotype
Angelopoulos, Ioannis; Southern, Paul; Pankhurst, Quentin A.
2016-01-01
Abstract Superparamagnetic iron oxide nanoparticles (SPION) are used for an increasing range of biomedical applications, from imaging to mechanical actuation of cells and tissue. The aim of this study was to investigate the loading of smooth muscle cells (SMC) with SPION and to explore what effect this has on the phenotype of the cells. Adherent human SMC were loaded with ∼17 pg of unconjugated, negatively charged, 50 nm SPION. Clusters of the internalized SPION particles were held in discrete cytoplasmic vesicles. Internalized SPION did not cause any change in cell morphology, proliferation, metabolic activity, or staining pattern of actin and calponin, two of the muscle contractile proteins involved in force generation. However, internalized SPION inhibited the increased gene expression of actin and calponin normally observed when cells are incubated under differentiation conditions. The observed change in the control of gene expression of muscle contractile apparatus by SPION has not previously been described. This finding could offer novel approaches for regulating the phenotype of SMC and warrants further investigation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2412–2419, 2016. PMID:27176658
Rabal, Obdulia; Link, Wolfgang; Serelde, Beatriz G; Bischoff, James R; Oyarzabal, Julen
2010-04-01
Here we report the development and validation of a complete solution to manage and analyze the data produced by image-based phenotypic screening campaigns of small-molecule libraries. In one step initial crude images are analyzed for multiple cytological features, statistical analysis is performed and molecules that produce the desired phenotypic profile are identified. A naïve Bayes classifier, integrating chemical and phenotypic spaces, is built and utilized during the process to assess those images initially classified as "fuzzy"-an automated iterative feedback tuning. Simultaneously, all this information is directly annotated in a relational database containing the chemical data. This novel fully automated method was validated by conducting a re-analysis of results from a high-content screening campaign involving 33 992 molecules used to identify inhibitors of the PI3K/Akt signaling pathway. Ninety-two percent of confirmed hits identified by the conventional multistep analysis method were identified using this integrated one-step system as well as 40 new hits, 14.9% of the total, originally false negatives. Ninety-six percent of true negatives were properly recognized too. A web-based access to the database, with customizable data retrieval and visualization tools, facilitates the posterior analysis of annotated cytological features which allows identification of additional phenotypic profiles; thus, further analysis of original crude images is not required.
Single-Cell Western Blotting after Whole-Cell Imaging to Assess Cancer Chemotherapeutic Response
2015-01-01
Intratumor heterogeneity remains a major obstacle to effective cancer therapy and personalized medicine. Current understanding points to differential therapeutic response among subpopulations of tumor cells as a key challenge to successful treatment. To advance our understanding of how this heterogeneity is reflected in cell-to-cell variations in chemosensitivity and expression of drug-resistance proteins, we optimize and apply a new targeted proteomics modality, single-cell western blotting (scWestern), to a human glioblastoma cell line. To acquire both phenotypic and proteomic data on the same, single glioblastoma cells, we integrate high-content imaging prior to the scWestern assays. The scWestern technique supports thousands of concurrent single-cell western blots, with each assay comprised of chemical lysis of single cells seated in microwells, protein electrophoresis from those microwells into a supporting polyacrylamide (PA) gel layer, and in-gel antibody probing. We systematically optimize chemical lysis and subsequent polyacrylamide gel electrophoresis (PAGE) of the single-cell lysate. The scWestern slides are stored for months then reprobed, thus allowing archiving and later analysis as relevant to sparingly limited, longitudinal cell specimens. Imaging and scWestern analysis of single glioblastoma cells dosed with the chemotherapeutic daunomycin showed both apoptotic (cleaved caspase 8- and annexin V-positive) and living cells. Intriguingly, living glioblastoma subpopulations show up-regulation of a multidrug resistant protein, P-glycoprotein (P-gp), suggesting an active drug efflux pump as a potential mechanism of drug resistance. Accordingly, linking of phenotype with targeted protein analysis with single-cell resolution may advance our understanding of drug response in inherently heterogeneous cell populations, such as those anticipated in tumors. PMID:25226230
Fast and accurate automated cell boundary determination for fluorescence microscopy
NASA Astrophysics Data System (ADS)
Arce, Stephen Hugo; Wu, Pei-Hsun; Tseng, Yiider
2013-07-01
Detailed measurement of cell phenotype information from digital fluorescence images has the potential to greatly advance biomedicine in various disciplines such as patient diagnostics or drug screening. Yet, the complexity of cell conformations presents a major barrier preventing effective determination of cell boundaries, and introduces measurement error that propagates throughout subsequent assessment of cellular parameters and statistical analysis. State-of-the-art image segmentation techniques that require user-interaction, prolonged computation time and specialized training cannot adequately provide the support for high content platforms, which often sacrifice resolution to foster the speedy collection of massive amounts of cellular data. This work introduces a strategy that allows us to rapidly obtain accurate cell boundaries from digital fluorescent images in an automated format. Hence, this new method has broad applicability to promote biotechnology.
Holz, Frank G; Steinberg, Julia S; Göbel, Arno; Fleckenstein, Monika; Schmitz-Valckenberg, Steffen
2015-01-01
Fundus autofluorescence (FAF) imaging allows for topographic mapping of intrisnic fluorophores in the retinal pigment epithelial cell monolayer, as well as mapping of other fluorophores that may occur with disease in the outer retina and the sub-neurosensory space. FAF imaging provides information not obtainable with other imaging modalities. Near-infrared fundus autofluorescence images can also be obtained in vivo, and may be largely melanin-derived. FAF imaging has been shown to be useful in a wide spectrum of macular and retinal diseases. The scope of applications now includes identification of diseased RPE in macular/retinal diseases, elucidating pathophysiological mechanisms, identification of early disease stages, refined phenotyping, identification of prognostic markers for disease progression, monitoring disease progression in the context of both natural history and interventional therapeutic studies, and objective assessment of luteal pigment distribution and density as well as RPE melanin distribution. Here, we review the use of FAF imaging in various phenotypic manifestations of dry AMD.
Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji
2018-06-09
Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Sameni, Mansoureh; Anbalagan, Arulselvi; Olive, Mary B.; Moin, Kamiar; Mattingly, Raymond R.; Sloane, Bonnie F.
2012-01-01
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches. PMID:22371028
Sameni, Mansoureh; Anbalagan, Arulselvi; Olive, Mary B; Moin, Kamiar; Mattingly, Raymond R; Sloane, Bonnie F
2012-02-17
We have developed 3D coculture models, which we term MAME (mammary architecture and microenvironment engineering), and used them for live-cell imaging in real-time of cell:cell interactions. Our overall goal was to develop models that recapitulate the architecture of preinvasive breast lesions to study their progression to an invasive phenotype. Specifically, we developed models to analyze interactions among pre-malignant breast epithelial cell variants and other cell types of the tumor microenvironment that have been implicated in enhancing or reducing the progression of preinvasive breast epithelial cells to invasive ductal carcinomas. Other cell types studied to date are myoepithelial cells, fibroblasts, macrophages and blood and lymphatic microvascular endothelial cells. In addition to the MAME models, which are designed to recapitulate the cellular interactions within the breast during cancer progression, we have developed comparable models for the progression of prostate cancers. Here we illustrate the procedures for establishing the 3D cocultures along with the use of live-cell imaging and a functional proteolysis assay to follow the transition of cocultures of breast ductal carcinoma in situ (DCIS) cells and fibroblasts to an invasive phenotype over time, in this case over twenty-three days in culture. The MAME cocultures consist of multiple layers. Fibroblasts are embedded in the bottom layer of type I collagen. On that is placed a layer of reconstituted basement membrane (rBM) on which DCIS cells are seeded. A final top layer of 2% rBM is included and replenished with every change of media. To image proteolysis associated with the progression to an invasive phenotype, we use dye-quenched (DQ) fluorescent matrix proteins (DQ-collagen I mixed with the layer of collagen I and DQ-collagen IV mixed with the middle layer of rBM) and observe live cultures using confocal microscopy. Optical sections are captured, processed and reconstructed in 3D with Volocity visualization software. Over the course of 23 days in MAME cocultures, the DCIS cells proliferate and coalesce into large invasive structures. Fibroblasts migrate and become incorporated into these invasive structures. Fluorescent proteolytic fragments of the collagens are found in association with the surface of DCIS structures, intracellularly, and also dispersed throughout the surrounding matrix. Drugs that target proteolytic, chemokine/cytokine and kinase pathways or modifications in the cellular composition of the cocultures can reduce the invasiveness, suggesting that MAME models can be used as preclinical screens for novel therapeutic approaches.
Peng, Chunlian; Zhang, Siming; Liu, Haixin; Jiao, Yanxiao; Su, Guifa; Zhu, Yan
2017-11-05
Vascular Smooth muscle cells (VSMCs) possess remarkable phenotype plasticity that allows it to rapidly adapt to fluctuating environmental cues, including the period of development and progression of vascular diseases such as atherosclerosis and restenosis subsequent to vein grafting or coronary intervention. Although VSMC phenotypic switch is an attractive target, there is no effective drug so far. Using rat aortic VSMCs, we investigate the effects of Ligustrazine and its synthetic derivatives on platelet-derived growth factor-BB (PDGF-BB) induced proliferation and phenotypic switch by a cell image-based screening of 60 Ligustrazine stilbene derivatives. We showed that one of the Ligustrazine stilbene derivatives TMP-C 4a markedly inhibited PDGF-BB-induced VSMCs proliferation in a time and dose-dependent manner, which is more potent than Ligustrazine. Stimulation of contractile VSMCs with PDGF-BB significantly reduced the contractile marker protein α-smooth muscle actin expression and increased the synthetic marker proteins osteopontin expression. However, TMP-C 4a effectively reversed this phenotypic switch, which was accompanied by a decreased expression of Matrix metalloproteinase 2 and 9 (MMP2 and MMP9) and cell cycle related proteins, including cyclin D1 and CDK4. In conclusion, the present study showed that a new Ligustrazine stilbene derivative TMP-C 4a suppressed PDGF-induced VSMC proliferation and phenotypic switch, indicating that it has a potential to become a promising therapeutic agent for treating VSMC-related atherosclerosis and restenosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation
NASA Astrophysics Data System (ADS)
Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian
2017-12-01
Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.
Czerniecki, Stefan M; Cruz, Nelly M; Harder, Jennifer L; Menon, Rajasree; Annis, James; Otto, Edgar A; Gulieva, Ramila E; Islas, Laura V; Kim, Yong Kyun; Tran, Linh M; Martins, Timothy J; Pippin, Jeffrey W; Fu, Hongxia; Kretzler, Matthias; Shankland, Stuart J; Himmelfarb, Jonathan; Moon, Randall T; Paragas, Neal; Freedman, Benjamin S
2018-05-15
Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening. Copyright © 2018 Elsevier Inc. All rights reserved.
Characterizing heterogeneous cellular responses to perturbations.
Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J
2008-12-09
Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.
Bastow, K. F.; Darby, G.; Wildy, P.; Minson, A. C.
1980-01-01
We have isolated cells with a thymidine kinase-negative (tk−) phenotype from cells which carry the herpes simplex virus type 2 tk gene by selection in 5-bromodeoxyuridine or 9-(2-hydroxyethoxymethyl)guanine. Both selection routines generated revertants with a frequency of 10−3 to 10−4, and resistance to either compound conferred simultaneous resistance to the other. tk− revertants fell into three classes: (i) cells that arose by deletion of all virus sequences, (ii) cells that had lost the virus tk gene but retained a nonselected virus-specific function and arose by deletion of part of the virus-specific sequence, and (iii) cells that retained the potential to express all of the virus-specific functions of the parental cells and retained all of the virus-specific DNA sequences. Images PMID:16789205
Martin, Heather L.; Adams, Matthew; Higgins, Julie; Bond, Jacquelyn; Morrison, Ewan E.; Bell, Sandra M.; Warriner, Stuart; Nelson, Adam; Tomlinson, Darren C.
2014-01-01
Toxicity is a major cause of failure in drug discovery and development, and whilst robust toxicological testing occurs, efficiency could be improved if compounds with cytotoxic characteristics were identified during primary compound screening. The use of high-content imaging in primary screening is becoming more widespread, and by utilising phenotypic approaches it should be possible to incorporate cytotoxicity counter-screens into primary screens. Here we present a novel phenotypic assay that can be used as a counter-screen to identify compounds with adverse cellular effects. This assay has been developed using U2OS cells, the PerkinElmer Operetta high-content/high-throughput imaging system and Columbus image analysis software. In Columbus, algorithms were devised to identify changes in nuclear morphology, cell shape and proliferation using DAPI, TOTO-3 and phosphohistone H3 staining, respectively. The algorithms were developed and tested on cells treated with doxorubicin, taxol and nocodazole. The assay was then used to screen a novel, chemical library, rich in natural product-like molecules of over 300 compounds, 13.6% of which were identified as having adverse cellular effects. This assay provides a relatively cheap and rapid approach for identifying compounds with adverse cellular effects during screening assays, potentially reducing compound rejection due to toxicity in subsequent in vitro and in vivo assays. PMID:24505478
Chen, Fred K; Chew, Avenell L; Zhang, Dan; Chen, Shang-Chih; Chelva, Enid; Chandrasekera, Erandi; Koay, Eleanor M H; Forrester, John; McLenachan, Samuel
2017-06-01
Paraneoplastic retinopathy can be the first manifestation of systemic malignancy. A subset of paraneoplastic retinopathy is characterized by negative-type electroretinography (ERG) without fundus abnormality. Here we describe the multimodal imaging and clinico-pathological correlation of a unique case of acute progressive paravascular placoid neuroretinopathy with suspected retinal depolarizing bipolar cell dysfunction preceding the diagnosis of metastatic small cell carcinoma of the prostate. ERG was performed according to the International Society for Clinical Electrophysiology of Vision standards. Imaging modalities included near-infrared reflectance, blue-light autofluorescence, fluorescein and indocyanine green angiographies, spectral domain optical coherence tomography, ultra-widefield colour and green-light autofluorescence imaging, microperimetry and adaptive optics imaging. Patient serum was screened for anti-retinal antibodies using western blotting. Immunostaining and histological analyses were performed on sections from human retinal tissues and a patient prostate biopsy. Serial multimodal retinal imaging, microperimetry and adaptive optics photography demonstrated a paravascular distribution of placoid lesions characterized by hyper-reflectivity within the outer nuclear layer resembling type 2 acute macular neuroretinopathy. There was no visible lesion within the inner nuclear layer despite electronegative-type ERG. Six months later, the patient presented with metastatic small cell carcinoma of the prostate. Tumour cells were immunopositive for glyceraldehyde-3-phosphate dehydrogenase, enolase and recoverin as well as neuroendocrine markers. The patient's serum reacted to cytoplasmic and nuclear antigens in the prostate biopsy and in human retina. Anti-retinal antibodies against several antigens were detected by both commercial and in-house western blots. A spectrum of autoreactive anti-retinal antibodies is associated with a unique phenotype of acute progressive paravascular placoid neuroretinopathy resulting in degeneration of photoreceptor cells, inner retinal dysfunction and classic electronegative ERG in paraneoplastic retinopathy. Detailed clinical, functional and immunological phenotyping of paraneoplastic retinopathy illustrated the complex mechanism of paraneoplastic syndrome.
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-01-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays. PMID:27452732
NASA Astrophysics Data System (ADS)
Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.
2016-07-01
Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.
In Vivo Cytometry of Antigen-Specific T Cells Using 19F MRI
Srinivas, Mangala; Turner, Michael S.; Janjic, Jelena M.; Morel, Penelope A.; Laidlaw, David H.; Ahrens, Eric T.
2009-01-01
Noninvasive methods to image the trafficking of phenotypically defined immune cells are paramount as we attempt to understand adaptive immunity. A 19F MRI-based methodology for tracking and quantifying cells of a defined phenotype is presented. These methods were applied to a murine inflammation model using antigen-specific T cells. The T cells that were intracellularly labeled ex vivo with a perfluoropolyether (PFPE) nanoemulsion and cells were transferred to a host receiving a localized inoculation of antigen. Longitudinal 19F MRI over 21 days revealed a dynamic accumulation and clearance of T cells in the lymph node (LN) draining the antigen. The apparent T-cell numbers were calculated in the LN from the time-lapse 19F MRI data. The effect of in vivo T-cell division on the 19F MRI cell quantification accuracy was investigated using fluorescence assays. Overall, in vivo cytometry using PFPE labeling and 19F MRI is broadly applicable to studies of whole-body cell biodistribution. PMID:19585593
Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.
2012-01-01
Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208
Bio-chemo-mechanics of thoracic aortic aneurysms.
Wagenseil, Jessica E
2018-03-01
Most thoracic aortic aneurysms (TAAs) occur in the ascending aorta. This review focuses on the unique bio-chemo-mechanical environment that makes the ascending aorta susceptible to TAA. The environment includes solid mechanics, fluid mechanics, cell phenotype, and extracellular matrix composition. Advances in solid mechanics include quantification of biaxial deformation and complex failure behavior of the TAA wall. Advances in fluid mechanics include imaging and modeling of hemodynamics that may lead to TAA formation. For cell phenotype, studies demonstrate changes in cell contractility that may serve to sense mechanical changes and transduce chemical signals. Studies on matrix defects highlight the multi-factorial nature of the disease. We conclude that future work should integrate the effects of bio-chemo-mechanical factors for improved TAA treatment.
Update on the imaging of malignant perivascular epithelioid cell tumors (PEComas).
Phillips, Catherine H; Keraliya, Abhishek R; Shinagare, Atul B; Ramaiya, Nikhil H; Tirumani, Sree Harsha
2016-02-01
Malignant perivascular epithelioid cell tumors (PEComas) are a histologic group of mesenchymal neoplasms that share a distinctive histological phenotype, the perivascular epithelioid cell. These tumors are known for their perivascular distribution. Malignant PEComas have a female predominance and are associated with aggressive disease and poor prognosis, making timely diagnosis critical to management. Imaging features of malignant PEComas are nonspecific and mimic other benign and malignant neoplasms. Surgery is the mainstay in the management of malignant PEComas. Promising novel molecular targeted therapies like m-TOR inhibitors have been shown to be effective in the metastatic setting. The aim of this review is to familiarize radiologists with the imaging appearances of and potential therapies for primary and metastatic malignant PEComa.
NASA Astrophysics Data System (ADS)
Blaha, Laura
A diagnosis of metastatic cancer reduces a patient's 5-year survival rate by nearly 80% compared to a primary tumor diagnosed at an early stage. While gene expression arrays have revealed unique gene signatures for metastatic cancer cells, we are lacking an understanding of the tangible physical changes that distinguish metastatic tumor cells from each other and from their related primary tumors. At the fundamental level, this translates into first characterizing the phenotype of metastatic cancer cells in vitro both in 2D - looking at morphology and migration - and in 3D - focusing on matrix invasion. While 2D in vitro studies have provided insight into the effects of specific environmental conditions on specific cancer cell lines, the unique details included in each experimental design make it challenging to compare cell phenotype across different in vitro platforms as well as between laboratories and disciplines that share the goal of understanding cancer. While 3D phenotype studies have employed more standardized and ubiquitous assays, most available tools lack the imaging capability and geometry to effectively characterize all factors driving 3D matrix invasion. In this work, we present protocols and platforms aimed at addressing the problems identified in the tools currently available for studying metastatic cancer in vitro. First, we present a 2D study of morphology and migration using widely accepted protocols. The study is applied to characterizing phenotypes of three breast cancer cell lines with different metastatic organ tropisms. The results show that general populations of cells from each of the 3 lines are unique in shape and motility despite being derived from the same tumor line and that the observed phenotype differences may be related to differences in focal adhesion assembly. More broadly, these studies suggest that standardizing phenotype studies using commonly available techniques may provide a platform by which to compare phenotypic studies across cancer cell types and between research groups to investigate tropism-specific cancer phenotypes. We conclude our investigation of phenotype with a study of 3D matrix invasion using a novel microfluidic platform. The results show that invasion of metastatic breast cancer cells into a 3D type I collagen gel is significantly enhanced in the presence of live endothelial cells. In applying the model to study cell-cell and cell-matrix interactions driving invasion, our platform revealed that, while the fibronectin-rich matrix deposited by endothelial cells was not sufficient to drive invasion alone, metastatic breast cancer cells were able to exploit a structural or secreted component of energetically inactivated endothelial cell to gain entry into the underlying matrix. These findings have important implications for designing drugs targeted at preventing cancer metastasis. The findings in this dissertation reveal significant phenotypic differences in metastatic breast cancer cells with different preferences in metastatic target organ. In addition, the microfluidic platform reveals novel cell-cell interactions driving a key step in the seeding and colonization of a metastatic tumor. Collectively, these results reveal important characteristics of metastatic cancer cells and their interactions with other cell types during metastasis. These studies also provide platforms on which to target or prevent malignant phenotypes and cellular interactions in the future.
Building cell models and simulations from microscope images.
Murphy, Robert F
2016-03-01
The use of fluorescence microscopy has undergone a major revolution over the past twenty years, both with the development of dramatic new technologies and with the widespread adoption of image analysis and machine learning methods. Many open source software tools provide the ability to use these methods in a wide range of studies, and many molecular and cellular phenotypes can now be automatically distinguished. This article presents the next major challenge in microscopy automation, the creation of accurate models of cell organization directly from images, and reviews the progress that has been made towards this challenge. Copyright © 2015 Elsevier Inc. All rights reserved.
Lee, Jia-Ying Joey; Miller, James Alastair; Basu, Sreetama; Kee, Ting-Zhen Vanessa; Loo, Lit-Hsin
2018-06-01
Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called "High-throughput In vitro Phenotypic Profiling for Toxicity Prediction" (HIPPTox). We found that the resulting assay based on two phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.
NASA Astrophysics Data System (ADS)
Luo, Meijie; Zhang, Zhihong
2014-03-01
Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.
High content analysis of phagocytic activity and cell morphology with PuntoMorph.
Al-Ali, Hassan; Gao, Han; Dalby-Hansen, Camilla; Peters, Vanessa Ann; Shi, Yan; Brambilla, Roberta
2017-11-01
Phagocytosis is essential for maintenance of normal homeostasis and healthy tissue. As such, it is a therapeutic target for a wide range of clinical applications. The development of phenotypic screens targeting phagocytosis has lagged behind, however, due to the difficulties associated with image-based quantification of phagocytic activity. We present a robust algorithm and cell-based assay system for high content analysis of phagocytic activity. The method utilizes fluorescently labeled beads as a phagocytic substrate with defined physical properties. The algorithm employs statistical modeling to determine the mean fluorescence of individual beads within each image, and uses the information to conduct an accurate count of phagocytosed beads. In addition, the algorithm conducts detailed and sophisticated analysis of cellular morphology, making it a standalone tool for high content screening. We tested our assay system using microglial cultures. Our results recapitulated previous findings on the effects of microglial stimulation on cell morphology and phagocytic activity. Moreover, our cell-level analysis revealed that the two phenotypes associated with microglial activation, specifically cell body hypertrophy and increased phagocytic activity, are not highly correlated. This novel finding suggests the two phenotypes may be under the control of distinct signaling pathways. We demonstrate that our assay system outperforms preexisting methods for quantifying phagocytic activity in multiple dimensions including speed, accuracy, and resolution. We provide a framework to facilitate the development of high content assays suitable for drug screening. For convenience, we implemented our algorithm in a standalone software package, PuntoMorph. Copyright © 2017 Elsevier B.V. All rights reserved.
Salmond, G P; Lutkenhaus, J F; Donachie, W D
1980-01-01
We report the identification, cloning, and mapping of a new cell envelope gene, murG. This lies in a group of five genes of similar phenotype (in the order murE murF murG murC ddl) all concerned with peptidoglycan biosynthesis. This group is in a larger cluster of at least 10 genes, all of which are involved in some way with cell envelope growth. Images PMID:6998962
Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias
2014-01-01
Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation. PMID:24810913
A Review of Imaging Techniques for Plant Phenotyping
Li, Lei; Zhang, Qin; Huang, Danfeng
2014-01-01
Given the rapid development of plant genomic technologies, a lack of access to plant phenotyping capabilities limits our ability to dissect the genetics of quantitative traits. Effective, high-throughput phenotyping platforms have recently been developed to solve this problem. In high-throughput phenotyping platforms, a variety of imaging methodologies are being used to collect data for quantitative studies of complex traits related to the growth, yield and adaptation to biotic or abiotic stress (disease, insects, drought and salinity). These imaging techniques include visible imaging (machine vision), imaging spectroscopy (multispectral and hyperspectral remote sensing), thermal infrared imaging, fluorescence imaging, 3D imaging and tomographic imaging (MRT, PET and CT). This paper presents a brief review on these imaging techniques and their applications in plant phenotyping. The features used to apply these imaging techniques to plant phenotyping are described and discussed in this review. PMID:25347588
Development of a Kinetic Assay for Late Endosome Movement.
Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc
2014-08-01
Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.
Agley, Chibeza C.; Velloso, Cristiana P.; Lazarus, Norman R.
2012-01-01
The accurate measurement of the morphological characteristics of cells with nonuniform conformations presents difficulties. We report here a straightforward method using immunofluorescent staining and the commercially available imaging program Adobe Photoshop, which allows objective and precise information to be gathered on irregularly shaped cells. We have applied this measurement technique to the analysis of human muscle cells and their immunologically marked intracellular constituents, as these cells are prone to adopting a highly branched phenotype in culture. Use of this method can be used to overcome many of the long-standing limitations of conventional approaches for quantifying muscle cell size in vitro. In addition, wider applications of Photoshop as a quantitative and semiquantitative tool in immunocytochemistry are explored. PMID:22511600
Image-Based Single Cell Profiling: High-Throughput Processing of Mother Machine Experiments
Sachs, Christian Carsten; Grünberger, Alexander; Helfrich, Stefan; Probst, Christopher; Wiechert, Wolfgang; Kohlheyer, Dietrich; Nöh, Katharina
2016-01-01
Background Microfluidic lab-on-chip technology combined with live-cell imaging has enabled the observation of single cells in their spatio-temporal context. The mother machine (MM) cultivation system is particularly attractive for the long-term investigation of rod-shaped bacteria since it facilitates continuous cultivation and observation of individual cells over many generations in a highly parallelized manner. To date, the lack of fully automated image analysis software limits the practical applicability of the MM as a phenotypic screening tool. Results We present an image analysis pipeline for the automated processing of MM time lapse image stacks. The pipeline supports all analysis steps, i.e., image registration, orientation correction, channel/cell detection, cell tracking, and result visualization. Tailored algorithms account for the specialized MM layout to enable a robust automated analysis. Image data generated in a two-day growth study (≈ 90 GB) is analyzed in ≈ 30 min with negligible differences in growth rate between automated and manual evaluation quality. The proposed methods are implemented in the software molyso (MOther machine AnaLYsis SOftware) that provides a new profiling tool to analyze unbiasedly hitherto inaccessible large-scale MM image stacks. Conclusion Presented is the software molyso, a ready-to-use open source software (BSD-licensed) for the unsupervised analysis of MM time-lapse image stacks. molyso source code and user manual are available at https://github.com/modsim/molyso. PMID:27661996
Imaging Prostate Cancer (Pca) Phenotype and Evolution
2014-10-01
Extracellular flux analysis experiments with the Seahorse system showed a marked decrease in OCR after inhibition of ATP synthase by oligomycin...measured in each well 34 h after seeding the cells, using the Seahorse extracellular flux analyzer, as also described in Methods section. OCR
Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo
2015-06-01
The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation.
Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian
2017-12-01
Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (∼9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Takagi, Atsuko; Harashima, Satoshi; Oshima, Yasuji
1985-01-01
Hybrid or polyploid clones of Saccharomyces cerevisiae produced by protoplast fusion were easily isolated by selecting transformants with the plasmid phenotype because the transformation was directly associated with cell fusion. When haploid cells were used as the original strain, the transformants were mostly diploids with a significant fraction of polyploids (triploids or tetraploids). Repeated transformation after curing the plasmid gave rise to clones with higher ploidy, but the frequency of cell fusion was severely reduced as ploidy increased. Images PMID:16346702
NASA Astrophysics Data System (ADS)
Zevon, M.; Kantamneni, H.; Ganapathy, V.; Higgins, L.; Mingozzi, M.; Pierce, M.; Riman, R.; Roth, C. M.; Moghe, P. V.
2016-05-01
Success of personalized medicine in cancer therapy depends on the ability to identify and molecularly phenotype tumors. Current clinical imaging techniques cannot be integrated with precision molecular medicine at the level of single cells or microlesions due to limited resolution. In this work we use molecularly targeted infrared emitting optical probes to identify and characterize metastatic microlesions prior to their detection with clinically relevant imaging modalities. These contrast agents form the basis of an in vivo optical imaging system capable of resolving internal microlesions, filling a critical unmet need in cancer imaging.
A nanobiosensor for dynamic single cell analysis during microvascular self-organization.
Wang, S; Sun, J; Zhang, D D; Wong, P K
2016-10-14
The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.
Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure.
Stewart, Elizabeth J; Satorius, Ashley E; Younger, John G; Solomon, Michael J
2013-06-11
Cellular clustering and separation of Staphylococcus epidermidis surface adherent biofilms were found to depend significantly on both antibiotic and environmental stress present during growth under steady flow. Image analysis techniques common to colloidal science were applied to image volumes acquired with high-resolution confocal laser scanning microscopy to extract spatial positions of individual bacteria in volumes of size ~30 × 30 × 15 μm(3). The local number density, cluster distribution, and radial distribution function were determined at each condition by analyzing the statistics of the bacterial spatial positions. Environmental stressors of high osmotic pressure (776 mM NaCl) and sublethal antibiotic dose (1.9 μg/mL vancomycin) decreased the average bacterial local number density 10-fold. Device-associated bacterial biofilms are frequently exposed to these environmental and antibiotic stressors while undergoing flow in the bloodstream. Characteristic density phenotypes associated with low, medium, and high local number densities were identified in unstressed S. epidermidis biofilms, while stressed biofilms contained medium- and low-density phenotypes. All biofilms exhibited clustering at length scales commensurate with cell division (~1.0 μm). However, density phenotypes differed in cellular connectivity at the scale of ~6 μm. On this scale, nearly all cells in the high- and medium-density phenotypes were connected into a single cluster with a structure characteristic of a densely packed disordered fluid. However, in the low-density phenotype, the number of clusters was greater, equal to 4% of the total number of cells, and structures were fractal in nature with d(f) =1.7 ± 0.1. The work advances the understanding of biofilm growth, informs the development of predictive models of transport and mechanical properties of biofilms, and provides a method for quantifying the kinetics of bacterial surface colonization as well as biofilm fracture and fragmentation.
GoIFISH: a system for the quantification of single cell heterogeneity from IFISH images.
Trinh, Anne; Rye, Inga H; Almendro, Vanessa; Helland, Aslaug; Russnes, Hege G; Markowetz, Florian
2014-08-26
Molecular analysis has revealed extensive intra-tumor heterogeneity in human cancer samples, but cannot identify cell-to-cell variations within the tissue microenvironment. In contrast, in situ analysis can identify genetic aberrations in phenotypically defined cell subpopulations while preserving tissue-context specificity. GoIFISHGoIFISH is a widely applicable, user-friendly system tailored for the objective and semi-automated visualization, detection and quantification of genomic alterations and protein expression obtained from fluorescence in situ analysis. In a sample set of HER2-positive breast cancers GoIFISHGoIFISH is highly robust in visual analysis and its accuracy compares favorably to other leading image analysis methods. GoIFISHGoIFISH is freely available at www.sourceforge.net/projects/goifish/.
NASA Astrophysics Data System (ADS)
Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot
2008-03-01
The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.
Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.
2016-01-01
Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384
Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine
2016-01-01
Summary With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today’s single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals, and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis, and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279
A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.
Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen
2015-03-07
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.
Time lapse video recordings of highly purified human hematopoietic progenitor cells in culture.
Denkers, I A; Dragowska, W; Jaggi, B; Palcic, B; Lansdorp, P M
1993-05-01
Major hurdles in studies of stem cell biology include the low frequency and heterogeneity of human hematopoietic precursor cells in bone marrow and the difficulty of directly studying the effect of various culture conditions and growth factors on such cells. We have adapted the cell analyzer imaging system for monitoring and recording the morphology of limited numbers of cells under various culture conditions. Hematopoietic progenitor cells with a CD34+ CD45RAlo CD71lo phenotype were purified from previously frozen organ donor bone marrow by fluorescence activated cell sorting. Cultures of such cells were analyzed with the imaging system composed of an inverted microscope contained in an incubator, a video camera, an optical memory disk recorder and a computer-controlled motorized microscope XYZ precision stage. Fully computer-controlled video images at defined XYZ positions were captured at selected time intervals and recorded at a predetermined sequence on an optical memory disk. In this study, the cell analyzer system was used to obtain descriptions and measurements of hematopoietic cell behavior, like cell motility, cell interactions, cell shape, cell division, cell cycle time and cell size changes under different culture conditions.
Long-term live-cell imaging reveals new roles for Salmonella effector proteins SseG and SteA.
McQuate, Sarah E; Young, Alexandra M; Silva-Herzog, Eugenia; Bunker, Eric; Hernandez, Mateo; de Chaumont, Fabrice; Liu, Xuedong; Detweiler, Corrella S; Palmer, Amy E
2017-01-01
Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single-cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here, we establish a pipeline for long-term (17 h) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyper-replication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models. © 2016 John Wiley & Sons Ltd.
Long-Term Live Cell Imaging Reveals New Roles For Salmonella Effector Proteins SseG and SteA
McQuate, Sarah E.; Young, Alexandra M.; Silva-Herzog, Eugenia; Bunker, Eric; Hernandez, Mateo; de Chaumont, Fabrice; Liu, Xuedong; Detweiler, Corrella S.; Palmer, Amy E.
2016-01-01
Summary Salmonella Typhimurium is an intracellular bacterial pathogen that infects both epithelial cells and macrophages. Salmonella effector proteins, which are translocated into the host cell and manipulate host cell components, control the ability to replicate and/or survive in host cells. Due to the complexity and heterogeneity of Salmonella infections, there is growing recognition of the need for single cell and live-cell imaging approaches to identify and characterize the diversity of cellular phenotypes and how they evolve over time. Here we establish a pipeline for long-term (16 hours) live-cell imaging of infected cells and subsequent image analysis methods. We apply this pipeline to track bacterial replication within the Salmonella-containing vacuole in epithelial cells, quantify vacuolar replication versus survival in macrophages, and investigate the role of individual effector proteins in mediating these parameters. This approach revealed that dispersed bacteria can coalesce at later stages of infection, that the effector protein SseG influences the propensity for cytosolic hyperreplication in epithelial cells, and that while SteA only has a subtle effect on vacuolar replication in epithelial cells, it has a profound impact on infection parameters in immunocompetent macrophages, suggesting differential roles for effector proteins in different infection models. PMID:27376507
Colen, Rivka; Foster, Ian; Gatenby, Robert; Giger, Mary Ellen; Gillies, Robert; Gutman, David; Heller, Matthew; Jain, Rajan; Madabhushi, Anant; Madhavan, Subha; Napel, Sandy; Rao, Arvind; Saltz, Joel; Tatum, James; Verhaak, Roeland; Whitman, Gary
2014-10-01
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26-27, 2013, entitled "Correlating Imaging Phenotypes with Genomics Signatures Research" and "Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems." The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Fluorescence-based detection and quantification of features of cellular senescence.
Cho, Sohee; Hwang, Eun Seong
2011-01-01
Cellular senescence is a spontaneous organismal defense mechanism against tumor progression which is raised upon the activation of oncoproteins or other cellular environmental stresses that must be circumvented for tumorigenesis to occur. It involves growth-arrest state of normal cells after a number of active divisions. There are multiple experimental routes that can drive cells into a state of senescence. Normal somatic cells and cancer cells enter a state of senescence upon overexpression of oncogenic Ras or Raf protein or by imposing certain kinds of stress such as cellular tumor suppressor function. Both flow cytometry and confocal imaging analysis techniques are very useful in quantitative analysis of cellular senescence phenomenon. They allow quantitative estimates of multiple different phenotypes expressed in multiple cell populations simultaneously. Here we review the various types of fluorescence methodologies including confocal imaging and flow cytometry that are frequently utilized to study a variety of senescence. First, we discuss key cell biological changes occurring during senescence and review the current understanding on the mechanisms of these changes with the goal of improving existing protocols and further developing new ones. Next, we list specific senescence phenotypes associated with each cellular trait along with the principles of their assay methods and the significance of the assay outcomes. We conclude by selecting appropriate references that demonstrate a typical example of each method. Copyright © 2011 Elsevier Inc. All rights reserved.
Paveley, Ross A.; Mansour, Nuha R.; Hallyburton, Irene; Bleicher, Leo S.; Benn, Alex E.; Mikic, Ivana; Guidi, Alessandra; Gilbert, Ian H.; Hopkins, Andrew L.; Bickle, Quentin D.
2012-01-01
Sole reliance on one drug, Praziquantel, for treatment and control of schistosomiasis raises concerns about development of widespread resistance, prompting renewed interest in the discovery of new anthelmintics. To discover new leads we designed an automated label-free, high content-based, high throughput screen (HTS) to assess drug-induced effects on in vitro cultured larvae (schistosomula) using bright-field imaging. Automatic image analysis and Bayesian prediction models define morphological damage, hit/non-hit prediction and larval phenotype characterization. Motility was also assessed from time-lapse images. In screening a 10,041 compound library the HTS correctly detected 99.8% of the hits scored visually. A proportion of these larval hits were also active in an adult worm ex-vivo screen and are the subject of ongoing studies. The method allows, for the first time, screening of large compound collections against schistosomes and the methods are adaptable to other whole organism and cell-based screening by morphology and motility phenotyping. PMID:22860151
Muscle segmentation in time series images of Drosophila metamorphosis.
Yadav, Kuleesha; Lin, Feng; Wasser, Martin
2015-01-01
In order to study genes associated with muscular disorders, we characterize the phenotypic changes in Drosophila muscle cells during metamorphosis caused by genetic perturbations. We collect in vivo images of muscle fibers during remodeling of larval to adult muscles. In this paper, we focus on the new image processing pipeline designed to quantify the changes in shape and size of muscles. We propose a new two-step approach to muscle segmentation in time series images. First, we implement a watershed algorithm to divide the image into edge-preserving regions, and then, we classify these regions into muscle and non-muscle classes on the basis of shape and intensity. The advantage of our method is two-fold: First, better results are obtained because classification of regions is constrained by the shape of muscle cell from previous time point; and secondly, minimal user intervention results in faster processing time. The segmentation results are used to compare the changes in cell size between controls and reduction of the autophagy related gene Atg 9 during Drosophila metamorphosis.
An in-vitro scaffold-free epithelial-fibroblast coculture model for the larynx
Walimbe, Tanaya; Panitch, Alyssa; Sivasankar, M. Preeti
2017-01-01
Objective Physiologically relevant, well-characterized in vitro vocal fold coculture models are needed to test the effects of various challenges and therapeutics on vocal fold physiology. We characterize a healthy state coculture model, created by using bronchial/tracheal epithelial cells and immortalized vocal fold fibroblasts. We also demonstrate that this model can be induced into a fibroplastic state to overexpress stress fibers using TGFβ1. Method Cell metabolic activity of immortalized human vocal fold fibroblasts incubated in different media combinations were confirmed with MTT assay. Fibroblasts were grown to confluence and primary bronchial/tracheal epithelial cells suspended in coculture media were seeded directly over the base layer of the fibroblasts. Cells were treated with TGFβ1 to induce myofibroblast formation. Cell shape and position was confirmed by live cell tracking, fibrosis was confirmed by probing for α smooth muscle actin (α-SMA) and phenotype was confirmed by immunostaining for vimentin and E-cadherin. Results Fibroblasts retain metabolic activity in coculture epithelial media. Live cell imaging revealed a layer of epithelial cells atop fibroblasts. α-SMA expression was enhanced in TGFβ1 treated cells, confirming that both cell types maintained a healthy phenotype in coculture, and can be induced into overexpressing stress fibers. Vimentin and E-cadherin immunostaining show that cells retain phenotype in coculture. Conclusion These data lay effective groundwork for a functional coculture model that retains the reproducibility necessary to serve as a viable diagnostic and therapeutic screening platform. Level of Evidence NA PMID:27859361
Wills, Quin F; Mellado-Gomez, Esther; Nolan, Rory; Warner, Damien; Sharma, Eshita; Broxholme, John; Wright, Benjamin; Lockstone, Helen; James, William; Lynch, Mark; Gonzales, Michael; West, Jay; Leyrat, Anne; Padilla-Parra, Sergi; Filippi, Sarah; Holmes, Chris; Moore, Michael D; Bowden, Rory
2017-01-07
Single-cell RNA-Seq can be a valuable and unbiased tool to dissect cellular heterogeneity, despite the transcriptome's limitations in describing higher functional phenotypes and protein events. Perhaps the most important shortfall with transcriptomic 'snapshots' of cell populations is that they risk being descriptive, only cataloging heterogeneity at one point in time, and without microenvironmental context. Studying the genetic ('nature') and environmental ('nurture') modifiers of heterogeneity, and how cell population dynamics unfold over time in response to these modifiers is key when studying highly plastic cells such as macrophages. We introduce the programmable Polaris™ microfluidic lab-on-chip for single-cell sequencing, which performs live-cell imaging while controlling for the culture microenvironment of each cell. Using gene-edited macrophages we demonstrate how previously unappreciated knockout effects of SAMHD1, such as an altered oxidative stress response, have a large paracrine signaling component. Furthermore, we demonstrate single-cell pathway enrichments for cell cycle arrest and APOBEC3G degradation, both associated with the oxidative stress response and altered proteostasis. Interestingly, SAMHD1 and APOBEC3G are both HIV-1 inhibitors ('restriction factors'), with no known co-regulation. As single-cell methods continue to mature, so will the ability to move beyond simple 'snapshots' of cell populations towards studying the determinants of population dynamics. By combining single-cell culture, live-cell imaging, and single-cell sequencing, we have demonstrated the ability to study cell phenotypes and microenvironmental influences. It's these microenvironmental components - ignored by standard single-cell workflows - that likely determine how macrophages, for example, react to inflammation and form treatment resistant HIV reservoirs.
NF-κB-Chromatin Interactions Drive Diverse Phenotypes by Modulating Transcriptional Noise
Wong, Victor C.; Bass, Victor L.; Bullock, M. Elise; Chavali, Arvind K.; Lee, Robin E.C.; Mothes, Walther; Gaudet, Suzanne; Miller-Jensen, Kathryn
2018-01-01
SUMMARY Noisy gene expression generates diverse phenotypes, but little is known about mechanisms that modulate noise. Combining experiments and modeling, we studied how tumor necrosis factor (TNF) initiates noisy expression of latent HIV via the transcription factor nuclear factor κB (NF-κB) and how the HIV genomic integration site modulates noise to generate divergent (low-versus-high) phenotypes of viral activation. We show that TNF-induced transcriptional noise varies more than mean transcript number and that amplification of this noise explains low-versus-high viral activation. For a given integration site, live-cell imaging shows that NF-κB activation correlates with viral activation, but across integration sites, NF-κB activation cannot account for differences in transcriptional noise and phenotypes. Instead, differences in transcriptional noise are associated with differences in chromatin state and RNA polymerase II regulation. We conclude that, whereas NF-κB regulates transcript abundance in each cell, the chromatin environment modulates noise in the population to support diverse HIV activation in response to TNF. PMID:29346759
Walker, J L; Bleaken, B M; Romisher, A R; Alnwibit, A A; Menko, A S
2018-05-02
Following injury, mesenchymal repair cells are activated to function as leader cells that modulate wound healing. These cells have the potential to differentiate to myofibroblasts, resulting in fibrosis and scarring. The signals underlying these differing pathways are complex and incompletely understood. The ex vivo mock cataract surgery cultures are an attractive model with which to address this question. With this model we study, concurrently, the mechanisms that control mesenchymal leader cell function in injury repair within their native microenvironment, and the signals that induce this same cell population to acquire a myofibroblast phenotype when these cells encounter the environment of the adjacent tissue culture platform. Here, we show that upon injury, the cytoskeletal protein vimentin is released into the extracellular space, binds to the cell surface of the mesenchymal leader cells located at the wound edge in the native matrix environment, and supports wound closure. In pro-fibrotic environments, the extracellular vimentin pool also links specifically to the mesenchymal leader cells, and has an essential role in signaling their fate change to a myofibroblast. These findings suggest a novel role for extracellular, cell-surface-associated vimentin in mediating repair-cell function in wound repair and in transitioning these cells to a myofibroblast phenotype. Movie S1 Movie S1 Collective movement of mesenchymal leader and epithelial follower cells across the tissue culture substrate (ECZ) in response to injury was followed by time-lapse imaging from D0-D3. The mesenchymal cells at the leading edge were easily distinguished morphologically from the lens epithelial follower cells.
Vasquez, Joshua J; Hussien, Rajaa; Aguilar-Rodriguez, Brandon; Junger, Henrik; Dobi, Dejan; Henrich, Timothy J; Thanh, Cassandra; Gibson, Erica; Hogan, Louise E; McCune, Joseph; Hunt, Peter W; Stoddart, Cheryl A; Laszik, Zoltan G
2018-06-01
Persistent tissue reservoirs of HIV present a major barrier to cure. Defining subsets of infected cells in tissues is a major focus of HIV cure research. Herein, we describe a novel multiplexed in situ hybridization (ISH) (RNAscope) protocol to detect HIV-DNA (vDNA) and HIV-RNA (vRNA) in formalin-fixed paraffin-embedded (FFPE) human tissues in combination with immunofluorescence (IF) phenotyping of the infected cells. We show that multiplexed IF and ISH (mIFISH) is suitable for quantitative assessment of HIV vRNA and vDNA and that multiparameter IF phenotyping allows precise identification of the cellular source of the ISH signal. We also provide semi-quantitative data on the impact of various tissue fixatives on the detectability of vDNA and vRNA with RNAscope technology. Finally, we describe methods to quantitate the ISH signal on whole-slide digital images and validation of the quantitative ISH data with quantitative real-time PCR for vRNA. It is our hope that this approach will provide insight into the biology of HIV tissue reservoirs and to inform strategies aimed at curing HIV.
Treweek, Jennifer B; Chan, Ken Y; Flytzanis, Nicholas C; Yang, Bin; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2015-11-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1-2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks.
Van Zoelen, E J; Peters, P H; Afink, G B; Van Genesen, S; De Roos, D G; Van Rotterdam, W; Theuvenet, A P
1994-01-01
Normal rat kidney fibroblasts, grown to density arrest in the presence of epidermal growth factor (EGF), can be induced to undergo phenotypic transformation by treatment with transforming growth factor beta or retinoic acid. Here we show that bradykinin blocks this growth-stimulus-induced loss of density-dependent growth arrest by a specific receptor-mediated mechanism. The effects of bradykinin are specific, and are not mimicked by other phosphoinositide-mobilizing agents such as prostaglandin F2 alpha. Northern-blot analysis and receptor-binding studies demonstrate that bradykinin also inhibits the retinoic acid-induced increase in EGF receptor levels in these cells. These studies provide additional evidence that EGF receptor levels modulate EGF-induced expression of the transformed phenotype in these cells. Images Figure 5 PMID:8135739
Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László
2016-12-01
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Imaging methods for analyzing body composition in human obesity and cardiometabolic disease.
Seabolt, Lynn A; Welch, E Brian; Silver, Heidi J
2015-09-01
Advances in the technological qualities of imaging modalities for assessing human body composition have been stimulated by accumulating evidence that individual components of body composition have significant influences on chronic disease onset, disease progression, treatment response, and health outcomes. Importantly, imaging modalities have provided a systematic method for differentiating phenotypes of body composition that diverge from what is considered normal, that is, having low bone mass (osteopenia/osteoporosis), low muscle mass (sarcopenia), high fat mass (obesity), or high fat with low muscle mass (sarcopenic obesity). Moreover, advances over the past three decades in the sensitivity and quality of imaging not just to discern the amount and distribution of adipose and lean tissue but also to differentiate layers or depots within tissues and cells is enhancing our understanding of distinct mechanistic, metabolic, and functional roles of body composition within human phenotypes. In this review, we focus on advances in imaging technologies that show great promise for future investigation of human body composition and how they are being used to address the pandemic of obesity, metabolic syndrome, and diabetes. © 2015 New York Academy of Sciences.
Uncovering cancer cell behavioral phenotype in 3-D in vitro metastatic landscapes
NASA Astrophysics Data System (ADS)
Liu, Liyu; Sun, Bo; Duclos, Guillaume; Kam, Yoonseok; Gatenby, Robert; Stone, Howard; Austin, Robert
2012-02-01
One well-known fact is that cancer cell genetics determines cell metastatic potentials. However, from a physics point of view, genetics as cell properties cannot directly act on metastasis. An agent is needed to unscramble the genetics first before generating dynamics for metastasis. Exactly this agent is cell behavioral phenotype, which is rarely studied due to the difficulties of real-time cell tracking in in vivo tissue. Here we have successfully constructed a micro in vitro environment with collagen based Extracellular Matrix (ECM) structures for cell 3-D metastasis. With stable nutrition (glucose) gradient inside, breast cancer cell MDA-MB-231 is able to invade inside the collagen from the nutrition poor site towards the nutrition rich site. Continuous confocal microscopy captures images of the cells every 12 hours and tracks their positions in 3-D space. The micro fluorescent beads pre-mixed inside the ECM demonstrate that invasive cells have altered the structures through mechanics. With the observation and the analysis of cell collective behaviors, we argue that game theory may exist between the pioneering cells and their followers in the metastatic cell group. The cell collaboration may explain the high efficiency of metastasis.
PARP inhibition causes premature loss of cohesion in cancer cells
Kukolj, Eva; Kaufmann, Tanja; Dick, Amalie E.; Zeillinger, Robert; Gerlich, Daniel W.; Slade, Dea
2017-01-01
Poly(ADP-ribose) polymerases (PARPs) regulate various aspects of cellular function including mitotic progression. Although PARP inhibitors have been undergoing various clinical trials and the PARP1/2 inhibitor olaparib was approved as monotherapy for BRCA-mutated ovarian cancer, their mode of action in killing tumour cells is not fully understood. We investigated the effect of PARP inhibition on mitosis in cancerous (cervical, ovary, breast and osteosarcoma) and non-cancerous cells by live-cell imaging. The clinically relevant inhibitor olaparib induced strong perturbations in mitosis, including problems with chromosome alignment at the metaphase plate, anaphase delay, and premature loss of cohesion (cohesion fatigue) after a prolonged metaphase arrest, resulting in sister chromatid scattering. PARP1 and PARP2 depletion suppressed the phenotype while PARP2 overexpression enhanced it, suggesting that olaparib-bound PARP1 and PARP2 rather than the lack of catalytic activity causes this phenotype. Olaparib-induced mitotic chromatid scattering was observed in various cancer cell lines with increased protein levels of PARP1 and PARP2, but not in non-cancer or cancer cell lines that expressed lower levels of PARP1 or PARP2. Interestingly, the sister chromatid scattering phenotype occurred only when olaparib was added during the S-phase preceding mitosis, suggesting that PARP1 and PARP2 entrapment at replication forks impairs sister chromatid cohesion. Clinically relevant DNA-damaging agents that impair replication progression such as topoisomerase inhibitors and cisplatin were also found to induce sister chromatid scattering and metaphase plate alignment problems, suggesting that these mitotic phenotypes are a common outcome of replication perturbation. PMID:29262611
Senovilla, Laura; Núñez, Lucía; de Campos, José María; de Luis, Daniel A.; Romero, Enrique; García-Sancho, Javier; Villalobos, Carlos
2015-01-01
Human pituitary tumors are generally benign adenomas causing considerable morbidity due to excess hormone secretion, hypopituitarism, and other tumor mass effects. Pituitary tumors are highly heterogeneous and difficult to type, often containing mixed cell phenotypes. We have used calcium imaging followed by multiple immunocytochemistry to type growth hormone secreting (GHomas) and non-functioning pituitary adenomas (NFPAs). Individual cells were typed for stored hormones and calcium responses to classic hypothalamic releasing hormones (HRHs). We found that GHomas contained growth hormone cells either lacking responses to HRHs or responding to all four HRHs. However, most GHoma cells were polyhormonal cells responsive to both thyrotropin-releasing hormone (TRH) and GH-releasing hormone. NFPAs were also highly heterogeneous. Some of them contained ACTH cells lacking responses to HRHs or polyhormonal gonadotropes responsive to LHRH and TRH. However, most NFPAs were made of cells storing no hormone and responded only to TRH. These results may provide new insights on the ontogeny of GHomas and NFPAs. PMID:26106585
Tsujikawa, Takahiro; Kumar, Sushil; Borkar, Rohan N.; Azimi, Vahid; Thibault, Guillaume; Chang, Young Hwan; Balter, Ariel; Kawashima, Rie; Choe, Gina; Sauer, David; El Rassi, Edward; Clayburgh, Daniel R.; Kulesz-Martin, Molly F.; Lutz, Eric R.; Zheng, Lei; Jaffee, Elizabeth M.; Leyshock, Patrick; Margolin, Adam A.; Mori, Motomi; Gray, Joe W.; Flint, Paul W.; Coussens, Lisa M.
2017-01-01
SUMMARY Here we describe a multiplexed immunohistochemical platform, with computational image processing workflows including image cytometry, enabling simultaneous evaluation of 12 biomarkers in one formalin-fixed paraffin-embedded tissue section. To validate this platform, we used tissue microarrays containing 38 archival head and neck squamous cell carcinomas, and revealed differential immune profiles based on lymphoid and myeloid cell densities, correlating with human papilloma virus status and prognosis. Based on these results, we investigated 24 pancreatic ductal adenocarcinomas from patients who received neoadjuvant GVAX vaccination, and revealed that response to therapy correlated with degree of mono-myelocytic cell density, and percentages of CD8+ T cells expressing T cell exhaustion markers. These data highlight the utility of in situ immune monitoring for patient stratification, and provide digital image processing pipelines (https://github.com/multiplexIHC/cppipe) to the community for examining immune complexity in precious tissue sections, where phenotype and tissue architecture are preserved to thus improve biomarker discovery and assessment. PMID:28380359
Optogenetics and the future of neuroscience.
Boyden, Edward S
2015-09-01
Over the last 10 years, optogenetics has become widespread in neuroscience for the study of how specific cell types contribute to brain functions and brain disorder states. The full impact of optogenetics will emerge only when other toolsets mature, including neural connectivity and cell phenotyping tools and neural recording and imaging tools. The latter tools are rapidly improving, in part because optogenetics has helped galvanize broad interest in neurotechnology development.
Zanzottera, Emma C.; Messinger, Jeffrey D.; Ach, Thomas; Smith, R. Theodore; Freund, K. Bailey; Curcio, Christine A.
2015-01-01
Purpose. To seek pathways of retinal pigment epithelium (RPE) fate in age-related macular degeneration via a morphology grading system; provide nomenclature, visualization targets, and metrics for clinical imaging and model systems. Methods. Donor eyes with geographic atrophy (GA) or choroidal neovascularization (CNV) and one GA eye with previous clinical spectral-domain optical coherence tomography (SDOCT) imaging were processed for histology, photodocumented, and annotated at predefined locations. Retinal pigment epithelial cells contained spindle-shaped melanosomes, apposed a basal lamina or basal laminar deposit (BLamD), and exhibited recognizable morphologies. Thicknesses and unbiased estimates of frequencies were obtained. Results. In 13 GA eyes (449 locations), ‘Shedding,’ ‘Sloughed,’ and ‘Dissociated’ morphologies were abundant; 22.2% of atrophic locations had ‘Dissociated’ RPE. In 39 CNV eyes (1363 locations), 37.3% of locations with fibrovascular/fibrocellular scar had ‘Entombed’ RPE; ‘Sloughed,’ ‘Dissociated,’ and ‘Bilaminar’ morphologies were abundant. Of abnormal RPE, CNV and GA both had ∼35% ‘Sloughed’/‘Intraretinal,’ with more Intraretinal in CNV (9.5% vs. 1.8%). ‘Shedding’ cells associated with granule aggregations in BLamD. The RPE layer did not thin, and BLamD remained thick, with progression. Granule-containing material consistent with three morphologies correlated to SDOCT hyperreflective foci in the previously examined GA patient. Conclusions. Retinal pigment epithelium morphology indicates multiple pathways in GA and CNV. Atrophic/scarred areas have numerous cells capable of transcribing genes and generating imaging signals. Shed granule aggregates, possibly apoptotic, are visible in SDOCT, as are ‘Dissociated’ and ‘Sloughed’ cells. The significance of RPE phenotypes is addressable in longitudinal, high-resolution imaging in clinic populations. Data can motivate future molecular phenotyping studies. PMID:25813989
Phenotypic and genotypic analysis of Borrelia burgdorferi isolates from various sources.
Adam, T; Gassmann, G S; Rasiah, C; Göbel, U B
1991-01-01
A total of 17 B. burgdorferi isolates from various sources were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell proteins, restriction enzyme analysis, Southern hybridization with probes complementary to unique regions of evolutionarily conserved genes (16S rRNA and fla), and direct sequencing of in vitro polymerase chain reaction-amplified fragments of the 16S rRNA gene. Three groups were distinguished on the basis of phenotypic and genotypic traits, the latter traced to the nucleotide sequence level. Images PMID:1649797
Mesoscopic Fluorescence Molecular Tomography for Evaluating Engineered Tissues.
Ozturk, Mehmet S; Chen, Chao-Wei; Ji, Robin; Zhao, Lingling; Nguyen, Bao-Ngoc B; Fisher, John P; Chen, Yu; Intes, Xavier
2016-03-01
Optimization of regenerative medicine strategies includes the design of biomaterials, development of cell-seeding methods, and control of cell-biomaterial interactions within the engineered tissues. Among these steps, one paramount challenge is to non-destructively image the engineered tissues in their entirety to assess structure, function, and molecular expression. It is especially important to be able to enable cell phenotyping and monitor the distribution and migration of cells throughout the bulk scaffold. Advanced fluorescence microscopic techniques are commonly employed to perform such tasks; however, they are limited to superficial examination of tissue constructs. Therefore, the field of tissue engineering and regenerative medicine would greatly benefit from the development of molecular imaging techniques which are capable of non-destructive imaging of three-dimensional cellular distribution and maturation within a tissue-engineered scaffold beyond the limited depth of current microscopic techniques. In this review, we focus on an emerging depth-resolved optical mesoscopic imaging technique, termed laminar optical tomography (LOT) or mesoscopic fluorescence molecular tomography (MFMT), which enables longitudinal imaging of cellular distribution in thick tissue engineering constructs at depths of a few millimeters and with relatively high resolution. The physical principle, image formation, and instrumentation of LOT/MFMT systems are introduced. Representative applications in tissue engineering include imaging the distribution of human mesenchymal stem cells embedded in hydrogels, imaging of bio-printed tissues, and in vivo applications.
Human fetal enterocytes in vitro: modulation of the phenotype by extracellular matrix.
Sanderson, I R; Ezzell, R M; Kedinger, M; Erlanger, M; Xu, Z X; Pringault, E; Leon-Robine, S; Louvard, D; Walker, W A
1996-01-01
The differentiation of small intestinal epithelial cells may require stimulation by microenvironmental factors in vivo. In this study, the effects of mesenchymal and luminal elements in nonmalignant epithelia] cells isolated from the human fetus were studied in vitro. Enterocytes from the human fetus were cultured and microenvironmental factors were added in stages, each stage more closely approximating the microenvironment in vivo. Four stages were examined: epithelial cells derived on plastic from intestinal culture and grown as a cell clone, the same cells grown on connective tissue support, primary epithelial explants grown on fibroblasts with a laminin base, and primary epithelial explants grown on fibroblasts and laminin with n-butyrate added to the incubation medium. The epithelial cell clone dedifferentiated when grown on plastic; however, the cells expressed cytokeratins and villin as evidence of their epithelial cell origin. Human connective tissue matrix from Engelbreth-Holm-Swarm sarcoma cells (Matrigel) modulated their phenotype: alkaline phosphatase activity increased, microvilli developed on their apical surface, and the profile of insulin-like growth factor binding proteins resembled that secreted by differentiated enterocytes. Epithelial cells taken directly from the human fetus as primary cultures and grown as explants on fibroblasts and laminin expressed greater specific enzyme activities in brush border membrane fractions than the cell clone. These activities were enhanced by the luminal molecule sodium butyrate. Thus the sequential addition of connective tissue and luminal molecules to nonmalignant epithelia] cells in vitro induces a spectrum of changes in the epithelial cell phenotype toward full differentiation. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8755542
NASA Astrophysics Data System (ADS)
Renaud, Olivier; Heintzmann, Rainer; Sáez-Cirión, Asier; Schnelle, Thomas; Mueller, Torsten; Shorte, Spencer
2007-02-01
Three dimensional imaging provides high-content information from living intact biology, and can serve as a visual screening cue. In the case of single cell imaging the current state of the art uses so-called "axial through-stacking". However, three-dimensional axial through-stacking requires that the object (i.e. a living cell) be adherently stabilized on an optically transparent surface, usually glass; evidently precluding use of cells in suspension. Aiming to overcome this limitation we present here the utility of dielectric field trapping of single cells in three-dimensional electrode cages. Our approach allows gentle and precise spatial orientation and vectored rotation of living, non-adherent cells in fluid suspension. Using various modes of widefield, and confocal microscope imaging we show how so-called "microrotation" can provide a unique and powerful method for multiple point-of-view (three-dimensional) interrogation of intact living biological micro-objects (e.g. single-cells, cell aggregates, and embryos). Further, we show how visual screening by micro-rotation imaging can be combined with micro-fluidic sorting, allowing selection of rare phenotype targets from small populations of cells in suspension, and subsequent one-step single cell cloning (with high-viability). Our methodology combining high-content 3D visual screening with one-step single cell cloning, will impact diverse paradigms, for example cytological and cytogenetic analysis on haematopoietic stem cells, blood cells including lymphocytes, and cancer cells.
Correlated FLIM and PLIM for cell metabolism
NASA Astrophysics Data System (ADS)
Rück, A.; Breymayer, J.; Kalinina, S.
2016-03-01
Correlated imaging of phosphorescence and fluorescence lifetime parameters of metabolic markers is a challenge for direct investigating mechanisms related to cell metabolism and oxygen tension. A large variety of clinical phenotypes is associated with mitochondrial defects accomplished with changes in cell metabolism. In many cases the hypoxic microenvironment of cancer cells shifts metabolism from oxidative phosphorylation (OXPHOS) to anaerobic or aerobic glycolysis, a process known as "Warburg" effect. Also during stem cell differentiation a switch in cell metabolism is observed. A defective mitochondrial function associated with hypoxia has been invoked in many complex disorders such as type 2 diabetes, Alzheimers disease, cardiac ischemia/reperfusion injury, tissue inflammation and cancer. Cellular responses to oxygen tension have been studied extensively, optical imaging techniques based on time correlated single photon counting (TCSPC) to detect the underlying metabolic mechanisms are therefore of prominent interest. They offer the possibility by inspecting fluorescence decay characteristics of intrinsic coenzymes to directly image metabolic pathways. Moreover oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescent probe. The combination of both fluorescence lifetime imaging (FLIM) of coenzymes like NADH and FAD and phosphorescence lifetime (PLIM) of phosphorescent dyes could provide valuable information about correlation of metabolic pathways and oxygen tension.
Effect of shear stress on iPSC-derived human brain microvascular endothelial cells (dhBMECs).
DeStefano, Jackson G; Xu, Zinnia S; Williams, Ashley J; Yimam, Nahom; Searson, Peter C
2017-08-04
The endothelial cells that form the lumen of capillaries and microvessels are an important component of the blood-brain barrier. Cell phenotype is regulated by transducing a range of biomechanical and biochemical signals in the local microenvironment. Here we report on the role of shear stress in modulating the morphology, motility, proliferation, apoptosis, and protein and gene expression, of confluent monolayers of human brain microvascular endothelial cells derived from induced pluripotent stem cells. To assess the response of derived human brain microvascular endothelial cells (dhBMECs) to shear stress, confluent monolayers were formed in a microfluidic device. Monolayers were subjected to a shear stress of 4 or 12 dyne cm -2 for 40 h. Static conditions were used as the control. Live cell imaging was used to assess cell morphology, cell speed, persistence, and the rates of proliferation and apoptosis as a function of time. In addition, immunofluorescence imaging and protein and gene expression analysis of key markers of the blood-brain barrier were performed. Human brain microvascular endothelial cells exhibit a unique phenotype in response to shear stress compared to static conditions: (1) they do not elongate and align, (2) the rates of proliferation and apoptosis decrease significantly, (3) the mean displacement of individual cells within the monolayer over time is significantly decreased, (4) there is no cytoskeletal reorganization or formation of stress fibers within the cell, and (5) there is no change in expression levels of key blood-brain barrier markers. The characteristic response of dhBMECs to shear stress is significantly different from human and animal-derived endothelial cells from other tissues, suggesting that this unique phenotype that may be important in maintenance of the blood-brain barrier. The implications of this work are that: (1) in confluent monolayers of dhBMECs, tight junctions are formed under static conditions, (2) the formation of tight junctions decreases cell motility and prevents any morphological transitions, (3) flow serves to increase the contact area between cells, resulting in very low cell displacement in the monolayer, (4) since tight junctions are already formed under static conditions, increasing the contact area between cells does not cause upregulation in protein and gene expression of BBB markers, and (5) the increase in contact area induced by flow makes barrier function more robust.
Williams, M L; Loughran, T P; Kidd, P G; Starkebaum, G A
1989-01-01
In acute infectious mononucleosis large numbers of atypical lymphocytes proliferate in response to B cells infected with Epstein-Barr virus, generally resulting in a self-limited illness. Although both T-cells and NK cells are known to be involved, the precise origin of the large granular lymphocytes in this disorder is incompletely understood. Using two-colour immunofluorescent flow cytometry, we sequentially examined the phenotype of selected T cell and NK cell subsets from nine patients with infectious mononucleosis. In parallel, we determined whether these lymphocytes utilized a restricted repertoire of the T cell receptor gene and also measured their NK activity. Our results show that in acute infectious mononucleosis there was a greater than three-fold increase in T lymphocytes with the phenotype CD2+, CD3+, CD8+ and DR+. A modest increase in Leu7(HNK1)+ and CD4+ T cells was also seen. In addition, there was a three-fold increase in cells coexpressing CD3- and CD16+, the phenotype reported to represent most NK cells. In spite of this latter finding, however, a marked decrease in NK function was found at the time of diagnosis, gradually returning to normal by day 28. Finally, Southern blot analysis of DNA from patient lymphocytes showed polyclonal rearrangements of the T cell receptor beta chain gene. These studies indicate that the proliferation of activated suppressor/cytotoxic T lymphocytes in acute infectious mononucleosis is polyclonal and is associated with transient depression of NK function. Images Fig. 2 PMID:2527653
A strategy to apply quantitative epistasis analysis on developmental traits.
Labocha, Marta K; Yuan, Wang; Aleman-Meza, Boanerges; Zhong, Weiwei
2017-05-15
Genetic interactions are keys to understand complex traits and evolution. Epistasis analysis is an effective method to map genetic interactions. Large-scale quantitative epistasis analysis has been well established for single cells. However, there is a substantial lack of such studies in multicellular organisms and their complex phenotypes such as development. Here we present a method to extend quantitative epistasis analysis to developmental traits. In the nematode Caenorhabditis elegans, we applied RNA interference on mutants to inactivate two genes, used an imaging system to quantitatively measure phenotypes, and developed a set of statistical methods to extract genetic interactions from phenotypic measurement. Using two different C. elegans developmental phenotypes, body length and sex ratio, as examples, we showed that this method could accommodate various metazoan phenotypes with performances comparable to those methods in single cell growth studies. Comparing with qualitative observations, this method of quantitative epistasis enabled detection of new interactions involving subtle phenotypes. For example, several sex-ratio genes were found to interact with brc-1 and brd-1, the orthologs of the human breast cancer genes BRCA1 and BARD1, respectively. We confirmed the brc-1 interactions with the following genes in DNA damage response: C34F6.1, him-3 (ortholog of HORMAD1, HORMAD2), sdc-1, and set-2 (ortholog of SETD1A, SETD1B, KMT2C, KMT2D), validating the effectiveness of our method in detecting genetic interactions. We developed a reliable, high-throughput method for quantitative epistasis analysis of developmental phenotypes.
Karki, Suman; Surolia, Ranu; Hock, Thomas David; Guroji, Purusotham; Zolak, Jason S.; Duggal, Ryan; Ye, Tong; Thannickal, Victor J.; Antony, Veena B.
2014-01-01
Pleural mesothelial cells (PMCs), which are derived from the mesoderm, exhibit an extraordinary capacity to undergo phenotypic changes during development and disease. PMC transformation and trafficking has a newly defined role in idiopathic pulmonary fibrosis (IPF); however, the contribution of Wilms' tumor 1 (Wt1)-positive PMCs to the generation of pathognomonic myofibroblasts remains unclear. PMCs were obtained from IPF lung explants and healthy donor lungs that were not used for transplantation. Short hairpin Wt1-knockdown PMCs (sh Wt1) were generated with Wt1 shRNA, and morphologic and functional assays were performed in vitro. Loss of Wt1 abrogated the PMC phenotype and showed evidence of mesothelial-to-mesenchymal transition (MMT), with a reduced expression of E-cadherin and an increase in the profibrotic markers α-smooth muscle actin (α-SMA) and fibronectin, along with increased migration and contractility, compared with that of the control. Migration of PMCs in response to active transforming growth factor (TGF)-β1 was assessed by live-cell imaging with 2-photon microscopy and 3D imaging, of Wt1-EGFP transgenic mice. Lineage-tracing experiments to map the fate of Wt1+ PMCs in mouse lung in response to TGF-β1 were also performed by using a Cre-loxP system. Our results, for the first time, demonstrate that Wt1 is necessary for the morphologic integrity of pleural membrane and that loss of Wt1 contributes to IPF via MMT of PMCs into a myofibroblast phenotype.—Karki, S., Surolia, R., Hock, T. D., Guroji, P., Zolak, J. S., Duggal, R., Ye, T., Thannickal, V., J., Antony, V. B. Wilms' tumor 1 (Wt1) regulates pleural mesothelial cell plasticity and transition into myofibroblasts in idiopathic pulmonary fibrosis. PMID:24265486
Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours
Molnar, Csaba; Jermyn, Ian H.; Kato, Zoltan; Rahkama, Vesa; Östling, Päivi; Mikkonen, Piia; Pietiäinen, Vilja; Horvath, Peter
2016-01-01
The identification of fluorescently stained cell nuclei is the basis of cell detection, segmentation, and feature extraction in high content microscopy experiments. The nuclear morphology of single cells is also one of the essential indicators of phenotypic variation. However, the cells used in experiments can lose their contact inhibition, and can therefore pile up on top of each other, making the detection of single cells extremely challenging using current segmentation methods. The model we present here can detect cell nuclei and their morphology even in high-confluency cell cultures with many overlapping cell nuclei. We combine the “gas of near circles” active contour model, which favors circular shapes but allows slight variations around them, with a new data model. This captures a common property of many microscopic imaging techniques: the intensities from superposed nuclei are additive, so that two overlapping nuclei, for example, have a total intensity that is approximately double the intensity of a single nucleus. We demonstrate the power of our method on microscopic images of cells, comparing the results with those obtained from a widely used approach, and with manual image segmentations by experts. PMID:27561654
All-passive pixel super-resolution of time-stretch imaging
Chan, Antony C. S.; Ng, Ho-Cheung; Bogaraju, Sharat C. V.; So, Hayden K. H.; Lam, Edmund Y.; Tsia, Kevin K.
2017-01-01
Based on image encoding in a serial-temporal format, optical time-stretch imaging entails a stringent requirement of state-of-the-art fast data acquisition unit in order to preserve high image resolution at an ultrahigh frame rate — hampering the widespread utilities of such technology. Here, we propose a pixel super-resolution (pixel-SR) technique tailored for time-stretch imaging that preserves pixel resolution at a relaxed sampling rate. It harnesses the subpixel shifts between image frames inherently introduced by asynchronous digital sampling of the continuous time-stretch imaging process. Precise pixel registration is thus accomplished without any active opto-mechanical subpixel-shift control or other additional hardware. Here, we present the experimental pixel-SR image reconstruction pipeline that restores high-resolution time-stretch images of microparticles and biological cells (phytoplankton) at a relaxed sampling rate (≈2–5 GSa/s)—more than four times lower than the originally required readout rate (20 GSa/s) — is thus effective for high-throughput label-free, morphology-based cellular classification down to single-cell precision. Upon integration with the high-throughput image processing technology, this pixel-SR time-stretch imaging technique represents a cost-effective and practical solution for large scale cell-based phenotypic screening in biomedical diagnosis and machine vision for quality control in manufacturing. PMID:28303936
Tajbakhsh, Jian; Gertych, Arkadiusz; Fagg, W. Samuel; Hatada, Seigo; Fair, Jeffrey H.
2011-01-01
The genome organization in pluripotent cells undergoing the first steps of differentiation is highly relevant to the reprogramming process in differentiation. Considering this fact, chromatin texture patterns that identify cells at the very early stage of lineage commitment could serve as valuable tools in the selection of optimal cell phenotypes for regenerative medicine applications. Here we report on the first-time use of high-resolution three-dimensional fluorescence imaging and comprehensive topological cell-by-cell analyses with a novel image-cytometrical approach towards the identification of in situ global nuclear DNA methylation patterns in early endodermal differentiation of mouse ES cells (up to day 6), and the correlations of these patterns with a set of putative markers for pluripotency and endodermal commitment, and the epithelial and mesenchymal character of cells. Utilizing this in vitro cell system as a model for assessing the relationship between differentiation and nuclear DNA methylation patterns, we found that differentiating cell populations display an increasing number of cells with a gain in DNA methylation load: first within their euchromatin, then extending into heterochromatic areas of the nucleus, which also results in significant changes of methylcytosine/global DNA codistribution patterns. We were also able to co-visualize and quantify the concomitant stochastic marker expression on a per-cell basis, for which we did not measure any correlation to methylcytosine loads or distribution patterns. We observe that the progression of global DNA methylation is not correlated with the standard transcription factors associated with endodermal development. Further studies are needed to determine whether the progression of global methylation could represent a useful signature of cellular differentiation. This concept of tracking epigenetic progression may prove useful in the selection of cell phenotypes for future regenerative medicine applications. PMID:21779341
McClean, S.; Hill, B. T.
1994-01-01
Exposure of Chinese hamster ovary (CHO) cells to fractionated X-irradiation [ten fractions of 9 Gray (Gy)] resulted in the expression of a multiple drug resistance phenotype which was distinct from that of drug-selected cells in two features: (i) resistance to vinca alkaloids and epipodophyllotoxins but sensitivity to anthracyclines was retained; (ii) overexpression of P-glycoprotein (Pgp) but regulated by post-translational stability rather than by any elevation in Pgp mRNA (Hill et al., 1990). It was also reported that when these cells (designated DXR-10) were subsequently exposed to another ten fractions of 9 Gy (20 x 9 Gy in total), no further increases in drug resistance or in the extent of Pgp expression were observed. To examine this apparent plateauing of the drug resistance phenotype following X-ray pretreatment, DXR-10 cells were instead treated with ten pulsed vincristine exposures. The resultant cell line, designated DXR-10/VCR-10, proved to be more resistant to vincristine, implying that the effect of further drug selection was additive to that of X-ray pretreatment. In addition, these cells showed resistance to doxorubicin and increased Pgp expression which was matched by a concomitant elevation in Pgp mRNA. These findings appear to confirm that Pgp expression is differentially regulated in tumour cells showing drug resistance after drug as opposed to X-ray selection. Images Figure 2 Figure 3 Figure 5 PMID:7908216
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-16
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human.
GBM heterogeneity as a function of variable epidermal growth factor receptor variant III activity.
Lindberg, Olle R; McKinney, Andrew; Engler, Jane R; Koshkakaryan, Gayane; Gong, Henry; Robinson, Aaron E; Ewald, Andrew J; Huillard, Emmanuelle; David James, C; Molinaro, Annette M; Shieh, Joseph T; Phillips, Joanna J
2016-11-29
Abnormal activation of the epidermal growth factor receptor (EGFR) due to a deletion of exons 2-7 of EGFR (EGFRvIII) is a common alteration in glioblastoma (GBM). While this alteration can drive gliomagenesis, tumors harboring EGFRvIII are heterogeneous. To investigate the role for EGFRvIII activation in tumor phenotype we used a neural progenitor cell-based murine model of GBM driven by EGFR signaling and generated tumor progenitor cells with high and low EGFRvIII activation, pEGFRHi and pEGFRLo. In vivo, ex vivo, and in vitro studies suggested a direct association between EGFRvIII activity and increased tumor cell proliferation, decreased tumor cell adhesion to the extracellular matrix, and altered progenitor cell phenotype. Time-lapse confocal imaging of tumor cells in brain slice cultures demonstrated blood vessel co-option by tumor cells and highlighted differences in invasive pattern. Inhibition of EGFR signaling in pEGFRHi promoted cell differentiation and increased cell-matrix adhesion. Conversely, increased EGFRvIII activation in pEGFRLo reduced cell-matrix adhesion. Our study using a murine model for GBM driven by a single genetic driver, suggests differences in EGFR activation contribute to tumor heterogeneity and aggressiveness.
TASI: A software tool for spatial-temporal quantification of tumor spheroid dynamics.
Hou, Yue; Konen, Jessica; Brat, Daniel J; Marcus, Adam I; Cooper, Lee A D
2018-05-08
Spheroid cultures derived from explanted cancer specimens are an increasingly utilized resource for studying complex biological processes like tumor cell invasion and metastasis, representing an important bridge between the simplicity and practicality of 2-dimensional monolayer cultures and the complexity and realism of in vivo animal models. Temporal imaging of spheroids can capture the dynamics of cell behaviors and microenvironments, and when combined with quantitative image analysis methods, enables deep interrogation of biological mechanisms. This paper presents a comprehensive open-source software framework for Temporal Analysis of Spheroid Imaging (TASI) that allows investigators to objectively characterize spheroid growth and invasion dynamics. TASI performs spatiotemporal segmentation of spheroid cultures, extraction of features describing spheroid morpho-phenotypes, mathematical modeling of spheroid dynamics, and statistical comparisons of experimental conditions. We demonstrate the utility of this tool in an analysis of non-small cell lung cancer spheroids that exhibit variability in metastatic and proliferative behaviors.
Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM).
Tang, Anson H L; Lai, Queenie T K; Chung, Bob M F; Lee, Kelvin C M; Mok, Aaron T Y; Yip, G K; Shum, Anderson H C; Wong, Kenneth K Y; Tsia, Kevin K
2017-06-28
Scaling the number of measurable parameters, which allows for multidimensional data analysis and thus higher-confidence statistical results, has been the main trend in the advanced development of flow cytometry. Notably, adding high-resolution imaging capabilities allows for the complex morphological analysis of cellular/sub-cellular structures. This is not possible with standard flow cytometers. However, it is valuable for advancing our knowledge of cellular functions and can benefit life science research, clinical diagnostics, and environmental monitoring. Incorporating imaging capabilities into flow cytometry compromises the assay throughput, primarily due to the limitations on speed and sensitivity in the camera technologies. To overcome this speed or throughput challenge facing imaging flow cytometry while preserving the image quality, asymmetric-detection time-stretch optical microscopy (ATOM) has been demonstrated to enable high-contrast, single-cell imaging with sub-cellular resolution, at an imaging throughput as high as 100,000 cells/s. Based on the imaging concept of conventional time-stretch imaging, which relies on all-optical image encoding and retrieval through the use of ultrafast broadband laser pulses, ATOM further advances imaging performance by enhancing the image contrast of unlabeled/unstained cells. This is achieved by accessing the phase-gradient information of the cells, which is spectrally encoded into single-shot broadband pulses. Hence, ATOM is particularly advantageous in high-throughput measurements of single-cell morphology and texture - information indicative of cell types, states, and even functions. Ultimately, this could become a powerful imaging flow cytometry platform for the biophysical phenotyping of cells, complementing the current state-of-the-art biochemical-marker-based cellular assay. This work describes a protocol to establish the key modules of an ATOM system (from optical frontend to data processing and visualization backend), as well as the workflow of imaging flow cytometry based on ATOM, using human cells and micro-algae as the examples.
Imaging Prostate Cancer (PCa) Phenotype and Evolution
2016-10-01
inhibit growth of some but not all cell lines. 2. Keywords: Deferiprone, aconitase, metabolism, tricarboxylic acid cycle , magnetic resonance 3...TRAMP C2 and MycCaP cell proliferation, migration, and invasiveness. Determine if knockdown of m-acon and Deferiprone inhibit TCA cycle activity...migration and inhibits TCA cycle (metabolism). Similarly in vivo (Aim 2), we 6 Fig. 2: Effect of DFP on in vivo growth of MycCaP (left) and TRAMP C2
NASA Astrophysics Data System (ADS)
Koehler, Stephan; Wang, Xiaoling; Wilking, James; Weitz, Dave
2015-11-01
We develop an imaging technique for characterizing growth of biofilms using a triple fluorescent labeled strain for the three main phenotypes of a Bacillus subtilis biofilm on an agar substrate. We find that the biofilm does not flow across the substrate and thus growth is due to colonization at the periphery and thickening of the interior regions. We obtain local height and its composition of the three main phenotypes, which are motile, matrix-producing and sporulating, as well as the non-fluorescent material, which can be spores, dormant or dead cells or extracellular matrix. This technique is suitable for the study of biofilm growth and inhibition for different conditions such as biocides or bioremediation.
Hashimoto, K.; Tsujimura, T.; Moriyama, Y.; Yamatodani, A.; Kimura, M.; Tohya, K.; Morimoto, M.; Kitayama, H.; Kanakura, Y.; Kitamura, Y.
1996-01-01
Two mutations of c-kit receptor tyrosine kinase (KIT), valine-559 to glycine (G559) and aspartic acid-814 to valine (V814), resulted in its constitutive activation. To examine the transforming and differentiation-inducing potential of the mutant KIT, we used the murine interleukin-3-dependent IC-2 mast cell line as a transfectant. The IC-2 cells contained few basophilic granules and did not express KIT on the surface. The KITG559 or KITV814 gene was introduced into IC-2 cells using a retroviral vector. KITG559 and KITV814 expressed in IC-2 cells were constitutively phosphorylated on tyrosine and demonstrated kinase activity in the absence of stem cell factor, which is a ligand for KIT. IC-2 cells expressing either KITG559 or KITV814 (IC-2G559 or IC-2V814 cells) showed factor-independent growth in suspension culture and produced tumors in nude athymic mice. In addition, IC-2G559 and IC-2V814 cells showed a more mature phenotype compared with the phenotype of the original IC-2 cells, especially after transplantation into nude mice. The number of basophilic granules and the content of histamine increased remarkably. KITG559 and KITV814 also influenced the transcriptional phenotype of mouse mast cell proteases (MMCP) in IC-2 cells. The expression of MMCP-2, MMCP-4, and MMCP-6 was much greater in IC-2G559 and IC-2V814 cells than in the original IC-2 cells. The results indicated that constitutively activated KIT had not only oncogenic activity but also differentiation-inducing activity in mast cells. Images Figure 1 Figure 4 Figure 5 Figure 6 PMID:8546206
Dobbs, Jessica L; Shin, Dongsuk; Krishnamurthy, Savitri; Kuerer, Henry; Yang, Wei; Richards-Kortum, Rebecca
2016-09-01
Adipose tissue is a dynamic organ that provides endocrine, inflammatory and angiogenic factors, which can assist breast carcinoma cells with invasion and metastasis. Previous studies have shown that adipocytes adjacent to carcinoma, known as cancer-associated adipocytes, undergo extensive changes that correspond to an "activated phenotype," such as reduced size relative to adipocytes in non-neoplastic breast tissue. Optical imaging provides a tool that can be used to characterize adipocyte morphology and other features of the tumor microenvironment. In this study, we used confocal fluorescence microscopy to acquire images of freshly excised breast tissue stained topically with proflavine. We developed a computerized algorithm to identify and quantitatively measure phenotypic properties of adipocytes located adjacent to and far from normal collagen, ductal carcinoma in situ and invasive ductal carcinoma. Adipocytes were measured in confocal fluorescence images of fresh breast tissue collected from 22 patients. Results show that adipocytes adjacent to neoplastic tissue margins have significantly smaller area compared to adipocytes far from the margins of neoplastic lesions and compared to adipocytes adjacent to non-neoplastic collagenous stroma. These findings suggest that confocal microscopic images can be utilized to evaluate phenotypic properties of adipocytes in breast stroma which may be useful in defining alterations in microenvironment that may aid in the development and progression of neoplastic lesions. © 2016 UICC.
Automated Tracking of Cell Migration with Rapid Data Analysis.
DuChez, Brian J
2017-09-01
Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
High content screening in neurodegenerative diseases.
Jain, Shushant; van Kesteren, Ronald E; Heutink, Peter
2012-01-06
The functional annotation of genomes, construction of molecular networks and novel drug target identification, are important challenges that need to be addressed as a matter of great urgency. Multiple complementary 'omics' approaches have provided clues as to the genetic risk factors and pathogenic mechanisms underlying numerous neurodegenerative diseases, but most findings still require functional validation. For example, a recent genome wide association study for Parkinson's Disease (PD), identified many new loci as risk factors for the disease, but the underlying causative variant(s) or pathogenic mechanism is not known. As each associated region can contain several genes, the functional evaluation of each of the genes on phenotypes associated with the disease, using traditional cell biology techniques would take too long. There is also a need to understand the molecular networks that link genetic mutations to the phenotypes they cause. It is expected that disease phenotypes are the result of multiple interactions that have been disrupted. Reconstruction of these networks using traditional molecular methods would be time consuming. Moreover, network predictions from independent studies of individual components, the reductionism approach, will probably underestimate the network complexity. This underestimation could, in part, explain the low success rate of drug approval due to undesirable or toxic side effects. Gaining a network perspective of disease related pathways using HT/HC cellular screening approaches, and identifying key nodes within these pathways, could lead to the identification of targets that are more suited for therapeutic intervention. High-throughput screening (HTS) is an ideal methodology to address these issues. but traditional methods were one dimensional whole-well cell assays, that used simplistic readouts for complex biological processes. They were unable to simultaneously quantify the many phenotypes observed in neurodegenerative diseases such as axonal transport deficits or alterations in morphology properties. This approach could not be used to investigate the dynamic nature of cellular processes or pathogenic events that occur in a subset of cells. To quantify such features one has to move to multi-dimensional phenotypes termed high-content screening (HCS). HCS is the cell-based quantification of several processes simultaneously, which provides a more detailed representation of the cellular response to various perturbations compared to HTS. HCS has many advantages over HTS, but conducting a high-throughput (HT)-high-content (HC) screen in neuronal models is problematic due to high cost, environmental variation and human error. In order to detect cellular responses on a 'phenomics' scale using HC imaging one has to reduce variation and error, while increasing sensitivity and reproducibility. Herein we describe a method to accurately and reliably conduct shRNA screens using automated cell culturing and HC imaging in neuronal cellular models. We describe how we have used this methodology to identify modulators for one particular protein, DJ1, which when mutated causes autosomal recessive parkinsonism. Combining the versatility of HC imaging with HT methods, it is possible to accurately quantify a plethora of phenotypes. This could subsequently be utilized to advance our understanding of the genome, the pathways involved in disease pathogenesis as well as identify potential therapeutic targets. Copyright © 2012 Creative Commons Attribution License
Phenotype detection in morphological mutant mice using deformation features.
Roy, Sharmili; Liang, Xi; Kitamoto, Asanobu; Tamura, Masaru; Shiroishi, Toshihiko; Brown, Michael S
2013-01-01
Large-scale global efforts are underway to knockout each of the approximately 25,000 mouse genes and interpret their roles in shaping the mammalian embryo. Given the tremendous amount of data generated by imaging mutated prenatal mice, high-throughput image analysis systems are inevitable to characterize mammalian development and diseases. Current state-of-the-art computational systems offer only differential volumetric analysis of pre-defined anatomical structures between various gene-knockout mice strains. For subtle anatomical phenotypes, embryo phenotyping still relies on the laborious histological techniques that are clearly unsuitable in such big data environment. This paper presents a system that automatically detects known phenotypes and assists in discovering novel phenotypes in muCT images of mutant mice. Deformation features obtained from non-linear registration of mutant embryo to a normal consensus average image are extracted and analyzed to compute phenotypic and candidate phenotypic areas. The presented system is evaluated using C57BL/10 embryo images. All cases of ventricular septum defect and polydactyly, well-known to be present in this strain, are successfully detected. The system predicts potential phenotypic areas in the liver that are under active histological evaluation for possible phenotype of this mouse line.
Automatic Segmentation of High-Throughput RNAi Fluorescent Cellular Images
Yan, Pingkum; Zhou, Xiaobo; Shah, Mubarak; Wong, Stephen T. C.
2010-01-01
High-throughput genome-wide RNA interference (RNAi) screening is emerging as an essential tool to assist biologists in understanding complex cellular processes. The large number of images produced in each study make manual analysis intractable; hence, automatic cellular image analysis becomes an urgent need, where segmentation is the first and one of the most important steps. In this paper, a fully automatic method for segmentation of cells from genome-wide RNAi screening images is proposed. Nuclei are first extracted from the DNA channel by using a modified watershed algorithm. Cells are then extracted by modeling the interaction between them as well as combining both gradient and region information in the Actin and Rac channels. A new energy functional is formulated based on a novel interaction model for segmenting tightly clustered cells with significant intensity variance and specific phenotypes. The energy functional is minimized by using a multiphase level set method, which leads to a highly effective cell segmentation method. Promising experimental results demonstrate that automatic segmentation of high-throughput genome-wide multichannel screening can be achieved by using the proposed method, which may also be extended to other multichannel image segmentation problems. PMID:18270043
Mapping the Complex Morphology of Cell Interactions with Nanowire Substrates Using FIB-SEM
Jensen, Mikkel R. B.; Łopacińska, Joanna; Schmidt, Michael S.; Skolimowski, Maciej; Abeille, Fabien; Qvortrup, Klaus; Mølhave, Kristian
2013-01-01
Using high resolution focused ion beam scanning electron microscopy (FIB-SEM) we study the details of cell-nanostructure interactions using serial block face imaging. 3T3 Fibroblast cellular monolayers are cultured on flat glass as a control surface and on two types of nanostructured scaffold substrates made from silicon black (Nanograss) with low- and high nanowire density. After culturing for 72 hours the cells were fixed, heavy metal stained, embedded in resin, and processed with FIB-SEM block face imaging without removing the substrate. The sample preparation procedure, image acquisition and image post-processing were specifically optimised for cellular monolayers cultured on nanostructured substrates. Cells display a wide range of interactions with the nanostructures depending on the surface morphology, but also greatly varying from one cell to another on the same substrate, illustrating a wide phenotypic variability. Depending on the substrate and cell, we observe that cells could for instance: break the nanowires and engulf them, flatten the nanowires or simply reside on top of them. Given the complexity of interactions, we have categorised our observations and created an overview map. The results demonstrate that detailed nanoscale resolution images are required to begin understanding the wide variety of individual cells’ interactions with a structured substrate. The map will provide a framework for light microscopy studies of such interactions indicating what modes of interactions must be considered. PMID:23326412
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation.
Werley, Christopher A; Chien, Miao-Ping; Cohen, Adam E
2017-12-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our 'Firefly' microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology ('Optopatch') in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes.
Ultrawidefield microscope for high-speed fluorescence imaging and targeted optogenetic stimulation
Werley, Christopher A.; Chien, Miao-Ping; Cohen, Adam E.
2017-01-01
The rapid increase in the number and quality of fluorescent reporters and optogenetic actuators has yielded a powerful set of tools for recording and controlling cellular state and function. To achieve the full benefit of these tools requires improved optical systems with high light collection efficiency, high spatial and temporal resolution, and patterned optical stimulation, in a wide field of view (FOV). Here we describe our ‘Firefly’ microscope, which achieves these goals in a Ø6 mm FOV. The Firefly optical system is optimized for simultaneous photostimulation and fluorescence imaging in cultured cells. All but one of the optical elements are commercially available, yet the microscope achieves 10-fold higher light collection efficiency at its design magnification than the comparable commercially available microscope using the same objective. The Firefly microscope enables all-optical electrophysiology (‘Optopatch’) in cultured neurons with a throughput and information content unmatched by other neuronal phenotyping systems. This capability opens possibilities in disease modeling and phenotypic drug screening. We also demonstrate applications of the system to voltage and calcium recordings in human induced pluripotent stem cell derived cardiomyocytes. PMID:29296505
Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation
NASA Astrophysics Data System (ADS)
Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young
2014-03-01
Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.
In vivo imaging of CD8+ T cell-mediated elimination of malaria liver stages
Cockburn, Ian A.; Amino, Rogerio; Kelemen, Reka K.; Kuo, Scot C.; Tse, Sze-Wah; Radtke, Andrea; Mac-Daniel, Laura; Ganusov, Vitaly V.; Zavala, Fidel; Ménard, Robert
2013-01-01
CD8+ T cells are specialized cells of the adaptive immune system capable of finding and eliminating pathogen-infected cells. To date it has not been possible to observe the destruction of any pathogen by CD8+ T cells in vivo. Here we demonstrate a technique for imaging the killing of liver-stage malaria parasites by CD8+ T cells bearing a transgenic T cell receptor specific for a parasite epitope. We report several features that have not been described by in vitro analysis of the process, chiefly the formation of large clusters of effector CD8+ T cells around infected hepatocytes. The formation of clusters requires antigen-specific CD8+ T cells and signaling by G protein-coupled receptors, although CD8+ T cells of unrelated specificity are also recruited to clusters. By combining mathematical modeling and data analysis, we suggest that formation of clusters is mainly driven by enhanced recruitment of T cells into larger clusters. We further show various death phenotypes of the parasite, which typically follow prolonged interactions between infected hepatocytes and CD8+ T cells. These findings stress the need for intravital imaging for dissecting the fine mechanisms of pathogen recognition and killing by CD8+ T cells. PMID:23674673
Heterogeneity and phenotypic plasticity of glial cells in the mammalian enteric nervous system.
Boesmans, Werend; Lasrado, Reena; Vanden Berghe, Pieter; Pachnis, Vassilis
2015-02-01
Enteric glial cells are vital for the autonomic control of gastrointestinal homeostasis by the enteric nervous system. Several different functions have been assigned to enteric glial cells but whether these are performed by specialized subtypes with a distinctive phenotype and function remains elusive. We used Mosaic Analysis with Double Markers and inducible lineage tracing to characterize the morphology and dynamic molecular marker expression of enteric GLIA in the myenteric plexus. Functional analysis in individually identified enteric glia was performed by Ca(2+) imaging. Our experiments have identified four morphologically distinct subpopulations of enteric glia in the gastrointestinal tract of adult mice. Marker expression analysis showed that the majority of glia in the myenteric plexus co-express glial fibrillary acidic protein (GFAP), S100β, and Sox10. However, a considerable fraction (up to 80%) of glia outside the myenteric ganglia, did not label for these markers. Lineage tracing experiments suggest that these alternative combinations of markers reflect dynamic gene regulation rather than lineage restrictions. At the functional level, the three myenteric glia subtypes can be distinguished by their differential response to adenosine triphosphate. Together, our studies reveal extensive heterogeneity and phenotypic plasticity of enteric glial cells and set a framework for further investigations aimed at deciphering their role in digestive function and disease. © 2014 Wiley Periodicals, Inc.
Imaging mRNA In Vivo, from Birth to Death.
Tutucci, Evelina; Livingston, Nathan M; Singer, Robert H; Wu, Bin
2018-05-20
RNA is the fundamental information transfer system in the cell. The ability to follow single messenger RNAs (mRNAs) from transcription to degradation with fluorescent probes gives quantitative information about how the information is transferred from DNA to proteins. This review focuses on the latest technological developments in the field of single-mRNA detection and their usage to study gene expression in both fixed and live cells. By describing the application of these imaging tools, we follow the journey of mRNA from transcription to decay in single cells, with single-molecule resolution. We review current theoretical models for describing transcription and translation that were generated by single-molecule and single-cell studies. These methods provide a basis to study how single-molecule interactions generate phenotypes, fundamentally changing our understating of gene expression regulation.
Syal, Karan; Iriya, Rafael; Yang, Yunze; Yu, Hui; Wang, Shaopeng; Haydel, Shelley E; Chen, Hong-Yuan; Tao, Nongjian
2016-01-26
Antimicrobial susceptibility tests (ASTs) are important for confirming susceptibility to empirical antibiotics and detecting resistance in bacterial isolates. Currently, most ASTs performed in clinical microbiology laboratories are based on bacterial culturing, which take days to complete for slowly growing microorganisms. A faster AST will reduce morbidity and mortality rates and help healthcare providers administer narrow spectrum antibiotics at the earliest possible treatment stage. We report the development of a nonculture-based AST using a plasmonic imaging and tracking (PIT) technology. We track the motion of individual bacterial cells tethered to a surface with nanometer (nm) precision and correlate the phenotypic motion with bacterial metabolism and antibiotic action. We show that antibiotic action significantly slows down bacterial motion, which can be quantified for development of a rapid phenotypic-based AST.
Physical-mechanical image of the cell surface on the base of AFM data in contact mode
NASA Astrophysics Data System (ADS)
Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.
2017-10-01
Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.
Applications of CRISPR Genome Engineering in Cell Biology
Wang, Fangyuan; Qi, Lei S.
2016-01-01
Recent advances in genome engineering are starting a revolution in biological research and translational applications. The CRISPR-associated RNA-guided endonuclease Cas9 and its variants enable diverse manipulations of genome function. In this review, we describe the development of Cas9 tools for a variety of applications in cell biology research, including the study of functional genomics, the creation of transgenic animal models, and genomic imaging. Novel genome engineering methods offer a new avenue to understand the causality between genome and phenotype, thus promising a fuller understanding of cell biology. PMID:27599850
Treweek, Jennifer B; Deverman, Benjamin E; Greenbaum, Alon; Lignell, Antti; Xiao, Cheng; Cai, Long; Ladinsky, Mark S; Bjorkman, Pamela J; Fowlkes, Charless C; Gradinaru, Viviana
2016-01-01
To facilitate fine-scale phenotyping of whole specimens, we describe here a set of tissue fixation-embedding, detergent-clearing and staining protocols that can be used to transform excised organs and whole organisms into optically transparent samples within 1–2 weeks without compromising their cellular architecture or endogenous fluorescence. PACT (passive CLARITY technique) and PARS (perfusion-assisted agent release in situ) use tissue-hydrogel hybrids to stabilize tissue biomolecules during selective lipid extraction, resulting in enhanced clearing efficiency and sample integrity. Furthermore, the macromolecule permeability of PACT- and PARS-processed tissue hybrids supports the diffusion of immunolabels throughout intact tissue, whereas RIMS (refractive index matching solution) grants high-resolution imaging at depth by further reducing light scattering in cleared and uncleared samples alike. These methods are adaptable to difficult-to-image tissues, such as bone (PACT-deCAL), and to magnified single-cell visualization (ePACT). Together, these protocols and solutions enable phenotyping of subcellular components and tracing cellular connectivity in intact biological networks. PMID:26492141
Automated measurement of cell motility and proliferation
Bahnson, Alfred; Athanassiou, Charalambos; Koebler, Douglas; Qian, Lei; Shun, Tongying; Shields, Donna; Yu, Hui; Wang, Hong; Goff, Julie; Cheng, Tao; Houck, Raymond; Cowsert, Lex
2005-01-01
Background Time-lapse microscopic imaging provides a powerful approach for following changes in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes that underlie physiological processes in health and disease. For example, features of cell motility accompany molecular changes that are central to the immune response, to carcinogenesis and metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes that generate an organism. Previously reported image processing methods for motility analysis required custom viewing devices and manual interactions that may introduce bias, that slow throughput, and that constrain the scope of experiments in terms of the number of treatment variables, time period of observation, replication and statistical options. Here we describe a fully automated system in which images are acquired 24/7 from 384 well plates and are automatically processed to yield high-content motility and morphological data. Results We have applied this technology to study the effects of different extracellular matrix compounds on human osteoblast-like cell lines to explore functional changes that may underlie processes involved in bone formation and maintenance. We show dose-response and kinetic data for induction of increased motility by laminin and collagen type I without significant effects on growth rate. Differential motility response was evident within 4 hours of plating cells; long-term responses differed depending upon cell type and surface coating. Average velocities were increased approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases. Comparison with manual tracking demonstrated the accuracy of the automated method and highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality statistics are reported that associate with stage noise, interference by non-cell objects, and uncertainty in the outlining and positioning of cells by automated image analysis. Exponential growth, as monitored by total cell area, did not linearly correlate with absolute cell number, but proved valuable for selection of reliable tracking data and for disclosing between-experiment variations in cell growth. Conclusion These results demonstrate the applicability of a system that uses fully automated image acquisition and analysis to study cell motility and growth. Cellular motility response is determined in an unbiased and comparatively high throughput manner. Abundant ancillary data provide opportunities for uniform filtering according to criteria that select for biological relevance and for providing insight into features of system performance. Data quality measures have been developed that can serve as a basis for the design and quality control of experiments that are facilitated by automation and the 384 well plate format. This system is applicable to large-scale studies such as drug screening and research into effects of complex combinations of factors and matrices on cell phenotype. PMID:15831094
Lee, Yan Quan; Goh, Amanda S P; Ch'ng, Jun Hong; Nosten, François H; Preiser, Peter Rainer; Pervaiz, Shazib; Yadav, Sanjiv Kumar; Tan, Kevin S W
2014-01-01
Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of intravacuolar Ca(2+). This assay uses the ImageStream 100, an imaging-capable flow cytometer, to assess the distribution of the fluorescent calcium probe Fluo-4. We obtained two hits from a small library of 25 test compounds, quinacrine and 3',4'-dichlorobenzamil. The ability of these compounds to permeabilize the digestive vacuole in laboratory strains and clinical isolates was validated by confocal microscopy. The hits could induce programmed cell death features in both chloroquine-sensitive and -resistant laboratory strains. Quinacrine was effective at inhibiting field isolates in a 48-h reinvasion assay regardless of artemisinin clearance status. We therefore present as proof of concept a phenotypic screening method with the potential to provide mechanistic insights to the activity of antimalarial drugs.
Sathishkumar, Yesupatham; Velmurugan, Natarajan; Lee, Hyun Mi; Rajagopal, Kalyanaraman; Im, Chan Ki; Lee, Yang Soo
2014-08-01
Phenotypic and genotypic changes in Aspergillus niger and Penicillium chrysogenum, spore forming filamentous fungi, with respect to central chitin metabolism were studied under low shear modeled microgravity, normal gravity and static conditions. Low shear modeled microgravity (LSMMG) response showed a similar spore germination rate with normal gravity and static conditions. Interestingly, high ratio of multiple germ tube formation of A. niger in LSMMG condition was observed. Confocal laser scanning microscopy images of calcofluor flurophore stained A. niger and P. chrysogenum showed no significant variations between different conditions tested. Transmission electron microscopy images revealed number of mitochondria increased in P. chrysogenum in low shear modeled microgravity condition but no stress related-woronin bodies in fungal hyphae were observed. To gain additional insight into the cell wall integrity under different conditions, transcription level of a key gene involved in cell wall integrity gfaA, encoding the glutamine: fructose-6-phosphate amidotransferase enzyme, was evaluated using qRT-PCR. The transcription level showed no variation among different conditions. Overall, the results collectively indicate that the LSMMG has shown no significant stress on spore germination, mycelial growth, cell wall integrity of potentially pathogenic fungi, A. niger and P. chrysogenum.
Correlated oxygen-sensing PLIM, cell metabolism FLIM and applications
NASA Astrophysics Data System (ADS)
Rück, A. C.; Kalinina, S.; Schäfer, P.; von Einem, B.; von Arnim, C.
2017-02-01
Correlated imaging of phosphorescence and fluorescence lifetime parameters of metabolic markers is a challenge for direct investigating mechanisms related to cell metabolism and oxygen tension. A large variety of clinical phenotypes is associated with mitochondrial defects accomplished with changes in cell metabolism. In many cases the hypoxic microenvironment of cancer cells shifts metabolism from oxidative phosphorylation (OXPHOS) to anaerobic or aerobic glycolysis, a process known as "Warburg" effect. Also during stem cell differentiation a switch in cell metabolism is observed. Mitochondrial dysfunction associated with hypoxia has been invoked in many complex disorders such as type 2 diabetes, Alzheimeŕs disease, cardiac ischemia/reperfusion injury, tissue inflammation and cancer. Cellular responses to oxygen tension have been studied extensively, optical imaging techniques based on time correlated single photon counting (TCSPC) to detect oxygen concentration and distribution are therefore of prominent interest. Moreover, they offer the possibility by inspecting fluorescence decay characteristics of intrinsic coenzymes to directly image metabolic pathways, whereas oxygen tension can be determined by considering the phosphorescence lifetime of a phosphorescent probe. The combination of both fluorescence lifetime imaging (FLIM) of coenzymes like NAD(P)H and FAD and phosphorescence lifetime (PLIM) of phosphorescent dyes could provide valuable information about correlation of metabolic pathways and oxygen tension.
Chromatin organization as an indicator of glucocorticoid induced natural killer cell dysfunction.
Misale, Michael S; Witek Janusek, Linda; Tell, Dina; Mathews, Herbert L
2018-01-01
It is well-established that psychological distress reduces natural killer cell immune function and that this reduction can be due to the stress-induced release of glucocorticoids. Glucocorticoids are known to alter epigenetic marks associated with immune effector loci, and are also known to influence chromatin organization. The purpose of this investigation was to assess the effect of glucocorticoids on natural killer cell chromatin organization and to determine the relationship of chromatin organization to natural killer cell effector function, e.g. interferon gamma production. Interferon gamma production is the prototypic cytokine produced by natural killer cells and is known to modulate both innate and adaptive immunity. Glucocorticoid treatment of human peripheral blood mononuclear cells resulted in a significant reduction in interferon gamma production. Glucocorticoid treatment also resulted in a demonstrable natural killer cell nuclear phenotype. This phenotype was localization of the histone, post-translational epigenetic mark, H3K27me3, to the nuclear periphery. Peripheral nuclear localization of H3K27me3 was directly related to cellular levels of interferon gamma. This nuclear phenotype was determined by direct visual inspection and by use of an automated, high through-put technology, the Amnis ImageStream. This technology combines the per-cell information content provided by standard microscopy with the statistical significance afforded by large sample sizes common to standard flow cytometry. Most importantly, this technology provides for a direct assessment of the localization of signal intensity within individual cells. The results demonstrate glucocorticoids to dysregulate natural killer cell function at least in part through altered H3K27me3 nuclear organization and demonstrate H3K27me3 chromatin organization to be a predictive indicator of glucocorticoid induced immune dysregulation of natural killer cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Loss of Nrf2 promotes alveolar type 2 cell loss in irradiated, fibrotic lung.
Traver, Geri; Mont, Stacey; Gius, David; Lawson, William E; Ding, George X; Sekhar, Konjeti R; Freeman, Michael L
2017-11-01
The development of radiation-induced pulmonary fibrosis represents a critical clinical issue limiting delivery of therapeutic doses of radiation to non-small cell lung cancer. Identification of the cell types whose injury initiates a fibrotic response and the underlying biological factors that govern that response are needed for developing strategies that prevent or mitigate fibrosis. C57BL/6 mice (wild type, Nrf2 null, Nrf2 flox/flox , and Nrf2 Δ/Δ ; SPC-Cre) were administered a thoracic dose of 12Gy and allowed to recover for 250 days. Whole slide digital and confocal microscopy imaging of H&E, Masson's trichrome and immunostaining were used to assess tissue remodeling, collagen deposition and cell renewal/mobilization during the regenerative process. Histological assessment of irradiated, fibrotic wild type lung revealed significant loss of alveolar type 2 cells 250 days after irradiation. Type 2 cell loss and the corresponding development of fibrosis were enhanced in the Nrf2 null mouse. Yet, conditional deletion of Nrf2 in alveolar type 2 cells in irradiated lung did not impair type 2 cell survival nor yield an increased fibrotic phenotype. Instead, radiation-induced ΔNp63 stem/progenitor cell mobilization was inhibited in the Nrf2 null mouse while the propensity for radiation-induced myofibroblasts derived from alveolar type 2 cells was magnified. In summary, these results indicate that Nrf2 is an important regulator of irradiated lung's capacity to maintain alveolar type 2 cells, whose injury can initiate a fibrotic phenotype. Loss of Nrf2 inhibits ΔNp63 stem/progenitor mobilization, a key event for reconstitution of injured lung, while promoting a myofibroblast phenotype that is central for fibrosis. Copyright © 2017 Elsevier Inc. All rights reserved.
Nitric oxide is cytoprotective to breast cancer spheroids vulnerable to estrogen-induced apoptosis
Shafran, Yana; Zurgil, Naomi; Ravid-Hermesh, Orit; Sobolev, Maria; Afrimzon, Elena; Hakuk, Yaron; Shainberg, Asher; Deutsch, Mordechai
2017-01-01
Estrogen-induced apoptosis has become a successful treatment for postmenopausal metastatic, estrogen receptor-positive breast cancer. Nitric oxide involvement in the response to this endocrine treatment and its influence upon estrogen receptor-positive breast cancer progression is still unclear. Nitric oxide impact on the MCF7 breast cancer line, before and after estrogen-induced apoptosis, was investigated in 3D culture systems using unique live-cell imaging methodologies. Spheroids were established from MCF7 cells vulnerable to estrogen-induced apoptosis, before and after exposure to estrogen. Spheroids derived from estrogen-treated cells exhibited extensive apoptosis levels with downregulation of estrogen receptor expression, low proliferation rate and reduced metabolic activity, unlike spheroids derived from non-treated cells. In addition to basic phenotypic differences, these two cell cluster types are diverse in their reactions to exogenous nitric oxide. A dual effect of nitric oxide was observed in the breast cancer phenotype sensitive to estrogen-induced apoptosis. Nitric oxide, at the nanomolar level, induced cell proliferation, high metabolic activity, downregulation of estrogen receptor and enhanced collective invasion, contributing to a more aggressive phenotype. Following hormone supplementation, breast cancer 3D clusters were rescued from estrogen-induced apoptosis by these low nitric oxide-donor concentrations, since nitric oxide attenuates cell death levels, upregulates survivin expression and increases metabolic activity. Higher nitric oxide concentrations (100nM) inhibited cell growth, metabolism and promoted apoptosis. These results suggest that nitric oxide, in nanomolar concentrations, may inhibit estrogen-induced apoptosis, playing a major role in hormonal therapy. Inhibiting nitric oxide activity may benefit breast cancer patients and ultimately reduce tumor recurrence. PMID:29312577
Haggarty, Stephen J; Perlis, Roy H
2014-06-15
The advent of somatic cell reprogramming technologies-which enables the generation of patient-specific, induced pluripotent stem cell and other trans-differentiated human neuronal cell models-provides new means of gaining insight into the molecular mechanisms and neural substrates of psychiatric disorders. By allowing a more precise understanding of genotype-phenotype relationship in disease-relevant human cell types, the use of reprogramming technologies in tandem with emerging genome engineering approaches provides a previously "missing link" between basic research and translational efforts. In this review, we summarize advances in applying human pluripotent stem cell and reprogramming technologies to generate specific neural subtypes with a focus on the use of these in vitro systems for the discovery of small molecule-probes and novel therapeutics. Examples are given where human cell models of psychiatric disorders have begun to reveal new mechanistic insight into pathophysiology and simultaneously have provided the foundation for developing disease-relevant, phenotypic assays suitable for both functional genomic and chemical screens. A number of areas for future research are discussed, including the need to develop robust methodology for the reproducible, large-scale production of disease-relevant neural cell types in formats compatible with high-throughput screening modalities, including high-content imaging, multidimensional, signature-based screening, and in vitro network with multielectrode arrays. Limitations, including the challenges in recapitulating neurocircuits and non-cell autonomous phenotypes are discussed. Although these technologies are still in active development, we conclude that, as our understanding of how to efficiently generate and probe the plasticity of patient-specific stem models improves, their utility is likely to advance rapidly. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Bray, Mark-Anthony; Gustafsdottir, Sigrun M; Rohban, Mohammad H; Singh, Shantanu; Ljosa, Vebjorn; Sokolnicki, Katherine L; Bittker, Joshua A; Bodycombe, Nicole E; Dančík, Vlado; Hasaka, Thomas P; Hon, Cindy S; Kemp, Melissa M; Li, Kejie; Walpita, Deepika; Wawer, Mathias J; Golub, Todd R; Schreiber, Stuart L; Clemons, Paul A; Shamji, Alykhan F
2017-01-01
Abstract Background Large-scale image sets acquired by automated microscopy of perturbed samples enable a detailed comparison of cell states induced by each perturbation, such as a small molecule from a diverse library. Highly multiplexed measurements of cellular morphology can be extracted from each image and subsequently mined for a number of applications. Findings This microscopy dataset includes 919 265 five-channel fields of view, representing 30 616 tested compounds, available at “The Cell Image Library” (CIL) repository. It also includes data files containing morphological features derived from each cell in each image, both at the single-cell level and population-averaged (i.e., per-well) level; the image analysis workflows that generated the morphological features are also provided. Quality-control metrics are provided as metadata, indicating fields of view that are out-of-focus or containing highly fluorescent material or debris. Lastly, chemical annotations are supplied for the compound treatments applied. Conclusions Because computational algorithms and methods for handling single-cell morphological measurements are not yet routine, the dataset serves as a useful resource for the wider scientific community applying morphological (image-based) profiling. The dataset can be mined for many purposes, including small-molecule library enrichment and chemical mechanism-of-action studies, such as target identification. Integration with genetically perturbed datasets could enable identification of small-molecule mimetics of particular disease- or gene-related phenotypes that could be useful as probes or potential starting points for development of future therapeutics. PMID:28327978
Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M
2017-06-01
Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Potentials of single-cell biology in identification and validation of disease biomarkers.
Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong
2016-09-01
Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Preferential tumor cellular uptake and retention of indocyanine green for in vivo tumor imaging.
Onda, Nobuhiko; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto
2016-08-01
Indocyanine green (ICG) is a fluorescent agent approved for clinical applications by the Food and Drug Administration and European Medicines Agency. This study examined the mechanism of tumor imaging using intravenously administered ICG. The in vivo kinetics of intravenously administered ICG were determined in tumor xenografts using microscopic approaches that enabled both spatio-temporal and high-magnification analyses. The mechanism of ICG-based tumor imaging was examined at the cellular level in six phenotypically different human colon cancer cell lines exhibiting different grades of epithelioid organization. ICG fluorescence imaging detected xenograft tumors, even those < 1 mm in size, based on their preferential cellular uptake and retention of the dye following its rapid tissue-non-specific delivery, in contrast to its rapid clearance by normal tissue. Live-cell imaging revealed that cellular ICG uptake is temperature-dependent and occurs after ICG binding to the cellular membrane, a pattern suggesting endocytic uptake as the mechanism. Cellular ICG uptake correlated inversely with the formation of tight junctions. Intracellular ICG was entrapped in the membrane traffic system, resulting in its slow turnover and prolonged retention by tumor cells. Our results suggest that tumor-specific imaging by ICG involves non-specific delivery of the dye to tissues followed by preferential tumor cellular uptake and retention. The tumor cell-preference of ICG is driven by passive tumor cell-targeting, the inherent ability of ICG to bind to cell membranes, and the high endocytic activity of tumor cells in association with the disruption of their tight junctions. © 2016 UICC.
Klukas, Christian; Chen, Dijun; Pape, Jean-Michel
2014-01-01
High-throughput phenotyping is emerging as an important technology to dissect phenotypic components in plants. Efficient image processing and feature extraction are prerequisites to quantify plant growth and performance based on phenotypic traits. Issues include data management, image analysis, and result visualization of large-scale phenotypic data sets. Here, we present Integrated Analysis Platform (IAP), an open-source framework for high-throughput plant phenotyping. IAP provides user-friendly interfaces, and its core functions are highly adaptable. Our system supports image data transfer from different acquisition environments and large-scale image analysis for different plant species based on real-time imaging data obtained from different spectra. Due to the huge amount of data to manage, we utilized a common data structure for efficient storage and organization of data for both input data and result data. We implemented a block-based method for automated image processing to extract a representative list of plant phenotypic traits. We also provide tools for build-in data plotting and result export. For validation of IAP, we performed an example experiment that contains 33 maize (Zea mays ‘Fernandez’) plants, which were grown for 9 weeks in an automated greenhouse with nondestructive imaging. Subsequently, the image data were subjected to automated analysis with the maize pipeline implemented in our system. We found that the computed digital volume and number of leaves correlate with our manually measured data in high accuracy up to 0.98 and 0.95, respectively. In summary, IAP provides a multiple set of functionalities for import/export, management, and automated analysis of high-throughput plant phenotyping data, and its analysis results are highly reliable. PMID:24760818
Biodynamic imaging of therapeutic efficacy for canine B-cell lymphoma: preclinical trial results
NASA Astrophysics Data System (ADS)
Choi, H.; Turek, J.; Li, Z.; Childress, M.; Nolte, D.
2018-02-01
Biodynamic imaging uses coherence-gated dynamic light scattering to create three dimensional maps of intracellular dynamics in living tissue biopsies. The technique is sensitive to changes in intracellular dynamics dependent on the mechanism of action (MoA) of therapeutics applied in vitro to the living samples. A preclinical trial in the assessment of chemotherapeutic response of dogs with B-cell lymphoma to the doxorubicin-based therapy CHOP has been completed using biodynamic imaging. The trial enrolled 19 canine patients presenting with non-Hodgkin's B-cell lymphoma. Biopsies were acquired through surgery or through needle cores. The time-varying power spectrum of scattered light after drugs are applied ex vivo to the biopsies represent biodynamic biomarkers that are used in machine learning algorithms to predict the patient clinical outcome. Two distinct phenotypes emerged from the analysis that correlate with patient drug resistance or sensitivity. Cross validation of the algorithms perform with an accuracy of 90% in the prediction of dogs that will respond to treatment. Biodynamic imaging has the potential to help select chemotherapy for personalized cancer care.
Haldipur, Parthiv; Dang, Derek; Aldinger, Kimberly A; Janson, Olivia K; Guimiot, Fabien; Adle-Biasette, Homa; Dobyns, William B; Siebert, Joseph R; Russo, Rosa; Millen, Kathleen J
2017-01-01
FOXC1 loss contributes to Dandy-Walker malformation (DWM), a common human cerebellar malformation. Previously, we found that complete Foxc1 loss leads to aberrations in proliferation, neuronal differentiation and migration in the embryonic mouse cerebellum (Haldipur et al., 2014). We now demonstrate that hypomorphic Foxc1 mutant mice have granule and Purkinje cell abnormalities causing subsequent disruptions in postnatal cerebellar foliation and lamination. Particularly striking is the presence of a partially formed posterior lobule which echoes the posterior vermis DW 'tail sign' observed in human imaging studies. Lineage tracing experiments in Foxc1 mutant mouse cerebella indicate that aberrant migration of granule cell progenitors destined to form the posterior-most lobule causes this unique phenotype. Analyses of rare human del chr 6p25 fetal cerebella demonstrate extensive phenotypic overlap with our Foxc1 mutant mouse models, validating our DWM models and demonstrating that many key mechanisms controlling cerebellar development are likely conserved between mouse and human. DOI: http://dx.doi.org/10.7554/eLife.20898.001 PMID:28092268
Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis
2015-01-01
Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808
A Microfluidic Bioreactor for Toxicity Testing of Stem Cell Derived 3D Cardiac Bodies.
Christoffersson, Jonas; Bergström, Gunnar; Schwanke, Kristin; Kempf, Henning; Zweigerdt, Robert; Mandenius, Carl-Fredrik
2016-01-01
Modeling tissues and organs using conventional 2D cell cultures is problematic as the cells rapidly lose their in vivo phenotype. In microfluidic bioreactors the cells reside in microstructures that are continuously perfused with cell culture medium to provide a dynamic environment mimicking the cells natural habitat. These micro scale bioreactors are sometimes referred to as organs-on-chips and are developed in order to improve and extend cell culture experiments. Here, we describe the two manufacturing techniques photolithography and soft lithography that are used in order to easily produce microfluidic bioreactors. The use of these bioreactors is exemplified by a toxicity assessment on 3D clustered human pluripotent stem cells (hPSC)-derived cardiomyocytes by beating frequency imaging.
Whitesell, L; Rosolen, A; Neckers, L M
1991-01-01
Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098
Chemical Fluxes in Cellular Steady States Measured by Fluorescence Correlation Spectroscopy
NASA Astrophysics Data System (ADS)
Qian, Hong; Elson, Elliot L.
Genetically, identical cells adopt phenotypes that have different structures, functions, and metabolic properties. In multi-cellular organisms, for example, tissue-specific phenotypes distinguish muscle cells, liver cells, fibroblasts, and blood cells that differ in biochemical functions, geometric forms, and interactions with extracellular environments. Tissue-specific cells usually have different metabolic functions such as synthesis of distinct spectra of secreted proteins, e.g., by liver or pancreatic cells, or of structural proteins, e.g., muscle vs. epithelial cells. But more importantly, a phenotype should include a dynamic aspect: different phenotypes can have distinctly different dynamic functions such as contraction of muscle cells and locomotion of leukocytes. The phenotypes of differentiated tissue cells are typically stable, but they can respond to changes in external conditions, e.g., as in the hypertrophy of muscle cells in response to extra load [1] or the phenotypic shift of fibroblasts to myofibroblasts as part of the wound healing response [2]. Cells pass through sequences of phenotypes during development and also undergo malignant phenotypic transformations as occur in cancer and heart disease.
2013-01-01
Background The spatial organization of the genome is being evaluated as a novel indicator of toxicity in conjunction with drug-induced global DNA hypomethylation and concurrent chromatin reorganization. 3D quantitative DNA methylation imaging (3D-qDMI) was applied as a cell-by-cell high-throughput approach to investigate this matter by assessing genome topology through represented immunofluorescent nuclear distribution patterns of 5-methylcytosine (MeC) and global DNA (4,6-diamidino-2-phenylindole = DAPI) in labeled nuclei. Methods Differential progression of global DNA hypomethylation was studied by comparatively dosing zebularine (ZEB) and 5-azacytidine (AZA). Treated and untreated (control) human prostate and liver cancer cells were subjected to confocal scanning microscopy and dedicated 3D image analysis for the following features: differential nuclear MeC/DAPI load and codistribution patterns, cell similarity based on these patterns, and corresponding differences in the topology of low-intensity MeC (LIM) and low in intensity DAPI (LID) sites. Results Both agents generated a high fraction of similar MeC phenotypes across applied concentrations. ZEB exerted similar effects at 10–100-fold higher drug concentrations than its AZA analogue: concentration-dependent progression of global cytosine demethylation, validated by measuring differential MeC levels in repeat sequences using MethyLight, and the concurrent increase in nuclear LIM densities correlated with cellular growth reduction and cytotoxicity. Conclusions 3D-qDMI demonstrated the capability of quantitating dose-dependent drug-induced spatial progression of DNA demethylation in cell nuclei, independent from interphase cell-cycle stages and in conjunction with cytotoxicity. The results support the notion of DNA methylation topology being considered as a potential indicator of causal impacts on chromatin distribution with a conceivable application in epigenetic drug toxicology. PMID:23394161
Induction of appropriate Th-cell phenotypes: cellular decision-making in heterogeneous environments.
van den Ham, H-J; Andeweg, A C; de Boer, R J
2013-11-01
Helper T (Th)-cell differentiation is a key event in the development of the adaptive immune response. By the production of a range of cytokines, Th cells determine the type of immune response that is raised against an invading pathogen. Th cells can adopt many different phenotypes, and Th-cell phenotype decision-making is crucial in mounting effective host responses. This review discusses the different Th-cell phenotypes that have been identified and how Th cells adopt a particular phenotype. The regulation of Th-cell phenotypes has been studied extensively using mathematical models, which have explored the role of regulatory mechanisms such as autocrine cytokine signalling and cross-inhibition between self-activating transcription factors. At the single cell level, Th responses tend to be heterogeneous, but corrections can be made soon after T-cell activation. Although pathogens and the innate immune system provide signals that direct the induction of Th-cell phenotypes, these instructive mechanisms could be easily subverted by pathogens. We discuss that a model of success-driven feedback would select the most appropriate phenotype for clearing a pathogen. Given the heterogeneity in the induction phase of the Th response, such a success-driven feedback loop would allow the selection of effective Th-cell phenotypes while terminating incorrect responses. © 2013 John Wiley & Sons Ltd.
Phenotypic Antimicrobial Susceptibility Testing with Deep Learning Video Microscopy.
Yu, Hui; Jing, Wenwen; Iriya, Rafael; Yang, Yunze; Syal, Karan; Mo, Manni; Grys, Thomas E; Haydel, Shelley E; Wang, Shaopeng; Tao, Nongjian
2018-05-15
Timely determination of antimicrobial susceptibility for a bacterial infection enables precision prescription, shortens treatment time, and helps minimize the spread of antibiotic resistant infections. Current antimicrobial susceptibility testing (AST) methods often take several days and thus impede these clinical and health benefits. Here, we present an AST method by imaging freely moving bacterial cells in urine in real time and analyzing the videos with a deep learning algorithm. The deep learning algorithm determines if an antibiotic inhibits a bacterial cell by learning multiple phenotypic features of the cell without the need for defining and quantifying each feature. We apply the method to urinary tract infection, a common infection that affects millions of people, to determine the minimum inhibitory concentration of pathogens from both bacteria spiked urine and clinical infected urine samples for different antibiotics within 30 min and validate the results with the gold standard broth macrodilution method. The deep learning video microscopy-based AST holds great potential to contribute to the solution of increasing drug-resistant infections.
Liu, Jin-kang; Wang, Xiao-yi; Xiong, Zeng; Zhou, Hui; Zhou, Jian-hua; Fu, Chun-yan; Li, Bo
2008-08-01
To construct a technological platform of 2-dimensional tumor microvascular architecture phenotype (2D-TAMP) expression. Thirty samples of non-small cell lung cancer (NSCLC) were collected after surgery. The corresponding sections of tumor tissue specimens to the slice of CT perfusion imaging were selected. Immunohistochemical staining,Gomori methenamine silver stain, and electron microscope observation were performed to build a technological platform of 2D-TMAP expression by detecting the morphology and the integrity of basement membrane of microvasculature, microvascular density, various microvascular subtype, the degree of the maturity and lumenization of microvasculature, and the characteristics of immunogenetics of microvasculature. The technological platform of 2D-TMAP expression was constructed successfully. There was heterogeneity in 2D-TMAP expression of non-small cell lung cancer. The microvascular of NSCLC had certain characteristics. 2D-TMAP is a key technology that can be used to observe the overall state of micro-environment in tumor growth.
Electromechanical and Elastic Probing of Bacteria in Cell Culture Medium
Thompson, G.L.; Reukov, V.V.; Nikiforov, M.P.; Jesse, S.; Kalinin, S.V.; Vertegel, A.A.
2012-01-01
Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of different types of bacteria in pure water. Here, the BEPFM method is performed for the first time in physiologically-relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria are demonstrated in DPBS. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media. PMID:22641388
Electromechanical and elastic probing of bacteria in a cell culture medium
NASA Astrophysics Data System (ADS)
Thompson, G. L.; Reukov, V. V.; Nikiforov, M. P.; Jesse, S.; Kalinin, S. V.; Vertegel, A. A.
2012-06-01
Rapid phenotype characterization and identification of cultured cells, which is needed for progress in tissue engineering and drug testing, requires an experimental technique that measures physical properties of cells with sub-micron resolution. Recently, band excitation piezoresponse force microscopy (BEPFM) has been proven useful for recognition and imaging of bacteria of different types in pure water. Here, the BEPFM method is performed for the first time on physiologically relevant electrolyte media, such as Dulbecco’s phosphate-buffered saline (DPBS) and Dulbecco’s modified Eagle’s medium (DMEM). Distinct electromechanical responses for Micrococcus lysodeikticus (Gram-positive) and Pseudomonas fluorescens (Gram-negative) bacteria in DPBS are demonstrated. The results suggest that mechanical properties of the outer surface coating each bacterium, as well as the electrical double layer around them, are responsible for the BEPFM image formation mechanism in electrolyte media.
Label free cell tracking in 3D tissue engineering constructs with high resolution imaging
NASA Astrophysics Data System (ADS)
Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.
2014-02-01
Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.
Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window
Rodriguez-Tirado, Carolina; Kitamura, Takanori; Kato, Yu; Pollard, Jeffery W.; Condeelis, John S.; Entenberg, David
2017-01-01
Metastasis to secondary sites such as the lung, liver and bone is a traumatic event with a mortality rate of approximately 90% 1. Of these sites, the lung is the most difficult to assess using intravital optical imaging due to its enclosed position within the body, delicate nature and vital role in sustaining proper physiology. While clinical modalities (positron emission tomography (PET), magnetic resonance imaging (MRI) and computed tomography (CT)) are capable of providing noninvasive images of this tissue, they lack the resolution necessary to visualize the earliest seeding events, with a single pixel consisting of nearly a thousand cells. Current models of metastatic lung seeding postulate that events just after a tumor cell's arrival are deterministic for survival and subsequent growth. This means that real-time intravital imaging tools with single cell resolution 2 are required in order to define the phenotypes of the seeding cells and test these models. While high resolution optical imaging of the lung has been performed using various ex vivo preparations, these experiments are typically single time-point assays and are susceptible to artifacts and possible erroneous conclusions due to the dramatically altered environment (temperature, profusion, cytokines, etc.) resulting from removal from the chest cavity and circulatory system 3. Recent work has shown that time-lapse intravital optical imaging of the intact lung is possible using a vacuum stabilized imaging window 2,4,5 however, typical imaging times have been limited to approximately 6 hr. Here we describe a protocol for performing long-term intravital time-lapse imaging of the lung utilizing such a window over a period of 12 hr. The time-lapse image sequences obtained using this method enable visualization and quantitation of cell-cell interactions, membrane dynamics and vascular perfusion in the lung. We further describe an image processing technique that gives an unprecedentedly clear view of the lung microvasculature. PMID:27768066
Tichauer, Kenneth M.; Wang, Yu; Pogue, Brian W.; Liu, Jonathan T. C.
2015-01-01
The development of methods to accurately quantify cell-surface receptors in living tissues would have a seminal impact in oncology. For example, accurate measures of receptor density in vivo could enhance early detection or surgical resection of tumors via protein-based contrast, allowing removal of cancer with high phenotype specificity. Alternatively, accurate receptor expression estimation could be used as a biomarker to guide patient-specific clinical oncology targeting of the same molecular pathway. Unfortunately, conventional molecular contrast-based imaging approaches are not well adapted to accurately estimating the nanomolar-level cell-surface receptor concentrations in tumors, as most images are dominated by nonspecific sources of contrast such as high vascular permeability and lymphatic inhibition. This article reviews approaches for overcoming these limitations based upon tracer kinetic modeling and the use of emerging protocols to estimate binding potential and the related receptor concentration. Methods such as using single time point imaging or a reference-tissue approach tend to have low accuracy in tumors, whereas paired-agent methods or advanced kinetic analyses are more promising to eliminate the dominance of interstitial space in the signals. Nuclear medicine and optical molecular imaging are the primary modalities used, as they have the nanomolar level sensitivity needed to quantify cell-surface receptor concentrations present in tissue, although each likely has a different clinical niche. PMID:26134619
Lee, Hongje; Lee, Ho Won; La Lee, You; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol
2018-06-01
The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 10 5 , 1 × 10 6 , and 2 × 10 6 DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 10 6 and 2 × 10 6 cells-injected groups. The highest BLI signal intensity was detected in 2 × 10 6 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 10 6 cell-injected group but not in other groups. Optimized cell numbers (2 × 10 6 ) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8 + T-cells in the spleen significantly increased, as the number of DC injections increases. Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.
Fast Raman single bacteria identification: toward a routine in-vitro diagnostic
NASA Astrophysics Data System (ADS)
Douet, Alice; Josso, Quentin; Marchant, Adrien; Dutertre, Bertrand; Filiputti, Delphine; Novelli-Rousseau, Armelle; Espagnon, Isabelle; Kloster-Landsberg, Meike; Mallard, Frédéric; Perraut, Francois
2016-04-01
Timely microbiological results are essential to allow clinicians to optimize the prescribed treatment, ideally at the initial stage of the therapeutic process. Several approaches have been proposed to solve this issue and to provide the microbiological result in a few hours directly from the sample such as molecular biology. However fast and sensitive those methods are not based on single phenotypic information which presents several drawbacks and limitations. Optical methods have the advantage to allow single-cell sensitivity and to probe the phenotype of measured cells. Here we present a process and a prototype that allow automated single-bacteria phenotypic analysis. This prototype is based on the use of Digital In-line Holography techniques combined with a specially designed Raman spectrometer using a dedicated device to capture bacteria. The localization of single-cell is finely determined by using holograms and a proper propagation kernel. Holographic images are also used to analyze bacteria in the sample to sort potential pathogens from flora dwelling species or other biological particles. This accurate localization enables the use of a small confocal volume adapted to the measurement of single-cell. Along with the confocal volume adaptation, we also have modified every components of the spectrometer to optimize single-bacteria Raman measurements. This optimization allowed us to acquire informative single-cell spectra using an integration time of 0.5s only. Identification results obtained with this prototype are presented based on a 65144 Raman spectra database acquired automatically on 48 bacteria strains belonging to 8 species.
Shi, Chun-Lin; Butenko, Melinka A
2018-01-01
Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.
Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation
Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan
2016-01-01
Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747
Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe): A new radiomics descriptor.
Prasanna, Prateek; Tiwari, Pallavi; Madabhushi, Anant
2016-11-22
In this paper, we introduce a new radiomic descriptor, Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) for capturing subtle differences between benign and pathologic phenotypes which may be visually indistinguishable on routine anatomic imaging. CoLlAGe seeks to capture and exploit local anisotropic differences in voxel-level gradient orientations to distinguish similar appearing phenotypes. CoLlAGe involves assigning every image voxel an entropy value associated with the co-occurrence matrix of gradient orientations computed around every voxel. The hypothesis behind CoLlAGe is that benign and pathologic phenotypes even though they may appear similar on anatomic imaging, will differ in their local entropy patterns, in turn reflecting subtle local differences in tissue microarchitecture. We demonstrate CoLlAGe's utility in three clinically challenging classification problems: distinguishing (1) radiation necrosis, a benign yet confounding effect of radiation treatment, from recurrent tumors on T1-w MRI in 42 brain tumor patients, (2) different molecular sub-types of breast cancer on DCE-MRI in 65 studies and (3) non-small cell lung cancer (adenocarcinomas) from benign fungal infection (granulomas) on 120 non-contrast CT studies. For each of these classification problems, CoLlAGE in conjunction with a random forest classifier outperformed state of the art radiomic descriptors (Haralick, Gabor, Histogram of Gradient Orientations).
High-Content Screening for Quantitative Cell Biology.
Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J
2016-08-01
High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Spatially coordinated dynamic gene transcription in living pituitary tissue
Featherstone, Karen; Hey, Kirsty; Momiji, Hiroshi; McNamara, Anne V; Patist, Amanda L; Woodburn, Joanna; Spiller, David G; Christian, Helen C; McNeilly, Alan S; Mullins, John J; Finkenstädt, Bärbel F; Rand, David A; White, Michael RH; Davis, Julian RE
2016-01-01
Transcription at individual genes in single cells is often pulsatile and stochastic. A key question emerges regarding how this behaviour contributes to tissue phenotype, but it has been a challenge to quantitatively analyse this in living cells over time, as opposed to studying snap-shots of gene expression state. We have used imaging of reporter gene expression to track transcription in living pituitary tissue. We integrated live-cell imaging data with statistical modelling for quantitative real-time estimation of the timing of switching between transcriptional states across a whole tissue. Multiple levels of transcription rate were identified, indicating that gene expression is not a simple binary ‘on-off’ process. Immature tissue displayed shorter durations of high-expressing states than the adult. In adult pituitary tissue, direct cell contacts involving gap junctions allowed local spatial coordination of prolactin gene expression. Our findings identify how heterogeneous transcriptional dynamics of single cells may contribute to overall tissue behaviour. DOI: http://dx.doi.org/10.7554/eLife.08494.001 PMID:26828110
Towards precision medicine: from quantitative imaging to radiomics
Acharya, U. Rajendra; Hagiwara, Yuki; Sudarshan, Vidya K.; Chan, Wai Yee; Ng, Kwan Hoong
2018-01-01
Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine. PMID:29308604
Wheeler, Heather E.; Wing, Claudia; Delaney, Shannon M.; Komatsu, Masaaki; Dolan, M. Eileen
2015-01-01
There are no effective agents to prevent or treat chemotherapy-induced peripheral neuropathy (CIPN), the most common non-hematologic toxicity of chemotherapy. Therefore, we sought to evaluate the utility of human neuron-like cells derived from induced pluripotent stem cells (iPSCs) as a means to study CIPN. We used high content imaging measurements of neurite outgrowth phenotypes to compare the changes that occur to iPSC-derived neuronal cells among drugs and among individuals in response to several classes of chemotherapeutics. Upon treatment of these neuronal cells with the neurotoxic drug paclitaxel, vincristine or cisplatin, we identified significant differences in five morphological phenotypes among drugs, including total outgrowth, mean/median/maximum process length, and mean outgrowth intensity (P < 0.05). The differences in damage among drugs reflect differences in their mechanisms of action and clinical CIPN manifestations. We show the potential of the model for gene perturbation studies by demonstrating decreased expression of TUBB2A results in significantly increased sensitivity of neurons to paclitaxel (0.23 ± 0.06 decrease in total neurite outgrowth, P = 0.011). The variance in several neurite outgrowth and apoptotic phenotypes upon treatment with one of the neurotoxic drugs is significantly greater between than within neurons derived from four different individuals (P < 0.05), demonstrating the potential of iPSC-derived neurons as a genetically diverse model for CIPN. The human neuron model will allow both for mechanistic studies of specific genes and genetic variants discovered in clinical studies and for screening of new drugs to prevent or treat CIPN. PMID:25689802
High- and low-throughput scoring of fat mass and body fat distribution in C. elegans
Wählby, Carolina; Lee-Conery, Annie; Bray, Mark-Anthony; Kamentsky, Lee; Larkins-Ford, Jonah; Sokolnicki, Katherine L.; Veneskey, Matthew; Michaels, Kerry; Carpenter, Anne E.; O’Rourke, Eyleen J.
2014-01-01
Fat accumulation is a complex phenotype affected by factors such as neuroendocrine signaling, feeding, activity, and reproductive output. Accordingly, the most informative screens for genes and compounds affecting fat accumulation would be those carried out in whole living animals. Caenorhabditis elegans is a well-established and effective model organism, especially for biological processes that involve organ systems and multicellular interactions, such as metabolism. Every cell in the transparent body of C. elegans is visible under a light microscope. Consequently, an accessible and reliable method to visualize worm lipid-droplet fat depots would make C. elegans the only metazoan in which genes affecting not only fat mass but also body fat distribution could be assessed at a genome-wide scale. Here we present a radical improvement in oil red O worm staining together with high-throughput image-based phenotyping. The three-step sample preparation method is robust, formaldehyde-free, and inexpensive, and requires only 15 minutes of hands-on time to process a 96-well plate. Together with our free and user-friendly automated image analysis package, this method enables C. elegans sample preparation and phenotype scoring at a scale that is compatible with genome-wide screens. Thus we present a feasible approach to small-scale phenotyping and large-scale screening for genetic and/or chemical perturbations that lead to alterations in fat quantity and distribution in whole animals. PMID:24784529
Sanga, Sandeep; Frieboes, Hermann B.; Zheng, Xiaoming; Gatenby, Robert; Bearer, Elaine L.; Cristini, Vittorio
2007-01-01
Empirical evidence and theoretical studies suggest that the phenotype, i.e., cellular- and molecular-scale dynamics, including proliferation rate and adhesiveness due to microenvironmental factors and gene expression that govern tumor growth and invasiveness, also determine gross tumor-scale morphology. It has been difficult to quantify the relative effect of these links on disease progression and prognosis using conventional clinical and experimental methods and observables. As a result, successful individualized treatment of highly malignant and invasive cancers, such as glioblastoma, via surgical resection and chemotherapy cannot be offered and outcomes are generally poor. What is needed is a deterministic, quantifiable method to enable understanding of the connections between phenotype and tumor morphology. Here, we critically review advantages and disadvantages of recent computational modeling efforts (e.g., continuum, discrete, and cellular automata models) that have pursued this understanding. Based on this assessment, we propose and discuss a multi-scale, i.e., from the molecular to the gross tumor scale, mathematical and computational “first-principle” approach based on mass conservation and other physical laws, such as employed in reaction-diffusion systems. Model variables describe known characteristics of tumor behavior, and parameters and functional relationships across scales are informed from in vitro, in vivo and ex vivo biology. We demonstrate that this methodology, once coupled to tumor imaging and tumor biopsy or cell culture data, should enable prediction of tumor growth and therapy outcome through quantification of the relation between the underlying dynamics and morphological characteristics. In particular, morphologic stability analysis of this mathematical model reveals that tumor cell patterning at the tumor-host interface is regulated by cell proliferation, adhesion and other phenotypic characteristics: histopathology information of tumor boundary can be inputted to the mathematical model and used as phenotype-diagnostic tool and thus to predict collective and individual tumor cell invasion of surrounding host. This approach further provides a means to deterministically test effects of novel and hypothetical therapy strategies on tumor behavior. PMID:17629503
Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina
2018-01-01
Purpose Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Methods Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Results Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. Conclusions AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A. This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. PMID:29074494
Song, Hongxin; Rossi, Ethan A; Stone, Edwin; Latchney, Lisa; Williams, David; Dubra, Alfredo; Chung, Mina
2018-01-01
Several genes causing autosomal-dominant cone-rod dystrophy (AD-CRD) have been identified. However, the mechanisms by which genetic mutations lead to cellular loss in human disease remain poorly understood. Here we combine genotyping with high-resolution adaptive optics retinal imaging to elucidate the retinal phenotype at a cellular level in patients with AD-CRD harbouring a defect in the GUCA1A gene. Nine affected members of a four-generation AD-CRD pedigree and three unaffected first-degree relatives underwent clinical examinations including visual acuity, fundus examination, Goldmann perimetry, spectral domain optical coherence tomography and electroretinography. Genome-wide scan followed by bidirectional sequencing was performed on all affected participants. High-resolution imaging using a custom adaptive optics scanning light ophthalmoscope (AOSLO) was performed for selected participants. Clinical evaluations showed a range of disease severity from normal fundus appearance in teenaged patients to pronounced macular atrophy in older patients. Molecular genetic testing showed a mutation in in GUCA1A segregating with disease. AOSLO imaging revealed that of the two teenage patients with mild disease, one had severe disruption of the photoreceptor mosaic while the other had a normal cone mosaic. AOSLO imaging demonstrated variability in the pattern of cone and rod cell loss between two teenage cousins with early AD-CRD, who had similar clinical features and had the identical disease-causing mutation in GUCA1A . This finding suggests that a mutation in GUCA1A does not lead to the same degree of AD-CRD in all patients. Modifying factors may mitigate or augment disease severity, leading to different retinal cellular phenotypes. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Kilcrease, James; Collins, Aaron M; Richins, Richard D; Timlin, Jerilyn A; O'Connell, Mary A
2013-12-01
Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub-organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live-cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid-based phenotypes. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.
Comparative minicolumnar morphometry of three distinguished scientists.
Casanova, Manuel F; Switala, Andrew E; Trippe, Juan; Fitzgerald, Michael
2007-11-01
It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished scientists and six normative controls. Overall, there were significant differences (p < 0.001) between the comparison groups in both minicolumnar width (CW) and mean cell spacing (MCS). Although our scientists did not exhibit deficits in communication or interpersonal skills, the resultant minicolumnar phenotype bears similarity to that described for both autism and Asperger's syndrome. Computer modeling has shown that smaller columns account for discrimination among signals during information processing. A minicolumnar phenotype that provides for discrimination and/or focused attention may help explain the savant abilities observed in some autistic people and the intellectually gifted.
Diverse Application of Magnetic Resonance Imaging for Mouse Phenotyping
Wu, Yijen L.; Lo, Cecilia W.
2017-01-01
Small animal models, particularly mouse models, of human diseases are becoming an indispensable tool for biomedical research. Studies in animal models have provided important insights into the etiology of diseases and accelerated the development of therapeutic strategies. Detailed phenotypic characterization is essential, both for the development of such animal models and mechanistic studies into disease pathogenesis and testing the efficacy of experimental therapeutics. Magnetic Resonance Imaging (MRI) is a versatile and non-invasive imaging modality with excellent penetration depth, tissue coverage, and soft tissue contrast. MRI, being a multi-modal imaging modality, together with proven imaging protocols and availability of good contrast agents, is ideally suited for phenotyping mutant mouse models. Here we describe the applications of MRI for phenotyping structural birth defects involving the brain, heart, and kidney in mice. The versatility of MRI and its ease of use are well suited to meet the rapidly increasing demands for mouse phenotyping in the coming age of functional genomics. PMID:28544650
NASA Astrophysics Data System (ADS)
Hong, Hyundae; Benac, Jasenka; Riggsbee, Daniel; Koutsky, Keith
2014-03-01
High throughput (HT) phenotyping of crops is essential to increase yield in environments deteriorated by climate change. The controlled environment of a greenhouse offers an ideal platform to study the genotype to phenotype linkages for crop screening. Advanced imaging technologies are used to study plants' responses to resource limitations such as water and nutrient deficiency. Advanced imaging technologies coupled with automation make HT phenotyping in the greenhouse not only feasible, but practical. Monsanto has a state of the art automated greenhouse (AGH) facility. Handling of the soil, pots water and nutrients are all completely automated. Images of the plants are acquired by multiple hyperspectral and broadband cameras. The hyperspectral cameras cover wavelengths from visible light through short wave infra-red (SWIR). Inhouse developed software analyzes the images to measure plant morphological and biochemical properties. We measure phenotypic metrics like plant area, height, and width as well as biomass. Hyperspectral imaging allows us to measure biochemcical metrics such as chlorophyll, anthocyanin, and foliar water content. The last 4 years of AGH operations on crops like corn, soybean, and cotton have demonstrated successful application of imaging and analysis technologies for high throughput plant phenotyping. Using HT phenotyping, scientists have been showing strong correlations to environmental conditions, such as water and nutrient deficits, as well as the ability to tease apart distinct differences in the genetic backgrounds of crops.
[Advances in nanoparticle-targeting tumor associated macrophages for cancer imaging and therapy].
Fengliang, Guo; Guping, Tang; Qinglian, H U
2017-03-25
Tumor tissues are composed of tumor cells and complicate microenvironment. Tumor associated macrophages (TAMs) as an important component in tumor microenvironment, play fundamental roles in tumor progression, metastasis and microenvironment regulation. Recently, studies have found that nanotechnology, as an emerging platform, provides unique potential for cancer imaging and therapy. With the nanotechnology, TAMs imaging presents direct evidence for cancer development, progression, and the effectiveness of cancer treatments; it also can regulate the immunosuppression of tumor microenvironment and improve therapeutic efficiency through TAMs targeted killing or phenotypic transformation. In this article, we illustrate the function of TAMs and review the latest development in nano-carriers and their applications in tumor associated macrophage targeting cancer imaging and therapy.
Neilson, E. H.; Edwards, A. M.; Blomstedt, C. K.; Berger, B.; Møller, B. Lindberg; Gleadow, R. M.
2015-01-01
The use of high-throughput phenotyping systems and non-destructive imaging is widely regarded as a key technology allowing scientists and breeders to develop crops with the ability to perform well under diverse environmental conditions. However, many of these phenotyping studies have been optimized using the model plant Arabidopsis thaliana. In this study, The Plant Accelerator® at The University of Adelaide, Australia, was used to investigate the growth and phenotypic response of the important cereal crop, Sorghum bicolor L. Moench and related hybrids to water-limited conditions and different levels of fertilizer. Imaging in different spectral ranges was used to monitor plant composition, chlorophyll, and moisture content. Phenotypic image analysis accurately measured plant biomass. The data set obtained enabled the responses of the different sorghum varieties to the experimental treatments to be differentiated and modelled. Plant architectural instead of architecture elements were determined using imaging and found to correlate with an improved tolerance to stress, for example diurnal leaf curling and leaf area index. Analysis of colour images revealed that leaf ‘greenness’ correlated with foliar nitrogen and chlorophyll, while near infrared reflectance (NIR) analysis was a good predictor of water content and leaf thickness, and correlated with plant moisture content. It is shown that imaging sorghum using a high-throughput system can accurately identify and differentiate between growth and specific phenotypic traits. R scripts for robust, parsimonious models are provided to allow other users of phenomic imaging systems to extract useful data readily, and thus relieve a bottleneck in phenotypic screening of multiple genotypes of key crop plants. PMID:25697789
Aldridge, Kristina; Boyadjiev, Simeon A.; Capone, George T.; DeLeon, Valerie B.; Richtsmeier, Joan T.
2015-01-01
The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non-invasively. Before these systems can be broadly implemented the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (N=15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub-millimeter; both the error due to digitization and to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and therefore useful for evaluation of clinical dysmorphology and surgery, analyses of genotype-phenotype correlations, and inheritance of complex phenotypes. PMID:16158436
Micropatterned mammalian cells exhibit phenotype-specific left-right asymmetry.
Wan, Leo Q; Ronaldson, Kacey; Park, Miri; Taylor, Grace; Zhang, Yue; Gimble, Jeffrey M; Vunjak-Novakovic, Gordana
2011-07-26
Left-right (LR) asymmetry (handedness, chirality) is a well-conserved biological property of critical importance to normal development. Changes in orientation of the LR axis due to genetic or environmental factors can lead to malformations and disease. While the LR asymmetry of organs and whole organisms has been extensively studied, little is known about the LR asymmetry at cellular and multicellular levels. Here we show that the cultivation of cell populations on micropatterns with defined boundaries reveals intrinsic cell chirality that can be readily determined by image analysis of cell alignment and directional motion. By patterning 11 different types of cells on ring-shaped micropatterns of various sizes, we found that each cell type exhibited definite LR asymmetry (p value down to 10(-185)) that was different between normal and cancer cells of the same type, and not dependent on surface chemistry, protein coating, or the orientation of the gravitational field. Interestingly, drugs interfering with actin but not microtubule function reversed the LR asymmetry in some cell types. Our results show that micropatterned cell populations exhibit phenotype-specific LR asymmetry that is dependent on the functionality of the actin cytoskeleton. We propose that micropatterning could potentially be used as an effective in vitro tool to study the initiation of LR asymmetry in cell populations, to diagnose disease, and to study factors involved with birth defects in laterality.
Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong
2018-06-11
We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.
Deep Learning in Label-free Cell Classification
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram
2016-01-01
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219
Deep Learning in Label-free Cell Classification
NASA Astrophysics Data System (ADS)
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram
2016-03-01
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.
Neuroanatomical phenotyping of the mouse brain with three-dimensional autofluorescence imaging
Wong, Michael D.; Dazai, Jun; Altaf, Maliha; Mark Henkelman, R.; Lerch, Jason P.; Nieman, Brian J.
2012-01-01
The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs. PMID:22718750
Lee, Sang Bong; Lee, Ho Won; Singh, Thoudam Debraj; Li, Yinghua; Kim, Sang Kyoon; Cho, Sung Jin; Lee, Sang-Woo; Jeong, Shin Young; Ahn, Byeong-Cheol; Choi, Sangil; Lee, In-Kyu; Lim, Dong-Kwon; Lee, Jaetae; Jeon, Yong Hyun
2017-01-01
Reliable and sensitive imaging tools are required to track macrophage migration and provide a better understating of their biological roles in various diseases. Here, we demonstrate the possibility of radioactive iodide-embedded gold nanoparticles (RIe-AuNPs) as a cell tracker for nuclear medicine imaging. To demonstrate this utility, we monitored macrophage migration to carrageenan-induced sites of acute inflammation in living subjects and visualized the effects of anti-inflammatory agents on this process. Macrophage labeling with RIe-AuNPs did not alter their biological functions such as cell proliferation, phenotype marker expression, or phagocytic activity. In vivo imaging with positron-emission tomography revealed the migration of labeled macrophages to carrageenan-induced inflammation lesions 3 h after transfer, with highest recruitment at 6 h and a slight decline of radioactive signal at 24 h; these findings were highly consistent with the data of a bio-distribution study. Treatment with dexamethasone (an anti-inflammation drug) or GSK5182 (an ERRγ inverse agonist) hindered macrophage recruitment to the inflamed sites. Our findings suggest that a cell tracking strategy utilizing RIe-AuNPs will likely be highly useful in research related to macrophage-related disease and cell-based therapies. PMID:28382164
Phenotypic and functional characterization of T cells from patients with myasthenia gravis.
Mokhtarian, F; Pino, M; Ofosu-Appiah, W; Grob, D
1990-01-01
A study of cell surface phenotypes of PBL of myasthenia gravis (MG) patients showed that their T cells had a significantly higher percentage of 4B4+ T cells (the helper/inducer subset) than age- and sex-matched controls. The PBL of MG patients proliferated significantly higher than those of normal subjects (NS) in response to the purified alpha chain of the acetylcholine receptor (AChR). Anti-AChR antibody was present in sera of 88% of MG and none of the NS. The PBL B cells from MG only, when cultured with autologous T cells and stimulated with either pokeweed mitogen (69%), or AChR-alpha chain (38%), secreted antibody to AChR-alpha chain, whereas T and B cells alone secreted no antibody. T cells from PBL of MG patients were more readily cloned than T cells of NS, by limiting dilution, in the presence of recombinant IL-2 and in the absence of AChR-alpha chain. About 50% of T cell clones from MG patients, compared to none from NS, proliferated to AChR-alpha chain. This response was HLA-DR restricted. MG T cell clones did not display significant cytotoxic activity, as compared to control T cell clones. Our results indicate that in MG, 4B4+ regulatory T cells play their role in the pathogenesis of MG, not by cytotoxicity, but more likely by their ability to stimulate specific antibody production by B cells. Images PMID:1979338
An automated field phenotyping pipeline for application in grapevine research.
Kicherer, Anna; Herzog, Katja; Pflanz, Michael; Wieland, Markus; Rüger, Philipp; Kecke, Steffen; Kuhlmann, Heiner; Töpfer, Reinhard
2015-02-26
Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale.
Blank, Marissa C.; Roman, Brian B.; Henkelman, R. Mark; Millen, Kathleen J.
2012-01-01
The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences. PMID:22947655
An Automated Field Phenotyping Pipeline for Application in Grapevine Research
Kicherer, Anna; Herzog, Katja; Pflanz, Michael; Wieland, Markus; Rüger, Philipp; Kecke, Steffen; Kuhlmann, Heiner; Töpfer, Reinhard
2015-01-01
Due to its perennial nature and size, the acquisition of phenotypic data in grapevine research is almost exclusively restricted to the field and done by visual estimation. This kind of evaluation procedure is limited by time, cost and the subjectivity of records. As a consequence, objectivity, automation and more precision of phenotypic data evaluation are needed to increase the number of samples, manage grapevine repositories, enable genetic research of new phenotypic traits and, therefore, increase the efficiency in plant research. In the present study, an automated field phenotyping pipeline was setup and applied in a plot of genetic resources. The application of the PHENObot allows image acquisition from at least 250 individual grapevines per hour directly in the field without user interaction. Data management is handled by a database (IMAGEdata). The automatic image analysis tool BIVcolor (Berries in Vineyards-color) permitted the collection of precise phenotypic data of two important fruit traits, berry size and color, within a large set of plants. The application of the PHENObot represents an automated tool for high-throughput sampling of image data in the field. The automated analysis of these images facilitates the generation of objective and precise phenotypic data on a larger scale. PMID:25730485
Holm, P. S.; Scanlon, K. J.; Dietel, M.
1994-01-01
A major problem in cytostatic treatment of many tumours is the development of multidrug resistance (MDR4). This is most often accompanied by the overexpression of a membrane transport protein, P-glycoprotein, and its encoding mRNA. In order to reverse the resistant phenotype in cell cultures, we constructed a specific hammerhead ribozyme possessing catalytic activity that cleaves the 3'-end of the GUC sequence in codon 880 of the mdr1 mRNA. We demonstrated that the constructed ribozyme is able to cleave a reduced substrate mdr1 mRNA at the GUC position under physiological conditions in a cell-free system. A DNA sequence encoding the ribozyme gene was then incorporated into a mammalian expression vector (pH beta APr-1 neo) and transfected into the human pancreatic carcinoma cell line EPP85-181RDB, which is resistant to daunorubicin and expresses the MDR phenotype. The expressed ribozyme decreased the level of mdr1 mRNA expression, inhibited the formation of P-glycoprotein and reduced the cell's resistance to daunorubicin dramatically; this means that the resistant cells were 1,600-fold more resistant than the parental cell line (EPP85-181P), whereas those cell clones that showed ribozyme expression were only 5.3-fold more resistant than the parental cell line. Images Figure 1 Figure 3 Figure 2 PMID:7914421
Dynamics of phenotypic switching of bacterial cells with temporal fluctuations in pressure
NASA Astrophysics Data System (ADS)
Nepal, Sudip; Kumar, Pradeep
2018-05-01
Phenotypic switching is one of the mechanisms by which bacteria thrive in ever changing environmental conditions around them. Earlier studies have shown that the application of steady high hydrostatic pressure leads to stochastic switching of mesophilic bacteria from a cellular phenotype having a normal cell cycle to another phenotype lacking cell division. Here, we have studied the dynamics of this phenotypic switching with fluctuating periodic pressure using a set of experiments and a theoretical model. Our results suggest that the phenotypic switching rate from high-pressure phenotype to low-pressure phenotype in the reversible regime is larger as compared to the switching rate from low-pressure phenotype to high-pressure phenotype. Furthermore, we find that even though the cell division and elongation are presumably regulated by a large number of genes the underlying physics of the dynamics of stochastic switching at high pressure is captured reasonably well by a simple two-state model.
Towards high resolution analysis of metabolic flux in cells and tissues.
Sims, James K; Manteiga, Sara; Lee, Kyongbum
2013-10-01
Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.
Towards High Resolution Analysis of Metabolic Flux in Cells and Tissues
Sims, James K; Manteiga, Sara; Lee, Kyongbum
2013-01-01
Metabolism extracts chemical energy from nutrients, uses this energy to form building blocks for biosynthesis, and interconverts between various small molecules that coordinate the activities of cellular pathways. The metabolic state of a cell is increasingly recognized to determine the phenotype of not only metabolically active cell types such as liver, muscle, and adipose, but also other specialized cell types such as neurons and immune cells. This review focuses on methods to quantify intracellular reaction flux as a measure of cellular metabolic activity, with emphasis on studies involving cells of mammalian tissue. Two key areas are highlighted for future development, single cell metabolomics and noninvasive imaging, which could enable spatiotemporally resolved analysis and thereby overcome issues of heterogeneity, a distinctive feature of tissue metabolism. PMID:23906926
Mitra, Soumya; Mironov, Oleg; Foster, Thomas H.
2012-01-01
We report the use of optical imaging strategies to noninvasively examine photosensitizer distribution and physiological and host responses to 2-[1-hexyloxyethyl]-2 devinyl pyropheophorbide-a (HPPH)-mediated photodynamic therapy (PDT) of EMT6 tumors established in the ears of BALB/c mice. 24 h following intravenous (IV) administration of 1 μmol kg-1 HPPH, wide-field fluorescence imaging reveals tumor selectivity with an approximately 2-3-fold differential between tumor and adjacent normal tissue. Confocal microscopy demonstrates a relatively homogeneous intratumor HPPH distribution. Labeling of host cells using fluorophore-conjugated antibodies allowed the visualization of Gr1+/CD11b+ leukocytes and major histocompatibility complex class II (MHC-II)+ cells in vivo. Imaging of the treated site at different time-points following irradiation shows significant and rapid increases in Gr1+ cells in response to therapy. The maximum accumulation of Gr1+ cells is found at 24 h post-irradiation, followed by a decrease at the 48 h time-point. Using IV-injected FITC-conjugated dextran as a fluorescent perfusion marker, we imaged tissue perfusion at different times post-irradiation and found that the reduced Gr1+ cell density at 48 h correlated strongly with functional damage to the vasculature as reported via decreased perfusion status. Dual color confocal imaging experiments demonstrates that about 90% of the anti-Gr1 cell population co-localized with anti-CD11b labeling, thus indicating that majority of the Gr1-labeled cells were neutrophils. At 24 h post-PDT, an approximately 2-fold increase in MHC-II+ cells relative to untreated control is also observed. Co-localization analysis reveals an increase in the fraction of Gr1+ cells expressing MHC-II, suggesting that HPPH-PDT is stimulating neutrophils to express an antigen-presenting phenotype. PMID:23082097
Applications of CRISPR Genome Engineering in Cell Biology.
Wang, Fangyuan; Qi, Lei S
2016-11-01
Recent advances in genome engineering are starting a revolution in biological research and translational applications. The clustered regularly interspaced short palindromic repeats (CRISPR)-associated RNA-guided endonuclease CRISPR associated protein 9 (Cas9) and its variants enable diverse manipulations of genome function. In this review, we describe the development of Cas9 tools for a variety of applications in cell biology research, including the study of functional genomics, the creation of transgenic animal models, and genomic imaging. Novel genome engineering methods offer a new avenue to understand the causality between the genome and phenotype, thus promising a fuller understanding of cell biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bioinformatics approaches to single-cell analysis in developmental biology.
Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H
2016-03-01
Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Evolved aniline catabolism in Acinetobacter calcoaceticus during continuous culture of river water.
Wyndham, R C
1986-01-01
Adaptation of Acinetobacter calcoaceticus from river water to aniline depends on the dynamics of parent and mutant populations. The parent, Acinetobacter strain DON26 phenotype Ani0, was common in river water and assimilated aniline effectively at micromolar concentrations, but was inhibited at higher concentrations of aniline. The Ani0 phenotype was also characterized by a broad specificity for oxidation of chloroanilines by aniline-induced cells. The mutant Ani+ phenotype was represented by DON2, isolated from a population of less than 100 cells ml-1 in a mixed river water culture, and by DON261, isolated during continuous culture of DON26. Ani+ strains assimilated aniline at a greater maximum specific rate than the parent and were able to grow at concentrations of aniline greater than 16 mM. These strains cooxidized phenol after growth at high aniline concentrations, but showed reduced activity toward chloroanilines. These changes plus kinetic data, oxygen uptake data, and the results of auxanography indicate that the mutant has an increased activity and altered specificity of the initial enzyme in the aniline catabolic pathway. The parent strain, DON26, was at a selective advantage relative to the mutant at low concentrations of aniline, but was replaced by the mutant when aniline concentrations increased. Adaptation of the mixed river water community to aniline involved selection of both phenotypes. Reversion of the Ani+ to Ani0 phenotype occurred at a frequency of 10(-2) in the absence of aniline selection. Plasmid content was not altered during either acquisition or loss of the Ani+ phenotype. Adaptive changes in Acinetobacter spp. populations illustrate important differences in the catabolic activities of natural and pollutant selected strains.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:3707123
Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H
2015-11-01
Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.
Ramaswamy, Sharan; Greco, Jane B.; Uluer, Mehmet C.; Zhang, Zijun; Zhang, Zhuoli; Fishbein, Kenneth W.
2009-01-01
The distribution of cells within tissue-engineered constructs is difficult to study through nondestructive means, such as would be required after implantation. However, cell labeling with iron-containing particles may prove to be a useful approach to this problem, because regions containing such labeled cells have been shown to be readily detectable using magnetic resonance imaging (MRI). In this study, we used the Food and Drug Administration–approved superparamagnetic iron oxide (SPIO) contrast agent Feridex in combination with transfection agents to label chondrocytes and visualize them with MRI in two different tissue-engineered cartilage constructs. Correspondence between labeled cell spatial location as determined using MRI and histology was established. The SPIO-labeling process was found not to affect the phenotype or viability of the chondrocytes or the production of major cartilage matrix constituents. We believe that this method of visualizing and tracking chondrocytes may be useful in the further development of tissue engineered cartilage therapeutics. PMID:19788362
Extracting microtubule networks from superresolution single-molecule localization microscopy data
Zhang, Zhen; Nishimura, Yukako; Kanchanawong, Pakorn
2017-01-01
Microtubule filaments form ubiquitous networks that specify spatial organization in cells. However, quantitative analysis of microtubule networks is hampered by their complex architecture, limiting insights into the interplay between their organization and cellular functions. Although superresolution microscopy has greatly facilitated high-resolution imaging of microtubule filaments, extraction of complete filament networks from such data sets is challenging. Here we describe a computational tool for automated retrieval of microtubule filaments from single-molecule-localization–based superresolution microscopy images. We present a user-friendly, graphically interfaced implementation and a quantitative analysis of microtubule network architecture phenotypes in fibroblasts. PMID:27852898
Mechanical phenotype of cancer cells: cell softening and loss of stiffness sensing.
Lin, Hsi-Hui; Lin, Hsiu-Kuan; Lin, I-Hsuan; Chiou, Yu-Wei; Chen, Horn-Wei; Liu, Ching-Yi; Harn, Hans I-Chen; Chiu, Wen-Tai; Wang, Yang-Kao; Shen, Meng-Ru; Tang, Ming-Jer
2015-08-28
The stiffness sensing ability is required to respond to the stiffness of the matrix. Here we determined whether normal cells and cancer cells display distinct mechanical phenotypes. Cancer cells were softer than their normal counterparts, regardless of the type of cancer (breast, bladder, cervix, pancreas, or Ha-RasV12-transformed cells). When cultured on matrices of varying stiffness, low stiffness decreased proliferation in normal cells, while cancer cells and transformed cells lost this response. Thus, cancer cells undergo a change in their mechanical phenotype that includes cell softening and loss of stiffness sensing. Caveolin-1, which is suppressed in many tumor cells and in oncogene-transformed cells, regulates the mechanical phenotype. Caveolin-1-upregulated RhoA activity and Y397FAK phosphorylation directed actin cap formation, which was positively correlated with cell elasticity and stiffness sensing in fibroblasts. Ha-RasV12-induced transformation and changes in the mechanical phenotypes were reversed by re-expression of caveolin-1 and mimicked by the suppression of caveolin-1 in normal fibroblasts. This is the first study to describe this novel role for caveolin-1, linking mechanical phenotype to cell transformation. Furthermore, mechanical characteristics may serve as biomarkers for cell transformation.
Atomic Force Microscopy in Imaging of Viruses and Virus-Infected Cells
Kuznetsov, Yurii G.; McPherson, Alexander
2011-01-01
Summary: Atomic force microscopy (AFM) can visualize almost everything pertinent to structural virology and at resolutions that approach those for electron microscopy (EM). Membranes have been identified, RNA and DNA have been visualized, and large protein assemblies have been resolved into component substructures. Capsids of icosahedral viruses and the icosahedral capsids of enveloped viruses have been seen at high resolution, in some cases sufficiently high to deduce the arrangement of proteins in the capsomeres as well as the triangulation number (T). Viruses have been recorded budding from infected cells and suffering the consequences of a variety of stresses. Mutant viruses have been examined and phenotypes described. Unusual structural features have appeared, and the unexpectedly great amount of structural nonconformity within populations of particles has been documented. Samples may be imaged in air or in fluids (including culture medium or buffer), in situ on cell surfaces, or after histological procedures. AFM is nonintrusive and nondestructive, and it can be applied to soft biological samples, particularly when the tapping mode is employed. In principle, only a single cell or virion need be imaged to learn of its structure, though normally images of as many as is practical are collected. While lateral resolution, limited by the width of the cantilever tip, is a few nanometers, height resolution is exceptional, at approximately 0.5 nm. AFM produces three-dimensional, topological images that accurately depict the surface features of the virus or cell under study. The images resemble common light photographic images and require little interpretation. The structures of viruses observed by AFM are consistent with models derived by X-ray crystallography and cryo-EM. PMID:21646429
Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott
2018-05-01
The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Abbasi, Arash; Berry, Jeffrey C.; Callen, Steven T.; Chavez, Leonardo; Doust, Andrew N.; Feldman, Max J.; Gilbert, Kerrigan B.; Hodge, John G.; Hoyer, J. Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning. PMID:29209576
PlantCV v2: Image analysis software for high-throughput plant phenotyping.
Gehan, Malia A; Fahlgren, Noah; Abbasi, Arash; Berry, Jeffrey C; Callen, Steven T; Chavez, Leonardo; Doust, Andrew N; Feldman, Max J; Gilbert, Kerrigan B; Hodge, John G; Hoyer, J Steen; Lin, Andy; Liu, Suxing; Lizárraga, César; Lorence, Argelia; Miller, Michael; Platon, Eric; Tessman, Monica; Sax, Tony
2017-01-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Imaging techniques for visualizing and phenotyping congenital heart defects in murine models.
Liu, Xiaoqin; Tobita, Kimimasa; Francis, Richard J B; Lo, Cecilia W
2013-06-01
Mouse model is ideal for investigating the genetic and developmental etiology of congenital heart disease. However, cardiovascular phenotyping for the precise diagnosis of structural heart defects in mice remain challenging. With rapid advances in imaging techniques, there are now high throughput phenotyping tools available for the diagnosis of structural heart defects. In this review, we discuss the efficacy of four different imaging modalities for congenital heart disease diagnosis in fetal/neonatal mice, including noninvasive fetal echocardiography, micro-computed tomography (micro-CT), micro-magnetic resonance imaging (micro-MRI), and episcopic fluorescence image capture (EFIC) histopathology. The experience we have gained in the use of these imaging modalities in a large-scale mouse mutagenesis screen have validated their efficacy for congenital heart defect diagnosis in the tiny hearts of fetal and newborn mice. These cutting edge phenotyping tools will be invaluable for furthering our understanding of the developmental etiology of congenital heart disease. Copyright © 2013 Wiley Periodicals, Inc.
PlantCV v2: Image analysis software for high-throughput plant phenotyping
Gehan, Malia A.; Fahlgren, Noah; Abbasi, Arash; ...
2017-12-01
Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here in this paper we present the details andmore » rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.« less
Using ToxCast data to reconstruct dynamic cell state ...
AbstractBackground. High-throughput in vitro screening is an important tool for evaluating the potential biological activity of the thousands of existing chemicals in commerce and the hundreds more introduced each year. Among the assay technologies available, high-content imaging (HCI) allows multiplexed measurements of cellular phenotypic changes induced by chemical exposures. For a large chemical inventory having limited concentration-time series data, the deconvolution of cellular response profiles into transitive or irrevocable state trajectories is an important consideration. Objectives. Our goal was to analyze temporal and concentration-related cellular changes measured using HCI to identify the “tipping point” at which the cells did not show recovery towards a normal phenotypic state. Methods. The effects of 976 chemicals (ToxCast Phase I and II) were evaluated using HCI as a function of concentration and time in HepG2 cells over a 72-hr exposure period to concentrations ranging from 0.4- to 200 µM. The cellular endpoints included nuclear p53 accumulation, JNK, markers of oxidative stress, cytoskeletal changes, mitochondrial energization and density, cell viability and cell cycle progression. A novel computational model was developed to interpret dynamic multidimensional system responses as cell-state trajectories. Results. Analysis of cell-state trajectories showed that HepG2 cells were resilient to the effects of 178 chemicals up to the highest co
Thy-1+ dendritic epidermal cells express T3 antigen and the T-cell receptor gamma chain.
Stingl, G; Koning, F; Yamada, H; Yokoyama, W M; Tschachler, E; Bluestone, J A; Steiner, G; Samelson, L E; Lew, A M; Coligan, J E
1987-01-01
The murine epidermis is a heterogeneous epithelium composed of keratinocytes, melanocytes, Langerhans cells, and a recently described subpopulation (2-3%) of bone-marrow-derived leukocytes with a dendritic morphology and the cell surface phenotype Thy-1+, L3T4-, Lyt-2-. Previous studies have demonstrated that cell lines derived from freshly explanted Thy-1+ dendritic epidermal cells (DEC) have abundant mRNA for rearranged T-cell receptor (TCR) gamma-chain genes. Analysis of Thy-1+ DEC in situ, freshly isolated cell suspensions of Thy-1+ DEC, and long-term Thy-1+ DEC lines demonstrated that 100% of the Thy-1+ DEC reacted with a monoclonal antibody to the epsilon chain of the murine T3 complex and that 40-60% of resident Thy-1+ DEC were also reactive with an antiserum to the TCR gamma chain. Two Thy-1+ DEC lines expressed a disulfide-linked 70-kDa molecule that could be precipitated with an anti-gamma-chain antiserum and could be coprecipitated with an antiserum to the T3 delta chain; the molecule appeared as a single 34-kDa band under reducing conditions. The phenotype of Thy-1+ DEC (T3+, L3T4-, Lyt-2-, TCR gamma chain+) thus resembles that of the recently described subpopulation of murine and human lymphocytes that have been identified in the thymus, peripheral blood, and fetal blood. Images PMID:2885839
SAP is required for the development of innate phenotype in H2-M3-restricted CD8+ T cells1
Bediako, Yaw; Bian, Yao; Zhang, Hong; Cho, Hoonsik; Stein, Paul L.; Wang, Chyung-Ru
2012-01-01
H2-M3-restricted T cells have a pre-activated surface phenotype, rapidly expand and produce cytokines upon stimulation and as such, are classified as innate T cells. Unlike most innate T cells, M3-restricted T cells also express CD8αβ co-receptors and a diverse TCR repertoire: hallmarks of conventional MHC Ia-restricted CD8+ T cells. Although iNKT cells are also innate lymphocytes, they are selected exclusively on hematopoietic cells (HC), while M3-restricted T cells can be selected on either hematopoietic or thymic epithelial cells (TEC). Moreover, their phenotypes differ depending on what cells mediate their selection. Though there is a clear correlation between selection on HC and development of innate phenotype, the underlying mechanism remains unclear. SAP is required for the development of iNKT cells and mediates signals from SLAM receptors that are exclusively expressed on HC. Based on their dual selection pathway, M3-restricted T cells present a unique model for studying the development of innate T cell phenotype. Using both polyclonal and transgenic mouse models we demonstrate that while M3-restricted T cells are capable of developing in the absence of SAP, SAP is required for HC-mediated selection, development of pre-activated phenotype and heightened effector functions of M3-restricted T cells. These findings are significant because they directly demonstrate the need for SAP in HC-mediated acquisition of innate T cell phenotype and suggest that due to their SAP-dependent HC-mediated selection, M3-restricted T cells develop a pre-activated phenotype and an intrinsic ability to proliferate faster upon stimulation, allowing for an important role in the early response to infection. PMID:23041566
Ferreira-Teixeira, Margarida; Paiva-Oliveira, Daniela; Parada, Belmiro; Alves, Vera; Sousa, Vitor; Chijioke, Obinna; Münz, Christian; Reis, Flávio; Rodrigues-Santos, Paulo; Gomes, Célia
2016-10-21
High-grade non-muscle invasive bladder cancer (NMIBC) has a high risk of recurrence and progression to muscle-invasive forms, which seems to be largely related to the presence of tumorigenic stem-like cell populations that are refractory to conventional therapies. Here, we evaluated the therapeutic potential of Natural Killer (NK) cell-based adoptive immunotherapy against chemoresistant bladder cancer stem-like cells (CSCs) in a pre-clinical relevant model, using NK cells from healthy donors and NMIBC patients. Cytokine-activated NK cells from healthy donors and from high-grade NMIBC patients were phenotypically characterized and assayed in vitro against stem-like and bulk differentiated bladder cancer cells. Stem-like cells were isolated from two bladder cancer cell lines using the sphere-forming assay. The in vivo therapeutic efficacy was evaluated in mice bearing a CSC-induced orthotopic bladder cancer. Animals were treated by intravesical instillation of interleukin-activated NK cells. Tumor response was evaluated longitudinally by non-invasive bioluminescence imaging. NK cells from healthy donors upon activation with IL-2 and IL-15 kills indiscriminately both stem-like and differentiated tumor cells via stress ligand recognition. In addition to cell killing, NK cells shifted CSCs towards a more differentiated phenotype, rendering them more susceptible to cisplatin, highlighting the benefits of a possible combined therapy. On the contrary, NK cells from NMIBC patients displayed a low density on NK cytotoxicity receptors, adhesion molecules and a more immature phenotype, losing their ability to kill and drive differentiation of CSCs. The local administration, via the transurethral route, of activated NK cells from healthy donors provides an efficient tumor infiltration and a subsequent robust tumoricidal activity against bladder cancer with high selective cytolytic activity against CSCs, leading to a dramatic reduction in tumor burden from 80 % to complete remission. Although pre-clinical, our results strongly suggest that an immunotherapeutic strategy using allogeneic activated NK cells from healthy donors is effective and should be exploited as a complementary therapeutic strategy in high-risk NMIBC patients to prevent tumor recurrence and progression.
Phenotypic Screening Approaches to Develop Aurora Kinase Inhibitors: Drug Discovery Perspectives.
Marugán, Carlos; Torres, Raquel; Lallena, María José
2015-01-01
Targeting mitotic regulators as a strategy to fight cancer implies the development of drugs against key proteins, such as Aurora-A and -B. Current drugs, which target mitosis through a general mechanism of action (stabilization/destabilization of microtubules), have several side effects (neutropenia, alopecia, and emesis). Pharmaceutical companies aim at avoiding these unwanted effects by generating improved and selective drugs that increase the quality of life of the patients. However, the development of these drugs is an ambitious task that involves testing thousands of compounds through biochemical and cell-based assays. In addition, molecules usually target complex biological processes, involving several proteins and different molecular pathways, further emphasizing the need for high-throughput screening techniques and multiplexing technologies in order to identify drugs with the desired phenotype. We will briefly describe two multiplexing technologies [high-content imaging (HCI) and flow cytometry] and two key processes for drug discovery research (assay development and validation) following our own published industry quality standards. We will further focus on HCI as a useful tool for phenotypic screening and will provide a concrete example of HCI assay to detect Aurora-A or -B selective inhibitors discriminating the off-target effects related to the inhibition of other cell cycle or non-cell cycle key regulators. Finally, we will describe other assays that can help to characterize the in vitro pharmacology of the inhibitors.
Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures
NASA Astrophysics Data System (ADS)
Lu, George J.; Farhadi, Arash; Szablowski, Jerzy O.; Lee-Gosselin, Audrey; Barnes, Samuel R.; Lakshmanan, Anupama; Bourdeau, Raymond W.; Shapiro, Mikhail G.
2018-05-01
Non-invasive biological imaging requires materials capable of interacting with deeply penetrant forms of energy such as magnetic fields and sound waves. Here, we show that gas vesicles (GVs), a unique class of gas-filled protein nanostructures with differential magnetic susceptibility relative to water, can produce robust contrast in magnetic resonance imaging (MRI) at sub-nanomolar concentrations, and that this contrast can be inactivated with ultrasound in situ to enable background-free imaging. We demonstrate this capability in vitro, in cells expressing these nanostructures as genetically encoded reporters, and in three model in vivo scenarios. Genetic variants of GVs, differing in their magnetic or mechanical phenotypes, allow multiplexed imaging using parametric MRI and differential acoustic sensitivity. Additionally, clustering-induced changes in MRI contrast enable the design of dynamic molecular sensors. By coupling the complementary physics of MRI and ultrasound, this nanomaterial gives rise to a distinct modality for molecular imaging with unique advantages and capabilities.
NASA Astrophysics Data System (ADS)
Rück, Angelika; Hauser, Carmen; Mosch, Simone; Kalinina, Sviatlana
2014-09-01
Fluorescence-guided diagnosis of tumor tissue is in many cases insufficient, because false positive results interfere with the outcome. Improvement through observation of cell metabolism might offer the solution, but needs a detailed understanding of the origin of autofluorescence. With respect to this, spectrally resolved multiphoton fluorescence lifetime imaging was investigated to analyze cell metabolism in metabolic phenotypes of malignant and nonmalignant oral mucosa cells. The time-resolved fluorescence characteristics of NADH were measured in cells of different origins. The fluorescence lifetime of bound and free NADH was calculated from biexponential fitting of the fluorescence intensity decay within different spectral regions. The mean lifetime was increased from nonmalignant oral mucosa cells to different squamous carcinoma cells, where the most aggressive cells showed the longest lifetime. In correlation with reports in the literature, the total amount of NADH seemed to be less for the carcinoma cells and the ratio of free/bound NADH was decreased from nonmalignant to squamous carcinoma cells. Moreover for squamous carcinoma cells a high concentration of bound NADH was found in cytoplasmic organelles (mainly mitochondria). This all together indicates that oxidative phosphorylation and a high redox potential play an important role in the energy metabolism of these cells.
Towards a transcriptome-based theranostic platform for unfavorable breast cancer phenotypes.
Dobroff, Andrey S; D'Angelo, Sara; Eckhardt, Bedrich L; Ferrara, Fortunato; Staquicini, Daniela I; Cardó-Vila, Marina; Staquicini, Fernanda I; Nunes, Diana N; Kim, Kisu; Driessen, Wouter H P; Hajitou, Amin; Lomo, Lesley C; Barry, Marc; Krishnamurthy, Savitri; Sahin, Aysegul; Woodward, Wendy A; Prossnitz, Eric R; Anderson, Robin L; Dias-Neto, Emmanuel; Brown-Glaberman, Ursa A; Royce, Melanie E; Ueno, Naoto T; Cristofanilli, Massimo; Hortobagyi, Gabriel N; Marchiò, Serena; Gelovani, Juri G; Sidman, Richard L; Arap, Wadih; Pasqualini, Renata
2016-10-24
Inflammatory breast carcinoma (IBC) is one of the most lethal forms of human breast cancer, and effective treatment for IBC is an unmet clinical need in contemporary oncology. Tumor-targeted theranostic approaches are emerging in precision medicine, but only a few specific biomarkers are available. Here we report up-regulation of the 78-kDa glucose-regulated protein (GRP78) in two independent discovery and validation sets of specimens derived from IBC patients, suggesting translational promise for clinical applications. We show that a GRP78-binding motif displayed on either bacteriophage or adeno-associated virus/phage (AAVP) particles or loop-grafted onto a human antibody fragment specifically targets orthotopic IBC and other aggressive breast cancer models in vivo. To evaluate the theranostic value, we used GRP78-targeting AAVP particles to deliver the human Herpes simplex virus thymidine kinase type-1 (HSVtk) transgene, obtaining simultaneous in vivo diagnosis through PET imaging and tumor treatment by selective activation of the prodrug ganciclovir at tumor sites. Translation of this AAVP system is expected simultaneously to image, monitor, and treat the IBC phenotype and possibly other aggressive (e.g., invasive and/or metastatic) subtypes of breast cancer, based on the inducible cell-surface expression of the stress-response chaperone GRP78, and possibily other cell-surface receptors in human tumors.
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.
Jia, Dongya; Jolly, Mohit Kumar; Kulkarni, Prakash; Levine, Herbert
2017-06-22
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Novel strategies to enforce an epithelial phenotype in mesenchymal cells
Dragoi, Ana-Maria; Swiss, Rachel; Gao, Beile; Agaisse, Hervé
2014-01-01
E-cadherin downregulation in cancer cells is associated with epithelial-to-mesenchymal transition (EMT) and metastatic prowess, but the underlying mechanisms are incompletely characterized. In this study, we probed E-cadherin expression at the plasma membrane as a functional assay to identify genes involved in E-cadherin downregulation. The assay was based on the E-cadherin-dependent invasion properties of the intracellular pathogen Listeria monocytogenes. On the basis of a functional readout, automated microscopy and computer-assisted image analysis were used to screen siRNAs targeting 7,000 human genes. The validity of the screen was supported by its definion of several known regulators of E-cadherin expression, including ZEB1, HDAC1 and MMP14. We identified three new regulators (FLASH, CASP7 and PCGF1), the silencing of which was sufficient to restore high levels of E-cadherin transcription. Additionally, we identified two new regulators (FBXL5 and CAV2), the silencing of which was sufficient to increase E-cadherin expression at a post-transcriptional level. FLASH silencing regulated the expression of E-cadherin and other ZEB1-dependent genes, through post-transcriptional regulation of ZEB1, but it also regulated the expression of numerous ZEB1-independent genes with functions predicted to contribute to a restoration of the epithelial phenotype. Finally, we also report the identification of siRNA duplexes that potently restored the epithelial phenotype by mimicking the activity of known and putative microRNAs. Our findings suggest new ways to enforce epithelial phenotypes as a general strategy to treat cancer by blocking invasive and metastatic phenotypes associated with EMT. PMID:24845104
A novel 3D imaging system for strawberry phenotyping.
He, Joe Q; Harrison, Richard J; Li, Bo
2017-01-01
Accurate and quantitative phenotypic data in plant breeding programmes is vital in breeding to assess the performance of genotypes and to make selections. Traditional strawberry phenotyping relies on the human eye to assess most external fruit quality attributes, which is time-consuming and subjective. 3D imaging is a promising high-throughput technique that allows multiple external fruit quality attributes to be measured simultaneously. A low cost multi-view stereo (MVS) imaging system was developed, which captured data from 360° around a target strawberry fruit. A 3D point cloud of the sample was derived and analysed with custom-developed software to estimate berry height, length, width, volume, calyx size, colour and achene number. Analysis of these traits in 100 fruits showed good concordance with manual assessment methods. This study demonstrates the feasibility of an MVS based 3D imaging system for the rapid and quantitative phenotyping of seven agronomically important external strawberry traits. With further improvement, this method could be applied in strawberry breeding programmes as a cost effective phenotyping technique.
Yu, Jian-Bo; Zuo, Zhuo; Zhang, Wen-Yan; Yang, Qun-Pei; Zhang, Ying-Chun; Tang, Yuan; Zhao, Sha; Mo, Xian-Ming; Liu, Wei-Ping
2014-11-01
To analyze the differentiation characteristics of extranodal natural killer/T-cell lymphoma, nasal type, one nude mouse model, cell lines SNK6 and SNT8, and 16 fresh human samples were analyzed by flow cytometry immunophenotyping and immunohistochemistry staining; and 115 archived cases were used for phenotypic detection and prognostic analysis. We found that CD25 was expressed by most tumor cells in all samples, and CD56(+)CD25(+) cells were the predominant population in the mouse model, the 2 cell lines, and 10 of the 16 fresh tumor samples; in the other 6 fresh tumor samples, the predominant cell population was of the CD16(+)CD25(+) phenotype, and only a minor population showed the CD56(+)CD25(+) phenotype. The phenotype detected by immunohistochemistry staining generally was consistent with the phenotype found by flow cytometry immunophenotyping. According to the expression of CD56 and CD16, 115 cases could be classified into 3 phenotypic subtypes: CD56(-)CD16(-), CD56(+)CD16(-), and CD56(dim/-)CD16(+). Patients with tumors of the CD56(dim/-)CD16(+) phenotype had a poorer prognosis than patients with tumors of the other phenotypes. Differentiation of extranodal natural killer/T-cell lymphoma, nasal type apparently resembles the normal natural killer cell developmental pattern, and these tumors can be classified into 3 phenotypic subtypes of different aggressiveness. Expression of CD56(dim/-)CD16(+) implies a poorer prognosis. Copyright © 2014 Elsevier Inc. All rights reserved.
Image Harvest: an open-source platform for high-throughput plant image processing and analysis
Knecht, Avi C.; Campbell, Malachy T.; Caprez, Adam; Swanson, David R.; Walia, Harkamal
2016-01-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. PMID:27141917
Hsieh, Matthew M; Fitzhugh, Courtney D; Weitzel, R Patrick; Link, Mary E; Coles, Wynona A; Zhao, Xiongce; Rodgers, Griffin P; Powell, Jonathan D; Tisdale, John F
2014-07-02
Myeloablative allogeneic hematopoietic stem cell transplantation (HSCT) is curative for children with severe sickle cell disease, but toxicity may be prohibitive for adults. Nonmyeloablative transplantation has been attempted with degrees of preparative regimen intensity, but graft rejection and graft-vs-host disease remain significant. To determine the efficacy, safety, and outcome on end-organ function with this low-intensity regimen for sickle cell phenotype with or without thalassemia. From July 16, 2004, to October 25, 2013, 30 patients aged 16-65 years with severe disease enrolled in this nonmyeloablative transplant study, consisting of alemtuzumab (1 mg/kg in divided doses), total-body irradiation (300 cGy), sirolimus, and infusion of unmanipulated filgrastim mobilized peripheral blood stem cells (5.5-31.7 × 10(6) cells/kg) from human leukocyte antigen-matched siblings. The primary end point was treatment success at 1 year after the transplant, defined as a full donor-type hemoglobin for patients with sickle cell disease and transfusion independence for patients with thalassemia. The secondary end points were the level of donor leukocyte chimerism; incidence of acute and chronic graft-vs-host disease; and sickle cell-thalassemia disease-free survival, immunologic recovery, and changes in organ function, assessed by annual brain imaging, pulmonary function, echocardiographic image, and laboratory testing. Twenty-nine patients survived a median 3.4 years (range, 1-8.6), with no nonrelapse mortality. One patient died from intracranial bleeding after relapse. As of October 25, 2013, 26 patients (87%) had long-term stable donor engraftment without acute or chronic graft-vs-host disease. The mean donor T-cell level was 48% (95% CI, 34%-62%); the myeloid chimerism levels, 86% (95% CI, 70%-100%). Fifteen engrafted patients discontinued immunosuppression medication with continued stable donor chimerism and no graft-vs-host disease. The normalized hemoglobin and resolution of hemolysis among engrafted patients were accompanied by stabilization in brain imaging, a reduction of echocardiographic estimates of pulmonary pressure, and allowed for phlebotomy to reduce hepatic iron. The mean annual hospitalization rate was 3.23 (95% CI, 1.83-4.63) the year before, 0.63 (95% CI, 0.26-1.01) the first year after, 0.19 (95% CI, 0-0.45) the second year after, and 0.11 (95% CI, 0.04-0.19) the third year after transplant. For patients taking long-term narcotics, the mean use per week was 639 mg (95% CI, 220-1058) of intravenous morphine-equivalent dose the week of their transplants and 140 mg (95% CI, 56-225) 6 months after transplant. There were 38 serious adverse events: pain and related management, infections, abdominal events, and sirolimus related toxic effects. Among 30 patients with sickle cell phenotype with or without thalassemia who underwent nonmyeloablative allogeneic HSCT, the rate of stable mixed-donor chimerism was high and allowed for complete replacement with circulating donor red blood cells among engrafted participants. Further accrual and follow-up are required to assess longer-term clinical outcomes, adverse events, and transplant tolerance. clinicaltrials.gov Identifier: NCT00061568.
Computer vision and machine learning for robust phenotyping in genome-wide studies
Zhang, Jiaoping; Naik, Hsiang Sing; Assefa, Teshale; Sarkar, Soumik; Reddy, R. V. Chowda; Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh K.
2017-01-01
Traditional evaluation of crop biotic and abiotic stresses are time-consuming and labor-intensive limiting the ability to dissect the genetic basis of quantitative traits. A machine learning (ML)-enabled image-phenotyping pipeline for the genetic studies of abiotic stress iron deficiency chlorosis (IDC) of soybean is reported. IDC classification and severity for an association panel of 461 diverse plant-introduction accessions was evaluated using an end-to-end phenotyping workflow. The workflow consisted of a multi-stage procedure including: (1) optimized protocols for consistent image capture across plant canopies, (2) canopy identification and registration from cluttered backgrounds, (3) extraction of domain expert informed features from the processed images to accurately represent IDC expression, and (4) supervised ML-based classifiers that linked the automatically extracted features with expert-rating equivalent IDC scores. ML-generated phenotypic data were subsequently utilized for the genome-wide association study and genomic prediction. The results illustrate the reliability and advantage of ML-enabled image-phenotyping pipeline by identifying previously reported locus and a novel locus harboring a gene homolog involved in iron acquisition. This study demonstrates a promising path for integrating the phenotyping pipeline into genomic prediction, and provides a systematic framework enabling robust and quicker phenotyping through ground-based systems. PMID:28272456
Breast MRI radiomics: comparison of computer- and human-extracted imaging phenotypes.
Sutton, Elizabeth J; Huang, Erich P; Drukker, Karen; Burnside, Elizabeth S; Li, Hui; Net, Jose M; Rao, Arvind; Whitman, Gary J; Zuley, Margarita; Ganott, Marie; Bonaccio, Ermelinda; Giger, Maryellen L; Morris, Elizabeth A
2017-01-01
In this study, we sought to investigate if computer-extracted magnetic resonance imaging (MRI) phenotypes of breast cancer could replicate human-extracted size and Breast Imaging-Reporting and Data System (BI-RADS) imaging phenotypes using MRI data from The Cancer Genome Atlas (TCGA) project of the National Cancer Institute. Our retrospective interpretation study involved analysis of Health Insurance Portability and Accountability Act-compliant breast MRI data from The Cancer Imaging Archive, an open-source database from the TCGA project. This study was exempt from institutional review board approval at Memorial Sloan Kettering Cancer Center and the need for informed consent was waived. Ninety-one pre-operative breast MRIs with verified invasive breast cancers were analysed. Three fellowship-trained breast radiologists evaluated the index cancer in each case according to size and the BI-RADS lexicon for shape, margin, and enhancement (human-extracted image phenotypes [HEIP]). Human inter-observer agreement was analysed by the intra-class correlation coefficient (ICC) for size and Krippendorff's α for other measurements. Quantitative MRI radiomics of computerised three-dimensional segmentations of each cancer generated computer-extracted image phenotypes (CEIP). Spearman's rank correlation coefficients were used to compare HEIP and CEIP. Inter-observer agreement for HEIP varied, with the highest agreement seen for size (ICC 0.679) and shape (ICC 0.527). The computer-extracted maximum linear size replicated the human measurement with p < 10 -12 . CEIP of shape, specifically sphericity and irregularity, replicated HEIP with both p values < 0.001. CEIP did not demonstrate agreement with HEIP of tumour margin or internal enhancement. Quantitative radiomics of breast cancer may replicate human-extracted tumour size and BI-RADS imaging phenotypes, thus enabling precision medicine.
Ibrahim, El Chérif; Guillemot, Vincent; Comte, Magali; Tenenhaus, Arthur; Zendjidjian, Xavier Yves; Cancel, Aida; Belzeaux, Raoul; Sauvanaud, Florence; Blin, Olivier; Frouin, Vincent; Fakra, Eric
2017-09-07
Hundreds of genetic loci participate to schizophrenia liability. It is also known that impaired cerebral connectivity is directly related to the cognitive and affective disturbances in schizophrenia. How genetic susceptibility and brain neural networks interact to specify a pathological phenotype in schizophrenia remains elusive. Imaging genetics, highlighting brain variations, has proven effective to establish links between vulnerability loci and associated clinical traits. As previous imaging genetics works in schizophrenia have essentially focused on structural DNA variants, these findings could be blurred by epigenetic mechanisms taking place during gene expression. We explored the meaningful links between genetic data from peripheral blood tissues on one hand, and regional brain reactivity to emotion task assayed by blood oxygen level-dependent functional magnetic resonance imaging on the other hand, in schizophrenia patients and matched healthy volunteers. We applied Sparse Generalized Canonical Correlation Analysis to identify joint signals between two blocks of variables: (i) the transcriptional expression of 33 candidate genes, and (ii) the blood oxygen level-dependent activity in 16 region of interest. Results suggested that peripheral transcriptional expression is related to brain imaging variations through a sequential pathway, ending with the schizophrenia phenotype. Generalization of such an approach to larger data sets should thus help in outlining the pathways involved in psychiatric illnesses such as schizophrenia. SEARCHING FOR LINKS TO AID DIAGNOSIS: Researchers explore links between the expression of genes associated with schizophrenia in blood cells and variations in brain activity during emotion processing. El Chérif Ibrahim and Eric Fakra at Aix-Marseille Université, France, and colleagues have developed a method to relate the expression levels of 33 schizophrenia susceptibility genes in blood cells and functional magnetic resonance imaging (fMRI) data obtained as individuals carry out a task that triggers emotional responses. Although they found no significant differences in the expression of genes between the 26 patients with schizophrenia and 26 healthy controls they examined, variations in activity in the superior temporal gyrus were strongly linked to schizophrenia-associated gene expression and presence of disease. Similar analyses of larger data sets will shed further light on the relationship between peripheral molecular changes and disease-related behaviors and ultimately, aid the diagnosis of neuropsychiatric disease.
NASA Astrophysics Data System (ADS)
Beljebbar, Abdelilah; Sockalingum, Ganesh D.; Morjani, Hamid; Manfait, Michel
1999-04-01
Raman spectroscopy has been sued to differentiate between sensitive and MDR-resistant cells using Raman spectral imaging with a 632.8 nm excitation wavelength. The comparison between two spectral images allowed to quantify the differences between sensitive and resistant cell lines in term of proteins, lipids when MDR phenotype is expressed. SER spectroscopy has become a powerful and non-invasive probe for investigating the molecular and cellular interaction of drugs with their targets. The comparison between these models allow to elucidate the biological effect of the drugs. The development of new types of SERS- active substrates has extended the applicability of this technique to medical diagnosis. Two kinds of SERS active substrates, characterized as 'bio-compatible' systems, can be used for investigation on single living cells: colloid suspensions and microelectrodes and island films. This methodology is used for the study of cell membrane components in interaction with the SERS substrates with the aim to understand the resistance mechanism. The constitution of a data bank will allow the follow-up of cancer and future monitoring of therapeutic intervention.
Puah, Wee Choo; Wasser, Martin
2016-03-01
Time-lapse microscopy in developmental biology is an emerging tool for functional genomics. Phenotypic effects of gene perturbations can be studied non-invasively at multiple time points in chronological order. During metamorphosis of Drosophila melanogaster, time-lapse microscopy using fluorescent reporters allows visualization of alternative fates of larval muscles, which are a model for the study of genes related to muscle wasting. While doomed muscles enter hormone-induced programmed cell death, a smaller population of persistent muscles survives to adulthood and undergoes morphological remodeling that involves atrophy in early, and hypertrophy in late pupation. We developed a method that combines in vivo imaging, targeted gene perturbation and image analysis to identify and characterize genes involved in muscle development. Macrozoom microscopy helps to screen for interesting muscle phenotypes, while confocal microscopy in multiple locations over 4-5 days produces time-lapse images that are used to quantify changes in cell morphology. Performing a similar investigation using fixed pupal tissues would be too time-consuming and therefore impractical. We describe three applications of our pipeline. First, we show how quantitative microscopy can track and measure morphological changes of muscle throughout metamorphosis and analyze genes involved in atrophy. Second, our assay can help to identify genes that either promote or prevent histolysis of abdominal muscles. Third, we apply our approach to test new fluorescent proteins as live markers for muscle development. We describe mKO2 tagged Cysteine proteinase 1 (Cp1) and Troponin-I (TnI) as examples of proteins showing developmental changes in subcellular localization. Finally, we discuss strategies to improve throughput of our pipeline to permit genome-wide screens in the future. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M; Wells, Alan
2016-07-07
Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due to malignant metastases in breast cancer.
Overexpression of c-jun, junB, or junD affects cell growth differently.
Castellazzi, M; Spyrou, G; La Vista, N; Dangy, J P; Piu, F; Yaniv, M; Brun, G
1991-01-01
The coding sequences of murine c-jun, junB, or junD, which code for proteins with practically identical dimerization and DNA binding properties, were introduced into a nondefective retroviral vector, and the phenotype of primary avian fibroblasts chronically infected with each of these viruses was studied. Cells expressing c-jun grew in low-serum medium and developed into colonies in agar, two properties characteristic of in vitro transformation. Cells expressing junB grew in agar, with a reduced efficiency as compared to c-jun, but did not grow in low-serum medium. Finally, no effect of junD expression on cell growth was observed. These different phenotypes suggest that these three closely related transcription factors play distinct roles during normal cell growth. Analysis of c-jun deletion mutants and of c-jun/junB and c-jun/junD chimeric genes showed that the N-terminal portion (amino acids 2-168) of the c-Jun protein that is involved in transcriptional activation is required for efficient transformation. On the contrary, cells expressing a truncated mouse c-Jun lacking this N-terminal domain grew slower than normal embryo fibroblasts. The reduced growth rate may be related to the finding that expression of the intact or the truncated mouse c-jun repressed the endogenous avian c-Jun homologue, suggesting that functional c-Jun product is required for normal cell growth. Images PMID:1924349
Urbanska, Marta; Winzi, Maria; Neumann, Katrin; Abuhattum, Shada; Rosendahl, Philipp; Müller, Paul; Taubenberger, Anna; Anastassiadis, Konstantinos; Guck, Jochen
2017-12-01
Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells. © 2017. Published by The Company of Biologists Ltd.
Simulating magnetic resonance images based on a model of tumor growth incorporating microenvironment
NASA Astrophysics Data System (ADS)
Jackson, Pamela R.; Hawkins-Daarud, Andrea; Partridge, Savannah C.; Kinahan, Paul E.; Swanson, Kristin R.
2018-03-01
Glioblastoma (GBM), the most aggressive primary brain tumor, is primarily diagnosed and monitored using gadoliniumenhanced T1-weighted and T2-weighted (T2W) magnetic resonance imaging (MRI). Hyperintensity on T2W images is understood to correspond with vasogenic edema and infiltrating tumor cells. GBM's inherent heterogeneity and resulting non-specific MRI image features complicate assessing treatment response. To better understand treatment response, we propose creating a patient-specific untreated virtual imaging control (UVIC), which represents an individual tumor's growth if it had not been treated, for comparison with actual post-treatment images. We generated a T2W MRI UVIC by combining a patient-specific mathematical model of tumor growth with a multi-compartmental MRI signal equation. GBM growth was mathematically modeled using the previously developed Proliferation-Invasion-Hypoxia-Necrosis- Angiogenesis-Edema (PIHNA-E) model, which simulated tumor as being comprised of three cellular phenotypes: normoxic, hypoxic and necrotic cells interacting with a vasculature species, angiogenic factors and extracellular fluid. Within the PIHNA-E model, both hypoxic and normoxic cells emitted angiogenic factors, which recruited additional vessels and caused the vessels to leak, allowing fluid, or edema, to escape into the extracellular space. The model's output was spatial volume fraction maps for each glioma cell type and edema/extracellular space. Volume fraction maps and corresponding T2 values were then incorporated into a multi-compartmental Bloch signal equation to create simulated T2W images. T2 values for individual compartments were estimated from the literature and a normal volunteer. T2 maps calculated from simulated images had normal white matter, normal gray matter, and tumor tissue T2 values within range of literature values.
High-speed Fourier ptychographic microscopy based on programmable annular illuminations.
Sun, Jiasong; Zuo, Chao; Zhang, Jialin; Fan, Yao; Chen, Qian
2018-05-16
High-throughput quantitative phase imaging (QPI) is essential to cellular phenotypes characterization as it allows high-content cell analysis and avoids adverse effects of staining reagents on cellular viability and cell signaling. Among different approaches, Fourier ptychographic microscopy (FPM) is probably the most promising technique to realize high-throughput QPI by synthesizing a wide-field, high-resolution complex image from multiple angle-variably illuminated, low-resolution images. However, the large dataset requirement in conventional FPM significantly limits its imaging speed, resulting in low temporal throughput. Moreover, the underlying theoretical mechanism as well as optimum illumination scheme for high-accuracy phase imaging in FPM remains unclear. Herein, we report a high-speed FPM technique based on programmable annular illuminations (AIFPM). The optical-transfer-function (OTF) analysis of FPM reveals that the low-frequency phase information can only be correctly recovered if the LEDs are precisely located at the edge of the objective numerical aperture (NA) in the frequency space. By using only 4 low-resolution images corresponding to 4 tilted illuminations matching a 10×, 0.4 NA objective, we present the high-speed imaging results of in vitro Hela cells mitosis and apoptosis at a frame rate of 25 Hz with a full-pitch resolution of 655 nm at a wavelength of 525 nm (effective NA = 0.8) across a wide field-of-view (FOV) of 1.77 mm 2 , corresponding to a space-bandwidth-time product of 411 megapixels per second. Our work reveals an important capability of FPM towards high-speed high-throughput imaging of in vitro live cells, achieving video-rate QPI performance across a wide range of scales, both spatial and temporal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae; Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com; Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae
In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, andmore » reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.« less
LobeFinder: A Convex Hull-Based Method for Quantitative Boundary Analyses of Lobed Plant Cells1[OPEN
Wu, Tzu-Ching; Belteton, Samuel A.; Szymanski, Daniel B.; Umulis, David M.
2016-01-01
Dicot leaves are composed of a heterogeneous mosaic of jigsaw puzzle piece-shaped pavement cells that vary greatly in size and the complexity of their shape. Given the importance of the epidermis and this particular cell type for leaf expansion, there is a strong need to understand how pavement cells morph from a simple polyhedral shape into highly lobed and interdigitated cells. At present, it is still unclear how and when the patterns of lobing are initiated in pavement cells, and one major technological bottleneck to addressing the problem is the lack of a robust and objective methodology to identify and track lobing events during the transition from simple cell geometry to lobed cells. We developed a convex hull-based algorithm termed LobeFinder to identify lobes, quantify geometric properties, and create a useful graphical output of cell coordinates for further analysis. The algorithm was validated against manually curated images of pavement cells of widely varying sizes and shapes. The ability to objectively count and detect new lobe initiation events provides an improved quantitative framework to analyze mutant phenotypes, detect symmetry-breaking events in time-lapse image data, and quantify the time-dependent correlation between cell shape change and intracellular factors that may play a role in the morphogenesis process. PMID:27288363
Efthymiou, Anastasia; Shaltouki, Atossa; Steiner, Joseph P; Jha, Balendu; Heman-Ackah, Sabrina M; Swistowski, Andrzej; Zeng, Xianmin; Rao, Mahendra S; Malik, Nasir
2014-01-01
Rapid and effective drug discovery for neurodegenerative disease is currently impeded by an inability to source primary neural cells for high-throughput and phenotypic screens. This limitation can be addressed through the use of pluripotent stem cells (PSCs), which can be derived from patient-specific samples and differentiated to neural cells for use in identifying novel compounds for the treatment of neurodegenerative diseases. We have developed an efficient protocol to culture pure populations of neurons, as confirmed by gene expression analysis, in the 96-well format necessary for screens. These differentiated neurons were subjected to viability assays to illustrate their potential in future high-throughput screens. We have also shown that organelles such as nuclei and mitochondria could be live-labeled and visualized through fluorescence, suggesting that we should be able to monitor subcellular phenotypic changes. Neurons derived from a green fluorescent protein-expressing reporter line of PSCs were live-imaged to assess markers of neuronal maturation such as neurite length and co-cultured with astrocytes to demonstrate further maturation. These studies confirm that PSC-derived neurons can be used effectively in viability and functional assays and pave the way for high-throughput screens on neurons derived from patients with neurodegenerative disorders.
Studying Cancer Stem Cell Dynamics on PDMS Surfaces for Microfluidics Device Design
Zhang, Weijia; Choi, Dong Soon; Nguyen, Yen H.; Chang, Jenny; Qin, Lidong
2013-01-01
This systematic study clarified a few interfacial aspects of cancer cell phenotypes on polydimethylsiloxane (PDMS) substrates and indicated that the cell phenotypic equilibrium greatly responds to cell-to-surface interactions. We demonstrated that coatings of fibronectin, bovine serum albumin (BSA), or collagen with or without oxygen-plasma treatments of the PDMS surfaces dramatically impacted the phenotypic equilibrium of breast cancer stem cells, while the variations of the PDMS elastic stiffness had much less such effects. Our results showed that the surface coatings of collagen and fibronectin on PDMS maintained breast cancer cell phenotypes to be nearly identical to the cultures on commercial polystyrene Petri dishes. The surface coating of BSA provided a weak cell-substrate adhesion that stimulated the increase in stem-cell-like subpopulation. Our observations may potentially guide surface modification approaches to obtain specific cell phenotypes. PMID:23900274
Sen, Debasish; Jones, Stephen M; Oswald, Erin M; Pinkard, Henry; Corbin, Kaitlin; Krummel, Matthew F
2016-01-01
Myeloid-derived cells such as monocytes, dendritic cells (DCs), and macrophages are at the heart of the immune effector function in an inflammatory response. But because of the lack of an efficient imaging system to trace these cells live during their migration and maturation in their native environment at sub-cellular resolution, our knowledge is limited to data available from specific time-points analyzed by flow cytometry, histology, genomics and other immunological methods. Here, we have developed a ratiometric imaging method for measuring monocyte maturation in inflamed mouse lungs in situ using real-time using 2-photon imaging and complementary methods. We visualized that while undifferentiated monocytes were predominantly found only in the vasculature, a semi-differentiated monocyte/macrophage population could enter the tissue and resembled more mature and differentiated populations by morphology and surface phenotype. As these cells entered and differentiated, they were already selectively localized near inflamed airways and their entry was associated with changes in motility and morphology. We were able to visualize these during the act of differentiation, a process that can be demonstrated in this way to be faster on a per-cell basis under inflammatory conditions. Finally, our in situ analyses demonstrated increases, in the differentiating cells, for both antigen uptake and the ability to mediate interactions with T cells. This work, while largely confirming proposed models for in situ differentiation, provides important in situ data on the coordinated site-specific recruitment and differentiation of these cells and helps elaborate the predominance of immune pathology at the airways. Our novel imaging technology to trace immunogenic cell maturation in situ will complement existing information available on in situ differentiation deduced from other immunological methods, and assist better understanding of the spatio-temporal cellular behavior during an inflammatory response.
Paulmurugan, Ramasamy; Afjei, Rayhaneh; Sekar, Thillai V.; Babikir, Husam A.; Massoud, Tarik F.
2018-01-01
Misfolding mutations in the DNA-binding domain of p53 alter its conformation, affecting the efficiency with which it binds to chromatin to regulate target gene expression and cell cycle checkpoint functions in many cancers, including glioblastoma. Small molecule drugs that recover misfolded p53 structure and function may improve chemotherapy by activating p53-mediated senescence. We constructed and optimized a split Renilla luciferase (RLUC) complementation molecular biosensor (NRLUC-p53-CRLUC) to determine small molecule-meditated folding changes in p53 protein. After initial evaluation of the biosensor in three different cells lines, we engineered endogenously p53P98L mutant (i.e. not affecting the DNA-binding domain) Ln229 glioblastoma cells, to express the biosensor containing one of four different p53 proteins: p53wt, p53Y220C, p53G245S and p53R282W. We evaluated the consequent phenotypic changes in these four variant cells as well as the parental cells after exposure to PhiKan083 and SCH529074, drugs previously reported to activate mutant p53 folding. Specifically, we measured induced RLUC complementation and consequent therapeutic response. Upon stable transduction with the p53 biosensors, we demonstrated that these originally p53P98L Ln229 cells had acquired p53 cellular phenotypes representative of each p53 protein expressed within the biosensor fusion protein. In these engineered variants we found a differential drug response when treated with doxorubicin and temozolomide, either independently or in combination with PhiKan083 or SCH529074. We thus developed a molecular imaging complementation biosensor that mimics endogenous p53 function for use in future applications to screen novel or repurposed drugs that counter the effects of misfolding mutations responsible for oncogenic structural changes in p53. PMID:29765555
Secondary ion mass spectrometry and Raman spectroscopy for tissue engineering applications
Ilin, Yelena; Kraft, Mary L.
2014-01-01
Identifying the matrix properties that permit directing stem cell fate is critical for expanding desired cell lineages ex vivo for disease treatment. Such efforts require knowledge of matrix surface chemistry and the cell responses they elicit. Recent progress in analyzing biomaterial composition and identifying cell phenotype with two label-free chemical imaging techniques, TOF-SIMS and Raman spectroscopy are presented. TOF-SIMS is becoming indispensable for the surface characterization of biomaterial scaffolds. Developments in TOF-SIMS data analysis enable correlating surface chemistry with biological response. Advances in the interpretation of Raman spectra permit identifying the fate decisions of individual, living cells with location specificity. Here we highlight this progress and discuss further improvements that would facilitate efforts to develop artificial scaffolds for tissue regeneration. PMID:25462628
Silva, Leslie P; Northen, Trent R
2015-08-01
Metabolism is at the heart of many biotechnologies from biofuels to medical diagnostics. Metabolomic methods that provide glimpses into cellular metabolism have rapidly developed into a critical component of the biotechnological development process. Most metabolomics methods have focused on what is happening inside the cell. Equally important are the biochemical transformations of the cell, and their effect on other cells and their environment; the exometabolome. Exometabolomics is therefore gaining popularity as a robust approach for obtaining rich phenotypic data, and being used in bioprocessing and biofuel development. Mass spectrometry imaging approaches, including several nanotechnologies, provide complimentary information by localizing metabolic processes within complex biological matrices. Together, the two technologies can provide new insights into the metabolism and interactions of cells. Published by Elsevier Ltd.
Holistic and component plant phenotyping using temporal image sequence.
Das Choudhury, Sruti; Bashyam, Srinidhi; Qiu, Yumou; Samal, Ashok; Awada, Tala
2018-01-01
Image-based plant phenotyping facilitates the extraction of traits noninvasively by analyzing large number of plants in a relatively short period of time. It has the potential to compute advanced phenotypes by considering the whole plant as a single object (holistic phenotypes) or as individual components, i.e., leaves and the stem (component phenotypes), to investigate the biophysical characteristics of the plants. The emergence timing, total number of leaves present at any point of time and the growth of individual leaves during vegetative stage life cycle of the maize plants are significant phenotypic expressions that best contribute to assess the plant vigor. However, image-based automated solution to this novel problem is yet to be explored. A set of new holistic and component phenotypes are introduced in this paper. To compute the component phenotypes, it is essential to detect the individual leaves and the stem. Thus, the paper introduces a novel method to reliably detect the leaves and the stem of the maize plants by analyzing 2-dimensional visible light image sequences captured from the side using a graph based approach. The total number of leaves are counted and the length of each leaf is measured for all images in the sequence to monitor leaf growth. To evaluate the performance of the proposed algorithm, we introduce University of Nebraska-Lincoln Component Plant Phenotyping Dataset (UNL-CPPD) and provide ground truth to facilitate new algorithm development and uniform comparison. The temporal variation of the component phenotypes regulated by genotypes and environment (i.e., greenhouse) are experimentally demonstrated for the maize plants on UNL-CPPD. Statistical models are applied to analyze the greenhouse environment impact and demonstrate the genetic regulation of the temporal variation of the holistic phenotypes on the public dataset called Panicoid Phenomap-1. The central contribution of the paper is a novel computer vision based algorithm for automated detection of individual leaves and the stem to compute new component phenotypes along with a public release of a benchmark dataset, i.e., UNL-CPPD. Detailed experimental analyses are performed to demonstrate the temporal variation of the holistic and component phenotypes in maize regulated by environment and genetic variation with a discussion on their significance in the context of plant science.
Deep Learning in Label-free Cell Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less
Deep Learning in Label-free Cell Classification
Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; ...
2016-03-15
Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less
Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.
Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J
2016-09-09
The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.
Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
Aerts, Hugo J. W. L.; Velazquez, Emmanuel Rios; Leijenaar, Ralph T. H.; Parmar, Chintan; Grossmann, Patrick; Cavalho, Sara; Bussink, Johan; Monshouwer, René; Haibe-Kains, Benjamin; Rietveld, Derek; Hoebers, Frank; Rietbergen, Michelle M.; Leemans, C. René; Dekker, Andre; Quackenbush, John; Gillies, Robert J.; Lambin, Philippe
2014-01-01
Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. PMID:24892406
Inferring fitness landscapes and selection on phenotypic states from single-cell genealogical data
Kussell, Edo
2017-01-01
Recent advances in single-cell time-lapse microscopy have revealed non-genetic heterogeneity and temporal fluctuations of cellular phenotypes. While different phenotypic traits such as abundance of growth-related proteins in single cells may have differential effects on the reproductive success of cells, rigorous experimental quantification of this process has remained elusive due to the complexity of single cell physiology within the context of a proliferating population. We introduce and apply a practical empirical method to quantify the fitness landscapes of arbitrary phenotypic traits, using genealogical data in the form of population lineage trees which can include phenotypic data of various kinds. Our inference methodology for fitness landscapes determines how reproductivity is correlated to cellular phenotypes, and provides a natural generalization of bulk growth rate measures for single-cell histories. Using this technique, we quantify the strength of selection acting on different cellular phenotypic traits within populations, which allows us to determine whether a change in population growth is caused by individual cells’ response, selection within a population, or by a mixture of these two processes. By applying these methods to single-cell time-lapse data of growing bacterial populations that express a resistance-conferring protein under antibiotic stress, we show how the distributions, fitness landscapes, and selection strength of single-cell phenotypes are affected by the drug. Our work provides a unified and practical framework for quantitative measurements of fitness landscapes and selection strength for any statistical quantities definable on lineages, and thus elucidates the adaptive significance of phenotypic states in time series data. The method is applicable in diverse fields, from single cell biology to stem cell differentiation and viral evolution. PMID:28267748
Padilla-Nash, Hesed M.; Hathcock, Karen; McNeil, Nicole E.; Mack, David; Hoeppner, Daniel; Ravin, Rea; Knutsen, Turid; Yonescu, Raluca; Wangsa, Danny; Dorritie, Kathleen; Barenboim, Linda; Hu, Yue; Ried, Thomas
2011-01-01
Human carcinomas are defined by recurrent chromosomal aneuploidies, which result in tissue-specific distribution of genomic imbalances. In order to develop models for these genome mutations and determine their role in tumorigenesis, we generated 45 spontaneously transformed murine cell lines from normal epithelial cells derived from bladder, cervix, colon, kidney, lung, and mammary gland. Phenotypic changes, chromosomal aberrations, centrosome number, and telomerase activity were assayed in control uncultured cells and in three subsequent stages of transformation. Supernumerary centrosomes, bi-nucleate cells, and tetraploidy were observed as early as 48 hr after explantation. In addition, telomerase activity increased throughout progression. Live-cell imaging revealed that failure of cytokinesis, not cell fusion, promoted genome duplication. Spectral karyotyping demonstrated that aneuploidy preceded immortalization, consisting predominantly of whole chromosome losses (4, 9, 12, 13, 16, and Y) and gains (1, 10, 15, and 19). After transformation, focal amplifications of the oncogenes Myc and Mdm2 were frequently detected. Fifty percent of the transformed lines resulted in tumors upon injection into immuno-compromised mice. The phenotypic and genomic alterations observed in spontaneously transformed murine epithelial cells recapitulated the aberration pattern observed during human carcinogenesis. The dominant aberration of these cell lines was the presence of specific chromosomal aneuploidies. We propose that our newly derived cancer models will be useful tools to dissect the sequential steps of genome mutations during malignant transformation, and also to identify cancer-specific genes, signaling pathways, and the role of chromosomal instability in this process. PMID:22161874
Background: High-content imaging (HCI) allows simultaneous measurement of multiple cellular phenotypic changes and is an important tool for evaluating the biological activity of chemicals.Objectives: Our goal was to analyze dynamic cellular changes using HCI to identify the ??tipping point?? at which the cells did not show recovery towards a normal phenotypic state.Methods: HCI was used to evaluate the effects of 967 chemicals (in concentrations ranging from 0.4 to 200 03bcM) on HepG2 cells over a 72-hr exposure period. The HCI end points included p53, c-Jun, histone H2A.x, 03b1-tubulin, histone H3, alpha tubulin, mitochondrial membrane potential, mitochondrial mass, cell cycle arrest, nuclear size, and cell number. A computational model was developed to interpret HCI responses as cell-state trajectories.Results: Analysis of cell-state trajectories showed that 336 chemicals produced tipping points and that HepG2 cells were resilient to the effects of 334 chemicals up to the highest concentration (200 03bcM) and duration (72 hr) tested. Tipping points were identified as concentration-dependent transitions in system recovery, and the corresponding critical concentrations were generally between 5 and 15 times (25th and 75th percentiles, respectively) lower than the concentration that produced any significant effect on HepG2 cells. The remaining 297 chemicals require more data before they can be placed in either of these categories.Conclusions: These findings show t
Guan, Guobo; Dai, Yu; Nobile, Clarissa J.; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua
2014-01-01
Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the “gray” phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide range of biological aspects in this common commensal and pathogenic fungus. PMID:24691005
Tao, Li; Du, Han; Guan, Guobo; Dai, Yu; Nobile, Clarissa J; Liang, Weihong; Cao, Chengjun; Zhang, Qiuyu; Zhong, Jin; Huang, Guanghua
2014-04-01
Non-genetic phenotypic variations play a critical role in the adaption to environmental changes in microbial organisms. Candida albicans, a major human fungal pathogen, can switch between several morphological phenotypes. This ability is critical for its commensal lifestyle and for its ability to cause infections. Here, we report the discovery of a novel morphological form in C. albicans, referred to as the "gray" phenotype, which forms a tristable phenotypic switching system with the previously reported white and opaque phenotypes. White, gray, and opaque cell types differ in a number of aspects including cellular and colony appearances, mating competency, secreted aspartyl proteinase (Sap) activities, and virulence. Of the three cell types, gray cells exhibit the highest Sap activity and the highest ability to cause cutaneous infections. The three phenotypes form a tristable phenotypic switching system, which is independent of the regulation of the mating type locus (MTL). Gray cells mate over 1,000 times more efficiently than do white cells, but less efficiently than do opaque cells. We further demonstrate that the master regulator of white-opaque switching, Wor1, is essential for opaque cell formation, but is not required for white-gray transitions. The Efg1 regulator is required for maintenance of the white phenotype, but is not required for gray-opaque transitions. Interestingly, the wor1/wor1 efg1/efg1 double mutant is locked in the gray phenotype, suggesting that Wor1 and Efg1 could function coordinately and play a central role in the regulation of gray cell formation. Global transcriptional analysis indicates that white, gray, and opaque cells exhibit distinct gene expression profiles, which partly explain their differences in causing infections, adaptation ability to diverse host niches, metabolic profiles, and stress responses. Therefore, the white-gray-opaque tristable phenotypic switching system in C. albicans may play a significant role in a wide range of biological aspects in this common commensal and pathogenic fungus.
Digital Biomass Accumulation Using High-Throughput Plant Phenotype Data Analysis.
Rahaman, Md Matiur; Ahsan, Md Asif; Gillani, Zeeshan; Chen, Ming
2017-09-01
Biomass is an important phenotypic trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive, and they require numerous individuals to be cultivated for repeated measurements. With the advent of image-based high-throughput plant phenotyping facilities, non-destructive biomass measuring methods have attempted to overcome this problem. Thus, the estimation of plant biomass of individual plants from their digital images is becoming more important. In this paper, we propose an approach to biomass estimation based on image derived phenotypic traits. Several image-based biomass studies state that the estimation of plant biomass is only a linear function of the projected plant area in images. However, we modeled the plant volume as a function of plant area, plant compactness, and plant age to generalize the linear biomass model. The obtained results confirm the proposed model and can explain most of the observed variance during image-derived biomass estimation. Moreover, a small difference was observed between actual and estimated digital biomass, which indicates that our proposed approach can be used to estimate digital biomass accurately.
Johnson, Gregory R.; Kangas, Joshua D.; Dovzhenko, Alexander; Trojok, Rüdiger; Voigt, Karsten; Majarian, Timothy D.; Palme, Klaus; Murphy, Robert F.
2017-01-01
Quantitative image analysis procedures are necessary for the automated discovery of effects of drug treatment in large collections of fluorescent micrographs. When compared to their mammalian counterparts, the effects of drug conditions on protein localization in plant species are poorly understood and underexplored. To investigate this relationship, we generated a large collection of images of single plant cells after various drug treatments. For this, protoplasts were isolated from six transgenic lines of A. thaliana expressing fluorescently tagged proteins. Nine drugs at three concentrations were applied to protoplast cultures followed by automated image acquisition. For image analysis, we developed a cell segmentation protocol for detecting drug effects using a Hough-transform based region of interest detector and a novel cross-channel texture feature descriptor. In order to determine treatment effects, we summarized differences between treated and untreated experiments with an L1 Cramér-von Mises statistic. The distribution of these statistics across all pairs of treated and untreated replicates was compared to the variation within control replicates to determine the statistical significance of observed effects. Using this pipeline, we report the dose dependent drug effects in the first high-content Arabidopsis thaliana drug screen of its kind. These results can function as a baseline for comparison to other protein organization modeling approaches in plant cells. PMID:28245335
Blanchet, Lionel; Smeitink, Jan A M; van Emst-de Vries, Sjenet E; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I; Rodenburg, Richard J T; Buydens, Lutgarde M C; Beyrath, Julien; Willems, Peter H G M; Koopman, Werner J H
2015-01-26
In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.
Morgan, J A; Winstanley, C; Pickup, R W; Jones, J G; Saunders, J R
1989-01-01
As a system for studying the fate of genetically engineered microorganisms in the environment, we have previously constructed recombinant plasmids encoding a xylE marker gene (C. Winstanley, J. A. W. Morgan, R. W. Pickup, J. G. Jones, and J. R. Saunders, Appl. Environ. Microbiol. 55:771-777, 1989). A series of direct membrane filter methods have been developed which facilitate the detection of bacterial cells harboring the xylE gene, its product, catechol 2,3-dioxygenase, and catechol 2,3-dioxygenase enzyme activity directly from water samples. These methods enable detection of recombinant populations at concentrations as low as 10(3) to 10(4) cells ml of lake water-1. Direct detection facilitates ecological studies of a range of bacterial strains containing the marker system in aquatic environments. The fate of a recombinant pseudomonad population in lake water was assessed by a combination of colony-forming ability, direct counts, and direct detection of the xylE gene and phenotypic expression of its product. Images PMID:2604395
NASA Astrophysics Data System (ADS)
Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.
2015-01-01
In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.
Singh, Mandeep S; Broadgate, Suzanne; Mathur, Ranjana; Holt, Richard; Halford, Stephanie; MacLaren, Robert E
2016-05-09
Hypotrichosis with juvenile macular dystrophy (HJMD) is an autosomal recessive disorder that causes childhood visual impairment. HJMD is caused by mutations in CDH3 which encodes cadherin-3, a protein expressed in retinal pigment epithelium (RPE) cells that may have a key role in intercellular adhesion. We present a case of HJMD and analyse its phenotypic and molecular characteristics to assess the potential for retinal gene therapy as a means of preventing severe visual loss in this condition. Longitudinal in vivo imaging of the retina showed the relative anatomical preservation of the macula, which suggested the presence of a therapeutic window for gene augmentation therapy to preserve visual acuity. The coding sequence of CDH3 fits within the packaging limit of recombinant adeno-associated virus vectors that have been shown to be safe in clinical trials and can efficiently target RPE cells. This report expands the number of reported cases of HJMD and highlights the phenotypic characteristics to consider when selecting candidates for retinal gene therapy.
Kota, Krishna P; Benko, Jacqueline G; Mudhasani, Rajini; Retterer, Cary; Tran, Julie P; Bavari, Sina; Panchal, Rekha G
2012-09-25
Viruses modulate a number of host biological responses including the cell cycle to favor their replication. In this study, we developed a high-content imaging (HCI) assay to measure DNA content and identify different phases of the cell cycle. We then investigated the potential effects of cell cycle arrest on Ebola virus (EBOV) infection. Cells arrested in G1 phase by serum starvation or G1/S phase using aphidicolin or G2/M phase using nocodazole showed much reduced EBOV infection compared to the untreated control. Release of cells from serum starvation or aphidicolin block resulted in a time-dependent increase in the percentage of EBOV infected cells. The effect of EBOV infection on cell cycle progression was found to be cell-type dependent. Infection of asynchronous MCF-10A cells with EBOV resulted in a reduced number of cells in G2/M phase with concomitant increase of cells in G1 phase. However, these effects were not observed in HeLa or A549 cells. Together, our studies suggest that EBOV requires actively proliferating cells for efficient replication. Furthermore, multiplexing of HCI based assays to detect viral infection, cell cycle status and other phenotypic changes in a single cell population will provide useful information during screening campaigns using siRNA and small molecule therapeutics.
Attardo, Alessio; Calegari, Federico; Haubensak, Wulf; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.
2008-01-01
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors. PMID:18545663
Image Harvest: an open-source platform for high-throughput plant image processing and analysis.
Knecht, Avi C; Campbell, Malachy T; Caprez, Adam; Swanson, David R; Walia, Harkamal
2016-05-01
High-throughput plant phenotyping is an effective approach to bridge the genotype-to-phenotype gap in crops. Phenomics experiments typically result in large-scale image datasets, which are not amenable for processing on desktop computers, thus creating a bottleneck in the image-analysis pipeline. Here, we present an open-source, flexible image-analysis framework, called Image Harvest (IH), for processing images originating from high-throughput plant phenotyping platforms. Image Harvest is developed to perform parallel processing on computing grids and provides an integrated feature for metadata extraction from large-scale file organization. Moreover, the integration of IH with the Open Science Grid provides academic researchers with the computational resources required for processing large image datasets at no cost. Image Harvest also offers functionalities to extract digital traits from images to interpret plant architecture-related characteristics. To demonstrate the applications of these digital traits, a rice (Oryza sativa) diversity panel was phenotyped and genome-wide association mapping was performed using digital traits that are used to describe different plant ideotypes. Three major quantitative trait loci were identified on rice chromosomes 4 and 6, which co-localize with quantitative trait loci known to regulate agronomically important traits in rice. Image Harvest is an open-source software for high-throughput image processing that requires a minimal learning curve for plant biologists to analyzephenomics datasets. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas
2017-09-01
AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...CA130273 - Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM...hypothesis, we originally proposed to transform neural stem cells (NSCs) and neural progenitor cells (NPCs) in vivo by expressing an activated form
CellAnimation: an open source MATLAB framework for microscopy assays.
Georgescu, Walter; Wikswo, John P; Quaranta, Vito
2012-01-01
Advances in microscopy technology have led to the creation of high-throughput microscopes that are capable of generating several hundred gigabytes of images in a few days. Analyzing such wealth of data manually is nearly impossible and requires an automated approach. There are at present a number of open-source and commercial software packages that allow the user to apply algorithms of different degrees of sophistication to the images and extract desired metrics. However, the types of metrics that can be extracted are severely limited by the specific image processing algorithms that the application implements, and by the expertise of the user. In most commercial software, code unavailability prevents implementation by the end user of newly developed algorithms better suited for a particular type of imaging assay. While it is possible to implement new algorithms in open-source software, rewiring an image processing application requires a high degree of expertise. To obviate these limitations, we have developed an open-source high-throughput application that allows implementation of different biological assays such as cell tracking or ancestry recording, through the use of small, relatively simple image processing modules connected into sophisticated imaging pipelines. By connecting modules, non-expert users can apply the particular combination of well-established and novel algorithms developed by us and others that are best suited for each individual assay type. In addition, our data exploration and visualization modules make it easy to discover or select specific cell phenotypes from a heterogeneous population. CellAnimation is distributed under the Creative Commons Attribution-NonCommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/). CellAnimationsource code and documentation may be downloaded from www.vanderbilt.edu/viibre/software/documents/CellAnimation.zip. Sample data are available at www.vanderbilt.edu/viibre/software/documents/movies.zip. walter.georgescu@vanderbilt.edu Supplementary data available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp; Naganuma, Kaori; Kato, Kenichi
In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histonemore » H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.« less
Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L
2018-02-01
The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 81:141-152, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Visual Exploration of Genetic Association with Voxel-based Imaging Phenotypes in an MCI/AD Study
Kim, Sungeun; Shen, Li; Saykin, Andrew J.; West, John D.
2010-01-01
Neuroimaging genomics is a new transdisciplinary research field, which aims to examine genetic effects on brain via integrated analyses of high throughput neuroimaging and genomic data. We report our recent work on (1) developing an imaging genomic browsing system that allows for whole genome and entire brain analyses based on visual exploration and (2) applying the system to the imaging genomic analysis of an existing MCI/AD cohort. Voxel-based morphometry is used to define imaging phenotypes. ANCOVA is employed to evaluate the effect of the interaction of genotypes and diagnosis in relation to imaging phenotypes while controlling for relevant covariates. Encouraging experimental results suggest that the proposed system has substantial potential for enabling discovery of imaging genomic associations through visual evaluation and for localizing candidate imaging regions and genomic regions for refined statistical modeling. PMID:19963597
Abdelhalim, Ahmed N; Alberico, Ronald A; Barczykowski, Amy L; Duffner, Patricia K
2014-02-01
Initial magnetic resonance imaging studies of individuals with Krabbe disease were analyzed to determine whether the pattern of abnormalities corresponded to the phenotype. This was a retrospective, nonblinded study. Families/patients diagnosed with Krabbe disease submitted medical records and magnetic resonance imaging discs for central review. Institutional review board approval/informed consents were obtained. Sixty-four magnetic resonance imaging scans were reviewed by two neuroradiologists and a child neurologist according to phenotype: early infantile (onset 0-6 months) = 39 patients; late infantile (onset 7-12 months) = 10 patients; later onset (onset 13 months-10 years) = 11 patients; adolescent (onset 11-20 years) = one patient; and adult (21 years or greater) = three patients. Local interpretations were compared with central review. Magnetic resonance imaging abnormalities differed among phenotypes. Early infantile patients had a predominance of increased intensity in the dentate/cerebellar white matter as well as changes in the deep cerebral white matter. Later onset patients did not demonstrate involvement in the dentate/cerebellar white matter but had extensive involvement of the deep cerebral white matter, parieto-occipital region, and posterior corpus callosum. Late infantile patients exhibited a mixed pattern; 40% had dentate/cerebellar white matter involvement while all had involvement of the deep cerebral white matter. Adolescent/adult patients demonstrated isolated corticospinal tract involvement. Local and central reviews primarily differed in interpretation of the early infantile phenotype. Analysis of magnetic resonance imaging in a large cohort of symptomatic patients with Krabbe disease demonstrated imaging abnormalities correspond to specific phenotypes. Knowledge of these patterns along with typical clinical signs/symptoms should promote earlier diagnosis and facilitate treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Defining the clinical course of multiple sclerosis
Reingold, Stephen C.; Cohen, Jeffrey A.; Cutter, Gary R.; Sørensen, Per Soelberg; Thompson, Alan J.; Wolinsky, Jerry S.; Balcer, Laura J.; Banwell, Brenda; Barkhof, Frederik; Bebo, Bruce; Calabresi, Peter A.; Clanet, Michel; Comi, Giancarlo; Fox, Robert J.; Freedman, Mark S.; Goodman, Andrew D.; Inglese, Matilde; Kappos, Ludwig; Kieseier, Bernd C.; Lincoln, John A.; Lubetzki, Catherine; Miller, Aaron E.; Montalban, Xavier; O'Connor, Paul W.; Petkau, John; Pozzilli, Carlo; Rudick, Richard A.; Sormani, Maria Pia; Stüve, Olaf; Waubant, Emmanuelle; Polman, Chris H.
2014-01-01
Accurate clinical course descriptions (phenotypes) of multiple sclerosis (MS) are important for communication, prognostication, design and recruitment of clinical trials, and treatment decision-making. Standardized descriptions published in 1996 based on a survey of international MS experts provided purely clinical phenotypes based on data and consensus at that time, but imaging and biological correlates were lacking. Increased understanding of MS and its pathology, coupled with general concern that the original descriptors may not adequately reflect more recently identified clinical aspects of the disease, prompted a re-examination of MS disease phenotypes by the International Advisory Committee on Clinical Trials of MS. While imaging and biological markers that might provide objective criteria for separating clinical phenotypes are lacking, we propose refined descriptors that include consideration of disease activity (based on clinical relapse rate and imaging findings) and disease progression. Strategies for future research to better define phenotypes are also outlined. PMID:24871874
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory
Kulkarni, Prakash; Levine, Herbert
2017-01-01
Waddington’s epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of “landscape” in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an “attractor” that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of “cancer attractors”—hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes “recanalization”, i.e., the exit from “cancer attractors” and re-entry into “normal attractors”, is more likely to succeed rather than a conventional approach that targets individual molecules/pathways. PMID:28640191
Haack, Timm; Schneider, Matthias; Schwendele, Bernd; Renault, Andrew D
2014-12-15
The Drosophila heart is a linear organ formed by the movement of bilaterally specified progenitor cells to the midline and adherence of contralateral heart cells. This movement occurs through the attachment of heart cells to the overlying ectoderm which is undergoing dorsal closure. Therefore heart cells are thought to move to the midline passively. Through live imaging experiments and analysis of mutants that affect the speed of dorsal closure we show that heart cells in Drosophila are autonomously migratory and part of their movement to the midline is independent of the ectoderm. This means that heart formation in flies is more similar to that in vertebrates than previously thought. We also show that defects in dorsal closure can result in failure of the amnioserosa to properly degenerate, which can physically hinder joining of contralateral heart cells leading to a broken heart phenotype. Copyright © 2014 Elsevier Inc. All rights reserved.
Collective Motion in Bacterial Populations with Mixed Phenotypic Behaviors
NASA Astrophysics Data System (ADS)
Hoeger, Kentaro; Strickland, Ben; Shoup, Daniel; Ursell, Tristan
The motion of large, densely packed groups of organisms is often qualitatively distinct from the motion of individuals, yet hinges on individual properties and behaviors. Collective motion of bacteria depends strongly on the phenotypic behaviors of individual cells, the physical interactions between cells, and the geometry of their environment, often with multiple phenotypes coexisting in a population. Thus, to characterize how these selectively important interactions affect group traits, such as cell dispersal, spatial segregation of phenotypes, and material transport in groups, we use a library of Bacillus subtilis mutants that modulate chemotaxis, motility, and biofilm formation. By mixing phenotypes and observing bacterial behaviors and motion at single cell resolution, we probe collective motion as a function of phenotypic mixture and environmental geometry. Our work demonstrates that collective microbial motion exhibits a transition, from `turbulence' to semiballistic burrowing, as phenotypic composition varies. This work illuminates the role that individual cell behaviors play in the emergence of collective motion, and may signal qualitatively distinct regimes of material transport in bacterial populations. University of Oregon.
Serial sectioning for examination of photoreceptor cell architecture by focused ion beam technology
Mustafi, Debarshi; Avishai, Amir; Avishai, Nanthawan; Engel, Andreas; Heuer, Arthur; Palczewski, Krzysztof
2011-01-01
Structurally deciphering complex neural networks requires technology with sufficient resolution to allow visualization of single cells and their intimate surrounding connections. Scanning electron microscopy (SEM), coupled with serial ion ablation (SIA) technology, presents a new avenue to study these networks. SIA allows ion ablation to remove nanometer sections of tissue for SEM imaging, resulting in serial section data collection for three-dimensional reconstruction. Here we highlight a method for preparing retinal tissues for imaging of photoreceptors by SIA-SEM technology. We show that this technique can be used to visualize whole rod photoreceptors and the internal disc elements from wild-type (wt) mice. The distance parameters of the discs and photoreceptors are in good agreement with previous work with other methods. Moreover, we show that large planes of retinal tissue can be imaged at high resolution to display the packing of normal rods. Finally, SIA-SEM imaging of retinal tissue from a mouse model (Nrl−/−) with phenotypic changes akin to the human disease enhanced S-cone syndrome (ESCS) revealed a structural profile of overall photoreceptor ultrastructure and internal elements that accompany this disease. Overall, this work presents a new method to study photoreceptor cells at high structural resolution that has a broad applicability to the visual neuroscience field. PMID:21439323
Jarzabek, Monika A; Huszthy, Peter C; Skaftnesmo, Kai O; McCormack, Emmet; Dicker, Patrick; Prehn, Jochen H M; Bjerkvig, Rolf; Byrne, Annette T
2013-05-01
Glioblastoma multiforme (GBM), the most aggressive brain malignancy, is characterized by extensive cellular proliferation, angiogenesis, and single-cell infiltration into the brain. We have previously shown that a xenograft model based on serial xenotransplantation of human biopsy spheroids in immunodeficient rodents maintains the genotype and phenotype of the original patient tumor. The present work further extends this model for optical assessment of tumor engraftment and growth using bioluminescence imaging (BLI). A method for successful lentiviral transduction of the firefly luciferase gene into multicellular spheroids was developed and implemented to generate optically active patient tumor cells. Luciferase-expressing spheroids were injected into the brains of immunodeficient mice. BLI photon counts and tumor volumes from magnetic resonance imaging (MRI) were correlated. Luciferase-expressing tumors recapitulated the histopathologic hallmarks of human GBMs and showed proliferation rates and microvessel density counts similar to those of wild-type xenografts. Moreover, we detected widespread invasion of luciferase-positive tumor cells in the mouse brains. Herein we describe a novel optically active model of GBM that closely mimics human pathology with respect to invasion, angiogenesis, and proliferation indices. The model may thus be routinely used for the assessment of novel anti-GBM therapeutic approaches implementing well-established and cost-effective optical imaging strategies.
New advances in probing cell–extracellular matrix interactions
2017-01-01
The extracellular matrix (ECM) provides structural and biochemical support to cells within tissues. An emerging body of evidence has established that the ECM plays a key role in cell mechanotransduction – the study of coupling between mechanical inputs and cellular phenotype – through either mediating transmission of forces to the cells, or presenting mechanical cues that guide cellular behaviors. Recent progress in cell mechanotransduction research has been facilitated by advances of experimental tools, particularly microtechnologies, engineered biomaterials, and imaging and analytical methods. Microtechnologies have enabled the design and fabrication of controlled physical microenvironments for the study and measurement of cell–ECM interactions. Advances in engineered biomaterials have allowed researchers to develop synthetic ECMs that mimic tissue microenvironments and investigate the impact of altered physicochemical properties on various cellular processes. Finally, advanced imaging and spectroscopy techniques have facilitated the visualization of the complex interaction between cells and ECM in vitro and in living tissues. This review will highlight the application of recent innovations in these areas to probing cell–ECM interactions. We believe cross-disciplinary approaches, combining aspects of the different technologies reviewed here, will inspire innovative ideas to further elucidate the secrets of ECM-mediated cell control. PMID:28352896
The Image Data Resource: A Bioimage Data Integration and Publication Platform.
Williams, Eleanor; Moore, Josh; Li, Simon W; Rustici, Gabriella; Tarkowska, Aleksandra; Chessel, Anatole; Leo, Simone; Antal, Bálint; Ferguson, Richard K; Sarkans, Ugis; Brazma, Alvis; Salas, Rafael E Carazo; Swedlow, Jason R
2017-08-01
Access to primary research data is vital for the advancement of science. To extend the data types supported by community repositories, we built a prototype Image Data Resource (IDR) that collects and integrates imaging data acquired across many different imaging modalities. IDR links data from several imaging modalities, including high-content screening, super-resolution and time-lapse microscopy, digital pathology, public genetic or chemical databases, and cell and tissue phenotypes expressed using controlled ontologies. Using this integration, IDR facilitates the analysis of gene networks and reveals functional interactions that are inaccessible to individual studies. To enable re-analysis, we also established a computational resource based on Jupyter notebooks that allows remote access to the entire IDR. IDR is also an open source platform that others can use to publish their own image data. Thus IDR provides both a novel on-line resource and a software infrastructure that promotes and extends publication and re-analysis of scientific image data.
Cytokeratin characterization of human prostatic carcinoma and its derived cell lines.
Nagle, R B; Ahmann, F R; McDaniel, K M; Paquin, M L; Clark, V A; Celniker, A
1987-01-01
Two murine monoclonal anti-cytokeratin antibodies with defined specificity were shown to distinguish between basal cells and luminal cells in human prostate tissue. Forty-one biopsies or transurethral resection specimens were characterized using these two antibodies. In cases of benign prostatic hyperplasia, focal loss of the basal cell layer was noted in areas of glandular proliferation. Ten cases of adenocarcinoma of the prostate, varying in Gleason's histological grade from 2 to 4, were also studied. In each case the carcinoma was shown to represent the luminal cell phenotype with no evidence of involvement of the basal cell phenotype. An analysis of three established metastatic prostatic carcinoma cell lines (DU-145, PC-3, and LNCaP) using two-dimensional electrophoresis showed that the cytokeratin complement of each cell line was slightly different but retained the phenotype of the luminal cell. It was concluded that during both hyperplasia and neoplastic transformation of the prostate, the luminal cell phenotype is primarily involved and that the basal cell phenotype does not appear to contribute to either intraluminal proliferation or invasive cell populations.
Flanagan, Eoin P; Hinson, Shannon R; Lennon, Vanda A; Fang, Boyan; Aksamit, Allen J; Morris, P Pearse; Basal, Eati; Honorat, Josephe A; Alfugham, Nora B; Linnoila, Jenny J; Weinshenker, Brian G; Pittock, Sean J; McKeon, Andrew
2017-02-01
A novel autoimmune central nervous system (CNS) disorder with glial fibrillary acidic protein (GFAP)-IgG as biomarker was recently characterized. Here, 102 patients with GFAP-IgG positivity are described. The 102 included patients had: (1) serum, cerebrospinal fluid (CSF), or both that yielded a characteristic astrocytic pattern of mouse tissue immunostaining; (2) confirmation of IgG reactive with specific GFAP isoforms (α, ɛ, or κ) by cell-based assays; and (3) clinical data available. Control specimens (n = 865) were evaluated by tissue (n = 542) and cell-based (n = 323) assays. Median symptom onset age was 44 years (range = 8-103), and 54% were women. The predominant phenotype (83 patients; 81%) was inflammation of meninges, brain, spinal cord, or all 3 (meningoencephalomyelitis). Among patients, highest specificity for those phenotypes was observed for CSF testing (94%), and highest sensitivity was for the GFAPα isoform (100%). Rare GFAP-IgG positivity was encountered in serum controls by tissue-based assay (0.5%) or cell-based assay (1.5%), and in CSF controls by cell-based assay (0.9%). Among patients, striking perivascular radial enhancement was found on brain magnetic resonance imaging in 53%. Although cases frequently mimicked vasculitis, angiography was uniformly negative, and spinal imaging frequently demonstrated longitudinally extensive myelitic lesions. Diverse neoplasms encountered were found prospectively in 22%. Ovarian teratoma was most common and was predicted best when both N-methyl-D-aspartate receptor-IgG and aquaporin-4-IgG coexisted (71%). Six patients with prolonged follow-up had brisk corticosteroid response, but required additional immunosuppression to overcome steroid dependency. GFAPα-IgG, when detected in CSF, is highly specific for an immunotherapy-responsive autoimmune CNS disorder, sometimes with paraneoplastic cause. Ann Neurol 2017;81:298-309. © 2017 American Neurological Association.
Common genetic variation drives molecular heterogeneity in human iPSCs.
Kilpinen, Helena; Goncalves, Angela; Leha, Andreas; Afzal, Vackar; Alasoo, Kaur; Ashford, Sofie; Bala, Sendu; Bensaddek, Dalila; Casale, Francesco Paolo; Culley, Oliver J; Danecek, Petr; Faulconbridge, Adam; Harrison, Peter W; Kathuria, Annie; McCarthy, Davis; McCarthy, Shane A; Meleckyte, Ruta; Memari, Yasin; Moens, Nathalie; Soares, Filipa; Mann, Alice; Streeter, Ian; Agu, Chukwuma A; Alderton, Alex; Nelson, Rachel; Harper, Sarah; Patel, Minal; White, Alistair; Patel, Sharad R; Clarke, Laura; Halai, Reena; Kirton, Christopher M; Kolb-Kokocinski, Anja; Beales, Philip; Birney, Ewan; Danovi, Davide; Lamond, Angus I; Ouwehand, Willem H; Vallier, Ludovic; Watt, Fiona M; Durbin, Richard; Stegle, Oliver; Gaffney, Daniel J
2017-06-15
Technology utilizing human induced pluripotent stem cells (iPS cells) has enormous potential to provide improved cellular models of human disease. However, variable genetic and phenotypic characterization of many existing iPS cell lines limits their potential use for research and therapy. Here we describe the systematic generation, genotyping and phenotyping of 711 iPS cell lines derived from 301 healthy individuals by the Human Induced Pluripotent Stem Cells Initiative. Our study outlines the major sources of genetic and phenotypic variation in iPS cells and establishes their suitability as models of complex human traits and cancer. Through genome-wide profiling we find that 5-46% of the variation in different iPS cell phenotypes, including differentiation capacity and cellular morphology, arises from differences between individuals. Additionally, we assess the phenotypic consequences of genomic copy-number alterations that are repeatedly observed in iPS cells. In addition, we present a comprehensive map of common regulatory variants affecting the transcriptome of human pluripotent cells.
A Barcoding Strategy Enabling Higher-Throughput Library Screening by Microscopy.
Chen, Robert; Rishi, Harneet S; Potapov, Vladimir; Yamada, Masaki R; Yeh, Vincent J; Chow, Thomas; Cheung, Celia L; Jones, Austin T; Johnson, Terry D; Keating, Amy E; DeLoache, William C; Dueber, John E
2015-11-20
Dramatic progress has been made in the design and build phases of the design-build-test cycle for engineering cells. However, the test phase usually limits throughput, as many outputs of interest are not amenable to rapid analytical measurements. For example, phenotypes such as motility, morphology, and subcellular localization can be readily measured by microscopy, but analysis of these phenotypes is notoriously slow. To increase throughput, we developed microscopy-readable barcodes (MiCodes) composed of fluorescent proteins targeted to discernible organelles. In this system, a unique barcode can be genetically linked to each library member, making possible the parallel analysis of phenotypes of interest via microscopy. As a first demonstration, we MiCoded a set of synthetic coiled-coil leucine zipper proteins to allow an 8 × 8 matrix to be tested for specific interactions in micrographs consisting of mixed populations of cells. A novel microscopy-readable two-hybrid fluorescence localization assay for probing candidate interactions in the cytosol was also developed using a bait protein targeted to the peroxisome and a prey protein tagged with a fluorescent protein. This work introduces a generalizable, scalable platform for making microscopy amenable to higher-throughput library screening experiments, thereby coupling the power of imaging with the utility of combinatorial search paradigms.
Polonsky, Michal; Chain, Benjamin; Friedman, Nir
2016-03-01
Clonal expansion of lymphocytes is a hallmark of vertebrate adaptive immunity. A small number of precursor cells that recognize a specific antigen proliferate into expanded clones, differentiate and acquire various effector and memory phenotypes, which promote effective immune responses. Recent studies establish a large degree of heterogeneity in the level of expansion and in cell state between and within expanding clones. Studying these processes in vivo, while providing insightful information on the level of heterogeneity, is challenging due to the complex microenvironment and the inability to continuously track individual cells over extended periods of time. Live cell imaging of ex vivo cultures within micro fabricated arrays provides an attractive methodology for studying clonal expansion. These experiments facilitate continuous acquisition of a large number of parameters on cell number, proliferation, death and differentiation state, with single-cell resolution on thousands of expanding clones that grow within controlled environments. Such data can reveal stochastic and instructive mechanisms that contribute to observed heterogeneity and elucidate the sequential order of differentiation events. Intercellular interactions can also be studied within these arrays by following responses of a controlled number of interacting cells, all trapped within the same microwell. Here we describe implementations of live-cell imaging within microwell arrays for studies of lymphocyte clonal expansion, portray insights already gained from these experiments and outline directions for future research. These tools, together with in vivo experiments tracking single-cell responses, will expand our understanding of adaptive immunity and the ways by which it can be manipulated.
Parandakh, Azim; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi
2017-06-01
This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.
Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich
2016-09-01
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
Integration of Network Biology and Imaging to Study Cancer Phenotypes and Responses.
Tian, Ye; Wang, Sean S; Zhang, Zhen; Rodriguez, Olga C; Petricoin, Emanuel; Shih, Ie-Ming; Chan, Daniel; Avantaggiati, Maria; Yu, Guoqiang; Ye, Shaozhen; Clarke, Robert; Wang, Chao; Zhang, Bai; Wang, Yue; Albanese, Chris
2014-01-01
Ever growing "omics" data and continuously accumulated biological knowledge provide an unprecedented opportunity to identify molecular biomarkers and their interactions that are responsible for cancer phenotypes that can be accurately defined by clinical measurements such as in vivo imaging. Since signaling or regulatory networks are dynamic and context-specific, systematic efforts to characterize such structural alterations must effectively distinguish significant network rewiring from random background fluctuations. Here we introduced a novel integration of network biology and imaging to study cancer phenotypes and responses to treatments at the molecular systems level. Specifically, Differential Dependence Network (DDN) analysis was used to detect statistically significant topological rewiring in molecular networks between two phenotypic conditions, and in vivo Magnetic Resonance Imaging (MRI) was used to more accurately define phenotypic sample groups for such differential analysis. We applied DDN to analyze two distinct phenotypic groups of breast cancer and study how genomic instability affects the molecular network topologies in high-grade ovarian cancer. Further, FDA-approved arsenic trioxide (ATO) and the ND2-SmoA1 mouse model of Medulloblastoma (MB) were used to extend our analyses of combined MRI and Reverse Phase Protein Microarray (RPMA) data to assess tumor responses to ATO and to uncover the complexity of therapeutic molecular biology.
Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells.
Nami, Babak; Ghasemi-Dizgah, Armin; Vaseghi, Akbar
2016-01-01
Breast cancer stem cell with CD44(hi)/CD24(lo) phonotype is described having stem cell properties and represented as the main driving factor in breast cancer initiation, growth, metastasis and low response to anti-cancer agents. Glucoseregulated proteins (GRPs) are heat shock protein family chaperons that are charged with regulation of protein machinery and modulation of endoplasmic reticulum homeostasis whose important roles in stem cell development and invasion of various cancers have been demonstrated. Here, we investigated the expression levels of GRP78 and GRP94 in CD44(hi)/CD24(lo) phenotype breast cancer stem cells (BCSCs). MCF7, T-47D and MDA-MB-231 breast cancer cell lines were used. CD44(hi)/CD24(lo) phenotype cell population were analyzed and sorted by fluorescence-activated cell sorting (FACS). Transcriptional and translational expression of GRP78 and GRP94 were investigated by western blotting and quantitative real time PCR. RESULTS showed different proportion of CD44(hi)/CD24(lo) phenotype cell population in their original bulk cells. The ranking of the cell lines in terms of CD44(hi)/CD24(lo) phenotype cell population was as MCF7
Hao, Xiaoke; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L.; Saykin, Andrew J.; Zhang, Daoqiang; Shen, Li
2016-01-01
Neuroimaging genetics has attracted growing attention and interest, which is thought to be a powerful strategy to examine the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on structures or functions of human brain. In recent studies, univariate or multivariate regression analysis methods are typically used to capture the effective associations between genetic variants and quantitative traits (QTs) such as brain imaging phenotypes. The identified imaging QTs, although associated with certain genetic markers, may not be all disease specific. A useful, but underexplored, scenario could be to discover only those QTs associated with both genetic markers and disease status for revealing the chain from genotype to phenotype to symptom. In addition, multimodal brain imaging phenotypes are extracted from different perspectives and imaging markers consistently showing up in multimodalities may provide more insights for mechanistic understanding of diseases (i.e., Alzheimer’s disease (AD)). In this work, we propose a general framework to exploit multi-modal brain imaging phenotypes as intermediate traits that bridge genetic risk factors and multi-class disease status. We applied our proposed method to explore the relation between the well-known AD risk SNP APOE rs429358 and three baseline brain imaging modalities (i.e., structural magnetic resonance imaging (MRI), fluorodeoxyglucose positron emission tomography (FDG-PET) and F-18 florbetapir PET scans amyloid imaging (AV45)) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The empirical results demonstrate that our proposed method not only helps improve the performances of imaging genetic associations, but also discovers robust and consistent regions of interests (ROIs) across multi-modalities to guide the disease-induced interpretation. PMID:27277494
Multiparametric Analysis of the Tumor Microenvironment: Hypoxia Markers and Beyond.
Mayer, Arnulf; Vaupel, Peter
2017-01-01
We have established a novel in situ protein analysis pipeline, which is built upon highly sensitive, multichannel immunofluorescent staining of paraffin sections of human and xenografted tumor tissue. Specimens are digitized using slide scanners equipped with suitable light sources and fluorescence filter combinations. Resulting digital images are subsequently subjected to quantitative image analysis using a primarily object-based approach, which comprises segmentation of single cells or higher-order structures (e.g., blood vessels), cell shape approximation, measurement of signal intensities in individual fluorescent channels and correlation of these data with positional information for each object. Our approach could be particularly useful for the study of the hypoxic tumor microenvironment as it can be utilized to systematically explore the influence of spatial factors on cell phenotypes, e.g., the distance of a given cell type from the nearest blood vessel on the cellular expression of hypoxia-associated biomarkers and other proteins reflecting their specific state of activation or function. In this report, we outline the basic methodology and provide an outlook on possible use cases.
2010-01-01
Background Abnormalities of cell cycle regulators are common features in human cancers, and several of these factors are associated with the early development of gastric cancers. However, recent studies have shown that gastric cancer tumorigenesis was characterized by mucin expression. Thus, expression patterns of cell cycle-related proteins were investigated in the early phase of differentiated-type gastric cancers to ascertain any mechanistic relationships with mucin phenotypes. Methods Immunostaining for Cyclins D1, A, E, and p21, p27, p53 and β-catenin was used to examine impairments of the cell cycle in 190 gastric intramucosal differentiated-type cancers. Mucin phenotypes were determined by the expressions of MUC5AC, MUC6, MUC2 and CD10. A Ki-67 positive rate (PR) was also examined. Results Overexpressions of p53, cyclin D1 and cyclin A were significantly more frequent in a gastric phenotype than an intestinal phenotype. Cyclin A was overexpressed in a mixed phenotype compared with an intestinal phenotype, while p27 overexpression was more frequent in an intestinal phenotype than in a mixed phenotype. Reduction of p21 was a common feature of the gastric intramucosal differentiated-type cancers examined. Conclusions Our results suggest that the levels of some cell cycle regulators appear to be associated with mucin phenotypes of early gastric differentiated-type cancers. PMID:20525401
NASA Astrophysics Data System (ADS)
Grange, Pascal
2015-09-01
The Allen Brain Atlas of the adult mouse (ABA) consists of digitized expression profiles of thousands of genes in the mouse brain, co-registered to a common three-dimensional template (the Allen Reference Atlas).This brain-wide, genome-wide data set has triggered a renaissance in neuroanatomy. Its voxelized version (with cubic voxels of side 200 microns) is available for desktop computation in MATLAB. On the other hand, brain cells exhibit a great phenotypic diversity (in terms of size, shape and electrophysiological activity), which has inspired the names of some well-studied cell types, such as granule cells and medium spiny neurons. However, no exhaustive taxonomy of brain cell is available. A genetic classification of brain cells is being undertaken, and some cell types have been chraracterized by their transcriptome profiles. However, given a cell type characterized by its transcriptome, it is not clear where else in the brain similar cells can be found. The ABA can been used to solve this region-specificity problem in a data-driven way: rewriting the brain-wide expression profiles of all genes in the atlas as a sum of cell-type-specific transcriptome profiles is equivalent to solving a quadratic optimization problem at each voxel in the brain. However, the estimated brain-wide densities of 64 cell types published recently were based on one series of co-registered coronal in situ hybridization (ISH) images per gene, whereas the online ABA contains several image series per gene, including sagittal ones. In the presented work, we simulate the variability of cell-type densities in a Monte Carlo way by repeatedly drawing a random image series for each gene and solving the optimization problem. This yields error bars on the region-specificity of cell types.
In Vitro Assays for Mouse Müller Cell Phenotyping Through microRNA Profiling in the Damaged Retina.
Reyes-Aguirre, Luis I; Quintero, Heberto; Estrada-Leyva, Brenda; Lamas, Mónica
2018-01-01
microRNA profiling has identified cell-specific expression patterns that could represent molecular signatures triggering the acquisition of a specific phenotype; in other words, of cellular identity and its associated function. Several groups have hypothesized that retinal cell phenotyping could be achieved through the determination of the global pattern of miRNA expression across specific cell types in the adult retina. This is especially relevant for Müller glia in the context of retinal damage, as these cells undergo dramatic changes of gene expression in response to injury, that render them susceptible to acquire a progenitor-like phenotype and be a source of new neurons.We describe a method that combines an experimental protocol for excitotoxic-induced retinal damage through N-methyl-D-aspartate subretinal injection with magnetic-activated cell sorting (MACS) of Müller cells and RNA isolation for microRNA profiling. Comparison of microRNA patterns of expression should allow Müller cell phenotyping under different experimental conditions.
Jung, A Ra; Yoo, Jeong Eun; Shim, Yhong-Hee; Choi, Ye-Na; Jeung, Hei-Cheul; Chung, Hyun Cheol; Rha, Sun Young; Oh, Bong-Kyeong
2013-03-01
Human immortal cells maintain their telomeres either by telomerase or by alternative lengthening of telomeres (ALT) that is based on homologous telomeric recombination. Previous studies showed that the ALT mechanism is activated in non-ALT cells when heterochromatic features are reduced. In this study, we examined the ALT phenotypes of ALT cells after treatment with trichostatin-A (TSA), which is an inhibitor of histone deacetylases and causes global chromatin decondensation. The ALT cells remained telomerase-negative after TSA treatment. ALT-associated promyelocytic leukemia (PML) nuclear bodies and telomere sister chromatid exchanges, typical ALT phenotypes, markedly increased in the TSA-treated cells, while the telomere length remained unchanged. In addition, telomerase expression in the ALT cells suppressed TSA-mediated ALT phenotype enhancement. Our results show that certain ALT phenotypes become more pronounced when chromatin is decondensed, and also suggest that the ALT mechanism may compete with telomerase for telomere maintenance in cells that lack heterochromatin.
Live imaging of muscle histolysis in Drosophila metamorphosis.
Kuleesha, Yadav; Puah, Wee Choo; Wasser, Martin
2016-05-04
The contribution of programmed cell death (PCD) to muscle wasting disorders remains a matter of debate. Drosophila melanogaster metamorphosis offers the opportunity to study muscle cell death in the context of development. Using live cell imaging of the abdomen, two groups of larval muscles can be observed, doomed muscles that undergo histolysis and persistent muscles that are remodelled and survive into adulthood. To identify and characterize genes that control the decision between survival and cell death of muscles, we developed a method comprising in vivo imaging, targeted gene perturbation and time-lapse image analysis. Our approach enabled us to study the cytological and temporal aspects of abnormal cell death phenotypes. In a previous genetic screen for genes controlling muscle size and cell death in metamorphosis, we identified gene perturbations that induced cell death of persistent or inhibit histolysis of doomed larval muscles. RNA interference (RNAi) of the genes encoding the helicase Rm62 and the lysosomal Cathepsin-L homolog Cysteine proteinase 1 (Cp1) caused premature cell death of persistent muscle in early and mid-pupation, respectively. Silencing of the transcriptional co-repressor Atrophin inhibited histolysis of doomed muscles. Overexpression of dominant-negative Target of Rapamycin (TOR) delayed the histolysis of a subset of doomed and induced ablation of all persistent muscles. RNAi of AMPKα, which encodes a subunit of the AMPK protein complex that senses AMP and promotes ATP formation, led to loss of attachment and a spherical morphology. None of the perturbations affected the survival of newly formed adult muscles, suggesting that the method is useful to find genes that are crucial for the survival of metabolically challenged muscles, like those undergoing atrophy. The ablation of persistent muscles did not affect eclosion of adult flies. Live imaging is a versatile approach to uncover gene functions that are required for the survival of muscle undergoing remodelling, yet are dispensable for other adult muscles. Our approach promises to identify molecular mechanisms that can explain the resilience of muscles to PCD.
Han, Sung-Hoon; Shim, Sehwan; Kim, Min-Jung; Shin, Hye-Yun; Jang, Won-Suk; Lee, Sun-Joo; Jin, Young-Woo; Lee, Seung-Sook; Lee, Seung Bum; Park, Sunhoo
2017-02-14
To investigate a suitable long-term culture system and optimal cryopreservation of intestinal organoid to improve organoid-based therapy by acquiring large numbers of cells. Crypts were isolated from jejunum of C57BL/6 mouse. Two hundred crypts were cultured in organoid medium with either epidermal growth factor/Noggin/R-spondin1 (ENR) or ENR/CHIR99021/VPA (ENR-CV). For subculture, organoids cultured on day 7 were passaged using enzyme-free cell dissociation buffer (STEMCELL Technologies). The passage was performed once per week until indicated passage. For cryopreservation, undissociated and dissociated organoids were resuspended in freezing medium with or without Rho kinase inhibitor subjected to different treatment times. The characteristics of intestinal organoids upon extended passage and freeze-thaw were analyzed using EdU staining, methyl thiazolyl tetrazolium assay, qPCR and time-lapse live cell imaging. We established a three-dimensional culture system for murine small intestinal organoids using ENR and ENR-CV media. Both conditions yielded organoids with a crypt-villus architecture exhibiting Lgr5 + cells and differentiated intestinal epithelial cells as shown by morphological and biochemical analysis. However, during extended passage (more than 3 mo), a comparative analysis revealed that continuous passaging under ENR-CV conditions, but not ENR conditions induced phenotypic changes as observed by morphological transition, reduced numbers of Lgr5 + cells and inconsistent expression of markers for differentiated intestinal epithelial cell types. We also found that recovery of long-term cryopreserved organoids was significantly affected by the organoid state, i.e ., whether dissociation was applied, and the timing of treatment with the Rho-kinase inhibitor Y-27632. Furthermore, the retention of typical morphological characteristics of intestinal organoids such as the crypt-villus structure from freeze-thawed cells was observed by live cell imaging. The maintenance of the characteristics of intestinal organoids upon extended passage is mediated by ENR condition, but not ENR-CV condition. Identified long-term cryopreservation may contribute to the establishment of standardized cryopreservation protocols for intestinal organoids for use in clinical applications.
Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide
2017-10-31
Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value ( 18 F-FDG SUV max ), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18 F-FDG SUV max , Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18 F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB.
Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide
2017-01-01
Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value (18F-FDG SUVmax), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18F-FDG SUVmax, Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB. PMID:29207673
Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells.
Heu, Celine; Berquand, Alexandre; Elie-Caille, Celine; Nicod, Laurence
2012-04-01
The skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation. Atomic force microscopy (AFM) has emerged within the last decade as a powerful tool for providing a nanometer-scale resolution imaging of biological samples. Peak Force Tapping (PFT) is a newly released AFM-based investigation technique allowing extraction of chemical and mechanical properties from a wide range of samples at a relatively high speed and a high resolution. The present work uses the PFT technology to investigate HaCaT keratinocytes, a human epidermal cell line, and offers an original approach to study chemically-induced changes in the cellular mechanical properties under near-physiological conditions. These experiments indicate glyphosate induces cell membrane stiffening, and the appearance of cytoskeleton structures at a subcellular level, for low cytotoxic concentrations whereas cells exposed to IC50 (inhibitory concentration 50%) treatment exhibit control-like mechanical behavior despite obvious membrane damages. Quercetin, a well-known antioxidant, reverses the glyphosate-induced mechanical phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Soliz, P.; Davis, B.; Murray, V.; Pattichis, M.; Barriga, S.; Russell, S.
2010-03-01
This paper presents an image processing technique for automatically categorize age-related macular degeneration (AMD) phenotypes from retinal images. Ultimately, an automated approach will be much more precise and consistent in phenotyping of retinal diseases, such as AMD. We have applied the automated phenotyping to retina images from a cohort of mono- and dizygotic twins. The application of this technology will allow one to perform more quantitative studies that will lead to a better understanding of the genetic and environmental factors associated with diseases such as AMD. A method for classifying retinal images based on features derived from the application of amplitude-modulation frequency-modulation (AM-FM) methods is presented. Retinal images from identical and fraternal twins who presented with AMD were processed to determine whether AM-FM could be used to differentiate between the two types of twins. Results of the automatic classifier agreed with the findings of other researchers in explaining the variation of the disease between the related twins. AM-FM features classified 72% of the twins correctly. Visual grading found that genetics could explain between 46% and 71% of the variance.
Duranthon, Véronique
2018-01-01
ABSTRACT Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. PMID:29567671
Exosomes derived from mesenchymal non-small cell lung cancer cells promote chemoresistance.
Lobb, Richard J; van Amerongen, Rosa; Wiegmans, Adrian; Ham, Sunyoung; Larsen, Jill E; Möller, Andreas
2017-08-01
Non-small cell lung cancer (NSCLC) is the most common lung cancer type and the most common cause of mortality in lung cancer patients. NSCLC is often associated with resistance to chemotherapeutics and together with rapid metastatic spread, results in limited treatment options and poor patient survival. NSCLCs are heterogeneous, and consist of epithelial and mesenchymal NSCLC cells. Mesenchymal NSCLC cells are thought to be responsible for the chemoresistance phenotype, but if and how this phenotype can be transferred to other NSCLC cells is currently not known. We hypothesised that small extracellular vesicles, exosomes, secreted by mesenchymal NSCLC cells could potentially transfer the chemoresistance phenotype to surrounding epithelial NSCLC cells. To explore this possibility, we used a unique human bronchial epithelial cell (HBEC) model in which the parental cells were transformed from an epithelial to mesenchymal phenotype by introducing oncogenic alterations common in NSCLC. We found that exosomes derived from the oncogenically transformed, mesenchymal HBECs could transfer chemoresistance to the parental, epithelial HBECs and increase ZEB1 mRNA, a master EMT transcription factor, in the recipient cells. Additionally, we demonstrate that exosomes from mesenchymal, but not epithelial HBECs contain the ZEB1 mRNA, thereby providing a potential mechanism for the induction of a mesenchymal phenotype in recipient cells. Together, this work demonstrates for the first time that exosomes derived from mesenchymal, oncogenically transformed lung cells can transfer chemoresistance and mesenchymal phenotypes to recipient cells, likely via the transfer of ZEB1 mRNA in exosomes. © 2017 UICC.
Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan; Schierack, Peter
2017-12-15
Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli ). We investigated the presence of biofilm-associated genes ("genotype") and phenotypically analyzed the isolates for motility and curli and cellulose production ("phenotype"). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device-related infections due to their high resistance to antibiotics and the host immune system. In nonpathogenic Escherichia coli , cell surface components playing a pivotal role in biofilm formation are well known. In contrast, there is poor information for their role in biofilm formation of pathogenic isolates. Our study provides insights into the correlation of biofilm-associated genes or specific phenotypes with the biofilm formation ability of commensal and pathogenic E. coli Additionally, we describe a newly developed method enabling qualitative biofilm analysis by automated image analysis, which is beneficial for high-throughput screenings. Our results help to establish a better understanding of E. coli biofilm formation. Copyright © 2017 American Society for Microbiology.
‘Particle genetics’: treating every cell as unique
Yvert, Gaël
2014-01-01
Genotype-phenotype relations are usually inferred from a deterministic point of view. For example, quantitative trait loci (QTL), which describe regions of the genome associated with a particular phenotype, are based on a mean trait difference between genotype categories. However, living systems comprise huge numbers of cells (the ‘particles’ of biology). Each cell can exhibit substantial phenotypic individuality, which can have dramatic consequences at the organismal level. Now, with technology capable of interrogating individual cells, it is time to consider how genotypes shape the probability laws of single cell traits. The possibility of mapping single cell probabilistic trait loci (PTL), which link genomic regions to probabilities of cellular traits, is a promising step in this direction. This approach requires thinking about phenotypes in probabilistic terms, a concept that statistical physicists have been applying to particles for a century. Here, I describe PTL and discuss their potential to enlarge our understanding of genotype-phenotype relations. PMID:24315431
Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas
2015-07-01
AWARD NUMBER: W81XWH-14-1-0115 TITLE: Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas PRINCIPAL INVESTIGATOR: Kyuson Yun...YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE July 2015 2. REPORT TYPE Annual 3. DATES COVERED 1 Jul 2014 - 30 Jun 2015 4. TITLE AND SUBTITLE Cell ...of Origin and Cancer Stem Cell Phenotype in Medulloblastomas 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0115 5c. PROGRAM ELEMENT NUMBER 6
Kernel Principal Component Analysis for dimensionality reduction in fMRI-based diagnosis of ADHD.
Sidhu, Gagan S; Asgarian, Nasimeh; Greiner, Russell; Brown, Matthew R G
2012-01-01
This study explored various feature extraction methods for use in automated diagnosis of Attention-Deficit Hyperactivity Disorder (ADHD) from functional Magnetic Resonance Image (fMRI) data. Each participant's data consisted of a resting state fMRI scan as well as phenotypic data (age, gender, handedness, IQ, and site of scanning) from the ADHD-200 dataset. We used machine learning techniques to produce support vector machine (SVM) classifiers that attempted to differentiate between (1) all ADHD patients vs. healthy controls and (2) ADHD combined (ADHD-c) type vs. ADHD inattentive (ADHD-i) type vs. controls. In different tests, we used only the phenotypic data, only the imaging data, or else both the phenotypic and imaging data. For feature extraction on fMRI data, we tested the Fast Fourier Transform (FFT), different variants of Principal Component Analysis (PCA), and combinations of FFT and PCA. PCA variants included PCA over time (PCA-t), PCA over space and time (PCA-st), and kernelized PCA (kPCA-st). Baseline chance accuracy was 64.2% produced by guessing healthy control (the majority class) for all participants. Using only phenotypic data produced 72.9% accuracy on two class diagnosis and 66.8% on three class diagnosis. Diagnosis using only imaging data did not perform as well as phenotypic-only approaches. Using both phenotypic and imaging data with combined FFT and kPCA-st feature extraction yielded accuracies of 76.0% on two class diagnosis and 68.6% on three class diagnosis-better than phenotypic-only approaches. Our results demonstrate the potential of using FFT and kPCA-st with resting-state fMRI data as well as phenotypic data for automated diagnosis of ADHD. These results are encouraging given known challenges of learning ADHD diagnostic classifiers using the ADHD-200 dataset (see Brown et al., 2012).
Cells on Gels: Cell Behavior at the Air-Gel Interface
NASA Astrophysics Data System (ADS)
O'Bryan, Christopher; Hormel, Tristan; Bhattacharjee, Tapomoy; Sawyer, W.; Angelini, Thomas
Numerous different types of cells are often grown at air-liquid interfaces. For example, a common way to create cell spheroids is to disperse cells in a droplet of liquid media that hangs from the lid of a culture dish - the ``hanging drop'' method. Some types of epithelial cells form monolayers at the bottom of hanging drops, instead of spheroids. Corneal epithelial cells stratify and exhibit a tissue-like phenotype when attached to liquid permeable culture surfaces positioned at the air-liquid media interface (air-lifted culture). These widely used culture methods make experimentation challenging - imaging through hanging drops and air-lifted culture dishes is prohibitive. However, similar results may be achieved by culturing cells on hydrogel surfaces at the air-gel interface. In this talk we will describe a method for culturing cells at air-gel interfaces. We seed human corneal epithelial cells (hTCEpi) onto the surfaces of hydrogel networks and jammed microgels, exposed to air. Preliminary observations of cell behavior at the air-gel interface will be presented.
Barteneva, Natasha S; Vorobjev, Ivan A
2018-01-01
In this paper, we review some of the recent advances in cellular heterogeneity and single-cell analysis methods. In modern research of cellular heterogeneity, there are four major approaches: analysis of pooled samples, single-cell analysis, high-throughput single-cell analysis, and lately integrated analysis of cellular population at a single-cell level. Recently developed high-throughput single-cell genetic analysis methods such as RNA-Seq require purification step and destruction of an analyzed cell often are providing a snapshot of the investigated cell without spatiotemporal context. Correlative analysis of multiparameter morphological, functional, and molecular information is important for differentiation of more uniform groups in the spectrum of different cell types. Simplified distributions (histograms and 2D plots) can underrepresent biologically significant subpopulations. Future directions may include the development of nondestructive methods for dissecting molecular events in intact cells, simultaneous correlative cellular analysis of phenotypic and molecular features by hybrid technologies such as imaging flow cytometry, and further progress in supervised and non-supervised statistical analysis algorithms.
Interleukin-like EMT inducer regulates partial phenotype switching in MITF-low melanoma cell lines
Noguchi, Ken; Dalton, Annamarie C.; Howley, Breege V.; McCall, Buckley J.; Yoshida, Akihiro; Diehl, J. Alan
2017-01-01
ILEI (FAM3C) is a secreted factor that contributes to the epithelial-to-mesenchymal transition (EMT), a cell biological process that confers metastatic properties to a tumor cell. Initially, we found that ILEI mRNA is highly expressed in melanoma metastases but not in primary tumors, suggesting that ILEI contributes to the malignant properties of melanoma. While melanoma is not an epithelial cell-derived tumor and does not undergo a traditional EMT, melanoma undergoes a similar process known as phenotype switching in which high (micropthalmia-related transcription factor) MITF expressing (MITF-high) proliferative cells switch to a low expressing (MITF-low) invasive state. We observed that MITF-high proliferative cells express low levels of ILEI (ILEI-low) and MITF-low invasive cells express high levels of ILEI (ILEI-high). We found that inducing phenotype switching towards the MITF-low invasive state increases ILEI mRNA expression, whereas phenotype switching towards the MITF-high proliferative state decreases ILEI mRNA expression. Next, we used in vitro assays to show that knockdown of ILEI attenuates invasive potential but not MITF expression or chemoresistance. Finally, we used gene expression analysis to show that ILEI regulates several genes involved in the MITF-low invasive phenotype including JARID1B, HIF-2α, and BDNF. Gene set enrichment analysis suggested that ILEI-regulated genes are enriched for JUN signaling, a known regulator of the MITF-low invasive phenotype. In conclusion, we demonstrate that phenotype switching regulates ILEI expression, and that ILEI regulates partial phenotype switching in MITF-low melanoma cell lines. PMID:28545079
Quantitative Imaging in Cancer Evolution and Ecology
Grove, Olya; Gillies, Robert J.
2013-01-01
Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral Darwinian dynamics before and during therapy. Advances in image analysis will place clinical imaging in an increasingly central role in the development of evolution-based patient-specific cancer therapy. © RSNA, 2013 PMID:24062559
Li, Weizhe; Germain, Ronald N.
2017-01-01
Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033
A Pipeline for 3D Digital Optical Phenotyping Plant Root System Architecture
NASA Astrophysics Data System (ADS)
Davis, T. W.; Shaw, N. M.; Schneider, D. J.; Shaff, J. E.; Larson, B. G.; Craft, E. J.; Liu, Z.; Kochian, L. V.; Piñeros, M. A.
2017-12-01
This work presents a new pipeline for digital optical phenotyping the root system architecture of agricultural crops. The pipeline begins with a 3D root-system imaging apparatus for hydroponically grown crop lines of interest. The apparatus acts as a self-containing dark room, which includes an imaging tank, motorized rotating bearing and digital camera. The pipeline continues with the Plant Root Imaging and Data Acquisition (PRIDA) software, which is responsible for image capturing and storage. Once root images have been captured, image post-processing is performed using the Plant Root Imaging Analysis (PRIA) command-line tool, which extracts root pixels from color images. Following the pre-processing binarization of digital root images, 3D trait characterization is performed using the next-generation RootReader3D software. RootReader3D measures global root system architecture traits, such as total root system volume and length, total number of roots, and maximum rooting depth and width. While designed to work together, the four stages of the phenotyping pipeline are modular and stand-alone, which provides flexibility and adaptability for various research endeavors.
Lee, Sangmin; Jung, Seulhee; Koo, Heebeom; Na, Jin Hee; Yoon, Hong Yeol; Shim, Man Kyu; Park, Jooho; Kim, Jong-Ho; Lee, Seulki; Pomper, Martin G; Kwon, Ick Chan; Ahn, Cheol-Hee; Kim, Kwangmeyung
2017-12-01
Herein, we developed nano-sized metabolic precursors (Nano-MPs) for new tumor-targeting strategy to overcome the intrinsic limitations of biological ligands such as the limited number of biological receptors and the heterogeneity in tumor tissues. We conjugated the azide group-containing metabolic precursors, triacetylated N-azidoacetyl-d-mannosamine to generation 4 poly(amidoamine) dendrimer backbone. The nano-sized dendrimer of Nano-MPs could generate azide groups on the surface of tumor cells homogeneously regardless of cell types via metabolic glycoengineering. Importantly, these exogenously generated 'artificial chemical receptors' containing azide groups could be used for bioorthogonal click chemistry, regardless of phenotypes of different tumor cells. Furthermore, in tumor-bearing mice models, Nano-MPs could be mainly localized at the target tumor tissues by the enhanced permeation and retention (EPR) effect, and they successfully generated azide groups on tumor cells in vivo after an intravenous injection. Finally, we showed that these azide groups on tumor tissues could be used as 'artificial chemical receptors' that were conjugated to bioorthogonal chemical group-containing liposomes via in vivo click chemistry in heterogeneous tumor-bearing mice. Therefore, overall results demonstrated that our nano-sized metabolic precursors could be extensively applied to new alternative tumor-targeting technique for molecular imaging and drug delivery system, regardless of the phenotype of heterogeneous tumor cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
Orfila, Caroline; Seymour, Graham B.; Willats, William G.T.; Huxham, I. Max; Jarvis, Michael C.; Dover, Colin J.; Thompson, Andrew J.; Knox, J. Paul
2001-01-01
Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383–390). Whereas the genetic basis of the Cnr mutation is being identified by molecular analyses, here we report the identification of cell biological factors underlying the Cnr texture phenotype. In comparison with wild type, ripe-stage Cnr fruits have stronger, non-swollen cell walls (CW) throughout the pericarp and extensive intercellular space in the inner pericarp. Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion. We also demonstrate that the deposition of (1→5)-α-l-arabinan is disrupted in Cnr pericarp CW and that this disruption occurs prior to fruit ripening. The relationship between the disruption of (1→5)-α-l-arabinan deposition in pericarp CW and the Cnr phenotype is discussed. PMID:11351084
Intelligent Interfaces for Mining Large-Scale RNAi-HCS Image Databases
Lin, Chen; Mak, Wayne; Hong, Pengyu; Sepp, Katharine; Perrimon, Norbert
2010-01-01
Recently, High-content screening (HCS) has been combined with RNA interference (RNAi) to become an essential image-based high-throughput method for studying genes and biological networks through RNAi-induced cellular phenotype analyses. However, a genome-wide RNAi-HCS screen typically generates tens of thousands of images, most of which remain uncategorized due to the inadequacies of existing HCS image analysis tools. Until now, it still requires highly trained scientists to browse a prohibitively large RNAi-HCS image database and produce only a handful of qualitative results regarding cellular morphological phenotypes. For this reason we have developed intelligent interfaces to facilitate the application of the HCS technology in biomedical research. Our new interfaces empower biologists with computational power not only to effectively and efficiently explore large-scale RNAi-HCS image databases, but also to apply their knowledge and experience to interactive mining of cellular phenotypes using Content-Based Image Retrieval (CBIR) with Relevance Feedback (RF) techniques. PMID:21278820
NASA Astrophysics Data System (ADS)
Chaganti, Shikha; Nabar, Kunal P.; Nelson, Katrina M.; Mawn, Louise A.; Landman, Bennett A.
2017-03-01
We examine imaging and electronic medical records (EMR) of 588 subjects over five major disease groups that affect optic nerve function. An objective evaluation of the role of imaging and EMR data in diagnosis of these conditions would improve understanding of these diseases and help in early intervention. We developed an automated image processing pipeline that identifies the orbital structures within the human eyes from computed tomography (CT) scans, calculates structural size, and performs volume measurements. We customized the EMR-based phenome-wide association study (PheWAS) to derive diagnostic EMR phenotypes that occur at least two years prior to the onset of the conditions of interest from a separate cohort of 28,411 ophthalmology patients. We used random forest classifiers to evaluate the predictive power of image-derived markers, EMR phenotypes, and clinical visual assessments in identifying disease cohorts from a control group of 763 patients without optic nerve disease. Image-derived markers showed more predictive power than clinical visual assessments or EMR phenotypes. However, the addition of EMR phenotypes to the imaging markers improves the classification accuracy against controls: the AUC improved from 0.67 to 0.88 for glaucoma, 0.73 to 0.78 for intrinsic optic nerve disease, 0.72 to 0.76 for optic nerve edema, 0.72 to 0.77 for orbital inflammation, and 0.81 to 0.85 for thyroid eye disease. This study illustrates the importance of diagnostic context for interpretation of image-derived markers and the proposed PheWAS technique provides a flexible approach for learning salient features of patient history and incorporating these data into traditional machine learning analyses.
Is Preoperative Biochemical Testing for Pheochromocytoma Necessary for All Adrenal Incidentalomas?
Jun, Joo Hyun; Ahn, Hyun Joo; Lee, Sangmin M.; Kim, Jie Ae; Park, Byung Kwan; Kim, Jee Soo; Kim, Jung Han
2015-01-01
Abstract This study examined whether imaging phenotypes obtained from computed tomography (CT) can replace biochemical tests to exclude pheochromocytoma among adrenal incidentalomas (AIs) in the preoperative setting. We retrospectively reviewed the medical records of all patients (n = 251) who were admitted for operations and underwent adrenal-protocol CT for an incidentally discovered adrenal mass from January 2011 to December 2012. Various imaging phenotypes were assessed for their screening power for pheochromocytoma. Final diagnosis was confirmed by biopsy, biochemical tests, and follow-up CT. Pheochromocytomas showed similar imaging phenotypes as malignancies, but were significantly different from adenomas. Unenhanced attenuation values ≤10 Hounsfield units (HU) showed the highest specificity (97%) for excluding pheochromocytoma as a single phenotype. A combination of size ≤3 cm, unenhanced attenuation values ≤ 10 HU, and absence of suspicious morphology showed 100% specificity for excluding pheochromocytoma. Routine noncontrast CT can be used as a screening tool for pheochromocytoma by combining 3 imaging phenotypes: size ≤3 cm, unenhanced attenuation values ≤10 HU, and absence of suspicious morphology, and may substitute for biochemical testing in the preoperative setting. PMID:26559265
Automated phenotype pattern recognition of zebrafish for high-throughput screening.
Schutera, Mark; Dickmeis, Thomas; Mione, Marina; Peravali, Ravindra; Marcato, Daniel; Reischl, Markus; Mikut, Ralf; Pylatiuk, Christian
2016-07-03
Over the last years, the zebrafish (Danio rerio) has become a key model organism in genetic and chemical screenings. A growing number of experiments and an expanding interest in zebrafish research makes it increasingly essential to automatize the distribution of embryos and larvae into standard microtiter plates or other sample holders for screening, often according to phenotypical features. Until now, such sorting processes have been carried out by manually handling the larvae and manual feature detection. Here, a prototype platform for image acquisition together with a classification software is presented. Zebrafish embryos and larvae and their features such as pigmentation are detected automatically from the image. Zebrafish of 4 different phenotypes can be classified through pattern recognition at 72 h post fertilization (hpf), allowing the software to classify an embryo into 2 distinct phenotypic classes: wild-type versus variant. The zebrafish phenotypes are classified with an accuracy of 79-99% without any user interaction. A description of the prototype platform and of the algorithms for image processing and pattern recognition is presented.
USDA-ARS?s Scientific Manuscript database
Phylogenic comparisons of the mononuclear phagocyte system (MPS) of humans and mice demonstrate phenotypic divergence of dendritic cell (DC) subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny a...
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-08-24
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition.
Effect of culture medium on propagation and phenotype of corneal stroma-derived stem cells.
Sidney, Laura E; Branch, Matthew J; Dua, Harminder S; Hopkinson, Andrew
2015-12-01
The limbal area of the corneal stroma has been identified as a source of mesenchymal-like stem cells, which have potential for exploitation as a cell therapy. However, the optimal culture conditions are disputed and few direct media comparisons have been performed. In this report, we evaluated several media types to identify the optimal for inducing an in vitro stem cell phenotype. Primary human corneal stroma-derived stem cells (CSSCs) were extracted from corneoscleral rims. Culture in seven different media types was compared: Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS); M199 with 20% FBS; DMEM-F12 with 20% serum replacement, basic fibroblast growth factor and leukemia inhibitory factor (SCM); endothelial growth medium (EGM); semi-solid MethoCult; serum-free keratinocyte medium (K-SFM); and StemPro-34. Effects on proliferation, morphology, protein and messenger RNA expression were evaluated. All media supported proliferation of CSSCs with the exception of K-SFM and StemPro-34. Morphology differed between media: DMEM produced large cells, whereas EGM produced very small cells. Culture in M199 produced a typical mesenchymal stromal cell phenotype with high expression of CD105, CD90 and CD73 but not CD34. Culture in SCM produced a phenotype more reminiscent of a progenitor cell type with expression of CD34, ABCG2, SSEA-4 and PAX6. Culture medium can significantly influence CSSC phenotype. SCM produced a cell phenotype closest to that of a pluripotent stem cell, and we consider it to be the most appropriate for development as a clinical-grade medium for the production of CSSC phenotypes suitable for cell therapy. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Physical confinement alters tumor cell adhesion and migration phenotypes
Balzer, Eric M.; Tong, Ziqiu; Paul, Colin D.; Hung, Wei-Chien; Stroka, Kimberly M.; Boggs, Amanda E.; Martin, Stuart S.; Konstantopoulos, Konstantinos
2012-01-01
Cell migration on planar surfaces is driven by cycles of actin protrusion, integrin-mediated adhesion, and myosin-mediated contraction; however, this mechanism may not accurately describe movement in 3-dimensional (3D) space. By subjecting cells to restrictive 3D environments, we demonstrate that physical confinement constitutes a biophysical stimulus that alters cell morphology and suppresses mesenchymal motility in human breast carcinoma (MDA-MB-231). Dorsoventral polarity, stress fibers, and focal adhesions are markedly attenuated by confinement. Inhibitors of myosin, Rho/ROCK, or β1-integrins do not impair migration through 3-μm-wide channels (confinement), even though these treatments repress motility in 50-μm-wide channels (unconfined migration) by ≥50%. Strikingly, confined migration persists even when F-actin is disrupted, but depends largely on microtubule (MT) dynamics. Interfering with MT polymerization/depolymerization causes confined cells to undergo frequent directional changes, thereby reducing the average net displacement by ≥80% relative to vehicle controls. Live-cell EB1-GFP imaging reveals that confinement redirects MT polymerization toward the leading edge, where MTs continuously impact during advancement of the cell front. These results demonstrate that physical confinement can induce cytoskeletal alterations that reduce the dependence of migrating cells on adhesion-contraction force coupling. This mechanism may explain why integrins can exhibit reduced or altered function during migration in 3D environments.—Balzer, E. M., Tong, Z., Paul, C. D., Hung, W.-C., Stroka, K. M., Boggs, A. E., Martin, S. S., Konstantopoulos, K. Physical confinement alters tumor cell adhesion and migration phenotypes. PMID:22707566
Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J
2013-01-01
Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.
Platform for combined analysis of functional and biomolecular phenotypes of the same cell.
Kelbauskas, L; Ashili, S; Zeng, J; Rezaie, A; Lee, K; Derkach, D; Ueberroth, B; Gao, W; Paulson, T; Wang, H; Tian, Y; Smith, D; Reid, B; Meldrum, Deirdre R
2017-03-16
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression.
Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement
Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin
2016-01-01
When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382
Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin
2016-03-03
When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.
Ehrlich, Allison K; Pennington, Jamie M; Tilton, Susan; Wang, Xisheng; Marshall, Nikki B; Rohlman, Diana; Funatake, Castle; Punj, Sumit; O'Donnell, Edmond; Yu, Zhen; Kolluri, Siva K; Kerkvliet, Nancy I
2017-11-01
Activation of the aryl hydrocarbon receptor (AhR) by immunosuppressive ligands promotes the development of regulatory T (Treg) cells. Although AhR-induced Foxp3 + Treg cells have been well studied, much less is known about the development and fate of AhR-induced Type 1 Treg (AhR-Tr1) cells. In the current study, we identified the unique transcriptional and functional changes in murine CD4 + T cells that accompany the differentiation of AhR-Tr1 cells during the CD4 + T-cell-dependent phase of an allospecific cytotoxic T lymphocyte (allo-CTL) response. AhR activation increased the expression of genes involved in T-cell activation, immune regulation and chemotaxis, as well as a global downregulation of genes involved in cell cycling. Increased IL-2 production was responsible for the early AhR-Tr1 activation phenotype previously characterized as CD25 + CTLA4 + GITR + on day 2. The AhR-Tr1 phenotype was further defined by the coexpression of the immunoregulatory receptors Lag3 and Tim3 and non-overlapping expression of CCR4 and CCR9. Consistent with the increased expression of CCR9, real-time imaging showed enhanced migration of AhR-Tr1 cells to the lamina propria of the small intestine and colon. The discovery of mucosal imprinting of AhR-Tr1 cells provides an additional mechanism by which therapeutic AhR ligands can control immunopathology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cao, Lu; Graauw, Marjo de; Yan, Kuan; Winkel, Leah; Verbeek, Fons J
2016-05-03
Endocytosis is regarded as a mechanism of attenuating the epidermal growth factor receptor (EGFR) signaling and of receptor degradation. There is increasing evidence becoming available showing that breast cancer progression is associated with a defect in EGFR endocytosis. In order to find related Ribonucleic acid (RNA) regulators in this process, high-throughput imaging with fluorescent markers is used to visualize the complex EGFR endocytosis process. Subsequently a dedicated automatic image and data analysis system is developed and applied to extract the phenotype measurement and distinguish different developmental episodes from a huge amount of images acquired through high-throughput imaging. For the image analysis, a phenotype measurement quantifies the important image information into distinct features or measurements. Therefore, the manner in which prominent measurements are chosen to represent the dynamics of the EGFR process becomes a crucial step for the identification of the phenotype. In the subsequent data analysis, classification is used to categorize each observation by making use of all prominent measurements obtained from image analysis. Therefore, a better construction for a classification strategy will support to raise the performance level in our image and data analysis system. In this paper, we illustrate an integrated analysis method for EGFR signalling through image analysis of microscopy images. Sophisticated wavelet-based texture measurements are used to obtain a good description of the characteristic stages in the EGFR signalling. A hierarchical classification strategy is designed to improve the recognition of phenotypic episodes of EGFR during endocytosis. Different strategies for normalization, feature selection and classification are evaluated. The results of performance assessment clearly demonstrate that our hierarchical classification scheme combined with a selected set of features provides a notable improvement in the temporal analysis of EGFR endocytosis. Moreover, it is shown that the addition of the wavelet-based texture features contributes to this improvement. Our workflow can be applied to drug discovery to analyze defected EGFR endocytosis processes.
Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution
Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D.; Rainey, Paul B.; de Visser, J. Arjan G. M.; Baudry, Jean; Bibette, Jérôme
2016-01-01
Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes–via growth–over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology. PMID:27077662
Lineage Tracking for Probing Heritable Phenotypes at Single-Cell Resolution.
Cottinet, Denis; Condamine, Florence; Bremond, Nicolas; Griffiths, Andrew D; Rainey, Paul B; de Visser, J Arjan G M; Baudry, Jean; Bibette, Jérôme
2016-01-01
Determining the phenotype and genotype of single cells is central to understand microbial evolution. DNA sequencing technologies allow the detection of mutants at high resolution, but similar approaches for phenotypic analyses are still lacking. We show that a drop-based millifluidic system enables the detection of heritable phenotypic changes in evolving bacterial populations. At time intervals, cells were sampled and individually compartmentalized in 100 nL drops. Growth through 15 generations was monitored using a fluorescent protein reporter. Amplification of heritable changes-via growth-over multiple generations yields phenotypically distinct clusters reflecting variation relevant for evolution. To demonstrate the utility of this approach, we follow the evolution of Escherichia coli populations during 30 days of starvation. Phenotypic diversity was observed to rapidly increase upon starvation with the emergence of heritable phenotypes. Mutations corresponding to each phenotypic class were identified by DNA sequencing. This scalable lineage-tracking technology opens the door to large-scale phenotyping methods with special utility for microbiology and microbial population biology.
Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.
Pound, Michael P; Atkinson, Jonathan A; Townsend, Alexandra J; Wilson, Michael H; Griffiths, Marcus; Jackson, Aaron S; Bulat, Adrian; Tzimiropoulos, Georgios; Wells, Darren M; Murchie, Erik H; Pridmore, Tony P; French, Andrew P
2017-10-01
In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, hence the motivation for finding a fully automated approach. Deep learning is an emerging field that promises unparalleled results on many data analysis problems. Building on artificial neural networks, deep approaches have many more hidden layers in the network, and hence have greater discriminative and predictive power. We demonstrate the use of such approaches as part of a plant phenotyping pipeline. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping and demonstrate state-of-the-art results (>97% accuracy) for root and shoot feature identification and localization. We use fully automated trait identification using deep learning to identify quantitative trait loci in root architecture datasets. The majority (12 out of 14) of manually identified quantitative trait loci were also discovered using our automated approach based on deep learning detection to locate plant features. We have shown deep learning-based phenotyping to have very good detection and localization accuracy in validation and testing image sets. We have shown that such features can be used to derive meaningful biological traits, which in turn can be used in quantitative trait loci discovery pipelines. This process can be completely automated. We predict a paradigm shift in image-based phenotyping bought about by such deep learning approaches, given sufficient training sets. © The Authors 2017. Published by Oxford University Press.
Conventional and hyperspectral time-series imaging of maize lines widely used in field trials
Liang, Zhikai; Pandey, Piyush; Stoerger, Vincent; Xu, Yuhang; Qiu, Yumou; Ge, Yufeng
2018-01-01
Abstract Background Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision–based tools. Findings A set of maize inbreds—primarily recently off patent lines—were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. Conclusions Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. PMID:29186425
Conventional and hyperspectral time-series imaging of maize lines widely used in field trials.
Liang, Zhikai; Pandey, Piyush; Stoerger, Vincent; Xu, Yuhang; Qiu, Yumou; Ge, Yufeng; Schnable, James C
2018-02-01
Maize (Zea mays ssp. mays) is 1 of 3 crops, along with rice and wheat, responsible for more than one-half of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping are currently the largest constraints on plant breeding efforts. Datasets linking new types of high-throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision-based tools. A set of maize inbreds-primarily recently off patent lines-were phenotyped using a high-throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high-density genotyping and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2 years by the Genomes 2 Fields Consortium. A total of 485 GB of image data including RGB, hyperspectral, fluorescence, and thermal infrared photos has been released. Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, naive approaches to measuring traits such as biomass can introduce nonrandom measurement errors confounded with genotype variation. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors that influence yield plasticity. © The Authors 2017. Published by Oxford University Press.
Implications of the Hybrid Epithelial/Mesenchymal Phenotype in Metastasis
Jolly, Mohit Kumar; Boareto, Marcelo; Huang, Bin; Jia, Dongya; Lu, Mingyang; Ben-Jacob, Eshel; Onuchic, José N.; Levine, Herbert
2015-01-01
Transitions between epithelial and mesenchymal phenotypes – the epithelial to mesenchymal transition (EMT) and its reverse the mesenchymal to epithelial transition (MET) – are hallmarks of cancer metastasis. While transitioning between the epithelial and mesenchymal phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) (i.e., partial or intermediate EMT) phenotype. Cells in this phenotype have mixed epithelial (e.g., adhesion) and mesenchymal (e.g., migration) properties, thereby allowing them to move collectively as clusters. If these clusters reach the bloodstream intact, they can give rise to clusters of circulating tumor cells (CTCs), as have often been seen experimentally. Here, we review the operating principles of the core regulatory network for EMT/MET that acts as a “three-way” switch giving rise to three distinct phenotypes – E, M and hybrid E/M – and present a theoretical framework that can elucidate the role of many other players in regulating epithelial plasticity. Furthermore, we highlight recent studies on partial EMT and its association with drug resistance and tumor-initiating potential; and discuss how cell–cell communication between cells in a partial EMT phenotype can enable the formation of clusters of CTCs. These clusters can be more apoptosis-resistant and have more tumor-initiating potential than singly moving CTCs with a wholly mesenchymal (complete EMT) phenotype. Also, more such clusters can be formed under inflammatory conditions that are often generated by various therapies. Finally, we discuss the multiple advantages that the partial EMT or hybrid E/M phenotype have as compared to a complete EMT phenotype and argue that these collectively migrating cells are the primary “bad actors” of metastasis. PMID:26258068
Roberts, Thomas A.; Norris, Francesca C.; Carnaghan, Helen; Savery, Dawn; Wells, Jack A.; Siow, Bernard; Scambler, Peter J.; Pierro, Agostino; De Coppi, Paolo; Eaton, Simon; Lythgoe, Mark F.
2014-01-01
Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community. PMID:25330230
Ma, Kun
2013-12-01
A fundamental question in developmental biology is how a chimeric animal such as a bilateral gynandromorphic animal can have different phenotypes confined to different lateral body halves, and how mutation-induced phenotypes, such as genetic diseases, can be confined to one lateral body half in patients. Here, I propose that embryos of many, if not all, bilaterian animals are divided into left and right halves at a very early stage (which may vary among different types of animals), after which the descendants of the left-sided and right-sided cells will almost exclusively remain on their original sides, respectively, throughout the remaining development. This embryonic left-right separation mechanism allows (1) mutations and the mutation-induced phenotypes to be strictly confined to one lateral body half in animals and humans; (2) mothers with bilateral hereditary primary breast cancer to transmit their disease to their offspring at twofold of the rate compared to mothers with unilateral hereditary breast cancer; and (3) a mosaic embryo carrying genetic or epigenetic mutations to develop into either an individual with the mutation-induced phenotype confined unilaterally, or a pair of twins displaying complete, partial, or mirror-image discordance for the phenotype. Further, this left-right separation mechanism predicts that the two lateral halves of a patient carrying a unilateral genetic disease can each serve as a case and an internal control, respectively, for genetic and epigenetic comparative studies to identify the disease causations. © 2013 Wiley Periodicals, Inc.
Exploring pain pathophysiology in patients.
Sommer, Claudia
2016-11-04
Although animal models of pain have brought invaluable information on basic processes underlying pain pathophysiology, translation to humans is a problem. This Review will summarize what information has been gained by the direct study of patients with chronic pain. The techniques discussed range from patient phenotyping using quantitative sensory testing to specialized nociceptor neurophysiology, imaging methods of peripheral nociceptors, analyses of body fluids, genetics and epigenetics, and the generation of sensory neurons from patients via inducible pluripotent stem cells. Copyright © 2016, American Association for the Advancement of Science.
Safe Genetic Modification of Cardiac Stem Cells Using a Site-Specific Integration Technique
Lan, Feng; Liu, Junwei; Narsinh, Kazim H.; Hu, Shijun; Han, Leng; Lee, Andrew S.; Karow, Marisa; Nguyen, Patricia K.; Nag, Divya; Calos, Michele P.; Robbins, Robert C.; Wu, Joseph C.
2012-01-01
Background Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. Methods and Results We employed the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells (hECs). Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared to unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging (BLI), and positron emission tomography (PET). Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function two weeks after cell delivery, as assessed by echocardiography (P = 0.002) and magnetic resonance imaging (P = 0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated hECs, which enhanced hindlimb perfusion (P<0.05 at day 7 and 14 after transplantation) on laser Doppler imaging. Conclusions The phiC31 integrase genomic modification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types. PMID:22965984
Charoenkwan, Phasit; Hwang, Eric; Cutler, Robert W; Lee, Hua-Chin; Ko, Li-Wei; Huang, Hui-Ling; Ho, Shinn-Ying
2013-01-01
High-content screening (HCS) has become a powerful tool for drug discovery. However, the discovery of drugs targeting neurons is still hampered by the inability to accurately identify and quantify the phenotypic changes of multiple neurons in a single image (named multi-neuron image) of a high-content screen. Therefore, it is desirable to develop an automated image analysis method for analyzing multi-neuron images. We propose an automated analysis method with novel descriptors of neuromorphology features for analyzing HCS-based multi-neuron images, called HCS-neurons. To observe multiple phenotypic changes of neurons, we propose two kinds of descriptors which are neuron feature descriptor (NFD) of 13 neuromorphology features, e.g., neurite length, and generic feature descriptors (GFDs), e.g., Haralick texture. HCS-neurons can 1) automatically extract all quantitative phenotype features in both NFD and GFDs, 2) identify statistically significant phenotypic changes upon drug treatments using ANOVA and regression analysis, and 3) generate an accurate classifier to group neurons treated by different drug concentrations using support vector machine and an intelligent feature selection method. To evaluate HCS-neurons, we treated P19 neurons with nocodazole (a microtubule depolymerizing drug which has been shown to impair neurite development) at six concentrations ranging from 0 to 1000 ng/mL. The experimental results show that all the 13 features of NFD have statistically significant difference with respect to changes in various levels of nocodazole drug concentrations (NDC) and the phenotypic changes of neurites were consistent to the known effect of nocodazole in promoting neurite retraction. Three identified features, total neurite length, average neurite length, and average neurite area were able to achieve an independent test accuracy of 90.28% for the six-dosage classification problem. This NFD module and neuron image datasets are provided as a freely downloadable MatLab project at http://iclab.life.nctu.edu.tw/HCS-Neurons. Few automatic methods focus on analyzing multi-neuron images collected from HCS used in drug discovery. We provided an automatic HCS-based method for generating accurate classifiers to classify neurons based on their phenotypic changes upon drug treatments. The proposed HCS-neurons method is helpful in identifying and classifying chemical or biological molecules that alter the morphology of a group of neurons in HCS.
Nasal lavage, blood or sputum: Which is best for phenotyping asthma?
de Farias, Camyla F; Amorim, Maria M F; Dracoulakis, Michel; Caetano, Lilian B; Santoro, Ilka L; Fernandes, Ana L G
2017-05-01
Determination of asthma phenotypes, particularly inflammatory phenotypes, helps guide treatment and management of this heterogeneous disease. Induced sputum cytology has been the gold standard for determination of inflammatory phenotypes, but sputum induction is fairly invasive and technically challenging. Blood and nasal lavage cytology have been suggested as substitutes, but have not been fully verified. The aim of this study is to determine the accuracy of blood and nasal lavage cytometry as indicators of inflammatory phenotypes in asthma. Clinical evaluation, Asthma Control Questionnaire (ACQ) and spirometry were performed for 121 adult asthma patients, and blood, nasal lavage and induced sputum samples were taken. Eosinophils and neutrophils were counted in three samples from each subject. Inflammatory phenotypes (eosinophilic, neutrophilic, mixed and paucicellular) and cells counts were analysed using Venn diagram and receiver operating characteristic (ROC) curve, respectively. ACQ score, spirometry and bronchodilator response did not differ among subjects with different inflammatory phenotypes. Inflammatory phenotypes defined by nasal lavage cytometry were in better concordance than those defined by blood cell counts with phenotypes determined by sputum cytology, and were significantly correlated with sputum phenotypes. For eosinophilia, nasal lavage cytology showed better accuracy than blood cytology (area under the curve (AUC): 0.89 vs 0.65). For all phenotypes, sensitivity and positive and negative predictive power were higher for nasal lavage cytometry than for blood. Blood cell counts gave a high level of false positives for all inflammatory phenotypes. We recommend nasal lavage cytology over blood cell count as a substitute for sputum cytology to identify inflammatory phenotypes in asthma. © 2016 Asian Pacific Society of Respirology.
GBM heterogeneity characterization by radiomic analysis of phenotype anatomical planes
NASA Astrophysics Data System (ADS)
Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew
2016-03-01
Glioblastoma multiforme (GBM) is the most common malignant primary tumor of the central nervous system, characterized among other traits by rapid metastatis. Three tissue phenotypes closely associated with GBMs, namely, necrosis (N), contrast enhancement (CE), and edema/invasion (E), exhibit characteristic patterns of texture heterogeneity in magnetic resonance images (MRI). In this study, we propose a novel model to characterize GBM tissue phenotypes using gray level co-occurrence matrices (GLCM) in three anatomical planes. The GLCM encodes local image patches in terms of informative, orientation-invariant texture descriptors, which are used here to sub-classify GBM tissue phenotypes. Experiments demonstrate the model on MRI data of 41 GBM patients, obtained from the cancer genome atlas (TCGA). Intensity-based automatic image registration is applied to align corresponding pairs of fixed T1˗weighted (T1˗WI) post-contrast and fluid attenuated inversion recovery (FLAIR) images. GBM tissue regions are then segmented using the 3D Slicer tool. Texture features are computed from 12 quantifier functions operating on GLCM descriptors, that are generated from MRI intensities within segmented GBM tissue regions. Various classifier models are used to evaluate the effectiveness of texture features for discriminating between GBM phenotypes. Results based on T1-WI scans showed a phenotype classification accuracy of over 88.14%, a sensitivity of 85.37% and a specificity of 96.1%, using the linear discriminant analysis (LDA) classifier. This model has the potential to provide important characteristics of tumors, which can be used for the sub-classification of GBM phenotypes.
High-Resolution Inflorescence Phenotyping Using a Novel Image-Analysis Pipeline, PANorama1[W][OPEN
Crowell, Samuel; Falcão, Alexandre X.; Shah, Ankur; Wilson, Zachary; Greenberg, Anthony J.; McCouch, Susan R.
2014-01-01
Variation in inflorescence development is an important target of selection for numerous crop species, including many members of the Poaceae (grasses). In Asian rice (Oryza sativa), inflorescence (panicle) architecture is correlated with yield and grain-quality traits. However, many rice breeders continue to use composite phenotypes in selection pipelines, because measuring complex, branched panicles requires a significant investment of resources. We developed an open-source phenotyping platform, PANorama, which measures multiple architectural and branching phenotypes from images simultaneously. PANorama automatically extracts skeletons from images, allows users to subdivide axes into individual internodes, and thresholds away structures, such as awns, that normally interfere with accurate panicle phenotyping. PANorama represents an improvement in both efficiency and accuracy over existing panicle imaging platforms, and flexible implementation makes PANorama capable of measuring a range of organs from other plant species. Using high-resolution phenotypes, a mapping population of recombinant inbred lines, and a dense single-nucleotide polymorphism data set, we identify, to our knowledge, the largest number of quantitative trait loci (QTLs) for panicle traits ever reported in a single study. Several areas of the genome show pleiotropic clusters of panicle QTLs, including a region near the rice Green Revolution gene SEMIDWARF1. We also confirm that multiple panicle phenotypes are distinctly different among a small collection of diverse rice varieties. Taken together, these results suggest that clusters of small-effect QTLs may be responsible for varietal or subpopulation-specific panicle traits, representing a significant opportunity for rice breeders selecting for yield performance across different genetic backgrounds. PMID:24696519
Clark, Randy T; Famoso, Adam N; Zhao, Keyan; Shaff, Jon E; Craft, Eric J; Bustamante, Carlos D; McCouch, Susan R; Aneshansley, Daniel J; Kochian, Leon V
2013-02-01
High-throughput phenotyping of root systems requires a combination of specialized techniques and adaptable plant growth, root imaging and software tools. A custom phenotyping platform was designed to capture images of whole root systems, and novel software tools were developed to process and analyse these images. The platform and its components are adaptable to a wide range root phenotyping studies using diverse growth systems (hydroponics, paper pouches, gel and soil) involving several plant species, including, but not limited to, rice, maize, sorghum, tomato and Arabidopsis. The RootReader2D software tool is free and publicly available and was designed with both user-guided and automated features that increase flexibility and enhance efficiency when measuring root growth traits from specific roots or entire root systems during large-scale phenotyping studies. To demonstrate the unique capabilities and high-throughput capacity of this phenotyping platform for studying root systems, genome-wide association studies on rice (Oryza sativa) and maize (Zea mays) root growth were performed and root traits related to aluminium (Al) tolerance were analysed on the parents of the maize nested association mapping (NAM) population. © 2012 Blackwell Publishing Ltd.
Chopin, Joshua; Kumar, Pankaj; Miklavcic, Stanley J
2018-01-01
One of the main challenges associated with image-based field phenotyping is the variability of illumination. During a single day's imaging session, or between different sessions on different days, the sun moves in and out of cloud cover and has varying intensity. How is one to know from consecutive images alone if a plant has become darker over time, or if the weather conditions have simply changed from clear to overcast? This is a significant problem to address as colour is an important phenotypic trait that can be measured automatically from images. In this work we use an industry standard colour checker to balance the colour in images within and across every day of a field trial conducted over four months in 2016. By ensuring that the colour checker is present in every image we are afforded a 'ground truth' to correct for varying illumination conditions across images. We employ a least squares approach to fit a quadratic model for correcting RGB values of an image in such a way that the observed values of the colour checker tiles align with their true values after the transformation. The proposed method is successful in reducing the error between observed and reference colour chart values in all images. Furthermore, the standard deviation of mean canopy colour across multiple days is reduced significantly after colour correction is applied. Finally, we use a number of examples to demonstrate the usefulness of accurate colour measurements in recording phenotypic traits and analysing variation among varieties and treatments.
Giant cell arteritis and polymyalgia rheumatica: current challenges and opportunities.
Dejaco, Christian; Brouwer, Elisabeth; Mason, Justin C; Buttgereit, Frank; Matteson, Eric L; Dasgupta, Bhaskar
2017-10-01
The fields of giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) have advanced rapidly, resulting in a new understanding of these diseases. Fast-track strategies and improved awareness programmes that prevent irreversible sight loss through early diagnosis and treatment are a notable advance. Ultrasonography and other imaging techniques have been introduced into routine clinical practice and there have been promising reports on the efficacy of biologic agents, particularly IL-6 antagonists such as tocilizumab, in treating these conditions. Along with these developments, which should improve outcomes in patients with GCA and PMR, new questions and unmet needs have emerged; future research should address which pathogenetic mechanisms contribute to the different phases and clinical phenotypes of GCA, what role imaging has in the early diagnosis and monitoring of GCA and PMR, and in which patients and phases of these diseases novel biologic drugs should be used. This article discusses the implications of recent developments in our understanding of GCA and PMR, as well as the unmet needs concerning epidemiology, pathogenesis, imaging and treatment of these diseases.
Platform for combined analysis of functional and biomolecular phenotypes of the same cell
Kelbauskas, L.; Ashili, S.; Zeng, J.; Rezaie, A.; Lee, K.; Derkach, D.; Ueberroth, B.; Gao, W.; Paulson, T.; Wang, H.; Tian, Y.; Smith, D.; Reid, B.; Meldrum, Deirdre R.
2017-01-01
Functional and molecular cell-to-cell variability is pivotal at the cellular, tissue and whole-organism levels. Yet, the ultimate goal of directly correlating the function of the individual cell with its biomolecular profile remains elusive. We present a platform for integrated analysis of functional and transcriptional phenotypes in the same single cells. We investigated changes in the cellular respiration and gene expression diversity resulting from adaptation to repeated episodes of acute hypoxia in a premalignant progression model. We find differential, progression stage-specific alterations in phenotypic heterogeneity and identify cells with aberrant phenotypes. To our knowledge, this study is the first demonstration of an integrated approach to elucidate how heterogeneity at the transcriptional level manifests in the physiologic profile of individual cells in the context of disease progression. PMID:28300162
Shimano, Koichi; Satake, Makoto; Okaya, Atsuhito; Kitanaka, Junichi; Kitanaka, Nobue; Takemura, Motohiko; Sakagami, Masafumi; Terada, Nobuyuki; Tsujimura, Tohru
2003-01-01
Organ-specific stem cells can be identified by the side population (SP) phenotype, which is defined by the property to effectively exclude the Hoechst 33342 dye. The ATP-binding cassette transporter ABCG2/BCRP1 mediates the SP phenotype. Because hepatic oval cells possess several characteristics of stem cells, we examined whether they have the SP phenotype using the 2-acetylaminofluorene/partial hepatectomy (PH) model. Fluorescence-activated cell sorting analysis showed that a population of non-parenchymal cells containing oval cells, prepared on day 7 after PH, carried a significant number of SP cells, whereas that of non-parenchymal cells without oval cells, prepared on day 0 after PH, did not. Northern blot analysis using total liver RNA obtained on various days after PH showed that the expression of ABCG2/BCRP1 mRNA increased after PH, reaching the highest level on day 7, and then gradually decreased. This pattern of changes in the ABCG2/BCRP1 mRNA level was well correlated to that in the number of oval cells. Furthermore, in situ hybridization revealed that oval cells were the sites of expression of ABCG2/BCRP1 mRNA. These results indicate that oval cells have the SP phenotype defined by expression of ABCG2/BCRP1, suggesting that oval cells may represent stem cells in the liver. PMID:12819005
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Kong, Dejuan; Banerjee, Sanjeev; Ahmad, Aamir; Li, Yiwei; Azmi, Asfar S.; Miele, Lucio; Sarkar, Fazlul H.
2011-01-01
FoxM1 is known to play important role in the development and progression of many malignancies including pancreatic cancer. Studies have shown that the acquisition of Epithelial-to-mesenchymal transition (EMT) phenotype and induction of cancer stem cell (CSC) or cancer stem-like cell phenotypes are highly inter-related, and contributes to drug resistance, tumor recurrence and metastasis. The molecular mechanism(s) by which FoxM1 contributes to the acquisition of EMT phenotype and induction of CSC self-renewal capacity is poorly understood. Therefore, we established FoxM1 over-expressing pancreatic cancer (AsPC-1) cells, which showed increased cell growth, clonogenicity and cell migration. Moreover, over-expression of FoxM1 led to the acquisition of EMT phenotype by activation of mesenchymal cell markers, ZEB1, ZEB2, Snail2, E-cadherin, and vimentin, which is consistent with increased sphere-forming (pancreatospheres) capacity and expression of CSC surface markers (CD44 and EpCAM). We also found that over-expression of FoxM1 led to decreased expression of miRNAs (let-7a, let-7b, let-7c, miR-200b and miR-200c); however, re-expression of miR-200b inhibited the expression of ZEB1, ZEB2, vimentin as well as FoxM1, and induced the expression of E-cadherin, leading to the reversal of EMT phenotype. Finally, we found that genistein, a natural chemo-preventive agent, inhibited cell growth, clonogenicity, cell migration and invasion, EMT phenotype, and formation of pancreatospheres consistent with reduced expression of CD44 and EpCAM. These results suggest, for the first time, that FoxM1 over-expression is responsible for the acquisition of EMT and CSC phenotype, which is in part mediated through the regulation of miR-200b and these processes, could be easily attenuated by genistein. PMID:21503965
Mesenchymal Stem Cell Spheroids Retain Osteogenic Phenotype Through α2β1 Signaling
Murphy, Kaitlin C.; Hoch, Allison I.; Harvestine, Jenna N.; Zhou, Dejie
2016-01-01
The induction of mesenchymal stem cells (MSCs) toward the osteoblastic lineage using osteogenic supplements prior to implantation is one approach under examination to enhance their bone-forming potential. MSCs rapidly lose their induced phenotype upon removal of the soluble stimuli; however, their bone-forming potential can be sustained when provided with continued instruction via extracellular matrix (ECM) cues. In comparison with dissociated cells, MSC spheroids exhibit improved survival and secretion of trophic factors while maintaining their osteogenic potential. We hypothesized that entrapment of MSC spheroids formed from osteogenically induced cells would exhibit better preservation of their bone-forming potential than would dissociated cells from monolayer culture. Spheroids exhibited comparable osteogenic potential and increased proangiogenic potential with or without osteogenic preconditioning versus monolayer-cultured MSCs. Spheroids were then entrapped in collagen hydrogels, and the osteogenic stimulus was removed. In comparison with entrapped dissociated MSCs, spheroids exhibited significantly increased markers of osteogenic differentiation. The capacity of MSC spheroids to retain their osteogenic phenotype upon withdrawal of inductive cues was mediated by α2β1 integrin binding to cell-secreted ECM. These results demonstrate the capacity of spheroidal culture to sustain the mineral-producing phenotype of MSCs, thus enhancing their contribution toward bone formation and repair. Significance Despite the promise of mesenchymal stem cells (MSCs) for cell-based therapies for tissue repair and regeneration, there is little evidence that transplanted MSCs directly contribute to new bone formation, suggesting that induced cells rapidly lose their osteogenic phenotype or undergo apoptosis. In comparison with dissociated cells, MSC spheroids exhibit increased trophic factor secretion and improved cell survival. The loss of phenotype represents a significant clinical challenge for cell therapies, yet there is no evidence for whether MSC spheroids retain their osteogenic phenotype upon entrapment in a clinically relevant biomaterial. These findings demonstrate that MSC spheroids retain their osteogenic phenotype better than do dissociated MSCs, and this is due to integrin engagement with the cell-secreted extracellular matrix. These data provide evidence for a novel approach for potentiating the use of MSCs in bone repair. PMID:27365484
Ben-Ari, Meital; Naor, Shulamit; Zeevi-Levin, Naama; Schick, Revital; Ben Jehuda, Ronen; Reiter, Irina; Raveh, Amit; Grijnevitch, Inna; Barak, Omri; Rosen, Michael R; Weissman, Amir; Binah, Ofer
2016-12-01
Previous studies proposed that throughout differentiation of human induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs), only 3 types of action potentials (APs) exist: nodal-, atrial-, and ventricular-like. To investigate whether there are precisely 3 phenotypes or a continuum exists among them, we tested 2 hypotheses: (1) During culture development a cardiac precursor cell is present that-depending on age-can evolve into the 3 phenotypes. (2) The predominant pattern is early prevalence of a nodal phenotype, transient appearance of an atrial phenotype, evolution to a ventricular phenotype, and persistence of transitional phenotypes. To test these hypotheses, we (1) performed fluorescence-activated cell sorting analysis of nodal, atrial, and ventricular markers; (2) recorded APs from 280 7- to 95-day-old iPSC-CMs; and (3) analyzed AP characteristics. The major findings were as follows: (1) fluorescence-activated cell sorting analysis of 30- and 60-day-old cultures showed that an iPSC-CMs population shifts from the nodal to the atrial/ventricular phenotype while including significant transitional populations; (2) the AP population did not consist of 3 phenotypes; (3) culture aging was associated with a shift from nodal to ventricular dominance, with a transient (57-70 days) appearance of the atrial phenotype; and (4) beat rate variability was more prominent in nodal than in ventricular cardiomyocytes, while pacemaker current density increased in older cultures. From the onset of development in culture, the iPSC-CMs population includes nodal, atrial, and ventricular APs and a broad spectrum of transitional phenotypes. The most readily distinguishable phenotype is atrial, which appears only transiently yet dominates at 57-70 days of evolution. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Computerized image analysis for quantitative neuronal phenotyping in zebrafish.
Liu, Tianming; Lu, Jianfeng; Wang, Ye; Campbell, William A; Huang, Ling; Zhu, Jinmin; Xia, Weiming; Wong, Stephen T C
2006-06-15
An integrated microscope image analysis pipeline is developed for automatic analysis and quantification of phenotypes in zebrafish with altered expression of Alzheimer's disease (AD)-linked genes. We hypothesize that a slight impairment of neuronal integrity in a large number of zebrafish carrying the mutant genotype can be detected through the computerized image analysis method. Key functionalities of our zebrafish image processing pipeline include quantification of neuron loss in zebrafish embryos due to knockdown of AD-linked genes, automatic detection of defective somites, and quantitative measurement of gene expression levels in zebrafish with altered expression of AD-linked genes or treatment with a chemical compound. These quantitative measurements enable the archival of analyzed results and relevant meta-data. The structured database is organized for statistical analysis and data modeling to better understand neuronal integrity and phenotypic changes of zebrafish under different perturbations. Our results show that the computerized analysis is comparable to manual counting with equivalent accuracy and improved efficacy and consistency. Development of such an automated data analysis pipeline represents a significant step forward to achieve accurate and reproducible quantification of neuronal phenotypes in large scale or high-throughput zebrafish imaging studies.
QuantWorm: a comprehensive software package for Caenorhabditis elegans phenotypic assays.
Jung, Sang-Kyu; Aleman-Meza, Boanerges; Riepe, Celeste; Zhong, Weiwei
2014-01-01
Phenotypic assays are crucial in genetics; however, traditional methods that rely on human observation are unsuitable for quantitative, large-scale experiments. Furthermore, there is an increasing need for comprehensive analyses of multiple phenotypes to provide multidimensional information. Here we developed an automated, high-throughput computer imaging system for quantifying multiple Caenorhabditis elegans phenotypes. Our imaging system is composed of a microscope equipped with a digital camera and a motorized stage connected to a computer running the QuantWorm software package. Currently, the software package contains one data acquisition module and four image analysis programs: WormLifespan, WormLocomotion, WormLength, and WormEgg. The data acquisition module collects images and videos. The WormLifespan software counts the number of moving worms by using two time-lapse images; the WormLocomotion software computes the velocity of moving worms; the WormLength software measures worm body size; and the WormEgg software counts the number of eggs. To evaluate the performance of our software, we compared the results of our software with manual measurements. We then demonstrated the application of the QuantWorm software in a drug assay and a genetic assay. Overall, the QuantWorm software provided accurate measurements at a high speed. Software source code, executable programs, and sample images are available at www.quantworm.org. Our software package has several advantages over current imaging systems for C. elegans. It is an all-in-one package for quantifying multiple phenotypes. The QuantWorm software is written in Java and its source code is freely available, so it does not require use of commercial software or libraries. It can be run on multiple platforms and easily customized to cope with new methods and requirements.
Three-Dimensional Reflectance Traction Microscopy
Jones, Christopher A. R.; Groves, Nicholas Scott; Sun, Bo
2016-01-01
Cells in three-dimensional (3D) environments exhibit very different biochemical and biophysical phenotypes compared to the behavior of cells in two-dimensional (2D) environments. As an important biomechanical measurement, 2D traction force microscopy can not be directly extended into 3D cases. In order to quantitatively characterize the contraction field, we have developed 3D reflectance traction microscopy which combines confocal reflection imaging and partial volume correlation postprocessing. We have measured the deformation field of collagen gel under controlled mechanical stress. We have also characterized the deformation field generated by invasive breast cancer cells of different morphologies in 3D collagen matrix. In contrast to employ dispersed tracing particles or fluorescently-tagged matrix proteins, our methods provide a label-free, computationally effective strategy to study the cell mechanics in native 3D extracellular matrix. PMID:27304456
Lewandowski, L. J.; Lief, F. S.; Verini, M. A.; Pienkowski, M. M.; ter Meulen, V.; Koprowski, H.
1974-01-01
A virus originally isolated from cell cultures obtained by lysolecithin-induced fusion of human multiple sclerosis brain cells with CV-1 cells has been analyzed for its antigenic, RNA, and polypeptide compositions, and for selective biological properties. Our findings establish that this isolate, designated 6/94 virus, contains a 50S RNA genome and is, as yet, indistinguishable from Sendai virus in its antigenic and total polypeptide compositions. Despite these similarities, the 6/94 and Sendai viruses differ in certain phenotypic properties. 6/94 virus is markedly less cytocidal for chick fibroblasts, especially at 37 C and, after β-propiolactone inactivation, it possesses a greater capacity for cell fusion and a lower toxicity than does comparably treated Sendai virus. In addition, 6/94 virus shows greater hemolytic activity. Images PMID:4363249
Unilateral giant cell lesion of the jaw in Noonan syndrome.
Eyselbergs, M; Vanhoenacker, F; Hintjens, J; Dom, M; Devriendt, K; Van Dijck, H
2014-01-01
Noonan syndrome (NS) is an etiologically heterogeneous disorder caused by mutations in the RAS-MAPK signaling pathway. Noonan-Like/Multiple Giant Cell Lesion (NL/MGCL) syndrome is initially described as the occurrence of multiple gnathic giant cell lesions in patients with phenotypic features of NS. Nowadays, NS/MGCL syndrome is considered a variant of the NS spectrum rather than a distinct entity. We report the case of a 14-year-old female patient carrying a SOS1 mutation with a unilateral giant cell lesion of the right mandible. Cross-sectional imaging such as CT and MRI are not specific for the diagnosis of oral giant cell lesions. Nonetheless, intralesional scattered foci of low SI on T2-WI, corresponding to hemosiderin deposits due to hemorrhage, can help the radiologist in narrowing down the differential diagnosis of gnathic lesions in patients with NS.
Della Valle, G; Fenton, R G; Basilico, C
1981-01-01
To study the mechanism of deoxyribonucleic acid (DNA)-mediated gene transfer, normal rat cells were transfected with total cellular DNA extracted from polyoma virus-transformed cells. This resulted in the appearance of the transformed phenotype in 1 X 10(-6) to 3 X 10(-6) of the transfected cells. Transformation was invariably associated with the acquisition of integrated viral DNA sequences characteristic of the donor DNA. This was caused not by the integration of free DNA molecules, but by the transfer of large DNA fragments (10 to 20 kilobases) containing linked cellular and viral sequences. Although Southern blot analysis showed that integration did not appear to occur in a homologous region of the recipient chromosome, the frequency of transformation was rather high when compared with that of purified polyoma DNA, perhaps due to "position" effects or to the high efficiency of recombination of large DNA fragments. Images PMID:6100965
Lourenço, O; Fonseca, A M; Paiva, A; Arosa, F A; Taborda-Barata, L
2006-01-01
CD8+ T suppressor cells may play a role in immunoregulation. Recent studies have characterized this population by the lack of the CD28 molecule. These CD8+CD28 T cells differ phenotypically and functionally from CD8 + CD28 + T cells. Little is known about CD8 + CD28 cells in atopy. Our aim was to analyze the phenotype and functional properties of CD8 + CD28T cells in atopic and non-atopic individuals. Peripheral blood mononuclear cells (PBMC) were obtained after density gradient centrifugation. CD8 + CD28 and CD8 + CD28 + T cells were isolated using immunomagnetic beads. Relative percentages of these cells and expression of several phenotypic markers were analyzed by flow cytometry. Proliferation was assessed by thymidine incorporation in isolated populations and in co-cultures with PBMC using Dermatophagoides pteronyssinus as stimulus. Cytokine synthesis was evaluated in culture supernatants by cytometric bead array. The relative percentages of CD8+CD28 T cells and their phenotypic expression in atopic and non-atopic volunteers were not significantly different. However, CD8 + CD28 T cells showed greater proliferation than did CD8+CD28+ T cells when stimulated with D. pteronyssinus, although cytokine synthesis patterns were similar. CD8+CD28 co-cultures with PBMC showed greater proliferation than CD8+CD28+ T cell co-cultures, but cytokine synthesis patterns were not different. Our data confirm phenotypic and functional differences between CD28+ and CD28 T cells, irrespective of atopic status. Purified human CD8+CD28 T cells, freshly isolated from peripheral blood, do not have suppressor properties on allergen-specific proliferation or on cytokine synthesis in PBMC.
Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence
de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira
2014-01-01
Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361
Radiofrequency treatment alters cancer cell phenotype
NASA Astrophysics Data System (ADS)
Ware, Matthew J.; Tinger, Sophia; Colbert, Kevin L.; Corr, Stuart J.; Rees, Paul; Koshkina, Nadezhda; Curley, Steven; Summers, H. D.; Godin, Biana
2015-07-01
The importance of evaluating physical cues in cancer research is gradually being realized. Assessment of cancer cell physical appearance, or phenotype, may provide information on changes in cellular behavior, including migratory or communicative changes. These characteristics are intrinsically different between malignant and non-malignant cells and change in response to therapy or in the progression of the disease. Here, we report that pancreatic cancer cell phenotype was altered in response to a physical method for cancer therapy, a non-invasive radiofrequency (RF) treatment, which is currently being developed for human trials. We provide a battery of tests to explore these phenotype characteristics. Our data show that cell topography, morphology, motility, adhesion and division change as a result of the treatment. These may have consequences for tissue architecture, for diffusion of anti-cancer therapeutics and cancer cell susceptibility within the tumor. Clear phenotypical differences were observed between cancerous and normal cells in both their untreated states and in their response to RF therapy. We also report, for the first time, a transfer of microsized particles through tunneling nanotubes, which were produced by cancer cells in response to RF therapy. Additionally, we provide evidence that various sub-populations of cancer cells heterogeneously respond to RF treatment.
Micro-tattoo guided OCT imaging of site specific inflammation
NASA Astrophysics Data System (ADS)
Phillips, Kevin G.; Choudhury, Niloy; Samatham, Ravikant V.; Singh, Harvinder; Jacques, Steven L.
2010-02-01
Epithelial biologists studying human skin diseases such as cancer formation and psoriasis commonly utilize mouse models to characterize the interplay among cells and intracellular signal transduction pathways that result in programmed changes in gene expression and cellular behaviors. The information obtained from animal models is useful only when phenotypic presentations of disease recapitulate those observed in humans. Excision of tissues followed by histochemical analysis is currently the primary means of establishing the morphological presentation. Non invasive imaging of animal models provides an alternate means to characterize tissue morphology associated with the disease of interest in vivo. While useful, the ability to perform in vivo imaging at different time points in the same tissue location has been a challenge. This information is key to understanding site specific changes as the imaged tissue can now be extracted and analyzed for mRNA expression. We present a method employing a micro-tattoo to guide optical coherence tomography (OCT) imaging of ultraviolet induced inflammation over time in the same tissue locations.
Axelrod, Kevin; Sanchez, Alvaro; Gore, Jeff
2015-01-01
Microorganisms often exhibit a history-dependent phenotypic response after exposure to a stimulus which can be imperative for proper function. However, cells frequently experience unexpected environmental perturbations that might induce phenotypic switching. How cells maintain phenotypic states in the face of environmental fluctuations remains an open question. Here, we use environmental perturbations to characterize the resilience of phenotypic states in a synthetic gene network near a critical transition. We find that far from the critical transition an environmental perturbation may induce little to no phenotypic switching, whereas close to the critical transition the same perturbation can cause many cells to switch phenotypic states. This loss of resilience was observed for perturbations that interact directly with the gene circuit as well as for a variety of generic perturbations-such as salt, ethanol, or temperature shocks-that alter the state of the cell more broadly. We obtain qualitatively similar findings in natural gene circuits, such as the yeast GAL network. Our findings illustrate how phenotypic memory can become destabilized by environmental variability near a critical transition. DOI: http://dx.doi.org/10.7554/eLife.07935.001 PMID:26302311
DNA fragmentation and nuclear phenotype in tendons exposed to low-intensity infrared laser
NASA Astrophysics Data System (ADS)
de Paoli, Flavia; Ramos Cerqueira, Larissa; Martins Ramos, Mayara; Campos, Vera M.; Ferreira-Machado, Samara C.; Geller, Mauro; de Souza da Fonseca, Adenilson
2015-03-01
Clinical protocols are recommended in device guidelines outlined for treating many diseases on empirical basis. However, effects of low-intensity infrared lasers at fluences used in clinical protocols on DNA are controversial. Excitation of endogenous chromophores in tissues and free radicals generation could be described as a consequence of laser used. DNA lesions induced by free radicals cause changes in DNA structure, chromatin organization, ploidy degrees and cell death. In this work, we investigated whether low-intensity infrared laser therapy could alter the fibroblasts nuclei characteristics and induce DNA fragmentation. Tendons of Wistar rats were exposed to low-intensity infrared laser (830 nm), at different fluences (1, 5 and 10 J/cm2), in continuous wave (power output of 10mW, power density of 79.6 mW/cm2). Different frequencies were analyzed for the higher fluence (10 J/cm2), at pulsed emission mode (2.5, 250 and 2500 Hz), with the laser source at surface of skin. Geometric, densitometric and textural parameters obtained for Feulgen-stained nuclei by image analysis were used to define nuclear phenotypes. Significant differences were observed on the nuclear phenotype of tendons after exposure to laser, as well as, high cell death percentages was observed for all fluences and frequencies analyzed here, exception 1 J/cm2 fluence. Our results indicate that low-intensity infrared laser can alter geometric, densitometric and textural parameters in tendon fibroblasts nuclei. Laser can also induce DNA fragmentation, chromatin lost and consequently cell death, using fluences, frequencies and emission modes took out from clinical protocols.
Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid
2016-01-01
With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments. PMID:27529152
Arend, Daniel; Lange, Matthias; Pape, Jean-Michel; Weigelt-Fischer, Kathleen; Arana-Ceballos, Fernando; Mücke, Ingo; Klukas, Christian; Altmann, Thomas; Scholz, Uwe; Junker, Astrid
2016-08-16
With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features. Such datasets require detailed documentation, standardized description of experimental metadata as well as sustainable data storage and publication in order to ensure the reproducibility of experiments, data reuse and comparability among the scientific community. Therefore the here presented dataset has been annotated using the standardized ISA-Tab format and considering the recently published recommendations for the semantical description of plant phenotyping experiments.
Attrition of memory CD8 T cells during sepsis requires LFA-1.
Serbanescu, Mara A; Ramonell, Kimberly M; Hadley, Annette; Margoles, Lindsay M; Mittal, Rohit; Lyons, John D; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L; McConnell, Kevin W
2016-11-01
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69 + CD25 int CD62L HI ) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain "unactivated" (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44 HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis. © Society for Leukocyte Biology.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P
2016-05-31
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.
2016-01-01
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916
Attrition of memory CD8 T cells during sepsis requires LFA-1
Serbanescu, Mara A.; Ramonell, Kimberly M.; Hadley, Annette; Margoles, Lindsay M.; Mittal, Rohit; Lyons, John D.; Liang, Zhe; Coopersmith, Craig M.; Ford, Mandy L.; McConnell, Kevin W.
2016-01-01
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69+CD25intCD62LHI) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain “unactivated” (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis. PMID:27286793
Ji, Wenxiang; Yu, Yongfeng; Li, Ziming; Wang, Guan; Li, Fan; Xia, Weiliang; Lu, Shun
2016-03-22
Cancer stem cell-like phenotype is critical for tumor formation and treatment resistance. FGFR1 is found to be amplified in non-small cell lung cancer, particularly in the lung squamous cell cancer (LSCC). Whether FGFR1 contributes to the maintenance of stem cell-like phenotype of FGFR1-amplified lung cancer cells remains elusive. In this study, treatment with FGFR1 inhibitor AZD4547 suppressed the growth of tumor spheres and reduced ALDH positive proportion in FGFR1-amplified lung cancer cells in vitro, as well as inhibited the growth of oncospheres and parental cells in xenograft models. Knockdown of FGFR1 recaptured the similar effect as AZD4547 in vitro. Furthermore, activation of FGFR1 and subsequently its downstream ERK signaling enhanced the expression and transcriptional activity of GLI2, which could be blocked by FGFR1 inhibitor/silencing or ERK inhibitor. Knockdown of GLI2 directly inhibited the stem-like phenotype of FGFR1-amilified cells, whereas overexpression of GLI2 sufficiently rescued the phenotype caused by FGFR1 knockdown. Notably we also identified a correlation between FGFR1 and GLI2 expressions from clinical data, as well as an inverse relationship with progression free survival (PFS). Together our study suggests that the FGFR1/GLI2 axis promotes the lung cancer stem cell-like phenotype. These results support a rational strategy of combination of FGFR1 and GLI inhibitors for treatment of FGFR1-amplified lung cancers, especially LSCC.
Wagner, Bridget K.; Clemons, Paul A.
2009-01-01
Discovering small-molecule modulators for thousands of gene products requires multiple stages of biological testing, specificity evaluation, and chemical optimization. Many cellular profiling methods, including cellular sensitivity, gene-expression, and cellular imaging, have emerged as methods to assess the functional consequences of biological perturbations. Cellular profiling methods applied to small-molecule science provide opportunities to use complex phenotypic information to prioritize and optimize small-molecule structures simultaneously against multiple biological endpoints. As throughput increases and cost decreases for such technologies, we see an emerging paradigm of using more information earlier in probe- and drug-discovery efforts. Moreover, increasing access to public datasets makes possible the construction of “virtual” profiles of small-molecule performance, even when multiplexed measurements were not performed or when multidimensional profiling was not the original intent. We review some key conceptual advances in small-molecule phenotypic profiling, emphasizing connections to other information, such as protein-binding measurements, genetic perturbations, and cell states. We argue that to maximally leverage these measurements in probe and drug discovery requires a fundamental connection to synthetic chemistry, allowing the consequences of synthetic decisions to be described in terms of changes in small-molecule profiles. Mining such data in the context of chemical structure and synthesis strategies can inform decisions about chemistry procurement and library development, leading to optimal small-molecule screening collections. PMID:19825513
NASA Astrophysics Data System (ADS)
Zhang, Lu; Wang, Yao; Tang, Yaohui; Jiao, Zheng; Xie, Chengying; Zhang, Haijiao; Gu, Ping; Wei, Xunbin; Yang, Guo-Yuan; Gu, Hongchen; Zhang, Chunfu
2013-05-01
Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future.Multifunctional probes with high MRI sensitivity and high efficiency for cell labeling are desirable for MR cell imaging. Herein, we have fabricated fluorescent mesoporous silica-coated superparamagnetic iron oxide nanoparticles (fmSiO4@SPIONs) for neural progenitor cell (C17.2) MR imaging. FmSiO4@SPIONs were discrete and uniform in size, and had a clear core-shell structure. The magnetic core size was about 10 nm and the fluorescent mesoporous silica coating layer was around 20 nm. Compared with fluorescent dense silica-coated SPIONs (fdSiO4@SPIONs) with a similar size, fmSiO4@SPIONs demonstrated higher MR sensitivity and cell labeling efficiency. When implanted into the right hemisphere of stroke mice, contralateral to the ischemic territory, a small amount of labeled cells were able to be tracked migrating to the lesion sites using a clinical MRI scanner (3 T). More impressively, even when administered intravenously, the labeled cells could also be monitored homing to the ischemic area. MRI observations were corroborated by histological studies of the brain tissues. Our study demonstrated that fmSiO4@SPIONs are highly effective for cell imaging and hold great promise for MRI cell tracking in future. Electronic supplementary information (ESI) available: Details of cell internalization of fmSiO4@SPIONs compared with SHU555A, immunofluorescence image of the immature phenotype of labeled C17.2. See DOI: 10.1039/c3nr00119a
NASA Astrophysics Data System (ADS)
Horvath, D.; Brutovsky, B.
2018-06-01
Reversibility of state transitions is intensively studied topic in many scientific disciplines over many years. In cell biology, it plays an important role in epigenetic variation of phenotypes, known as phenotypic plasticity. More interestingly, the cell state reversibility is probably crucial in the adaptation of population phenotypic heterogeneity to environmental fluctuations by evolving bet-hedging strategy, which might confer to cancer cells resistance to therapy. In this article, we propose a formalization of the evolution of highly reversible states in the environments of periodic variability. Two interrelated models of heterogeneous cell populations are proposed and their behavior is studied. The first model captures selection dynamics of the cell clones for the respective levels of phenotypic reversibility. The second model focuses on the interplay between reversibility and drug resistance in the particular case of cancer. Overall, our results show that the threshold dependencies are emergent features of the investigated model with eventual therapeutic relevance. Presented examples demonstrate importance of taking into account cell to cell heterogeneity within a system of clones with different reversibility quantified by appropriately chosen genetic and epigenetic entropy measures.
Inflammatory cell phenotypes in AAAs: their role and potential as targets for therapy.
Dale, Matthew A; Ruhlman, Melissa K; Baxter, B Timothy
2015-08-01
Abdominal aortic aneurysms (AAAs) are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused ≈15 000 deaths annually in the United States. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4(+) T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Proinflammatory CD4(+) T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to proinflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the proinflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. © 2015 American Heart Association, Inc.
Inflammatory cell phenotypes in AAAs; their role and potential as targets for therapy
Dale, Matthew A; Ruhlman, Melissa K.; Baxter, B. Timothy
2015-01-01
Abdominal aortic aneurysms are characterized by chronic inflammatory cell infiltration. AAA is typically an asymptomatic disease and caused approximately 15,000 deaths annually in the U.S. Previous studies have examined both human and murine aortic tissue for the presence of various inflammatory cell types. Studies show that in both human and experimental AAAs, prominent inflammatory cell infiltration, such as CD4+ T cells and macrophages, occurs in the damaged aortic wall. These cells have the ability to undergo phenotypic modulation based on microenvironmental cues, potentially influencing disease progression. Pro-inflammatory CD4+ T cells and classically activated macrophages dominate the landscape of aortic infiltrates. The skew to pro-inflammatory phenotypes alters disease progression and plays a role in causing chronic inflammation. The local cytokine production and presence of inflammatory mediators, such as extracellular matrix breakdown products, influence the uneven balance of the inflammatory infiltrate phenotypes. Understanding and developing new strategies that target the pro-inflammatory phenotype could provide useful therapeutic targets for a disease with no current pharmacological intervention. PMID:26044582
TenHave-Opbroek, A. A.; Hammond, W. G.; Benfield, J. R.; Teplitz, R. L.; Dijkman, J. H.
1993-01-01
The type II alveolar epithelial cell is one of two pluripotential stem cell phenotypes in normal mammalian lung morphogenesis; cells manifesting this phenotype have been found to constitute bronchioloalveolar regions of canine adenocarcinomas. We now studied type II cell expression in canine acinar adenocarcinomas and adenoid cystic (bronchial gland) carcinomas, using the same bronchogenic carcinoma model (subcutaneous bronchial autografts treated with 3-methylcholanthrene). Distinctive features of type II cells are the approximately cuboid cell shape, large and roundish nucleus, immunofluorescent staining of the cytoplasm for the surfactant protein SP-A, and presence of multilamellar bodies or their precursory forms. Cells with these type II cell characteristics were found in the basal epithelial layer of all tumor lesions and in upper layers as far as the lumen, singly or in clusters; they were also found in early invasive carcinomatous lesions but not in bronchial glands or bronchial epithelium before carcinogen exposure. Immunoblots of tumor homogenates showed reactive proteins within size classes of SP-A (28 to 36 kd) or its dimeric form (56 to 72 kd). These findings and those previously reported are consistent with the concept that chemical carcinogenesis in the adult bronchial epithelium may lead to type II cell carcinomas of varying glandular (acinar, adenoidcystic or bronchioloalveolar) growth patterns. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 PMID:8386445
Vargas, K; Wertz, P W; Drake, D; Morrow, B; Soll, D R
1994-04-01
Cells of the laboratory strain 3153A of Candida albicans can be stimulated to undergo high-frequency phenotypic switching by a low dose of UV. We have compared the adhesive properties of cells exhibiting the basic original smooth (o-smooth) phenotype and three switch phenotypes (star, irregular wrinkle, and revertant smooth) to buccal epithelium and stratum corneum. The generalized hierarchy of adhesion is as follows: o-smooth > irregular wrinkle > revertant smooth > star. This is the inverse of the hierarchy of the proportions of elongate hyphae formed by these phenotypes in culture. These results suggest that the differences in adhesion between o-smooth and the three switch phenotypes of strain 3153A reflect, at least in part, the level of interference due to the formation of elongate hyphae, which tend to cause clumping in suspension. No major differences in the levels of adhesion of cells of the different phenotypes between buccal epithelium and stratum corneum were observed. Results which demonstrate that buccal epithelium induces germination (hypha formation) by conditioning the medium are also presented.
The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.
Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron
2017-06-26
Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.
Network motifs that stabilize the hybrid epithelial/mesenchymal phenotype
NASA Astrophysics Data System (ADS)
Jolly, Mohit Kumar; Jia, Dongya; Tripathi, Satyendra; Hanash, Samir; Mani, Sendurai; Ben-Jacob, Eshel; Levine, Herbert
Epithelial to Mesenchymal Transition (EMT) and its reverse - MET - are hallmarks of cancer metastasis. While transitioning between E and M phenotypes, cells can also attain a hybrid epithelial/mesenchymal (E/M) phenotype that enables collective cell migration as a cluster of Circulating Tumor Cells (CTCs). These clusters can form 50-times more tumors than individually migrating CTCs, underlining their importance in metastasis. However, this hybrid E/M phenotype has been hypothesized to be only a transient one that is attained en route EMT. Here, via mathematically modeling, we identify certain `phenotypic stability factors' that couple with the core three-way decision-making circuit (miR-200/ZEB) and can maintain or stabilize the hybrid E/M phenotype. Further, we show experimentally that this phenotype can be maintained stably at a single-cell level, and knockdown of these factors impairs collective cell migration. We also show that these factors enable the association of hybrid E/M with high stemness or tumor-initiating potential. Finally, based on these factors, we deduce specific network motifs that can maintain the E/M phenotype. Our framework can be used to elucidate the effect of other players in regulating cellular plasticity during metastasis. This work was supported by NSF PHY-1427654 (Center for Theoretical Biological Physics) and the CPRIT Scholar in Cancer Research of the State of Texas at Rice University.
Chen, Dijun; Neumann, Kerstin; Friedel, Swetlana; Kilian, Benjamin; Chen, Ming; Altmann, Thomas; Klukas, Christian
2014-01-01
Significantly improved crop varieties are urgently needed to feed the rapidly growing human population under changing climates. While genome sequence information and excellent genomic tools are in place for major crop species, the systematic quantification of phenotypic traits or components thereof in a high-throughput fashion remains an enormous challenge. In order to help bridge the genotype to phenotype gap, we developed a comprehensive framework for high-throughput phenotype data analysis in plants, which enables the extraction of an extensive list of phenotypic traits from nondestructive plant imaging over time. As a proof of concept, we investigated the phenotypic components of the drought responses of 18 different barley (Hordeum vulgare) cultivars during vegetative growth. We analyzed dynamic properties of trait expression over growth time based on 54 representative phenotypic features. The data are highly valuable to understand plant development and to further quantify growth and crop performance features. We tested various growth models to predict plant biomass accumulation and identified several relevant parameters that support biological interpretation of plant growth and stress tolerance. These image-based traits and model-derived parameters are promising for subsequent genetic mapping to uncover the genetic basis of complex agronomic traits. Taken together, we anticipate that the analytical framework and analysis results presented here will be useful to advance our views of phenotypic trait components underlying plant development and their responses to environmental cues. PMID:25501589
Zhu, Wensheng; Yuan, Ying; Zhang, Jingwen; Zhou, Fan; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-02-01
The aim of this paper is to systematically evaluate a biased sampling issue associated with genome-wide association analysis (GWAS) of imaging phenotypes for most imaging genetic studies, including the Alzheimer's Disease Neuroimaging Initiative (ADNI). Specifically, the original sampling scheme of these imaging genetic studies is primarily the retrospective case-control design, whereas most existing statistical analyses of these studies ignore such sampling scheme by directly correlating imaging phenotypes (called the secondary traits) with genotype. Although it has been well documented in genetic epidemiology that ignoring the case-control sampling scheme can produce highly biased estimates, and subsequently lead to misleading results and suspicious associations, such findings are not well documented in imaging genetics. We use extensive simulations and a large-scale imaging genetic data analysis of the Alzheimer's Disease Neuroimaging Initiative (ADNI) data to evaluate the effects of the case-control sampling scheme on GWAS results based on some standard statistical methods, such as linear regression methods, while comparing it with several advanced statistical methods that appropriately adjust for the case-control sampling scheme. Copyright © 2016 Elsevier Inc. All rights reserved.
Minervini, Massimo; Giuffrida, Mario V; Perata, Pierdomenico; Tsaftaris, Sotirios A
2017-04-01
Phenotyping is important to understand plant biology, but current solutions are costly, not versatile or are difficult to deploy. To solve this problem, we present Phenotiki, an affordable system for plant phenotyping that, relying on off-the-shelf parts, provides an easy to install and maintain platform, offering an out-of-box experience for a well-established phenotyping need: imaging rosette-shaped plants. The accompanying software (with available source code) processes data originating from our device seamlessly and automatically. Our software relies on machine learning to devise robust algorithms, and includes an automated leaf count obtained from 2D images without the need of depth (3D). Our affordable device (~€200) can be deployed in growth chambers or greenhouse to acquire optical 2D images of approximately up to 60 adult Arabidopsis rosettes concurrently. Data from the device are processed remotely on a workstation or via a cloud application (based on CyVerse). In this paper, we present a proof-of-concept validation experiment on top-view images of 24 Arabidopsis plants in a combination of genotypes that has not been compared previously. Phenotypic analysis with respect to morphology, growth, color and leaf count has not been performed comprehensively before now. We confirm the findings of others on some of the extracted traits, showing that we can phenotype at reduced cost. We also perform extensive validations with external measurements and with higher fidelity equipment, and find no loss in statistical accuracy when we use the affordable setting that we propose. Device set-up instructions and analysis software are publicly available ( http://phenotiki.com). © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
The phenotypic equilibrium of cancer cells: From average-level stability to path-wise convergence.
Niu, Yuanling; Wang, Yue; Zhou, Da
2015-12-07
The phenotypic equilibrium, i.e. heterogeneous population of cancer cells tending to a fixed equilibrium of phenotypic proportions, has received much attention in cancer biology very recently. In the previous literature, some theoretical models were used to predict the experimental phenomena of the phenotypic equilibrium, which were often explained by different concepts of stabilities of the models. Here we present a stochastic multi-phenotype branching model by integrating conventional cellular hierarchy with phenotypic plasticity mechanisms of cancer cells. Based on our model, it is shown that: (i) our model can serve as a framework to unify the previous models for the phenotypic equilibrium, and then harmonizes the different kinds of average-level stabilities proposed in these models; and (ii) path-wise convergence of our model provides a deeper understanding to the phenotypic equilibrium from stochastic point of view. That is, the emergence of the phenotypic equilibrium is rooted in the stochastic nature of (almost) every sample path, the average-level stability just follows from it by averaging stochastic samples. Copyright © 2015 Elsevier Ltd. All rights reserved.
Shen, Wei-Bin; Plachez, Celine; Chan, Amanda; Yarnell, Deborah; Puche, Adam C; Fishman, Paul S; Yarowsky, Paul
2013-01-01
Ultrasmall superparamagnetic iron-oxide particles (USPIOs) loaded into stem cells have been suggested as a way to track stem cell transplantation with magnetic resonance imaging, but the labeling, and post-labeling proliferation, viability, differentiation, and retention of USPIOs within the stem cells have yet to be determined for each type of stem cell and for each type of USPIO. Molday ION Rhodamine B™ (BioPAL, Worcester, MA, USA) (MIRB) has been shown to be a USPIO labeling agent for mesenchymal stem cells, glial progenitor cells, and stem cell lines. In this study, we have evaluated MIRB labeling in human neuroprogenitor cells and found that human neuroprogenitor cells are effectively labeled with MIRB without use of transfection reagents. Viability, proliferation, and differentiation properties are unchanged between MIRB-labeled neuroprogenitors cells and unlabeled cells. Moreover, MIRB-labeled human neuroprogenitor cells can be frozen, thawed, and replated without loss of MIRB or even without loss of their intrinsic biology. Overall, those results show that MIRB has advantageous properties that can be used for cell-based therapy. PMID:24348036
Mechanical phenotyping of tumor cells using a microfluidic cell squeezer device
NASA Astrophysics Data System (ADS)
Khan, Zeina S.; Kamyabi, Nabiollah; Vanapalli, Siva A.
2013-03-01
Studies have indicated that cancer cells have distinct mechanical properties compared to healthy cells. We are investigating the potential of cell mechanics as a biophysical marker for diagnostics and prognosis of cancer. To establish the significance of mechanical properties for cancer diagnostics, a high throughput method is desired. Although techniques such as atomic force microscopy are very precise, they are limited in throughput for cellular mechanical property measurements. To develop a device for high throughput mechanical characterization of tumor cells, we have fabricated a microfludic cell squeezer device that contains narrow micrometer-scale pores. Fluid flow is used to drive cells into these pores mimicking the flow-induced passage of circulating tumor cells through microvasculature. By integrating high speed imaging, the device allows for the simultaneous characterization of five different parameters including the blockage pressure, cell velocity, cell size, elongation and the entry time into squeezer. We have tested a variety of in vitro cell lines, including brain and prostate cancer cell lines, and have found that the entry time is the most sensitive measurement capable of differentiating between cell lines with differing invasiveness.
Fahlgren, Noah; Feldman, Maximilian; Gehan, Malia A; Wilson, Melinda S; Shyu, Christine; Bryant, Douglas W; Hill, Steven T; McEntee, Colton J; Warnasooriya, Sankalpi N; Kumar, Indrajit; Ficor, Tracy; Turnipseed, Stephanie; Gilbert, Kerrigan B; Brutnell, Thomas P; Carrington, James C; Mockler, Todd C; Baxter, Ivan
2015-10-05
Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants, which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Computer Vision (PlantCV) was developed as open-source, hardware platform-independent software for quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica had fundamentally different temporal responses to water availability. While both lines produced similar levels of biomass under limited water conditions, Setaria viridis maintained the same water-use efficiency under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All ∼ 79,000 images acquired during the course of the experiment are publicly available. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.
Sim, Dawn A; Chu, Colin J; Selvam, Senthil; Powner, Michael B; Liyanage, Sidath; Copland, David A; Keane, Pearse A; Tufail, Adnan; Egan, Catherine A; Bainbridge, James W B; Lee, Richard W; Dick, Andrew D; Fruttiger, Marcus
2015-11-01
We have developed a method to label and image myeloid cells infiltrating the mouse retina and choroid in vivo, using a single depot injection of indocyanine green dye (ICG). This was demonstrated using the following ocular models of inflammation and angiogenesis: endotoxin-induced uveitis, experimental autoimmune uveoretinitis and laser-induced choroidal neovascularization model. A near-infrared scanning ophthalmoscope was used for in vivo imaging of the eye, and flow cytometry was used on blood and spleen to assess the number and phenotype of labelled cells. ICG was administered 72 h before the induction of inflammation to ensure clearance from the systemic circulation. We found that in vivo intravenous administration failed to label any leukocytes, whereas depot injection, either intraperitoneal or subcutaneous, was successful in labelling leukocytes infiltrating into the retina. Progression of inflammation in the retina could be traced over a period of 14 days following a single depot injection of ICG. Additionally, bright-field microscopy, spectrophotometry and flow cytometric analysis suggest that the predominant population of cells stained by ICG are circulating myeloid cells. The translation of this approach into clinical practice would enable visualization of immune cells in situ. This will not only provide a greater understanding of pathogenesis, monitoring and assessment of therapy in many human ocular diseases but might also open the ability to image immunity live for neurodegenerative disorders, cardiovascular disease and systemic immune-mediated disorders. © 2015. Published by The Company of Biologists Ltd.
Brown, Robin; Donnelly, Deirdre E; Allen, Derek; Loughrey, Maurice B; Morrison, Patrick J
2014-01-01
Familial Urothelial cell bladder cancer is rare. We report two families with urothelial cell carcinoma (UCC) of bladder with family history in other relatives, displaying probable autosomal dominant inheritance and a late onset pure UCC phenotype, and document the phenotype in each family. Descriptive familial study on two pedigrees over three generations. Two families with UCC bladder were identified, and the phenotype documented, each family having three cases of late onset UCC. Some cases of UCC are hereditary and may display autosomal dominant inheritance with late onset of the cancer. Clinicians should be aware of the existence of a familial late onset UCC phenotype when managing cases of UCC.
Lim, Yat-Yuen; Wright, Josephine A; Attema, Joanne L; Gregory, Philip A; Bert, Andrew G; Smith, Eric; Thomas, Daniel; Lopez, Angel F; Drew, Paul A; Khew-Goodall, Yeesim; Goodall, Gregory J
2013-05-15
The miR-200 family is a key regulator of the epithelial-mesenchymal transition, however, its role in controlling the transition between cancer stem-cell-like and non-stem-cell-like phenotypes is not well understood. We utilized immortalized human mammary epithelial (HMLE) cells to investigate the regulation of the miR-200 family during their conversion to a stem-like phenotype. HMLE cells were found to be capable of spontaneous conversion from a non-stem to a stem-like phenotype and this conversion was accompanied by the loss of miR-200 expression. Stem-like cell fractions isolated from metastatic breast cancers also displayed loss of miR-200 indicating similar molecular changes may occur during breast cancer progression. The phenotypic change observed in HMLE cells was directly controlled by miR-200 because restoration of its expression decreased stem-like properties while promoting a transition to an epithelial phenotype. Investigation of the mechanisms controlling miR-200 expression revealed both DNA methylation and histone modifications were significantly altered in the stem-like and non-stem phenotypes. In particular, in the stem-like phenotype, the miR-200b-200a-429 cluster was silenced primarily through polycomb group-mediated histone modifications whereas the miR-200c-141 cluster was repressed by DNA methylation. These results indicate that the miR-200 family plays a crucial role in the transition between stem-like and non-stem phenotypes and that distinct epigenetic-based mechanisms regulate each miR-200 gene in this process. Therapy targeted against miR-200 family members and epigenetic modifications might therefore be applicable to breast cancer.
Orlando, Paul A; Gatenby, Robert A; Brown, Joel S
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations.
Orlando, Paul A.; Gatenby, Robert A.; Brown, Joel S.
2013-01-01
We apply competition colonization tradeoff models to tumor growth and invasion dynamics to explore the hypothesis that varying selection forces will result in predictable phenotypic differences in cells at the tumor invasive front compared to those in the core. Spatially, ecologically, and evolutionarily explicit partial differential equation models of tumor growth confirm that spatial invasion produces selection pressure for motile phenotypes. The effects of the invasive phenotype on normal adjacent tissue determine the patterns of growth and phenotype distribution. If tumor cells do not destroy their environment, colonizer and competitive phenotypes coexist with the former localized at the invasion front and the latter, to the tumor interior. If tumors cells do destroy their environment, then cell motility is strongly selected resulting in accelerated invasion speed with time. Our results suggest that the widely observed genetic heterogeneity within cancers may not be the stochastic effect of random mutations. Rather, it may be the consequence of predictable variations in environmental selection forces and corresponding phenotypic adaptations. PMID:23508890
Duez, Julien; Carucci, Mario; Garcia-Barbazan, Irene; Corral, Matias; Perez, Oscar; Presa, Jesus Luis; Henry, Benoit; Roussel, Camille; Ndour, Papa Alioune; Rosa, Noemi Bahamontes; Sanz, Laura; Gamo, Francisco-Javier; Buffet, Pierre
2018-06-01
The mechanical retention of rigid erythrocytes in the spleen is central in major hematological diseases such as hereditary spherocytosis, sickle-cell disease and malaria. Here, we describe the use of microsphiltration (microsphere filtration) to assess erythrocyte deformability in hundreds to thousands of samples in parallel, by filtering them through microsphere layers in 384-well plates adapted for the discovery of compounds that stiffen Plasmodium falciparum gametocytes, with the aim of interrupting malaria transmission. Compound-exposed gametocytes are loaded into microsphiltration plates, filtered and then transferred to imaging plates for analysis. High-content imaging detects viable gametocytes upstream and downstream from filters and quantifies spleen-like retention. This screening assay takes 3-4 d. Unlike currently available methods used to assess red blood cell (RBC) deformability, microsphiltration enables high-throughput pharmacological screening (tens of thousands of compounds tested in a matter of months) and involves a cell mechanical challenge that induces a physiologically relevant dumbbell-shape deformation. It therefore directly assesses the ability of RBCs to cross inter-endothelial splenic slits in vivo. This protocol has potential applications in quality control for transfusion and in determination of phenotypic markers of erythrocytes in hematological diseases.
Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei
2018-01-01
Background Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial–mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. Methods A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. Results The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1+) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44+CD24− BCSCs from MCF-7 cells. Discussion This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs. PMID:29780673
Wang, Bixiao; Xi, Chunfang; Liu, Mingwei; Sun, Haichen; Liu, Shuang; Song, Lei; Kang, Hua
2018-01-01
Breast cancer stem cells (BCSCs) are associated with the invasion of breast cancer. In recent years, studies have demonstrated different phenotypes among BCSCs. Furthermore, BCSCs of diverse phenotypes are present at different tumour sites and different histological stages. Fibroblasts are involved in the phenotypic transformation of BCSCs. Cancer-associated fibroblasts (CAFs) participate in the induction of epithelial-mesenchymal transition, thereby promoting the acquisition of stem cell characteristics, but little is known about the role of normal fibroblasts (NFs) in the phenotypic transformation of BCSCs or about the effect of CAFs and NFs on BCSC phenotypes. A total of six pairs of primary CAFs and NFs were isolated from surgical samples of breast cancer patients and subjected to morphological, immunohistochemical, cell invasion and proteomics analyses. After establishing a cell culture system with conditioned medium from CAFs and NFs, we used the mammosphere formation assay to explore the effect of CAFs and NFs on the self-renewal ability of BCSCs. The effect of CAFs and NFs on the phenotypic differentiation of BCSCs was further analysed by flow cytometry and immunofluorescence. The isolated CAFs and NFs did not show significant differences in cell morphology or alpha-smooth muscle actin (α-SMA) expression, but cell invasion and proteomics analyses demonstrated heterogeneity among these fibroblasts. Both CAFs and NFs could promote the generation of BCSCs, but CAFs displayed a greater ability than NFs in promoting mammosphere formation. Conditioned medium from CAFs increased the proportion of aldehyde dehydrogenase-1 positive (ALDH1 + ) BCSCs, but conditioned medium from NFs was more likely to promote the generation of CD44 + CD24 - BCSCs from MCF-7 cells. This study validated the heterogeneity among CAFs and NFs and expanded on the conclusion that fibroblasts promote the generation of cancer stem cells. Our results particularly emphasized the effect of NFs on the phenotypic transformation of BCSCs. In addition, this study further highlighted the roles of CAFs and NFs in the induction of different phenotypes in BCSCs.
Huang, Yezhou; Li, Shao
2010-01-18
Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-alpha on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-beta, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-alpha respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis.
2010-01-01
Background Pathways in biological system often cooperate with each other to function. Changes of interactions among pathways tightly associate with alterations in the properties and functions of the cell and hence alterations in the phenotype. So, the pathway interactions and especially their changes over time corresponding to specific phenotype are critical to understanding cell functions and phenotypic plasticity. Methods With prior-defined pathways and incorporated protein-protein interaction (PPI) data, we counted PPIs between corresponding gene sets of each pair of distinct pathways to construct a comprehensive pathway network. Then we proposed a novel concept, characteristic sub pathway network (CSPN), to realize the phenotype-specific pathway interactions. By adding gene expression data regarding a given phenotype, angiogenesis, active PPIs corresponding to stimulation of interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α) on human umbilical vein endothelial cells (HUVECs) respectively were derived. Two kinds of CSPN, namely the static or the dynamic CSPN, were detected by counting active PPIs. Results A comprehensive pathway network containing 37 signalling pathways as nodes and 263 pathway interactions were obtained. Two phenotype-specific CSPNs for angiogenesis, corresponding to stimulation of IL-1 and TNF-α on HUVEC respectively, were addressed. From phenotype-specific CSPNs, a static CSPN involving interactions among B cell receptor, T cell receptor, Toll-like receptor, MAPK, VEGF, and ErbB signalling pathways, and a dynamic CSPN involving interactions among TGF-β, Wnt, p53 signalling pathways and cell cycle pathway, were detected for angiogenesis on HUVEC after stimulation of IL-1 and TNF-α respectively. We inferred that, in certain case, the static CSPN maintains related basic functions of the cells, whereas the dynamic CSPN manifests the cells' plastic responses to stimulus and therefore reflects the cells' phenotypic plasticity. Conclusion The comprehensive pathway network helps us realize the cooperative behaviours among pathways. Moreover, two kinds of potential CSPNs found in this work, the static CSPN and the dynamic CSPN, are helpful to deeply understand the specific function of HUVEC and its phenotypic plasticity in regard to angiogenesis. PMID:20122205
Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos.
Shackney, S E; Shankey, T V
1995-09-01
The presence of cellular heterogeneity within human tumors has been recognized for many years. Current concepts regarding the clonal origin of human neoplasms, and recent advances in the study of successive genetic changes that occur during tumor evolution may now make it possible to understand in greater depth the biological and clinical implications of intra-tumor heterogeneity at both the phenotypic and genotypic levels. In order to explore these concepts further, and to better identify the potential contributions that flow and image cytometry can make to our understanding of tumor heterogeneity, a session of the 1994 ISAC Congress was dedicated to plenary presentations on human cancer cell heterogeneity. Here, we provide a brief overview of the genetic evolutionary progression of human cancers, some considerations of clinically important phenotypic and genotypic markers, and an outline that might serve as a basis for framing relevant issues that are ammenable to further study. All Nature is but Art, unknown to thee; All Chance, Direction, which thou canst not see; All Discord, Harmony not understood: All partial Evil, universal Good. (Alexander Pope, Essay on Man, end of Epistle 1).
Engineering cells with intracellular agent–loaded microparticles to control cell phenotype
Ankrum, James A; Miranda, Oscar R; Ng, Kelvin S; Sarkar, Debanjan; Xu, Chenjie; Karp, Jeffrey M
2014-01-01
Cell therapies enable unprecedented treatment options to replace tissues, destroy tumors and facilitate regeneration. The greatest challenge facing cell therapy is the inability to control the fate and function of cells after transplantation. We have developed an approach to control cell phenotype in vitro and after transplantation by engineering cells with intracellular depots that continuously release phenotype-altering agents for days to weeks. The platform enables control of cells’ secretome, viability, proliferation and differentiation, and the platform can be used to deliver drugs or other factors (e.g., dexamethasone, rhodamine and iron oxide) to the cell’s microenvironment. The preparation, efficient internalization and intracellular stabilization of ~1-μm drug-loaded microparticles are critical for establishing sustained control of cell phenotype. Herein we provide a protocol to generate and characterize micrometer-sized agent-doped poly(lactic-co-glycolic) acid (PLGA) particles by using a single-emulsion evaporation technique (7 h), to uniformly engineer cultured cells (15 h), to confirm particle internalization and to troubleshoot commonly experienced obstacles. PMID:24407352
Hindt, Maria; Socha, Amanda L.; Zuber, Hélène
2013-01-01
Here we present approaches for using multi-elemental imaging (specifically synchrotron X-ray fluorescence microscopy, SXRF) in ionomics, with examples using the model plant Arabidopsis thaliana. The complexity of each approach depends on the amount of a priori information available for the gene and/or phenotype being studied. Three approaches are outlined, which apply to experimental situations where a gene of interest has been identified but has an unknown phenotype (Phenotyping), an unidentified gene is associated with a known phenotype (Gene Cloning) and finally, a Screening approach, where both gene and phenotype are unknown. These approaches make use of open-access, online databases with which plant molecular genetics researchers working in the model plant Arabidopsis will be familiar, in particular the Ionomics Hub and online transcriptomic databases such as the Arabidopsis eFP browser. The approaches and examples we describe are based on the assumption that altering the expression of ion transporters can result in changes in elemental distribution. We provide methodological details on using elemental imaging to aid or accelerate gene functional characterization by narrowing down the search for candidate genes to the tissues in which elemental distributions are altered. We use synchrotron X-ray microprobes as a technique of choice, which can now be used to image all parts of an Arabidopsis plant in a hydrated state. We present elemental images of leaves, stem, root, siliques and germinating hypocotyls. PMID:23912758
Lee, Soo-Hyeon; Shin, Dong-Jun; Kim, Yoseop; Kim, Cheol-Jung; Lee, Je-Jung; Yoon, Mee Sun; Uong, Tung Nguyen Thanh; Yu, Dohyeon; Jung, Ji-Youn; Cho, Duck; Jung, Bock-Gie; Kim, Sang-Ki; Suh, Guk-Hyun
2018-01-01
Natural killer (NK) cells play a pivotal role in the immune response against infections and malignant transformation, and adopted transfer of NK cells is thought to be a promising therapeutic approach for cancer patients. Previous reports describing the phenotypic features of canine NK cells have produced inconsistent results. Canine NK cells are still defined as non-B and non-T (CD3 - CD21 - ) large granular lymphocytes. However, a few reports have demonstrated that canine NK cells share the phenotypic characteristics of T lymphocytes, and that CD3 + CD5 dim CD21 - lymphocytes are putative canine NK cells. Based on our previous reports, we hypothesized that phenotypic modulation could occur between these two populations during activation. In this study, we investigated the phenotypic and functional differences between CD3 + CD5 dim CD21 - (cytotoxic large granular lymphocytes) and CD3 - CD5 - CD21 - NK lymphocytes before and after culture of peripheral blood mononuclear cells isolated from normal dogs. The results of this study show that CD3 + CD5 dim CD21 - lymphocytes can be differentiated into non-B, non-T NK (CD3 - CD5 - CD21 - TCRαβ - TCRγδ - GranzymeB + ) lymphocytes through phenotypic modulation in response to cytokine stimulation. In vitro studies of purified CD3 + CD5 dim CD21 - cells showed that CD3 - CD5 - CD21 - cells are derived from CD3 + CD5 dim CD21 - cells through phenotypic modulation. CD3 + CD5 dim CD21 - cells share more NK cell functional characteristics compared with CD3 - CD5 - CD21 - cells, including the expression of T-box transcription factors (Eomes, T-bet), the production of granzyme B and interferon-γ, and the expression of NK cell-related molecular receptors such as NKG2D and NKp30. In conclusion, the results of this study suggest that CD3 + CD5 dim CD21 - and CD3 - CD5 - CD21 - cells both contain a subset of putative NK cells, and the difference between the two populations may be due to the degree of maturation.
Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M
2010-12-22
A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.
Cornelissen, Frans; Cik, Miroslav; Gustin, Emmanuel
2012-04-01
High-content screening has brought new dimensions to cellular assays by generating rich data sets that characterize cell populations in great detail and detect subtle phenotypes. To derive relevant, reliable conclusions from these complex data, it is crucial to have informatics tools supporting quality control, data reduction, and data mining. These tools must reconcile the complexity of advanced analysis methods with the user-friendliness demanded by the user community. After review of existing applications, we realized the possibility of adding innovative new analysis options. Phaedra was developed to support workflows for drug screening and target discovery, interact with several laboratory information management systems, and process data generated by a range of techniques including high-content imaging, multicolor flow cytometry, and traditional high-throughput screening assays. The application is modular and flexible, with an interface that can be tuned to specific user roles. It offers user-friendly data visualization and reduction tools for HCS but also integrates Matlab for custom image analysis and the Konstanz Information Miner (KNIME) framework for data mining. Phaedra features efficient JPEG2000 compression and full drill-down functionality from dose-response curves down to individual cells, with exclusion and annotation options, cell classification, statistical quality controls, and reporting.
Cyganek, Lukas; Tiburcy, Malte; Sekeres, Karolina; Gerstenberg, Kathleen; Bohnenberger, Hanibal; Lenz, Christof; Henze, Sarah; Stauske, Michael; Salinas, Gabriela; Zimmermann, Wolfram-Hubertus; Hasenfuss, Gerd; Guan, Kaomei
2018-06-21
Generation of homogeneous populations of subtype-specific cardiomyocytes (CMs) derived from human induced pluripotent stem cells (iPSCs) and their comprehensive phenotyping is crucial for a better understanding of the subtype-related disease mechanisms and as tools for the development of chamber-specific drugs. The goals of this study were to apply a simple and efficient method for differentiation of iPSCs into defined functional CM subtypes in feeder-free conditions and to obtain a comprehensive understanding of the molecular, cell biological, and functional properties of atrial and ventricular iPSC-CMs on both the single-cell and engineered heart muscle (EHM) level. By a stage-specific activation of retinoic acid signaling in monolayer-based and well-defined culture, we showed that cardiac progenitors can be directed towards a highly homogeneous population of atrial CMs. By combining the transcriptome and proteome profiling of the iPSC-CM subtypes with functional characterizations via optical action potential and calcium imaging, and with contractile analyses in EHM, we demonstrated that atrial and ventricular iPSC-CMs and -EHM highly correspond to the atrial and ventricular heart muscle, respectively. This study provides a comprehensive understanding of the molecular and functional identities characteristic of atrial and ventricular iPSC-CMs and -EHM and supports their suitability in disease modeling and chamber-specific drug screening.
Dobrescu, Andrei; Scorza, Livia C T; Tsaftaris, Sotirios A; McCormick, Alistair J
2017-01-01
Improvements in high-throughput phenotyping technologies are rapidly expanding the scope and capacity of plant biology studies to measure growth traits. Nevertheless, the costs of commercial phenotyping equipment and infrastructure remain prohibitively expensive for wide-scale uptake, while academic solutions can require significant local expertise. Here we present a low-cost methodology for plant biologists to build their own phenotyping system for quantifying growth rates and phenotypic characteristics of Arabidopsis thaliana rosettes throughout the diel cycle. We constructed an image capture system consisting of a near infra-red (NIR, 940 nm) LED panel with a mounted Raspberry Pi NoIR camera and developed a MatLab-based software module (iDIEL Plant) to characterise rosette expansion. Our software was able to accurately segment and characterise multiple rosettes within an image, regardless of plant arrangement or genotype, and batch process image sets. To further validate our system, wild-type Arabidopsis plants (Col-0) and two mutant lines with reduced Rubisco contents, pale leaves and slow growth phenotypes ( 1a3b and 1a2b ) were grown on a single plant tray. Plants were imaged from 9 to 24 days after germination every 20 min throughout the 24 h light-dark growth cycle (i.e. the diel cycle). The resulting dataset provided a dynamic and uninterrupted characterisation of differences in rosette growth and expansion rates over time for the three lines tested. Our methodology offers a straightforward solution for setting up automated, scalable and low-cost phenotyping facilities in a wide range of lab environments that could greatly increase the processing power and scalability of Arabidopsis soil growth experiments.
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-01-01
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-06-06
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Deep, Gagan; Kumar, Rahul; Nambiar, Dhanya K.; Jain, Anil K.; Ramteke, Anand M.; Serkova, Natalie J.; Agarwal, Chapla; Agarwal, Rajesh
2017-01-01
Hypoxia is associated with aggressive phenotype and poor prognosis in prostate cancer (PCa) patients suggesting that PCa growth and progression could be controlled via targeting hypoxia-induced signaling and biological effects. Here, we analyzed silibinin (a natural flavonoid) efficacy to target cell growth, angiogenesis and metabolic changes in human PCa, LNCaP and 22Rv1 cells under hypoxic condition. Silibinin treatment inhibited the proliferation, clonogenicity and endothelial cells tube formation by hypoxic (1% O2) PCa cells. Interestingly, hypoxia promoted a lipogenic phenotype in PCa cells via activating acetyl-Co A carboxylase (ACC) and fatty acid synthase (FASN) that was inhibited by silibinin treatment. Importantly, silibinin treatment strongly decreased hypoxia-induced HIF-1α expression in PCa cells together with a strong reduction in hypoxia-induced NADPH oxidase (NOX) activity. HIF-1α overexpression in LNCaP cells significantly increased the lipid accumulation and NOX activity; however, silibinin treatment reduced HIF-1α expression, lipid levels, clonogenicity and NOX activity even in HIF-1α overexpressing LNCaP cells. In vivo, silibinin feeding (200 mg/kg body weight) to male nude mice with 22Rv1 tumors, specifically inhibited tumor vascularity (measured by dynamic contrast-enhanced MRI) resulting in tumor growth inhibition without directly inducing necrosis (as revealed by diffusion-weighted MRI). Silibinin feeding did not significantly affect tumor glucose uptake measured by FDG-PET; however, reduced the lipid synthesis measured by quantitative 1H-NMR metabolomics. IHC analyses of tumor tissues confirmed that silibinin feeding decreased proliferation and angiogenesis as well as reduced HIF-1α, FASN and ACC levels. Together, these findings further support silibinin usefulness against PCa through inhibiting hypoxia-induced signaling. PMID:27533043
NanoTopoChip: High-throughput nanotopographical cell instruction.
Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan
2017-10-15
Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lee, Sang-Woo; Morishita, Yoshihiro
2017-07-01
Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue "evolution". Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model.
2017-01-01
Cell competition is a phenomenon originally described as the competition between cell populations with different genetic backgrounds; losing cells with lower fitness are eliminated. With the progress in identification of related molecules, some reports described the relevance of cell mechanics during elimination. Furthermore, recent live imaging studies have shown that even in tissues composed of genetically identical cells, a non-negligible number of cells are eliminated during growth. Thus, mechanical cell elimination (MCE) as a consequence of mechanical cellular interactions is an unavoidable event in growing tissues and a commonly observed phenomenon. Here, we studied MCE in a genetically-homogeneous tissue from the perspective of tissue growth efficiency and homeostasis. First, we propose two quantitative measures, cell and tissue fitness, to evaluate cellular competitiveness and tissue growth efficiency, respectively. By mechanical tissue simulation in a pure population where all cells have the same mechanical traits, we clarified the dependence of cell elimination rate or cell fitness on different mechanical/growth parameters. In particular, we found that geometrical (specifically, cell size) and mechanical (stress magnitude) heterogeneities are common determinants of the elimination rate. Based on these results, we propose possible mechanical feedback mechanisms that could improve tissue growth efficiency and density/stress homeostasis. Moreover, when cells with different mechanical traits are mixed (e.g., in the presence of phenotypic variation), we show that MCE could drive a drastic shift in cell trait distribution, thereby improving tissue growth efficiency through the selection of cellular traits, i.e. intra-tissue “evolution”. Along with the improvement of growth efficiency, cell density, stress state, and phenotype (mechanical traits) were also shown to be homogenized through growth. More theoretically, we propose a mathematical model that approximates cell competition dynamics, by which the time evolution of tissue fitness and cellular trait distribution can be predicted without directly simulating a cell-based mechanical model. PMID:28704373
Fujiki, Yutaka; Tao, Kai; Bianchi, Diana W; Giel-Moloney, Maryann; Leiter, Andrew B; Johnson, Kirby L
2008-02-01
Animal models are increasingly being used for the assessment of fetal cell microchimerism in maternal tissue. We wished to determine the optimal transgenic mouse strain and analytic technique to facilitate the detection of rare transgenic microchimeric fetal cells amongst a large number of maternal wild-type cells. We evaluated two strains of mice transgenic for the enhanced green fluorescent protein (EGFP): a commercially available, commonly used strain (C57BL/6-Tg(ACTB-EGFP)10sb/J) (CAG) and a newly created strain (ROSA26-EGFP) using three different techniques: in vivo and ex vivo fluorescent imaging (for whole body and dissected organs, respectively), PCR amplification of gfp, and flow cytometry (FCM). By fluorescent imaging, organs from CAG mice were 10-fold brighter than organs from ROSA26-EGFP mice (P < 0.0001). By PCR, more transgene from CAG mice was detected compared to ROSA26-EGFP mice (P = 0.04). By FCM, ROSA26-EGFP cell fluorescence was more uniform than CAG cells. A greater proportion of cells from ROSA26-EGFP organs were positive for EGFP than cells from CAG organs, but CAG mice had a greater proportion of cells with the brightest fluorescent intensity. Each transgenic strain possesses characteristics that make it useful under specific experimental circumstances. The CAG mouse model is preferable when experiments require brighter cells, whereas ROSA26-EGFP is more appropriate when uniform or ubiquitous expression is more important than brightness. Investigators must carefully select the transgenic strain most suited to the experimental design to obtain the most consistent and reproducible data. In vivo imaging allows for phenotypic evaluation of whole animals and intact organs; however, we did not evaluate its utility for the detection of rare, fetal microchimeric cells in the maternal organs. Finally, while PCR amplification of a paternally inherited transgene does allow for the quantitative determination of rare microchimeric cells, FCM allows for both quantitative and qualitative evaluations of fetal cells at very high sensitivity in a plethora of maternal organs. (c) 2008 International Society for Analytical Cytology
Naik, Hsiang Sing; Zhang, Jiaoping; Lofquist, Alec; Assefa, Teshale; Sarkar, Soumik; Ackerman, David; Singh, Arti; Singh, Asheesh K; Ganapathysubramanian, Baskar
2017-01-01
Phenotyping is a critical component of plant research. Accurate and precise trait collection, when integrated with genetic tools, can greatly accelerate the rate of genetic gain in crop improvement. However, efficient and automatic phenotyping of traits across large populations is a challenge; which is further exacerbated by the necessity of sampling multiple environments and growing replicated trials. A promising approach is to leverage current advances in imaging technology, data analytics and machine learning to enable automated and fast phenotyping and subsequent decision support. In this context, the workflow for phenotyping (image capture → data storage and curation → trait extraction → machine learning/classification → models/apps for decision support) has to be carefully designed and efficiently executed to minimize resource usage and maximize utility. We illustrate such an end-to-end phenotyping workflow for the case of plant stress severity phenotyping in soybean, with a specific focus on the rapid and automatic assessment of iron deficiency chlorosis (IDC) severity on thousands of field plots. We showcase this analytics framework by extracting IDC features from a set of ~4500 unique canopies representing a diverse germplasm base that have different levels of IDC, and subsequently training a variety of classification models to predict plant stress severity. The best classifier is then deployed as a smartphone app for rapid and real time severity rating in the field. We investigated 10 different classification approaches, with the best classifier being a hierarchical classifier with a mean per-class accuracy of ~96%. We construct a phenotypically meaningful 'population canopy graph', connecting the automatically extracted canopy trait features with plant stress severity rating. We incorporated this image capture → image processing → classification workflow into a smartphone app that enables automated real-time evaluation of IDC scores using digital images of the canopy. We expect this high-throughput framework to help increase the rate of genetic gain by providing a robust extendable framework for other abiotic and biotic stresses. We further envision this workflow embedded onto a high throughput phenotyping ground vehicle and unmanned aerial system that will allow real-time, automated stress trait detection and quantification for plant research, breeding and stress scouting applications.
Santhanam, Navaneetha; Kumanchik, Lee; Guo, Xiufang; Sommerhage, Frank; Cai, Yunqing; Jackson, Max; Martin, Candace; Saad, George; McAleer, Christopher W; Wang, Ying; Lavado, Andrea; Long, Christopher J; Hickman, James J
2018-06-01
There are currently no functional neuromuscular junction (hNMJ) systems composed of human cells that could be used for drug evaluations or toxicity testing in vitro. These systems are needed to evaluate NMJs for diseases such as amyotrophic lateral sclerosis, spinal muscular atrophy or other neurodegenerative diseases or injury states. There are certainly no model systems, animal or human, that allows for isolated treatment of motoneurons or muscle capable of generating dose response curves to evaluate pharmacological activity of these highly specialized functional units. A system was developed in which human myotubes and motoneurons derived from stem cells were cultured in a serum-free medium in a BioMEMS construct. The system is composed of two chambers linked by microtunnels to enable axonal outgrowth to the muscle chamber that allows separate stimulation of each component and physiological NMJ function and MN stimulated tetanus. The muscle's contractions, induced by motoneuron activation or direct electrical stimulation, were monitored by image subtraction video recording for both frequency and amplitude. Bungarotoxin, BOTOX ® and curare dose response curves were generated to demonstrate pharmacological relevance of the phenotypic screening device. This quantifiable functional hNMJ system establishes a platform for generating patient-specific NMJ models by including patient-derived iPSCs. Copyright © 2018 Elsevier Ltd. All rights reserved.
Martens, I; Nilsson, S A; Linder, S; Magnusson, G
1989-01-01
The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions. Images PMID:2704075
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.
Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less
3D sorghum reconstructions from depth images identify QTL regulating shoot architecture
Mccormick, Ryan F.; Truong, Sandra K.; Mullet, John E.
2016-08-15
Dissecting the genetic basis of complex traits is aided by frequent and nondestructive measurements. Advances in range imaging technologies enable the rapid acquisition of three-dimensional (3D) data from an imaged scene. A depth camera was used to acquire images of sorghum (Sorghum bicolor), an important grain, forage, and bioenergy crop, at multiple developmental time points from a greenhouse-grown recombinant inbred line population. A semiautomated software pipeline was developed and used to generate segmented, 3D plant reconstructions from the images. Automated measurements made from 3D plant reconstructions identified quantitative trait loci for standard measures of shoot architecture, such as shoot height,more » leaf angle, and leaf length, and for novel composite traits, such as shoot compactness. The phenotypic variability associated with some of the quantitative trait loci displayed differences in temporal prevalence; for example, alleles closely linked with the sorghum Dwarf3 gene, an auxin transporter and pleiotropic regulator of both leaf inclination angle and shoot height, influence leaf angle prior to an effect on shoot height. Furthermore, variability in composite phenotypes that measure overall shoot architecture, such as shoot compactness, is regulated by loci underlying component phenotypes like leaf angle. As such, depth imaging is an economical and rapid method to acquire shoot architecture phenotypes in agriculturally important plants like sorghum to study the genetic basis of complex traits.« less
Mueller, A J; Tew, S R; Vasieva, O; Clegg, P D; Canty-Laird, E G
2016-09-27
Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin.
A Computational Study of Phenotype Switching in Bacillus Subtilis Biofilm
NASA Astrophysics Data System (ADS)
Smith, Howard; Wang, Xiaoling; Jiang, Yi
Bacillus Subtilis (B. Subtilis), is known to differentiate into three main phenotypes during biofilm growth. Novel techniques to track the spatial and temporal evolution of the three main phenotypes exhibited by B. Subtilis have been developed. However, the techniques do not explain the environmental causes of the phenotype switching and how this leads to the spatiotemporal organization of the biofilm. We hypothesize that cells switch their phenotype according to nutrients and autoinducer levels. We test the hypothesis using a hybrid agent-based and continuous model. The bacteria in our model are individual cells that can (i) grow and divide by the intake of nutrients, (ii) produce and secrete EPS, (iii) form spores and (iv) produce an auto inducer. Using a threshold for nutrient and thresholds for autoinducers, we were able to reproduce the experimental spatiotemporal dynamics. From our simulations we observed that in order to reproduce experimental results, two different autoinducers were necessary. The results also suggest that low-EPS producing biofilms generally obtained higher cell populations. Furthermore, most of the cells that become spore forming cells arise from matrix producing cells.
Current approaches and future role of high content imaging in safety sciences and drug discovery.
van Vliet, Erwin; Daneshian, Mardas; Beilmann, Mario; Davies, Anthony; Fava, Eugenio; Fleck, Roland; Julé, Yvon; Kansy, Manfred; Kustermann, Stefan; Macko, Peter; Mundy, William R; Roth, Adrian; Shah, Imran; Uteng, Marianne; van de Water, Bob; Hartung, Thomas; Leist, Marcel
2014-01-01
High content imaging combines automated microscopy with image analysis approaches to simultaneously quantify multiple phenotypic and/or functional parameters in biological systems. The technology has become an important tool in the fields of safety sciences and drug discovery, because it can be used for mode-of-action identification, determination of hazard potency and the discovery of toxicity targets and biomarkers. In contrast to conventional biochemical endpoints, high content imaging provides insight into the spatial distribution and dynamics of responses in biological systems. This allows the identification of signaling pathways underlying cell defense, adaptation, toxicity and death. Therefore, high content imaging is considered a promising technology to address the challenges for the "Toxicity testing in the 21st century" approach. Currently, high content imaging technologies are frequently applied in academia for mechanistic toxicity studies and in pharmaceutical industry for the ranking and selection of lead drug compounds or to identify/confirm mechanisms underlying effects observed in vivo. A recent workshop gathered scientists working on high content imaging in academia, pharmaceutical industry and regulatory bodies with the objective to compile the state-of-the-art of the technology in the different institutions. Together they defined technical and methodological gaps, proposed quality control measures and performance standards, highlighted cell sources and new readouts and discussed future requirements for regulatory implementation. This review summarizes the discussion, proposed solutions and recommendations of the specialists contributing to the workshop.
Hypertrophic Cardiomyopathy from A to Z: Genetics, Pathophysiology, Imaging, and Management.
Baxi, Ameya Jagdish; Restrepo, Carlos S; Vargas, Daniel; Marmol-Velez, Alejandro; Ocazionez, Daniel; Murillo, Horacio
2016-01-01
Hypertrophic cardiomyopathy (HCM) is a heterogeneous group of diseases related to sarcomere gene mutations exhibiting heterogeneous phenotypes with an autosomal dominant mendelian pattern of inheritance. The disorder is characterized by diverse phenotypic expressions and variable natural progression, which may range from dyspnea and/or syncope to sudden cardiac death. It is found across all racial groups and is associated with left ventricular hypertrophy in the absence of another systemic or cardiac disease. The management of HCM is based on a thorough understanding of the underlying morphology, pathophysiology, and clinical course. Imaging findings of HCM mirror the variable expressivity and penetrance heterogeneity, with the added advantage of diagnosis even in cases where a specific mutation may not yet be found. The diagnostic information obtained from imaging varies depending on the specific stage of HCM-phenotype manifestation, including the prehypertrophic, hypertrophic, and later stages of adverse remodeling into the burned-out phase of overt heart failure. However, subtle or obvious, these imaging findings become critical components in diagnosis, management, and follow-up of HCM patients. Although diagnosis of HCM traditionally relies on clinical assessment and transthoracic echocardiography, recent studies have demonstrated increased utility of multidetector computed tomography (CT) and particularly cardiac magnetic resonance (MR) imaging in diagnosis, phenotype differentiation, therapeutic planning, and prognostication. In this article, we provide an overview of the genetics, pathophysiology, and clinical manifestations of HCM, with the spectrum of imaging findings at MR imaging and CT and their contribution in diagnosis, risk stratification, and therapy. (©)RSNA, 2016.
Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.
Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M
2018-03-01
Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Mutations Altering Chloroplast Ribosome Phenotype in Chlamydomonas, I. Non-Mendelian Mutations*
Gillham, Nicholas W.; Boynton, John E.; Burkholder, Barbara
1970-01-01
Uniparentally inherited mutations to antibiotic resistance and dependence in Chlamydomonas reinhardi exhibit an altered chloroplast ribosome phenotype. Genetic studies demonstrate an absolute correlation between the drug resistance or dependence and the ribosome phenotype in two such mutants. Images PMID:5289000
Calcium-mediated shaping of naive CD4 T-cell phenotype and function
Guichard, Vincent; Bonilla, Nelly; Durand, Aurélie; Audemard-Verger, Alexandra; Guilbert, Thomas; Martin, Bruno
2017-01-01
Continuous contact with self-major histocompatibility complex ligands is essential for the survival of naive CD4 T cells. We have previously shown that the resulting tonic TCR signaling also influences their fate upon activation by increasing their ability to differentiate into induced/peripheral regulatory T cells. To decipher the molecular mechanisms governing this process, we here focus on the TCR signaling cascade and demonstrate that a rise in intracellular calcium levels is sufficient to modulate the phenotype of mouse naive CD4 T cells and to increase their sensitivity to regulatory T-cell polarization signals, both processes relying on calcineurin activation. Accordingly, in vivo calcineurin inhibition leads the most self-reactive naive CD4 T cells to adopt the phenotype of their less self-reactive cell-counterparts. Collectively, our findings demonstrate that calcium-mediated activation of the calcineurin pathway acts as a rheostat to shape both the phenotype and effector potential of naive CD4 T cells in the steady-state. PMID:29239722
MRI in multiple sclerosis: current status and future prospects
Bakshi, Rohit; Thompson, Alan J; Rocca, Maria A; Pelletier, Daniel; Dousset, Vincent; Barkhof, Frederik; Inglese, Matilde; Guttmann, Charles R G; Horsfield, Mark A; Filippi, Massimo
2008-01-01
Many promising MRI approaches for research or clinical management of multiple sclerosis (MS) have recently emerged, or are under development or refinement. Advanced MRI methods need to be assessed to determine whether they allow earlier diagnosis or better identification of phenotypes. Improved post-processing should allow more efficient and complete extraction of information from images. Magnetic resonance spectroscopy should improve in sensitivity and specificity with higher field strengths and should enable the detection of a wider array of metabolites. Diffusion imaging is moving closer to the goal of defining structural connectivity and, thereby, determining the functional significance of lesions at specific locations. Cell-specific imaging now seems feasible with new magnetic resonance contrast agents. The imaging of myelin water fraction brings the hope of providing a specific measure of myelin content. Ultra-high-field MRI increases sensitivity, but also presents new technical challenges. Here, we review these recent developments in MRI for MS, and also look forward to refinements in spinal-cord imaging, optic-nerve imaging, perfusion MRI, and functional MRI. Advances in MRI should improve our ability to diagnose, monitor, and understand the pathophysiology of MS. PMID:18565455
Matveeva, Natalia M; Fishman, Veniamin S; Zakharova, Irina S; Shevchenko, Alexander I; Pristyazhnyuk, Inna E; Menzorov, Aleksei G; Serov, Oleg L
2017-12-22
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
Genotype-phenotype association study via new multi-task learning model
Huo, Zhouyuan; Shen, Dinggang
2018-01-01
Research on the associations between genetic variations and imaging phenotypes is developing with the advance in high-throughput genotype and brain image techniques. Regression analysis of single nucleotide polymorphisms (SNPs) and imaging measures as quantitative traits (QTs) has been proposed to identify the quantitative trait loci (QTL) via multi-task learning models. Recent studies consider the interlinked structures within SNPs and imaging QTs through group lasso, e.g. ℓ2,1-norm, leading to better predictive results and insights of SNPs. However, group sparsity is not enough for representing the correlation between multiple tasks and ℓ2,1-norm regularization is not robust either. In this paper, we propose a new multi-task learning model to analyze the associations between SNPs and QTs. We suppose that low-rank structure is also beneficial to uncover the correlation between genetic variations and imaging phenotypes. Finally, we conduct regression analysis of SNPs and QTs. Experimental results show that our model is more accurate in prediction than compared methods and presents new insights of SNPs. PMID:29218896
The Value of Phenotypes in Knee Osteoarthritis Research.
Nelson, Fred R T
2018-01-01
Over the past decade, phenotypes have been used to help categorize knee osteoarthritis patients relative to being subject to disease, disease progression, and treatment response. A review of potential phenotype selection is now appropriate. The appeal of using phenotypes is that they most rely on simple physical examination, clinically routine imaging, and demographics. The purpose of this review is to describe the panoply of phenotypes that can be potentially used in osteoarthritis research. A search of PubMed was used singularly to review the literature on knee osteoarthritis phenotypes. Four phenotype assembly groups were based on physical features and noninvasive imaging. Demographics included metabolic syndrome (dyslipidemia, hypertension, obesity, and diabetes). Mechanical characteristics included joint morphology, alignment, the effect of injury, and past and present history. Associated musculoskeletal disorder characteristics included multiple joint involvement, spine disorders, neuromuscular diseases, and osteoporosis. With the knee as an organ, tissue characteristics were used to focus on synovium, meniscus, articular cartilage, patella fat pad, bone sclerosis, bone cysts, and location of pain. Many of these phenotype clusters require further validation studies. There is special emphasis on knee osteoarthritis phenotypes due to its predominance in osteoarthritic disorders and the variety of tissues in that joint. More research will be required to determine the most productive phenotypes for future studies. The selection and assignment of phenotypes will take on an increasing role in osteoarthritis research in the future.
ADH1B promotes mesothelial clearance and ovarian cancer infiltration.
Gharpure, Kshipra M; Lara, Olivia D; Wen, Yunfei; Pradeep, Sunila; LaFargue, Chris; Ivan, Cristina; Rupaimoole, Rajesha; Hu, Wei; Mangala, Lingegowda S; Wu, Sherry Y; Nagaraja, Archana S; Baggerly, Keith; Sood, Anil K
2018-05-18
Primary debulking surgery followed by adjuvant chemotherapy is the standard treatment for ovarian cancer. Residual disease after primary surgery is associated with poor patient outcome. Previously, we discovered ADH1B to be a molecular biomarker of residual disease. In the current study, we investigated the functional role of ADH1B in promoting ovarian cancer cell invasiveness and contributing to residual disease. We discovered that ADH1B overexpression leads to a more infiltrative cancer cell phenotype, promotes metastasis, increases the adhesion of cancer cells to mesothelial cells, and increases extracellular matrix degradation. Live cell imaging revealed that ADH1B-overexpressing cancer cells efficiently cleared the mesothelial cell layer compared to control cells. Moreover, gene array analysis revealed that ADH1B affects several pathways related to the migration and invasion of cancer cells. We also discovered that hypoxia increases ADH1B expression in ovarian cancer cells. Collectively, these findings indicate that ADH1B plays an important role in the pathways that promote ovarian cancer cell infiltration and may increase the likelihood of residual disease following surgery.
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer.
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-05-30
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity.
Endogenous molecular network reveals two mechanisms of heterogeneity within gastric cancer
Li, Site; Zhu, Xiaomei; Liu, Bingya; Wang, Gaowei; Ao, Ping
2015-01-01
Intratumor heterogeneity is a common phenomenon and impedes cancer therapy and research. Gastric cancer (GC) cells have generally been classified into two heterogeneous cellular phenotypes, the gastric and intestinal types, yet the mechanisms of maintaining two phenotypes and controlling phenotypic transition are largely unknown. A qualitative systematic framework, the endogenous molecular network hypothesis, has recently been proposed to understand cancer genesis and progression. Here, a minimal network corresponding to such framework was found for GC and was quantified via a stochastic nonlinear dynamical system. We then further extended the framework to address the important question of intratumor heterogeneity quantitatively. The working network characterized main known features of normal gastric epithelial and GC cell phenotypes. Our results demonstrated that four positive feedback loops in the network are critical for GC cell phenotypes. Moreover, two mechanisms that contribute to GC cell heterogeneity were identified: particular positive feedback loops are responsible for the maintenance of intestinal and gastric phenotypes; GC cell progression routes that were revealed by the dynamical behaviors of individual key components are heterogeneous. In this work, we constructed an endogenous molecular network of GC that can be expanded in the future and would broaden the known mechanisms of intratumor heterogeneity. PMID:25962957
Korecka, Joanna A.; van Kesteren, Ronald E.; Blaas, Eva; Spitzer, Sonia O.; Kamstra, Jorke H.; Smit, August B.; Swaab, Dick F.; Verhaagen, Joost; Bossers, Koen
2013-01-01
Multiple genetic and environmental factors play a role in the development and progression of Parkinson’s disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD. PMID:23724009
Nikolov, Svetoslav; Santos, Guido; Wolkenhauer, Olaf; Vera, Julio
2018-02-01
Mathematical modeling of cell differentiated in colonic crypts can contribute to a better understanding of basic mechanisms underlying colonic tissue organization, but also its deregulation during carcinogenesis and tumor progression. Here, we combined bifurcation analysis to assess the effect that time delay has in the complex interplay of stem cells and semi-differentiated cells at the niche of colonic crypts, and systematic model perturbation and simulation to find model-based phenotypes linked to cancer progression. The models suggest that stem cell and semi-differentiated cell population dynamics in colonic crypts can display chaotic behavior. In addition, we found that clinical profiling of colorectal cancer correlates with the in silico phenotypes proposed by the mathematical model. Further, potential therapeutic targets for chemotherapy resistant phenotypes are proposed, which in any case will require experimental validation.
Epithelial phenotype and the RPE: is the answer blowing in the Wnt?
Burke, Janice M
2008-11-01
Cells of the human retinal pigment epithelium (RPE) have a regular epithelial cell shape within the tissue in situ, but for reasons that remain elusive the RPE shows an incomplete and variable ability to re-develop an epithelial phenotype after propagation in vitro. In other epithelial cell cultures, formation of an adherens junction (AJ) composed of E-cadherin plays an important early inductive role in epithelial morphogenesis, but E-cadherin is largely absent from the RPE. In this review, the contribution of cadherins, both minor (E-cadherin) and major (N-cadherin), to RPE phenotype development is discussed. Emphasis is placed on the importance for future studies of actin cytoskeletal remodeling during assembly of the AJ, which in epithelial cells results in an actin organization that is characteristically zonular. Other markers of RPE phenotype that are used to gauge the maturation state of RPE cultures including tissue-specific protein expression, protein polarity, and pigmentation are described. An argument is made that RPE epithelial phenotype, cadherin-based cell-cell adhesion and melanization are linked by a common signaling pathway: the Wnt/beta-catenin pathway. Analyzing this pathway and its intersecting signaling networks is suggested as a useful framework for dissecting the steps in RPE morphogenesis. Also discussed is the effect of aging on RPE phenotype. Preliminary evidence is provided to suggest that light-induced sub-lethal oxidative stress to cultured ARPE-19 cells impairs organelle motility. Organelle translocation, which is mediated by stress-susceptible cytoskeletal scaffolds, is an essential process in cell phenotype development and retention. The observation of impaired organelle motility therefore raises the possibility that low levels of stress, which are believed to accompany RPE aging, may produce subtle disruptions of cell phenotype. Over time these would be expected to diminish the support functions performed by the RPE on behalf of photoreceptors, theoretically contributing to aging retinal disease such as age-related macular degeneration (AMD). Analyzing sub-lethal stress that produces declines in RPE functional efficiency rather than overt cell death is suggested as a useful future direction for understanding the effects of age on RPE organization and physiology. As for phenotype and pigmentation, a role for the Wnt/beta-catenin pathway is also suggested in regulating the RPE response to oxidative stress. Exploration of this pathway in the RPE therefore may provide a unifying strategy for advancing our understanding of both RPE phenotype and the consequences of mild oxidative stress on RPE structure and function.
Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank
2015-01-01
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature. PMID:25932020
2013-01-01
Background Microglia are the primary immune cells of the brain whose phenotype largely depends on their surrounding micro-environment. Microglia respond to a multitude of soluble molecules produced by a variety of brain cells. Macrophage colony-stimulating factor (M-CSF) is a cytokine found in the brain whose receptor is expressed by microglia. Previous studies suggest a critical role for M-CSF in brain development and normal functioning as well as in several disease processes involving neuroinflammation. Methods Using biopsy tissue from patients with intractable temporal epilepsy and autopsy tissue, we cultured primary adult human microglia to investigate their response to M-CSF. Mixed glial cultures were treated with 25 ng/ml M-CSF for 96 hours. Proliferation and phagocytosis assays, and high through-put immunocytochemistry, microscopy and image analysis were performed to investigate microglial phenotype and function. Results We found that the phenotype of primary adult human microglia was markedly changed following exposure to M-CSF. A greater number of microglia were present in the M-CSF- treated cultures as the percentage of proliferating (BrdU and Ki67-positive) microglia was greatly increased. A number of changes in protein expression occurred following M-CSF treatment, including increased transcription factors PU.1 and C/EBPβ, increased DAP12 adaptor protein, increased M-CSF receptor (CSF-1R) and IGF-1 receptor, and reduced HLA-DP, DQ, DR antigen presentation protein. Furthermore, a distinct morphological change was observed with elongation of microglial processes. These changes in phenotype were accompanied by a functional increase in phagocytosis of Aβ1-42 peptide. Conclusions We show here that the cytokine M-CSF dramatically influences the phenotype of adult human microglia. These results pave the way for future investigation of M-CSF-related targets for human therapeutic benefit. PMID:23866312
Beirão, Breno C B; Raposo, Teresa; Pang, Lisa Y; Argyle, David J
2015-07-15
Canine mammary carcinoma is the most common cancer in female dogs and is often fatal due to the development of distance metastasis. The microenvironment of a tumour often contains abundant infiltrates of macrophages called tumour-associated macrophages (TAMs). TAMs express an activated phenotype, termed M2, which sustains proliferation of cancer cells, and has been correlated with poor clinical outcomes in human cancer patients. Cancer cells themselves have been implicated in stimulating the conversion of macrophages to a TAM with an M2 phenotype. This process has yet to be fully elucidated. Here we investigate the interplay between cancer cells and macrophages in the context of canine mammary carcinoma. We show that cancer cells inhibit lipopolysaccharide (LPS)-induced macrophage activation. Further, we show that macrophage associated proteins, colony-stimulating factor (CSF)-1 and C-C motif ligand (CCL)-2, stimulate macrophages and are responsible for the effects of cancer cells on macrophages. We suggest the existence of a feedback loop between macrophages and cancer cells; while cancer cells influence the phenotype of the TAMs through CSF-1 and CCL2, the macrophages induce canine mammary cancer cells to upregulate their own expression of the receptors for CSF-1 and CCL2 and increase the cancer cellular metabolic activity. However, these cytokines in isolation induce a phenotypic state in macrophages that is between M1 and M2 phenotypes. Overall, our results demonstrate the extent to which canine mammary carcinoma cells influence the macrophage phenotype and the relevance of a feedback loop between these cells, involving CSF-1 and CCL2 as important mediators.
Carduner, L; Leroy-Dudal, J; Picot, C R; Gallet, O; Carreiras, F; Kellouche, S
2014-08-01
At least one-third of patients with epithelial ovarian cancer (OC) present ascites at diagnosis and almost all have ascites at recurrence. The presence of ascites, which acts as a dynamic reservoir of active molecules and cellular components, correlates with the OC peritoneal metastasis and is associated with poor prognosis. Since epithelial-mesenchymal transition (EMT) is involved in different phases of OC progression, we have investigated the effect of the unique ascitic tumor microenvironment on the EMT status and the behavior of OC cells. The exposure of three OC cell lines to ascites leads to changes in cellular morphologies. Within ascites, OC cells harboring an initial intermediate epithelial phenotype are characterized by marked dislocation of epithelial markers (E-cadherin, ZO-1 staining) while OC cells initially harboring an intermediate mesenchymal phenotype strengthen their mesenchymal markers (N-cadherin, vimentin). Ascites differentially triggers a dissemination phenotype related to the initial cell features by either allowing the proliferation and the formation of spheroids and the extension of colonies for cells that present an initial epithelial intermediate phenotype, or favoring the migration of cells with a mesenchymal intermediate phenotype. In an ascitic microenvironment, a redeployment of αv integrins into cells was observed and the ascites-induced accentuation of the two different invasive phenotypes (i.e. spheroids formation or migration) was shown to involve αv integrins. Thus, ascites induces a shift toward an unstable intermediate state of the epithelial-mesenchymal spectrum and confers a more aggressive cell behavior that takes on a different pathway based on the initial epithelial-mesenchymal cell features.
Differential Disruption of Nucleocytoplasmic Trafficking Pathways by Rhinovirus 2A Proteases
Watters, Kelly; Inankur, Bahar; Gardiner, Jaye C.; Warrick, Jay; Sherer, Nathan M.; Yin, John
2017-01-01
ABSTRACT The RNA rhinoviruses (RV) encode 2A proteases (2Apro) that contribute essential polyprotein processing and host cell shutoff functions during infection, including the cleavage of Phe/Gly-containing nucleoporin proteins (Nups) within nuclear pore complexes (NPC). Within the 3 RV species, multiple divergent genotypes encode diverse 2Apro sequences that act differentially on specific Nups. Since only subsets of Phe/Gly motifs, particularly those within Nup62, Nup98, and Nup153, are recognized by transport receptors (karyopherins) when trafficking large molecular cargos through the NPC, the processing preferences of individual 2Apro predict RV genotype-specific targeting of NPC pathways and cargos. To test this idea, transformed HeLa cell lines were created with fluorescent cargos (mCherry) for the importin α/β, transportin 1, and transportin 3 import pathways and the Crm1-mediated export pathway. Live-cell imaging of single cells expressing recombinant RV 2Apro (A16, A45, B04, B14, B52, C02, and C15) showed disruption of each pathway with measurably different efficiencies and reaction rates. The B04 and B52 proteases preferentially targeted Nups in the import pathways, while B04 and C15 proteases were more effective against the export pathway. Virus-type-specific trends were also observed during infection of cells with A16, B04, B14, and B52 viruses or their chimeras, as measured by NF-κB (p65/Rel) translocation into the nucleus and the rates of virus-associated cytopathic effects. This study provides new tools for evaluating the host cell response to RV infections in real time and suggests that differential 2Apro activities explain, in part, strain-dependent host responses and diverse RV disease phenotypes. IMPORTANCE Genetic variation among human rhinovirus types includes unexpected diversity in the genes encoding viral proteases (2Apro) that help these viruses achieve antihost responses. When the enzyme activities of 7 different 2Apro were measured comparatively in transformed cells programed with fluorescent reporter systems and by quantitative cell imaging, the cellular substrates, particularly in the nuclear pore complex, used by these proteases were indeed attacked at different rates and with different affinities. The importance of this finding is that it provides a mechanistic explanation for how different types (strains) of rhinoviruses may elicit different cell responses that directly or indirectly lead to distinct disease phenotypes. PMID:28179529
Mayer, Philipp; Dinkic, Christine; Jesenofsky, Ralf; Klauss, Miriam; Schirmacher, Peter; Dapunt, Ulrike; Hackert, Thilo; Uhle, Florian; Hänsch, G. Maria; Gaida, Matthias M.
2018-01-01
In pancreatic cancer (PDAC) intratumor infiltration of polymorphonuclear neutrophils (PMN) is associated with histologically apparent alterations of the tumor growth pattern. The aim of this study was to examine possible associations between PMN infiltration, tumor microarchitecture, and water diffusivity in diffusion-weighted magnetic resonance imaging (DW-MRI), and to further asses the underlying mechanisms. Methods: DW-MRI was performed in 33 PDAC patients prior to surgery. In parallel, tissue specimen were examined histologically for growth pattern, azurocidin-positive PMN infiltrates, and the presence of alpha-smooth muscle actin (α-SMA) and metalloproteinase 9 (MMP9)-positive myofibroblastic cells. For confirmation of the histological findings, a tissue microarray of a second cohort of patients (n=109) was prepared and examined similarly. For in vitro studies, the pancreatic stellate cell line RLT was co-cultivated either with isolated PMN, PMN-lysates, or recombinant azurocidin and characterized by Western blot, flow cytometry, and proteome profiler arrays. Results: Tumors with high PMN density showed restricted water diffusion in DW-MRI and histologic apparent alterations of the tumor microarchitecture (microglandular, micropapillary, or overall poorly differentiated growth pattern) as opposed to tumors with scattered PMN. Areas with altered growth pattern lacked α-SMA-positive myofibroblastic cells. Tissue microarrays confirmed a close association of high PMN density with alterations of the tumor microarchitecture and revealed a significant association of high PMN density with poor histologic grade of differentiation (G3). In vitro experiments provided evidence for direct effects of PMN on stellate cells, where a change to a spindle shaped cell morphology in response to PMN and to PMN-derived azurocidin was seen. Azurocidin incorporated into stellate cells, where it associated with F-actin. Down-regulation of α-SMA was seen within hours, as was activation of the p38-cofilin axis, up-regulation of MMP9, and acquisition of intracellular lipid droplets, which together indicate a phenotype switch of the stellate cells. Conclusion: In PDAC, PMN infiltrates are associated with alterations of the tumor microarchitecture. As a causal relationship, we propose a reprogramming of stellate cells by PMN-derived azurocidin towards a phenotype, which affects the microarchitecture of the tumor. PMID:29290790
Raspberry Pi-powered imaging for plant phenotyping.
Tovar, Jose C; Hoyer, J Steen; Lin, Andy; Tielking, Allison; Callen, Steven T; Elizabeth Castillo, S; Miller, Michael; Tessman, Monica; Fahlgren, Noah; Carrington, James C; Nusinow, Dmitri A; Gehan, Malia A
2018-03-01
Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.
Zhou, Jing; Bethune, Michael T; Malkova, Natalia; Sutherland, Alexander M; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni; Heath, James R
2018-01-01
For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell-T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma.
Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane
2014-01-01
Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein fibronectin polymerization promotes the SMC synthetic phenotype by modulating the expression of smooth muscle cell differentiation proteins. PMID:24752318
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Atsushi; Graduate School of Science and Engineering, Saitama University, Saitama 338-8570; Green Tea Laboratory, Saitama Prefectural Agriculture and Forestry Research Center, Saitama 358-0042
Highlights: •EGCG reduced cell motility of highly metastatic human lung cancer cells. •EGCG increased cell stiffness of the cells, indicating the inhibition of phenotypes of EMT. •EGCG inhibited expression of vimentin and Slug in the cells at the leading edge of scratch. •Treatment of MβCD increased cell stiffness, and inhibited cell motility and vimentin expression. •Inhibition of EMT phenotypes with EGCG is a mechanism-based inhibition of cancer metastasis. -- Abstract: Cell motility and cell stiffness are closely related to metastatic activity of cancer cells. (−)-Epigallocatechin gallate (EGCG) has been shown to inhibit spontaneous metastasis of melanoma cell line into themore » lungs of mice, so we studied the effects of EGCG on cell motility, cell stiffness, and expression of vimentin and Slug, which are molecular phenotypes of epithelial–mesenchymal transition (EMT). Treatments of human non-small cell lung cancer cell lines H1299 and Lu99 with 50 and 100 μM EGCG reduced cell motility to 67.5% and 43.7% in H1299, and 71.7% and 31.5% in Lu99, respectively in in vitro wound healing assay. Studies on cell stiffness using atomic force microscope (AFM) revealed that treatment with 50 μM EGCG increased Young’s modulus of H1299 from 1.24 to 2.25 kPa and that of Lu99 from 1.29 to 2.28 kPa, showing a 2-fold increase in cell stiffness, i.e. rigid elasticity of cell membrane. Furthermore, treatment with 50 μM EGCG inhibited high expression of vimentin and Slug in the cells at a leading edge of scratch. Methyl-β-cyclodextrin, a reagent to deplete cholesterol in plasma membrane, showed inhibition of EMT phenotypes similar that by EGCG, suggesting that EGCG induces inhibition of EMT phenotypes by alteration of membrane organization.« less
Chabot, Andréanne; Hertig, Vanessa; Boscher, Elena; Nguyen, Quang Trinh; Boivin, Benoît; Chebli, Jasmine; Bissonnette, Lyse; Villeneuve, Louis; Brochiero, Emmanuelle; Dupuis, Jocelyn; Calderone, Angelino
2016-07-01
Endothelial and epithelial cell transition to a mesenchymal phenotype was identified as cellular paradigms implicated in the appearance of fibroblasts and development of reactive fibrosis in interstitial lung disease. The intermediate filament protein nestin was highly expressed in fibrotic tissue, detected in fibroblasts and participated in proliferation and migration. The present study tested the hypothesis that the transition of endothelial and epithelial cells to a mesenchymal phenotype was delineated by nestin expression. Three weeks following hypobaric hypoxia, adult male Sprague-Dawley rats characterized by alveolar and perivascular lung fibrosis were associated with increased nestin protein and mRNA levels and marked appearance of nestin/collagen type I((+))-fibroblasts. In the perivascular region of hypobaric hypoxic rats, displaced CD31((+))-endothelial cells were detected, exhibited a mesenchymal phenotype and co-expressed nestin. Likewise, epithelial cells in the lungs of hypobaric hypoxic rats transitioned to a mesenchymal phenotype distinguished by the co-expression of E-cadherin and collagen. Following the removal of FBS from primary passage rat alveolar epithelial cells, TGF-β1 was detected in the media and a subpopulation acquired a mesenchymal phenotype characterized by E-cadherin downregulation and concomitant induction of collagen and nestin. Bone morphogenic protein-7 treatment of alveolar epithelial cells prevented E-cadherin downregulation, suppressed collagen induction but partially inhibited nestin expression. These data support the premise that the transition of endothelial and epithelial cells to a mesenchymal cell may have contributed in part to the appearance nestin/collagen type I((+))-fibroblasts and the reactive fibrotic response in the lungs of hypobaric hypoxic rats. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schnable, J. C.; Pandey, P.; Ge, Y.; Xu, Y.; Qiu, Y.; Liang, Z.
2017-12-01
Maize Zea mays ssp. mays is one of three crops, along with rice and wheat, responsible for more than 1/2 of all calories consumed around the world. Increasing the yield and stress tolerance of these crops is essential to meet the growing need for food. The cost and speed of plant phenotyping is currently the largest constraint on plant breeding efforts. Datasets linking new types of high throughput phenotyping data collected from plants to the performance of the same genotypes under agronomic conditions across a wide range of environments are essential for developing new statistical approaches and computer vision based tools. A set of maize inbreds and hybrids - primarily recently off patent lines - were phenotyped using a high throughput platform at University of Nebraska-Lincoln. These lines have been previously subjected to high density genotyping, and scored for a core set of 13 phenotypes in field trials across 13 North American states in 2014, 2015, 2016, and 2017. Correlations between image-based measurements and manual measurements demonstrated the feasibility of quantifying variation in plant architecture using image data. However, we demonstrate that naive approaches to measuring traits such as biomass where are developed without integrating genotypic information can introduce nonrandom measurement errors which are confounded with variation between plant accessions. Analysis of hyperspectral image data demonstrated unique signatures from stem tissue which were not identified using aerial imagry. Integrating heritable phenotypes from high-throughput phenotyping data with field data from different environments can reveal previously unknown factors influencing yield plasticity.
Schiebel, Juliane; Böhm, Alexander; Nitschke, Jörg; Burdukiewicz, Michał; Weinreich, Jörg; Ali, Aamir; Roggenbuck, Dirk; Rödiger, Stefan
2017-01-01
ABSTRACT Bacterial biofilm formation is a widespread phenomenon and a complex process requiring a set of genes facilitating the initial adhesion, maturation, and production of the extracellular polymeric matrix and subsequent dispersal of bacteria. Most studies on Escherichia coli biofilm formation have investigated nonpathogenic E. coli K-12 strains. Due to the extensive focus on laboratory strains in most studies, there is poor information regarding biofilm formation by pathogenic E. coli isolates. In this study, we genotypically and phenotypically characterized 187 human clinical E. coli isolates representing various pathotypes (e.g., uropathogenic, enteropathogenic, and enteroaggregative E. coli). We investigated the presence of biofilm-associated genes (“genotype”) and phenotypically analyzed the isolates for motility and curli and cellulose production (“phenotype”). We developed a new screening method to examine the in vitro biofilm formation ability. In summary, we found a high prevalence of biofilm-associated genes. However, we could not detect a biofilm-associated gene or specific phenotype correlating with the biofilm formation ability. In contrast, we did identify an association of increased biofilm formation with a specific E. coli pathotype. Enteroaggregative E. coli (EAEC) was found to exhibit the highest capacity for biofilm formation. Using our image-based technology for the screening of biofilm formation, we demonstrated the characteristic biofilm formation pattern of EAEC, consisting of thick bacterial aggregates. In summary, our results highlight the fact that biofilm-promoting factors shown to be critical for biofilm formation in nonpathogenic strains do not reflect their impact in clinical isolates and that the ability of biofilm formation is a defined characteristic of EAEC. IMPORTANCE Bacterial biofilms are ubiquitous and consist of sessile bacterial cells surrounded by a self-produced extracellular polymeric matrix. They cause chronic and device-related infections due to their high resistance to antibiotics and the host immune system. In nonpathogenic Escherichia coli, cell surface components playing a pivotal role in biofilm formation are well known. In contrast, there is poor information for their role in biofilm formation of pathogenic isolates. Our study provides insights into the correlation of biofilm-associated genes or specific phenotypes with the biofilm formation ability of commensal and pathogenic E. coli. Additionally, we describe a newly developed method enabling qualitative biofilm analysis by automated image analysis, which is beneficial for high-throughput screenings. Our results help to establish a better understanding of E. coli biofilm formation. PMID:28986371
Ting, Harold J; Deep, Gagan; Jain, Anil K; Cimic, Adela; Sirintrapun, Joseph; Romero, Lina M; Cramer, Scott D; Agarwal, Chapla; Agarwal, Rajesh
2015-09-01
Tumor microenvironment (TM) is an essential element in prostate cancer (PCA), offering unique opportunities for its prevention. TM includes naïve fibroblasts that are recruited by nascent neoplastic lesion and altered into 'cancer-associated fibroblasts' (CAFs) that promote PCA. A better understanding and targeting of interaction between PCA cells and fibroblasts and inhibiting CAF phenotype through non-toxic agents are novel approaches to prevent PCA progression. One well-studied cancer chemopreventive agent is silibinin, and thus, we examined its efficacy against PCA cells-mediated differentiation of naïve fibroblasts into a myofibroblastic-phenotype similar to that found in CAFs. Silibinin's direct inhibitory effect on the phenotype of CAFs derived directly from PCA patients was also assessed. Human prostate stromal cells (PrSCs) exposed to control conditioned media (CCM) from human PCA PC3 cells showed more invasiveness, with increased alpha-smooth muscle actin (α-SMA) and vimentin expression, and differentiation into a phenotype we identified in CAFs. Importantly, silibinin (at physiologically achievable concentrations) inhibited α-SMA expression and invasiveness in differentiated fibroblasts and prostate CAFs directly, as well as indirectly by targeting PCA cells. The observed increase in α-SMA and CAF-like phenotype was transforming growth factor (TGF) β2 dependent, which was strongly inhibited by silibinin. Furthermore, induction of α-SMA and CAF phenotype by CCM were also strongly inhibited by a TGFβ2-neutralizing antibody. The inhibitory effect of silibinin on TGFβ2 expression and CAF-like biomarkers was also observed in PC3 tumors. Together, these findings highlight the potential usefulness of silibinin in PCA prevention through targeting the CAF phenotype in the prostate TM. © 2014 Wiley Periodicals, Inc.
Zhou, Jing; Bethune, Michael T.; Malkova, Natalia; Sutherland, Alexander M.; Comin-Anduix, Begonya; Su, Yapeng; Baltimore, David; Ribas, Antoni
2018-01-01
For adoptive cell transfer (ACT) immunotherapy of tumor-reactive T cells, an effective therapeutic outcome depends upon cell dose, cell expansion in vivo through a minimally differentiated phenotype, long term persistence, and strong cytolytic effector function. An incomplete understanding of the biological coupling between T cell expansion, differentiation, and response to stimulation hinders the co-optimization of these factors. We report on a biophysical investigation of how the short-term kinetics of T cell functional activation, through molecular stimulation and cell-cell interactions, competes with phenotype differentiation. T cells receive molecular stimulation for a few minutes to a few hours in bulk culture. Following this priming period, the cells are then analyzed at the transcriptional level, or isolated as single cells, with continuing molecular stimulation, within microchambers for analysis via 11-plex secreted protein assays. We resolve a rapid feedback mechanism, promoted by T cell—T cell contact interactions, which strongly amplifies T cell functional performance while yielding only minimal phenotype differentiation. When tested in mouse models of ACT, optimally primed T cells lead to complete tumor eradication. A similar kinetic process is identified in CD8+ and CD4+ T cells collected from a patient with metastatic melanoma. PMID:29360859
Association of Immunological Cell Profiles with Specific Clinical Phenotypes of Scleroderma Disease
Calzada, David; Mayayo, Teodoro; González-Rodríguez, María Luisa; Rabasco, Antonio María; Lahoz, Carlos
2014-01-01
This study aimed to search the correlation among immunological profiles and clinical phenotypes of scleroderma in well-characterized groups of scleroderma patients, comparing forty-nine scleroderma patients stratified according to specific clinical phenotypes with forty-nine healthy controls. Five immunological cell subpopulations (B, CD4+ and CD8+ T-cells, NK, and monocytes) and their respective stages of apoptosis and activation were analyzed by flow cytometry, in samples of peripheral blood mononuclear cells (PBMCs). Analyses of results were stratified according to disease stage, time since the diagnosis, and visceral damage (pulmonary fibrosis, pulmonary hypertension, and cardiac affliction) and by time of treatment with corticosteroids. An increase in the percentages of monocytes and a decrease in the B cells were mainly related to the disease progression. A general apoptosis decrease was found in all phenotypes studied, except in localized scleroderma. An increase of B and NK cells activation was found in patients diagnosed more than 10 years ago. Specific cell populations like monocytes, NK, and B cells were associated with the type of affected organ. This study shows how, in a heterogeneous disease, proper patient's stratification according to clinical phenotypes allows finding specific cellular profiles. Our data may lead to improvements in the knowledge of prognosis factors and to aid in the analysis of future specific therapies. PMID:24818126
Chi, Jingyi; Wu, Zhuhao; Choi, Chan Hee J; Nguyen, Lily; Tegegne, Saba; Ackerman, Sarah E; Crane, Audrey; Marchildon, François; Tessier-Lavigne, Marc; Cohen, Paul
2018-01-09
While the cell-intrinsic pathways governing beige adipocyte development and phenotype have been increasingly delineated, comparatively little is known about how beige adipocytes interact with other cell types in fat. Here, we introduce a whole-tissue clearing method for adipose that permits immunolabeling and three-dimensional profiling of structures including thermogenic adipocytes and sympathetic innervation. We found that tissue architecture and sympathetic innervation differ significantly between subcutaneous and visceral depots. Subcutaneous fat demonstrates prominent regional variation in beige fat biogenesis with localization of UCP1 + beige adipocytes to areas with dense sympathetic neurites. We present evidence that the density of sympathetic projections is dependent on PRDM16 in adipocytes, providing another potential mechanism underlying the metabolic benefits mediated by PRDM16. This powerful imaging tool highlights the interaction of tissue components during beige fat biogenesis and reveals a previously undescribed mode of regulation of the sympathetic nervous system by adipocytes. Copyright © 2017 Elsevier Inc. All rights reserved.
Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools.
Dutta, Priyanka; Lehmann, Christina; Odedra, Devang; Singh, Deepika; Pohl, Christian
2015-12-16
Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.
An Automated High-throughput Array Microscope for Cancer Cell Mechanics
NASA Astrophysics Data System (ADS)
Cribb, Jeremy A.; Osborne, Lukas D.; Beicker, Kellie; Psioda, Matthew; Chen, Jian; O'Brien, E. Timothy; Taylor, Russell M., II; Vicci, Leandra; Hsiao, Joe Ping-Lin; Shao, Chong; Falvo, Michael; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Superfine, Richard
2016-06-01
Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image cultured cells and membrane-bound microbeads in twelve independently-focusing channels simultaneously, visiting all wells in eight steps. We use the AHTM and passive bead rheology techniques to determine the relative compliance of human pancreatic ductal epithelial (HPDE) cells, h-TERT transformed HPDE cells (HPNE), and four gain-of-function constructs related to EMT. The AHTM found HPNE, H-ras, Myr-AKT, and Bcl2 transfected cells more compliant relative to controls, consistent with parallel tests using atomic force microscopy and invasion assays, proving the AHTM capable of screening for changes in mechanical phenotype.
Brain metastases of breast cancer.
Palmieri, Diane; Smith, Quentin R; Lockman, Paul R; Bronder, Julie; Gril, Brunilde; Chambers, Ann F; Weil, Robert J; Steeg, Patricia S
Central nervous system or brain metastases traditionally occur in 10-16% of metastatic breast cancer patients and are associated with a dismal prognosis. The development of brain metastases has been associated with young age, and tumors that are estrogen receptor negative, Her-2+ or of the basal phenotype. Treatment typically includes whole brain irradiation, or either stereotactic radiosurgery or surgery with whole brain radiation, resulting in an approximately 20% one year survival. The blood-brain barrier is a formidable obstacle to the delivery of chemotherapeutics to the brain. Mouse experimental metastasis model systems have been developed for brain metastasis using selected sublines of human MDA-MB-231 breast carcinoma cells. Using micron sized iron particles and MRI imaging, the fate of MDA-MB-231BR cells has been mapped: Approximately 2% of injected cells form larger macroscopic metastases, while 5% of cells remain as dormant cells in the brain. New therapies with permeability for the blood-brain barrier are needed to counteract both types of tumor cells.
Computational Model of Population Dynamics Based on the Cell Cycle and Local Interactions
NASA Astrophysics Data System (ADS)
Oprisan, Sorinel Adrian; Oprisan, Ana
2005-03-01
Our study bridges cellular (mesoscopic) level interactions and global population (macroscopic) dynamics of carcinoma. The morphological differences and transitions between well and smooth defined benign tumors and tentacular malignat tumors suggest a theoretical analysis of tumor invasion based on the development of mathematical models exhibiting bifurcations of spatial patterns in the density of tumor cells. Our computational model views the most representative and clinically relevant features of oncogenesis as a fight between two distinct sub-systems: the immune system of the host and the neoplastic system. We implemented the neoplastic sub-system using a three-stage cell cycle: active, dormant, and necrosis. The second considered sub-system consists of cytotoxic active (effector) cells — EC, with a very broad phenotype ranging from NK cells to CTL cells, macrophages, etc. Based on extensive numerical simulations, we correlated the fractal dimensions for carcinoma, which could be obtained from tumor imaging, with the malignat stage. Our computational model was able to also simulate the effects of surgical, chemotherapeutical, and radiotherapeutical treatments.
Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.
Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z
2017-07-17
Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.
Three-dimensional micro-scale strain mapping in living biological soft tissues.
Moo, Eng Kuan; Sibole, Scott C; Han, Sang Kuy; Herzog, Walter
2018-04-01
Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan
2018-01-01
A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.