Dragon, Stefanie; Offenhäuser, Nina; Baumann, Rosemarie
2002-04-01
During avian embryonic development, terminal erythroid differentiation occurs in the circulation. Some of the key events, such as the induction of erythroid 2,3-bisphosphoglycerate (2,3-BPG), carbonic anhydrase (CAII), and pyrimidine 5'-nucleotidase (P5N) synthesis are oxygen dependent (Baumann R, Haller EA, Schöning U, and Weber M, Dev Biol 116: 548-551, 1986; Dragon S and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 280: R870-R878, 2001; Dragon S, Carey C, Martin K, and Baumann R, J Exp Biol 202: 2787-2795, 1999; Dragon S, Glombitza S, Götz R, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon S, Hille R, Götz R, and Baumann R, Blood 91: 3052-3058, 1998; Million D, Zillner P, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 261: R1188-R1196, 1991) in an indirect way: hypoxia stimulates the release of norepinephrine (NE)/adenosine into the circulation (Dragon et al., J Exp Biol 202: 2787-2795, 1999; Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996). This leads via erythroid beta-adrenergic/adenosine A(2) receptor activation to a cAMP signal inducing several proteins in a transcription-dependent manner (Dragon et al., Am J Physiol Regulatory Integrative Comp Physiol 271: R982-R989, 1996; Dragon et al., Blood 91: 3052-3058, 1998; Glombitza S, Dragon S, Berghammer M, Pannermayr M, and Baumann R, Am J Physiol Regulatory Integrative Comp Physiol 271: R973-R981, 1996). To understand how the cAMP-dependent processes are initiated, we screened an erythroid cDNA library for cAMP-regulated genes. We detected three genes that were strongly upregulated (>5-fold) by cAMP in definitive and primitive red blood cells. They are homologous to the mammalian Tob, Ifr1, and Fos proteins. In addition, the genes are induced in the intact embryo during short-term hypoxia. Because the genes are regulators of proliferation and differentiation in other cell types, we suggest that cAMP might promote general differentiating processes in erythroid cells, thereby allowing adaptive modulation of the latest steps of erythroid differentiation during developmental hypoxia.
Molecular Mechanisms of Olfactory Responses to Stimulus Mixtures
1991-02-26
demonstrated that the amino acid chemoreceptors in this organism are function- ally coupled to one or more G-proteins (19). Biochemical studies have also shown...Hwang, P.M. and Pevsner, J. (1989) Molecular mechanisms of olfaction. TINS 12, 35-38. 3. Bruch, R.C. (1990) Signal transduction in olfaction and taste ...amino acid olfactory receptor. Comp. Biochem. Physiol. 91B, 535-540. 17. Caprio, J. (1978) Olfaction and taste in the channel catfish: An
2005-09-01
toxicity of MPTP (Gainetdinov et al., 1997), while Donovan et al. (1999) have shown that overexpression of DAT in transgenic mice results in greater...neurotransmitter release. Pestic . Biochem. Physiol. 65, 160–168. Kirby, M.L., Barlow, R.L., Bloomquist, J.R., 2001. Neurotoxicity of the organochlorine
Signaling Molecules in Sulfur Mustard-Induced Cutaneous Injury
2007-11-27
vesicant vapors into human skin. J Gen Physiol. 1946;29:441–69. 11. Sabourin CL, Petrali JP, Casillas RP. Alterations in inflammatory cytokine gene...expression in sulfur mustard-exposed mouse skin. J Biochem Mol Toxicol. 2000;14(6):291–302. 12. Sabourin CL, Danne MM, Buxton KL, Casillas RP, Schlager
Oxidative Lung Injury in Virus-Induced Wheezing
2012-05-01
Syncytial Virus Infection. Am J Physiol-Lung Cell & Mol Physiol, in press. 1 Annual Progress Report for the period ending 04/30/2012...epithelial cells infected with Respiratory Syncytial Virus: role in viral-induced Interferon Regulatory Factor activation. J Biol Chem. 276:19715-19722...severe RSV bronchiolitis. 2011. Amer J Resp Critic Care Med. 10. Kahn, J . S. 2003. Human metapneumovirus: a newly emerging respiratory pathogen
Pyridostigmine-Induced Cholinesterase Inhibition: Effects on the Ability to Work in the Heat,
1983-05-27
Physiol. Biochem. 5:370- 372, 1975. 11. Harris, L.W., D.L Stitcher , and W.C. Heyl. The effects of pretreatments with carbamates, atropine and mecamylamine...on survival and on soman-induced alterations in rat and rabbit brain acetylcholine. Life Sci. 26:1885-189 1, 1980. 12. Harris, L.W., D.L. Stitcher
1981-07-01
Crossman, 1973) or because water temperatures are more favorable ( Crawshaw , 1975). Peaks in the length frequency distribution of brown bullhead at 50...269. Crawshaw , L. I. 1975. Attainment of final thermal preferendum in brown bullheads acclimated to different temperatures. Comp. Biochem. Physiol
Joshi, Shripad; Jan, Kung-Ming; Rumschitzki, David S
2015-12-01
Transmural-pressure (ΔP)-driven plasma advection carries macromolecules into the vessel wall, the earliest prelesion atherosclerotic event. The wall's hydraulic conductivity, LP, the water flux-to-ΔP ratio, is high at low pressures, rapidly decreases, and remains flat to high pressures (Baldwin AL, Wilson LM. Am J Physiol Heart Circ Physiol 264: H26-H32, 1993; Nguyen T, Toussaint, Xue JD, Raval Y, Cancel CB, Russell LM, Shou S, Sedes Y, Sun O, Yakobov Y, Tarbell JM, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 308: H1051-H1064, 2015; Tedgui A, Lever MJ. Am J Physiol Heart Circ Physiol. 247: H784-H791, 1984. Shou Y, Jan KM, Rumschitzki DS. Am J Physiol Heart Circ Physiol 291: H2758-H2771, 2006) due to pressure-induced subendothelial intima (SI) compression that causes endothelial cells to partially block internal elastic laminar fenestrae. Nguyen et al. showed that rat and bovine aortic endothelial cells express the membrane protein aquaporin-1 (AQP1) and transmural water transport is both transcellular and paracellular. They found that LP lowering by AQP1 blocking was perplexingly ΔP dependent. We hypothesize that AQP1 blocking lowers average SI pressure; therefore, a lower ΔP achieves the critical force/area on the endothelium to partially block fenestrae. To test this hypothesis, we improve the approximate model of Huang et al. (Huang Y, Rumschitzki D, Chien S, Weinbaum SS. Am J Physiol Heart Circ Physiol 272: H2023-H2039, 1997) and extend it by including transcellular AQP1 water flow. Results confirm the observation by Nguyen et al.: wall LP and water transport decrease with AQP1 disabling. The model predicts 1) low-pressure LP experiments correctly; 2) AQP1s contribute 30-40% to both the phenomenological endothelial + SI and intrinsic endothelial LP; 3) the force on the endothelium for partial SI decompression with functioning AQP1s at 60 mmHg equals that on the endothelium at ∼43 mmHg with inactive AQP1s; and 4) increasing endothelial AQP1 expression increases wall LP and shifts the ΔP regime where LP drops to significantly higher ΔP than in Huang et al. Thus AQP1 upregulation (elevated wall LP) might dilute and slow low-density lipoprotein binding to SI extracellular matrix, which may be beneficial for early atherogenesis. Copyright © 2015 the American Physiological Society.
Howard, M; Jiang, X; Stolz, D B; Hill, W G; Johnson, J A; Watkins, S C; Frizzell, R A; Bruton, C M; Robbins, P D; Weisz, O A
2000-08-01
Channel gating of the cystic fibrosis transmembrane conductance regulator (CFTR) is activated in response to cAMP stimulation. In addition, CFTR activation may also involve rapid insertion of a subapical pool of CFTR into the plasma membrane (PM). However, this issue has been controversial, in part because of the difficulty in distinguishing cell surface vs. intracellular CFTR. Recently, a fully functional, epitope-tagged form of CFTR (M2-901/CFTR) that can be detected immunologically in nonpermeabilized cells was characterized (Howard M, Duvall MD, Devor DC, Dong J-Y, Henze K, and Frizzell RA. Am J Physiol Cell Physiol 269: C1565-C1576, 1995; and Schultz BD, Takahashi A, Liu C, Frizzell RA, and Howard M. Am J Physiol Cell Physiol 273: C2080-C2089, 1997). We have developed replication-defective recombinant adenoviruses that express M2-901/CFTR and used them to probe cell surface CFTR in forskolin (FSK)-stimulated polarized Madin-Darby canine kidney (MDCK) cells. Virally expressed M2-901/CFTR was functional and was readily detected on the apical surface of FSK-stimulated polarized MDCK cells. Interestingly, at low multiplicity of infection, we observed FSK-stimulated insertion of M2901/CFTR into the apical PM, whereas at higher M2-901/CFTR expression levels, no increase in surface expression was detected using indirect immunofluorescence. Immunoelectron microscopy of unstimulated and FSK-stimulated cells confirmed the M2-901/CFTR redistribution to the PM upon FSK stimulation and demonstrates that the apically inserted M2-901/CFTR originates from a population of subapical vesicles. Our observations may reconcile previous conflicting reports regarding the effect of cAMP stimulation on CFTR trafficking.
Olson, Kenneth R; Straub, Karl D
2016-01-01
The chemical versatility of sulfur and its abundance in the prebiotic Earth as reduced sulfide (H2S) implicate this molecule in the origin of life 3.8 billion years ago and also as a major source of energy in the first seven-eighths of evolution. The tremendous increase in ambient oxygen ∼ 600 million years ago brought an end to H2S as an energy source, and H2S-dependent animals either became extinct, retreated to isolated sulfide niches, or adapted. The first 3 billion years of molecular tinkering were not lost, however, and much of this biochemical armamentarium easily adapted to an oxic environment where it contributes to metabolism and signaling even in humans. This review examines the role of H2S in evolution and the evolution of H2S metabolism and signaling. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Regulation of K transport in a mathematical model of the cortical collecting tubule.
Strieter, J; Weinstein, A M; Giebisch, G; Stephenson, J L
1992-12-01
The effect of luminal flow rate and peritubular pH on Na and K transport is investigated in a mathematical model of the rabbit cortical collecting tubule. The model is used to simulate a 0.4-cm segment of tubule comprised of principal cell, alpha- and beta-intercalated cells, and lateral interspace. Calculations produce luminal profiles of Na, K, Cl, HCO3, and phosphate, as well as of electrical potential and pH. Parameter sets are developed that permit representation of both unstimulated and deoxycorticosterone acetate-stimulated tubules. A series of simulations is performed in which initial luminal flow rate is varied over the range of values between 0.1 and 30 nl/min. A marked flow-dependent enhancement of Na reabsorption and K secretion is seen, especially at lower flows, while Cl and HCO3 transport remain relatively constant. In experimental studies, it has been observed that metabolic alkalosis stimulates and metabolic acidosis inhibits K secretion, while leaving Na transport relatively unaffected [B. A. Stanton and G. Giebisch. Am. J. Physiol. 242 (Renal Fluid Electrolyte Physiol. 11): F544-F551, 1982; K. Tabei, S. Muto, Y. Ando, Y. Sakairi, and Y. Asano. J. Am. Soc. Nephrol. 1: 693, 1990; and K. Tabei, S. Muto, H. Furuya, and Y. Asano. J. Am. Soc. Nephrol. 2: 752, 1991]. Model calculations indicate that, when ion permeabilities are fixed and not dependent on pH, the impact of peritubular HCO3 on K secretion cannot be simulated. When junctional Cl permeability decreases with increasing interspace pH (E. M. Wright and J. M. Diamond. Biochim. Biophys. Acta 163: 57-74, 1968) in the model, there is a marked stimulation of K secretion with alkalosis and inhibition with acidosis. Furthermore, inclusion of a pH-dependent apical Na permeability [L. G. Palmer and G. Frindt. Am. J. Physiol. 253 (Renal Fluid Electrolyte Physiol. 22): F333-F339, 1987] that increases with increasing principal cell pH significantly reduces the change in Na+ reabsorption seen with the pH-dependent junctional Cl permeability alone. In these calculations, a pH-dependent apical K permeability [W. Wang, A. Schwab, and G. Giebisch. Am. J. Physiol. 259 (Renal Fluid Electrolyte Physiol. 28): F494-F502, 1990] that increases with increasing principal cell pH shows relatively little impact on K secretion.
Molecular Probe Analysis of Mammalian Brain Acetylcholinesterase
1988-09-27
Project and Degrees Awarded During this Reporting Period: Judith K. Marquis, Principal Investigator Thomas Biagioni , Senior Research Technician Robert...binding sites in nerve membrane vesicles. Comp. Biochem. Physiol. 80C: 203-205 (1985). 5. Volpe, L.S., T.M. Biagioni & J.K. Marquis: In vitro modulation of...Saxena, Vol. 6(1988Y.8 11. Marquis, J.K. & T.M. Biagioni : Selective inhibition of acetylcholinesterase and butyrylcholinesterase in human plasma
Analysis of Fleet Reports of Bioluminescence in the Indian Ocean
1981-12-14
Kalle [ 20,21], who theorized that they were caused by seismic disturbances. According to his theory, such disturbances would produce wheels in...Whether this phenomenon is the same as that described by Kalle is uncertain. The description of the phosphorescent wheel, however, was truly classic. The...Luciferin in Some Shallow-Water FisheF Comp. Biochem. Physiol. 40A:163-179, 1971 . 14. P. J. Herring, "Observations of Bioluminescence at Sea," Mar. Obs. 46
2012-09-01
2008). 22. Mason , M.J., Fan, G ., Plath, K., Zhou, Q. & Horvath , S. Signed weighted gene co-expression network analysis of transcriptional regulation... G , Gimond C. The dual-specificity MAP kinase phosphatases: critical roles in development and cancer. Am J Physiol Cell Physiol.299:C189-202. 9...Tanaka H. KE, Tran C. P., Miyazaki H., Yamashiro J., Shimomura T., Lada F., Wada R., Juang J., Vessella R. L., An J., Horvath S., Gleave M., Rettig M
1995-04-01
J. Biochem. Physiol. 37:911-917. Bloom, N.S., E.A. Crecelius, and S . Berman . 1983. Determination of mercury in seawater at sub-nanogram per liter...procedure for determination of trace metal in seawater by atomic absorption spectrometry with electrothermal atomization. Anal. Chern. Acta 98:47-55...Nakashima, S ., R.E. Sturgeon, S.N. Willie, and S.S. Berman . 1988. Acid digestion of marine sample for trace element analysis using microwave heating
1990-12-21
Crawshaw , 1979; White, 1983; Lagerspetz, 1987). In fish under extreme thermal stress, regions of the brain appear to be the most sensitive, and...proteins. BioEssays 2: 48-52. CRAIG, E. A. 1989. Essential roles of 7OkDa heat inducible proteins. BioEssays 2: 48-52. CRAWSHAW , L.I. 1976. Effect of...rapid temperature change on mean body temperature and gill ventilation in carp. Amer. J. Physiol. 331: 837-841. CRAWSHAW , L. I. 1979. Responses to rapid
Understanding Collagen Organization in Breast Tumors to Predict and Prevent Metastasis
2011-09-01
mechanisms (for example TNF-α has also been shown to increase migration in human chondrosarcoma cells in vitro by upregulating αvβ3 integrin expression... chondrosarcoma cells. J Cell Physiol 2011, 226:792-799. Figure Legends Figure 1: E0771 breast cancer cells do not produce significant TNF-α in vitro
S-Nitrosylation and the Development of Pulmonary Hypertension
2011-02-01
performed in the monocrotaline rat model of PAH and monocrotaline pyrrole treated endothelial cells has suggested that disrupted intracellular membrane...nitrosylation of vasorelevant proteins in endothelial cells exposed to monocrotaline pyrrole . Am. J. Physiol 295: H1943-1955, 2008. 7. Mukhopadhyay S
76 FR 61714 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-05
... leukemia, melanoma, prostate cancer, and Barret's esophagus. Further, excess ROS produced by NOX5 has been... NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell... for B-cell Cancers Description of Technology: The Fc receptor-like (FCRL) genes (also known as CD307...
McCue, Kent F.; Conn, Eric E.
1990-01-01
Light treatment of suspension cultured cells of parsley (Petroselinum crispum) was shown to increase the activity of the shikimic acid pathway enzyme, 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthase (EC 4.1.2.15). DAHP synthase activity was assayed for two isoforms, DS-Mn and DS-Co (RJ Ganson, TA d'Amato, RA Jensen [1986] Plant Physiol 82: 203-210). Light increased the enzymatic activity of the plastidic isoform DS-Mn as much as 2-fold, averaging 1.6-fold with >95% confidence. The cytosolic isoform DS-Co was unaffected. Cycloheximide and actinomycin D, translational and transcriptional inhibitors, respectively, both reversed induction of DS-Mn by light suggesting transcriptional regulation of the gene. Chorismate mutase activity was assayed for the two isoforms CM I and CM II (BK Singh, JA Connelly, EE Conn [1985] Arch Biochem Biophys 243: 374-384). Treatment by light did not significantly affect either chorismate mutase isoform. The ratio of the two chorismate mutase isoforms changed during the growth cycle, with an increase in the ratio of plastidic to cytosolic isoforms occurring towards the end of logarithmic growth. PMID:16667741
Physiological Aging: Links Among Adipose Tissue Dysfunction, Diabetes, and Frailty.
Stout, Michael B; Justice, Jamie N; Nicklas, Barbara J; Kirkland, James L
2017-01-01
Advancing age is associated with progressive declines in physiological function that lead to overt chronic disease, frailty, and eventual mortality. Importantly, age-related physiological changes occur in cellularity, insulin-responsiveness, secretory profiles, and inflammatory status of adipose tissue, leading to adipose tissue dysfunction. Although the mechanisms underlying adipose tissue dysfunction are multifactorial, the consequences result in secretion of proinflammatory cytokines and chemokines, immune cell infiltration, an accumulation of senescent cells, and an increase in senescence-associated secretory phenotype (SASP). These processes synergistically promote chronic sterile inflammation, insulin resistance, and lipid redistribution away from subcutaneous adipose tissue. Without intervention, these effects contribute to age-related systemic metabolic dysfunction, physical limitations, and frailty. Thus adipose tissue dysfunction may be a fundamental contributor to the elevated risk of chronic disease, disability, and adverse health outcomes with advancing age. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.
Computational models of cortical visual processing.
Heeger, D J; Simoncelli, E P; Movshon, J A
1996-01-01
The visual responses of neurons in the cerebral cortex were first adequately characterized in the 1960s by D. H. Hubel and T. N. Wiesel [(1962) J. Physiol. (London) 160, 106-154; (1968) J. Physiol. (London) 195, 215-243] using qualitative analyses based on simple geometric visual targets. Over the past 30 years, it has become common to consider the properties of these neurons by attempting to make formal descriptions of these transformations they execute on the visual image. Most such models have their roots in linear-systems approaches pioneered in the retina by C. Enroth-Cugell and J. R. Robson [(1966) J. Physiol. (London) 187, 517-552], but it is clear that purely linear models of cortical neurons are inadequate. We present two related models: one designed to account for the responses of simple cells in primary visual cortex (V1) and one designed to account for the responses of pattern direction selective cells in MT (or V5), an extrastriate visual area thought to be involved in the analysis of visual motion. These models share a common structure that operates in the same way on different kinds of input, and instantiate the widely held view that computational strategies are similar throughout the cerebral cortex. Implementations of these models for Macintosh microcomputers are available and can be used to explore the models' properties. PMID:8570605
Modeling serotonin uptake in the lung shows endothelial transporters dominate over cleft permeation
Bassingthwaighte, James B.
2013-01-01
A four-region (capillary plasma, endothelium, interstitial fluid, cell) multipath model was configured to describe the kinetics of blood-tissue exchange for small solutes in the lung, accounting for regional flow heterogeneity, permeation of cell membranes and through interendothelial clefts, and intracellular reactions. Serotonin uptake data from the Multiple indicator dilution “bolus sweep” experiments of Rickaby and coworkers (Rickaby DA, Linehan JH, Bronikowski TA, Dawson CA. J Appl Physiol 51: 405–414, 1981; Rickaby DA, Dawson CA, and Linehan JH. J Appl Physiol 56: 1170–1177, 1984) and Malcorps et al. (Malcorps CM, Dawson CA, Linehan JH, Bronikowski TA, Rickaby DA, Herman AG, Will JA. J Appl Physiol 57: 720–730, 1984) were analyzed to distinguish facilitated transport into the endothelial cells (EC) and the inhibition of tracer transport by nontracer serotonin in the bolus of injectate from the free uninhibited permeation through the clefts into the interstitial fluid space. The permeability-surface area products (PS) for serotonin via the inter-EC clefts were ∼0.3 ml·g−1·min−1, low compared with the transporter-mediated maximum PS of 13 ml·g−1·min−1 (with Km = ∼0.3 μM and Vmax = ∼4 nmol·g−1·min−1). The estimates of serotonin PS values for EC transporters from their multiple data sets were similar and were influenced only modestly by accounting for the cleft permeability in parallel. The cleft PS estimates in these Ringer-perfused lungs are less than half of those for anesthetized dogs (Yipintsoi T. Circ Res 39: 523–531, 1976) with normal hematocrits, but are compatible with passive noncarrier-mediated transport observed later in the same laboratory (Dawson CA, Linehan JH, Rickaby DA, Bronikowski TA. Ann Biomed Eng 15: 217–227, 1987; Peeters FAM, Bronikowski TA, Dawson CA, Linehan JH, Bult H, Herman AG. J Appl Physiol 66: 2328–2337, 1989) The identification and quantitation of the cleft pathway conductance from these studies affirms the importance of the cleft permeation. PMID:23645496
Yu, Zhi-Bin; Wei, Hongguang
2012-01-01
Our previous in vivo and ex vivo studies suggested that coexistence of two or more troponin T (TnT) isoforms in adult cardiac muscle decreased cardiac function and efficiency (Huang QQ, Feng HZ, Liu J, Du J, Stull LB, Moravec CS, Huang X, Jin JP, Am J Physiol Cell Physiol 294: C213–C22, 2008; Feng HZ, Jin JP, Am J Physiol Heart Circ Physiol 299: H97–H105, 2010). Here we characterized Ca2+-regulated contractility of isolated adult cardiomyocytes from transgenic mice coexpressing a fast skeletal muscle TnT together with the endogenous cardiac TnT. Without the influence of extracellular matrix, coexistence of the two TnT isoforms resulted in lower shortening amplitude, slower shortening and relengthening velocities, and longer relengthening time. The level of resting cytosolic Ca2+ was unchanged, but the peak Ca2+ transient was lowered and the durations of Ca2+ rising and decaying were longer in the transgenic mouse cardiomyocytes vs. the wild-type controls. Isoproterenol treatment diminished the differences in shortening amplitude and shortening and relengthening velocities, whereas the prolonged durations of relengthening and Ca2+ transient in the transgenic cardiomyocytes remained. At rigor state, a result from depletion of Ca2+, resting sarcomere length of the transgenic cardiomyocytes became shorter than that in wild-type cells. Inhibition of myosin motor diminished this effect of TnT function on cross bridges. The length but not width of transgenic cardiomyocytes was significantly increased compared with the wild-type controls, corresponding to longitudinal addition of sarcomeres and dilatative remodeling at the cellular level. These dominantly negative effects of normal fast TnT demonstrated that chronic coexistence of functionally distinct variants of TnT in adult cardiomyocytes reduces contractile performance with pathological consequences. PMID:22538236
Interaction between Na-K-ATPase and Bcl-2 proteins BclXL and Bak.
Lauf, Peter K; Alqahtani, Tariq; Flues, Karin; Meller, Jaroslaw; Adragna, Norma C
2015-01-01
In silico analysis predicts interaction between Na-K-ATPase (NKA) and Bcl-2 protein canonical BH3- and BH1-like motifs, consistent with NKA inhibition by the benzo-phenanthridine alkaloid chelerythrine, a BH3 mimetic, in fetal human lens epithelial cells (FHLCs) (Lauf PK, Heiny J, Meller J, Lepera MA, Koikov L, Alter GM, Brown TL, Adragna NC. Cell Physiol Biochem 31: 257-276, 2013). This report establishes proof of concept: coimmunoprecipitation and immunocolocalization showed unequivocal and direct physical interaction between NKA and Bcl-2 proteins. Specifically, NKA antibodies (ABs) coimmunoprecipitated BclXL (B-cell lymphoma extra large) and BAK (Bcl-2 antagonist killer) proteins in FHLCs and A549 lung cancer cells. In contrast, both anti-Bcl-2 ABs failed to pull down NKA. Notably, the molecular mass of BAK1 proteins pulled down by NKA and BclXL ABs appeared to be some 4-kDa larger than found in input monomers. In silico analysis predicts these higher molecular mass BAK1 proteins as alternative splicing variants, encoding 42 amino acid (aa) larger proteins than the known 211-aa long canonical BAK1 protein. These BAK1 variants may constitute a pool separate from that forming mitochondrial pores by specifically interacting with NKA and BclXL proteins. We propose a NKA-Bcl-2 protein ternary complex supporting our hypothesis for a special sensor role of NKA in Bcl-2 protein control of cell survival and apoptosis. Copyright © 2015 the American Physiological Society.
Vallés, P; Ebner, S; Manucha, W; Gutierrez, L; Marin-Grez, M
1997-11-01
Renal kallikrein is localized in the connecting tubule cells and secreted into the tubular fluid at late distal nephron segments. The present experiments were performed to further test the hypothesis that renal kallikrein reduces bicarbonate secretion of cortical collecting duct (CCD). The effect of orthograde injections of pig pancreatic kallikrein (1 or 3 micrograms/ml) into the renal tubular system was investigated. Urine fractions (Fr) were collected after a 2-min stop flow. Changes in the urine fraction with respect to those in free-flow urine samples (Ff) were related to the respective polyfructosan (Inutest) ratio. Renal kallikrein activity (Fr:Ff kallikrein/ Fr:Ff polyfructosan) increased significantly in the first two urine fractions collected after glandular kallikrein administration (kallikrein, 1 microgram/ml, P < 0.05; kallikrein, 3 micrograms/ml, P < 0.01). HCO3- secretion of collecting ducts was significantly reduced dose dependently by orthograde and also reduced by retrograde pig pancreatic kallikrein administration. Release of kinins into the fractions was not affected by the retrograde kallikrein injection, even though the kallikrein activity increased considerably (2.26 +/- 0.2 vs. 1.55 +/- 0.2, P < 0.05). Adequacy of retrograde injections for delivering substances to the CCD was demonstrated by injecting colloidal mercury and detecting the appearance of this mercury in the renal cortex by transmission electron microscopy. The integrity of the renal tissue after a retrograde ureteral injection was confirmed by scanning electron microscopy. These results confirm and extend previous data (M. Marin-Grez and P. Vallés. Renal Physiol. Biochem. 17: 301-306, 1994; and M. Marin-Grez, P. Vallés, and P. Odigie. J. Physiol. 488: 163-170, 1995) showing that renal kallikrein reduces bicarbonate secretion at the CCD, probably by inhibiting HCO3- transported by a mechanism unrelated to its kininogenase activity. Support for this assessment was obtained in experiments testing the effect of kallikrein on the luminal bicarbonate secretion of a subpopulation of Madin-Darby canine kidney cells capable of extruding the anion. Kallikrein inhibited HCO3-/Cl- exchange, and the degree of inhibition was dose dependent. This inhibition occurred in the absence of kininogen in the bathing solution.
A Mathematical Model Supports a Key Role for Ae4 (Slc4a9) in Salivary Gland Secretion.
Vera-Sigüenza, Elías; Catalán, Marcelo A; Peña-Münzenmayer, Gaspar; Melvin, James E; Sneyd, James
2018-02-01
We develop a mathematical model of a salivary gland acinar cell with the objective of investigating the role of two [Formula: see text] exchangers from the solute carrier family 4 (Slc4), Ae2 (Slc4a2) and Ae4 (Slc4a9), in fluid secretion. Water transport in this type of cell is predominantly driven by [Formula: see text] movement. Here, a basolateral [Formula: see text] adenosine triphosphatase pump (NaK-ATPase) and a [Formula: see text]-[Formula: see text]-[Formula: see text] cotransporter (Nkcc1) are primarily responsible for concentrating the intracellular space with [Formula: see text] well above its equilibrium potential. Gustatory and olfactory stimuli induce the release of [Formula: see text] ions from the internal stores of acinar cells, which triggers saliva secretion. [Formula: see text]-dependent [Formula: see text] and [Formula: see text] channels promote ion secretion into the luminal space, thus creating an osmotic gradient that promotes water movement in the secretory direction. The current model for saliva secretion proposes that [Formula: see text] anion exchangers (Ae), coupled with a basolateral [Formula: see text] ([Formula: see text]) (Nhe1) antiporter, regulate intracellular pH and act as a secondary [Formula: see text] uptake mechanism (Nauntofte in Am J Physiol Gastrointest Liver Physiol 263(6):G823-G837, 1992; Melvin et al. in Annu Rev Physiol 67:445-469, 2005. https://doi.org/10.1146/annurev.physiol.67.041703.084745 ). Recent studies demonstrated that Ae4 deficient mice exhibit an approximate [Formula: see text] decrease in gland salivation (Peña-Münzenmayer et al. in J Biol Chem 290(17):10677-10688, 2015). Surprisingly, the same study revealed that absence of Ae2 does not impair salivation, as previously suggested. These results seem to indicate that the Ae4 may be responsible for the majority of the secondary [Formula: see text] uptake and thus a key mechanism for saliva secretion. Here, by using 'in-silico' Ae2 and Ae4 knockout simulations, we produced mathematical support for such controversial findings. Our results suggest that the exchanger's cotransport of monovalent cations is likely to be important in establishing the osmotic gradient necessary for optimal transepithelial fluid movement.
Foraging dives by post-breeding northern pintails
Miller, Michael R.
1983-01-01
Dabbling ducks (Anatini), including Northern Pintails (Anas acuta), typically feed by “tipping-up” (Bellrose, Ducks, Geese, and Swans of North America, Stackpole Books, Harrisburg, Pennsylvania, 1976) in shallow water. Pintails are not as adapted for diving as members of Aythyini or Oxyurini (Catlett and Johnston, Comp. Biochem. Physiol. 47A:925-931, 1974); however, incidents of foraging dives by small numbers of pintails have been reported (Chapman et al., Br. Birds 52:60, 1959; Bourget and Chapdelaine, Wildfowl 26:55-57, 1975). This paper reports on forage diving by a flock of several hundred pintails. Ecological explanations are suggested to account for the behavior and comparisons with tip-up feeding are presented.
Interfacial stress affects rat alveolar type II cell signaling and gene expression.
Hobi, Nina; Ravasio, Andrea; Haller, Thomas
2012-07-01
Previous work from our group (Ravasio A, Hobi N, Bertocchi C, Jesacher A, Dietl P, Haller T. Am J Physiol Cell Physiol 300: C1456-C1465, 2011.) showed that contact of alveolar epithelial type II cells with an air-liquid interface (I(AL)) leads to a paradoxical situation. It is a potential threat that can cause cell injury, but also a Ca(2+)-dependent stimulus for surfactant secretion. Both events can be explained by the impact of interfacial tensile forces on cellular structures. Here, the strength of this mechanical stimulus became also apparent in microarray studies by a rapid and significant change on the transcriptional level. Cells challenged with an I(AL) in two different ways showed activation/inactivation of cellular pathways involved in stress response and defense, and a detailed Pubmatrix search identified genes associated with several lung diseases and injuries. Altogether, they suggest a close relationship of interfacial stress sensation with current models in alveolar micromechanics. Further similarities between I(AL) and cell stretch were found with respect to the underlying signaling events. The source of Ca(2+) was extracellular, and the transmembrane Ca(2+) entry pathway suggests the involvement of a mechanosensitive channel. We conclude that alveolar type II cells, due to their location and morphology, are specific sensors of the I(AL), but largely protected from interfacial stress by surfactant release.
Photosymbiotic Giant Clams are Transformers of Solar Flux
2014-01-01
at high flux. Therefore, photobioreactors for algal products and fuels, and polymer photovoltaics could benefit from attempts at direct mimicry of...grown under variable light conditions. Plant Cell Physiol. 33, 733–741. 10. Terán E, Mendez ER, Enriquez S, Iglesias-Prieto R. 2010 Multiple light
Boudko, D Y; Switzer-Dunlap, M; Hadfield, M G
1999-01-05
Two sensory-cell types, subepithelial sensory cells (SSCs) and intraepithelial sensory cells (ISCs), were identified in the anterior sensory organs (ASO: pairs of rhinophores and oral tentacles, and the anterior field formed by the oral plate and cephalic shield) of the nudibranch Phestilla sibogae after filling through anterior nerves with the neuronal tracers biocytin and Lucifer Yellow. A third type of sensory cells, with subepithelial somata and tufts of stiff-cilia (TSCs, presumably rheoreceptors), was identified after uptake of the mitochondrial dye DASPEI. Each sensory-cell type has a specific spatial distribution in the ASO. The highest density of ISCs is in the oral tentacles (approximately 1,200/mm2), SSCs in the middle parts of the rhinophores (>4,000/mm2), and TSCs in the tips of cephalic tentacles (100/mm2). These morphologic data, together with electrophysiologic evidence for greater chemical sensitivity of the rhinophores than the oral tentacles (Murphy and Hadfield [1997] Comp. Biochem. Physiol. 118A:727-735; Boudko et al. [1997] Soc. Neurosci. Abstr. 23:1787), led us to conclude that the two pairs of chemosensory tentacles serve different chemosensory functions in P. sibogae; i.e., ISCs and the oral tentacles serve contact- or short-distance chemoreception, and SSCs and the rhinophores function for long-distance chemoreception or olfaction. If this is true, then the ISC subsystem probably represents an earlier stage in the evolution and adaptations of gastropod chemosensory biology, whereas among the opisthobranchs, the SSC subsystem evolved with the rhinophores from ancestral cephalaspidean opisthobranchs.
Factors in Maximal Power Production and in Exercise Endurance Relative to Maximal Power
1988-10-13
Mechanical efficiency of fast -and slow - twitch muscle fibers in mnan during cycling. J. ADLi Physiol.:Reespirat. Environ. Exercise Physiol. 47: 263- 267...R.S. Hikida, and F.C. Hagerman. Myofibrillar ATPase activity in hu-man muscle fast - twitch subtypes. Histochem. 78: 405-408, 1983. 31. Suzuki, Y...capacity and muscle fibre composition in mnan. J. Physiol (London) 354: 73P, 1984. 21. Margaria, R., P. Aghemo, and E. Rovelli. Measurement of muscular
Badhan, Ajay; Wang, Yuxi; McAllister, Tim A
2017-01-01
Fourier transformed mid-infrared spectroscopy (FTIR) is a powerful tool for compositional analysis of plant cell walls (Acebes et al., Front Plant Sci 5:303, 2014; Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Badhan et al., BioMed Res Int 2015: 562952, 2015; Roach et al., Plant Physiol 156:1351-1363, 2011). The infrared spectrum generates a fingerprint of a sample with absorption peaks corresponding to the frequency of vibrations between the bonds of the atoms making up the material. Here, we describe a method focused on the use of FTIR in combination with principal component analysis (PCA) to characterize the composition of the plant cell wall. This method has been successfully used to study complex enzyme saccharification processes like rumen digestion to identify recalcitrant moieties in low-quality forage which resist rumen digestion (Badhan et al., BioMed Res Int 2015: 562952, 2015), as well as to characterize cell wall mutant lines or transgenic lines expressing exogenous hydrolases (Badhan et al., Biotechnol Biofuels 7:1-15, 2014; Roach et al., Plant Physiol 156:1351-1363, 2011). The FTIR method described here facilitates high-throughput identification of the major compositional differences across a large set of samples in a low cost and nondestructive manner.
Reporting of sex as a variable in cardiovascular studies using cultured cells
2011-01-01
Background Chromosomal complement, including that provided by the sex chromosomes, influences expression of proteins and molecular signaling in every cell. However, less than 50% of the scientific studies published in 2009 using experimental animals reported sex as a biological variable. Because every cell has a sex, we conducted a literature review to determine the extent to which sex is reported as a variable in cardiovascular studies on cultured cells. Methods Articles from 10 cardiovascular journals with high impact factors (Circulation, J Am Coll Cardiol, Eur Heart J, Circ Res, Arterioscler Thromb Vasc Biol, Cardiovasc Res, J Mol Cell Cardiol, Am J Physiol Heart Circ Physiol, J Heart Lung Transplant and J Cardiovasc Pharmacol) and published in 2010 were searched using terms 'cultured' and 'cells' in any order to determine if the sex of those cells was reported. Studies using established cell lines were excluded. Results Using two separate search strategies, we found that only 25 of 90 articles (28%) and 20 of 101 articles (19.8%) reported the sex of cells. Of those reporting the sex of cells, most (68.9%; n = 31) used only male cells and none used exclusively female cells. In studies reporting the sex of cells of cardiovascular origin, 40% used vascular smooth-muscle cells, and 30% used stem/progenitor cells. In studies using cells of human origin, 35% did not report the sex of those cells. None of the studies using neonatal cardiac myocytes reported the sex of those cells. Conclusions The complement of sex chromosomes in cells studied in culture has the potential to affect expression of proteins and 'mechanistic' signaling pathways. Therefore, consistent with scientific excellence, editorial policies should require reporting sex of cells used in in vitro experiments. PMID:22060014
Female and Male Size, Strength and Performance: A Review of Current Literature
1981-11-01
8217- Study: Fortney, Suzanne M. and L.C. Senay Jr. Effect of Training and Heat Acclimation on Exercise Responses of Sedentary Females. J. Appl. Physiol...Sohar Age and Sex Difference in Response to Short Exposure to Extreme Dry Heat. J. A lied Physiol.: Respirat. Environ. Exercise Physiol. 4(1): I-4, 1978...environmental heat stress. Ci ted References: 24 references :*1 -137- Study: Wells, Christine L. and Steven M. Horvath Responses to Exercise in a Hot
Yumoto, Masatoshi; Watanabe, Masaru
2013-01-01
Blebbistatin, a potent inhibitor of myosin II, has inhibiting effects on Ca(2+)-induced contraction and contractile filament organization without affecting the Ca(2+)-sensitivity to the force and phosphorylation level of myosin regulatory light chain (MLC20) in skinned (cell membrane permeabilized) taenia cecum from the guinea pig (Watanabe et al., Am J Physiol Cell Physiol. 2010; 298: C1118-26). In the present study, we investigated blebbistatin effects on the contractile force of skinned tracheal muscle, in which myosin filaments organization is more labile than that in the taenia cecum. Blebbistatin at 10 μM or higher suppressed Ca(2+)-induced tension development at any given Ca(2+) concentration, but had little effects on the Ca(2+)- induced myosin light chain phosphorylation. Also blebbistatin at 10 μM and higher significantly suppressed GTP-γS-induced "sensitized" force development. Since the force inhibiting effects of blebbistatin on the skinned trachea were much stronger than those in skinned taenia cecum, blebbistatin might directly affect myosin filaments organization.
Falone, Stefano; Santini, Silvano; di Loreto, Silvia; Cordone, Valeria; Grannonico, Marta; Cesare, Patrizia; Cacchio, Marisa; Amicarelli, Fernanda
2016-09-01
Extremely low frequency magnetic fields (ELF-MF) are common environmental agents that are suspected to promote later stages of tumorigenesis, especially in brain-derived malignancies. Even though ELF magnetic fields have been previously linked to increased proliferation in neuroblastoma cells, no previous work has studied whether ELF-MF exposure may change key biomolecular features, such as anti-glycative defence and energy re-programming, both of which are currently considered as crucial factors involved in the phenotype and progression of many malignancies. Our study investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field is supported by an improved defense towards methylglyoxal (MG), which is an endogenous cancer-static and glycating α-oxoaldehyde, and by rewiring of energy metabolism. Our findings show that not only the ELF magnetic field interfered with the biology of neuron-derived malignant cells, by de-differentiating further the cellular phenotype and by increasing the proliferative activity, but also triggered cytoprotective mechanisms through the enhancement of the defense against MG, along with a more efficient management of metabolic energy, presumably to support the rapid cell outgrowth. Intriguingly, we also revealed that the MF-induced bioeffects took place after an initial imbalance of the cellular homeostasis, which most likely created a transient unstable milieu. The biochemical pathways and molecular targets revealed in this research could be exploited for future approaches aimed at limiting or suppressing the deleterious effects of ELF magnetic fields. J. Cell. Physiol. 231: 2014-2025, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Theory of Synaptic Plasticity in Visual Cortex
1993-01-20
Science, 255:730-733. 15 Hubel, D. H. and Wiesel, T. N. (1959). Integrative action in the cat’s lateral geniculate body . J. Physiol, 148:574-591. Hubel...neuron in striate cortex receives thousands of afferents from other cells. Most of these afferents derive from the lateral geniculate nucleus (LGN) and...locally available to the junction mi but is physically connected to the junction by the cell body itself-thus necessitating some form of internal
Coping with thermal challenges: physiological adaptations to environmental temperatures.
Tattersall, Glenn J; Sinclair, Brent J; Withers, Philip C; Fields, Peter A; Seebacher, Frank; Cooper, Christine E; Maloney, Shane K
2012-07-01
Temperature profoundly influences physiological responses in animals, primarily due to the effects on biochemical reaction rates. Since physiological responses are often exemplified by their rate dependency (e.g., rate of blood flow, rate of metabolism, rate of heat production, and rate of ion pumping), the study of temperature adaptations has a long history in comparative and evolutionary physiology. Animals may either defend a fairly constant temperature by recruiting biochemical mechanisms of heat production and utilizing physiological responses geared toward modifying heat loss and heat gain from the environment, or utilize biochemical modifications to allow for physiological adjustments to temperature. Biochemical adaptations to temperature involve alterations in protein structure that compromise the effects of increased temperatures on improving catalytic enzyme function with the detrimental influences of higher temperature on protein stability. Temperature has acted to shape the responses of animal proteins in manners that generally preserve turnover rates at animals' normal, or optimal, body temperatures. Physiological responses to cold and warmth differ depending on whether animals maintain elevated body temperatures (endothermic) or exhibit minimal internal heat production (ectothermic). In both cases, however, these mechanisms involve regulated neural and hormonal over heat flow to the body or heat flow within the body. Examples of biochemical responses to temperature in endotherms involve metabolic uncoupling mechanisms that decrease metabolic efficiency with the outcome of producing heat, whereas ectothermic adaptations to temperature are best exemplified by the numerous mechanisms that allow for the tolerance or avoidance of ice crystal formation at temperatures below 0°C. 2012 American Physiological Society. Compr Physiol 2:2037-2061, 2012.
Thermoregulatory Responses to Intermittent Exercise Are Influenced by Knit Structure of Underwear
1990-01-01
determined at 120 min, when Swo,(K3) and Swt(K4) were lower compared to both Sw,,(K2) and Swot (K5) 400 (Fig. 3). 300 Skin wettednessEE The knit...dew Pugh LGC (1966) Clothing insulation and accidential hypo- point temperature sensor. J Appl Physiol 52: 1658- 1660 thermia in youth. Nature 209: 1281...insulation. J Appl Physiol 8:539-545 cise and thermal stress. Physiol Rev 54:75-159 Hardy JI), )uBois EF (1938) Basal metabolism, radiation, Saltin B
2011-10-12
Periasamy, A. Fluorescence Resonance Energy Transfer (FRET) microscopy imaging of live cell protein localization. J . Cell. Biol. 2003, 5, 629-633. 4...tissues. Physiol. Rev. 2010, 90, 1103-1163. 10. Woehler, A.; Wlodarczyk, J .; Neher, E. Signal/noise analysis of FRET-based sensors. Biophys. J . 2010...99, 2344-2354. 11. Selvin, P.R. Lanthanide-based resonance energy transfer. IEEE J . Sel. Top. Quant. Electron. 1996, 2, 1077-1087. 12. Van der Meer
2006-01-01
human prostate cancer cells. J Cell Physiol. 1995, 64: 605-612. 31. Iczkowski, KA , Bai, S, Pantazis, CG. Prostate cancer overexpresses CD44 variants 7-9...Dennis RAM, Adriana BN, Rocha DA, Gilberto S (2000) 9-aminocamptothecin and 9-nitrocamptothecin) [6] or Anti-cancer drug discovery and development in...Young MJ, Duncan RC, Urology 2003;61:30-6. Soloway MS, Block NL. Urinary hyaluronic acid and hyaluronidase: 6. Symon Z, Griffith KA , McLaughlin PW
Smooth muscle contraction: mechanochemical formulation for homogeneous finite strains.
Stålhand, J; Klarbring, A; Holzapfel, G A
2008-01-01
Chemical kinetics of smooth muscle contraction affect mechanical properties of organs that function under finite strains. In an effort to gain further insight into organ physiology, we formulate a mechanochemical finite strain model by considering the interaction between mechanical and biochemical components of cell function during activation. We propose a new constitutive framework and use a mechanochemical device that consists of two parallel elements: (i) spring for the cell stiffness; (ii) contractile element for the sarcomere. We use a multiplicative decomposition of cell elongation into filament contraction and cross-bridge deformation, and suggest that the free energy be a function of stretches, four variables (free unphosphorylated myosin, phosphorylated cross-bridges, phosphorylated and dephosphorylated cross-bridges attached to actin), chemical state variable driven by Ca2+-concentration, and temperature. The derived constitutive laws are thermodynamically consistent. Assuming isothermal conditions, we specialize the mechanical phase such that we recover the linear model of Yang et al. [2003a. The myogenic response in isolated rat cerebrovascular arteries: smooth muscle cell. Med. Eng. Phys. 25, 691-709]. The chemical phase is also specialized so that the linearized chemical evolution law leads to the four-state model of Hai and Murphy [1988. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 254, C99-C106]. One numerical example shows typical mechanochemical effects and the efficiency of the proposed approach. We discuss related parameter identification, and illustrate the dependence of muscle contraction (Ca2+-concentration) on active stress and related stretch. Mechanochemical models of this kind serve the mathematical basis for analyzing coupled processes such as the dependency of tissue properties on the chemical kinetics of smooth muscle.
Effects of Thermal Status on Markers of Blood Coagulation During Simulated Hemorrhage
2015-04-01
handgrip exercise. J Appl Physiol 66: 1586 –1592, 1989. 50. Wade OL, Bishop JM. Cardiac Output and Regional Blood Flow. Oxford: Blackwell Scientific...CM (1989) Cuta neous vascular responses to isometric handgrip exercise. J Appl Physiol 66: 1586 1592 28. Wilson TE, Cui J, Zhang R, Crandall CG (2006
Voltage signals of individual Purkinje cell dendrites in rat cerebellar slices.
Borst, A; Heck, D; Thomann, M
1997-11-28
For investigating neuronal information processing at the cellular level, a technique which visualizes the voltage distribution within single neurons in situ would be extremely useful. Voltage-sensitive dyes are, in principle, capable of reporting membrane potential [Cohen, L.B. and Salzberg, B.M., Rev. Physiol. Biochem. Pharmacol., 83 (1978) 35-88; Grinvald, A., Lieke, E.E., Frostig, R.D. and Hildesheim, R., J. Neurosci., 14 (1994) 2545-2568; Kleinfeld, D., Delaney, K.R., Fee, M.S., Flores, J.A., Tank, D.W. and Gelperin, A., J. Neurophysiol., 72 (1994) 1402-1419]. However, their application to single cells internally is technically difficult [Antic, S. and Zecevic, D., J. Neurosci., 15 (1995) 1392-1405; Grinvald, A., Salzberg, B.M., Lev-Ram, V. and Hildesheim, R., Biophys. J., 51 (1987) 643-651; Kogan, A., Ross, W.N., Zecevic, D. and Lasser-Ross, N., Brain Res., 700 (1995) 235-239; Zecevic, D., Nature, 381 (1996) 322-325]. An alternative strategy consists in applying the dye from the outside to all cells in the tissue, while manipulating a single cell by current injection [Krauthamer, V. and Ross, W.N., J. Neurosci., 4 (1984) 673-682; Ross, W.N. and Krauthamer, V., J. Neurosci., 4 (1984) 659-672]. Here, we modify this technique to further enhance spatial at the cost of temporal resolution [Borst, A., Z. Naturforsch., 50 (1995) 435-438]. Applied to rat cerebellar slices we demonstrate that the potential spread in individual Purkinje cells can be imaged up to even fine dendritic branches. The acquired optical signals suggest that steadily hyperpolarized Purkinje cells are electrically compact. When permanently depolarized, the somatic input resistance is significantly diminished, yet the spatial voltage drop along the dendrites remains unchanged. As demonstrated by compartmental modeling, this hints to a concentration of outward rectifying currents at the soma of the cells.
Visual Acuity and the Balance between Receptor Density and Ganglion Cell Receptive Field Overlap.
1980-07-01
Physiol. 229:719-731. Cleland, B . G., Dubin, M. W. and Levick , W. R. (1971) Sustained and transient neurones in the cat’s retina and lateral...NOOOIQ.79C-0370 NLASSIFIED IA. EEEEEEEEEEinnuunuuuuuu ’mLuuuu~ 4,0 111 12. 11111IL25 1.4I 111111.6 MICROCOPY RESOLUTION TEST CHART LEVEt 9 70 b *tm...1970; Burke and Hayhow, 1968; Barlow and Levick , 1969). As far as they affect the ganglion cell, these sources of noise are equivalent so they have been
2011-01-01
natriuretic effects of renal perfusion pressure and the antinatriuretic effects of angiotensin and aldosterone in control of sodium excretion. J Physiol...cardiorespiratory physiology by HIF-1. J Appl Physiol. 2004;96:117– 1177. discussion 11701172. 31. Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol
Hypothalamic control of body temperature: insights from the past.
Mack, Gary W
2004-11-01
This essay looks at the historical significance of three APS classic papers that are freely available online: Hammel HT, Hardy JD, and Fusco MM. Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am J Physiol 198: 481-486, 1960 (http://ajplegacy.physiology.org/cgi/reprint/198/3/481). Hammel HT, Jackson DC, Stolwijk JAJ, Hardy JD, and Stromme SB. Temperature regulation by hypothalamic proportional control with an adjustable set point. J Appl Physiol 18: 1146-1154, 1963 (http://jap.physiology.org/cgi/reprint/18/6/1146). Hellstrom B and Hammel HT. Some characteristics of temperature regulation in the unanesthetized dog. Am J Physiol 213: 547-556, 1967 (http://ajplegacy.physiology.org/cgi/reprint/213/2/547). Copyright 2004 American Physiological Society
Mechanism of ion transport by avian salt gland primary cell cultures.
Lowy, R J; Dawson, D C; Ernst, S A
1989-06-01
Confluent sheets formed from primary culture of avian salt gland secretory cells exhibit a short-circuit current (Isc) in response to cholinergic and beta-adrenergic stimulation [Lowy, R. J., D. C. Dawson, and S. A. Ernst. Am J. Physiol. 249 (Cell Physiol. 18): C41-C47, 1985]. To establish the ionic basis for the Isc, transmural fluxes of 22Na and 36Cl were measured. Under short-circuit conditions there was little net flux of either ion in the absence of agonists. Addition of carbachol elevated net serosal-to-mucosal Cl flux to 1.71 mu eq.h-1.cm-2, whereas a smaller increase to 0.85 mu eq.h-1.cm-2 occurred with isoproterenol. Neither agonist altered net Na flux. The stimulated Isc accounted for 70% of the net Cl flux induced by carbachol and nearly 100% of that induced by isoproterenol. Replacement of Cl by gluconate or Na by choline abolished (carbachol) or greatly reduced (isoproterenol) the Isc, which could be restored in a dose-dependent fashion by ion restitution. Active ion transport was preferentially inhibited by basal (vs. apical) addition of ouabain, furosemide, or barium. The results provide evidence that cholinergic and beta-adrenergic agonists elicit active transmural Cl secretion. They further suggest that transport is dependent on the Na+-K+-adenosine-triphosphatase, a Na-Cl cotransport process, and a basal K conductance, all features of a secondary active Cl secretory mechanism.
Maintenance of Mitochondrial Oxygen Homeostasis by Cosubstrate Compensation
Kueh, Hao Yuan; Niethammer, Philipp; Mitchison, Timothy J.
2013-01-01
Mitochondria maintain a constant rate of aerobic respiration over a wide range of oxygen levels. However, the control strategies underlying oxygen homeostasis are still unclear. Using mathematical modeling, we found that the mitochondrial electron transport chain (ETC) responds to oxygen level changes by undergoing compensatory changes in reduced electron carrier levels. This emergent behavior, which we named cosubstrate compensation (CSC), enables the ETC to maintain homeostasis over a wide of oxygen levels. When performing CSC, our ETC models recapitulated a classic scaling relationship discovered by Chance [Chance B (1965) J. Gen. Physiol. 49:163-165] relating the extent of oxygen homeostasis to the kinetics of mitochondrial electron transport. Analysis of an in silico mitochondrial respiratory system further showed evidence that CSC constitutes the dominant control strategy for mitochondrial oxygen homeostasis during active respiration. Our findings indicate that CSC constitutes a robust control strategy for homeostasis and adaptation in cellular biochemical networks. PMID:23528093
2004-10-01
and necrosis using CT, magnetic resonance, thermal imaging, and near-infrared spectroscopy. These have led to numerous publications, patents, products...Willerson, Buja, Litovsky) 13. Project II.D ....................................... 99 Thermal Detection and Treatment of Inflammation and Necrosis ...2002). ,’Endotoxin stress- response in cardiomyocytes: NF-kappaB• activation and tumor necrosis factor-alpha expression," Am J Physiol Heart Circ Physiol
Creatine Kinase Clinical Considerations: Ethnicity, Gender and Genetics
2009-10-01
reported that the CC genotype was associated with exaggerated CK responses to exercise (37), inspection of their data and a letter to the editor (19...variation, response to eccentric exercise , and association of inflammatory mediators with muscle damage variables. J Appl Physiol. 104:451-458, 2008...174) and TNFA (-308) promoter polymorphisms are associated with systemic creatine kinase response to eccentric exercise . Eur J Appl Physiol. 104
Potassium Homeostasis: The Knowns, the Unknowns, and the Health Benefits.
McDonough, Alicia A; Youn, Jang H
2017-03-01
Potassium homeostasis has a very high priority because of its importance for membrane potential. Although extracellular K + is only 2% of total body K + , our physiology was evolutionarily tuned for a high-K + , low-Na + diet. We review how multiple systems interface to accomplish fine K + balance and the consequences for health and disease. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.
1986-10-01
dose of 0.5 mg/k, the predominant bistopathic alterations included serosal petechial hemorrhages, moderate edema of the submucosa with Larea~e in...by a disruption of endothelial cell membranes, pycnotic nuclei, presence of edema in the interstitium and petechial hemorrhages within 2 h after T-2...Townsend. 1982. Inhibition, by trichothecene antibiotics, of brain protein synthesis and fever in rabbits. J. Physiol., Lond. 322:447. 21. Yarom, R
Amplified Genes in Breast Cancer: Molecular Targets for Investigation and Therapy
1999-09-01
checkpoints (Hartwell and Kastan, 1994). Mutations in genes involved in these transactions occur commonly during cancer progression and can greatly ele...induction of micronuclei as a measure of genotoxicity. A report of the U.S. Environmental Protection Agency Gene - Tox Program. Mutat . Res. 123:61-118...evidence for mutations at different loci in the HGPRT gene . J. Cell. Physiol. 85:307-320. 6 Capecchi, M.R., Hughes, S.H. and Wahl, G.M. (1975) Yeast
Transient Delivery of Adenosine as a Novel Therapy to Prevent Epileptogenesis
2015-10-01
1) increase oxygen supply or to decrease oxygen de- mand by regulation of blood flow, body temperature , and cell work; 2) induce tolerance to hypoxic... temperature . Adv Pharmacol 61:77–94. Fredholm BB and Sollevi A (1977) Antilipolytic effect of adenosine in dog adipose tissue in situ. Acta Physiol Scand 99...seizures and mossy fiber sprouting). To our knowledge this is the first study where a robust antiepileptogenic effect has been demonstrated after the
Visual Navigation in Nocturnal Insects.
Warrant, Eric; Dacke, Marie
2016-05-01
Despite their tiny eyes and brains, nocturnal insects have evolved a remarkable capacity to visually navigate at night. Whereas some use moonlight or the stars as celestial compass cues to maintain a straight-line course, others use visual landmarks to navigate to and from their nest. These impressive abilities rely on highly sensitive compound eyes and specialized visual processing strategies in the brain. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Tissue Oxygenation Monitoring using Resonance Raman Spectroscopy during Hemorrhage
2013-12-27
saturation measurements using resonance Raman intravital micros- copy. Am J Physiol Heart Circ Physiol. 2005;289:H488 H495. 14. Ward KR, Ivatury RR, Barbee...Nighswander-Rempel SP, Kupriyanov VV, Shaw RA. Relative contribu- tions of hemoglobin and myoglobin to near-infrared spectroscopic images of cardiac tissue...DC, Shapiro NI. The microcirculation image quality score: development and preliminary evaluation of a proposed approach to grading quality of image
Physical Activity, Aging, and Physiological Function.
Harridge, Stephen D R; Lazarus, Norman R
2017-03-01
Human evolution suggests that the default position for health is to be physically active. Inactivity, by contrast, has serious negative effects on health across the lifespan. Therefore, only in physically active people can the inherent aging process proceed unaffected by disuse complications. In such individuals, although the relationship between age and physiological function remains complex, function is generally superior with health, well being, and the aging process optimized. ©2017 Int. Union Physiol. Sci./Am. Physiol. Soc.
2006-09-01
NM, Joyner MJ. Influence of increased central venous pressure on baroreflex control of sympathetic activity in humans. Am J Physiol Heart Circ Physiol...Arterial Pulse Pressure and Its Association With Reduced Stroke Volume During Progressive Central Hypovolemia Victor A. Convertino, PhD, William H...reduction of SV and change in MSNA during graded central hypovolemia in humans. Methods: After a 12-minute baseline data collection period, 13 men were
Hypohydration and Heat Acclimation: Plasma Renin and Aldosterone during Exercise,
1983-01-01
vasoconstriction in heat-stressed men: role of McGraw-Hill, 1964, p. 419-423. renin - angiotensin system . J. AppL PhysioL: Respirat. Environ. 13. LINDQUIST, E...AL.A137 365 HYPOHYDRATION AND HEAT ACCLIMATION: PLASMA RENIN AND I/ ALDOSTERONE DURING EXERCISE(U) ARMY RESEARCH INST OF ENVIRONMENTAL MEDICINE...heat acclimation:plasma renin dependent not only on the mode of exercise but also the and aldosterone during exercise. J. Appl. Physiol.: Respirat
Quantifying Improved Visual Performance Through Vision Training
1991-02-22
Eibschitz, N., Friedman, Z. and Neuman, E. (1978) Comparative results of amblyopia treatment . Metab Opthalmol, 2, 111-112. Evans, D.W. and Ginsburg, A... treatment . Am Orthopt J, 5, 61-64. Garzia, R.P. (1987) The efficacy of visual training in amblyopia : A literature review. Am J Optom Physiol Opt, 64, 393...predicts pilots’ performance in aircraft simulators. Am. J. Opt. Physiol. Opt., 59(1), 105-109. Gortz, H. (1960) The corrective treatment of amblyopia
The role of apoptosis in LDL transport through cultured endothelial cell monolayers.
Cancel, Limary M; Tarbell, John M
2010-02-01
We have previously shown that leaky junctions associated with dying or dividing cells are the dominant pathway for low density lipoprotein (LDL) transport under convective conditions, accounting for more than 90% of the transport [Cancel LM, Fitting A, Tarbell JM. In vitro study of LDL transport under pressurized (convective) conditions. Am J Physiol Heart Circ Physiol 2007;293:H126-32]. To explore the role of apoptosis in the leaky junction pathway, TNFalpha and cycloheximide (TNFalpha/CHX) were used to induce an elevated rate of apoptosis in cultured bovine aortic endothelial cell (BAEC) monolayers and the convective fluxes of LDL and water were measured. Treatment with TNFalpha/CHX induced a 18.3-fold increase in apoptosis and a 4.4-fold increase in LDL permeability. Increases in apoptosis and permeability were attenuated by treatment with the caspase inhibitor Z-VAD-FMK. Water flux increased by 2.7-fold after treatment with TNFalpha/CHX, and this increase was not attenuated by treatment with Z-VAD-FMK. Immunostaining of the tight junction protein ZO-1 showed that TNFalpha/CHX treatment disrupts the tight junction in addition to inducing apoptosis. This disruption is present even when Z-VAD-FMK is used to inhibit apoptosis, and likely accounts for the increase in water flux. We found a strong correlation between the rate of apoptosis and the permeability of BAEC monolayers to LDL. These results demonstrate the potential of manipulating endothelial monolayer permeability by altering the rate of apoptosis pharmacollogicaly. This has implications for the treatment of atherosclerosis. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
2004-09-01
hemoglobin in the oxy-hemoglobin state [Stratton 1988; Takeoka 1997]. 3) Decreased Vasoactivity. Because LEH has physical properties closer to red cells...in rabbit arterial segments. J Appl Physiol 82:1826-1835. [21] Sakai H, Horinouchi H, Masada Y, Takeoka S, Ikeda E, Takaori M, Kobayashi K and...4317-4325. [22] Sakai H, Horinouchi H, Tomiyama K, Ikeda E, Takeoka S, Kobayashi K and Tsuchida E (2001) Hemoglobin-vesicles as oxygen carriers
1993-12-01
collection program (Branch Technology ). While this study focused on changes in LADCA flow seen after ACh injection, these other data were collected as...1990. 60. Lembeck, F. Substance P: From extract to excitement. Acta. Physiol. Scand. 133: 435-454, 1988. 61 . Ludmer, P.L., AP. Selwyn, T.L. Shook...before and after removal of the endothelial cells by saponin . Heart Vessels 2: 221-227, 1986. 76. Nakayama, K., G. Osol, and W. Halpern. Reactivity of
The Analysis of Visual Motion: From Computational Theory to Neuronal Mechanisms.
1986-12-01
neuronb. Brain Res. 151:599-603. Frost, B . J., Nakayama, K . 1983. Single visual neurons code opposing motion independent JW of direction. Science 220:744...Biol. Cybern. 42:195-204. llolden, A. 1. 1977. Responses of directional ganglion cells in the pigeon retina. J. Physiol., 270:2,53 269. Horn. B . K . P...R. Soc. Iond. B . 223:165-175. 51 % Computations Underlying Motion ttildret ik Koch %V. Longuet-Iliggins, H. C., Prazdny. K . 1981. The interpretation
How Chimeric Antigen Receptor Design Affects Adoptive T Cell Therapy.
Gacerez, Albert T; Arellano, Benjamine; Sentman, Charles L
2016-12-01
Chimeric antigen receptor (CAR) T cells have been developed to treat tumors and have shown great success against B cell malignancies. Exploiting modular designs and swappable domains, CARs can target an array of cell surface antigens and, upon receptor-ligand interactions, direct signaling cascades, thereby driving T cell effector functions. CARs have been designed using receptors, ligands, or scFv binding domains. Different regions of a CAR have each been found to play a role in determining the overall efficacy of CAR T cells. Therefore, this review provides an overview of CAR construction and common designs. Each CAR region is discussed in the context of its importance to a CAR's function. Additionally, the review explores how various engineering strategies have been applied to CAR T cells in order to regulate CAR T cell function and activity. J. Cell. Physiol. 231: 2590-2598, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effects of Repeated Valsalva Maneuver Straining on Cardiac and Vasoconstrictive Baroreflex Responses
2003-03-01
of blood pressure regulation that differ in men repeatedly exposed to high G acceleration. Am J Physiol Regul Integr Comp Physiol 2001; 280:R947–58. 10...Methods: We tested this hypothesis by measuring cardiac baroreflex responses to carotid baroreceptor stimulation (neck pressures ), and changes in heart rate...hypothesis is the observation that elevated pulse pressures in isolated carotid sinuses of dogs sen- sitized baroreceptor afferent firing (4,5). Elevated arte
Effects of inspiratory impedance on the carotid-cardiac baroreflex response in humans.
2004-08-01
seems con- traindicated, it is similar to the concurrent elevation in HR and arterial blood pressure responses observed dur- ing physical exercise.Two...expect withdrawal of vagal activity and no significant change in sympathetic activity with heart rate below 100 bpm during physical exercise [31]. To... quadriplegics . Am J Physiol Regulatory Integrative Comp Physiol 260: R576–R580 7. Convertino VA, Doerr DF, Eckberg DL, Fritsch JM, Vernikos-Danellis J
Evolutionary Specialization of Tactile Perception in Vertebrates.
Schneider, Eve R; Gracheva, Elena O; Bagriantsev, Slav N
2016-05-01
Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Laschi, Marcella; Tinti, Laura; Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Amato, Loredana; Selvi, Enrico; Spreafico, Adriano; Bernardini, Giulia; Santucci, Annalisa
2012-01-01
Alkaptonuria (AKU) results from defective homogentisate1,2-dioxygenase (HGD), causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Human normal and AKU osteoarticular cells were tested for HGD gene expression by RT-PCR, mono- and 2D-Western blotting. HGD gene expression was revealed in chondrocytes, synoviocytes, osteoblasts. Furthermore, HGD expression was confirmed by Western blotting, that also revealed the presence of five enzymatic molecular species. Our findings indicate that AKU osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropathy. J. Cell. Physiol. 227: 3254–3257, 2012. © 2011 Wiley Periodicals, Inc. PMID:22105303
Balk, P A; de Boer, A D
1999-09-01
Many bulbous plants need a low-temperature treatment for flowering. Cold, for example, affects the elongation of the stalk, thereby influencing the quality of the cut flower. How the elongation of the stalk is promoted by cold and which physiological and biochemical mechanisms are involved have remained obscure. As invertase has been shown to be involved in the cold-induced elongation of the flower stalks of tulips (Lambrechts et al., 1994, Plant Physiol 104: 515-520), we further characterized this enzyme by cloning the cDNA and analysing its expression in various tissues of the tulip (Tulipa gesneriana L. cv. Apeldoorn) stalk. In addition, the role of sucrose synthase was investigated. Since turgor pressure is an important force driving cell elongation, the role of a water-channel protein (gammaTIP) was studied in relation to these two enzymes. The mRNA level of the invertase found was substantially up-regulated as a result of cold treatment. Analysis of the amino acid sequence of this invertase revealed the presence of a vacuolar targeting signal. Two different forms of sucrose synthase were found, the expression of one of them appeared to be restricted to the vascular tissue while the other form was present in the surrounding tissue. Both sucrose synthases were present in the stalk during the entire period of bulb storage and after planting, but their activities declined during stalk elongation. The expression of the gammaTIP gene was restricted mainly to the vascular tissue and its expression profile was identical to that of invertase. Simultaneous expression of invertase and gammaTIP possibly leads to an increase in osmotic potential and vacuolar water uptake, thus providing a driving force for stretching the stalk cells.
A Quantitative Analysis of the Effect of Resistance Training on Strength Test Score Variability
2009-10-02
strength gains in older adults. J Nutr Health Aging, 1, 114-119. *Broeder, C. E., Burrhus, K. A., Svanevik, L. S ., & Wilmore, J. H. (1992). The...effects of either high-intensity resistance or endurance training on resting metabolic rate. Am J Clin Nutr, 55, 802-810. Bryk, A. S ., & Raudenbush, S ...two and three bouts per week. Eur J Appl Physiol Occup Physiol, 78, 270-275. *Charette, S . L., McEvoy, L., Pyka, G., Snow-Harter, C., Guido, D
AltitudeOmics: The Basic Biology of Human Acclimatization to High Altitude
2013-09-01
News Physiol Sci 17: 17–21, 2002. 62. Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, Ikeda K, Graham J, Lewis NC, Day TA, Ainslie PN...transcranial magnetic stimulation. J Physiol 551, 661-671. Willie, C. K., Macleod, D. B., Shaw , A. D., Smith, K. J., Tzeng, Y. C., Eves, N. D., Ikeda...blood flow. Davis, Philadelphia. Willie CK, Macleod DB, Shaw AD, Smith KJ, Tzeng YC, Eves ND, Ikeda K, Graham J, Lewis NC, Day TA & Ainslie PN
Evolutionary Medicine: The Ongoing Evolution of Human Physiology and Metabolism.
Rühli, Frank; van Schaik, Katherine; Henneberg, Maciej
2016-11-01
The field of evolutionary medicine uses evolutionary principles to understand changes in human anatomy and physiology that have occurred over time in response to environmental changes. Through this evolutionary-based approach, we can understand disease as a consequence of anatomical and physiological "trade-offs" that develop to facilitate survival and reproduction. We demonstrate how diachronic study of human anatomy and physiology is fundamental for an increased understanding of human health and disease. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
2007-02-22
102:1899-1905, 2007. First published Feb 22, 2007; doi:10.1152/japplphysiol.00920.2006J Appl Physiol W. Castellani R. W. Kenefick, C. M. Maresh...hormones and exercise performance in the heat. J Appl Physiol 102: 1899–1905, 2007. First published February 22, 2007; doi:10.1152/japplphysiol...charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. J Appl
Coordinate Expression of the PDK4 Gene: a Means of Regulating Fuel Selection in a Hibernating Mammal
2002-01-01
described below) and/or by the onset of insulin resistance like that observed in another hiber- nator, the yellow - bellied marmot (Marmota flaviven...than 1 ng/ml in hibernating December- January animals is also seen in the yellow - bellied marmot (28). Seasonal insulin concentrations in the marmot are... bellied marmots . Am J Physiol Regulatory Integrative Comp Physiol 249: R159–R165, 1985. 11. Florant GL, Nuttle LC, Mullinex DE, and Rintoul DA. Plasma and
1983-06-01
Pressure (PAO) 5. Left Atrial Pressure ( P LA) 6. Right Atrial Pressure ( P RA) 7. Pulmonary Artery Pressure ( P P ) b. Respiration 1. Respiratory Frequency...the respiration of monkeys. Porton Technical Paper, p . 316, 1953a. Homstedt, B. Synthesis and pharmacology of tabun. Acta. Physiol. Scand. 25:suppl...and P . Lynne-Davies. Functional importance of the Breuer-Hering reflex. Respir . Physiol. 15:125-139, 1972. McGregor, M. and M.R. Becklake. The
1986-11-01
Predicting rectal temperature response to work environment and clothing. J. Pppl . PhysioL. 32: 812-822, 1972. 3. Givoni B., Goldman RF: Predicting...heart rote response to work, environment and clothing. J. PppL . PhysioL. 34: 201-204, 1973. 4. Givoni B., Goldman RF: Predicting effects of heat...expenditure with loads while standing or walking very slowly. J. Pppl . Physlol. 43: 477-581, 1877. G. Shapiro Y., Pandolf KB., Breckenridge JR., Goldman RF
Cell growth and water relations of the halophyte, Atriplex nummularia L., in response to NaCl.
Casas, A M; Bressan, R A; Hasegawa, P M
1991-06-01
Growth reduction or cessation is an initial response of Atriplex nummularia L. cells to NaCl. However, A. nummularia L. cells that are adapted to 342 and 428 mM NaCl are capable of sustained growth in the presence of salt. Cells that are adapted to NaCl exhibit a reduced rate of division compared to unadapted cells. Unlike salt adapted cells of the glycophyte Nicotiana tabacum L., A. nummularia L. cells do not exhibit reduced rate of cell expansion after adaptation. However, the cell expansion rate of unadapted A. nummularia L. cells is considerably slower than that of unadapted glycophyte cells and this normally low rate of cell expansion may contribute to the enhanced capacity of the halophyte to tolerate salt. Turgor of NaCl adapted cells was equivalent to unadapted cells indicating that the cells of the halophyte do not respond to salt by osmotic "over adjustment" as reported for the glycophyte tobacco (Binzel et al. 1985, Plant Physiol. 79:118-125).
Kumar, Anoop; Alrefai, Waddah A.; Dudeja, Pradeep K.
2015-01-01
Butyrate, a key short-chain fatty acid metabolite of colonic luminal bacterial action on dietary fiber, serves as a primary fuel for the colonocytes, ameliorates mucosal inflammation, and stimulates NaCl absorption. Absorption of butyrate into the colonocytes is essential for these intracellular effects. Monocarboxylate transporter 1 (MCT1) plays a major role in colonic luminal butyrate absorption. Previous studies (Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. Adv Immunol 121: 91–119, 2014.) showed decreased MCT1 expression and function in intestinal inflammation. We have previously shown (Borthakur A, Gill RK, Hodges K, Ramaswamy K, Hecht G, Dudeja PK. Am J Physiol Gastrointest Liver Physiol 290: G30–G35, 2006.) impaired butyrate absorption in human intestinal epithelial Caco-2 cells due to decreased MCT1 level at the apical cell surface following enteropathogenic E. coli (EPEC) infection. Current studies, therefore, examined the potential role of probiotic Lactobacilli in stimulating MCT1-mediated butyrate uptake and counteracting EPEC inhibition of MCT1 function. Of the five species of Lactobacilli, short-term (3 h) treatment with L. acidophilus (LA) significantly increased MCT1-mediated butyrate uptake in Caco-2 cells. Heat-killed LA was ineffective, whereas the conditioned culture supernatant of LA (LA-CS) was equally effective in stimulating MCT1 function, indicating that the effects are mediated by LA-secreted soluble factor(s). Furthermore, LA-CS increased apical membrane levels of MCT1 protein via decreasing its basal endocytosis, suggesting that LA-CS stimulation of butyrate uptake could be secondary to increased levels of MCT1 on the apical cell surface. LA-CS also attenuated EPEC inhibition of butyrate uptake and EPEC-mediated endocytosis of MCT1. Our studies highlight distinct role of specific LA-secreted molecules in modulating colonic butyrate absorption. PMID:26272259
Williams, Clintoria R; Gooch, Jennifer L
2014-02-21
Hypertrophy is an adaptive response that enables organs to appropriately meet increased functional demands. Previously, we reported that calcineurin (Cn) is required for glomerular and whole kidney hypertrophy in diabetic rodents (Gooch, J. L., Barnes, J. L., Garcia, S., and Abboud, H. E. (2003). Calcineurin is activated in diabetes and is required for glomerular hypertrophy and ECM accumulation. Am. J. Physiol. Renal Physiol. 284, F144-F154; Reddy, R. N., Knotts, T. L., Roberts, B. R., Molkentin, J. D., Price, S. R., and Gooch, J. L. (2011). Calcineurin Aβ is required for hypertrophy but not matrix expansion in the diabetic kidney. J. Cell Mol. Med. 15, 414-422). Because studies have also implicated the reactive oxygen species-generating enzymes NADPH oxidases (Nox) in diabetic kidney responses, we tested the hypothesis that Nox and Cn cooperate in a common signaling pathway. First, we examined the role of the two main isoforms of Cn in hypertrophic signaling. Using primary kidney cells lacking a catalytic subunit of Cn (CnAα(-/-) or CnAβ(-/-)), we found that high glucose selectively activates CnAβ, whereas CnAα is constitutively active. Furthermore, CnAβ but not CnAα mediates hypertrophy. Next, we found that chronic reactive oxygen species generation in response to high glucose is attenuated in CnAβ(-/-) cells, suggesting that Cn is upstream of Nox. Consistent with this, loss of CnAβ reduces basal expression and blocks high glucose induction of Nox2 and Nox4. Inhibition of nuclear factor of activated T cells (NFAT), a CnAβ-regulated transcription factor, decreases Nox2 and Nox4 expression, whereas NFAT overexpression increases Nox2 and Nox4, indicating that the CnAβ/NFAT pathway modulates Nox. These data reveal that the CnAβ/NFAT pathway regulates Nox and plays an important role in high glucose-mediated hypertrophic responses in the kidney.
Discovery of 5R-lipoxygenase activity in oocytes of the surf clam, Spisula solidissima.
Hada, T; Swift, L L; Brash, A R
1997-06-02
Arachidonic acid and 5-hydroxyeicosatetraenoic acid (5-HETE) are reported to induce reinitiation of meiosis in oocytes of the surf clam Spisula sachalinensis from the Sea of Japan (Varaksin et al., Comp. Biochem. Physiol. 101C, 627-630 (1992). As the Atlantic surf clam Spisula solidissima is a commonly used model for the study of meiosis reinitiation, we examined these cells for the possible occurrence of lipoxygenases and for the bioactivity of the products. Incubation of [14C]arachidonic acid with homogenates of S. solidissima oocytes led to the formation of two major metabolites: 5R-HETE, a novel lipoxygenase product, and 8R-HETE. The products were identified by HPLC, uv spectroscopy, and GC-MS. The corresponding hydroperoxy fatty acids, the primary lipoxygenase products, were isolated from incubations of ammonium sulfate fractionated oocyte cytosol. Arachidonic and eicosapentaenoic acids were identified as constituents of S. solidissima oocyte lipids and the free acids were equally good lipoxygenase substrates. We examined the activity of C18 and C20 polyunsaturated fatty acids and their lipoxygenase products on meiosis reinitiation in Spisula solidissima oocytes, using serotonin and ionophore A23187 as positive controls. The fatty acids and their derivatives were inactive. We conclude that in the surf clam, (as in starfish), there are responding and non-responding species in regard to the maturation-inducing activity of the oocyte lipoxygenase products, and that the lipoxygenase has another, as yet uncharacterized, function in oocyte physiology.
Characterization of three types of human alpha s1-casein mRNA transcripts.
Johnsen, L B; Rasmussen, L K; Petersen, T E; Berglund, L
1995-01-01
Here we report the molecular cloning and sequencing of three types of human alpha s1-casein transcripts and present evidence indicating that exon skipping is responsible for deleted mRNA transcripts. The largest transcript comprised 981 bp encoding a signal peptide of 15 amino acids followed by the mature alpha s1-casein sequence of 170 amino acids. Human alpha s1-casein has been reported to exist naturally as a multimer in complex with kappa-casein in mature human milk, thereby being unique among alpha s1-caseins [Rasmussen, Due and Petersen (1995) Comp. Biochem. Physiol., in the press]. The present demonstration of three cysteines in the mature protein provides a molecular explanation of the interactions in this complex. Tissue-specific expression of human alpha s1-casein was indicated by Northern-blot analysis. In addition, two cryptic exons were localized in the bovine alpha s1-casein gene. Images Figure 3 PMID:7619062
Tsianos, George A; Loeb, Gerald E
2017-03-16
Understanding of the musculoskeletal system has evolved from the collection of individual phenomena in highly selected experimental preparations under highly controlled and often unphysiological conditions. At the systems level, it is now possible to construct complete and reasonably accurate models of the kinetics and energetics of realistic muscles and to combine them to understand the dynamics of complete musculoskeletal systems performing natural behaviors. At the reductionist level, it is possible to relate most of the individual phenomena to the anatomical structures and biochemical processes that account for them. Two large challenges remain. At a systems level, neuroscience must now account for how the nervous system learns to exploit the many complex features that evolution has incorporated into muscle and limb mechanics. At a reductionist level, medicine must now account for the many forms of pathology and disability that arise from the many diseases and injuries to which this highly evolved system is inevitably prone. © 2017 American Physiological Society. Compr Physiol 7:429-462, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Lerma, Claudia; Rich, Patrick J.; Ju, Grace C.; Yang, Wen-Ju; Hanson, Andrew D.; Rhodes, David
1991-01-01
Maize (Zea mays L.) is a betaine-accumulating species, but certain maize genotypes lack betaine almost completely; a single recessive gene has been implicated as the cause of this deficiency (D Rhodes, PJ Rich [1988] Plant Physiol 88: 102-108). This study was undertaken to determine whether betaine deficiency in diverse maize germplasm is conditioned by the same genetic locus, and to define the biochemical lesion(s) involved. Complementation tests indicated that all 13 deficient genotypes tested shared a common locus. One maize population (P77) was found to be segregating for betaine deficiency, and true breeding individuals were used to produce related lines with and without betaine. Leaf tissue of both betaine-positive and betaine-deficient lines readily converted supplied betaine aldehyde to betaine, but only the betaine-containing line was able to oxidize supplied choline to betaine. This locates the lesion in betaine-deficient plants at the choline → betaine aldehyde step of betaine synthesis. Consistent with this location, betaine-deficient plants were shown to have no detectable endogenous pool of betaine aldehyde. PMID:16668098
Bakajsova, Diana; Samarel, Allen M.
2011-01-01
PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307–F316, 2004). The goal of this study was to examine the role of PKC-ε activation in mitochondrial dysfunction and to identify mitochondrial targets of PKC-ε in RPTC. The constitutively active and inactive mutants of PKC-ε were overexpressed in primary cultures of RPTC using the adenoviral technique. Increases in active PKC-ε levels were accompanied by PKC-ε translocation to mitochondria. Sustained PKC-ε activation resulted in decreases in state 3 respiration, electron transport rate, ATP production, ATP content, and activities of complexes I and IV and F0F1-ATPase. Furthermore, PKC-ε activation increased mitochondrial membrane potential and oxidant production and induced mitochondrial fragmentation and RPTC death. Accumulation of the dynamin-related protein in mitochondria preceded mitochondrial fragmentation. Antioxidants blocked PKC-ε-induced increases in the oxidant production but did not prevent mitochondrial fragmentation and cell death. The inactive PKC-ε mutant had no effect on mitochondrial functions, morphology, oxidant production, and RPTC viability. We conclude that active PKC-ε targets complexes I and IV and F0F1-ATPase in RPTC. PKC-ε activation mediates mitochondrial dysfunction, hyperpolarization, and fragmentation. It also induces oxidant generation and cell death, but oxidative stress is not the mechanism of RPTC death. These results show that in contrast to protective effects of PKC-ε activation in cardiomyocytes, sustained PKC-ε activation is detrimental to mitochondrial function and viability in RPTC. PMID:21289057
Winter, Klaus; Edwards, Gerald E.; Holtum, Joseph A. M.
1981-01-01
The inducible Crassulacean acid metabolism plant, Mesembryanthemum crystallinum, accumulates malic acid, i.e. equivalent amounts of malate anions and protons in the mesophyll cells at night. Levels of malate and titratable acidity are low in the epidermal tissue and do not change significantly during the day/night cycle. This result is in contrast to a recent report (Bloom 1979 Plant Physiol 64: 919-923) that the synthesis of malic acid during dark CO2 fixation is associated with an equivalent exchange of inorganic cations from epidermal tissue with protons in the mesophyll cells. PMID:16661916
Cardiovascular Physiology of Dinosaurs.
Seymour, Roger S
2016-11-01
Cardiovascular function in dinosaurs can be inferred from fossil evidence with knowledge of how metabolic rate, blood flow rate, blood pressure, and heart size are related to body size in living animals. Skeletal stature and nutrient foramen size in fossil femora provide direct evidence of a high arterial blood pressure, a large four-chambered heart, a high aerobic metabolic rate, and intense locomotion. But was the heart of a huge, long-necked sauropod dinosaur able to pump blood up 9 m to its head? ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Can maternal DHA supplementation offer long-term protection against neonatal hyperoxic lung injury?
Lingappan, Krithika; Moorthy, Bhagavatula
2015-12-15
The effect of adverse perinatal environment (like maternal infection) has long-standing effects on many organ systems, including the respiratory system. Use of maternal nutritional supplements is an exciting therapeutic option that could be used to protect the developing fetus. In a recent issue of the journal, Ali and associates (Ali M, Heyob KM, Velten M, Tipple TE, Rogers LK. Am J Physiol Lung Cell Mol Physiol 309: L441-L448, 2015) specifically look at maternal docosahexaenoic acid (DHA) supplementation and its effect on chronic apoptosis in the lung in a mouse model of perinatal inflammation and postnatal hyperoxia. Strikingly, the authors show that pulmonary apoptosis was augmented even 8 wk after the hyperoxia-exposed mice had been returned to room air. This effect was significantly attenuated in mice that were subjected to maternal dietary DHA supplementation. These findings are novel, significantly advance our understanding of chronic effects of adverse perinatal and neonatal events on the developing lung, and thereby offer novel therapeutic options in the form of maternal dietary supplementation with DHA. This editorial reviews the long-term effects of adverse perinatal environment on postnatal lung development and the protective effects of dietary supplements such as DHA. Copyright © 2015 the American Physiological Society.
Lider, O; Baharav, E; Mekori, Y A; Miller, T; Naparstek, Y; Vlodavsky, I; Cohen, I R
1989-03-01
The ability of activated T lymphocytes to penetrate the extracellular matrix and migrate to target tissues was found to be related to expression of a heparanase enzyme (Naparstek, Y., I. R. Cohen, Z. Fuks, and I. Vlodavsky. 1984. Nature (Lond.). 310:241-243; Savion, N., Z. Fuks, and I. Vlodavsky. 1984. J. Cell. Physiol. 118:169-176; Fridman, R., O. Lider, Y. Naparstek, Z. Fuks, I. Vlodavsky, and I. R. Cohen. 1987. J. Cell. Physiol. 130:85-92; Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We found previously that heparin molecules inhibited expression of T lymphocyte heparanase activity in vitro and in vivo, and administration of a low dose of heparin in mice inhibited lymphocyte traffic and delayed-type hypersensitivity reactions (Lider, O., J. Mekori, I. Vlodavsky, E. Baharav, Y. Naparstek, and I. R. Cohen, manuscript submitted for publication). We now report that treatment with commercial or chemically modified heparins at relatively low doses once daily (5 micrograms for mice and 20 micrograms for rats) led to inhibition of allograft rejection and the experimental autoimmune diseases adjuvant arthritis and experimental autoimmune encephalomyelitis. Higher doses of the heparins were less effective. The ability of chemically modified heparins to inhibit these immune reactions was associated with their ability to inhibit expression of T lymphocyte heparanase. There was no relationship to anticoagulant activity. Thus heparins devoid of anticoagulant activity can be effective in regulating immune reactions when used at appropriate doses.
Mavraganis, Ioannis; Meesapyodsuk, Dauenpen; Vrinten, Patricia; Smith, Mark; Qiu, Xiao
2010-02-01
Claviceps purpurea, the fungal pathogen that causes the cereal disease ergot, produces glycerides that contain high levels of ricinoleic acid [(R)-12-hydroxyoctadec-cis-9-enoic acid] in its sclerotia. Recently, a fatty acid hydroxylase (C. purpurea FAH [CpFAH]) involved in the biosynthesis of ricinoleic acid was identified from this fungus (D. Meesapyodsuk and X. Qiu, Plant Physiol. 147:1325-1333, 2008). Here, we describe the cloning and biochemical characterization of a C. purpurea type II diacylglycerol acyltransferase (CpDGAT2) involved in the assembly of ricinoleic acid into triglycerides. The CpDGAT2 gene was cloned by degenerate RT-PCR (reverse transcription-PCR). The expression of this gene restored the in vivo synthesis of triacylglycerol (TAG) in the quadruple mutant strain Saccharomyces cerevisiae H1246, in which all four TAG biosynthesis genes (DGA1, LRO1, ARE1, and ARE2) are disrupted. In vitro enzymatic assays using microsomal preparations from the transformed yeast strain indicated that CpDGAT2 prefers ricinoleic acid as an acyl donor over linoleic acid, oleic acid, or linolenic acid, and it prefers 1,2-dioleoyl-sn-glycerol over 1,2-dipalmitoyl-sn-glycerol as an acyl acceptor. The coexpression of CpFAH with CpDGAT2 in yeast resulted in an increased accumulation of ricinoleic acid compared to the coexpression of CpFAH with the native yeast DGAT2 (S. cerevisiae DGA1 [ScDGA1]) or the expression of CpFAH alone. Northern blot analysis indicated that CpFAH is expressed solely in sclerotium cells, with no transcripts of this gene being detected in mycelium or conidial cells. CpDGAT2 was more widely expressed among the cell types examined, although expression was low in conidiospores. The high expression of CpDGAT2 and CpFAH in sclerotium cells, where high levels of ricinoleate glycerides accumulate, provided further evidence supporting the roles of CpDGAT2 and CpFAH as key enzymes for the synthesis and assembly of ricinoleic acid in C. purpurea.
Bueno, P; Varela, J; Gimeénez-Gallego, G; del Río, L A
1995-01-01
The biochemical and immunochemical characterization of a superoxide dismutase (SOD, EC 1.15.1.1) from peroxisomal origin has been carried out. The enzyme is a Cu,Zn-containing SOD (CuZn-SOD) located in the matrix of peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons (L.M. Sandalio and L.A. del Río [1988] Plant Physiol 88: 1215-1218). The amino acid composition of the enzyme was determined. Analysis by reversed-phase high-performance liquid chromatography of the peroxisomal CuZn-SOD incubated with 6 M guanidine-HCl indicated that this enzyme contained a noncovalently bound chromophore group that was responsible for the absorbance peak of the native enzyme at 260 nm. The amino acid sequence of the peroxisomal CuZn-SOD was determined by Edman degradation. Comparison of its sequence with those reported for other plant SODs revealed homologies of about 70% with cytosolic CuZn-SODs and of 90% with chloroplastic CuZn-SODs. The peroxisomal SOD has a high thermal stability and resistance to inactivation by hydrogen peroxide. A polyclonal antibody was raised against peroxisomal CuZn-SOD, and by western blotting the antibody cross-reacted with plant CuZn-SODs but did not recognize either plant Mn-SOD or bacterial Fe-SOD. The antiSOD-immunoglobulin G showed a weak cross-reaction with bovine erythrocytes and liver CuZn-SODs, and also with cell-free extracts from trout liver. The possible function of this CuZn-SOD in the oxidative metabolism of peroxisomes is discussed. PMID:7630940
Du, Ning; Fan, Jintu; Chen, Shuo; Liu, Yang
2008-07-21
Although recent investigations [Ryan, M.G., Yoder, B.J., 1997. Hydraulic limits to tree height and tree growth. Bioscience 47, 235-242; Koch, G.W., Sillett, S.C.,Jennings, G.M.,Davis, S.D., 2004. The limits to tree height. Nature 428, 851-854; Niklas, K.J., Spatz, H., 2004. Growth and hydraulic (not mechanical) constraints govern the scaling of tree height and mass. Proc. Natl Acad. Sci. 101, 15661-15663; Ryan, M.G., Phillips, N., Bond, B.J., 2006. Hydraulic limitation hypothesis revisited. Plant Cell Environ. 29, 367-381; Niklas, K.J., 2007. Maximum plant height and the biophysical factors that limit it. Tree Physiol. 27, 433-440; Burgess, S.S.O., Dawson, T.E., 2007. Predicting the limits to tree height using statistical regressions of leaf traits. New Phytol. 174, 626-636] suggested that the hydraulic limitation hypothesis (HLH) is the most plausible theory to explain the biophysical limits to maximum tree height and the decline in tree growth rate with age, the analysis is largely qualitative or based on statistical regression. Here we present an integrated biophysical model based on the principle that trees develop physiological compensations (e.g. the declined leaf water potential and the tapering of conduits with heights [West, G.B., Brown, J.H., Enquist, B.J., 1999. A general model for the structure and allometry of plant vascular systems. Nature 400, 664-667]) to resist the increasing water stress with height, the classical HLH and the biochemical limitations on photosynthesis [von Caemmerer, S., 2000. Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Australia]. The model has been applied to the tallest trees in the world (viz. Coast redwood (Sequoia sempervirens)). Xylem water potential, leaf carbon isotope composition, leaf mass to area ratio at different heights derived from the model show good agreements with the experimental measurements of Koch et al. [2004. The limits to tree height. Nature 428, 851-854]. The model also well explains the universal trend of declining growth rate with age.
Comparison of macro-gravimetric and micro-colorimetric lipid determination methods.
Inouye, Laura S; Lotufo, Guiherme R
2006-10-15
In order to validate a method for lipid analysis of small tissue samples, the standard macro-gravimetric method of Bligh-Dyer (1959) [E.G. Bligh, W.J. Dyer, Can. J. Biochem. Physiol. 37 (1959) 911] and a modification of the micro-colorimetric assay developed by Van Handel (1985) [E. Van Handel, J. Am. Mosq. Control Assoc. 1 (1985) 302] were compared. No significant differences were observed for wet tissues of two species of fish. However, limited analysis of wet tissue of the amphipod, Leptocheirusplumulosus, indicated that the Bligh-Dyer gravimetric method generated higher lipid values, most likely due to the inclusion of non-lipid materials. Additionally, significant differences between the methods were observed with dry tissues, with the micro-colorimetric method consistently reporting calculated lipid values greater than as reported by the gravimetric method. This was most likely due to poor extraction of dry tissue in the standard Bligh-Dyer method, as no significant differences were found when analyzing a single composite extract. The data presented supports the conclusion that the micro-colorimetric method described in this paper is accurate, rapid, and minimizes time and solvent use.
The Role of Auxiliary Subunits for the Functional Diversity of Voltage-Gated Calcium Channels
Campiglio, Marta; Flucher, Bernhard E
2015-01-01
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α1 subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein–protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein–protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity. J. Cell. Physiol. 999: 00–00, 2015. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. J. Cell. Physiol. 230: 2019–2031, 2015. © 2015 Wiley Periodicals, Inc. PMID:25820299
Lutz, G J; Rome, L C
1996-08-01
We determined the influence of temperature on muscle function during jumping to better understand how the frog muscular system is designed to generate a high level of mechanical power. Maximal jumping performance and the in vivo operating conditions of the semimembranosus muscle (SM), a hip extensor, were measured and related to the mechanical properties of the isolated SM in the accompanying paper [Muscle function during jumping in frogs. II. Mechanical properties of muscle: implication for system design. Am. J. Physiol. 271 (Cell Physiol. 40): C571-C578, 1996]. Reducing temperature from 25 to 15 degrees C caused a 1.75-fold decline in peak mechanical power generation and a proportional decline in aerial jump distance. The hip and knee joint excursions were nearly the same at both temperatures. Accordingly, sarcomeres shortened over the same range (2.4 to 1.9 microns) at both temperatures, corresponding to myofilament overlap at least 90% of maximal. At the low temperature, however, movements were made more slowly. Angular velocities were 1.2- to 1.4-fold lower, and ground contact time was increased by 1.33-fold at 15 degrees C. Average shortening velocity of the SM was only 1.2-fold lower at 15 degrees C than at 25 degrees C. The low Q10 of velocity is in agreement with that predicted for muscles shortening against an inertial load.
Leroy, Claudie; Privé, Anik; Bourret, Jean-Charles; Berthiaume, Yves; Ferraro, Pasquale; Brochiero, Emmanuelle
2006-12-01
In a recent study (Leroy C, Dagenais A, Berthiaume Y, and Brochiero E. Am J Physiol Lung Cell Mol Physiol 286: L1027-L1037, 2004), we identified an ATP-sensitive K(+) (K(ATP)) channel in alveolar epithelial cells, formed by inwardly rectifying K(+) channel Kir6.1/sulfonylurea receptor (SUR)2B subunits. We found that short applications of K(ATP), voltage-dependent K(+) channel KvLQT1, and calcium-activated K(+) (K(Ca)) channel modulators modified Na(+) and Cl(-) currents in alveolar monolayers. In addition, it was shown previously that a K(ATP) opener increased alveolar liquid clearance in human lungs by a mechanism possibly related to epithelial sodium channels (ENaC). We therefore hypothesized that prolonged treatment with K(+) channel modulators could induce a sustained regulation of ENaC activity and/or expression. Alveolar monolayers were treated for 24 h with inhibitors of K(ATP), KvLQT1, and K(Ca) channels identified by PCR. Glibenclamide and clofilium (K(ATP) and KvLQT1 inhibitors) strongly reduced basal transepithelial current, amiloride-sensitive Na(+) current, and forskolin-activated Cl(-) currents, whereas pinacidil, a K(ATP) activator, increased them. Interestingly, K(+) inhibitors or membrane depolarization (induced by valinomycin in high-K(+) medium) decreased alpha-, beta-, and gamma-ENaC and CFTR mRNA. alpha-ENaC and CFTR proteins also declined after glibenclamide or clofilium treatment. Conversely, pinacidil augmented ENaC and CFTR mRNAs and proteins. Since alveolar fluid transport was found to be driven, at least in part, by Na(+) transport through ENaC, we tested the impact of K(+) channel modulators on fluid absorption across alveolar monolayers. We found that glibenclamide and clofilium reduced fluid absorption to a level similar to that seen in the presence of amiloride, whereas pinacidil slightly enhanced it. Long-term regulation of ENaC and CFTR expression by K(+) channel activity could benefit patients with pulmonary diseases affecting ion transport and fluid clearance.
Zahid, Abderrakib; Despres, Julie; Benard, Magalie; Nguema-Ona, Eric; Leprince, Jerome; Vaudry, David; Rihouey, Christophe; Vicré-Gibouin, Maité; Driouich, Azeddine; Follet-Gueye, Marie-Laure
2017-09-01
Plant derived arabinogalactan proteins (AGP) were repeatedly confirmed as immunologically as well as dermatologically active compounds. However, little is currently known regarding their potential activity toward skin innate immunity. Here, we extracted and purified AGP from acacia (Acacia senegal) and baobab (Adansonia digitata) seeds to investigate their biological effects on the HaCaT keratinocyte cell line in an in vitro system. While AGP from both sources did not exhibit any cytotoxic effect, AGP from acacia seeds enhanced cell viability. Moreover, real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis showed that AGP extracted from both species induced a substantial overexpression of hBD-2, TLR-5, and IL1-α genes. These data suggest that plant AGP, already known to control plant defensive processes, could also modulate skin innate immune responses. J. Cell. Physiol. 232: 2558-2568, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Structure of Plant Cell Walls
Wilder, Barry M.; Albersheim, Peter
1973-01-01
The molecular structure and chemical properties of the hemicellulose present in the isolated cell walls of suspension cultures of sycamore (Acer pseudoplatanus) cells has recently been described by Bauer et al. (Plant Physiol. 51: 174-187). The hemicellulose of the sycamore primary cell wall is a xyloglucan. This polymer functions as an important cross-link in the structure of the cell wall; the xyloglucan is hydrogen-bonded to cellulose and covalently attached to the pectic polymers. The present paper describes the structure of a xyloglucan present in the walls and in the extracellular medium of suspension-cultured Red Kidney bean (Phaseolus vulgaris) cells and compares the structure of the bean xyloglucan with the structure of the sycamore xyloglucan. Although some minor differences were found, the basic structure of the xyloglucans in the cell walls of these distantly related species is the same. The structure is based on a repeating heptasaccharide unit which consists of four residues of β-1, 4-linked glucose and three residues of terminal xylose linked to the 6 position of three of the glucosyl residues. PMID:16658434
Clarifying CB2 receptor-dependent and independent effects of THC on human lung epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarafian, Theodore; Montes, Cindy; Harui, Airi
Marijuana smoking is associated with a number of abnormal findings in the lungs of habitual smokers. Previous studies revealed that {delta}{sup 9}-tetrahydrocannabinol (THC) caused mitochondrial injury in primary lung epithelial cells and in the cell line, A549 [Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P., and Roth, M. D. (2003). Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am J Physiol Lung Cell Mol Physiol 284, L298-306; Sarafian, T., Habib, N., Mao, J. T., Tsu, I. H., Yamamoto, M. L., Hsu, E., Tashkin, D. P., and Roth, M. D. (2005). Gene expression changes in human small airway epithelialmore » cells exposed to Delta9-tetrahydrocannabinol. Toxicol Lett 158, 95-107]. The role of cannabinoid receptors in this injury was unclear, as was the potential impact on cell function. In order to investigate these questions, A549 cells were engineered to over-express the type 2 cannabinoid receptor (CB2R) using a self-inactivating lentiviral vector. This transduction resulted in a 60-fold increase in CB2R mRNA relative to cells transduced with a control vector. Transduced cell lines were used to study the effects of THC on chemotactic activity and mitochondrial function. Chemotaxis in response to a 10% serum gradient was suppressed in a concentration-dependent manner by exposure to THC. CB2R-transduced cells exhibited less intrinsic chemotactic activity (p < 0.05) and were 80- to 100-fold more sensitive to the inhibitory effects of THC. Studies using SR144528, a selective CB2R antagonist, verified that these effects were mediated by the CB2R. Marijuana smoke extract, but not smoke extracts from tobacco or placebo marijuana cigarettes, reproduced these effects (p < 0.05). THC decreased ATP level and mitochondrial membrane potential ({psi}{sub m}) in both control and CB2R-transduced cells. However, these decreases did not play a significant role in chemotaxis inhibition since cyclosporine A, which protected against ATP loss, did not increase cell migration. Moreover, CB2R-transduced cells displayed higher {psi}{sub m} than did control cells. Since both {psi}{sub m} and chemotaxis are regulated by intracellular signaling, we investigated the effects of THC on the activation of multiple signaling pathways. Serum exposure activated several signaling events of which phosphorylation of I{kappa}B-{alpha} and JNK was regulated in a CB2R- and THC-dependent manner. We conclude that airway epithelial cells are sensitive to both CB2R-dependent and independent effects mediated by THC.« less
Contributions of 3D Cell Cultures for Cancer Research.
Ravi, Maddaly; Ramesh, Aarthi; Pattabhi, Aishwarya
2017-10-01
Cancer cell lines have contributed immensely in understanding the complex physiology of cancers. They are excellent material for studies as they offer homogenous samples without individual variations and can be utilised with ease and flexibility. Also, the number of assays and end-points one can study is almost limitless; with the advantage of improvising, modifying or altering several variables and methods. Literally, a new dimension to cancer research has been achieved by the advent of 3Dimensional (3D) cell culture techniques. This approach increased many folds the ways in which cancer cell lines can be utilised for understanding complex cancer biology. 3D cell culture techniques are now the preferred way of using cancer cell lines to bridge the gap between the 'absolute in vitro' and 'true in vivo'. The aspects of cancer biology that 3D cell culture systems have contributed include morphology, microenvironment, gene and protein expression, invasion/migration/metastasis, angiogenesis, tumour metabolism and drug discovery, testing chemotherapeutic agents, adaptive responses and cancer stem cells. We present here, a comprehensive review on the applications of 3D cell culture systems for these aspects of cancers. J. Cell. Physiol. 232: 2679-2697, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Automaticity in acute ischemia: Bifurcation analysis of a human ventricular model
NASA Astrophysics Data System (ADS)
Bouchard, Sylvain; Jacquemet, Vincent; Vinet, Alain
2011-01-01
Acute ischemia (restriction in blood supply to part of the heart as a result of myocardial infarction) induces major changes in the electrophysiological properties of the ventricular tissue. Extracellular potassium concentration ([Ko+]) increases in the ischemic zone, leading to an elevation of the resting membrane potential that creates an “injury current” (IS) between the infarcted and the healthy zone. In addition, the lack of oxygen impairs the metabolic activity of the myocytes and decreases ATP production, thereby affecting ATP-sensitive potassium channels (IKatp). Frequent complications of myocardial infarction are tachycardia, fibrillation, and sudden cardiac death, but the mechanisms underlying their initiation are still debated. One hypothesis is that these arrhythmias may be triggered by abnormal automaticity. We investigated the effect of ischemia on myocyte automaticity by performing a comprehensive bifurcation analysis (fixed points, cycles, and their stability) of a human ventricular myocyte model [K. H. W. J. ten Tusscher and A. V. Panfilov, Am. J. Physiol. Heart Circ. Physiol.AJPHAP0363-613510.1152/ajpheart.00109.2006 291, H1088 (2006)] as a function of three ischemia-relevant parameters [Ko+], IS, and IKatp. In this single-cell model, we found that automatic activity was possible only in the presence of an injury current. Changes in [Ko+] and IKatp significantly altered the bifurcation structure of IS, including the occurrence of early-after depolarization. The results provide a sound basis for studying higher-dimensional tissue structures representing an ischemic heart.
Experiment K-6-14. Hepatic function in rats after spaceflight
NASA Technical Reports Server (NTRS)
Merrill, A., Jr.; Hoel, M.; Wang, E.; Jones, D.; Hargrove, J.; Mullins, R.; Popova, I.
1990-01-01
To determine the possible biochemical consequences of prolonged weightlessness on liver function, tissue samples from rats that had flown aboard Cosmos 1887 were analyzed for hepatic protein, glycogen and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the hepatic glycogen content and HMG-CoA reductase activities of the rats flown on Cosmos 1887, and a decrease in the amount of microsomal cytochrome P sub 450 and the activity of aniline hydroxylase, a cytochrome P sub 450-dependent enzyme. Decreases in these two indices of the microsomal mixed-function oxidase system indicated that spaceflight may compromise the ability of liver to metabolize drugs and toxins. The higher HMG-CoA reductase correlated with elevated levels of serum cholestrol. Other changes included somewhat higher blood glucose, creatinine, SGOT, and much greater alkaline phosphatase and BUN. These results generally support the earlier observation of changes in these parameters (Merrill et al., Am. J. Physiol. 252:R22-R226, 1987). The importance of these alterations in liver function is not known; however, they have the potential to complicate long-term spaceflight.
Ogawa, E; Kuchel, P W; Agar, N S
1998-04-01
It was recently coincidentally discovered, using 1H NMR spectroscopy, that the erythrocytes of two species of Australian marsupials, Tammar Wallaby (Macropus eugenii) and Bettong (Bettongia penicillata), contain relatively high concentrations of the essential amino acid lysine (Agar NS, Rae CD, Chapman BE, Kuchel PW. Comp Biochem Physiol 1991;99B:575-97). Hence, in the present work the rates of transport of lysine into the erythrocytes from the Common Brushtail Possum (Dactylopsilia trivirgata) and Eastern Grey Kangaroo (Macropus giganteus) (which both have low lysine concentrations), and Tammar Wallaby were studied, to explore the mechanistic basis of this finding. The concentration-dependence of the uptake was studied with lysine alone and in the presence of arginine, which may be a competitor of the transport in some species. In relation to GSH metabolism, glutamate uptake was determined in the presence and absence of Na+. The data was analysed to yield estimates of the maximal velocity (Vmax) and the Km in each of the species. Erythrocytes from Tammar Wallaby lacked saturable lysine transport in contrast to the other two species. The glutamate uptake was normal in all three animals for adequate GSH biosynthesis.
Combination of Rapamycin and Resveratrol for Treatment of Bladder Cancer.
Alayev, Anya; Salamon, Rachel S; Schwartz, Naomi S; Berman, Adi Y; Wiener, Sara L; Holz, Marina K
2017-02-01
Loss of TSC1 function, a crucial negative regulator of mTOR signaling, is a common alteration in bladder cancer. Mutations in other members of the PI3K pathway, leading to mTOR activation, are also found in bladder cancer. This provides rationale for targeting mTOR for treatment of bladder cancer characterized by TSC1 mutations and/or mTOR activation. In this study, we asked whether combination treatment with rapamycin and resveratrol could be effective in concurrently inhibiting mTOR and PI3K signaling and inducing cell death in bladder cancer cells. In combination with rapamycin, resveratrol was able to block rapamycin-induced Akt activation, while maintaining mTOR pathway inhibition. In addition, combination treatment with rapamycin and resveratrol induced cell death specifically in TSC1 -/- MEF cells, and not in wild-type MEFs. Similarly, resveratrol alone or in combination with rapamycin induced cell death in human bladder cancer cell lines. These data indicate that administration of resveratrol together with rapamycin may be a promising therapeutic option for treatment of bladder cancer. J. Cell. Physiol. 232: 436-446, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Zhou, Tengfei; Zhang, Mengqian; Zhao, Liang; Li, Aiqin; Qin, Xiaomei
2016-10-01
Oxidative stress and impaired antioxidant defense are believed to be contributors to the cardiovascular aging process. The transcription factor nuclear factor-E2-related factor 2 (Nrf2) plays a key role in orchestrating cellular antioxidant defenses and maintaining redox homeostasis. Our previous study showed that Exendin-4, a glucagon-like peptide-1 analog, alleviates angiotensin II (ANG II)-induced vascular smooth muscle cell (VSMC) senescence by inhibiting Rac1 activation via cAMP/PKA (Zhao L, Li AQ, Zhou TF, Zhang MQ, Qin XM. Am J Physiol Cell Physiol 307: C1130-C1141, 2014). The objective of this study is to investigate if Nrf2 mediates the antisenescent effect of Exendin-4 in ANG II-induced VSMCs. Here we report that Exendin-4 triggered Nrf2 nuclear translocation, a downstream target of cAMP-responsive element-binding protein (CREB) and expressions of antioxidant genes heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO-1) in a dose- and time-dependent manner. In addition, knock-down of Nrf2 attenuated the inhibitory effects of Exendin-4 on ANG II-induced superoxidant generation and VSMC senescence. PKA/CREB pathway participated in the upregulations of HO-1 and NQO-1 induced by Exendin-4. Notably, our study revealed that Exendin-4 dose-dependently increased the acetylation of Nrf2 and the recruitment of transcriptional coactivator CREB binding protein (CBP) to Nrf2. The Exendin-4-induced Nrf2 transactivation was diminished in the presence of CBP small interfering RNA. Microscope imaging of Nrf2, as well as immunoblotting for Nrf2, showed that the Exendin-4-evoked Nrf2 acetylation favored its nuclear retention. Importantly, CBP silencing attenuated the suppressing effects of Exendin-4 on ANG II-induced VSMC senescence and superoxidant production. In conclusion, these results provide a mechanistic insight into how Nrf2 signaling mediates the antisenescent and antioxidative effects induced by Exendin-4 in VSMCs. Copyright © 2016 the American Physiological Society.
Xeroderma pigmentosum: biochemical and genetic characteristics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, J.E.; Bootsma, D.
1975-01-01
Biochemical and genetic studies on xeroderma pigmentosum are reviewed under the following headings: clinical features of xeroderma pigmentosum; karyotype; cell killing and host cell reactivation after irradiation or exposure to chemical carcinogens; SV40 transformation of xeroderma pigmentosum cells; biochemical defects in the common and de Sanctis-Cacchione forms of xeroderma pigmentosum; cell hybridization and complementation groups; biochemical defects in the xeroderma pigmentosum variant and the role of caffeine in DNA repair; DNA repair in xeroderma pigmentosum heterozygotes; response of xeroderma pigmentosum cells to various mutagens and chemical carcinogens; other high and low repair diseases; and possible significance of DNA repair inmore » theories of aging and carcinogenesis. (HLW)« less
Suzuki, Masayuki; Yamaguchi, Shoko; Iida, Toshii; Hashimoto, Ikue; Teranishi, Hiromi; Mizoguchi, Masaya; Yano, Fumihiko; Todoroki, Yasushi; Watanabe, Naoharu; Yokoyama, Mineyuki
2003-01-01
Alpha-ketol linolenic acid [KODA, 9,10-ketol-octadecadienoic acid, that is 9-hydroxy-10-oxo-12(Z),15(Z)-octadecadienoic acid] is a signal compound found in Lemna paucicostata after exposure to stress, such as drought, heat or osmotic stress. KODA reacts with catecholamines to generate products that strongly induce flowering, although KODA itself is inactive [Yokoyama et al. (2000) Plant Cell Physiol. 41: 110; Yamaguchi et al. (2001) Plant Cell Physiol. 42: 1201]. We examined the role of KODA in the flower-induction process of Pharbitis nil (violet). KODA was identified for the first time in seedlings of P. nil grown under a flower-inductive condition (16-h dark exposure), by means of LC-SIM and LC-MS/MS. In addition, the changes in endogenous KODA levels (evaluated after esterification of KODA with 9-anthryldiazomethane) during the flower-inductive phase in short day-induced cotyledons were closely related to flower induction. The KODA concentration sharply increased in seedlings during the last 2 h of a 16-h dark period, while the KODA level showed no significant elevation under continuous light. The increase of KODA level occurred in cotyledonal blades, but not in other parts (petiole, hypocotyls and shoot tip). When the 16-h dark period was interrupted with a 10-min light exposure at the 8th h, flower induction was blocked and KODA level also failed to increase. The degree of elevation of KODA concentration in response to 16-h dark exposure was the highest when the cotyledons had just unfolded, and gradually decreased in seedlings grown under continuous light for longer periods, reaching the basal level at the 3rd day after unfolding. Flower-inducing ability also decreased in a similar manner. These results suggest that KODA may be involved in flower induction in P. nil.
Thermodynamic considerations on Ca2+-induced biochemical reactions in living cells
NASA Astrophysics Data System (ADS)
Lucia, Umberto; Ponzetto, Antonio
2016-02-01
Cells can be regarded as complex engines that execute a series of chemical reactions. Energy transformations, thermo-electro-chemical processes and transport phenomena can occur across cell membranes. Different, related thermo-electro-biochemical behaviour can occur between health and disease states. Analysis of the irreversibility related to ion fluxes can represent a new approach to study and control the biochemical behaviour of living cells.
Wang, Huan; Tang, Lei; Wei, Hongling; Lu, Junkai; Mu, Changkao; Wang, Chunlin
2018-05-31
Scylla paramamosain (Crustacea: Decapoda: Portunidae: Syclla De Hann) is a commercially important mud crab distributed along the coast of southern China and other Indo-Pacific countries (Lin Z, Hao M, Zhu D, et al, Comp Biochem Physiol B Biochem Mol Biol 208-209:29-37, 2017; Walton ME, Vay LL, Lebata JH, et al, Estuar Coast Shelf Sci 66(3-4):493-500, 2006; Wang Z, Sun B, Zhu F, Fish Shellfish Immunol 67:612-9, 2017). While S. paramamosain is a euryhaline species, a sudden drop in salinity induces a negative impact on growth, molting, and reproduction, and may even cause death. The mechanism of osmotic regulation of marine crustaceans has been recently under investigation. However, the mechanism of adapting to a sudden drop in salinity has not been reported. In this study, transcriptomics analysis was conducted on the gills of S. paramamosain to test its adaptive capabilities over 120 h with a sudden drop in salinity from 23 ‰ to 3 ‰. At the level of transcription, 135 DEGs (108 up-regulated and 27 down-regulated) annotated by NCBI non-redundant (nr) protein database were screened. GO analysis showed that the catalytic activity category showed the most participating genes in the 24 s-tier GO terms, indicating that intracellular metabolic activities in S. paramamosain were enhanced. Of the 164 mapped KEGG pathways, seven of the top 20 pathways were closely related to regulation of the Na + / K + -ATPase. Seven additional amino acid metabolism-related pathways were also found, along with other important signaling pathways. Ion transport and amino acid metabolism were key factors in regulating the salinity adaptation of S. paramamosain in addition to several important signaling pathways.
New Developments in Red Blood Cell Preservation Using Liquid and Freezing Procedures.
1982-04-02
restore or improve the red cell 2,3 DPG and ATP levels . Biochemically modified red blood cells may be cryopreserved for indefinite storage, or they may...salvage outdated red blood cells. However,,-ndated red blood cells are also being biochemically modified to increase’the 2,3 DPG levels to 2 to 3...restore or improve the edcell 2,3 DPG and ATP levels . Biochemically modified red blood cells iay-be cryopreserved for indefinite storage. or-thy my be
The effect of strychnine, bicuculline, and picrotoxin on X and Y cells in the cat retina
1979-01-01
The effect of intravenous strychnine and the GABA antagonists picrotoxin and bicuculline upon the discharge pattern of center- surround-organized cat retinal ganglion cells of X and Y type were studied. Stimuli (mostly scotopic, and some photopic) were selected such that responses from both on and off-center cells were either due to the center, due to the surround, or clearly mixed. Pre-drug control responses were obtained, and their behavior following administration of the antagonists was observed for periods up to several hours. X-cell responses were affected in a consistent manner by strychnine while being unaffected by GABA antagonists. All observed changes following strychnine were consistent with a shift in center-surround balance of X cells in favor of the center. For Y-cell responses to flashing annuli following strychnine, there was either no shift or a relatively small shift in center-surround balance. Compared to X-cell responses to flashing lights, those of Y cells were very little affected by strychnine and in most cases were unaffected. It thus appears that glycine plays a similar role in receptive field organization of X cells as does GABA in Y cells (Kirby and Enroth-Cugell, 1976. J. Gen. Physiol. 68:465-484). PMID:479822
Rouabhia, Mahmoud; Park, Hyun Jin; Semlali, Abdelhabib; Zakrzewski, Andrew; Chmielewski, Witold; Chakir, Jamila
2017-06-01
Electronic cigarettes represent an increasingly significant proportion of today's consumable tobacco products. E-cigarettes contain several chemicals which may promote oral diseases. The aim of this study was to investigate the effect of e-cigarette vapor on human gingival epithelial cells. Results show that e-cigarette vapor altered the morphology of cells from small cuboidal form to large undefined shapes. Both single and multiple exposures to e-cigarette vapor led to a bulky morphology with large faint nuclei and an enlarged cytoplasm. E-cigarette vapor also increased L-lactate dehydrogenase (LDH) activity in the targeted cells. This activity was greater with repeated exposures. Furthermore, e-cigarette vapor increased apoptotic/necrotic epithelial cell percentages compared to that observed in the control. Epithelial cell apoptosis was confirmed by TUNEL assay showing that exposure to e-cigarette vapor increased apoptotic cell numbers, particularly after two and three exposures. This negative effect involved the caspase-3 pathway, the activity of which was greater with repeated exposure and which decreased following the use of caspase-3 inhibitor. The adverse effects of e-cigarette vapor on gingival epithelial cells may lead to dysregulated gingival cell function and result in oral disease. J. Cell. Physiol. 232: 1539-1547, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A role for cysteine 3635 of RYR1 in redox modulation and calmodulin binding
NASA Technical Reports Server (NTRS)
Porter Moore, C.; Zhang, J. Z.; Hamilton, S. L.
1999-01-01
Oxidation of the skeletal muscle Ca(2+) release channel (RYR1) increases its activity, produces intersubunit disulfide bonds, and blocks its interaction with calmodulin. Conversely, bound calmodulin protects RYR1 from the effects of oxidants (Zhang, J.-Z., Wu, Y., Williams, B. Y., Rodney, G., Mandel, F., Strasburg, G. M., and Hamilton, S. L. (1999) Am. J. Physiol. 276, Cell Physiol. C46-C53). In addition, calmodulin protects RYR1 from trypsin cleavage at amino acids 3630 and 3637 (Moore, C. P., Rodney, G., Zhang, J.-Z., Santacruz-Toloza, L., Strasburg, G. M., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). The sequence between these two tryptic sites is AVVACFR. Alkylation of RYR1 with N-ethylmaleimide (NEM) blocks both (35)S-apocalmodulin binding and oxidation-induced intersubunit cross-linking. In the current work, we demonstrate that both cysteines needed for the oxidation-induced intersubunit cross-link are protected from alkylation with N-ethylmaleimide by bound calmodulin. We also show, using N-terminal amino acid sequencing together with analysis of the distribution of [(3)H]NEM labeling with each sequencing cycle, that cysteine 3635 of RYR1 is rapidly labeled by NEM and that this labeling is blocked by bound calmodulin. We propose that cysteine 3635 is located at an intersubunit contact site that is close to or within a calmodulin binding site. These findings suggest that calmodulin and oxidation modulate RYR1 activity by regulating intersubunit interactions in a mutually exclusive manner and that these interactions involve cysteine 3635.
Ways to burn more calories every day
... change feet. You will work your leg muscles, core muscles, and improve your balance. Put your shoes ... stand: The use of instability to train the core in athletic and nonathletic conditioning. Appl Physiol Nutr ...
Further Support for ECM Control of Receptor Trafficking and Signaling.
Clegg, Lindsay; Mac Gabhann, Feilim
2017-01-01
Recently, Sack et al. (2016) presented an interesting, novel data set in Journal of Cellular Physiology examining the effect of substrate stiffness on VEGF processing and signaling. The data represent a clear contribution to the field. However, the authors' conclusion that "extracellular matrix binding is essential for VEGF internalization" conflicts with other knowledge in the field, and is not supported by their data. Instead, their data demonstrate the effect of heparin addition and changing ECM stiffness on both VEGF binding to fibronectin and VEGF binding to endothelial receptors. This is consistent with other work showing that matrix binding reduces VEGF-VEGFR internalization, shifting downstream signaling. J. Cell. Physiol. 232: 36-37, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Murray, Nigel P; Reyes, Eduardo; Orellana, Nelson; Fuentealba, Cynthia; Jacob, Omar
2015-01-01
To determine the utility of secondary circulating prostate cells for predicting early biochemical failure after radical prostatectomy for prostate cancer and compare the results with the Walz nomagram. A single centre, prospective study of men with prostate cancer treated with radical prostatectomy between 2004 and 2014 was conducted, with registration of clinical-pathological details, total serum PSA pre-surgery, Gleason score, extracapsular extension, positive surgical margins, infiltration of lymph nodes, seminal vesicles and pathological stage. Secondary circulating prostate cells were obtained using differential gel centrifugation and assessed using standard immunocytochemistry with anti-PSA. Biochemical failure was defined as a PSA >0.2ng/ml, predictive values werecalculated using the Walz nomagram and CPC detection. A total of 326 men participated, with a median follow up of 5 years; 64 had biochemical failure within two years. Extracapsular extension, positive surgical margins, pathological stage, Gleason score ≥ 8, infiltration of seminal vesicles and lymph nodes were all associated with higher risk of biochemical failure. The discriminative value for the nomogram and circulating prostate cells was high (AUC >0.80), predictive values were higher for circulating prostate cell detection, with a negative predictive value of 99%, sensitivity of 96% and specificity of 75%. The nomagram had good predictive power to identify men with a high risk of biochemical failure within two years. The presence of circulating prostate cells had the same predictive power, with a higher sensitivity and negative predictive value. The presence of secondary circulating prostate cells identifies a group of men with a high risk of early biochemical failure. Those negative for secondary CPCs have a very low risk of early biochemical failure.
The underlying pathway structure of biochemical reaction networks
Schilling, Christophe H.; Palsson, Bernhard O.
1998-01-01
Bioinformatics is yielding extensive, and in some cases complete, genetic and biochemical information about individual cell types and cellular processes, providing the composition of living cells and the molecular structure of its components. These components together perform integrated cellular functions that now need to be analyzed. In particular, the functional definition of biochemical pathways and their role in the context of the whole cell is lacking. In this study, we show how the mass balance constraints that govern the function of biochemical reaction networks lead to the translation of this problem into the realm of linear algebra. The functional capabilities of biochemical reaction networks, and thus the choices that cells can make, are reflected in the null space of their stoichiometric matrix. The null space is spanned by a finite number of basis vectors. We present an algorithm for the synthesis of a set of basis vectors for spanning the null space of the stoichiometric matrix, in which these basis vectors represent the underlying biochemical pathways that are fundamental to the corresponding biochemical reaction network. In other words, all possible flux distributions achievable by a defined set of biochemical reactions are represented by a linear combination of these basis pathways. These basis pathways thus represent the underlying pathway structure of the defined biochemical reaction network. This development is significant from a fundamental and conceptual standpoint because it yields a holistic definition of biochemical pathways in contrast to definitions that have arisen from the historical development of our knowledge about biochemical processes. Additionally, this new conceptual framework will be important in defining, characterizing, and studying biochemical pathways from the rapidly growing information on cellular function. PMID:9539712
Methods for Studying Ciliary-Mediated Chemoresponse in Paramecium.
Valentine, Megan Smith; Van Houten, Judith L
2016-01-01
Paramecium is a useful model organism for the study of ciliary-mediated chemical sensing and response. Here we describe ways to take advantage of Paramecium to study chemoresponse.Unicellular organisms like the ciliated protozoan Paramecium sense and respond to chemicals in their environment (Van Houten, Ann Rev Physiol 54:639-663, 1992; Van Houten, Trends Neurosci 17:62-71, 1994). A thousand or more cilia that cover Paramecium cells serve as antennae for chemical signals, similar to ciliary function in a large variety of metazoan cell types that have primary or motile cilia (Berbari et al., Curr Biol 19(13):R526-R535, 2009; Singla V, Reiter J, Science 313:629-633, 2006). The Paramecium cilia also produce the motor output of the detection of chemical cues by controlling swimming behavior. Therefore, in Paramecium the cilia serve multiple roles of detection and response.We present this chapter in three sections to describe the methods for (1) assaying populations of cells for their behavioral responses to chemicals (attraction and repulsion), (2) characterization of the chemoreceptors and associated channels of the cilia using proteomics and binding assays, and (3) electrophysiological analysis of individual cells' responses to chemicals. These methods are applied to wild type cells, mutants, transformed cells that express tagged proteins, and cells depleted of gene products by RNA Interference (RNAi).
Effects of strychnine on the potassium conductance of the frog node of Ranvier
1977-01-01
The nature of the block of potassium conductance by strychnine in frog node of Ranvier was investigated. The block is voltage-dependent and reaches a steady level with a relaxation time of 1 to several ms. Block is increased by depolarization or a reduction in [K+]O as well as by increasing strychnine concentration. A quaternary derivative of strychnine produces a similar block only when applied intracellularly. In general and in detail, strychnine block resembles that produced by intracellular application of the substituted tetraethylammonium compounds extensively studied by C.M. Armstrong (1969. J. Gen Physiol. 54:553-575. 1971. J. Gen. Physiol. 58:413-437). The kinetics, voltage dependence, and dependence on [K+]O of strychnine block are of the same form. It is concluded that tertiary strychnine must cross the axon membrane and block from the axoplasmic side in the same fashion as these quaternary amines. PMID:302320
Transport parameter estimation from lymph measurements and the Patlak equation.
Watson, P D; Wolf, M B
1992-01-01
Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.
Scaling of muscle metabolic enzymes: an historical perspective.
Moyes, Christopher D; Genge, Christine E
2010-07-01
In this paper, we take an historical approach to reviewing research into the patterns of metabolic enzymes in muscle in relation to body size, focusing on mitochondrial enzymes. One of the first studies on allometric scaling of muscle enzymes was published in an early issue of this journal (George and Talesara, 1961 Comp. Biochem. Physiol. 3: 267-273). These researchers studied a number of locally available birds and a bat, measuring the activity of the mitochondrial enzyme succinate dehydrogenase in relation to body mass and muscle structure. Though the phenomenon of allometric scaling of metabolism was well recognized even 50 years earlier, this study was one of the first to explore the enzymatic underpinnings of the metabolic patterns in different animals. In this review, we begin by considering the George and Talesara study in the context of this early era in metabolic biochemistry and comparative physiology. We review subsequent studies in the last 50 years that continued the comparative analysis of enzyme patterns in relation to body size in diverse experimental models. This body of work identified a recurrent (though not ubiquitous) reciprocal relationship between oxidative and glycolytic enzymes. In the last 10 years, studies have focused on identifying the molecular mechanisms that determine the muscle metabolic enzyme phenotype. Copyright 2010 Elsevier Inc. All rights reserved.
Rosa, Paolo; Sforna, Luigi; Carlomagno, Silvia; Mangino, Giorgio; Miscusi, Massimo; Pessia, Mauro; Franciolini, Fabio; Calogero, Antonella; Catacuzzeno, Luigi
2017-09-01
Glioblastomas (GBMs) are brain tumors characterized by diffuse invasion of cancer cells into the healthy brain parenchyma, and establishment of secondary foci. GBM cells abundantly express large-conductance, calcium-activated potassium (BK) channels that are thought to promote cell invasion. Recent evidence suggests that the GBM high invasive potential mainly originates from a pool of stem-like cells, but the expression and function of BK channels in this cell subpopulation have not been studied. We investigated the expression of BK channels in GBM stem-like cells using electrophysiological and immunochemical techniques, and assessed their involvement in the migratory process of this important cell subpopulation. In U87-MG cells, BK channel expression and function were markedly upregulated by growth conditions that enriched the culture in GBM stem-like cells (U87-NS). Cytofluorimetric analysis further confirmed the appearance of a cell subpopulation that co-expressed high levels of BK channels and CD133, as well as other stem cell markers. A similar association was also found in cells derived from freshly resected GBM biopsies. Finally, transwell migration tests showed that U87-NS cells migration was much more sensitive to BK channel block than U87-MG cells. Our data show that BK channels are highly expressed in GBM stem-like cells, and participate to their high migratory activity. J. Cell. Physiol. 232: 2478-2488, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.
1996-01-01
NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation. PMID:12226321
Niu, X.; Damsz, B.; Kononowicz, A. K.; Bressan, R. A.; Hasegawa, P. M.
1996-07-01
NaCl-induced plasma membrane H+-ATPase gene expression, which occurs in roots and fully expanded leaves of the halophyte Atriplex nummularia L. (X. Niu, M.L. Narasimhan, R.A. Salzman, R.A. Bressan, P.M. Hasegawa [1993] Plant Physiol 103: 713-718), has been differentially localized to specific tissues using in situ RNA hybridization techniques. Twenty-four-hour exposure of plants to 400 mM NaCl resulted in substantial accumulation of H+ pump message in the epidermis of the root tip and the endodermis of the root elongation/differentiation zone. In expanded leaves, NaCl induction of plasma membrane H+-ATPase message accumulation was localized to bundle-sheath cells. Ultrastructural analyses indicated that significant cytological adaptations in root cells included plasmolysis that is accompanied by plasma membrane invaginations, formation of Hechtian strands and vesiculation, and vacuolation. These results identify specific tissues that are involved in the regulation of Na+ and Cl- uptake into different organs of the halophyte A. nummularia and provide evidence of the intercellular and interorgan coordination that occurs in the mediation of NaCl adaptation.
A mathematical model of endovascular heat transfer for human brain cooling
NASA Astrophysics Data System (ADS)
Salsac, Anne-Virginie; Lasheras, Juan Carlos; Yon, Steven; Magers, Mike; Dobak, John
2000-11-01
Selective cooling of the brain has been shown to exhibit protective effects in cerebral ischemia, trauma, and spinal injury/ischemia. A multi-compartment, unsteady thermal model of the response of the human brain to endovascular cooling is discussed and its results compared to recent experimental data conducted with sheep and other mammals. The model formulation is based on the extension of the bioheat equation, originally proposed by Pennes(1) and later modified by Wissler(2), Stolwijk(3) and Werner and Webb(4). The temporal response of the brain temperature and that of the various body compartments to the cooling of the blood flowing through the common carotid artery is calculated under various scenarios. The effect of the boundary conditions as well as the closure assumptions used in the model, i.e. perfusion rate, metabolism heat production, etc. on the cooling rate of the brain are systematically investigated. (1) Pennes H. H., “Analysis of tissue and arterial blood temperature in the resting forearm.” J. Appl. Physiol. 1: 93-122, 1948. (2) Wissler E. H., “Steady-state temperature distribution in man”, J. Appl. Physiol., 16: 764-740, 1961. (3) Stolwick J. A. J., “Mathematical model of thermoregulation” in “Physiological and behavioral temperature regulation”, edited by J. D. Hardy, A. P. Gagge and A. J. Stolwijk, Charles C. Thomas Publisher, Springfiels, Ill., 703-721, 1971. (4) Werner J., Webb P., “A six-cylinder model of human thermoregulation for general use on personal computers”, Ann. Physiol. Anthrop., 12(3): 123-134, 1993.
Rajaei, Bahareh; Shamsara, Mehdi; Amirabad, Leila Mohammadi; Massumi, Mohammad; Sanati, Mohammad Hossein
2017-10-01
Human-induced pluripotent stem cells (hiPSCs) can potentially serve as an invaluable source for cell replacement therapy and allow the creation of patient- and disease-specific stem cells without the controversial use of embryos and avoids any immunological incompatibility. The generation of insulin-producing pancreatic β-cells from pluripotent stem cells in vitro provides an unprecedented cell source for personal drug discovery and cell transplantation therapy in diabetes. A new five-step protocol was introduced in this study, effectively induced hiPSCs to differentiate into glucose-responsive insulin-producing cells. This process mimics in vivo pancreatic organogenesis by directing cells through stages resembling definitive endoderm, primitive gut-tube endoderm, posterior foregut, pancreatic endoderm, and endocrine precursor. Each stage of differentiation were characterized by stage-specific markers. The produced cells exhibited many properties of functional β-cells, including expression of critical β-cells transcription factors, the potency to secrete C-peptide in response to high levels of glucose and the presence of mature endocrine secretory granules. This high efficient differentiation protocol, established in this study, yielded 79.18% insulin-secreting cells which were responsive to glucose five times higher than the basal level. These hiPSCs-derived glucose-responsive insulin-secreting cells might provide a promising approach for the treatment of type I diabetes mellitus. J. Cell. Physiol. 232: 2616-2625, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Edwards, Aurélie; Layton, Anita T
2010-09-01
In a companion study (Edwards A and Layton AT. Am J Physiol Renal Physiol. doi:10.1152/ajprenal.00680.2009), we developed a mathematical model of nitric oxide (NO), superoxide (O(2)(-)), and total peroxynitrite (ONOO) transport in mid-outer stripe and mid-inner stripe cross sections of the rat outer medulla (OM). We examined how the three-dimensional architecture of the rat OM, together with low medullary oxygen tension (Po(2)), affects the distribution of NO, O(2)(-), and ONOO in the rat OM. In the current study, we sought to determine generation rate and permeability values that are compatible with measurements of medullary NO concentrations and to assess the importance of tubulovascular cross talk and NO-O(2)(-) interactions under physiological conditions. Our results suggest that the main determinants of NO concentrations in the rat OM are the rate of vascular and tubular NO synthesis under hypoxic conditions, and the red blood cell (RBC) permeability to NO (P(NO)(RBC)). The lower the P(NO)(RBC), the lower the amount of NO that is scavenged by hemoglobin species, and the higher the extra-erythrocyte NO concentrations. In addition, our results indicate that basal endothelial NO production acts to significantly limit NaCl reabsorption across medullary thick ascending limbs and to sustain medullary perfusion, whereas basal epithelial NO production has a smaller impact on NaCl transport and a negligible effect on vascular tone. Our model also predicts that O(2)(-) consumption by NO significantly reduces medullary O(2)(-) concentrations, but that O(2)(-) , when present at subnanomolar concentrations, has a small impact on medullary NO bioavailability.
Mucociliary clearance and submucosal gland secretion in the ex vivo ferret trachea.
Jeong, Jin Hyeok; Joo, Nam Soo; Hwang, Peter H; Wine, Jeffrey J
2014-07-01
In many species submucosal glands are an important source of tracheal mucus, but the extent to which mucociliary clearance (MCC) depends on gland secretion is unknown. To explore this relationship, we measured basal and agonist-stimulated MCC velocities in ex vivo tracheas from adult ferrets and compared the velocities with previously measured rates of ferret glandular mucus secretion (Cho HJ, Joo NS, Wine JJ. Am J Physiol Lung Cell Mol Physiol 299: L124-L136, 2010). Stimulated MCC velocities (mm/min, means ± SE for 10- to 35-min period poststimulation) were as follows: 1 μM carbachol: 19.1 ± 3.3 > 10 μM phenylephrine: 15.3 ± 2.4 ≈ 10 μM isoproterenol: 15.0 ± 1.9 ≈ 10 μM forskolin: 14.6 ± 3.1 > 1 μM vasoactive intestinal peptide (VIP): 10.2 ± 2.2 > basal (t15): 1.8 ± 0.3; n = 5-10 for each condition. Synergistic stimulation of MCC was observed between low concentrations of carbachol (100 nM) and isoproterenol (300 nM). Bumetanide inhibited carbachol-stimulated MCC by ~70% and abolished the increase in MCC stimulated by forskolin + VIP, whereas HCO3 (-)-free solutions did not significantly inhibit MCC to either intracellular Ca(2+) concentration or intracellular cAMP concentration ([cAMP]i)-elevating agonists. Stimulation and inhibition of MCC and gland secretion differed in several respects: most importantly, elevating [cAMP]i increased MCC much more effectively than expected from its effects on gland secretion, and bumetanide almost completely inhibited [cAMP]i-stimulated MCC while it had a smaller effect on gland secretion. We conclude that changes in glandular fluid secretion are complexly related to MCC and discuss possible reasons for this. Copyright © 2014 the American Physiological Society.
Feng, Han-Zhong; Chen, Min; Weinstein, Lee S.
2011-01-01
Genetically modified mice with deficiency of the G protein α-subunit (Gsα) in skeletal muscle showed metabolic abnormality with reduced glucose tolerance, low muscle mass, and low contractile force, along with a fast-to-slow-fiber-type switch (Chen M, Feng HZ, Gupta D, Kelleher J, Dickerson KE, Wang J, Hunt D, Jou W, Gavrilova O, Jin JP, Weinstein LS. Am J Physiol Cell Physiol 296: C930–C940, 2009). Here we investigated a hypothesis that the switching to more slow fibers is an adaptive response with specific benefit. The results showed that, corresponding to the switch of myosin isoforms, the thin-filament regulatory proteins troponin T and troponin I both switched to their slow isoforms in the atrophic soleus muscle of 3-mo-old Gsα-deficient mice. This fiber-type switch involving coordinated changes of both thick- and thin-myofilament proteins progressed in the Gsα-deficient soleus muscles of 18- to 24-mo-old mice, as reflected by the expression of solely slow isoforms of myosin and troponin. Compared with age-matched controls, Gsα-deficient soleus muscles with higher proportion of slow fibers exhibited slower contractile and relaxation kinetics and lower developed force, but significantly increased resistance to fatigue, followed by a better recovery. Gsα-deficient soleus muscles of neonatal and 3-wk-old mice did not show the increase in slow fibers. Therefore, the fast-to-slow-fiber-type switch in Gsα deficiency at older ages was likely an adaptive response. The benefit of higher fatigue resistance in adaption to metabolic deficiency and aging provides a mechanism to sustain skeletal muscle function in diabetic patients and elderly individuals. PMID:21680879
The Outflow Pathway: A Tissue With Morphological and Functional Unity.
Saccà, Sergio Claudio; Gandolfi, Stefano; Bagnis, Alessandro; Manni, Gianluca; Damonte, Gianluca; Traverso, Carlo Enrico; Izzotti, Alberto
2016-09-01
The trabecular meshwork (TM) plays an important role in high-tension glaucomas. Indeed, the TM is a true organ, through which the aqueous humor flows from the anterior chamber to Schlemm's canal (SC). Until recently, the TM, which is constituted by endothelial-like cells, was described as a kind of passive filter. In reality, it is much more. The cells delineating the structures of the collagen framework of the TM are endowed with a cytoskeleton, and are thus able to change their shape. These cells also have the ability to secrete the extracellular matrix, which expresses proteins and cytokines, and are capable of phagocytosis and autophagy. The cytoskeleton is attached to the nuclear membrane and can, in millionths of a second, send signals to the nucleus in order to alter the expression of genes in an attempt to adapt to biomechanical insult. Oxidative stress, as happens in aging, has a deleterious effect on the TM, leading eventually to cell decay, tissue malfunction, subclinical inflammation, changes in the extracellular matrix and cytoskeleton, altered motility, reduced outflow facility, and (ultimately) increased IOP. TM failure is the most relevant factor in the cascade of events triggering apoptosis in the inner retinal layers, including ganglion cells. J. Cell. Physiol. 231: 1876-1893, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
4th European Seminars in Virology on Oncogenic and Oncolytic Viruses, in Bertinoro (Bologna), Italy.
Reale, Alberto; Messa, Lorenzo; Vitiello, Adriana; Loregian, Arianna; Palù, Giorgio
2017-10-01
The 4th European Seminars in Virology (EuSeV), which was focused on oncogenic and oncolytic viruses, was held in Bertinoro (Bologna), Italy, from June 10 to 12, 2016. This article summarizes the plenary lectures and aims to illustrate the main topics discussed at 4th EuSeV, which brought together knowledge and expertise in the field of oncogenic and oncolytic viruses from all over the world. The meeting was divided in two parts, "Mechanisms of Viral Oncogenesis" and "Viral Oncolysis and Immunotherapy," which were both focused on dissecting the complex and multi-factorial interplay between cancer and human viruses and on exploring new anti-cancer strategies. J. Cell. Physiol. 232: 2641-2648, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Scott, A. C.; Allen, N. S.; Davies, E. (Principal Investigator)
1999-01-01
Ratiometric wide-field fluorescence microscopy with 1',7'- bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF)-dextran demonstrated that gravistimulation leads to rapid changes in cytoplasmic pH (pHc) in columella cells of Arabidopsis roots. The pHc of unstimulated columella cells in tiers 2 and 3, known sites of graviperception (E.B. Blancaflor, J.B. Fasano, S. Gilroy [1998] Plant Physiol 116: 213-222), was 7.22 +/- 0.02 pH units. Following gravistimulation, the magnitude and direction of pHc changes in these cells depended on their location in the columella. Cells in the lower side of tier 2 became more alkaline by 0.4 unit within 55 s of gravistimulation, whereas alkalinization of the cells on the upper side was slower (100 s). In contrast, all cells in tier 3 acidified by 0.4 pH unit within 480 s after gravistimulation. Disrupting these pHc changes in the columella cells using pHc modifiers at concentrations that do not affect root growth altered the gravitropic response. Acidifying agents, including bafilomycin A1, enhanced curvature, whereas alkalinizing agents disrupted gravitropic bending. These results imply that pHc changes in the gravisensing cells and the resultant pH gradients across the root cap are important at an early stage in the signal cascade leading to the gravitropic response.
Isaacson, J S; Nicoll, R A
1991-01-01
Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain. PMID:1660156
Isaacson, J S; Nicoll, R A
1991-12-01
Aniracetam is a nootropic drug that has been shown to selectively enhance quisqualate receptor-mediated responses in Xenopus oocytes injected with brain mRNA and in hippocampal pyramidal cells [Ito, I., Tanabe, S., Kohda, A. & Sugiyama, H. (1990) J. Physiol. (London) 424, 533-544]. We have used patch clamp recording techniques in hippocampal slices to elucidate the mechanism for this selective action. We find that aniracetam enhances glutamate-evoked currents in whole-cell recordings and, in outside-out patches, strongly reduces glutamate receptor desensitization. In addition, aniracetam selectively prolongs the time course and increases the peak amplitude of fast synaptic currents. These findings indicate that aniracetam slows the kinetics of fast synaptic transmission and are consistent with the proposal [Trussell, L. O. & Fischbach, G. D. (1989) Neuron 3, 209-218; Tang, C.-M., Dichter, M. & Morad, M. (1989) Science 243, 1474-1477] that receptor desensitization governs the strength of fast excitatory synaptic transmission in the brain.
Laimins, L A; Rhoads, D B; Altendorf, K; Epstein, W
1978-01-01
The three structural proteins of the ATP-driven Kdp potassium transport system of Escherichia coli [Rhoads, D. B., Waters, F. B. & Epstein, W. (1976) J. Gen. Physiol. 67, 325-341] have been identified and found to be located in the inner membrane. The high-affinity repressible Kdp system in one of four potassium transport systems in E. coli. The Kdp proteins were identified both in growing cells as well as in heavily UV-irradiated cells infected with transducing phages carrying the kdp operon. Although all previously identified ATP-driven transport systems of Gram-negative bacteria have been shown to contain a periplasmic protein component, no evidence was found for such a component or for an outer membrane component of the Kdp system. The molecular weights of the three inner membrane proteins, KdpA, KdpB, and KdpC, were determined to be 47,000, 90,000 and 22,000, respectively. Images PMID:356049
2016-12-01
respiratory pathways following spinal cord injury. J Appl Physiol. 94(2):795-810. Raineteau O and Schwab ME (2001). Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci. 2(4):262-73. APPENDICES : None
Local Control Model of Excitation–Contraction Coupling in Skeletal Muscle
Stern, Michael D.; Pizarro, Gonzalo; Ríos, Eduardo
1997-01-01
This is a quantitative model of control of Ca2+ release from the sarcoplasmic reticulum in skeletal muscle, based on dual control of release channels (ryanodine receptors), primarily by voltage, secondarily by Ca2+ (Ríos, E., and G. Pizarro. 1988. NIPS. 3:223–227). Channels are positioned in a double row array of between 10 and 60 channels, where exactly half face voltage sensors (dihydropyridine receptors) in the transverse (t) tubule membrane (Block, B.A., T. Imagawa, K.P. Campbell, and C. Franzini-Armstrong. 1988. J. Cell Biol. 107:2587–2600). We calculate the flux of Ca2+ release upon different patterns of pulsed t-tubule depolarization by explicit stochastic simulation of the states of all channels in the array. Channels are initially opened by voltage sensors, according to an allosteric prescription (Ríos, E., M. Karhanek, J. Ma, A. González. 1993. J. Gen. Physiol. 102:449–482). Ca2+ permeating the open channels, diffusing in the junctional gap space, and interacting with fixed and mobile buffers produces defined and changing distributions of Ca2+ concentration. These concentrations interact with activating and inactivating channel sites to determine the propagation of activation and inactivation within the array. The model satisfactorily simulates several whole-cell observations, including kinetics and voltage dependence of release flux, the “paradox of control,” whereby Ca2+-activated release remains under voltage control, and, most surprisingly, the “quantal” aspects of activation and inactivation (Pizarro, G., N. Shirokova, A. Tsugorka, and E. Ríos. 1997. J. Physiol. 501:289–303). Additionally, the model produces discrete events of activation that resemble Ca2+ sparks (Cheng, H., M.B. Cannell, and W.J. Lederer. 1993. Science (Wash. DC). 262:740–744). All these properties result from the intersection of stochastic channel properties, control by local Ca2+, and, most importantly, the one dimensional geometry of the array and its mesoscopic scale. Our calculations support the concept that the release channels associated with one face of one junctional t-tubule segment, with its voltage sensor, constitute a functional unit, termed the “couplon.” This unit is fundamental: the whole cell behavior can be synthesized as that of a set of couplons, rather than a set of independent channels. PMID:9379173
Modulation of Mammary Stromal Cell Lactate Dynamics by Ambient Glucose and Epithelial Factors.
Tobar, Nicolas; Porras, Omar; Smith, Patricio C; Barros, L Felipe; Martínez, Jorge
2017-01-01
Hyperglycemia is a risk factor for a variety of human cancers. Increased access to glucose and that tumor metabolize glucose by a glycolytic process even in the presence of oxygen (Warburg effect), provide a framework to analyze a particular set of metabolic adaptation mechanisms that may explain this phenomenon. In the present work, using a mammary stromal cell line derived from healthy tissue that was subjected to a long-term culture in low (5 mM) or high (25 mM) glucose, we analyzed kinetic parameters of lactate transport using a FRET biosensor. Our results indicate that the glucose pre-culture and soluble epithelial factors constitute a stimulus for lactate stromal production, factors that also modify the kinetic parameters and the monocarboxylate transporters expression in stromal cells. We also observed a vectorial flux of lactate from stroma to epithelial cells in a co-culture setting and found that the uptake of lactate by epithelial cells correlates with the degree of malignancy. Glucose preconditioning of the stromal cell stimulated epithelial motility. Our findings suggest that lactate generated by stromal cells in the high glucose condition stimulate epithelial migration. Overall, our results support the notion that glucose not only provides a substrate for tumor nutrition but also behaves as a signal promoting malignancy. J. Cell. Physiol. 232: 136-144, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis.
Shamloo, Amir
2014-09-01
This study investigates the role of cell-cell and cell-ligand interactions in cytoskeleton organization of endothelial cells (ECs) and their directional migration within a microfluidic device. The migration of ECs in response to a biochemical factor was studied. Mathematical analysis of the cell migration pathways and cellular cytoskeleton revealed that directional migration, migration persistence length, migration speed, and cytoskeletal stress fiber alignment can be mediated by the level of cell contacts as well as the presence or absence of a biochemical polarizing factor. It was shown that in the presence of a biochemical polarizing factor, higher cell density and more frequent cell contacts has a reinforcing effect on collective cell chemotaxis. In contrast, in the absence of a polarizing factor, high cell density can decrease or suppress the ability of the cells to migrate. Also, the correlation of actin stress fiber organization and alignment with directional migration of ECs was investigated. It was shown that in the presence of a biochemical polarizing factor, stress fibers within the cytoskeleton of ECs can be significantly aligned parallel to the gradient direction when the cells have higher level of contacts. The results also show that the organization and alignment of actin stress fibers is mediated by cell adhesion junctions during collective cell migration and introduce cell-cell interactions as a key factor during collective cell chemotaxis. © 2014 Wiley Periodicals, Inc.
Inactivation of Gating Currents of L-Type Calcium Channels
Shirokov, Roman; Ferreira, Gonzalo; Yi, Jianxun; Ríos, Eduardo
1998-01-01
In studies of gating currents of rabbit cardiac Ca channels expressed as α1C/β2a or α1C/β2a/α2δ subunit combinations in tsA201 cells, we found that long-lasting depolarization shifted the distribution of mobile charge to very negative potentials. The phenomenon has been termed charge interconversion in native skeletal muscle (Brum, G., and E. Ríos. 1987. J. Physiol. (Camb.). 387:489–517) and cardiac Ca channels (Shirokov, R., R. Levis, N. Shirokova, and E. Ríos. 1992. J. Gen. Physiol. 99:863–895). Charge 1 (voltage of half-maximal transfer, V1/2 ≃ 0 mV) gates noninactivated channels, while charge 2 (V1/2 ≃ −90 mV) is generated in inactivated channels. In α1C/β2a cells, the available charge 1 decreased upon inactivating depolarization with a time constant τ ≃ 8, while the available charge 2 decreased upon recovery from inactivation (at −200 mV) with τ ≃ 0.3 s. These processes therefore are much slower than charge movement, which takes <50 ms. This separation between the time scale of measurable charge movement and that of changes in their availability, which was even wider in the presence of α2δ, implies that charges 1 and 2 originate from separate channel modes. Because clear modal separation characterizes slow (C-type) inactivation of Na and K channels, this observation establishes the nature of voltage-dependent inactivation of L-type Ca channels as slow or C-type. The presence of the α2δ subunit did not change the V1/2 of charge 2, but sped up the reduction of charge 1 upon inactivation at 40 mV (to τ ≃ 2 s), while slowing the reduction of charge 2 upon recovery (τ ≃ 2 s). The observations were well simulated with a model that describes activation as continuous electrodiffusion (Levitt, D. 1989. Biophys. J. 55:489–498) and inactivation as discrete modal change. The effects of α2δ are reproduced assuming that the subunit lowers the free energy of the inactivated mode. PMID:9607938
Neuronal Adaptive Mechanisms Underlying Intelligent Information Processing
1981-05-01
Physiol. 134: 451-470, 1956. J. Freud , S, Unpublished, untitled paper (1895) subsequently published in Freud , Sigmund - Standard Edition...of the Complete Psychological Works of Freud , edited by J. Strachey. New York, Macmillan 1: 281-287, 1964. Gallagher, J.P. and Shinnick-Gallagher
BAG3 Protein Is Over-Expressed in Endometrioid Endometrial Adenocarcinomas.
Esposito, Veronica; Baldi, Carlo; Zeppa, Pio; Festa, Michelina; Guerriero, Luana; d'Avenia, Morena; Chetta, Massimiliano; Zullo, Fulvio; De Laurenzi, Vincenzo; Turco, Maria Caterina; Rosati, Alessandra; Guida, Maurizio
2017-02-01
Endometrioid endometrial cancer is the most common gynaecological tumor in developed countries, and its incidence is increasing. The definition of subtypes, based on clinical and endocrine features or on histopathological characteristics, correlate to some extent with patient's prognosis, but there is substantial heterogeneity within tumor types. The search for molecules and mechanisms implied in determining the progression and the response to therapy for this cancer is still ongoing. BAG3 protein, a member of BAG family of co-chaperones, has a pro-survival role in several tumor types. BAG3 anti-apoptotic properties rely on its characteristic to bind several intracellular partners, thereby, modulating crucial events such as apoptosis, differentiation, cell motility, and autophagy. BAG3 expression in human endometrial cancer tissues was not investigated so far. Here, we show that BAG3 protein levels are elevated in tumoral and hyperplastic cells in respect to normal glands. Furthermore, BAG3 subcellular localization appears to be changed in tumoral compared to normal cells. Our results indicate a possible role for BAG3 protein in the maintenance of cell survival in endometrioid endometrial cancer and suggest that this field of studies is worthy of further investigations. J. Cell. Physiol. 232: 309-311, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lomako, Joseph; Lomako, Wieslawa M; Carothers Carraway, Coralie A; Carraway, Kermit L
2010-04-01
MUC4 is a heterodimeric membrane mucin, composed of a mucin subunit ASGP-1 (MUC4alpha) and a transmembrane subunit ASGP-2 (MUC4beta), which has been implicated in the protection of epithelial cell surfaces. In the rat stratified corneal epithelium Muc4 is found predominantly in the most superficial cell layers. Since previous studies in other tissues have shown that Muc4 is regulated by TGF-beta via a proteosomal degradation mechanism, we investigated the regulation of corneal Muc4 in stratified cultures of corneal epithelial cells. Application of proteosome or processing inhibitors led to increases in levels of Muc4, particularly in the basal and intermediate levels of the stratified cultures. These changes were accompanied by increases in Muc4 ubiquitination, chaperone association and incorporation into intracellular aggresomes. In contrast, treatment with TGF-beta resulted in reduced levels of Muc4, which were reversed by proteosome inhibition. The results support a model in which Muc4 precursor is synthesized in all layers of the corneal epithelium, but Muc4 is degraded in basal and intermediate layers by a proteosomal mechanism at least partly dependent on TGF-beta inhibition of Muc4 processing. J. Cell. Physiol. 223: 209-214, 2010. (c) 2009 Wiley-Liss, Inc.
Combined Multidimensional Microscopy as a Histopathology Imaging Tool.
Shami, Gerald J; Cheng, Delfine; Braet, Filip
2017-02-01
Herein, we present a highly versatile bioimaging workflow for the multidimensional imaging of biological structures across vastly different length scales. Such an approach allows for the optimised preparation of samples in one go for consecutive X-ray micro-computed tomography, bright-field light microscopy and backscattered scanning electron microscopy, thus, facilitating the disclosure of combined structural information ranging from the gross tissue or cellular level, down to the nanometre scale. In this current study, we characterize various aspects of the hepatic vasculature, ranging from such large vessels as branches of the hepatic portal vein and hepatic artery, down to the smallest sinusoidal capillaries. By employing high-resolution backscattered scanning electron microscopy, we were able to further characterize the subcellular features of a range of hepatic sinusoidal cells including, liver sinusoidal endothelial cells, pit cells and Kupffer cells. Above all, we demonstrate the capabilities of a specimen manipulation workflow that can be applied and adapted to a plethora of functional and structural investigations and experimental models. Such an approach harnesses the fundamental advantages inherent to the various imaging modalities presented herein, and when combined, offers information not currently available by any single imaging platform. J. Cell. Physiol. 232: 249-256, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
MARCKS promotes invasion and is associated with biochemical recurrence in prostate cancer
Dorris, Emma; O'Neill, Amanda; Hanrahan, Karen; Treacy, Ann; Watson, R. William
2017-01-01
Background Overtreatment of low-grade prostate cancer is a recognised problem for clinicians and patients. However, under-treatment runs the risk of missing the opportunity for cure in those who could benefit. Identification of new biomarkers of disease progression, including metastases, is required to better stratify and appropriately treat these patients. The ability to predict if prostate cancer will recur is an important clinical question that would impact treatment options for patients. Studies in other cancers have associated MARCKS with metastasis. Methods Tissue microarrays of local prostatectomy samples from a cohort of biochemical recurrent and non-biochemical recurrent tumours were assayed for MARCKS protein expression. Prostate cancer cell lines were transfected with siRNA targeting MARCKS or a control and functional endpoints of migration, invasion, proliferation, viability and apoptosis were measured. Actin was visualised by fluorescent microscopy and evidence of a cadherin switch and activation of the AKT pathway were assayed. Results MARCKS was upregulated in biochemical recurrent patients compared to non-biochemical recurrent. Knockdown of MARCKS reduced migration and invasion of prostate cancer cells, reduced MMP9 mRNA expression, as well as decreasing cell spreading and increased cell:cell adhesion in prostate cancer cell colonies. Knockdown of MARCKS had no effect on proliferation, viability or apoptosis of the prostate cancer cells. Conclusions In conclusion, MARCKS promotes migration and invasion and is associated with biochemical recurrence in localised prostate cancer tumours. The mechanisms by which this occurs have yet to be fully elucidated but lack of a cadherin switch indicates it is not via epithelial-to-mesenchymal transition. Actin rearrangement indicates that MARCKS promotes invasion through regulating the architecture of the cell. PMID:29069765
Primary Cilium-Regulated EG-VEGF Signaling Facilitates Trophoblast Invasion.
Wang, Chia-Yih; Tsai, Hui-Ling; Syu, Jhih-Siang; Chen, Ting-Yu; Su, Mei-Tsz
2017-06-01
Trophoblast invasion is an important event in embryo implantation and placental development. During these processes, endocrine gland-derived vascular endothelial growth factor (EG-VEGF) is the key regulator mediating the crosstalk at the feto-maternal interface. The primary cilium is a cellular antenna receiving environmental signals and is crucial for proper development. However, little is known regarding the role of the primary cilium in early human pregnancy. Here, we demonstrate that EG-VEGF regulates trophoblast cell invasion via primary cilia. We found that EG-VEGF activated ERK1/2 signaling and subsequent upregulation of MMP2 and MMP9, thereby facilitating cell invasion in human trophoblast HTR-8/SVneo cells. Inhibition of ERK1/2 alleviated the expression of MMPs and trophoblast cell invasion after EG-VEGF treatment. In addition, primary cilia were observed in all the trophoblast cell lines tested and, more importantly, in human first-trimester placental tissue. The receptor of EG-VEGF, PROKR1, was detected in primary cilia. Depletion of IFT88, the intraflagellar transporter required for ciliogenesis, inhibited primary cilium growth, thereby ameliorating ERK1/2 activation, MMP upregulation, and trophoblast cell invasion promoted by EG-VEGF. These findings demonstrate a novel function of primary cilia in controlling EG-VEGF-regulated trophoblast invasion and reveal the underlying molecular mechanism. J. Cell. Physiol. 232: 1467-1477, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Cantow, Kathleen; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf; Pohlmann, Andreas
2016-01-01
In vivo assessment of renal perfusion and oxygenation under (patho)physiological conditions by means of noninvasive diagnostic imaging is conceptually appealing. Blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI) and quantitative parametric mapping of the magnetic resonance (MR) relaxation times T 2* and T 2 are thought to provide surrogates of renal tissue oxygenation. The validity and efficacy of this technique for quantitative characterization of local tissue oxygenation and its changes under different functional conditions have not been systematically examined yet and remain to be established. For this purpose, the development of an integrative multimodality approaches is essential. Here we describe an integrated hybrid approach (MR-PHYSIOL) that combines established quantitative physiological measurements with T 2* (T 2) mapping and MR-based kidney size measurements. Standardized reversible (patho)physiologically relevant interventions, such as brief periods of aortic occlusion, hypoxia, and hyperoxia, are used for detailing the relation between the MR-PHYSIOL parameters, in particular between renal T 2* and tissue oxygenation.
Rhizoid differentiation of Spirogyra is regulated by substratum.
Ikegaya, Hisato; Sonobe, Seiji; Murakami, Kohei; Shimmen, Teruo
2008-11-01
Some species of Spirogyra can anchor to substratum with rod- or rosette-shaped rhizoid (hapteron). The rhizoid differentiation can be induced by cutting algal filaments in a laboratory. Requirement of contact stimulation for rhizoid differentiation has been reported (Nagata in Plant Cell Physiol 14:531-541, 1973a). However, the control mechanism of rhizoid morphology has not been elucidated. When cut filaments were incubated on the glass surface, start of tip growth, secretion of lectin-binding material and callose synthesis were observed. In the absence of contact to the glass surface, none of above phenomena was induced. Systematic analysis showed that rosette-shaped rhizoid was formed only on the hydrophobic substratum. On the hydrophobic substratum, both Bandeiraea (Griffonia) simplicifolia lectin and jacalin strongly stained the rhizoids. On the hydrophilic substratum, however, only Bandeiraea (Griffonia) simplicifolia lectin strongly stained the rhizoids.
Improved method for HPLC analysis of polyamines, agmatine and aromatic monoamines in plant tissue
NASA Technical Reports Server (NTRS)
Slocum, R. D.; Flores, H. E.; Galston, A. W.; Weinstein, L. H.
1989-01-01
The high performance liquid chromatographic (HPLC) method of Flores and Galston (1982 Plant Physiol 69: 701) for the separation and quantitation of benzoylated polyamines in plant tissues has been widely adopted by other workers. However, due to previously unrecognized problems associated with the derivatization of agmatine, this important intermediate in plant polyamine metabolism cannot be quantitated using this method. Also, two polyamines, putrescine and diaminopropane, also are not well resolved using this method. A simple modification of the original HPLC procedure greatly improves the separation and quantitation of these amines, and further allows the simulation analysis of phenethylamine and tyramine, which are major monoamine constituents of tobacco and other plant tissues. We have used this modified HPLC method to characterize amine titers in suspension cultured carrot (Daucas carota L.) cells and tobacco (Nicotiana tabacum L.) leaf tissues.
Label-Free Imaging and Biochemical Characterization of Bovine Sperm Cells
Ferrara, Maria Antonietta; Di Caprio, Giuseppe; Managò, Stefano; De Angelis, Annalisa; Sirleto, Luigi; Coppola, Giuseppe; De Luca, Anna Chiara
2015-01-01
A full label-free morphological and biochemical characterization is desirable to select spermatozoa during preparation for artificial insemination. In order to study these fundamental parameters, we take advantage of two attractive techniques: digital holography (DH) and Raman spectroscopy (RS). DH presents new opportunities for studying morphological aspect of cells and tissues non-invasively, quantitatively and without the need for staining or tagging, while RS is a very specific technique allowing the biochemical analysis of cellular components with a spatial resolution in the sub-micrometer range. In this paper, morphological and biochemical bovine sperm cell alterations were studied using these techniques. In addition, a complementary DH and RS study was performed to identify X- and Y-chromosome-bearing sperm cells. We demonstrate that the two techniques together are a powerful and highly efficient tool elucidating some important criterions for sperm morphological selection and sex-identification, overcoming many of the limitations associated with existing protocols. PMID:25836358
NASA Astrophysics Data System (ADS)
Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.
2017-03-01
Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton.
Pokrzywinski, Kaytee L.; Tilney, Charles L.; Warner, Mark E.; Coyne, Kathryn J.
2017-01-01
Bacteria may play a role in regulating harmful algal blooms, but little is known about the biochemical and physiological changes associated with cell death induced by algicidal bacteria. Previous work characterized an algicidal exudate (IRI-160AA) produced by Shewanella sp. IRI-160 that is effective against dinoflagellates, while having little to no effect on other phytoplankton species in laboratory culture experiments. The objective of this study was to evaluate biochemical changes associated with cell death and impacts on the cell cycle in three dinoflagellate species (Prorocentrum minimum, Karlodinium veneficum and Gyrodinium instriatum) after exposure to IRI-160AA. In this study, IRI-160AA induced cell cycle arrest in all dinoflagellates examined. Several indicators for programmed cell death (PCD) that are often observed in phytoplankton in response to a variety of stressors were also evaluated. Cell death was accompanied by significant increases in DNA degradation, intra- and extracellular ROS concentrations and DEVDase (caspase-3 like) protease activity, which have been associated with PCD in other phytoplankton species. Overall, results of this investigation provide strong evidence that treatment with the bacterial algicide, IRI-160AA results in cell cycle arrest and induces biochemical changes consistent with stress-related cell death responses observed in other phytoplankton. PMID:28332589
Amnesia Production by Visual Stimulation.
1982-12-01
electroconvulsive shock-produced retro- grade amnesia in the rat. J Comp Physiol Psychol 88:373-377 (1975). 5. Cronholm, B., and L. Molander. Memory...disturbances after electrocon- vulsive therapy : 5. Conditions one month after a series of treat- ments. Acta Psychiatr Scand 40:211-216 (1964). 6. Dinc, H. I
International Symposium on the Biology and Management of Aquatic Plants. Volume 31
1993-01-01
Yang. 1991. Lipid peroxidation and antioxidative transgenic plants overexpressing peroxidase. Plant Physiol 96:577- defense systems in early leaf...Factors 3. Chandrasena, J. P. N. R. and W. H. T. Dhammika. 1988. Studies on limiting the distribution of cogongrass, Imperata cylindrica, and torpe
Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L
2017-02-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.
Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David
2017-01-01
Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411
Exact solutions of a two parameter flux model and cryobiological applications.
Benson, James D; Chicone, Carmen C; Critser, John K
2005-06-01
Solute-solvent transmembrane flux models are used throughout biological sciences with applications in plant biology, cryobiology (transplantation and transfusion medicine), as well as circulatory and kidney physiology. Using a standard two parameter differential equation model of solute and solvent transmembrane flux described by Jacobs [The simultaneous measurement of cell permeability to water and to dissolved substances, J. Cell. Comp. Physiol. 2 (1932) 427-444], we determine the functions that describe the intracellular water volume and moles of intracellular solute for every time t and every set of initial conditions. Here, we provide several novel biophysical applications of this theory to important biological problems. These include using this result to calculate the value of cell volume excursion maxima and minima along with the time at which they occur, a novel result that is of significant relevance to the addition and removal of permeating solutes during cryopreservation. We also present a methodology that produces extremely accurate sum of squares estimates when fitting data for cellular permeability parameter values. Finally, we show that this theory allows a significant increase in both accuracy and speed of finite element methods for multicellular volume simulations, which has critical clinical biophysical applications in cryosurgical approaches to cancer treatment.
Jeong, Da-Un; Choi, Je-Yong; Kim, Dae-Won
2017-01-01
Nkx3.2, the vertebrate homologue of Drosophila bagpipe, has been implicated as playing a role in chondrogenic differentiation. In brief, Nkx3.2 is initially expressed in chondrocyte precursor cells and later during cartilage maturation, its expression is diminished in hypertrophic chondrocytes. In addition to Nkx3.2 expression analyses, previous studies using ex vivo chick embryo cultures and in vitro cell cultures have suggested that Nkx3.2 can suppress chondrocyte hypertrophy. However, it has never been demonstrated that Nkx3.2 functions in regulating chondrocyte hypertrophy during cartilage development in vivo. Here, we show that cartilage-specific and Cre-dependent Nkx3.2 overexpression in mice results in significant postnatal dwarfism in endochondral skeletons, while intramembranous bones remain unaltered. Further, we observed significant delays in cartilage hypertrophy in conditional transgenic ciTg-Nkx3.2 mice. Together, these findings confirm that Nkx3.2 is capable of controlling hypertrophic maturation of cartilage in vivo, and this regulation plays a significant role in endochondral ossification and longitudinal bone growth. J. Cell. Physiol. 232: 78-90, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dietary protein deficiency reduces lysosomal and nonlysosomal ATP-dependent proteolysis in muscle
NASA Technical Reports Server (NTRS)
Tawa, N. E. Jr; Kettelhut, I. C.; Goldberg, A. L.
1992-01-01
When rats are fed a protein deficient (PD) diet for 7 days, rates of proteolysis in skeletal muscle decrease by 40-50% (N. E. Tawa, Jr., and A. L. Goldberg. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E317-325, 1992). To identify the underlying biochemical adaptations, we measured different proteolytic processes in incubated muscles. The capacity for intralysosomal proteolysis, as shown by sensitivity to methylamine or lysosomal protease inhibitors, fell 55-75% in muscles from PD rats. Furthermore, extracts of muscles of PD rats showed 30-70% lower activity of many lysosomal proteases, including cathepsins B, H, and C, and carboxypeptidases A and C, as well as other lysosomal hydrolases. The fall in cathepsin B and proteolysis was evident by 3 days on the PD diet, and both returned to control levels 3 days after refeeding of the normal diet. In muscles maintained under optimal conditions, 80-90% of protein breakdown occurs by nonlysosomal pathways. In muscles of PD rats, this ATP-dependent process was also 40-60% slower. Even though overall proteolysis decreased in muscles of PD rats, their capacity for Ca(2+)-dependent proteolysis increased (by 66%), as did the activity of the calpains (+150-250%). Thus the lysosomal and the ATP-dependent processes decrease coordinately and contribute to the fall in muscle proteolysis in PD animals.
Shams Najafabadi, Hoda; Soheili, Zahra-Soheila; Samiei, Shahram; Ahmadieh, Hamid; Ranaei Pirmardan, Ehsan; Masoumi, Maryam
2017-10-01
The retinal pigment epithelium is a monolayer of highly specialized pigmented cells located between the neural retina and the Bruch's membrane of the choroid. RPE cells play a crucial role in the maintenance and function of the underlying photoreceptors. This study introduces a spontaneously arising human retinal pigment epithelial cell line, HRPE-2S, which was isolated from primary RPE cell culture of 2 days old male donor. We characterized morphology and functional properties of the new cell line. The immortalized cell line was maintained in culture for more than 70 passages and 240 divisions. The average doubling time of the cells was approximately 22 h and got freezed at 26th passage. The cell line expressed RPE-specific markers RPE65 and cell junction protein ZO1 as an epithelial cell marker. It also expressed CHX10, PAX6, Nestin, SOX2 as stem and retinal progenitor cell markers. Ki67 as a marker of cell proliferation was expressed in all HRPE-2S cells. It represented typical epithelial cobblestone morphology and did not phenotypically change through several passages. Stem cell-like aggregations (neurospheres) were observed in SEM microscopy. The cells represented high mitotic index. They could be viable under hypoxic conditions and serum deprivation. According to functional studies, the cell line exhibited stem cell-like behaviors with particular emphasis on its self-renewal capacity. LDH isoenzymes expression pattern confirmed the same cellular source for both of the HRPE-2S cells and primary RPE cells. Characteristics of HRPE-2S cells promise it as an in vitro model for RPE stem cell-based researches. J. Cell. Physiol. 232: 2626-2640, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Immunomodulatory properties of human periodontal ligament stem cells.
Wada, Naohisa; Menicanin, Danijela; Shi, Songtao; Bartold, P Mark; Gronthos, Stan
2009-06-01
Tissue engineering utilizing periodontal ligament stem cells (PDLSCs) has recently been proposed for the development of new periodontal regenerative therapies. Although the use of autologous PDLSC transplantation eliminates the potential of a significant host immune response against the donor cells, it is often difficult to generate enough PDLSCs from one donor source due to the variation of stem cell potential between donors and disease state of each patient. In this study, we examined the immunomodulatory properties of PDLSCs as candidates for new allogeneic stem cell-based therapies. Human PDLSCs displayed cell surface marker characteristics and differentiation potential similar to bone marrow stromal stem cells (BMSSCs) and dental pulp stem cells (DPSCs). PDLSCs, BMSSCs, and DPSCs inhibited peripheral blood mononuclear cell (PBMNC) proliferation stimulated with mitogen or in an allogeneic mixed lymphocyte reaction (MLR). Interestingly, gingival fibroblasts (GFs) also suppressed allogeneic PBMNC proliferation under both assay conditions. PDLSCs, BMSSCs, DPSCs, and GFs exhibited non-cell contact dependent suppression of PBMNC proliferation in co-cultures using transwells. Furthermore, conditioned media (CM) derived from each cell type pretreated with IFN-gamma partially suppressed PBMNC proliferation when compared to CMs without IFN-gamma stimulation. In all of these mesenchymal cell types cultured with activated PBMNCs, the expression of TGF-beta1, hepatocyte growth factor (HGF) and indoleamine 2, 3-dioxygenase (IDO) was upregulated while IDO expression was upregulated following stimulation with IFN-gamma. These results suggest that PDLSCs, BMSSCs, DPSCs, and GFs possess immunosuppressive properties mediated, in part, by soluble factors, produced by activated PBMNCs. J. Cell. Physiol. 219: 667-676, 2009. (c) 2009 Wiley-Liss, Inc.
USDA-ARS?s Scientific Manuscript database
A comprehensive understanding of the biology of the invasive pest, Drosophila suzukii, is critical for the development of effective management strategies. Trapping is one technique used both for detection and control, however the efficacy of trapping can vary depending on the target insect’s physiol...
USDA-ARS?s Scientific Manuscript database
It was hypothesized that the slower rate of starch digestion by residual sucraseisomaltase (Si) maltase failed to fully regulate gluconeogenesis. In the present study the rate of gluconeogenesis was measured directly (J Appl Physiol 104: 944-951, 2008) and compared with exogenous glucose derived fro...
Sites of Failure in Muscle Fatigue
2001-10-25
anticipate to the taps. At the beginning of the experiment, tapping force was gradually increased until significant triceps muscle contraction was elicited...367-374, 1986. [11] J. A. Stephens and A. Taylor, "Fatigue of maintained voluntary muscle contraction in man," J. Physiol. (London), vol. 220, pp. 1-18, 1972.
Lescure, A M; Massenet, O; Briat, J F
1990-01-01
Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron. Images Fig. 2. Fig. 3. PMID:2264818
Lescure, A M; Massenet, O; Briat, J F
1990-11-15
Ferric citrate induces ferritin synthesis and accumulation in soybean (Glycine max) cell suspension cultures [Proudhon, Briat & Lescure (1989) Plant Physiol. 90, 586-590]. This iron-induced ferritin has been purified from cells grown for 72 h in the presence of either 100 microM- or 500 microM-ferric citrate. It has a molecular mass of about 600 kDa and is built up from a 28 kDa subunit which is recognized by antibodies raised against pea (Pisum sativum) seed ferritin and it has the same N-terminal sequence as this latter, except for residue number 3, which is alanine in pea seed ferritin instead of valine in iron-induced soybean cell ferritin. It contains an average of 1800 atoms of iron per molecule whatever the ferric citrate concentration used to induce its synthesis. It is shown that the presence of 100 microM- or 500 microM-ferric citrate in the culture medium leads respectively to an 11- and 28-fold increase in the total intracellular iron concentration and to a 30- and 60-fold increase in the ferritin concentration. However, the percentage of iron stored in the mineral core of ferritin remains constant whatever the ferric citrate concentration used and represents only 5-6% of cellular iron.
Extracellular Hsp70 Enhances Mesoangioblast Migration via an Autocrine Signaling Pathway.
Barreca, Maria M; Spinello, Walter; Cavalieri, Vincenzo; Turturici, Giuseppina; Sconzo, Gabriella; Kaur, Punit; Tinnirello, Rosaria; Asea, Alexzander A A; Geraci, Fabiana
2017-07-01
Mouse mesoangioblasts are vessel-associated progenitor stem cells endowed with the ability of multipotent mesoderm differentiation. Therefore, they represent a promising tool in the regeneration of injured tissues. Several studies have demonstrated that homing of mesoangioblasts into blood and injured tissues are mainly controlled by cytokines/chemokines and other inflammatory factors. However, little is known about the molecular mechanisms regulating their ability to traverse the extracellular matrix (ECM). Here, we demonstrate that membrane vesicles released by mesoangioblasts contain Hsp70, and that the released Hsp70 is able to interact by an autocrine mechanism with Toll-like receptor 4 (TLR4) and CD91 to stimulate migration. We further demonstrate that Hsp70 has a positive role in regulating matrix metalloproteinase 2 (MMP2) and MMP9 expression and that MMP2 has a more pronounced effect on cell migration, as compared to MMP9. In addition, the analysis of the intracellular pathways implicated in Hsp70 regulated signal transduction showed the involvement of both PI3K/AKT and NF-κB. Taken together, our findings present a paradigm shift in our understanding of the molecular mechanisms that regulate mesoangioblast stem cells ability to traverse the extracellular matrix (ECM). J. Cell. Physiol. 232: 1845-1861, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lim, Whasun; Park, Sunwoo; Bazer, Fuller W; Song, Gwonhwa
2016-12-01
Apigenin is a flavonoid found in parsley, onions, oranges, tea, chamomile, wheat, and sprouts. It has a variety of biological properties including anti-oxidant, anti-mutagenic, anti-carcinogenic, anti-inflammatory, anti-proliferative, and anti-spasmodic effects. Based on epidemiological and case-control studies, apigenin is regarded as a novel chemotherapeutic agent against various cancer types. However, little is known about the effects of apigenin on choriocarcinoma cells. Therefore, we investigated the anti-cancer effects of apigenin on choriocarcinoma cells (JAR and JEG3) in the present study. Apigenin reduced viability and migratory properties, increased apoptosis, and suppressed mitochondrial membrane potential in both the JAR and JEG3 cells. In addition, apigenin predominantly decreased phosphorylation of AKT, P70RSK, and S6 whereas the phosphorylation of ERK1/2 and P90RSK was increased by apigenin treatment of JAR and JEG3 cells in a dose-dependent manner. Moreover, treatment of JAR and JEG3 cells with both apigenin and pharmacological inhibitors of PI3K/AKT (LY294002) and ERK1/2 (U0126) revealed synergistic anti-proliferative effects. Collectively, these results indicated that the apigenin is an invaluable chemopreventive agent that inhibits progression and metastasis of choriocarcinoma cells through regulation of PI3K/AKT and ERK1/2 MAPK signal transduction mechanism. J. Cell. Physiol. 231: 2690-2699, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
RNA-Generated and Gene-Edited Induced Pluripotent Stem Cells for Disease Modeling and Therapy.
Kehler, James; Greco, Marianna; Martino, Valentina; Pachiappan, Manickam; Yokoe, Hiroko; Chen, Alice; Yang, Miranda; Auerbach, Jonathan; Jessee, Joel; Gotte, Martin; Milanesi, Luciano; Albertini, Alberto; Bellipanni, Gianfranco; Zucchi, Ileana; Reinbold, Rolland A; Giordano, Antonio
2017-06-01
Cellular reprogramming by epigenomic remodeling of chromatin holds great promise in the field of human regenerative medicine. As an example, human-induced Pluripotent Stem Cells (iPSCs) obtained by reprograming of patient somatic cells are sufficiently similar to embryonic stem cells (ESCs) and can generate all cell types of the human body. Clinical use of iPSCs is dependent on methods that do not utilize genome altering transgenic technologies that are potentially unsafe and ethically unacceptable. Transient delivery of exogenous RNA into cells provides a safer reprogramming system to transgenic approaches that rely on exogenous DNA or viral vectors. RNA reprogramming may prove to be more suitable for clinical applications and provide stable starting cell lines for gene-editing, isolation, and characterization of patient iPSC lines. The introduction and rapid evolution of CRISPR/Cas9 gene-editing systems has provided a readily accessible research tool to perform functional human genetic experiments. Similar to RNA reprogramming, transient delivery of mRNA encoding Cas9 in combination with guide RNA sequences to target specific points in the genome eliminates the risk of potential integration of Cas9 plasmid constructs. We present optimized RNA-based laboratory procedure for making and editing iPSCs. In the near-term these two powerful technologies are being harnessed to dissect mechanisms of human development and disease in vitro, supporting both basic, and translational research. J. Cell. Physiol. 232: 1262-1269, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Mortensen, Ninell P; Mercier, Kelly A; McRitchie, Susan; Cavallo, Tammy B; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J
2016-06-01
Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 h. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time.
Mortensen, Ninell P.; Mercier, Kelly A.; McRitchie, Susan; Cavallo, Tammy B.; Pathmasiri, Wimal; Stewart, Delisha; Sumner, Susan J.
2016-01-01
Microfluidic devices that are currently being used in pharmaceutical research also have a significant potential for utilization in investigating exposure to infectious agents. We have established a microfluidic device cultured with Caco-2 cells, and utilized metabolomics to investigate the biochemical responses to the bacterial pathogen Campylobacter jejuni. In the microfluidic devices, Caco-2 cells polarize at day 5, are uniform, have defined brush borders and tight junctions, and form a mucus layer. Metabolomics analysis of cell culture media collected from both Caco-2 cell culture systems demonstrated a more metabolic homogenous biochemical profile in the media collected from microfluidic devices, compared with media collected from transwells. GeneGo pathway mapping indicated that aminoacyl-tRNA biosynthesis was perturbed by fluid flow, suggesting that fluid dynamics and shear stress impacts the cells translational quality control. Both microfluidic device and transwell culturing systems were used to investigate the impact of Campylobacter jejuni infection on biochemical processes. Caco-2 cells cultured in either system were infected at day 5 with C. jejuni 81-176 for 48 hours. Metabolomics analysis clearly differentiated C. jejuni 81-176 infected and non-infected medias collected from the microfluidic devices, and demonstrated that C. jejuni 81-176 infection in microfluidic devices impacts branched-chain amino acid metabolism, glycolysis, and gluconeogenesis. In contrast, no distinction was seen in the biochemical profiles of infected versus non-infected media collected from cells cultured in transwells. Microfluidic culturing conditions demonstrated a more metabolically homogenous cell population, and present the opportunity for studying host-pathogen interactions for extended periods of time. PMID:27231016
NASA Astrophysics Data System (ADS)
de Thomaz, A. A.; Faustino, W. M.; Fontes, A.; Fernandes, H. P.; Barjas-Castro, M. d. L.; Metze, K.; Giorgio, S.; Barbosa, L. C.; Cesar, C. L.
2007-09-01
The research in biomedical photonics is clearly evolving in the direction of the understanding of biological processes at the cell level. The spatial resolution to accomplish this task practically requires photonics tools. However, an integration of different photonic tools and a multimodal and functional approach will be necessary to access the mechanical and biochemical cell processes. This way we can observe mechanicaly triggered biochemical events or biochemicaly triggered mechanical events, or even observe simultaneously mechanical and biochemical events triggered by other means, e.g. electricaly. One great advantage of the photonic tools is its easiness for integration. Therefore, we developed such integrated tool by incorporating single and double Optical Tweezers with Confocal Single and Multiphoton Microscopies. This system can perform 2-photon excited fluorescence and Second Harmonic Generation microscopies together with optical manipulations. It also can acquire Fluorescence and SHG spectra of specific spots. Force, elasticity and viscosity measurements of stretched membranes can be followed by real time confocal microscopies. Also opticaly trapped living protozoas, such as leishmania amazonensis. Integration with CARS microscopy is under way. We will show several examples of the use of such integrated instrument and its potential to observe mechanical and biochemical processes at cell level.
Brenten, Thomas; Morris, Penelope J.; Salt, Carina; Raila, Jens; Kohn, Barbara; Schweigert, Florian J.; Zentek, Jürgen
2016-01-01
Breed, sex and age effects on haematological and biochemical variables were investigated in 24 labrador retriever and 25 miniature schnauzer dogs during the first year of life. Blood samples were taken regularly between weeks 8 and 52. White blood cell and red blood cell counts, haemoglobin concentration, haematocrit, mean cell volume, mean cell haemoglobin, mean cell haemoglobin concentration, platelet count as well as total protein, albumin, calcium, phosphate, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, glutamate dehydrogenase, total cholesterol, triglycerides, creatine and urea were evaluated. For all haematological and biochemical parameters, there were significant effects of age on test results. Statistically significant effects for breed and the breed×age interaction on test results were observed for most of the parameters with the exception of haemoglobin. Variations in test results illustrate growth related alterations in body tissue and metabolism leading to dynamic and marked changes in haematological and biochemical parameters, which have to be considered for the interpretation of clinical data obtained from dogs in the first year of life. PMID:27252875
Brenten, Thomas; Morris, Penelope J; Salt, Carina; Raila, Jens; Kohn, Barbara; Schweigert, Florian J; Zentek, Jürgen
2016-01-01
Breed, sex and age effects on haematological and biochemical variables were investigated in 24 labrador retriever and 25 miniature schnauzer dogs during the first year of life. Blood samples were taken regularly between weeks 8 and 52. White blood cell and red blood cell counts, haemoglobin concentration, haematocrit, mean cell volume, mean cell haemoglobin, mean cell haemoglobin concentration, platelet count as well as total protein, albumin, calcium, phosphate, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, glutamate dehydrogenase, total cholesterol, triglycerides, creatine and urea were evaluated. For all haematological and biochemical parameters, there were significant effects of age on test results. Statistically significant effects for breed and the breed×age interaction on test results were observed for most of the parameters with the exception of haemoglobin. Variations in test results illustrate growth related alterations in body tissue and metabolism leading to dynamic and marked changes in haematological and biochemical parameters, which have to be considered for the interpretation of clinical data obtained from dogs in the first year of life.
Endosafe(R)-Portable Test System (PTS)
NASA Technical Reports Server (NTRS)
Maule, Jake; Wainwright, Norm; Burbank, Dan
2005-01-01
The Portable Test System (PTS) is a hand-held device for monitoring the presence of potentially hazardous bacteria in the environment. It uses an immunological method derived from the horseshoe crab (Limulus polyphemus) to detect bacterial cell membranes and other molecular components of a cell. Further modifications of the PTS will allow detection of individual hazardous species of bacteria. This study was a follow-up of previous PTS and other immunological tests performed on the KC-135 during 2002-2003 (Maule et al., 2003, J. Gravit. Physiol.) and in the underwater habitat Aquarius during NEEMO 5 (Maule et al., 2005, Appl. Environ. Microbiol in prep.). The experiments described here were part of a final testing phase prior to use of the PTS on the International Space Station (ISS), scheduled for launch on 12A.1 on February 9th 2006. The specific aspects of PTS operation studied were those involving a fluid component: pumping, mixing, incubations and pipetting into the instrument. The PTS uses a stepper motor to move fluid along small channels, which may be affected by reduced gravity.
Infrared and Raman Microscopy in Cell Biology
Matthäus, Christian; Bird, Benjamin; Miljković, Miloš; Chernenko, Tatyana; Romeo, Melissa; Diem, Max
2009-01-01
This chapter presents novel microscopic methods to monitor cell biological processes of live or fixed cells without the use of any dye, stains, or other contrast agent. These methods are based on spectral techniques that detect inherent spectroscopic properties of biochemical constituents of cells, or parts thereof. Two different modalities have been developed for this task. One of them is infrared micro-spectroscopy, in which an average snapshot of a cell’s biochemical composition is collected at a spatial resolution of typically 25 mm. This technique, which is extremely sensitive and can collect such a snapshot in fractions of a second, is particularly suited for studying gross biochemical changes. The other technique, Raman microscopy (also known as Raman micro-spectroscopy), is ideally suited to study variations of cellular composition on the scale of subcellular organelles, since its spatial resolution is as good as that of fluorescence microscopy. Both techniques exhibit the fingerprint sensitivity of vibrational spectroscopy toward biochemical composition, and can be used to follow a variety of cellular processes. PMID:19118679
Reptilian transferrins: evolution of disulphide bridges and conservation of iron-binding center.
Ciuraszkiewicz, Justyna; Biczycki, Marian; Maluta, Aleksandra; Martin, Samuel; Watorek, Wiesław; Olczak, Mariusz
2007-07-01
Transferrins, found in invertebrates and vertebrates, form a physiologically important family of proteins playing a major role in iron acquisition and transport, defense against microbial pathogens, growth and differentiation. These proteins are bilobal in structure and each lobe is composed of two domains divided by a cleft harboring an iron atom. Vertebrate transferrins comprise of serotransferrins, lactoferrins and ovotransferrins. In mammals serotransferrins transport iron in physiological fluids and deliver it to cells, while lactoferrins scavenge iron, limiting its availability to invading microbes. In oviparous vertebrates there is only one transferrin gene, expressed either in the liver to be delivered to physiological fluids as serotransferrin, or in the oviduct with a final localization in egg white as ovotransferrin. Being products of one gene sero- and ovotransferrin are identical at the amino-acid sequence level but with different, cell specific glycosylation patterns. Our knowledge of the mechanisms of transferrin iron binding and release is based on sequence and structural data obtained for human serotransferrin and hen and duck ovotransferrins. No sequence information about other ovotransferrins was available until our recent publication of turkey, ostrich, and red-eared turtle (TtrF) ovotransferrin mRNA sequences [Ciuraszkiewicz, J., Olczak, M., Watorek, W., 2006. Isolation, cloning and sequencing of transferrins from red-eared turtle, African ostrich and turkey. Comp. Biochem. Physiol. 143 B, 301-310]. In the present paper, ten new reptilian mRNA transferrin sequences obtained from the Nile crocodile (NtrF), bearded dragon (BtrF), Cuban brown anole (AtrF), veiled and Mediterranean chameleons (VtrF and KtrF), sand lizard (StrF), leopard gecko (LtrF), Burmese python (PtrF), African house snake (HtrF), and grass snake (GtrF) are presented and analyzed. Nile crocodile and red-eared turtle transferrins have a disulphide bridge pattern identical to known bird homologues. A partially different disulphide bridge pattern was found in the Squamata (snakes and lizards). The possibility of a unique interdomain disulphide bridge was predicted for LtrF. Differences were found in iron-binding centers from those of previously known transferrins. Substitutions were found in the iron-chelating residues of StrF and TtrF and in the synergistic anion-binding residues of NtrF. In snakes, the transferrin (PtrF, HtrF and GtrF) N-lobe "dilysine trigger" occurring in all other known transferrins was not found, which indicates a different mechanism of iron release.
Jinxue Jiang; Jinwu Wang; Xiao Zhang; Michael Wolcott
2017-01-01
tMechanical pretreatment is an effective process for chemical or biochemical conversion of woodybiomass. The deconstruction features of the wood cell wall play an important role in its chemical or bio-chemical processing. In this work, we evaluated the wood cell wall fracture in the early stage of mechanicalpretreatment process conducted with various initial moisture...
Huleihel, Mahmoud; Abofoul-Azab, Maram; Abarbanel, Yael; Einav, Iris; Levitas, Elyahu; Lunenfeld, Eitan
2017-10-01
Macrophage migration inhibitory factor (MIF) is a multifunctional molecule. MIF was originally identified as a T-cell-derived factor responsible for the inhibition of macrophage migration. In testicular tissue of adult rats, MIF is constitutively expressed by Leydig cells under physiological conditions. The aim of this study was to examine MIF levels in testicular homogenates from different aged mice, and the capacity of Sertoli cells to produce it. We also examined MIF involvement in spermatogonial cell migration. Similar levels of MIF protein were detected in testicular homogenates of mice of different ages (1-8-week-old). However, the RNA expression levels of MIF were high in 1-week-old mice and significantly decreased with age compared to 1-week-old mice. MIF was stained in Sertoli, Leydig cells, and developed germ cells in the seminiferous tubules. Isolated Sertoli cells from 1-week-old mice stained to MIF. Cultures of Sertoli cells from 1-week-old mice produced and expressed high levels of MIF which significantly decreased with age. MIF was localized in the cytoplasm and nucleus of Sertoli cell cultures isolated from 1-week-old mice; however, it was localized only in the cytoplasm and branches of cultures isolated from 8-week-old mice. MIFR was detected in GFRα1 and Sertoli cells. MIF could induce migration of spermatogonial cells, and this effect was synergistic with glial cell-line neurotrophic factor. Our results show, for the first time, the capacity of Sertoli cells to produce MIF under normal conditions and that MIFR expressed in GFRα1 and Sertoli cells. We also showed that MIF induced spermatogonial cell migration. J. Cell. Physiol. 232: 2869-2877, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A biochemically semi-detailed model of auxin-mediated vein formation in plant leaves.
Roussel, Marc R; Slingerland, Martin J
2012-09-01
We present here a model intended to capture the biochemistry of vein formation in plant leaves. The model consists of three modules. Two of these modules, those describing auxin signaling and transport in plant cells, are biochemically detailed. We couple these modules to a simple model for PIN (auxin efflux carrier) protein localization based on an extracellular auxin sensor. We study the single-cell responses of this combined model in order to verify proper functioning of the modeled biochemical network. We then assemble a multicellular model from the single-cell building blocks. We find that the model can, under some conditions, generate files of polarized cells, but not true veins. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ocklind, A; Yousufzai, S Y; Ghosh, S; Coca-Prados, M; St Jernschantz, J; Abdel-Latif, A A
1995-11-01
The purpose of this study was to establish immortalized cell cultures of cat iris sphincter smooth muscle cells for a model investigating ocular receptors and their signal transduction pathways. Cultured cat iris sphincter muscle cells were immortalized by viral transformation with SV40 virus and the morphological and immunocytochemical properties of the normal and immortalized cells were investigated. The transformed cell clone, SV-CISM-2, was further characterized biochemically and pharmacologically. The normal muscle cells showed characteristics of smooth muscle cells, as judged by their growth and the presence of smooth muscle alpha-actin and desmin. After seven passages the normal cells ceased to proliferate. In contrast, the immortalized cells retained their proliferative ability for more than 220 population doublings over 55 passages. The transformation phenotype in these cells was confirmed by their expression of the large T-antigen, the incorporation of viral DNA into cellular DNA, growth in agarose and in low-serum medium, and complete loss of contact inhibition. The immortalized cells expressed smooth muscle alpha-actin, desmin and MLC protein. Biochemical and pharmacological studies on the SV-CISM cells revealed the presence of several functional receptors including muscarinic cholinergic, beta-adrenergic, peptidergic (substance P and endothelin). Platelet-activating factor, and prostaglandin (PG). Muscarinic stimulation of these cells resulted in: (a) a dose-dependent increase in the release of arachidonic acid (AA) and (PGs) and enhancement in the production of inositol trisphosphate (IP3); and (b) a substantial increase in MLC phosphorylation (118%), an indicator of smooth muscle contractility. The stimulatory effects of carbachol on these responses were completely blocked by atropine, a muscarinic receptor antagonist. This study constitutes the first successful immortalization of iris sphincter smooth muscle cells. The SV-CISM-2 cells can serve as an important model system for investigations on the biochemical and pharmacological properties of receptors and their signal transduction pathways in smooth muscle. The advantage of these cells over normal iris sphincter cells is that they can be propagated over many generations without alterations in their morphological, biochemical and physiological characteristics.
Orfila, Caroline; Seymour, Graham B.; Willats, William G.T.; Huxham, I. Max; Jarvis, Michael C.; Dover, Colin J.; Thompson, Andrew J.; Knox, J. Paul
2001-01-01
Cnr (colorless non-ripening) is a pleiotropic tomato (Lycopersicon esculentum) fruit ripening mutant with altered tissue properties including weaker cell-to-cell contacts in the pericarp (A.J. Thompson, M. Tor, C.S. Barry, J. Vrebalov, C. Orfila, M.C. Jarvis, J.J. Giovannoni, D. Grierson, G.B. Seymour [1999] Plant Physiol 120: 383–390). Whereas the genetic basis of the Cnr mutation is being identified by molecular analyses, here we report the identification of cell biological factors underlying the Cnr texture phenotype. In comparison with wild type, ripe-stage Cnr fruits have stronger, non-swollen cell walls (CW) throughout the pericarp and extensive intercellular space in the inner pericarp. Using electron energy loss spectroscopy imaging of calcium-binding capacity and anti-homogalacturonan (HG) antibody probes (PAM1 and JIM5) we demonstrate that maturation processes involving middle lamella HG are altered in Cnr fruit, resulting in the absence or a low level of HG-/calcium-based cell adhesion. We also demonstrate that the deposition of (1→5)-α-l-arabinan is disrupted in Cnr pericarp CW and that this disruption occurs prior to fruit ripening. The relationship between the disruption of (1→5)-α-l-arabinan deposition in pericarp CW and the Cnr phenotype is discussed. PMID:11351084
Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Setti, Stefania; Cadossi, Ruggero; Borea, Pier Andrea; Varani, Katia
2017-05-01
In the present study, the effect of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) has been investigated by using different cell lines derived from neuron-like cells and microglial cells. In particular, the primary aim was to evaluate the effect of PEMF exposure in inflammation- and hypoxia-induced injury in two different neuronal cell models, the human neuroblastoma-derived SH-SY5Y cells and rat pheochromocytoma PC12 cells and in N9 microglial cells. In neuron-like cells, live/dead and apoptosis assays were performed in hypoxia conditions from 2 to 48 h. Interestingly, PEMF exposure counteracted hypoxia damage significantly reducing cell death and apoptosis. In the same cell lines, PEMFs inhibited the activation of the hypoxia-inducible factor 1α (HIF-1α), the master transcriptional regulator of cellular response to hypoxia. The effect of PEMF exposure on reactive oxygen species (ROS) production in both neuron-like and microglial cells was investigated considering their key role in ischemic injury. PEMFs significantly decreased hypoxia-induced ROS generation in PC12, SH-SY5Y, and N9 cells after 24 or 48 h of incubation. Moreover, PEMFs were able to reduce some of the most well-known pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-8 release in N9 microglial cells stimulated with different concentrations of LPS for 24 or 48 h of incubation time. These results show a protective effect of PEMFs on hypoxia damage in neuron-like cells and an anti-inflammatory effect in microglial cells suggesting that PEMFs could represent a potential therapeutic approach in cerebral ischemic conditions. J. Cell. Physiol. 232: 1200-1208, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Vera, Pablo; Yago, José Hernández; Conejero, Vicente
1989-01-01
Citrus exocortis viroid induces in tomato plants (Lycopersicon esculentum) synthesis and accumulation of a pathogenesis-related protein (P69) previously reported to be a proteinase (Vera P, Conejero V [1988] Plant Physiol 87: 58-63). By immunogold/transmission electron microscopy, we have studied the distribution of this protein in thin sections of parenchymatous leaf tissue. The enzyme was present intra- and extracellularly. The intracellular location was limited to the vacuole and was always associated with engulfed cell material. When extracellularly located, the enzyme was associated with a dispersed, electron-dense material in the intercellular spaces. This latter location was confirmed after analysis of intercellular washing fluids obtained by vacuum infiltration of leaves. These observations provide new data for the understanding of viroid pathogenesis and the biological role of the pathogenesis-related proteinase P69. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16666981
Pathogenesis of Hyperthyroidism.
Singh, Ishita; Hershman, Jerome M
2016-12-06
Hyperthyroidism is a form of thyrotoxicosis in which there is excess thyroid hormone synthesis and secretion. Multiple etiologies can lead to a common clinical state of "thyrotoxicosis," which is a consequence of the high thyroid hormone levels and their action on different tissues of the body. The most common cause of thyrotoxicosis is Graves' disease, an autoimmune disorder in which stimulating thyrotropin receptor antibodies bind to thyroid stimulating hormone (TSH) receptors on thyroid cells and cause overproduction of thyroid hormones. Other etiologies include: forms of thyroiditis in which inflammation causes release of preformed hormone, following thyroid gland insult that is autoimmune, infectious, mechanical or medication induced; secretion of human chorionic gonadotropin in the setting of transient gestational thyrotoxicosis and trophoblastic tumors; pituitary thyrotropin release, and exposure to extra-thyroidal sources of thyroid hormone that may be endogenous or exogenous. © 2017 American Physiological Society. Compr Physiol 7:67-79, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Spugnini, Enrico P; Fais, Stefano; Azzarito, Tommaso; Baldi, Alfonso
2017-03-01
Electrochemotherapy (ECT) is a medical strategy that allows an increased efficacy of chemotherapy agents after the application of permeabilizing electric pulses having appropriate characteristics (form, voltage, frequency). In the past 10 years, the clinical efficacy of this therapeutic approach in several spontaneous models of tumors in animals has been shown. Moreover, some of the molecular and cellular mechanisms responsible for this phenomenon have been elucidated. Our group has been deeply involved in the development of new ECT protocols for companion animals, implementing the use of the technique as first line treatment, and evaluating different chemotherapy agents in laboratory animals as well as pets. This article summarizes the most important advances in veterinary ECT, including the development of novel equipment, therapeutic protocols, and their translation to humans. J. Cell. Physiol. 232: 490-495, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Rasgado-Flores, Hector; Krishna Mandava, Vamsi; Siman, Homayoun; Van Driessche, Willy; Pilewski, Joseph M; Randell, Scott H; Bridges, Robert J
2013-12-01
Hypertonic saline (HS) inhalation therapy benefits cystic fibrosis (CF) patients [Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006; Elkins MR, Robinson M, Rose BR, Harbour C, Moriarty CP, Marks GB, Belousova EG, Xuan W, Bye PT; the National Hypertonic Saline in Cystic Fibrosis (NHSCF) Study Group. N Engl J Med 354: 229-240, 2006]. Surprisingly, these benefits are long-lasting and are diminished by the epithelial Na(+) channel blocker amiloride (Donaldson SH, Bennet WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. N Engl J Med 354: 241-250, 2006). Our aim was to explain these effects. Human bronchial epithelial (hBE) cells from CF lungs were grown in inserts and were used in three experimental approaches: 1) Ussing chambers to measure amiloride-sensitive short-circuit currents (INa); 2) continuous perfusion Ussing chambers; and 3) near "thin-film" conditions in which the airway surface of the inserts was exposed to a small volume (30 μl) of isosmotic or HS solution as the inserts were kept in their incubation tray and were subsequently used to measure INa under isosmotic conditions (near thin-film experiments; Tarran R, Boucher RC. Methods Mol Med 70: 479-492, 2002). HS solutions (660 mosmol/kgH2O) were prepared by adding additional NaCl to the isosmotic buffer. The transepithelial short-circuit current (ISC), conductance (GT), and capacitance (CT) were measured by transepithelial impedance analysis (Danahay H, Atherton HC, Jackson AD, Kreindler JL, Poll CT, Bridges RJ. Am J Physiol Lung Cell Mol Physiol 290: L558-L569, 2006; Singh AK, Singh S, Devor DC, Frizzell RA, van Driessche W, Bridges RJ. Methods Mol Med 70: 129-142, 2002). Exposure to apical HS inhibited INa, GT, and CT. The INa inhibition required 60 min of reexposure to the isosmotic solution to recover 75%. The time of exposure to HS required to inhibit INa was <2.5 min. Under near thin-film conditions, apical exposure to HS inhibited INa, but as osmotically driven water moved to the apical surface, the aqueous apical volume increased, leading to an amiloride-insensitive decrease in its osmolality and to recovery of INa that lagged behind the osmotic recovery. Amiloride significantly accelerated the recovery of INa following exposure to HS. Our conclusions are that exposure to HS inhibits hBE INa and that amiloride diminishes this effect.
The Kidney and Acid-Base Regulation
ERIC Educational Resources Information Center
Koeppen, Bruce M.
2009-01-01
Since the topic of the role of the kidneys in the regulation of acid base balance was last reviewed from a teaching perspective (Koeppen BM. Renal regulation of acid-base balance. Adv Physiol Educ 20: 132-141, 1998), our understanding of the specific membrane transporters involved in H+, HCO , and NH transport, and especially how these…
Basic Hemorheology Advan Physiology Ed v37 n2 p129-134 Usingclassic.pdfC
ERIC Educational Resources Information Center
Toksvang, Linea Natalie; Berg, Ronan M.G.
2013-01-01
"The viscosity of the blood in narrow capillary tubes" by Robin Fahraeus and Torsten Lindqvist ("Am J Physiol" 96: 562--568, 1931) can be a valuable opportunity for teaching basic hemorheological principles in undergraduate cardiovascular physiology. This classic paper demonstrates that a progressive decline in apparent…
The Effects of Local Supralethal Irradiation on Renal Function
1974-05-01
304), 1957. 18. Kay, R, E. and Entenman, C. Polydipsia and polyuria by the X-irradiated rat. Am. J, Physiol. 197:169-172, 1959. 19. Klapproth...postirradiation polydipsia and polyuria in the rat. Radiation Res. 10:410-417, 1959. 36. Zaruba, K. Effect of local irradiation of the kidneys on the
Thyroid Hormone Changes during Military Field Operations: Effects of Cold Exposure in the Arctic.
1991-12-20
reasons; however, they primarily appear related to the hypocaloric states induced by a negative energy balance, stress reactivity of the endocrine...physical strain and sleep deprivation, and the influence of a high calorie diet . Eur J Appl Physiol 49:343-348. 17. Opstad PK, Aakvaag A (1983). The
Spinal Cord Injury-Induced Dysautonomia via Plasticity in Paravertebral Sympathetic Postganglionic
2016-10-01
sympathetic chain of the guinea - pig . J Physiol 203:173-198. Bratton B, Davies P, Janig W, McAllen R (2010) Ganglionic transmission in a vasomotor...sympathetic neurons. Journal of neurophysiology 82:2747-2764. Lichtman JW, Purves D, Yip JW (1980) Innervation of sympathetic neurones in the guinea - pig ...10 6. PRODUCTS
Poloxamer-188 Reduces Muscular Edema After Tourniquet-Induced Ischemia-Reperfusion Injury in Rats
2011-05-01
syndrome: fulminant local edema with threatening systemic effects. Kidney Int. 2003;63:1155–1157. 4. Hargens AR, Mubarak SJ. Current concepts in the...Kim DD, et al. Microvascular transport is associated with TNF plasma levels and protein synthesis in postischemic muscle. Am J Physiol. 1998;274:H1914
Mechanisms of Aerobic Performance Impairment With Heat Stress and Dehydration
2010-08-01
Jones (65) demonstrated that a menthol mouth rinse reduced RPE (com- pared with placebo) by 15% and improved TTE by 9% during exercise-heat stress...potentials. Appl Physiol Nutr Metab 35: 456–463, 2010. 65. Mundel T, Jones DA. The effects of swilling an l()- menthol solution during exercise in the
Santin, Joseph M; Hartzler, Lynn K
2015-06-15
Locus coeruleus neurons of anuran amphibians contribute to breathing control and have spontaneous firing frequencies that, paradoxically, increase with cooling. We previously showed that cooling inhibits a depolarizing membrane current, the hyperpolarization-activated current (I h) in locus coeruleus neurons from bullfrogs, Lithobates catesbeianus (Santin JM, Watters KC, Putnam RW, Hartzler LK. Am J Physiol Regul Integr Comp Physiol 305: R1451-R1464, 2013). This suggests an unlikely role for I h in generating cold activation, but led us to hypothesize that inhibition of I h by cooling functions as a physiological brake to limit the cold-activated response. Using whole cell electrophysiology in brain slices, we employed 2 mM Cs(+) (an I h antagonist) to isolate the role of I h in spontaneous firing and cold activation in neurons recorded with either control or I h agonist (cyclic AMP)-containing artificial intracellular fluid. I h did not contribute to the membrane potential (V m) and spontaneous firing at 20°C. Although voltage-clamp analysis confirmed that cooling inhibits I h, its lack of involvement in setting baseline firing and V m precluded its ability to regulate cold activation as hypothesized. In contrast, neurons dialyzed with cAMP exhibited greater baseline firing frequencies at 20°C due to I h activation. Our hypothesis was supported when the starting level of I h was enhanced by elevating cAMP because cold activation was converted to more ordinary cold inhibition. These findings indicate that situations leading to enhancement of I h facilitate firing at 20°C, yet the hyperpolarization associated with inhibiting a depolarizing cation current by cooling blunts the net V m response to cooling to oppose normal cold-depolarizing factors. This suggests that the influence of I h activation state on neuronal firing varies in the poikilothermic neuronal environment. Copyright © 2015 the American Physiological Society.
Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian
2017-02-01
Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung. Copyright © 2017 the American Physiological Society.
The Hematopoietic Stem Cell Therapy for Exploration of Space
NASA Astrophysics Data System (ADS)
Ohi, S.
Departments of Biochemistry &Molecular Biology, Genetics &Human Genetics, Pediatrics &Child Long-duration space missions require countermeasures against severe/invasive disorders in astronauts that are caused by space environments, such as hematological/cardiac abnormalities, bone/muscle losses, immunodeficiency, neurological disorders, and cancer. Some, if not all, of these disorders may be amenable to hematopoietic stem cell therapy and gene therapy. Growing evidence indicates that hematopoietic stem cells (HSCs) possess extraordinary plasticity to differentiate not only to all types of blood cells but also to various tissues, including bone, muscle, skin, liver and neuronal cells. Therefore, our working hypothesis is that the hematopoietic stem cell-based therapy, herein called as the hematopoietic stem cell therapy (HSCT), might provide countermeasure/prevention for hematological abnormalities, bone and muscle losses in space, thereby maintaining astronauts' homeostasis. Our expertise lies in recombinant adeno-associated virus (rAAV)-mediated gene therapy for the hemoglobinopathies, -thalassemia and sickle cell disease (Ohi S, Kim BC, J Pharm Sci 85: 274-281, 1996; Ohi S, et al. Grav Space Biol Bull 14: 43, 2000). As the requisite steps in this protocol, we established procedures for purification of HSCs from both mouse and human bone marrow in 1 G. Furthermore, we developed an easily harvestable, long-term liquid suspension culture system, which lasts more than one year, for growing/expanding HSCs without stromal cells. Human globin cDNAs/gene were efficiently expressed from the rAAVs in the mouse HSCs in culture. Additionally, the NASA Rotating Wall Vessel (RWV) culture system is being optimized for the HSC growth/expansion. Thus, using these technologies, the above hypothesis is being investigated by the ground-based experiments as follows: 1) -thalassemic mice (C57BL/6-Hbbth/Hbbth, Hbd-minor) are transplanted with normal isologous HSCs to correct the hematological abnormalities. To date, the - thalassemic mice have been successfully HSC-transplanted to produce chimerism of hemoglobin species (Ohi S, J Grav Physiol 7: 67-68, 2000); 2) Transgenic HSCs harboring green fluorescent protein (GFP) gene or -galactosidase gene are/will be transplanted to hindlimb suspended mice, and differentiation of HSCs to bone will be traced by the marker gene expression. Repair/prevention of bone loss by the HSCT will be investigated by analyzing physical/biochemical parameters; 3) Similarly, the efficacy of HSCT for muscle loss in the unloaded mouse is being studied. In addition, using the hindlimb suspension model, effects of exercise on the HSCT for bone and muscle losses are being investigated. Our long-term goal is to automate/robotize the HSCT protocols so that astronauts would be able to treat themselves during long-duration space missions. Such a program will be also beneficial to the earth people as a self-care health system. Upon optimization of the condition of HSC growth in the RWV culture system, it is in our plan to conduct the similar experiments as above in the International Space Station in future. (Supported in part by grant from NASA Institute for Advanced Concepts/USRA.
Red Blood Cell Susceptibility to Pneumolysin
Bokori-Brown, Monika; Petrov, Peter G.; Khafaji, Mawya A.; Mughal, Muhammad K.; Naylor, Claire E.; Shore, Angela C.; Gooding, Kim M.; Casanova, Francesco; Mitchell, Tim J.; Titball, Richard W.; Winlove, C. Peter
2016-01-01
This study investigated the effect of the biochemical and biophysical properties of the plasma membrane as well as membrane morphology on the susceptibility of human red blood cells to the cholesterol-dependent cytolysin pneumolysin, a key virulence factor of Streptococcus pneumoniae, using single cell studies. We show a correlation between the physical properties of the membrane (bending rigidity and surface and dipole electrostatic potentials) and the susceptibility of red blood cells to pneumolysin-induced hemolysis. We demonstrate that biochemical modifications of the membrane induced by oxidative stress, lipid scrambling, and artificial cell aging modulate the cell response to the toxin. We provide evidence that the diversity of response to pneumolysin in diabetic red blood cells correlates with levels of glycated hemoglobin and that the mechanical properties of the red blood cell plasma membrane are altered in diabetes. Finally, we show that diabetic red blood cells are more resistant to pneumolysin and the related toxin perfringolysin O relative to healthy red blood cells. Taken together, these studies indicate that the diversity of cell response to pneumolysin within a population of human red blood cells is influenced by the biophysical and biochemical status of the plasma membrane and the chemical and/or oxidative stress pre-history of the cell. PMID:26984406
Helal-Neto, Edward; Brandão-Costa, Renata M; Saldanha-Gama, Roberta; Ribeiro-Pereira, Cristiane; Midlej, Victor; Benchimol, Marlene; Morandi, Verônica; Barja-Fidalgo, Christina
2016-11-01
The unique composition of tumor-produced extracellular matrix (ECM) can be a determining factor in changing the profile of endothelial cells in the tumor microenvironment. As the main receptor for ECM proteins, integrins can activate a series of signaling pathways related to cell adhesion, migration, and differentiation of endothelial cells that interact with ECM proteins. We studied the direct impact of the decellularized ECM produced by a highly metastatic human melanoma cell line (MV3) on the activation of endothelial cells and identified the intracellular signaling pathways associated with cell differentiation. Our data show that compared to the ECM derived from a human melanocyte cell line (NGM-ECM), ECM produced by a melanoma cell line (MV3-ECM) is considerably different in ultrastructural organization and composition and possesses a higher content of tenascin-C and laminin and a lower expression of fibronectin. When cultured directly on MV3-ECM, endothelial cells change morphology and show increased adhesion, migration, proliferation, and tubulogenesis. Interaction of endothelial cells with MV3-ECM induces the activation of integrin signaling, increasing FAK phosphorylation and its association with Src, which activates VEGFR2, potentiating the receptor response to VEGF. The blockage of αvβ3 integrin inhibited the FAK-Src association and VEGFR activation, thus reducing tubulogenesis. Together, our data suggest that the interaction of endothelial cells with the melanoma-ECM triggers integrin-dependent signaling, leading to Src pathway activation that may potentiate VEGFR2 activation and up-regulate angiogenesis. J. Cell. Physiol. 231: 2464-2473, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Devaux, Marie-Françoise; Jamme, Frédéric; André, William; Bouchet, Brigitte; Alvarado, Camille; Durand, Sylvie; Robert, Paul; Saulnier, Luc; Bonnin, Estelle; Guillon, Fabienne
2018-01-01
Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation. PMID:29515611
Verwoerd, D W; Rapp, F
1978-01-01
The biochemical transformation of thymidine kinase-deficient cells by UV-inactivated herpes simplex virus is enhanced by low-level photodynamic treatment of the infected cells. At the concentration of proflavine used, the virus was not inactivated and both virus and cellular DNA syntheses were only marginally inhibited. The observed enhancement of the transfer of a virus gene to the cell genome suggests a possible cocarcinogenic role for photodynamically active dyes at very low concentrations. PMID:206727
Marques, Ana C. Q.; Paludo, Katia S.; Dallagassa, Cibelle B.; Surek, Monica; Pedrosa, Fábio O.; Souza, Emanuel M.; Cruz, Leonardo M.; LiPuma, John J.; Zanata, Sílvio M.; Rego, Fabiane G. M.
2014-01-01
Herbaspirillum bacteria are best known as plant growth-promoting rhizobacteria but have also been recovered from clinical samples. Here, biochemical tests, matrix-assisted laser deionization–time of flight (MALDI-TOF) mass spectrometry, adherence, and cytotoxicity to eukaryotic cells were used to compare clinical and environmental isolates of Herbaspirillum spp. Discrete biochemical differences were observed between human and environmental strains. All strains adhered to HeLa cells at low densities, and cytotoxic effects were discrete, supporting the view that Herbaspirillum bacteria are opportunists with low virulence potential. PMID:25355763
Cytoplasmic pH dynamics in maize pulvinal cells induced by gravity vector changes
NASA Technical Reports Server (NTRS)
Johannes, E.; Collings, D. A.; Rink, J. C.; Allen, N. S.; Brown, C. S. (Principal Investigator)
2001-01-01
In maize (Zea mays) and other grasses, changes in orientation of stems are perceived by pulvinal tissue, which responds to the stimulus by differential growth resulting in upward bending of the stem. The amyloplast-containing bundle sheath cells are the sites of gravity perception, although the initial steps of gravity perception and transmission remain unclear. In columella cells of Arabidopsis roots, we previously found that cytoplasmic pH (pH(c)) is a mediator in early gravitropic signaling (A.C. Scott, N.S. Allen [1999] Plant Physiol 121: 1291-1298). The question arises whether pH(c) has a more general role in signaling gravity vector changes. Using confocal ratiometric imaging and the fluorescent pH indicator carboxy seminaphtorhodafluor acetoxymethyl ester acetate, we measured pH(c) in the cells composing the maize pulvinus. When stem slices were gravistimulated and imaged on a horizontally mounted confocal microscope, pH(c) changes were only apparent within the bundle sheath cells, and not in the parenchyma cells. After turning, cytoplasmic acidification was observed at the sides of the cells, whereas the cytoplasm at the base of the cells where plastids slowly accumulated became more basic. These changes were most apparent in cells exhibiting net amyloplast sedimentation. Parenchyma cells and isolated bundle sheath cells did not show any gravity-induced pH(c) changes although all cell types responded to external stimuli in the predicted way: Propionic acid and auxin treatments induced acidification, whereas raising the external pH caused alkalinization. The results suggest that pH(c) has an important role in the early signaling pathways of maize stem gravitropism.
SIMULTANEOUS PRODUCTION OF TWO CAPSULAR POLYSACCHARIDES BY PNEUMOCOCCUS
Austrian, Robert; Bernheimer, Harriet P.; Smith, Evelyn E. B.; Mills, George T.
1959-01-01
Study of the capsular genome of pneumococcus has shown that it controls a multiplicity of biochemical reactions essential to the synthesis of capsular polysaccharide. Mutation affecting any one of several biochemical reactions concerned with capsular synthesis may result in loss of capsulation without alteration of other biochemical functions similarly concerned. Mutations affecting the synthesis of uronic acids are an important cause of loss of capsulation and of virulence by strains of pneumococcus Type I and Type III. The capsular genome appears to have a specific location in the total genome of the cell, this locus being occupied by the capsular genome of whatever capsular type is expressed by the cell. Transformation of capsulated or of non-capsulated pneumococci to heterologous capsular type results probably from a genetic exchange followed by the development of a new biosynthetic pathway in the transformed cell. The new capsular genome is transferred to the transformed cell as a single particle of DNA. Binary capsulation results from the simultaneous presence within the pneumococcal cell of two capsular genomes, one mutated, the other normal. Interaction between the biochemical pathways controlled by the two capsular genomes leads to augmentation of the phenotypic expression of the product controlled by one and to partial suppression of the product determined by the other. Knowledge of the biochemical basis of binary capsulation can be used to indicate the presence of uronic acid in the capsular polysaccharide of a pneurnococcal type the composition of the capsule of which is unknown. PMID:13795197
1989-11-01
excellent assistance of Ms. Ingrid Schmegner. Ms. Jacquelyn Doucette and Mr. Robert Limmer . ,O2ma. and body fat determinations were performed by Mr...by an ephedrine/caffeine mixture in humans. J. Appl. Physiol. 67(l): 438-444, 1989. 2 -)- 17. Vallerand, A.L., R. Limmer and I.F. Schmegner. Computer
Decompression Mechanisms and Decompression Schedule Calculations.
1984-01-20
phisiology - The effects of altitude. Handbook of Physiology, Section 3: Respiration, Vol. II. W.O. Fenn and H. Rahn eds. Wash, D.C.; Am. Physiol. Soc. 1 4...decompression studies from other laboratories. METHODS Ten experienced and physically qualified divers ( ages 22-42) were compressed at a rate of 60...STATISTICS* --- ---------------------------------------------------------- EXPERIMENT N AGE (yr) HEIGHT (cm) WEIGHT (Kg) BODY FAT
Malathion Administration: Effects on Physiological and Physical Performance in the Heat,
1982-12-09
Physiol. 51:62-67, 1981. 12. Harris, L. W., D. L. Stitcher , and W. C. Heyl. The effects of pretreatments with carbamates, atropine and mecamylamine on...survival and on soman-induced alterations in rat and rabbit brain acetylcholine. Life Sci. 26:1885-1891, 1980. 13. Harris, L. W., D. L. Stitcher , W. C
Improving Warfighters’ Sustainment and Performance in Extreme Environmental Conditions
2008-02-18
Physiol, 485 ( Pt 2) (1995) 525-530. 9. Puchowicz,M.A., Xu,K., Sun,X., Ivy,A., Emancipator,D., and LaManna,J.C., Diet-induced ketosis increases...2002) 1131-1139. 27. Puchowicz,M.A., Xu,K., Sun,X., Ivy,A., Emancipator,D., and LaManna,J.C., Diet-induced ketosis increases capillary density
1982-08-01
and R.E. Fellows. 1976. Circulating placental lactogen levels in dairy and beef cattle . Endocrinology 99:1273. Brinsmead, M.W., B.J. Bancroft, G.D... castrate sows. Am. J. Physiol. 217:1431. Felber, J.P., N. Zaragza, M. Benu7zi-Badoni and A.R. Genazzani. 1972. The double effect of HCS and pregnancy
USDA-ARS?s Scientific Manuscript database
Trends in tree mortality have been linked to global scale environmental changes, such as extreme drought and heat stress, more frequent and intense fires, and increased episodic outbreaks of insects and pathogens. Finer scale studies have also focused on survival and mortality in response to physiol...
Effects of Nandrolone Stimulation on Testosterone Biosynthesis in Leydig Cells
Barone, Rosario; Marino Gammazza, Antonella; Sangiorgi, Claudia; Barone, Fulvio; Pitruzzella, Alessandro; Locorotondo, Nicola; Di Gaudio, Francesca; Salerno, Monica; Maglietta, Francesca; Sarni, Antonio Luciano; Di Felice, Valentina; Cappello, Francesco; Turillazzi, Emanuela
2015-01-01
Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin‐releasing hormone, luteinizing hormone, and follicle‐stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real‐time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone‐induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a‐hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down‐regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. J. Cell. Physiol. 231: 1385–1391, 2016. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:26626779
Blagojević Zagorac, Gordana; Mahmutefendić, Hana; Maćešić, Senka; Karleuša, Ljerka; Lučin, Pero
2017-03-01
In this report, we present an analysis of several recycling protocols based on labeling of membrane proteins with specific monoclonal antibodies (mAbs). We analyzed recycling of membrane proteins that are internalized by clathrin-dependent endocytosis, represented by the transferrin receptor, and by clathrin-independent endocytosis, represented by the Major Histocompatibility Class I molecules. Cell surface membrane proteins were labeled with mAbs and recycling of mAb:protein complexes was determined by several approaches. Our study demonstrates that direct and indirect detection of recycled mAb:protein complexes at the cell surface underestimate the recycling pool, especially for clathrin-dependent membrane proteins that are rapidly reinternalized after recycling. Recycling protocols based on the capture of recycled mAb:protein complexes require the use of the Alexa Fluor 488 conjugated secondary antibodies or FITC-conjugated secondary antibodies in combination with inhibitors of endosomal acidification and degradation. Finally, protocols based on the capture of recycled proteins that are labeled with Alexa Fluor 488 conjugated primary antibodies and quenching of fluorescence by the anti-Alexa Fluor 488 displayed the same quantitative assessment of recycling as the antibody-capture protocols. J. Cell. Physiol. 232: 463-476, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Cytoskeleton & ATP in Sulfur Mustard-Mediated Injury to Endothelial Cells & Keratinocytes.
1996-12-01
platelets. J. Cell. Biol. 86:77-86, 1980 . 5. Cassimeris, L, McNeill, H, and Zigmond, SH. Chemoattractant-stimulated polymorphonuclear leukocytes contain two...Arch. Biochem. Biophys. 175:627- 634, 1976. 20. Schraufstatter, IU, Hinshaw, DB, Hyslop , PA, Spragg, RG, and Cochrane, CG: Oxidant injury of cells: DNA... 1980 . 22. Brehe, JE, and Burch, HB. Enzymatic assay for glutathione. Anal Biochem. 74:189, 1976. 23. Griffith, OW. Determination of glutathione and
Nielsen, Morten Schak; Axelsen, Lene Nygaard; Sorgen, Paul L.; Verma, Vandana; Delmar, Mario; Holstein-Rathlou, Niels-Henrik
2013-01-01
Gap junctions are essential to the function of multicellular animals, which require a high degree of coordination between cells. In vertebrates, gap junctions comprise connexins and currently 21 connexins are known in humans. The functions of gap junctions are highly diverse and include exchange of metabolites and electrical signals between cells, as well as functions, which are apparently unrelated to intercellular communication. Given the diversity of gap junction physiology, regulation of gap junction activity is complex. The structure of the various connexins is known to some extent; and structural rearrangements and intramolecular interactions are important for regulation of channel function. Intercellular coupling is further regulated by the number and activity of channels present in gap junctional plaques. The number of connexins in cell-cell channels is regulated by controlling transcription, translation, trafficking, and degradation; and all of these processes are under strict control. Once in the membrane, channel activity is determined by the conductive properties of the connexin involved, which can be regulated by voltage and chemical gating, as well as a large number of posttranslational modifications. The aim of the present article is to review our current knowledge on the structure, regulation, function, and pharmacology of gap junctions. This will be supported by examples of how different connexins and their regulation act in concert to achieve appropriate physiological control, and how disturbances of connexin function can lead to disease. © 2012 American Physiological Society. Compr Physiol 2:1981-2035, 2012. PMID:23723031
Domain model for Ca2(+)-inactivation of Ca2+ channels at low channel density.
Sherman, A; Keizer, J; Rinzel, J
1990-01-01
The "shell" model for Ca2(+)-inactivation of Ca2+ channels is based on the accumulation of Ca2+ in a macroscopic shell beneath the plasma membrane. The shell is filled by Ca2+ entering through open channels, with the elevated Ca2+ concentration inactivating both open and closed channels at a rate determined by how fast the shell is filled. In cells with low channel density, the high concentration Ca2+ "shell" degenerates into a collection of nonoverlapping "domains" localized near open channels. These domains form rapidly when channels open and disappear rapidly when channels close. We use this idea to develop a "domain" model for Ca2(+)-inactivation of Ca2+ channels. In this model the kinetics of formation of an inactivated state resulting from Ca2+ binding to open channels determines the inactivation rate, a mechanism identical with that which explains single-channel recordings on rabbit-mesenteric artery Ca2+ channels (Huang Y., J. M. Quayle, J. F. Worley, N. B. Standen, and M. T. Nelson. 1989. Biophys. J. 56:1023-1028). We show that the model correctly predicts five important features of the whole-cell Ca2(+)-inactivation for mouse pancreatic beta-cells (Plants, T. D. 1988. J. Physiol. 404:731-747) and that Ca2(+)-inactivation has only minor effects on the bursting electrical activity of these cells. PMID:2174274
Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram
2008-09-01
PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.
Anil, Veena S; Harmon, Alice C; Rao, K Sankara
2003-04-01
Calcium-dependent protein kinase (CDPK) is expressed in sandalwood (Santalum album L.) seeds under developmental regulation, and it is localized with spherical storage organelles in the endosperm [Anil et al. (2000) Plant Physiol. 122: 1035]. This study identifies these storage organelles as oil bodies. A 55 kDa protein associated with isolated oil bodies, showed Ca(2+)-dependent autophosphorylation and also cross-reacted with anti-soybean CDPK. The CDPK activity detected in the oil body-protein fraction was calmodulin-independent and sensitive to W7 (N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide) inhibition. Differences in Michaelis Menton kinetics, rate of histone phosphorylation and sensitivity to W7 inhibition between a soluble CDPK from embryos and the oil body-associated CDPK of endosperm suggest that these are tissue-specific isozymes. The association of CDPK with oil bodies of endosperm was found to show a temporal pattern during seed development. CDPK protein and activity, and the in vivo phosphorylation of Ser and Thr residues were detected strongly in the oil bodies of endosperm from maturing seed. Since oil body formation occurs during seed maturation, the observations indicate that CDPK and Ca(2+) may have a regulatory role during oil accumulation/oil body biogenesis. The detection of CDPK-protein and activity in oil bodies of groundnut, sesame, cotton, sunflower, soybean and safflower suggests the ubiquity of the association of CDPKs with oil bodies.
Total Charge Movement per Channel
Sigg, Daniel; Bezanilla, Francisco
1997-01-01
One measure of the voltage dependence of ion channel conductance is the amount of gating charge that moves during activation and vice versa. The limiting slope method, introduced by Almers (Almers, W. 1978. Rev. Physiol. Biochem. Pharmacol. 82:96–190), exploits the relationship of charge movement and voltage sensitivity, yielding a lower limit to the range of single channel gating charge displacement. In practice, the technique is plagued by low experimental resolution due to the requirement that the logarithmic voltage sensitivity of activation be measured at very low probabilities of opening. In addition, the linear sequential models to which the original theory was restricted needed to be expanded to accommodate the complexity of mechanisms available for the activation of channels. In this communication, we refine the theory by developing a relationship between the mean activation charge displacement (a measure of the voltage sensitivity of activation) and the gating charge displacement (the integral of gating current). We demonstrate that recording the equilibrium gating charge displacement as an adjunct to the limiting slope technique greatly improves accuracy under conditions where the plots of mean activation charge displacement and gross gating charge displacement versus voltage can be superimposed. We explore this relationship for a wide variety of channel models, which include those having a continuous density of states, nonsequential activation pathways, and subconductance states. We introduce new criteria for the appropriate use of the limiting slope procedure and provide a practical example of the theory applied to low resolution simulation data. PMID:8997663
An integrated cell-free metabolic platform for protein production and synthetic biology
Jewett, Michael C; Calhoun, Kara A; Voloshin, Alexei; Wuu, Jessica J; Swartz, James R
2008-01-01
Cell-free systems offer a unique platform for expanding the capabilities of natural biological systems for useful purposes, i.e. synthetic biology. They reduce complexity, remove structural barriers, and do not require the maintenance of cell viability. Cell-free systems, however, have been limited by their inability to co-activate multiple biochemical networks in a single integrated platform. Here, we report the assessment of biochemical reactions in an Escherichia coli cell-free platform designed to activate natural metabolism, the Cytomim system. We reveal that central catabolism, oxidative phosphorylation, and protein synthesis can be co-activated in a single reaction system. Never before have these complex systems been shown to be simultaneously activated without living cells. The Cytomim system therefore promises to provide the metabolic foundation for diverse ab initio cell-free synthetic biology projects. In addition, we describe an improved Cytomim system with enhanced protein synthesis yields (up to 1200 mg/l in 2 h) and lower costs to facilitate production of protein therapeutics and biochemicals that are difficult to make in vivo because of their toxicity, complexity, or unusual cofactor requirements. PMID:18854819
Capcarova, M; Kolesarova, A; Kalafova, A; Bulla, J; Sirotkin, A V
2015-07-01
The aim of the present study was to determine the activity of superoxide dismutase (SOD), total antioxidant status (TAS) of the hen granulosa cells, and selected biochemical parameters, including calcium, phosphorus, sodium, potassium, glucose, cholesterol, proteins, in the culture medium of granulosa cells after exposing them to ascorbic acid in vitro conditions. Ovarian granulosa cells of hens were incubated with various doses of ascorbic acid (E1 0.09 mg/ml, E2 0.13 mg/ml, E3 0.17 mg/ml, E4 0.33 mg/ml, E5 0.5 mg/ml). Ascorbic acid did not manifest antioxidant potential and higher doses of ascorbic acid (0.17; 0.33 and 0.5 mg/ml) decreased the activity of SOD in granulosa cells. Vitamin application resulted in a significantly (p<0.05) higher accumulation of Na+ and K+ in culture media of granulosa cells and decreased the concentration of glucose and proteins. These results indicate that ascorbic acid might be involved in the regulation of selected biochemical and physiological processes in ovarian granulosa cells.
Klapperstück, Thomas; Glanz, Dagobert; Hanitsch, Stefan; Klapperstück, Manuela; Markwardt, Fritz; Wohlrab, Johannes
2013-07-01
Quantitative determinations of the cell membrane potential of lymphocytes (Wilson et al., J Cell Physiol 1985;125:72-81) and thymocytes (Krasznai et al., J Photochem Photobiol B 1995;28:93-99) using the anionic dye DiBAC4 (3) proved that dye depletion in the extracellular medium as a result of cellular uptake can be negligible over a wide range of cell densities. In contrast, most flow cytometric studies have not verified this condition but rather assumed it from the start. Consequently, the initially prepared extracellular dye concentration has usually been used for the calculation of the Nernst potential of the dye. In this study, however, external dye depletion could be observed in both large IGR-1 and small LCL-HO cells under experimental conditions, which have often been applied routinely in spectrofluorimetry and flow cytometry. The maximum cell density at which dye depletion could be virtually avoided was dependent on cell size and membrane potential and definitely needed to be taken into account to ensure reliable results. In addition, accepted calibration procedures based on the partition of sodium and potassium (Goldman-Hodgkin-Katz equation) or potassium alone (Nernst equation) were performed by flow cytometry on cell suspensions with an appropriately low cell density. The observed extensive lack of concordance between the correspondingly calculated membrane potential and the equilibrium potential of DiBAC4 (3) revealed that these methods require the additional measurement of cation parameters (membrane permeability and/or intracellular concentration). In contrast, due to the linear relation between fluorescence and low DiBAC4 (3) concentrations, the Nernst potential of the dye for totally depolarized cells can be reliably used for calibration with an essentially lower effort and expense. Copyright © 2013 International Society for Advancement of Cytometry.
Cohen, MW; Weldon, PR
1980-01-01
In cultures of xenopus myotomal muscle cells and spinal cord (SC) some of the nerve-muscle contacts exhibit a high density of acetylcholine receptors (AchRs [Anderson et al., 1977, J. Physiol. (Lond.). 268:731- 756,757-773]) and synaptic ultrastructure (Weldon and Cohen, 1979, J. Neurocytol. 8:239-259). We have examined whether similarly specialized contacts are established when the muscle cells are cultured with explants of xenopus dorsal root ganglia (DRG) or sympathetic ganglia (SG). The outgrowth from the ganglionic explants contained neuronal and non- neuronal cell processes. Although both types of processes approached within 100 A of muscle cells, synaptic ultrastructure was rarely observed at these contacts. Because patches of postsynaptic ultrastructure also develop on noncontacted muscle cells, the very few examples of contacts with such specializations probably occurred by chance. AChRs were stained with fluroscent α-bungarotoxin. More than 70 percent of the SC-contacted muscle cells exhibited a high receptor density along the path of contact. The corresponding values for DRG- and SG- contacted muscle cells were 10 and 6 percent. Similar values were obtained when the ganlionic and SC explants were cultured together in the same chamber. The few examples of high receptor density at ganglionic-muscle contacts resembled the characteristic receptor patches of noncontacted muscle cells rather than the narrow bands of high receptor density seen at SC-muscle contacts. In addition, more than 90 percent of these ganglionic- contacted muscle cells had receptor patches elsewhere, compared to less than 40 percent for the SC-contacted muscle cells. These findings indicate that the SC neurites possess a specific property which is important for the establishment of synaptically specialized contacts with muscle and that this property is lacking in the DRG and SG neurites. PMID:7400212
miR-10a restores human mesenchymal stem cell differentiation by repressing KLF4
Li, Jiao; Dong, Jun; Zhang, Zhen-hui; Zhang, Dong-Cheng; You, Xiang-Yu; Zhong, Yun; Chen, Min-Sheng; Liu, Shi-Ming
2013-01-01
miRNAs have recently been shown to play a significant role in human aging. However, data demonstrating the effects of aging-related miRNAs in human mesenchymal stem cells (hMSCs) are limited. We observed that hMSC differentiation decreased with aging. We also identified that miR-10a expression was significantly decreased with age by comparing the miRNA expression of hMSCs derived from young and aged individuals. Therefore, we hypothesized that the downregulation of miR-10a may be associated with the decreased differentiation capability of hMSCs from aged individuals. Lentiviral constructs were used to up- or downregulate miR-10a in young and old hMSCs. Upregulation of miR-10a resulted in increased differentiation to adipogenic, osteogenic, and chondrogenic lineages and in reduced cell senescence. Conversely, downregulation of miR-10a resulted in decreased cell differentiation and increased cell senescence. A chimeric luciferase reporter system was generated, tagged with the full-length 3′-UTR region of KLF4 harboring the seed-matched sequence with or without four nucleotide mutations. These constructs were cotransfected with the miR-10a mimic into cells. The luciferase activity was significantly repressed by the miR-10a mimic, proving the direct binding of miR-10a to the 3′-UTR of KLF4. Direct suppression of KLF4 in aged hMSCs increased cell differentiation and decreased cell senescence. In conclusion, miR-10a restores the differentiation capability of aged hMSCs through repression of KLF4. Aging-related miRNAs may have broad applications in the restoration of cell dysfunction caused by aging. J. Cell. Physiol. 228: 2324–2336, 2013. © The Authors. Published by Wiley Periodicals, Inc. PMID:23696417
Marques, Ana C Q; Paludo, Katia S; Dallagassa, Cibelle B; Surek, Monica; Pedrosa, Fábio O; Souza, Emanuel M; Cruz, Leonardo M; LiPuma, John J; Zanata, Sílvio M; Rego, Fabiane G M; Fadel-Picheth, Cyntia M T
2015-01-01
Herbaspirillum bacteria are best known as plant growth-promoting rhizobacteria but have also been recovered from clinical samples. Here, biochemical tests, matrix-assisted laser deionization-time of flight (MALDI-TOF) mass spectrometry, adherence, and cytotoxicity to eukaryotic cells were used to compare clinical and environmental isolates of Herbaspirillum spp. Discrete biochemical differences were observed between human and environmental strains. All strains adhered to HeLa cells at low densities, and cytotoxic effects were discrete, supporting the view that Herbaspirillum bacteria are opportunists with low virulence potential. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gohn, Cassandra R; Blue, Emily K; Sheehan, BreAnn M; Varberg, Kaela M; Haneline, Laura S
2017-07-01
Diabetes mellitus (DM) during pregnancy has long-lasting implications for the fetus, including cardiovascular morbidity. Previously, we showed that endothelial colony forming cells (ECFCs) from DM human pregnancies have decreased vasculogenic potential. Here, we evaluate whether the molecular mechanism responsible for this phenotype involves the transcription factor, Mesenchyme Homeobox 2 (MEOX2). In human umbilical vein endothelial cells, MEOX2 upregulates cyclin-dependent kinase inhibitor expression, resulting in increased senescence and decreased proliferation. We hypothesized that dysregulated MEOX2 expression in neonatal ECFCs from DM pregnancies decreases network formation through increased senescence and altered cell cycle progression. Our studies show that nuclear MEOX2 is increased in ECFCs from DM pregnancies. To determine if MEOX2 is sufficient and/or required to induce impaired network formation, MEOX2 was overexpressed and depleted in ECFCs from control and DM pregnancies, respectively. Surprisingly, MEOX2 overexpression in control ECFCs resulted in increased network formation, altered cell cycle progression, and increased senescence. In contrast, MEOX2 knockdown in ECFCs from DM pregnancies led to decreased network formation, while cell cycle progression and senescence were unaffected. Importantly, migration studies demonstrated that MEOX2 overexpression increased migration, while MEOX2 knockdown decreased migration. Taken together, these data suggest that altered migration may be mediating the impaired vasculogenesis of ECFCs from DM pregnancies. While initially believed to be maladaptive, these data suggest that MEOX2 may serve a protective role, enabling increased vessel formation despite exposure to a DM intrauterine environment. J. Cell. Physiol. 232: 1885-1892, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Synchronization in Biochemical Substance Exchange Between Two Cells
NASA Astrophysics Data System (ADS)
Mihailović, Dragutin T.; Balaž, Igor
In this paper, Mihailović et al. [Mod. Phys. Lett. B 25 (2011) 2407-2417] introduce a simplified model of cell communication in a form of coupled difference logistic equations. Then we investigated stability of exchange of signaling molecules under variability of internal and external parameters. However, we have not touched questions about synchronization and effect of noise on biochemical substance exchange between cells. In this paper, we consider synchronization in intercellular exchange in dependence of environmental and cell intrinsic parameters by analyzing the largest Lyapunov exponent, cross sample entropy and bifurcation maps.
Biochemical analysis of force-sensitive responses using a large-scale cell stretch device.
Renner, Derrick J; Ewald, Makena L; Kim, Timothy; Yamada, Soichiro
2017-09-03
Physical force has emerged as a key regulator of tissue homeostasis, and plays an important role in embryogenesis, tissue regeneration, and disease progression. Currently, the details of protein interactions under elevated physical stress are largely missing, therefore, preventing the fundamental, molecular understanding of mechano-transduction. This is in part due to the difficulty isolating large quantities of cell lysates exposed to force-bearing conditions for biochemical analysis. We designed a simple, easy-to-fabricate, large-scale cell stretch device for the analysis of force-sensitive cell responses. Using proximal biotinylation (BioID) analysis or phospho-specific antibodies, we detected force-sensitive biochemical changes in cells exposed to prolonged cyclic substrate stretch. For example, using promiscuous biotin ligase BirA* tagged α-catenin, the biotinylation of myosin IIA increased with stretch, suggesting the close proximity of myosin IIA to α-catenin under a force bearing condition. Furthermore, using phospho-specific antibodies, Akt phosphorylation was reduced upon stretch while Src phosphorylation was unchanged. Interestingly, phosphorylation of GSK3β, a downstream effector of Akt pathway, was also reduced with stretch, while the phosphorylation of other Akt effectors was unchanged. These data suggest that the Akt-GSK3β pathway is force-sensitive. This simple cell stretch device enables biochemical analysis of force-sensitive responses and has potential to uncover molecules underlying mechano-transduction.
Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy.
Yang, Yuhui; Karakhanova, Svetlana; Hartwig, Werner; D'Haese, Jan G; Philippov, Pavel P; Werner, Jens; Bazhin, Alexandr V
2016-12-01
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Murray, Nigel P; Aedo, Socrates; Fuentealba, Cynthia; Jacob, Omar; Reyes, Eduardo; Novoa, Camilo; Orellana, Sebastian; Orellana, Nelson
2016-10-01
To establish a prediction model for early biochemical failure based on the Cancer of the Prostate Risk Assessment (CAPRA) score, the presence or absence of primary circulating prostate cells (CPC) and the number of primary CPC (nCPC)/8ml blood sample is detected before surgery. A prospective single-center study of men who underwent radical prostatectomy as monotherapy for prostate cancer. Clinical-pathological findings were used to calculate the CAPRA score. Before surgery blood was taken for CPC detection, mononuclear cells were obtained using differential gel centrifugation, and CPCs identified using immunocytochemistry. A CPC was defined as a cell expressing prostate-specific antigen and P504S, and the presence or absence of CPCs and the number of cells detected/8ml blood sample was registered. Patients were followed up for up to 5 years; biochemical failure was defined as a prostate-specific antigen>0.2ng/ml. The validity of the CAPRA score was calibrated using partial validation, and the fractional polynomial Cox proportional hazard regression was used to build 3 models, which underwent a decision analysis curve to determine the predictive value of the 3 models with respect to biochemical failure. A total of 267 men participated, mean age 65.80 years, and after 5 years of follow-up the biochemical-free survival was 67.42%. The model using CAPRA score showed a hazards ratio (HR) of 5.76 between low and high-risk groups, that of CPC with a HR of 26.84 between positive and negative groups, and the combined model showed a HR of 4.16 for CAPRA score and 19.93 for CPC. Using the continuous variable nCPC, there was no improvement in the predictive value of the model compared with the model using a positive-negative result of CPC detection. The combined CAPRA-nCPC model showed an improvement of the predictive performance for biochemical failure using the Harrell׳s C concordance test and a net benefit on DCA in comparison with either model used separately. The use of primary CPC as a predictive factor based on their presence or absence did not predict aggressive disease or biochemical failure. Although the use of a combined CAPRA-nCPC model improves the prediction of biochemical failure in patients undergoing radical prostatectomy for prostate cancer, this is minimal. The use of the presence or absence of primary CPCs alone did not predict aggressive disease or biochemical failure. Copyright © 2016 Elsevier Inc. All rights reserved.
Cellular compartmentalization of secondary metabolism
Kistler, H. Corby; Broz, Karen
2015-01-01
Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603
Enhanced transcription and translation in clay hydrogel and implications for early life evolution
Yang, Dayong; Peng, Songming; Hartman, Mark R.; Gupton-Campolongo, Tiffany; Rice, Edward J.; Chang, Anna Kathryn; Gu, Zi; Lu, G. Q. (Max); Luo, Dan
2013-01-01
In most contemporary life forms, the confinement of cell membranes provides localized concentration and protection for biomolecules, leading to efficient biochemical reactions. Similarly, confinement may have also played an important role for prebiotic compartmentalization in early life evolution when the cell membrane had not yet formed. It remains an open question how biochemical reactions developed without the confinement of cell membranes. Here we mimic the confinement function of cells by creating a hydrogel made from geological clay minerals, which provides an efficient confinement environment for biomolecules. We also show that nucleic acids were concentrated in the clay hydrogel and were protected against nuclease, and that transcription and translation reactions were consistently enhanced. Taken together, our results support the importance of localized concentration and protection of biomolecules in early life evolution, and also implicate a clay hydrogel environment for biochemical reactions during early life evolution. PMID:24196527
Subhash C. Minocha; Cheryl A. Robie; Akhtar J. Khan; Nancy S. Papa; Andrew I. Samuelsen; Rakesh Minocha
1990-01-01
Carrot cell cultures provide a model experimental system for the analysis of biochemical and molecular events associated with morphogenesis in plants (3, 4, 5, 14). Among the biochemical changes accompanying somatic embryogenesis in this tissue is an increased biosynthesis ofpolyamines (1, 2, 7, 10, 11, 13). A variety of inhibitors of polyamine biosynthetic enzymes...
Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cells
Biochemical effects of six TiO2 and four CeO2 nanomaterials in HepG2 cellsBecause of their growing number of uses, nanoparticles composed of CeO2 (cosmetics, polishing materials and automotive fuel additives) and TiO2 (pigments, sunscreens and photocatalysts) are of particular to...
Medical Aspects of Harsh Environments. Volume 2
2002-01-01
Fulco CS, Trad LA, Forte VA, Cymerman A. Altitude acclimatization attenuates plasma ammonia accumulation during submaximal exercise. J Appl Physiol...107 and decreased ammonia accumulation66 and dependence on muscle glyco- gen.109 These hypoxia-produced changes in oxygen delivery and metabolic profile...Young PM, Rock PB, Fulco CS, Trad LA, Forte VA Jr, Cymerman A. Altitude acclimatization attenuates plasma ammonia accumulation during submaximal
1991-06-01
and Mr. Robert 0 Limmer , which in the face of severe motion sickness often approached heroic proportions, was very much appreciated. 37 REFERENCES 1...SD, Grayson J, Frim J, Allen CL, and Limmer RE. Effect of cold exposure on various sites of core temperature measurements. J Appl Physiol 54:1025-1031
USDA-ARS?s Scientific Manuscript database
Eicosanoids are oxygenated metabolites of three C20 polyunsaturated fatty acids, mainly arachidonic acid (AA; 20:4n-6), but also 20:3n-6 and 20:5n-3. Aside from their importance in biomedicine, eicosanoids act in invertebrate biology. Prostaglandins (PGs) influence salt and water transport physiol...
2016-05-12
guinea pigs with con- trast-enhanced microCT. Anat Rec (Hoboken) 294, 915–928. Deisseroth K (2011) Optogenetics. Nat Methods 8, 26–29. Delaurier A, Burton...Nerve 43, 878–886. Medler S (2002) Comparative trends in shortening velocity and force production in skeletal muscles. Am J Physiol Regul Integr Comp
2011-09-19
and Victor A. Convertino1 1US Army Institute of Surgical Research, Fort Sam Houston, TX 78234, USA 2Department of Health and Kinesiology , University of...during intense lower body negative pressure to presyncope in humans. J Physiol 587, 4987–4999. Cooke WH, Ryan KL & Convertino VA (2004). Lower body
NASA Astrophysics Data System (ADS)
Jenkins, Phillip M.; Laughter, Melissa R.; Lee, David J.; Lee, Young M.; Freed, Curt R.; Park, Daewon
2015-06-01
Despite major advances in the pathophysiological understanding of peripheral nerve damage, the treatment of nerve injuries still remains an unmet medical need. Nerve guidance conduits present a promising treatment option by providing a growth-permissive environment that 1) promotes neuronal cell survival and axon growth and 2) directs axonal extension. To this end, we designed an electrospun nerve guidance conduit using a blend of polyurea and poly-caprolactone with both biochemical and topographical cues. Biochemical cues were integrated into the conduit by functionalizing the polyurea with RGD to improve cell attachment. Topographical cues that resemble natural nerve tissue were incorporated by introducing intraluminal microchannels aligned with nanofibers. We determined that electrospinning the polymer solution across a two electrode system with dissolvable sucrose fibers produced a polymer conduit with the appropriate biomimetic properties. Human neural stem cells were cultured on the conduit to evaluate its ability to promote neuronal growth and axonal extension. The nerve guidance conduit was shown to enhance cell survival, migration, and guide neurite extension.
Transport of fluid and solutes in the body II. Model validation and implications.
Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L
1999-09-01
A mathematical model of short-term whole body fluid, protein, and ion distribution and transport developed earlier [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1215-H1227, 1999] is validated using experimental data available in the literature. The model was tested against data measured for the following three types of experimental infusions: 1) hyperosmolar saline solutions with an osmolarity in the range of 2,000-2,400 mosmol/l, 2) saline solutions with an osmolarity of approximately 270 mosmol/l and composition comparable with Ringer solution, and 3) an isosmotic NaCl solution with an osmolarity of approximately 300 mosmol/l. Good agreement between the model predictions and the experimental data was obtained with respect to the trends and magnitudes of fluid shifts between the intra- and extracellular compartments, extracellular ion and protein contents, and hematocrit values. The model is also able to yield information about inaccessible or difficult-to-measure system variables such as intracellular ion contents, cellular volumes, and fluid fluxes across the vascular capillary membrane, data that can be used to help interpret the behavior of the system.
Transport of fluid and solutes in the body I. Formulation of a mathematical model.
Gyenge, C C; Bowen, B D; Reed, R K; Bert, J L
1999-09-01
A compartmental model of short-term whole body fluid, protein, and ion distribution and transport is formulated. The model comprises four compartments: a vascular and an interstitial compartment, each with an embedded cellular compartment. The present paper discusses the assumptions on which the model is based and describes the equations that make up the model. Fluid and protein transport parameters from a previously validated model as well as ionic exchange parameters from the literature or from statistical estimation [see companion paper: C. C. Gyenge, B. D. Bowen, R. K. Reed, and J. L. Bert. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1228-H1240, 1999] are used in formulating the model. The dynamic model has the ability to simulate 1) transport across the capillary membrane of fluid, proteins, and small ions and their distribution between the vascular and interstitial compartments; 2) the changes in extracellular osmolarity; 3) the distribution and transport of water and ions associated with each of the cellular compartments; 4) the cellular transmembrane potential; and 5) the changes of volume in the four fluid compartments. The validation and testing of the proposed model against available experimental data are presented in the companion paper.
Conditioned taste avoidance induced by forced and voluntary wheel running in rats.
Forristall, J R; Hookey, B L; Grant, V L
2007-03-01
Voluntary exercise by rats running in a freely rotating wheel (free wheel) produces conditioned taste avoidance (CTA) of a flavored solution consumed before running [e.g., Lett, B.T., Grant, V.L., 1996. Wheel running induces conditioned taste aversion in rats trained while hungry and thirsty. Physiol. Behav. 59, 699-702]. Forced exercise, swimming or running, also produces CTA in rats [e.g., Masaki, T., Nakajima, S., 2006. Taste aversion induced by forced swimming, voluntary running, forced running, and lithium chloride injection treatments. Physiol. Behav. 88, 411-416]. Energy expenditure may be the critical factor in producing such CTA. If so, forced running in a motorized running wheel should produce CTA equivalent to that produced by a similar amount of voluntary running. In two experiments, we compared forced running in a motorized wheel with voluntary running in a free wheel. Mean distance run over 30 min was equated as closely as possible in the two apparatuses. Both types of exercise produced CTA relative to sedentary, locked-wheel controls. However, voluntary running produced greater CTA than forced running. We consider differences between running in the free and motorized wheels that may account for the differences in strength of CTA.
Fry, Brendan C.; Layton, Anita T.
2014-01-01
We have developed a highly detailed mathematical model of oxygen transport in a cross section of the upper inner medulla of the rat kidney. The model is used to study the impact of the structured organization of nephrons and vessels revealed in anatomic studies, in which descending vasa recta are found to lie distant from clusters of collecting ducts. Specifically, we formulated a two-dimensional oxygen transport model, in which the positions and physical dimensions of renal tubules and vessels are based on an image obtained by immunochemical techniques (Pannabecker and Dantzler, Am J Physiol Renal Physiol, 2006). The model represents oxygen diffusion through interstitium and other renal structures, oxygen consumption by the Na+/K+-ATPase activities of the collecting ducts, and basal metabolic consumption. Model simulations yield marked variations in interstitial PO2, which can be attributed, in large part, to the heterogeneities in the position and physical dimensions of the collecting ducts. Further, results of a sensitivity study suggest that medullary oxygenation is highly sensitive to medullary blood flow, and that, at high active consumption rates, localized patches of tissue may be vulnerable to hypoxic injury. PMID:25260928
NASA Astrophysics Data System (ADS)
Su, Xin; Fang, Shaoyin; Zhang, Daosen; Zhang, Qinnan; He, Yingtian; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun
2015-12-01
Mesenchymal stem cells (MSCs) differentiate into islet-like cells, providing a possible solution for type I diabetes treatment. To search for the precise molecular mechanism of the directional differentiation of MSC-derived islet-like cells, biomolecular composition, and structural conformation information during MSC differentiation, is required. Because islet-like cells lack specific surface markers, the commonly employed immunostaining technique is not suitable for their identification, physical separation, and enrichment. Combining Raman spectroscopic data, a fitting accuracy-improved biochemical component analysis, and multiple peaks fitting approach, we identified the quantitative biochemical and intensity change of Raman peaks that show the differentiation of MSCs into islet-like cells. Along with increases in protein and glycogen content, and decreases in deoxyribonucleic acid and ribonucleic acid content, in islet-like cells relative to MSCs, it was found that a characteristic peak of insulin (665 cm-1) has twice the intensity in islet-like cells relative to MSCs, indicating differentiation of MSCs into islet-like cells was successful. Importantly, these Raman signatures provide useful information on the structural and pathological states during MSC differentiation and help to develop noninvasive and label-free Raman sorting methods for stem cells and their lineages.
Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres.
Ross, Jacob A; Pearson, Adam; Levy, Yotam; Cardel, Bettina; Handschin, Christoph; Ochala, Julien
2017-06-01
Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND size remains unclear. In the present study, we aimed to test the hypothesis that the level of expression of the transcriptional coactivator PGC-1α and subsequent activation of the mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when PGC-1α is lacking, no change occurs. In the diaphragm, no clear difference was noted. This indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND volumes that can support an increased mitochondrial density. J. Cell. Physiol. 232: 1270-1274, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Muhitch, M. J.; Felker, F. C.; Taliercio, E. W.; Chourey, P. S.
1995-01-01
The pedicel (basal maternal tissue) of maize (Zea mays L.) kernels contains a physically and kinetically unique form of glutamine synthetase (GSp1) that is involved in the conversion of transport forms of nitrogen into glutamine for uptake by the developing endosperm (M.J. Muhitch [1989] Plant Physiol 91: 868-875). A monoclonal antibody has been raised against this kernel-specific GS that does not cross-react either with a second GS isozyme found in the pedicel or with the GS isozymes from the embryo, roots, or leaves. When used as a probe for tissue printing, the antibody labeled the pedicel tissue uniformly and also labeled some of the pericarp surrounding the lower endosperm. Silver-enhanced immunogold staining of whole-kernel paraffin sections revealed the presence of GSp1 in both the vascular tissue that terminates in the pedicel and the pedicel parenchyma cells, which are located between the vascular tissue and the basal endosperm transfer cells. Light staining of the subaleurone was also noted. The tissue-specific localization of GSp1 within the pedicel is consistent with its role in the metabolism of nitrogenous transport compounds as they are unloaded from the phloem. PMID:12228400
Nitrate and Ammonium Induced Photosynthetic Suppression in N-Limited Selenastrum minutum1
Birch, Douglas G.; Elrifi, Ivor R.; Turpin, David H.
1986-01-01
The effects of nitrate and ammonium addition on net and gross photosynthesis, CO2 efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO2 efflux in the light. The nitrate and ammmonium induced rates of CO2 efflux were 31.0 and 33.8 micromoles CO2 per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO2 was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279). PMID:16665097
Magnocellular Neurons and Posterior Pituitary Function.
Brown, Colin H
2016-09-15
The posterior pituitary gland secretes oxytocin and vasopressin (the antidiuretic hormone) into the blood system. Oxytocin is required for normal delivery of the young and for delivery of milk to the young during lactation. Vasopressin increases water reabsorption in the kidney to maintain body fluid balance and causes vasoconstriction to increase blood pressure. Oxytocin and vasopressin secretion occurs from the axon terminals of magnocellular neurons whose cell bodies are principally found in the hypothalamic supraoptic nucleus and paraventricular nucleus. The physiological functions of oxytocin and vasopressin depend on their secretion, which is principally determined by the pattern of action potentials initiated at the cell bodies. Appropriate secretion of oxytocin and vasopressin to meet the challenges of changing physiological conditions relies mainly on integration of afferent information on reproductive, osmotic, and cardiovascular status with local regulation of magnocellular neurons by glia as well as intrinsic regulation by the magnocellular neurons themselves. This review focuses on the control of magnocellular neuron activity with a particular emphasis on their regulation by reproductive function, body fluid balance, and cardiovascular status. © 2016 American Physiological Society. Compr Physiol 6:1701-1741, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Ion transport in a human lens epithelial cell line exposed to hyposmotic and apoptotic stress.
Chimote, Ameet A; Adragna, Norma C; Lauf, Peter K
2010-04-01
Membrane transport changes in human lens epithelial (HLE-B3) cells under hyposmotic and apoptotic stress were compared. Cell potassium content, K(i), uptake of the K congener rubidium, Rb(i), and water content were measured after hyposmotic stress induced by hypotonicity, and apoptotic stress by the protein-kinase inhibitor staurosporine (STP). Cell water increased in hyposmotic (150 mOsm) as compared to isosmotic (300 mOsm) balanced salt solution (BSS) by >2-fold at 5 min and decreased within 15 min to baseline values accompanied by a 40% K(i) loss commensurate with cell swelling and subsequent cell shrinkage likely due to regulatory volume decrease (RVD). Loss of K(i), and accompanying water, and Rb(i) uptake in hyposmotic BSS were prevented by clotrimazole (CTZ) suggesting water shifts associated with K and Rb flux via intermediate conductance K (IK) channels, also detected at the mRNA and protein level. In contrast, 2 h after 2 microM STP exposure, the cells lost approximately 40% water and approximately 60% K(i), respectively, consistent with apoptotic volume decrease (AVD). Indeed, water and K(i) loss was at least fivefold greater after hyposmotic than after apoptotic stress. High extracellular K and 2 mM 4-aminopyridine (4-AP) but not CTZ significantly reduced apoptosis. Annexin labeling phosphatidylserine (PS) at 15 min suggested loss of lipid asymmetry. Quantitative PCR revealed significant IK channel expression during prolonged hyposmotic stress. Results suggest in HLE-B3 cells, IK channels likely partook in and were down regulated after RVD, whereas pro-apoptotic STP-activation of 4-AP-sensitive voltage-gated K channels preceded or accompanied PS externalization before subsequent apoptosis. J. Cell. Physiol. 223: 110-122, 2010. (c) 2009 Wiley-Liss, Inc.
In search of mitochondrial mechanisms: interfield excursions between cell biology and biochemistry.
Bechtel, William; Abrahamsen, Adele
2007-01-01
Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the role of the mitochondrion and its component parts in cellular respiration. In particular, by developing techniques for localizing enzymes or enzyme systems in specific cellular components, cell biologists provided crucial information about the organized structures in which the biochemical reactions occurred. Although the idea that biochemical operations are intimately related to and depend on cell structures was at odds with the then-dominant emphasis on systems of soluble enzymes in biochemistry, a reconceptualization of energetic processes in the 1960s and 1970s made it clear why cell structure was critical to the biochemical account. This paper examines how numerous excursions between biochemistry and cell biology contributed a new understanding of the mechanism of cellular respiration.
Auer, George K; Weibel, Douglas B
2017-07-25
Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.
Emmerling, M R; Sobkowicz, H M; Levenick, C V; Scott, G L; Slapnick, S M; Rose, J E
1990-06-01
We have compared the biochemical expression of cholinergic enzymes with the morphological differentiation of efferent nerve fibers and endings in the cochlea of the postnatally developing mouse. Choline acetyltransferase (ChAT) and acetylcholinesterase (AChE) are present in the newborn cochlea at specific activities 63% and 25%, respectively, of their mature levels. The relative increases in ChAT, in AChE, and in its molecular forms over the newborn values start about day 4 and reach maturity by about day 10. The biochemical results correlate well with the massive presence of nerve fibers stained immunocytochemically for ChAT and AChE or enzymatically for AChE in the inner and outer hair cell regions. Ultrastructral studies, however, indicate the presence of only few vesiculated fibers and endings in the inner and outer hair cell regions. The appearance of large, cytologically mature endings occurs only toward the end of the third postnatal week. The discrepancy may be resolved in the electron microscopy using the enzymatic staining for AChE. Labeling is seen on many nonvesiculated fibers and endings in the hair cell regions, suggesting that the majority of the efferent fibers in the perinatal organ may be biochemically differentiated but morphologically immature. The results may imply that the efferents to inner and outer hair cells develop earlier than indicated by previous ultrastructral studies. Moreover, the pattern of development suggests that in the cochlea, as in other tissues, the biochemical differentiation of the efferent innervation may precede the morphological maturation.
Pace, Elisabetta; Di Vincenzo, Serena; Ferraro, Maria; Siena, Liboria; Chiappara, Giuseppina; Dino, Paola; Vitulo, Patrizio; Bertani, Alessandro; Saibene, Federico; Lanata, Luigi; Gjomarkaj, Mark
2017-10-01
Histone deacetylase expression/activity may control inflammation, cell senescence, and responses to corticosteroids. Cigarette smoke exposure, increasing oxidative stress, may negatively affect deacetylase expression/activity. The effects of cigarette smoke extracts (CSE), carbocysteine, and beclomethasone dipropionate on chromatin remodeling processes in human bronchial epithelial cells are largely unknown. The present study was aimed to assess the effects of cigarette smoke, carbocysteine, and beclomethasone dipropionate on histone deacetylase 3 (HDAC3) expression/activity, N-CoR (nuclear receptor corepressor) expression, histone acetyltransferases (HAT) (p300/CBP) expression, p-CREB and IL-1 m-RNA expression, neutrophil chemotaxis. Increased p-CREB expression was observed in the bronchial epithelium of smokers. CSE increased p-CREB expression and decreased HDAC3 expression and activity and N-CoR m-RNA and protein expression. At the same time, CSE increased the expression of the HAT, p300/CBP. All these events increased acetylation processes within the cells and were associated to increased IL-1 m-RNA expression and neutrophil chemotaxis. The incubation of CSE exposed cells with carbocysteine and beclomethasone counteracted the effects of cigarette smoke on HDAC3 and N-CoR but not on p300/CBP. The increased deacetylation processes due to carbocysteine and beclomethasone dipropionate incubation is associated to reduced p-CREB, IL-1 m-RNA expression, neutrophil chemotaxis. These findings suggest a new role of combination therapy with carbocysteine and beclomethasone dipropionate in restoring deacetylation processes compromised by cigarette smoke exposure. J. Cell. Physiol. 232: 2851-2859, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Sartori, C; Stefanini, S; Bernardo, A; Augusti-Tocco, G
1992-08-01
Insulin function in the nervous system is still poorly understood. Possible roles as a neuromodulator and as a growth factor have been proposed (Baskin et al., 1987, Ann. Rev. Physiol. 49, 335-347). Stable cell lines may provide an appropriate experimental system for the analysis of insulin action on the various cellular components of the central nervous system. We report here a study to investigate the presence and the properties of insulin specific binding sites in the murine neuroblastoma line, N18TG2, together with insulin action on cell growth and metabolism. Also, receptor internalization has been studied. Binding experiments, carried out in standard conditions at 20 degrees C, enabled us to demonstrate that these cells bind insulin in a specific manner, thus confirming previous findings on other cell lines. Saturation curves showed the presence of two binding sites with Kd 0.3 and 9.7 nM. Competition experiments with porcine and bovine insulin showed an IC50 of 1 and 10 nM, respectively. Competition did not occur in the presence of the unrelated hormones ACTH and FSH. Dissociation experiments indicated the existence of an internalization process of the ligand-receptor complex; this was confirmed by an ultrastructural study using gold conjugated insulin. As far as the insulin action in N18TG2 cells is concerned, physiological concentrations stimulate cell proliferation, whereas no stimulation of glucose uptake was observed, indicating that insulin action in these cells is not mediated by general metabolic effects. On the basis of these data, N18TG2 line appears to be a very suitable model for further studies of the neuronal type insulin receptors, and possibly insulin specific action on the nervous system.
Raman spectral signatures of cervical exfoliated cells from liquid-based cytology samples
NASA Astrophysics Data System (ADS)
Kearney, Padraig; Traynor, Damien; Bonnier, Franck; Lyng, Fiona M.; O'Leary, John J.; Martin, Cara M.
2017-10-01
It is widely accepted that cervical screening has significantly reduced the incidence of cervical cancer worldwide. The primary screening test for cervical cancer is the Papanicolaou (Pap) test, which has extremely variable specificity and sensitivity. There is an unmet clinical need for methods to aid clinicians in the early detection of cervical precancer. Raman spectroscopy is a label-free objective method that can provide a biochemical fingerprint of a given sample. Compared with studies on infrared spectroscopy, relatively few Raman spectroscopy studies have been carried out to date on cervical cytology. The aim of this study was to define the Raman spectral signatures of cervical exfoliated cells present in liquid-based cytology Pap test specimens and to compare the signature of high-grade dysplastic cells to each of the normal cell types. Raman spectra were recorded from single exfoliated cells and subjected to multivariate statistical analysis. The study demonstrated that Raman spectroscopy can identify biochemical signatures associated with the most common cell types seen in liquid-based cytology samples; superficial, intermediate, and parabasal cells. In addition, biochemical changes associated with high-grade dysplasia could be identified suggesting that Raman spectroscopy could be used to aid current cervical screening tests.
Design and Application of Sensors for Chemical Cytometry.
Vickerman, Brianna M; Anttila, Matthew M; Petersen, Brae V; Allbritton, Nancy L; Lawrence, David S
2018-02-08
The bulk cell population response to a stimulus, be it a growth factor or a cytotoxic agent, neglects the cell-to-cell variability that can serve as a friend or as a foe in human biology. Biochemical variations among closely related cells furnish the basis for the adaptability of the immune system but also act as the root cause of resistance to chemotherapy by tumors. Consequently, the ability to probe for the presence of key biochemical variables at the single-cell level is now recognized to be of significant biological and biomedical impact. Chemical cytometry has emerged as an ultrasensitive single-cell platform with the flexibility to measure an array of cellular components, ranging from metabolite concentrations to enzyme activities. We briefly review the various chemical cytometry strategies, including recent advances in reporter design, probe and metabolite separation, and detection instrumentation. We also describe strategies for improving intracellular delivery, biochemical specificity, metabolic stability, and detection sensitivity of probes. Recent applications of these strategies to small molecules, lipids, proteins, and other analytes are discussed. Finally, we assess the current scope and limitations of chemical cytometry and discuss areas for future development to meet the needs of single-cell research.
Nolz, Jeffrey C; Gomez, Timothy S; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B; Shimizu, Yoji; Burkhardt, Janis K; Freedman, Bruce D; Billadeau, Daniel D
2006-01-10
The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and beta-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCgamma1 activation and IP(3)-mediated store release. These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konstantin,J.; Gough, K.; Julian, R.
2008-01-01
Cell function is related to cell composition. The asexual state of filamentous fungi (molds and mildews) has two main life cycle stages: vegetative hyphae for substrate colonization and nutrient acquisition, and asexual spores for survival and dispersal. Hyphal composition changes over a few tens of microns during growth and maturation; spores are different from hyphae. Most biochemical analyses are restricted to studying a few components at high spatial resolution (e.g. histochemistry) or many compounds at low spatial resolution (e.g. GC-MS). Synchrotron FTIR spectromicroscopy can be used to study fungal cell biology by fingerprinting varieties of carbohydrates, proteins, and lipids atmore » about 6 microm spatial resolution. FTIR can distinguish fungal species and changes during hyphal growth, and reveals that even fungi grown under optimal vs mildly stressed conditions exhibit dramatic biochemical changes without obvious morphological effects. Here we compare hypha and spore composition of two fungi, Neurospora and Rhizopus. There are clear biochemical changes when Neurospora hyphae commit to spore development, during spore maturation and following germination, many of which are consistent with results from molecular genetics, but have not been shown before at high spatial resolution. Rhizopus spores develop within a fluid-containing sporangium that becomes dry at maturity. Rhizopus spores had similar protein content and significantly more carbohydrate than the sporangial fluid, both of which are novel findings.« less
Diagnosis of Cell Death by Means of Infrared Spectroscopy
Zelig, Udi; Kapelushnik, Joseph; Moreh, Raymond; Mordechai, Shaul; Nathan, Ilana
2009-01-01
Abstract Fourier transform infrared (FTIR) spectroscopy has been established as a fast spectroscopic method for biochemical analysis of cells and tissues. In this research we aimed to investigate FTIR's utility for identifying and characterizing different modes of cell death, using leukemic cell lines as a model system. CCRF-CEM and U937 leukemia cells were treated with arabinoside and doxorubicin apoptosis inducers, as well as with potassium cyanide, saponin, freezing-thawing, and H2O2 necrosis inducers. Cell death mode was determined by various gold standard biochemical methods in parallel with FTIR-microscope measurements. Both cell death modes exhibit large spectral changes in lipid absorbance during apoptosis and necrosis; however, these changes are similar and thus cannot be used to distinguish apoptosis from necrosis. In contrast to the above confounding factor, our results reveal that apoptosis and necrosis can still be distinguished by the degree of DNA opaqueness to infrared light. Moreover, these two cell death modes also can be differentiated by their infrared absorbance, which relates to the secondary structure of total cellular protein. In light of these findings, we conclude that, because of its capacity to monitor multiple biomolecular parameters, FTIR spectroscopy enables unambiguous and easy analysis of cell death modes and may be useful for biochemical and medical applications. PMID:19804743
Dwane, Susan; Durack, Edel; Kiely, Patrick A
2013-09-11
Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events.
NASA Astrophysics Data System (ADS)
Babbick, Maren; Hampp, Rudiger
2005-08-01
Callus cultures of Arabidopsis thaliana (cv. Columbia) were used to screen for early changes in gene expression in response to altered gravitational fields. In a recent microarray study we found hyper- g dependent changes in gene expression which indicated the involvement of WRKY genes [Martzivanou M. and Hampp R., Physiol. Plant., 118, 221-231,2003]. WRKY genes code for a family of plant-specific regulators of gene expression. In this study we report on the exposure of Arabidopsis callus cultures to 8g for up to 30 min. Quantitative analysis by real time RT-PCR of the amount of transcripts of WRKYs 3, 6, 22, 46, 65 and 70 showed individual changes in expression. As far as their function is known, these WRKY proteins are mainly involved in stress responses. As most alterations in transcript amount occurred within 10 min of treatment, such genes can be used for the investigation of microgravity-related effects on gene expression under sounding rocket conditions (TEXUS, MAXUS).
Thick Filament Protein Network, Functions, and Disease Association.
Wang, Li; Geist, Janelle; Grogan, Alyssa; Hu, Li-Yen R; Kontrogianni-Konstantopoulos, Aikaterini
2018-03-13
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
The Effects of Letter Spacing and Coloured Overlays on Reading Speed and Accuracy in Adult Dyslexia
ERIC Educational Resources Information Center
Sjoblom, Amanda M.; Eaton, Elizabeth; Stagg, Steven D.
2016-01-01
Background: Zorzi et al. (2012, Proc. Natl. Acad. Sci. U.S.A., 109, 11455) found evidence that extra-large letter spacing aids children with dyslexia, but the evidence for the coloured overlays is contradictory (e.g., Henderson et al., 2013, "J. Res. Special Educ. Needs," 13, 57; Wilkins, 2002, "Ophthalmic Physiol. Opt.," 22,…
Hormonal Contraception, Body Water Balance and Thermoregulation
1997-10-01
Schreiber, and M. D. Lindheimer. Effect of ovarian sex steroids on osmoregulation and vasopressin secretion in the rat. Am. J. Physiol. 250 (Endocrinol...two widely used oral contraceptive preparations differ significantly in their estrogenicity. Estrogens have potent effects on the regulation of body...water balance (1, 4), so these two forms of oral contraceptive pills may differ in their effects on water regulation, and hence on physical performance
Automated System for Holographic Lightfield 3D Display Metrology (HL3DM)
2015-04-01
see that: Equation 7 - X = L* TAN (Ɵ) Ɵ = ATAN(X/L) Equation 8 - L^2 + (X + W/2)^2 = P^2 P = sqrt( L^2 + (X + W/2)^2 ) Equation 9 - P...Physiol. Opt 2011, 31, 111–122. (2011, The College of Optometrists) 12. Nicolas S. Holliman, Neil A. Dodgson, Gregg E. Favalora, and Lachlan Pockett
Combat Stress Reaction and Post Traumatic Stress Disorder
1990-01-01
CONDUCTED . PSYCHOLOGICAL, PHYSIOL..3ICAL S. AND ENVIRONMENTAL FACTORS ASSOCIATED WITH THE AETIO ..OGY OF BOTH DISORDERS WERE DISCUSSED, WITH A SPECIAL...reviewsof the Literature examining Combat Stress Reactions and Post-traumatic Stress Disorder s conducted . PsychotogicaL, physiotogicaL and environsmet...Journal of Clinical Psychology, 1987, 43, 1:, 44 - 53. Figley C.R. red] !,tress Disorders Among Vietnam Veterans: Theory , Research and Development
A Critical Review of the Drug/Performance Literature. Volume II.
1979-12-01
Addict British Journal of Addictions Br J Anaesthes British Journal o! Anaesthesiology Br J Clin Pharm British Journal of Clinical Pharmacology Br J...Pharm Physiol Clinical and Experimental Pharmacology and Physiology Clin Genetics Clinical Genetics Cln Pharm Ther Clinical Pharmacology and...European Journal of Toxicology Exp Neurol Experimental Neurology EEG Clin Neurophys EEG Clinical Neurophysiology EEG J EEG Journal Ger Med German Medicine
Triceps surae muscle-tendon properties in older endurance- and sprint-trained athletes.
Stenroth, Lauri; Cronin, Neil J; Peltonen, Jussi; Korhonen, Marko T; Sipilä, Sarianna; Finni, Taija
2016-01-01
Previous studies have shown that aging is associated with alterations in muscle architecture and tendon properties (Morse CI, Thom JM, Birch KM, Narici MV. Acta Physiol Scand 183: 291-298, 2005; Narici MV, Maganaris CN, Reeves ND, Capodaglio P. J Appl Physiol 95: 2229-2234, 2003; Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. J Appl Physiol 113: 1537-1544, 2012). However, the possible influence of different types of regular exercise loading on muscle architecture and tendon properties in older adults is poorly understood. To address this, triceps surae muscle-tendon properties were examined in older male endurance (OE, n = 10, age = 74.0 ± 2.8 yr) and sprint runners (OS, n = 10, age = 74.4 ± 2.8 yr), with an average of 42 yr of regular training experience, and compared with age-matched [older control (OC), n = 33, age = 74.8 ± 3.6 yr] and young untrained controls (YC, n = 18, age = 23.7 ± 2.0 yr). Compared with YC, Achilles tendon cross-sectional area (CSA) was 22% (P = 0.022), 45% (P = 0.001), and 71% (P < 0.001) larger in OC, OE, and OS, respectively. Among older groups, OS had significantly larger tendon CSA compared with OC (P = 0.033). No significant between-group differences were observed in Achilles tendon stiffness. In older groups, Young's modulus was 31-44%, and maximal tendon stress 44-55% lower, than in YC (P ≤ 0.001). OE showed shorter soleus fascicle length than both OC (P < 0.05) and YC (P < 0.05). These data suggest that long-term running does not counteract the previously reported age-related increase in tendon CSA, but, instead, may have an additive effect. The greatest Achilles tendon CSA was observed in OS followed by OE and OC, suggesting that adaptation to running exercise is loading intensity dependent. Achilles tendon stiffness was maintained in older groups, even though all older groups displayed larger tendon CSA and lower tendon Young's modulus. Shorter soleus muscle fascicles in OE runners may be an adaptation to life-long endurance running. Copyright © 2016 the American Physiological Society.
Detection of early changes in lung cell cytology by flow-systems analysis techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinkamp, J.A.; Hansen, K.M.; Wilson, J.S.
1976-12-01
This report summarizes results of continuing experiments to develop cytological and biochemical indicators for estimating damage to respiratory cells in test animals exposed by inhalation to toxic agents associated with nonnuclear energy production, the specific goal being the application of advanced multiparameter flow-systems technologies to the detection of early atypical cellular changes in lung epithelium. Normal Syrian hamster lung cell samples composed of macrophages, leukocytes, ciliated columnar cells, and epithelial cells were stained with fluorescent dyes specific for different biochemical parameters and were analyzed in liquid suspension as they flowed through a chamber intersecting a laser beam of exciting light.more » Multiple sensors measured the total or two-color fluorescence and light scatter on a cell-by-cell basis. Cellular parameters proportional to optical measurements (i.e., cell size, DNA content, total protein, nonspecific esterase activity, nuclear and cytoplasmic diameters) were displayed as frequency distribution histograms. Lung cell samples were also separated according to various cytological parameters and identified microscopically. The basic operating features of the methodology are discussed briefly, along with specific examples of preliminary results illustrating the initial characterization of exfoliated pulmonary cells from normal hamsters. As the flow technology is adapted further to the analysis of respiratory cells, measurements of changes in physical and biochemical properties as a function of exposure to toxic agents will be performed.« less
The Next Frontier: Quantitative Biochemistry in Living Cells.
Honigmann, Alf; Nadler, André
2018-01-09
Researchers striving to convert biology into an exact science foremost rely on structural biology and biochemical reconstitution approaches to obtain quantitative data. However, cell biological research is moving at an ever-accelerating speed into areas where these approaches lose much of their edge. Intrinsically unstructured proteins and biochemical interaction networks composed of interchangeable, multivalent, and unspecific interactions pose unique challenges to quantitative biology, as do processes that occur in discrete cellular microenvironments. Here we argue that a conceptual change in our way of conducting biochemical experiments is required to take on these new challenges. We propose that reconstitution of cellular processes in vitro should be much more focused on mimicking the cellular environment in vivo, an approach that requires detailed knowledge of the material properties of cellular compartments, essentially requiring a material science of the cell. In a similar vein, we suggest that quantitative biochemical experiments in vitro should be accompanied by corresponding experiments in vivo, as many newly relevant cellular processes are highly context-dependent. In essence, this constitutes a call for chemical biologists to convert their discipline from a proof-of-principle science to an area that could rightfully be called quantitative biochemistry in living cells. In this essay, we discuss novel techniques and experimental strategies with regard to their potential to fulfill such ambitious aims.
Cellular compartmentalization of secondary metabolism
USDA-ARS?s Scientific Manuscript database
Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors sh...
Biochemical mechanisms of cisplatin cytotoxicity.
Cepeda, Victoria; Fuertes, Miguel A; Castilla, Josefina; Alonso, Carlos; Quevedo, Celia; Pérez, Jose M
2007-01-01
Since the discovery by Rosenberg and collaborators of the antitumor activity of cisplatin 35 years ago, three platinum antitumor drugs (cisplatin, carboplatin and oxaliplatin) have enjoyed a huge clinical and commercial hit. Ever since the initial discovery of the anticancer activity of cisplatin, major efforts have been devoted to elucidate the biochemical mechanisms of antitumor activity of cisplatin in order to be able to rationally design novel platinum based drugs with superior pharmacological profiles. In this report we attempt to provide a current picture of the known facts pertaining to the mechanism of action of the drug, including those involved in drug uptake, DNA damage signals transduction, and cell death through apoptosis or necrosis. A deep knowledge of the biochemical mechanisms, which are triggered in the tumor cell in response to cisplatin injury not only may lead to the design of more efficient platinum antitumor drugs but also may provide new therapeutic strategies based on the biochemical modulation of cisplatin activity.
Hematological and plasma biochemical values of the greater glider in Australia.
Viggers, K L; Lindenmayer, D B
2001-04-01
Reference hematological and plasma biochemical values are presented for the greater glider (Petauroides volans) at Tumut (southeastern New South Wales, Australia). Nineteen animals were sampled during a capture period of 1 wk in August 1999. Values for red cell counts were significantly higher in male animals (mean +/- SE; males: 5.6 +/- 0.1; females: 5.2 +/- 0.1). Young animals had higher white cell counts than older ones (mean +/- SE; young: 4.9 +/- 0.4; older: 2.8 +/- 0.4). Lymphocytes were the predominant white blood cell type in this species.
NASA Technical Reports Server (NTRS)
Ohi, S.; Kindred, R. P.; Roach, A-N.; Edossa, A.; Kim, B. C.; Gonda, S. R.; Emami, K.
2004-01-01
Exposure to cosmic radiation can cause chromosomal mutations, which may lead to cancer in astronauts engaged in space exploration. Therefore, our goals are to develop countermeasures to prevent space-induced cancer using hematopoietic stem cell therapy (HSCT) and gene therapy. This presentation focuses on HSCT for cancer. Our previous experiments on a simulated, space-induced immuno-deficiency model (mouse hind limb unloading ) indicated that transplanted hematopoietic stem cells (HSCs) could enhance the host's immunity by effectively eliminating bacterial infection (Ohi S, et. al. J Grav Physiol 10, P63-64, 2003; Ohi S, et. al. Proceedings of the Space Technology and Applications International Forum (STAIF) . American Institute of Physics, New York, pp. 938-950, 2004). Hence, we hypothesized that the HSCs might be effective in combating cancer as well. Studies of cocultured mouse HSCs with beta-galactosidase marked rat gliosarcoma spheroids (9L/lacZ), a cancer model, indicated antagonistic interactions , resulting in destruction of the spheroids by HSCs. Trypan Blue dye-exclusion assays were consistent with the conclusion. These results show potential usehlness of HSCT for cancer. Currently, the NASA Hydrodynamic Focusing Bioreactor (HFB), a space analog tissue/cell culture system, is being used to study invasion of the gliosarcoma (GS) spheroids into mouse brain with or without co-cultured HSCs. This may simulate the metastasis of gliosarcoma to brain. There is a tendency for the HSCs to inhibit invasion of GS spheroids into brain, as evidenced by the X-gal staining.
The Malleable Nature of the Budding Yeast Nuclear Envelope: Flares, Fusion, and Fenestrations.
Meseroll, Rebecca A; Cohen-Fix, Orna
2016-11-01
In eukaryotes, the nuclear envelope (NE) physically separates nuclear components and activities from rest of the cell. The NE also provides rigidity to the nucleus and contributes to chromosome organization. At the same time, the NE is highly dynamic; it must change shape and rearrange its components during development and throughout the cell cycle, and its morphology can be altered in response to mutation and disease. Here we focus on the NE of budding yeast, Saccharomyces cerevisiae, which has several unique features: it remains intact throughout the cell cycle, expands symmetrically during interphase, elongates during mitosis and, expands asymmetrically during mitotic delay. Moreover, its NE is safely breached during mating and when large structures, such as nuclear pore complexes and the spindle pole body, are embedded into its double membrane. The budding yeast NE lacks lamins and yet the nucleus is capable of maintaining a spherical shape throughout interphase. Despite these eccentricities, studies of the budding yeast NE have uncovered interesting, and likely conserved, processes that contribute to NE dynamics. In particular, we discuss the processes that drive and enable NE expansion and the dramatic changes in the NE that lead to extensions and fenestrations. J. Cell. Physiol. 231: 2353-2360, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Solinas, Sergio; Forti, Lia; Cesana, Elisabetta; Mapelli, Jonathan; De Schutter, Erik; D'Angelo, Egidio
2007-01-01
The Golgi cells have been recently shown to beat regularly in vitro (Forti et al., 2006. J. Physiol. 574, 711–729). Four main currents were shown to be involved, namely a persistent sodium current (I Na-p), an h current (I h), an SK-type calcium-dependent potassium current (I K-AHP), and a slow M-like potassium current (I K-slow). These ionic currents could take part, together with others, also to different aspects of neuronal excitability like responses to depolarizing and hyperpolarizing current injection. However, the ionic mechanisms and their interactions remained largely hypothetical. In this work, we have investigated the mechanisms of Golgi cell excitability by developing a computational model. The model predicts that pacemaking is sustained by subthreshold oscillations tightly coupled to spikes. I Na-p and I K-slow emerged as the critical determinants of oscillations. I h also played a role by setting the oscillatory mechanism into the appropriate membrane potential range. I K-AHP, though taking part to the oscillation, appeared primarily involved in regulating the ISI following spikes. The combination with other currents, in particular a resurgent sodium current (I Na-r) and an A-current (I K-A), allowed a precise regulation of response frequency and delay. These results provide a coherent reconstruction of the ionic mechanisms determining Golgi cell intrinsic electroresponsiveness and suggests important implications for cerebellar signal processing, which will be fully developed in a companion paper (Solinas et al., 2008. Front. Neurosci. 2:4). PMID:18946520
NASA Astrophysics Data System (ADS)
Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk
2015-07-01
The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.
Benito, M; Whitelaw, E; Williamson, D H
1979-01-01
The rates of ketogenesis from endogenous substrates, butyrate or oleate, have been measured in isolated hepatocytes from suckling and weanling rats. Ketogenesis from endogenous substrate and from oleate decreased on weaning, whereas the rate from butyrate remained unchanged. It is concluded that the major site of regulation of ketogenesis during this period of development involves the disposal of long-chain fatty acyl-CoA between the esterification and beta-oxidation pathways. Modulators of lipogenesis [dihydroxyacetone and 5-(tetradecyloxy)-2-furoic acid] did not alter the rate of ketogenesis in hepatocytes from suckling rats, and it is suggested that this is due to the low rate of lipogenesis in these cells. Hepatocytes from fed weanling rats have a high rate of lipogenesis and evidence is presented for a reciprocal relationship between ketogenesis and lipogenesis, and ketogenesis, and esterification in these cells. Dibutyryl cyclic AMP stimulated ketogenesis from oleate in hepatocytes from fed weanling rats, even in the presence of an inhibitor of lipogenesis [5-(tetradecyloxy)-2-furoic acid], but not in cells from suckling rats. It is suggested that cyclic AMP may act via inhibition of esterification and that in hepatocytes from suckling rats ketogenesis is already maximally stimulated by the high basal concentrations of cyclic AMP [Beaudry, Chiasson & Exton (1977) Am. J. Physiol. 233, E175--E180]. PMID:226064
Thyroid Hormone, Cancer, and Apoptosis.
Lin, Hung-Yun; Chin, Yu-Tan; Yang, Yu-Chen S H; Lai, Husan-Yu; Wang-Peng, Jacqueline; Liu, Leory F; Tang, Heng-Yuan; Davis, Paul J
2016-06-13
Thyroid hormones play important roles in regulating normal metabolism, development, and growth. They also stimulate cancer cell proliferation. Their metabolic and developmental effects and growth effects in normal tissues are mediated primarily by nuclear hormone receptors. A cell surface receptor for the hormone on integrin [alpha]vβ3 is the initiation site for effects on tumor cells. Clinical hypothyroidism may retard cancer growth, and hyperthyroidism was recently linked to the prevalence of certain cancers. Local levels of thyroid hormones are controlled through activation and deactivation of iodothyronine deiodinases in different organs. The relative activities of different deiodinases that exist in tissues or organs also affect the progression and development of specific types of cancers. In this review, the effects of thyroid hormone on signaling pathways in breast, brain, liver, thyroid, and colon cancers are discussed. The importance of nuclear thyroid hormone receptor isoforms and of the hormone receptor on the extracellular domain of integrin [alpha]vβ3 as potential cancer risk factors and therapeutic targets are addressed. We analyze the intracellular signaling pathways activated by thyroid hormones in cancer progression in hyperthyroidism or at physiological concentrations in the euthyroid state. Determining how to utilize the deaminated thyroid hormone analog (tetrac), and its nanoparticulate derivative to reduce risks of cancer progression, enhance therapeutic outcomes, and prevent cancer recurrence is also deliberated. © 2016 American Physiological Society. Compr Physiol 6:1221-1237, 2016. Copyright © 2016 John Wiley & Sons, Inc.
Chondroptosis in Alkaptonuric Cartilage
Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio
2015-01-01
Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above‐mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. J. Cell. Physiol. 230: 1148–1157, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25336110
Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes.
Tahrir, Farzaneh G; Knezevic, Tijana; Gupta, Manish K; Gordon, Jennifer; Cheung, Joseph Y; Feldman, Arthur M; Khalili, Kamel
2017-04-01
Mitochondrial abnormalities impact the development of myofibrillar myopathies. Therefore, understanding the mechanisms underlying the removal of dysfunctional mitochondria from cells is of great importance toward understanding the molecular events involved in the genesis of cardiomyopathy. Earlier studies have ascribed a role for BAG3 in the development of cardiomyopathy in experimental animals leading to the identification of BAG3 mutations in patients with heart failure which may play a part in the onset of disease development and progression. BAG3 is co-chaperone of heat shock protein 70 (HSP70), which has been shown to modulate apoptosis and autophagy, in several cell models. In this study, we explore the potential role of BAG3 in mitochondrial quality control. We demonstrate that siRNA mediated suppression of BAG3 production in neonatal rat ventricular cardiomyocytes (NRVCs) significantly elevates the level of Parkin, a key component of mitophagy. We found that both BAG3 and Parkin are recruited to depolarized mitochondria and promote mitophagy. Suppression of BAG3 in NRVCs significantly reduces autophagy flux and eliminates clearance of Tom20, an essential import receptor for mitochondria proteins, after induction of mitophagy. These observations suggest that BAG3 is critical for the maintenance of mitochondrial homeostasis under stress conditions, and disruptions in BAG3 expression impact cardiomyocyte function. J. Cell. Physiol. 232: 797-805, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Xiang, Qiuling; Hong, Dongxi; Liao, Yan; Cao, Yong; Liu, Muyun; Pang, Jun; Zhou, Junjie; Wang, Guang; Yang, Renhao; Wang, Maosheng; Xiang, Andy Peng
2017-05-01
Mesenchymal stem cells (MSCs) are a promising cell resource for the treatment of ischemic diseases, partially through paracrine effects. One of the major obstacles of MSC treatment is the poor survival rate and low efficiency of transplanted stem cells due to ischemic or inflammatory environments. Gremlin1 (GREM1), a regulator of growth, differentiation and development, has been identified as a novel proangiogenic factor. However, the role and mechanism of GREM1 in MSCs remains unclear. Therefore, we assessed the putative beneficial effects of GREM1 on MSC-based therapy for hindlimb ischemia. The lentiviral vector, EF1a-GREM1, was constructed using the Multisite Gateway System and used to transduce MSCs. In vitro studies demonstrated increased survival of GREM1-MSCs exposed to H 2 O 2 , which is consistent with the activation of caspase-3. Conditional medium from GREM1-MSCs (GREM1-MSC-CM) increased the anti-apoptotic effects of human umbilical vein endothelial cells (HUVECs), and this effect was attenuated by treatment with the PI3K/Akt pathway inhibitor LY294002. MSCs modified with GREM1 could significantly increase blood perfusion of the ischemic hindlimb in vivo in a mouse model, which was correlated to improved MSC survival. This study demonstrates that overexpression of GREM1 in MSCs have greater therapeutic effects against ischemia compared with wild-type MSCs by enhancing the survival of MSCs and ECs, which may provide new tools for studies investigating the treatment of ischemic diseases. J. Cell. Physiol. 232: 996-1007, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J
2016-10-01
Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A generic, cost-effective, and scalable cell lineage analysis platform
Biezuner, Tamir; Spiro, Adam; Raz, Ofir; Amir, Shiran; Milo, Lilach; Adar, Rivka; Chapal-Ilani, Noa; Berman, Veronika; Fried, Yael; Ainbinder, Elena; Cohen, Galit; Barr, Haim M.; Halaban, Ruth; Shapiro, Ehud
2016-01-01
Advances in single-cell genomics enable commensurate improvements in methods for uncovering lineage relations among individual cells. Current sequencing-based methods for cell lineage analysis depend on low-resolution bulk analysis or rely on extensive single-cell sequencing, which is not scalable and could be biased by functional dependencies. Here we show an integrated biochemical-computational platform for generic single-cell lineage analysis that is retrospective, cost-effective, and scalable. It consists of a biochemical-computational pipeline that inputs individual cells, produces targeted single-cell sequencing data, and uses it to generate a lineage tree of the input cells. We validated the platform by applying it to cells sampled from an ex vivo grown tree and analyzed its feasibility landscape by computer simulations. We conclude that the platform may serve as a generic tool for lineage analysis and thus pave the way toward large-scale human cell lineage discovery. PMID:27558250
Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V
2009-10-01
Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.
George, Thampi; Watts, Bruns A.
2015-01-01
High-mobility group box 1 (HMGB1) is a damage-associated molecule implicated in mediating kidney dysfunction in sepsis and sterile inflammatory disorders. HMGB1 is a nuclear protein released extracellularly in response to infection or injury, where it interacts with Toll-like receptor 4 (TLR4) and other receptors to mediate inflammation. Previously, we demonstrated that LPS inhibits HCO3- absorption in the medullary thick ascending limb (MTAL) through a basolateral TLR4-ERK pathway (Watts BA III, George T, Sherwood ER, Good DW. Am J Physiol Cell Physiol 301: C1296–C1306, 2011). Here, we examined whether HMGB1 could inhibit HCO3- absorption through the same pathway. Adding HMGB1 to the bath decreased HCO3− absorption by 24% in isolated, perfused rat and mouse MTALs. In contrast to LPS, inhibition by HMGB1 was preserved in MTALs from TLR4−/− mice and was unaffected by ERK inhibitors. Inhibition by HMGB1 was eliminated by the receptor for advanced glycation end products (RAGE) antagonist FPS-ZM1 and by neutralizing anti-RAGE antibody. Confocal immunofluorescence showed expression of RAGE in the basolateral membrane domain. Inhibition of HCO3−absorption by HMGB1 through RAGE was additive to inhibition by LPS through TLR4 and to inhibition by Gram-positive bacterial molecules through TLR2. Bath amiloride, which selectively prevents inhibition of MTAL HCO3− absorption mediated through Na+/H+ exchanger 1 (NHE1), eliminated inhibition by HMGB1. We conclude that HMGB1 inhibits MTAL HCO3− absorption through a RAGE-dependent pathway distinct from TLR4-mediated inhibition by LPS. These studies provide new evidence that HMGB1-RAGE signaling acts directly to impair the transport function of renal tubules. They reveal a novel paradigm for sepsis-induced renal tubule dysfunction, whereby exogenous pathogen-associated molecules and endogenous damage-associated molecules act directly and independently to inhibit MTAL HCO3− absorption through different receptor signaling pathways. PMID:26180239
Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.
Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J
2017-06-01
Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic inflammation and suggest that microbial metabolism of UDCA is necessary for the full expression of its protective actions. NEW & NOTEWORTHY On the basis of its cytoprotective and anti-inflammatory actions, the secondary bile acid ursodeoxycholic acid (UDCA) has well-established uses in both traditional and Western medicine. We identify a new role for the primary metabolite of UDCA, lithocholic acid, as a potent inhibitor of intestinal inflammatory responses, and we present data to suggest that microbial metabolism of UDCA is necessary for the full expression of its protective effects against colonic inflammation. Copyright © 2017 the American Physiological Society.
Cellular and molecular mechanisms for the bone response to mechanical loading
NASA Technical Reports Server (NTRS)
Bloomfield, S. A.
2001-01-01
To define the cellular and molecular mechanisms for the osteogenic response of bone to increased loading, several key steps must be defined: sensing of the mechanical signal by cells in bone, transduction of the mechanical signal to a biochemical one, and transmission of that biochemical signal to effector cells. Osteocytes are likely to serve as sensors of loading, probably via interstitial fluid flow produced during loading. Evidence is presented for the role of integrins, the cell's actin cytoskeleton, G proteins, and various intracellular signaling pathways in transducing that mechanical signal to a biochemical one. Nitric oxide, prostaglandins, and insulin-like growth factors all play important roles in these pathways. There is growing evidence for modulation of these mechanotransduction steps by endocrine factors, particularly parathyroid hormone and estrogen. The efficiency of this process is also impaired in the aged animal, yet what remains undefined is at what step mechanotransduction is affected.
Histochemical identification of malignant and premalignant lesions
NASA Astrophysics Data System (ADS)
Liebow, Charles; Maloney, M. J.
1991-06-01
Malignant and transforming cells can be identified by biochemical parameters which can be used to localize lesions in situ for laser surgery. These cells express unique proteins, proteins in unusual quantities, or other biochemical alterations which can be utilized to image lesions of such cells. Several methods have been identified, both in vitro and in vivo, to identify such lesions. Several antibodies were examined for their properties of tissue identification, including CEA, F36/22, and AE1/AE3. F36/22, an antibody developed by M. T. Chu against human breast cancer cells, associated with two lines of oral cancer (KB and HCPC), and against two naturally occurring human oral squamous cell cancers. CEA, an antibody developed against human colon cancer, also reacted against both cell lines and both pathological samples. AE1/AE3, developed against normal fibrous components, also reacted against the samples, but in a much less regular manner. F36/22 associated with the histologically identifiably most dedifferentiated cells at the leading edge of the invading cancer. CEA, on the other hand, associated with more quiescent, older, established cancer cells. This demonstrates that antibodies developed against cancers of different organs can be used to identify a wide variety of cancers, and may have prognostic value. F36/22 coupled to fluorescein was used to identify oral cancer cells. Other properties of cancers and developing cancers can also be exploited to identify cancers, including their over-expression of tyrosine kinase and tyrosine kinase stimulating hormones such as Epidermal Growth Factor (EGF). A model of premalignant lesion produced in the hamster buccal cheek pouch with 6 week application of DMBA over-expresses constitutive tyrosine kinase which can be demonstrated biochemically. This initiated lesion can be promoted to frank cancer by growth factors released in response to laser surgery. Preliminary results suggest that these lesions can be identified by Photofrin II uptake. This work suggests that biochemical properties of cancers can be used to identify premalignant cells.
Li, Fangting
2017-01-01
The notion of an attractor has been widely employed in thinking about the nonlinear dynamics of organisms and biological phenomena as systems and as processes. The notion of a landscape with valleys and mountains encoding multiple attractors, however, has a rigorous foundation only for closed, thermodynamically non-driven, chemical systems, such as a protein. Recent advances in the theory of nonlinear stochastic dynamical systems and its applications to mesoscopic reaction networks, one reaction at a time, have provided a new basis for a landscape of open, driven biochemical reaction systems under sustained chemostat. The theory is equally applicable not only to intracellular dynamics of biochemical regulatory networks within an individual cell but also to tissue dynamics of heterogeneous interacting cell populations. The landscape for an individual cell, applicable to a population of isogenic non-interacting cells under the same environmental conditions, is defined on the counting space of intracellular chemical compositions x = (x1,x2, … ,xN) in a cell, where xℓ is the concentration of the ℓth biochemical species. Equivalently, for heterogeneous cell population dynamics xℓ is the number density of cells of the ℓth cell type. One of the insights derived from the landscape perspective is that the life history of an individual organism, which occurs on the hillsides of a landscape, is nearly deterministic and ‘programmed’, while population-wise an asynchronous non-equilibrium steady state resides mostly in the lowlands of the landscape. We argue that a dynamic ‘blue-sky’ bifurcation, as a representation of Waddington's landscape, is a more robust mechanism for a cell fate decision and subsequent differentiation than the widely pictured pitch-fork bifurcation. We revisit, in terms of the chemostatic driving forces upon active, living matter, the notions of near-equilibrium thermodynamic branches versus far-from-equilibrium states. The emergent landscape perspective permits a quantitative discussion of a wide range of biological phenomena as nonlinear, stochastic dynamics. PMID:28490602
2013-01-01
Background Cell migration is a fundamental biological process and has an important role in the developing brain by regulating a highly specific pattern of connections between nerve cells. Cell migration is required for axonal guidance and neurite outgrowth and involves a series of highly co-ordinated and overlapping signalling pathways. The non-receptor tyrosine kinase, Focal Adhesion Kinase (FAK) has an essential role in development and is the most highly expressed kinase in the developing CNS. FAK activity is essential for neuronal cell adhesion and migration. Results The objective of this study was to optimise a protocol for the differentiation of the neuroblastoma cell line, SH-SY5Y. We determined the optimal extracellular matrix proteins and growth factor combinations required for the optimal differentiation of SH-SY5Y cells into neuronal-like cells and determined those conditions that induce the expression of FAK. It was confirmed that the cells were morphologically and biochemically differentiated when compared to undifferentiated cells. This is in direct contrast to commonly used differentiation methods that induce morphological differentiation but not biochemical differentiation. Conclusions We conclude that we have optimised a protocol for the differentiation of SH-SY5Y cells that results in a cell population that is both morphologically and biochemically distinct from undifferentiated SH-SY5Y cells and has a distinct adhesion and spreading pattern and display extensive neurite outgrowth. This protocol will provide a neuronal model system for studying FAK activity during cell adhesion and migration events. PMID:24025096
Godlewska, Marlena; Krasuska, Wanda
2018-01-01
Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes. PMID:29513734
Godlewska, Marlena; Krasuska, Wanda; Czarnocka, Barbara
2018-01-01
Thyroid peroxidase (TPO) is an enzyme and autoantigen expressed in thyroid and breast tissues. Thyroid TPO undergoes a complex maturation process however, nothing is known about post-translational modifications of breast-expressed TPO. In this study, we have investigated the biochemical properties of TPO expressed in normal and cancerous human breast tissues, and the maturation process and antigenicity of TPO present in a panel of human breast tissue-derived cell lines. We found that the molecular weight of breast TPO was slightly lower than that of thyroid TPO due to decreased glycosylation and as suggest results of Western blot also shorter amino acid chain. Breast TPO exhibit enzymatic activity and isoelectric point comparable to that of thyroid TPO. The biochemical properties of TPO expressed in mammary cell lines and normal thyrocytes are similar regarding glycan content, molecular weight and isoelectric point. However, no peroxidase activity and dimer formation was detected in any of these cell lines since the majority of TPO protein was localized in the cytoplasmic compartment, and the TPO expression at the cell surface was too low to detect its enzymatic activity. Lactoperoxidase, a protein highly homologous to TPO expressed also in breast tissues, does not influence the obtained data. TPO expressed in the cell lines was recognized by a broad panel of TPO-specific antibodies. Although some differences in biochemical properties between thyroid and breast TPO were observed, they do not seem to be critical for the overall three-dimensional structure. This conclusion is supported by the fact that TPO expressed in breast tissues and cell lines reacts well with conformation-sensitive antibodies. Taking into account a close resemblance between both proteins, especially high antigenicity, future studies should investigate the potential immunotherapies directed against breast-expressed TPO and its specific epitopes.
Similar burrow architecture of three arid-zone scorpion species implies similar ecological function.
Adams, Amanda M; Marais, Eugene; Turner, J Scott; Prendini, Lorenzo; Pinshow, Berry
2016-08-01
Many animals reside in burrows that may serve as refuges from predators and adverse environmental conditions. Burrow design varies widely among and within taxa, and these structures are adaptive, fulfilling physiological (and other) functions. We examined the burrow architecture of three scorpion species of the family Scorpionidae: Scorpio palmatus from the Negev desert, Israel; Opistophthalmus setifrons, from the Central Highlands, Namibia; and Opistophthalmus wahlbergii from the Kalahari desert, Namibia. We hypothesized that burrow structure maintains temperature and soil moisture conditions optimal for the behavior and physiology of the scorpion. Casts of burrows, poured in situ with molten aluminum, were scanned in 3D to quantify burrow structure. Three architectural features were common to the burrows of all species: (1) a horizontal platform near the ground surface, long enough to accommodate the scorpion, located just below the entrance, 2-5 cm under the surface, which may provide a safe place where the scorpion can monitor the presence of potential prey, predators, and mates and where the scorpion warms up before foraging; (2) at least two bends that might deter incursion by predators and may reduce convective ventilation, thereby maintaining relatively high humidity and low temperature; and (3) an enlarged terminal chamber to a depth at which temperatures are almost constant (±2-4 °C). These common features among the burrows of three different species suggest that they are important for regulating the physical environment of their inhabitants and that burrows are part of scorpions' "extended physiology" (sensu Turner, Physiol Biochem Zool 74:798-822, 2000).
Similar burrow architecture of three arid-zone scorpion species implies similar ecological function
NASA Astrophysics Data System (ADS)
Adams, Amanda M.; Marais, Eugene; Turner, J. Scott; Prendini, Lorenzo; Pinshow, Berry
2016-08-01
Many animals reside in burrows that may serve as refuges from predators and adverse environmental conditions. Burrow design varies widely among and within taxa, and these structures are adaptive, fulfilling physiological (and other) functions. We examined the burrow architecture of three scorpion species of the family Scorpionidae: Scorpio palmatus from the Negev desert, Israel; Opistophthalmus setifrons, from the Central Highlands, Namibia; and Opistophthalmus wahlbergii from the Kalahari desert, Namibia. We hypothesized that burrow structure maintains temperature and soil moisture conditions optimal for the behavior and physiology of the scorpion. Casts of burrows, poured in situ with molten aluminum, were scanned in 3D to quantify burrow structure. Three architectural features were common to the burrows of all species: (1) a horizontal platform near the ground surface, long enough to accommodate the scorpion, located just below the entrance, 2-5 cm under the surface, which may provide a safe place where the scorpion can monitor the presence of potential prey, predators, and mates and where the scorpion warms up before foraging; (2) at least two bends that might deter incursion by predators and may reduce convective ventilation, thereby maintaining relatively high humidity and low temperature; and (3) an enlarged terminal chamber to a depth at which temperatures are almost constant (±2-4 °C). These common features among the burrows of three different species suggest that they are important for regulating the physical environment of their inhabitants and that burrows are part of scorpions' "extended physiology" ( sensu Turner, Physiol Biochem Zool 74:798-822, 2000).
Gugiu, Gabriel B
2017-01-01
Lipidomics refers to the large-scale study of lipids in biological systems (Wenk, Nat Rev Drug Discov 4(7):594-610, 2005; Rolim et al., Gene 554(2):131-139, 2015). From a mass spectrometric point of view, by lipidomics we understand targeted or untargeted mass spectrometric analysis of lipids using either liquid chromatography (LC) (Castro-Perez et al., J Proteome Res 9(5):2377-2389, 2010) or shotgun (Han and Gross, Mass Spectrom Rev 24(3):367-412, 2005) approaches coupled with tandem mass spectrometry. This chapter describes the former methodology, which is becoming rapidly the preferred method for lipid identification owing to similarities with established omics workflows, such as proteomics (Washburn et al., Nat Biotechnol 19(3):242-247, 2001) or genomics (Yadav, J Biomol Tech: JBT 18(5):277, 2007). The workflow described consists in lipid extraction using a modified Bligh and Dyer method (Bligh and Dyer, Can J Biochem Physiol 37(8):911-917, 1959), ultra high pressure liquid chromatography fractionation of lipid samples on a reverse phase C18 column, followed by tandem mass spectrometric analysis and in silico database search for lipid identification based on MSMS spectrum matching (Kind et al., Nat Methods 10(8):755-758, 2013; Yamada et al., J Chromatogr A 1292:211-218, 2013; Taguchi and Ishikawa, J Chromatogr A 1217(25):4229-4239, 2010; Peake et al., Thermoscientifices 1-3, 2015) and accurate mass of parent ion (Sud et al., Nucleic Acids Res 35(database issue):D527-D532, 2007; Wishart et al., Nucleic Acids Res 35(database):D521-D526, 2007).
Learned helplessness in the rat: improvements in validity and reliability.
Vollmayr, B; Henn, F A
2001-08-01
Major depression has a high prevalence and a high mortality. Despite many years of research little is known about the pathophysiologic events leading to depression nor about the causative molecular mechanisms of antidepressant treatment leading to remission and prevention of relapse. Animal models of depression are urgently needed to investigate new hypotheses. The learned helplessness paradigm initially described by Overmier and Seligman [J. Comp. Physiol. Psychol. 63 (1967) 28] is the most widely studied animal model of depression. Animals are exposed to inescapable shock and subsequently tested for a deficit in acquiring an avoidance task. Despite its excellent validity concerning the construct of etiology, symptomatology and prediction of treatment response [Clin. Neurosci. 1 (1993) 152; Trends Pharmacol. Sci. 12 (1991) 131] there has been little use of the model for the investigation of recent theories on the pathogenesis of depression. This may be due to reported difficulties in reliability of the paradigm [Animal Learn. Behav. 4 (1976) 401; Pharmacol. Biochem. Behav. 36 (1990) 739]. The aim of the current study was therefore to improve parameters for inescapable shock and learned helplessness testing to minimize artifacts and random error and yield a reliable fraction of helpless animals after shock exposure. The protocol uses mild current which induces helplessness only in some of the animals thereby modeling the hypothesis of variable predisposition for depression in different subjects [Psychopharmacol. Bull. 21 (1985) 443; Neurosci. Res. 38 (200) 193]. This allows us to use animals which are not helpless after inescapable shock as a stressed control, but sensitivity, specificity and variability of test results have to be reassessed.
Far Forward Battlefield Telemedicine: Ultrasonic Guidance in Diagnosis and Emergency Therapeutics
2006-08-01
bicuspid aortic stenosis . J Am Soc Echocardiogr. 2005 Dec;18(12):1392-8. 44. Eto Y, Yamada H, Shin JH, Agler DA, Tsujino H, Qin JX, Saracino G, Greenberg...nitroprusside in aortic stenosis associated with severe heart failure: pressure- volume loop analysis using a numerical model. Am J Physiol Heart Circ...3D echocardiography, including exercise and intraoperative (epicardial) examinations, with quantitative validation in aneurysmal ventricles,3 aortic
1994-01-01
Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing , and climate SCOTT J. MONTAIN, MICHAEL N...effects of exercise 26), there remains little information to predict the inci- intensity, protective clothing , and climate. J. AppL PhysioL dence of...that pre- exercise intensity, protective clothing level, and climate on dict the physiological responses and work capability dur- physiological tolerance
Effect of Chronic Hypercapnia on Body Temperature Regulation
1974-08-01
has found further support by Cranston, et al8 providing evidence concerning the effects of endogenous noradrenaline changes upon body tem...produced in chronic hypercapnia in guinea pigs are related to the changes in the concen- trations of the endogenous epinephrine and serotonin in the...Luff, R. H. and Rawlins, M. D. Evidence concerning the effects of endogenous noradrenaline upon body temperature in cats and rabbits. J Physiol 212
Retrograde Amnesia in Rats, Produced by Electron Beam Exposure.
1983-02-01
radiation. Am J Physiol 215:803-806, 1968. 6. Cronholm, B., and L. Molander. Memory disturbances after electroconvulsive therapy : conditions one month after...stimuli have been demonstrated to be effective in producing RA: e.g., electroconvulsive shock (ECS) (14,19); hypoxia (9); and drugs (3,7). Preliminary...effect argues against ionization as a mechanism of CNS activation. Current induction via electroconvulsive shock (ECS) is known to produce RA (14,19
Differentiated Ratings of Perceived Exertion during Physical Exercise
1982-01-01
the threshold Differentiated perceptions of exertion: part I. Mode of integration of anaerobic work. Int. Z. angew. Physiol. 27:311-328, 1969. of...a. (41) anaerobic metabolites Pandoll & Noble (43) se tiMs from muscles, joints, tendM Stamford & Noble (SO)* muscle temperature, mu lactate, EK pror...from a marathon run. Med. Set. leading to increased effort, leg fatigue, and respiratory distress during Sports 11:239-243, 1979. prolonged, strenuous
The Physiology of Fear: Reconceptualizing the Role of the Central Amygdala in Fear Learning.
Keifer, Orion P; Hurt, Robert C; Ressler, Kerry J; Marvar, Paul J
2015-09-01
The historically understood role of the central amygdala (CeA) in fear learning is to serve as a passive output station for processing and plasticity that occurs elsewhere in the brain. However, recent research has suggested that the CeA may play a more dynamic role in fear learning. In particular, there is growing evidence that the CeA is a site of plasticity and memory formation, and that its activity is subject to tight regulation. The following review examines the evidence for these three main roles of the CeA as they relate to fear learning. The classical role of the CeA as a routing station to fear effector brain structures like the periaqueductal gray, the lateral hypothalamus, and paraventricular nucleus of the hypothalamus will be briefly reviewed, but specific emphasis is placed on recent literature suggesting that the CeA 1) has an important role in the plasticity underlying fear learning, 2) is involved in regulation of other amygdala subnuclei, and 3) is itself regulated by intra- and extra-amygdalar input. Finally, we discuss the parallels of human and mouse CeA involvement in fear disorders and fear conditioning, respectively. ©2015 Int. Union Physiol. Sci./Am. Physiol. Soc.
Organ-specific physiological responses to acute physical exercise and long-term training in humans.
Heinonen, Ilkka; Kalliokoski, Kari K; Hannukainen, Jarna C; Duncker, Dirk J; Nuutila, Pirjo; Knuuti, Juhani
2014-11-01
Virtually all tissues in the human body rely on aerobic metabolism for energy production and are therefore critically dependent on continuous supply of oxygen. Oxygen is provided by blood flow, and, in essence, changes in organ perfusion are also closely associated with alterations in tissue metabolism. In response to acute exercise, blood flow is markedly increased in contracting skeletal muscles and myocardium, but perfusion in other organs (brain and bone) is only slightly enhanced or is even reduced (visceral organs). Despite largely unchanged metabolism and perfusion, repeated exposures to altered hemodynamics and hormonal milieu produced by acute exercise, long-term exercise training appears to be capable of inducing effects also in tissues other than muscles that may yield health benefits. However, the physiological adaptations and driving-force mechanisms in organs such as brain, liver, pancreas, gut, bone, and adipose tissue, remain largely obscure in humans. Along these lines, this review integrates current information on physiological responses to acute exercise and to long-term physical training in major metabolically active human organs. Knowledge is mostly provided based on the state-of-the-art, noninvasive human imaging studies, and directions for future novel research are proposed throughout the review. ©2014 Int. Union Physiol. Sci./Am. Physiol. Soc.
Cockrell, Allison L; Fitzgerald, Lisa A; Cusick, Kathleen D; Barlow, Daniel E; Tsoi, Stanislav D; Soto, Carissa M; Baldwin, Jeffrey W; Dale, Jason R; Morris, Robert E; Little, Brenda J; Biffinger, Justin C
2015-09-01
A thermophile, Thermus scotoductus SA-01, was cultured within a constant-temperature (65°C) microwave (MW) digester to determine if MW-specific effects influenced the growth and physiology of the organism. As a control, T. scotoductus cells were also cultured using convection heating at the same temperature as the MW studies. Cell growth was analyzed by optical density (OD) measurements, and cell morphologies were characterized using electron microscopy imaging (scanning electron microscopy [SEM] and transmission electron microscopy [TEM]), dynamic light scattering (DLS), and atomic force microscopy (AFM). Biophysical properties (i.e., turgor pressure) were also calculated with AFM, and biochemical compositions (i.e., proteins, nucleic acids, fatty acids) were analyzed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Gas chromatography-mass spectrometry (GC-MS) was used to analyze the fatty acid methyl esters extracted from cell membranes. Here we report successful cultivation of a thermophile with only dielectric heating. Under the MW conditions for growth, cell walls remained intact and there were no indications of membrane damage or cell leakage. Results from these studies also demonstrated that T. scotoductus cells grown with MW heating exhibited accelerated growth rates in addition to altered cell morphologies and biochemical compositions compared with oven-grown cells. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Tendon and ligament as novel cell sources for engineering the knee meniscus.
Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A
2016-12-01
The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Tendon and ligament as novel cell sources for engineering the knee meniscus
Hadidi, Pasha; Paschos, Nikolaos K.; Huang, Brian J.; Aryaei, Ashkan; Hu, Jerry C.; Athanasiou, Kyriacos A.
2016-01-01
Objective The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Method Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. Results In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Conclusion Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. PMID:27473559
Wiggers, Erin Callie; Johnson, William; Tucci, Michelle; Benghuzzi, Hamed
2011-01-01
Osteomyelitis is a bacterial infection of the bone that occurs frequently as a complication of open fractures and various kinds of orthopedic surgery. This infection can often lead to more extensive surgeries and even death of the patient. In animal models of osteomyelitis, the site of infection by Staphylococcus aureus was observed to have high numbers of both macrophages and osteoclasts, both of which may contribute to large amounts of osteolysis and tissue damage. In order to evaluate the immune response in both types of cells, two cells lines, a macrophage cell line and a macrophage cell line stimulated to become osteoclasts by the addition of receptor activator of nuclear-factor B (RANKL), were exposed to lipopolysaccharides, opsonized S. aureus, and unopsonized S. aureus. The results showed that both cell types activated a biochemical cascade that included the release of cytokines and nitric oxide associated with cell damage and death in response to infection. However, macrophages and osteoclasts differed in response magnitude, most likely due to differences in cell-membrane receptors. This data supports the growing body of research that links the immune and skeletal systems. Further understanding of biochemical pathways shared by the two systems could lead to significant advances in the treatment of osteomyelitis and the success of prostheses.
Nolz, Jeffrey C.; Gomez, Timothy S.; Zhu, Peimin; Li, Shuixing; Medeiros, Ricardo B.; Shimizu, Yoji; Burkhardt, Janis K.; Freedman, Bruce D.; Billadeau, Daniel D.
2007-01-01
Summary Background The engagement of the T cell receptor results in actin cytoskeletal reorganization at the immune synapse (IS) and the triggering of biochemical signaling cascades leading to gene regulation and, ultimately, cellular activation. Recent studies have identified the WAVE family of proteins as critical mediators of Rac1-induced actin reorganization in other cell types. However, whether these proteins participate in actin reorganization at the IS or signaling pathways in T cells has not been investigated. Results By using a combination of biochemical, genetic, and cell biology approaches, we provide evidence that WAVE2 is recruited to the IS, is biochemically modified, and is required for actin reorganization and β-integrin-mediated adhesion after TCR crosslinking. Moreover, we show that WAVE2 regulates calcium entry at a point distal to PLCγ1 activation and IP3-mediated store release. Conclusions These data reveal a role for WAVE2 in regulating multiple pathways leading to T cell activation. In particular, this work shows that WAVE2 is a key component of the actin regulatory machinery in T cells and that it also participates in linking intracellular calcium store depletion to calcium release-activated calcium (CRAC) channel activation. PMID:16401421
DJ-1/Park7 Sensitive Na+ /H+ Exchanger 1 (NHE1) in CD4+ T Cells.
Zhou, Yuetao; Shi, Xiaolong; Chen, Hong; Zhang, Shaqiu; Salker, Madhuri S; Mack, Andreas F; Föller, Michael; Mak, Tak W; Singh, Yogesh; Lang, Florian
2017-11-01
DJ-1/Park7 is a redox-sensitive chaperone protein counteracting oxidation and presumably contributing to the control of oxidative stress responses and thus inflammation. DJ-1 gene deletion exacerbates the progression of Parkinson's disease presumably by augmenting oxidative stress. Formation of reactive oxygen species (ROS) is paralleled by activation of the Na + /H + exchanger 1 (NHE1). ROS formation in CD4 + T cells plays a decisive role in regulating inflammatory responses. In the present study, we explored whether DJ-1 is expressed in CD4 + T cells, and affects ROS production as well as NHE1 in those cells. To this end, DJ-1 and NHE1 transcript, and protein levels were quantified by qRT-PCR and Western blotting, respectively, intracellular pH (pH i ) utilizing bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, NHE activity from realkalinization after an ammonium pulse, and ROS production utilizing 2',7' -dichlorofluorescin diacetate (DCFDA) fluorescence. As a result DJ-1 was expressed in CD4 + T cells. ROS formation, NHE1 transcript levels, NHE1 protein, and NHE activity were higher in CD4 + T cells from DJ-1 deficient mice than in CD4 + T cells from wild type mice. Antioxidant N-acetyl-cysteine (NAC) and protein tyrosine kinase (PTK) inhibitor staurosporine decreased the NHE activity in DJ-1 deficient CD4 + T cells, and blunted the difference between DJ-1 -/- and DJ-1 +/+ CD4 + T cells, an observation pointing to a role of ROS in the up-regulation of NHE1 in DJ-1 -/- CD4 + T cells. In conclusion, DJ-1 is a powerful regulator of ROS production as well as NHE1 expression and activity in CD4 + T cells. J. Cell. Physiol. 232: 3050-3059, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Uzer, Gunes; Fuchs, Robyn K; Rubin, Janet; Thompson, William R
2016-06-01
Numerous factors including chemical, hormonal, spatial, and physical cues determine stem cell fate. While the regulation of stem cell differentiation by soluble factors is well-characterized, the role of mechanical force in the determination of lineage fate is just beginning to be understood. Investigation of the role of force on cell function has largely focused on "outside-in" signaling, initiated at the plasma membrane. When interfaced with the extracellular matrix, the cell uses integral membrane proteins, such as those found in focal adhesion complexes to translate force into biochemical signals. Akin to these outside-in connections, the internal cytoskeleton is physically linked to the nucleus, via proteins that span the nuclear membrane. Although structurally and biochemically distinct, these two forms of mechanical coupling influence stem cell lineage fate and, when disrupted, often lead to disease. Here we provide an overview of how mechanical coupling occurs at the plasma and nuclear membranes. We also discuss the role of force on stem cell differentiation, with focus on the biochemical signals generated at the cell membrane and the nucleus, and how those signals influence various diseases. While the interaction of stem cells with their physical environment and how they respond to force is complex, an understanding of the mechanical regulation of these cells is critical in the design of novel therapeutics to combat diseases associated with aging, cancer, and osteoporosis. Stem Cells 2016;34:1455-1463. © 2016 AlphaMed Press.
Use of fibroblast growth factor 2 for expansion of chondrocytes and tissue engineering
NASA Technical Reports Server (NTRS)
Vunjak-Novakovic, Gordana (Inventor); Martin, Ivan (Inventor); Freed, Lisa E. (Inventor); Langer, Robert (Inventor)
2003-01-01
The present invention provides an improved method for expanding cells for use in tissue engineering. In particular the method provides specific biochemical factors to supplement cell culture medium during the expansion process in order to reproduce events occurring during embryonic development with the goal of regenerating tissue equivalents that resemble natural tissues both structurally and functionally. These specific biochemical factors improve proliferation of the cells and are capable of de-differentiation mature cells isolated from tissue so that the differentiation potential of the cells is preserved. The bioactive molecules also maintain the responsiveness of the cells to other bioactive molecules. Specifically, the invention provides methods for expanding chondrocytes in the presence of fibroblast growth factor 2 for use in regeneration of cartilage tissue.
Use of biochemical lesions for selection of human cells with hybrid cytoplasms.
Wright, W E; Hayflick, L
1975-01-01
Techniques for preparing large populations of anucleate cytoplasms from cultured eukaryotic cells have only recently been described. The principal value of anucleate cytoplasms derives from studies that can be done after they are fused to whole cells. Since present methods for the isolation of heterokaryons are unsuitable for the selection of hybrids between whole cells and anucleate cytoplasms (heteroplasmons), a selective system has been developed which is based on the capacity of anucleate cytoplasms containing active enzymes to rescue whole cells poisoned with iodoacetate. Ethidium bromide, a partially effective agent, was used in conjunction with iodoacetate to demonstrate the feasibility of selecting heterokaryons by producing complementary biochemical lesions in the parental cell strains. The potential for artifact in these systems is not, however, entirely precluded. Images PMID:1057172
Relative biological effectiveness of light ions in human tumoural cell lines: role of protein p53
NASA Technical Reports Server (NTRS)
Baggio, L.; Cavinato, M.; Cherubini, R.; Conzato, M.; Cucinotta, F.; Favaretto, S.; Gerardi, S.; Lora, S.; Stoppa, P.; Williams, J. R.
2002-01-01
Protons and alpha particles of high linear energy transfer (LET) have shown an increased relative biological effectiveness (RBE) with respect to X/gamma rays for several cellular and molecular endpoints in different in vitro cell systems. To contribute to understanding the biochemical mechanisms involved in the increased effectiveness of high LET radiation, an extensive study has been designed. The present work reports the preliminary result of this study on two human tumoural cell lines, DLD1 and HCT116, (with different p53 status), which indicate that for these cell lines, p53 does not appear to take a part in the response to radiation induced DNA damage, suggesting an alternative p53-independent pathway and a cell biochemical mechanism dependent on the cell type.
An Ultrasensitive Bacterial Motor Revealed by Monitoring Signaling Proteins in Single Cells
NASA Astrophysics Data System (ADS)
Cluzel, Philippe; Surette, Michael; Leibler, Stanislas
2000-03-01
Understanding biology at the single-cell level requires simultaneous measurements of biochemical parameters and behavioral characteristics in individual cells. Here, the output of individual flagellar motors in Escherichia coli was measured as a function of the intracellular concentration of the chemotactic signaling protein. The concentration of this molecule, fused to green fluorescent protein, was monitored with fluorescence correlation spectroscopy. Motors from different bacteria exhibited an identical steep input-output relation, suggesting that they actively contribute to signal amplification in chemotaxis. This experimental approach can be extended to quantitative in vivo studies of other biochemical networks.
Genetic and Environmental Pathways in Type 1 Diabetes Complication
2008-06-01
obese diabetic mice. Biochem Biophys Res Commun 2002. 294:592-596. 4. Beyan H, Goodier MR, Nawroly NS, Hawa MI, Bustin SA, Ogunkolade WB, Londei M...peroxidation in patients with hyperglycemic crisis . Diabetes 2004. 53:2079-2086. 14 In our second quarterly scientific progress report (09/01/07 – 11...cells induced to differentiate into insulin-positive cells. Biochem Biophys Res Commun . 2007;357(2):414-20. 44. Takahashi K, Tanabe K, Ohnuki M, Narita
Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.
2015-01-01
High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759
Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J
2017-01-01
Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hu, Qian-Nan; Deng, Zhe; Hu, Huanan; Cao, Dong-Sheng; Liang, Yi-Zeng
2011-09-01
Biochemical reactions play a key role to help sustain life and allow cells to grow. RxnFinder was developed to search biochemical reactions from KEGG reaction database using three search criteria: molecular structures, molecular fragments and reaction similarity. RxnFinder is helpful to get reference reactions for biosynthesis and xenobiotics metabolism. RxnFinder is freely available via: http://sdd.whu.edu.cn/rxnfinder. qnhu@whu.edu.cn.
Fibrous Hydrogels for Cell Encapsulation: A Modular and Supramolecular Approach.
Włodarczyk-Biegun, Małgorzata K; Farbod, Kambiz; Werten, Marc W T; Slingerland, Cornelis J; de Wolf, Frits A; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Cohen Stuart, Martien A; Kamperman, Marleen
2016-01-01
Artificial 3-dimensional (3D) cell culture systems, which mimic the extracellular matrix (ECM), hold great potential as models to study cellular processes under controlled conditions. The natural ECM is a 3D structure composed of a fibrous hydrogel that provides both mechanical and biochemical cues to instruct cell behavior. Here we present an ECM-mimicking genetically engineered protein-based hydrogel as a 3D cell culture system that combines several key features: (1) Mild and straightforward encapsulation meters (1) ease of ut I am not so sure.encapsulation of the cells, without the need of an external crosslinker. (2) Supramolecular assembly resulting in a fibrous architecture that recapitulates some of the unique mechanical characteristics of the ECM, i.e. strain-stiffening and self-healing behavior. (3) A modular approach allowing controlled incorporation of the biochemical cue density (integrin binding RGD domains). We tested the gels by encapsulating MG-63 osteoblastic cells and found that encapsulated cells not only respond to higher RGD density, but also to overall gel concentration. Cells in 1% and 2% (weight fraction) protein gels showed spreading and proliferation, provided a relative RGD density of at least 50%. In contrast, in 4% gels very little spreading and proliferation occurred, even for a relative RGD density of 100%. The independent control over both mechanical and biochemical cues obtained in this modular approach renders our hydrogels suitable to study cellular responses under highly defined conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolbeare, F.A.; Phares, W.
1979-01-01
Conditions for the biochemical and flow cytometric assay of 7-bromo-3-hydroxy-2-naphtho-o-anisidine phosphatase and ..beta..-D-glucuronidase activities in Chinese hamster ovary cells were studied. In the biochemical assays, the pH optimum for the phosphatase activity was pH 4.6 with a Km of 10/sup -5/ M; the pH optimum for ..beta..-D-glucuronidase activity was pH 5.0 with a Km of 2 x 10/sup -5/ M. For intact cells the derived constants were 3 to 10 times higher. The rate of hydrolysis of both substrates was also examined by flow cytometry. Cellular fluorescence increased linearly for only about 15 min. Diffusion of the fluorescent product probablymore » caused nonlinearity of the fluorescence increase and was demonstrated by mixing cells incubated with substrate with those that had not been incubated. After 15 min, cells that had not been exposed previously to product or substrate contained the fluorescent product. Cells fractionated into size classes by centrifugal elutriation also were analyzed by flow cytometry for ..beta..-D-glucuronidase activity. The activity increased linearly with the increase in cell size corresponding to the progression from G/sub 1/ through S and into G/sub 2/-M phases of the cell cycle.« less
Rudolf, Katrin; Umetsu, Daiki; Aliee, Maryam; Sui, Liyuan; Jülicher, Frank; Dahmann, Christian
2015-11-15
Tissue organization requires the interplay between biochemical signaling and cellular force generation. The formation of straight boundaries separating cells with different fates into compartments is important for growth and patterning during tissue development. In the developing Drosophila wing disc, maintenance of the straight anteroposterior (AP) compartment boundary involves a local increase in mechanical tension at cell bonds along the boundary. The biochemical signals that regulate mechanical tension along the AP boundary, however, remain unknown. Here, we show that a local difference in Hedgehog signal transduction activity between anterior and posterior cells is necessary and sufficient to increase mechanical tension along the AP boundary. This difference in Hedgehog signal transduction is also required to bias cell rearrangements during cell intercalations to keep the characteristic straight shape of the AP boundary. Moreover, severing cell bonds along the AP boundary does not reduce tension at neighboring bonds, implying that active mechanical tension is upregulated, cell bond by cell bond. Finally, differences in the expression of the homeodomain-containing protein Engrailed also contribute to the straight shape of the AP boundary, independently of Hedgehog signal transduction and without modulating cell bond tension. Our data reveal a novel link between local differences in Hedgehog signal transduction and a local increase in active mechanical tension of cell bonds that biases junctional rearrangements. The large-scale shape of the AP boundary thus emerges from biochemical signals inducing patterns of active tension on cell bonds. © 2015. Published by The Company of Biologists Ltd.
Mittal, Rahul; Chan, Brandon; Grati, M'hamed; Mittal, Jeenu; Patel, Kunal; Debs, Luca H; Patel, Amit P; Yan, Denise; Chapagain, Prem; Liu, Xue Zhong
2016-08-01
The P2X purinergic receptors are cation-selective channels gated by extracellular adenosine 5'-triphosphate (ATP). These purinergic receptors are found in virtually all mammalian cell types and facilitate a number of important physiological processes. Within the past few years, the characterization of crystal structures of the zebrafish P2X4 receptor in its closed and open states has provided critical insights into the mechanisms of ligand binding and channel activation. Understanding of this gating mechanism has facilitated to design and interpret new modeling and structure-function experiments to better elucidate how different agonists and antagonists can affect the receptor with differing levels of potency. This review summarizes the current knowledge on the structure, activation, allosteric modulators, function, and location of the different P2X receptors. Moreover, an emphasis on the P2X2 receptors has been placed in respect to its role in the auditory system. In particular, the discovery of three missense mutations in P2X2 receptors could become important areas of study in the field of gene therapy to treat progressive and noise-induced hearing loss. J. Cell. Physiol. 231: 1656-1670, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Birch, D G; Elrifi, I R; Turpin, D H
1986-11-01
The effects of nitrate and ammonium addition on net and gross photosynthesis, CO(2) efflux and the dissolved inorganic carbon compensation point of nitrogen-limited Selenastrum minutum Naeg. Collins (Chlorophyta) were studied. Cultures pulsed with nitrate or ammonium exhibited a marked decrease in both net and gross photosynthetic carbon fixation. During this period of suppression the specific activity of exogenous dissolved inorganic carbon decreased rapidly in comparison to control cells indicating an increase in the rate of CO(2) efflux in the light. The nitrate and ammmonium induced rates of CO(2) efflux were 31.0 and 33.8 micromoles CO(2) per milligram chlorophyll per hour, respectively, and represented 49 and 48% of the rate of gross photosynthesis. Nitrate addition to cells at dissolved inorganic carbon compensation point caused an increase in compensation point while ammonium had no effect. In the presence of the tricarboxylic acid cycle inhibitor fluoroacetate, the nitrate-induced change in compensation point was greatly reduced suggesting the source of this CO(2) was the tricarboxylic acid cycle. These results are consistent with the mechanism of N-induced photosynthetic suppression outlined by Elrifi and Turpin (1986 Plant Physiol 81: 273-279).
Lan, Rongpei; Geng, Hui; Hwang, Yoon; Mishra, Pramod; Skloss, Wayne L.; Sprague, Eugene A.; Saikumar, Pothana; Venkatachalam, Manjeri
2010-01-01
We describe the fabrication and use of an in vitro wounding device that denudes cultured epithelium in patterns designed to leave behind strips or islands of cells sufficiently narrow or small to ensure that all remaining cells become rapidly activated and then migrate, dedifferentiate and proliferate in near synchrony. The design ensures that signals specific to regenerating cells do not become diluted by quiescent differentiated cells that are not affected by wound induced activation. The device consists of a flat circular disk of rubber engraved to produce alternating ridges and grooves in patterns of concentric circles or parallel lines. The disk is mounted at the end of a pneumatically controlled piston assembly. Application of controlled pressure and circular or linear movement of the disk on cultures produced highly reproducible wounding patterns. The near synchronous regenerative activity of cell bands or islands permitted the collection of samples large enough for biochemical studies to sensitively detect alterations involving mRNA for several early response genes and protein phosphorylation in major signaling pathways. The method is versatile, easy to use and reproducible, and should facilitate biochemical, proteomic and genomic studies of wound induced regeneration of cultured epithelium. PMID:20230600
Raman microscopy of bladder cancer cells expressing green fluorescent protein
NASA Astrophysics Data System (ADS)
Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.
2016-11-01
Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.
Padilla, Sergio E; Weber, Manuel; Jacobson, Elliott R
2011-07-01
Health surveys and hematologic and plasma biochemical analyses were conducted in 52 free-ranging and 51 captive Morelet's crocodiles (Crocodylus moreletii) in Campeche, Mexico, March-September 2007. Blood samples from 92 crocodiles (45 free-ranging and 47 captive) were collected for hematologic and plasma biochemical analyses. Average values of erythrocytes of free-ranging crocodiles were 1,046,166 cells/μl, and total white cells were 1.03 × 10(4) cells/μl. Captive crocodiles had erythrocyte and leukocyte values of 1,100,416 cells/μl and 8.51 × 10(3) cells/μl, respectively. There were no significant differences in values of erythrocytes or in hematocrit between free-ranging and captive crocodiles, or between sexes, or among size classes. Counts of leukocytes in free-ranging crocodiles were significantly higher than in captive individuals. The mean values of plasma analytes were 69.55 mg/l (glucose), 250.14 mg/l (cholesterol), 3.04 mg/l (uric acid), 2.70 mg/l (creatinine), and 20.20 IU/l (alanine aminotransferase). There were significant differences in cholesterol between free-ranging and captive crocodiles and between sexes.
Aged keratinocyte phenotyping: morphology, biochemical markers and effects of Dead Sea minerals.
Soroka, Yoram; Ma'or, Zeev; Leshem, Yael; Verochovsky, Lilian; Neuman, Rami; Brégégère, François Menahem; Milner, Yoram
2008-10-01
The aging process and its characterization in keratinocytes have not been studied in depth until now. We have assessed the cellular and molecular characteristics of aged epidermal keratinocytes in monolayer cultures and in skin by measuring their morphological, fluorometric and biochemical properties. Light and electron microscopy, as well as flow cytometry, revealed increase in cell size, changes in cell shape, alterations in mitochondrial structure and cytoplasmic content with aging. We showed that the expression of 16 biochemical markers was altered in aged cultured cells and in tissues, including caspases 1 and 3 and beta-galactosidase activities, immunoreactivities of p16, Ki67, 20S proteasome and effectors of the Fas-dependent apoptotic pathway. Aged cells diversity, and individual variability of aging markers, call for a multifunctional assessment of the aging phenomenon, and of its modulation by drugs. As a test case, we have measured the effects of Dead Sea minerals on keratinocyte cultures and human skin, and found that they stimulate proliferation and mitochondrial activity, decrease the expression of some aging markers, and limit apoptotic damage after UVB irradiation.
Songs about Cancer, Gene Expression, and the Biochemistry of Photosynthesis
ERIC Educational Resources Information Center
Heineman, Richard H.
2018-01-01
These three biology songs can be used for educational purposes to teach about biochemical concepts. They touch on three different topics: (1) cancer progression and germ cells, (2) gene expression, promoters, and repressors, and (3) electronegativity and the biochemical basis of photosynthesis.
[Biochemical changes in apoptosis and methods for their determination (review)].
Sedláková, A; Kohút, A; Kalina, I
1999-08-01
Apoptosis or programmed cell death is a physiological process which occurs at different biological states as well as at disease process. Morphologically it is characterized by the chromatine condensation and other changes with preserved integrity of plasmatic membrane. The major and most frequently studied biochemical characteristic of apoptosis is a DNA fragmentation. In our paper attention is directed to the early biochemical changes in cell membranes, i.g., the externalization of phosphatidylserine, hydrolysis of sphingomyeline on the ceramide and activation of phospholipases especially phospholipase A2. In one part we described the changes of cysteine proteases (caspases), which play a key role in the execution of apoptosis. These biochemical changes are associated with ceramide signalization of apoptosis. Briefly are presented also some dates about apoptosis induction with reactive oxygen radicals and the role of the arachidonic acid metabolites in this process. We consider the investigation and determination of these changes as important parameters of apoptosis at some diseases, e.g., cancer or degenerative diseases, and of their treatment.
Biochemical and Biophysical Cues in Matrix Design for Chronic and Diabetic Wound Treatment
Xiao, Yun; Ahadian, Samad
2017-01-01
Progress in biomaterial science and engineering and increasing knowledge in cell biology have enabled us to develop functional biomaterials providing appropriate biochemical and biophysical cues for tissue regeneration applications. Tissue regeneration is particularly important to treat chronic wounds of people with diabetes. Understanding and controlling the cellular microenvironment of the wound tissue are important to improve the wound healing process. In this study, we review different biochemical (e.g., growth factors, peptides, DNA, and RNA) and biophysical (e.g., topographical guidance, pressure, electrical stimulation, and pulsed electromagnetic field) cues providing a functional and instructive acellular matrix to heal diabetic chronic wounds. The biochemical and biophysical signals generally regulate cell–matrix interactions and cell behavior and function inducing the tissue regeneration for chronic wounds. Some technologies and devices have already been developed and used in the clinic employing biochemical and biophysical cues for wound healing applications. These technologies can be integrated with smart biomaterials to deliver therapeutic agents to the wound tissue in a precise and controllable manner. This review provides useful guidance in understanding molecular mechanisms and signals in the healing of diabetic chronic wounds and in designing instructive biomaterials to treat them. PMID:27405960
Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu
2010-01-01
Background & Objectives: Neonatologists often prefer fresh blood (<7 days) for neonatal transfusions. The main concerns for stored RBCs are ex vivo storage lesions that undermine red cell functions and may affect metabolic status of neonatal recipients. This study was designed to evaluate serial in vitro changes of biochemical parameters in different RBC preparations during storage to consider for neonatal transfusions even after storage beyond one week. Methods: Twenty five units each of whole blood (CPDA-1 RBC, SAGM RBC) were selected for serial biochemical parameter assessment after each fulfilled the quality criteria (volume and haematocrit). These units were tested serially for supernatant potassium, pH, lactate, haemoglobin, glucose and red cell 2,3 diphosphoglycerate (2,3 DPG) up to 21 days of storage. Results: Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P<0.005). Within each group, fall in mean 2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). Interpretation & Conclusions: All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes. PMID:21245620
Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu
2010-12-01
Neonatologists often prefer fresh blood (<7 days) for neonatal transfusions. The main concerns for stored RBCs are ex vivo storage lesions that undermine red cell functions and may affect metabolic status of neonatal recipients. This study was designed to evaluate serial in vitro changes of biochemical parameters in different RBC preparations during storage to consider for neonatal transfusions even after storage beyond one week. Twenty five units each of whole blood (CPDA-1 RBC, SAGM RBC) were selected for serial biochemical parameter assessment after each fulfilled the quality criteria (volume and haematocrit). These units were tested serially for supernatant potassium, pH, lactate, haemoglobin, glucose and red cell 2,3 diphosphoglycerate (2,3 DPG) up to 21 days of storage. Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P<0.005). Within each group, fall in mean 2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes.
Modeling oscillations and spiral waves in Dictyostelium populations
NASA Astrophysics Data System (ADS)
Noorbakhsh, Javad; Schwab, David J.; Sgro, Allyson E.; Gregor, Thomas; Mehta, Pankaj
2015-06-01
Unicellular organisms exhibit elaborate collective behaviors in response to environmental cues. These behaviors are controlled by complex biochemical networks within individual cells and coordinated through cell-to-cell communication. Describing these behaviors requires new mathematical models that can bridge scales—from biochemical networks within individual cells to spatially structured cellular populations. Here we present a family of "multiscale" models for the emergence of spiral waves in the social amoeba Dictyostelium discoideum. Our models exploit new experimental advances that allow for the direct measurement and manipulation of the small signaling molecule cyclic adenosine monophosphate (cAMP) used by Dictyostelium cells to coordinate behavior in cellular populations. Inspired by recent experiments, we model the Dictyostelium signaling network as an excitable system coupled to various preprocessing modules. We use this family of models to study spatially unstructured populations of "fixed" cells by constructing phase diagrams that relate the properties of population-level oscillations to parameters in the underlying biochemical network. We then briefly discuss an extension of our model that includes spatial structure and show how this naturally gives rise to spiral waves. Our models exhibit a wide range of novel phenomena. including a density-dependent frequency change, bistability, and dynamic death due to slow cAMP dynamics. Our modeling approach provides a powerful tool for bridging scales in modeling of Dictyostelium populations.
Designing degradable hydrogels for orthogonal control of cell microenvironments
Kharkar, Prathamesh M.
2013-01-01
Degradable and cell-compatible hydrogels can be designed to mimic the physical and biochemical characteristics of native extracellular matrices and provide tunability of degradation rates and related properties under physiological conditions. Hence, such hydrogels are finding widespread application in many bioengineering fields, including controlled bioactive molecule delivery, cell encapsulation for controlled three-dimensional culture, and tissue engineering. Cellular processes, such as adhesion, proliferation, spreading, migration, and differentiation, can be controlled within degradable, cell-compatible hydrogels with temporal tuning of biochemical or biophysical cues, such as growth factor presentation or hydrogel stiffness. However, thoughtful selection of hydrogel base materials, formation chemistries, and degradable moieties is necessary to achieve the appropriate level of property control and desired cellular response. In this review, hydrogel design considerations and materials for hydrogel preparation, ranging from natural polymers to synthetic polymers, are overviewed. Recent advances in chemical and physical methods to crosslink hydrogels are highlighted, as well as recent developments in controlling hydrogel degradation rates and modes of degradation. Special attention is given to spatial or temporal presentation of various biochemical and biophysical cues to modulate cell response in static (i.e., non-degradable) or dynamic (i.e., degradable) microenvironments. This review provides insight into the design of new cell-compatible, degradable hydrogels to understand and modulate cellular processes for various biomedical applications. PMID:23609001
Selmanoglu, G; Barlas, N; Songür, S; Koçkaya, E A
2001-12-01
Carbendazim is a systemic broad-spectrum fungicide controlling a wide range of pathogens. It is also used as a preservative in paint, textile, papermaking and leather industry, as well as a preservative of fruits. In the present study, carbendazim was administered at 0, 150, 300 and 600 mg/kg per day doses orally to male rats (Rattus rattus) for 15 weeks. At the end of the experiment, blood samples, liver and kidney tissues of each animal were taken. Serum enzyme activities, and haematological and biochemical parameters were analysed. In toxicological tests, 600 mg/kg per day doses of carbendazim caused an increase of albumin, glucose, creatinine and cholesterol levels. Also, at the same doses, white blood cell and lymphocyte counts decreased. However, mean cell hemoglobin and mean cell hemoglobin concentrations increased. Histopathological examinations revealed congestion, an enlargement of the sinusoids, an increase in the number of Kupffer cells, mononuclear cell infiltration and hydropic degeneration in the liver. At the highest doses, congestion, mononuclear cell infiltration, tubular degeneration and fibrosis were observed in the kidney tissue. These results indicate that 300 and 600 mg/kg per day carbendazim affected the liver and kidney tissue and caused some changes on haematological and biochemical parameters of rats.
Age Effect on Autonomic Cardiovascular Control in Pilots
2000-08-01
Nantcheva**, M. Vukov *** *National Center of Hygiene, Medical Ecology and Nutrition 15 Dimitar Nestorov Blvd. 1431 Sofia, Bulgaria "**Military Medical...values and critique. Inter. Physiol. Behav. Sci. 1997, 3, of health risk compared with referents. 202-219. 14. Fluckiger L., Boivin J ., Quilliot D...during flight. Aviat. Space Chapman and Hall. 1991, 590 pp. Environ Med. 1998,4, 360-367. 4. Berntson G., Cacioppo J ., Quigley K. Autonomic 18. Hellman J
A Computerized System for Measuring Detection Sensitivity over the Visual Field,
1986-06-01
variety of conditions can act to degrade this basic configuration of detection capability; e.g., pathology, such as glaucoma and retinitis pigmentosa ...the central line of sight involving the retinal fovea is clearly the locus of greatest visual resolution under photopic viewing conditions, the...Skills. 1974; 41:467-474. 6. Kobrick JL, Appleton S. Effects of hypoxia on visual performance and retinal vascular state. J. Appl. Physiol. 1971; 31:357
Radioprotective Properties of Detoxified Lipid A from Salmonella minnesota R595
1986-01-01
irradiated animals treated with bacterial endotoxins. Am. J. Physiol. 191, 124-130 (1957). 3. M. PARANT, Effect of LPS on nonspecific recistance to...Salmonella minnesota R595. Radiat. Res. 107, 107-114(1986). . in the past, the toxicity of bacterial lipopolysaccharide (LPS) or its principal bioactive...contained significantly less CSA than those receiving either GLY or LAD. DISCUSSION The radioprotective effect of bacterial endotoxins has been known for over
Bibliography of Technical Publications and Papers July 1976 - September 1977
1977-10-01
Lightweight Body Armor Medical Technical Symposium, Colorado Springs, CO, 18 August 1977. 67. BENSEL, C. Human factors consideration in the use of CW...HEISELMAN. Human factors in food service operations. Activities Report, 29(2): 54-60 (1977). 110. TAUB, I. A., P. ANGELINI, and C. MERRITT, JR...rat: Electrophysiological and behavioral studies. Amer. J. Physiol., 231(4): 1043-1049 (1976). 205. ANDERSON, W. G., C. Y. BYON, H. GUT , and F. H
Theory of Synaptic Plasticity in Visual Cortex.
1992-12-23
15 Hubel, D. H. and Wiesel, T. N. (1959). Integrative action in the cat’s lateral geniculate body . J. Physiol, 148:574-591. Hubel, D. H. and Wiesel, T...of these afferents derive from the lateral geniculate nucleus (LGN) and from other cortical neurons. We have approached the analysis of this complex...agreement with what is seen experimentally. 3.2 Neurobiological Foundations for the Assumptions of the BCM Theory Recent advances in our understanding of
2005-12-01
Computational Learning in the Department of Brain & Cognitive Sciences and in the Computer Science and Artificial Intelligence Laboratory at the Massachusetts...physiology and cognitive science . . . . . . . . . . . . . . . . . . . . . 67 2 CONTENTS A Appendices 68 A.1 Detailed model implementation and...physiol- ogy to cognitive science. The original model [Riesenhuber and Poggio, 1999b] made also a few predictions ranging from biophysics to psychophysics
Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis
NASA Technical Reports Server (NTRS)
Nozawa, Y.; Kitajima, Y.
1984-01-01
A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.
2012-07-01
1999 Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Bio- phys Res Commun 257:79–83 10. Barb D, Pazaitou...Y, Pecquery R 2006 Adiponectin mediates antiproliferative and ap- optotic responses in human MCF7 breast cancer cells. Biochem Bio- phys Res Commun ...Noorden S, Wahlstrom T, Coombes RC, Warner M, Gustafsson JA 2002 Estrogen receptor in breast cancer. Endocr Relat Cancer 9:1–13 29. Esslimani-Sahla M
Mikashinovich, Z I; Belousova, E S
2016-08-01
Long-term administration of simvastatin to rats, irrespective of the baseline cholesterol levels, induced biochemical changes in erythrocytes attesting to hypoxic damage (accumulation of lactate and 2,3-diphosphoglycerate), disturbances in ATP-dependent mechanisms of ion homeostasis regulation (decrease in total ATPase and Ca(2+)-ATPase activities), and antioxidant enzymes system imbalance. These changes can be considered as a sensitive indicator and molecular basis of cell damage during long-term administration of statins.
Shedletzky, Esther; Shmuel, Miri; Trainin, Tali; Kalman, Sara; Delmer, Deborah
1992-01-01
Our previous work (E. Shedletzky, M. Shmuel, D.P. Delmer, D.T.A. Lamport [1990] Plant Physiol 94:980-987) showed that suspension-cultured tomato cells adapted to growth on the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB) have a markedly altered cell wall composition, most notably a markedly reduced level of the cellulose-xyloglucan network. This study compares the adaptation to DCB of two cell lines from dicots (tomato [Lycopersicon esculentum] and tobacco [Nicotiana tabacum]) and a Graminaceous monocot (barley [Hordeum bulbosum] endosperm). The difference in wall structures between the dicots and the monocot is reflected in the very different types of wall modifications induced by growth on DCB. The dicots, having reduced levels of cellulose and xyloglucan, possess walls the major integrity of which is provided by Ca2+-bridged pectates because protoplasts can be prepared from these cells simply by treatment with divalent cation chelator and a purified endopolygalacturonase. The tensile strength of these walls is considerably less than walls from nonadapted cells, but wall porosity is not altered. In contrast, walls from adapted barley cells contain very little pectic material and normal to elevated levels of noncellulosic polysaccharides compared with walls from nonadapted cells. Surprisingly, they have tensile strengths higher than their nonadapted counterpart, although cellulose levels are reduced by 70%. Evidence is presented that these walls obtain their additional strength by an altered pattern of cross-linking of polymers involving phenolic components. Such cross-linking may also explain the observation that the porosity of these walls is also considerably reduced. Cells of adapted lines of both the dicots and barley are resistant to plasmolysis, suggesting that they possess very strong connections between the wall and the plasma membrane. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:16652933
Leguay, Jean-Jacques; Guern, Jean
1977-01-01
The utilization of 2,4-dichlorophenoxyacetic acid (2,4-D) molecules by Acer pseudoplatanus cells is governed mainly by a glucosylation process. Evidence that 2,4-D glucoside molecules are biologically inactive is presented. 2,3,5-Triiodobenzoic acid (TIBA), by inhibiting 2,4-D glucosylation, has a sparing effect on 2,4-D molecules; thus TIBA treatments increase growth yield (expressed as the ratio of the maximum number of cells produced to the initial concentration of 2,4-D in the culture medium). Significant amounts of intact 2,4-D molecules remain outside and inside the cells when cell division stops at the onset of the stationary phase. This result and the previous demonstration that, at the onset of the stationary phase, 2,4-D is the specific limiting factor of cell division (Leguay JJ, J Guern 1975 Plant Physiol 56: 356-359) suggest that a threshold concentration of auxin is needed for cell division to proceed. The distribution of 2,4-D molecules between the cells and the culture medium is dependent on the population density at the stationary phase. The extracellular 2,4-D concentration at that time is a linear function of the population density whereas intracellular amounts of 2,4-D and 2,4-D metabolites are constant. By using a modified 2-14C,-5,5-dimethyloxazolidine-2,4-dione technique, it has been shown that the intracellular pH is markedly lowered as the population density at the plateau is increased. This intracellular pH modification is likely to be responsible for a large modification of the ratio between intracellular and extracellular auxin concentrations. The intracellular auxin concentration reaches a constant value (about 3 × 10−7m), independent of population density when cell division stops at the onset of the stationary phase suggesting that it represents the threshold value of the control for cell division. PMID:16660072
Lee, Junmin; Abdeen, Amr A; Zhang, Douglas; Kilian, Kristopher A
2013-11-01
There is a dynamic relationship between physical and biochemical signals presented in the stem cell microenvironment to guide cell fate determination. Model systems that modulate cell geometry, substrate stiffness or matrix composition have proved useful in exploring how these signals influence stem cell fate. However, the interplay between these physical and biochemical cues during differentiation remains unclear. Here, we demonstrate a microengineering strategy to vary single cell geometry and the composition of adhesion ligands - on substrates that approximate the mechanical properties of soft tissues - to study adipogenesis and neurogenesis in adherent mesenchymal stem cells. Cells cultured in small circular islands show elevated expression of adipogenesis markers while cells that spread in anisotropic geometries tend to express elevated neurogenic markers. Arraying different combinations of matrix protein in a myriad of 2D and pseudo-3D geometries reveals optimal microenvironments for controlling the differentiation of stem cells to these "soft" lineages without the use of media supplements. © 2013 Elsevier Ltd. All rights reserved.
Isolation, separation, and characterization of epithelial and connective cells from rat palate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, Victor Paul
1979-01-01
Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less
Marina, Djordje; Burman, Pia; Klose, Marianne; Casar-Borota, Olivera; Luque, Raúl M; Castaño, Justo P; Feldt-Rasmussen, Ulla
2015-10-01
Somatotropinomas have unique "fingerprints" of somatostatin receptor (sst) expression, which are targets in treatment of acromegaly with somatostatin analogues (SSAs). However, a significant expression of sst is not always related to the biochemical response to SSAs. Headache is a common complaint in acromegaly and considered a clinical marker of disease activity. SSAs are reported to have an own analgesic effect, but the sst involved are unknown. We investigated sst expression in two acromegalic patients with severe headache and no biochemical effects of octreotide, but a good response to pasireotide. We searched the literature for determinants of biochemical and analgesic effects of SSAs in somatotropinomas. Case 1 had no biochemical or analgesic effects of octreotide, a semi-selective SSA, but a rapid and significant effect of pasireotide, a pan-SSA. Case 2 demonstrated discordance between analgesic and biochemical effects of octreotide, in that headache disappeared, but without biochemical improvement. In contrast, pasireotide normalized insulin-like growth factor 1. Both adenomas were sparsely granulated and had strong membranous expressions of sst2a in 50-75% and sst5 in 75-100% of tumor cells. The truncated sst5 variant TMD4 (sst5TMD4) showed expression in 20-57% of tumor cells. A poor biochemical response to octreotide may be associated with tumor expression of a truncated sst5 variant, despite abundant sst2a expression, suggesting an influence from variant sst5 on common sst signaling pathways. Furthermore, unrelated analgesic and biochemical effects of SSAs supported a complex pathogenesis of acromegaly-associated headache. Finally, assessment of truncated sst5 in addition to full length sst could be important for a choice of postoperative SSA treatment in somatotropinomas. Copyright © 2015 Elsevier Ltd. All rights reserved.
Volkova, L A; Urmantseva, V V; Popova, E V; Nosov, A M
2015-01-01
The efficiency of long-term cryogenic storage to prevent somaclonal variations in plant cell cultures and retain their major cytogenetic and biochemical traits remains under debate. In particular, it is not clear how stress conditions associated with cryopreservation, such as low temperature, dehydration and toxic action of some cryoprotectants (DMSO in particular), affect post-storage regrowth and genetic integrity of cell samples. We assessed growth, cytogenetic and biochemical characteristics of the peroxidase-producing strain of Medicago sativa L. cell culture recovered after 27 years of cryogenic storage as compared to the same culture before cryopreservation. In 1984, M. sativa L. cell culture was cryopreserved using programmed freezing and 7% DMSO as a cryoprotectant. In 2011, after rewarming in a water bath at 40 degree C for 90 s, cell culture was recovered and proliferated. Viability, growth profile, mitotic index, ploidy level, peroxidase activity and cell response to hypothermia and osmotic stress were compared between the recovered and the initial cell cultures using the records available from 1984. Viability of alfalfa cell culture after rewarming was below 20% but it increased to 80% by the 27th subculture cycle. Recovered culture showed higher mitotic activity and increased number of haploid and diploid cells compared to the initial cell line. Both peroxidase activity and response to abiotic stress in the recovered cell culture were similar to that of the initial culture. Cryopreservation by programmed freezing was effective at retaining the main characteristics of M. sativa undifferentiated cell culture after 27 years of storage. According to available data, this is longest period of successful cryopreservation of plant cell cultures reported so far. After storage, there was no evidence that DMSO had any detrimental effect on cell viability, growth or cytogenetics.
Biochemical nature of Russell Bodies
Francesca Mossuto, Maria; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Maria Doglia, Silvia; Sitia, Roberto
2015-01-01
Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB. PMID:26223695
Biochemical nature of Russell Bodies.
Mossuto, Maria Francesca; Ami, Diletta; Anelli, Tiziana; Fagioli, Claudio; Doglia, Silvia Maria; Sitia, Roberto
2015-07-30
Professional secretory cells produce and release abundant proteins. Particularly in case of mutations and/or insufficient chaperoning, these can aggregate and become toxic within or amongst cells. Immunoglobulins (Ig) are no exception. In the extracellular space, certain Ig-L chains form fibrils causing systemic amyloidosis. On the other hand, Ig variants lacking the first constant domain condense in dilated cisternae of the early secretory compartment, called Russell Bodies (RB), frequently observed in plasma cell dyscrasias, autoimmune diseases and chronic infections. RB biogenesis can be recapitulated in lymphoid and non-lymphoid cells by expressing mutant Ig-μ, providing powerful models to investigate the pathophysiology of endoplasmic reticulum storage disorders. Here we analyze the aggregation propensity and the biochemical features of the intra- and extra-cellular Ig deposits in human cells, revealing β-aggregated features for RB.
Cooper, Susan; Bennett, William; Andrade, Jessica; Reubinoff, Benjamin E; Thomson, James; Pera, Martin F
2002-01-01
We previously identified a pericellular matrix keratan sulphate/chondroitin sulphate proteoglycan present on the surface of human embryonal carcinoma stem cells, cells whose differentiation mimics early development. Antibodies reactive with various epitopes on this molecule define a cluster of differentiation markers for primate pluripotent stem cells. We describe the purification of a form of this molecule which is secreted or shed into the culture medium. Biochemical analysis of the secreted form of this molecule shows that the monomeric form, whilst containing keratan sulphate, resembles mucins in its structure and its modification with O-linked carbohydrate. Immunofluorescence and immunoblotting data show that monkey and human pluripotent stem cells react with antibodies directed against epitopes on either carbohydrate side chains or the protein core of the molecule. PMID:12033730
Rao, Raj R; Kisaalita, William S
2002-09-01
A human neuroblastoma cell line (IMR-32), when differentiated, mimics large projections of the human cerebral cortex and under certain tissue culture conditions, forms intracellular fibrillary material, commonly observed in brains of patients affected with Alzheimer's disease. Our purpose is to use differentiated IMR-32 cells as an in vitro system for magnetic field exposure studies. We have previously studied in vitro differentiation of murine neuroblastoma (N1E-115) cells with respect to resting membrane potential development. The purpose of this study was to extend our investigation to IMR-32 cells. Electrophysiological (resting membrane potential, V(m)) and biochemical (neuron-specific enolase activity [NSE]) measurements were taken every 2 d for a period of 16 d. A voltage-sensitive oxonol dye together with flow cytometry was used to measure relative changes in V(m). To rule out any effect due to mechanical cell detachment, V(m) was indirectly measured by using a slow potentiometric dye (tetramethylrhodamine methyl ester) together with confocal digital imaging microscopy. Neuron-specific enolase activity was measured by following the production of phosphoenolpyruvate from 2-phospho-d-glycerate at 240 nm. Our results indicate that in IMR-32, in vitro differentiation as characterized by an increase in NSE activity is not accompanied by resting membrane potential development. This finding suggests that pathways for morphological-biochemical and electrophysiological differentiations in IMR-32 cells are independent of one another.
2004-01-01
We analysed key biochemical features that reflect the balance between glycolysis and glucose oxidation in cybrids (cytoplasmic hybrids) harbouring a representative sample of mitochondrial DNA point mutations and deletions. The cybrids analysed had the same 143B cell nuclear background and were isogenic for the mitochondrial background. The 143B cell line and its ρ0 counterpart were used as controls. All cells analysed were in a dynamic state, and cell number, time of plating, culture medium, extracellular volume and time of harvest and assay were strictly controlled. Intra- and extra-cellular lactate and pyruvate levels were measured in homoplasmic wild-type and mutant cells, and correlated with rates of ATP synthesis and O2 consumption. In all mutant cell lines, except those with the T8993C mutation in the ATPase 6 gene, glycolysis was increased even under conditions of low glucose, as demonstrated by increased levels of extracellular lactate and pyruvate. Extracellular lactate levels were strictly and inversely correlated with rates of ATP synthesis and O2 consumption. These results show increased glycolysis and defective oxidative phosphorylation, irrespective of the type or site of the point mutation or deletion in the mitochondrial genome. The different biochemical consequences of the T8993C mutation suggest a uniquely different pathogenic mechanism for this mutation. However, the distinct clinical features associated with some of these mutations still remain to be elucidated. PMID:15324306
Roy, Bibhas; Venkatachalapathy, Saradha; Ratna, Prasuna; Wang, Yejun; Jokhun, Doorgesh Sharma; Nagarajan, Mallika; Shivashankar, G V
2018-05-22
Cells in tissues undergo transdifferentiation programs when stimulated by specific mechanical and biochemical signals. While seminal studies have demonstrated that exogenous biochemical factors can reprogram somatic cells into pluripotent stem cells, the critical roles played by mechanical signals in such reprogramming process have not been well documented. In this paper, we show that laterally confined growth of fibroblasts on micropatterned substrates induces nuclear reprogramming with high efficiency in the absence of any exogenous reprogramming factors. We provide compelling evidence on the induction of stem cell-like properties using alkaline phosphatase assays and expression of pluripotent markers. Early onset of reprogramming was accompanied with enhanced nuclear dynamics and changes in chromosome intermingling degrees, potentially facilitating rewiring of the genome. Time-lapse analysis of promoter occupancy by immunoprecipitation of H3K9Ac chromatin fragments revealed that epithelial, proliferative, and reprogramming gene promoters were progressively acetylated, while mesenchymal promoters were deacetylated by 10 days. Consistently, RNA sequencing analysis showed a systematic progression from mesenchymal to stem cell transcriptome, highlighting pathways involving mechanisms underlying nuclear reprogramming. We then demonstrated that these mechanically reprogrammed cells could be maintained as stem cells and can be redifferentiated into multiple lineages with high efficiency. Importantly, we also demonstrate the induction of cancer stemness properties in MCF7 cells grown in such laterally confined conditions. Collectively, our results highlight an important generic property of somatic cells that, when grown in laterally confined conditions, acquire stemness. Such mechanical reprogramming of somatic cells demonstrated here has important implications in tissue regeneration and disease models. Copyright © 2018 the Author(s). Published by PNAS.
Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C
2017-01-01
Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.
The Biochemistry of O-GlcNAc Transferase: Which Functions Make It Essential in Mammalian Cells?
Levine, Zebulon G; Walker, Suzanne
2016-06-02
O-linked N-acetylglucosamine transferase (OGT) is found in all metazoans and plays an important role in development but at the single-cell level is only essential in dividing mammalian cells. Postmitotic mammalian cells and cells of invertebrates such as Caenorhabditis elegans and Drosophila can survive without copies of OGT. Why OGT is required in dividing mammalian cells but not in other cells remains unknown. OGT has multiple biochemical activities. Beyond its well-known role in adding β-O-GlcNAc to serine and threonine residues of nuclear and cytoplasmic proteins, OGT also acts as a protease in the maturation of the cell cycle regulator host cell factor 1 (HCF-1) and serves as an integral member of several protein complexes, many of them linked to gene expression. In this review, we summarize current understanding of the mechanisms underlying OGT's biochemical activities and address whether known functions of OGT could be related to its essential role in dividing mammalian cells.
NASA Astrophysics Data System (ADS)
Lucia, Umberto; Grisolia, Giulia; Ponzetto, Antonio; Deisboeck, Thomas S.
2018-01-01
Cellular homoeostasis involves a continuous interaction between the cell and its microenvironment. As such, active and passive transport of ions, nutrients, molecules and water are the basis for biochemical-physical cell life. These transport phenomena change the internal and external ionic concentrations, and, as a consequence, the cell membrane's electric potential and the pH. In this paper we focus on the relationship between these ion transport-induced pH and membrane voltage changes to highlight their impact on carcinogenesis. The preliminary results suggest a critical role for Cl- in driving tumour transformation towards a more malignant phenotype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossier, Olivier; Giannone, Grégory; CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements andmore » interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells.« less
Rossier, Olivier; Giannone, Grégory
2016-04-10
Cells adjust their adhesive and cytoskeletal organizations according to changes in the biochemical and physical nature of their surroundings. In return, by adhering and generating forces on the extracellular matrix (ECM) cells organize their microenvironment. Integrin-dependent focal adhesions (FAs) are the converging zones integrating biochemical and biomechanical signals arising from the ECM and the actin cytoskeleton. Thus, integrin-mediated adhesion and mechanotransduction, the conversion of mechanical forces into biochemical signals, are involved in critical cellular functions such as migration, proliferation and differentiation, and their deregulation contributes to pathologies including cancer. A challenging problem is to decipher how stochastic protein movements and interactions lead to formation of dynamic architecture such as integrin-dependent adhesive structures. In this review, we will describe recent advances made possible by super-resolution microscopies and single molecule tracking approaches that provided new understanding on the organization and the dynamics of integrins and intracellular regulators at the nanoscale in living cells. Copyright © 2015. Published by Elsevier Inc.
Microfluidic devices for the controlled manipulation of small volumes
Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN
2003-02-25
A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The method and apparatus are implemented on a fluidic microchip to provide high serial throughput. The method and device of the invention also lend themselves to multiple parallel analyses and manipulation to provide greater throughput for the generation of biochemical information. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter biochemical reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The individual reaction volumes are manipulated in serial fashion analogous to a digital shift register. The method and apparatus according to this invention have application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.
NASA Astrophysics Data System (ADS)
Silveira, Landulfo; Silveira, Fabrício Luiz; Bodanese, Benito; Zângaro, Renato Amaro; Pacheco, Marcos Tadeu T.
2012-07-01
Raman spectroscopy has been employed to identify differences in the biochemical constitution of malignant [basal cell carcinoma (BCC) and melanoma (MEL)] cells compared to normal skin tissues, with the goal of skin cancer diagnosis. We collected Raman spectra from compounds such as proteins, lipids, and nucleic acids, which are expected to be represented in human skin spectra, and developed a linear least-squares fitting model to estimate the contributions of these compounds to the tissue spectra. We used a set of 145 spectra from biopsy fragments of normal (30 spectra), BCC (96 spectra), and MEL (19 spectra) skin tissues, collected using a near-infrared Raman spectrometer (830 nm, 50 to 200 mW, and 20 s exposure time) coupled to a Raman probe. We applied the best-fitting model to the spectra of biochemicals and tissues, hypothesizing that the relative spectral contribution of each compound to the tissue Raman spectrum changes according to the disease. We verified that actin, collagen, elastin, and triolein were the most important biochemicals representing the spectral features of skin tissues. A classification model applied to the relative contribution of collagen III, elastin, and melanin using Euclidean distance as a discriminator could differentiate normal from BCC and MEL.
Adipose Tissue in HIV Infection.
Koethe, John R
2017-09-12
HIV infection and antiretroviral therapy (ART) treatment exert diverse effects on adipocytes and stromal-vascular fraction cells, leading to changes in adipose tissue quantity, distribution, and energy storage. A HIV-associated lipodystrophic condition was recognized early in the epidemic, characterized by clinically apparent changes in subcutaneous, visceral, and dorsocervical adipose depots. Underlying these changes is altered adipose tissue morphology and expression of genes central to adipocyte maturation, regulation, metabolism, and cytokine signaling. HIV viral proteins persist in circulation and locally within adipose tissue despite suppression of plasma viremia on ART, and exposure to these proteins impairs preadipocyte maturation and reduces adipocyte expression of peroxisome proliferator-activated receptor gamma (PPAR-γ) and other genes involved in cell regulation. Several early nucleoside reverse transcriptase inhibitor and protease inhibitor antiretroviral drugs demonstrated substantial adipocyte toxicity, including reduced mitochondrial DNA content and respiratory chain enzymes, reduced PPAR-γ and other regulatory gene expression, and increased proinflammatory cytokine production. Newer-generation agents, such as integrase inhibitors, appear to have fewer adverse effects. HIV infection also alters the balance of CD4+ and CD8+ T cells in adipose tissue, with effects on macrophage activation and local inflammation, while the presence of latently infected CD4+ T cells in adipose tissue may constitute a protected viral reservoir. This review provides a synthesis of the literature on how HIV virus, ART treatment, and host characteristics interact to affect adipose tissue distribution, immunology, and contribution to metabolic health, and adipocyte maturation, cellular regulation, and energy storage. © 2017 American Physiological Society. Compr Physiol 7:1339-1357, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Direct Demonstration of a Growth-Induced Water Potential Gradient.
Nonami, H.; Boyer, J. S.
1993-05-01
When transpiration is negligible, water potentials in growing tissues are less than those in mature tissues and have been predicted to form gradients that move water into the enlarging cells. To determine directly whether the gradients exist, we measured water potentials along the radius of stems of intact soybean (Glycine max [L.] Merr.) seedlings growing in vermiculite in a water-saturated atmosphere. The measurements were made in individual cells by first determining the turgor with a miniature pressure probe, then determining the osmotic potential of solution from the same cell, and finally summing the two potentials. The osmotic potentials were corrected for sample mixing in the probe. The measurements were checked with a thermocouple psychrometer that gave average tissue water potentials. In the elongating region, the water potential was highest near the xylem and lowest near the epidermis and in the center of the pith. In the basal, more mature region of the same stems, water potentials were near zero next to the xylem and throughout the tissue. These basal potentials reflected mostly the potential of the xylem, which extended into the elongating tissues. Thus, the high basal potential confirmed the high potential near the xylem in the elongating tissues. The psychrometer measurements for each tissue gave average potentials that agreed with the average of the cell potentials from the pressure probe. We conclude that a radial gradient was present in the elongating region that formed a water potential field in three dimensions around the xylem and that confirmed the predictions of Molz and Boyer (F.J. Molz and J.S. Boyer [1978] Plant Physiol 62: 423-429).
Direct Demonstration of a Growth-Induced Water Potential Gradient.
Nonami, H.; Boyer, J. S.
1993-01-01
When transpiration is negligible, water potentials in growing tissues are less than those in mature tissues and have been predicted to form gradients that move water into the enlarging cells. To determine directly whether the gradients exist, we measured water potentials along the radius of stems of intact soybean (Glycine max [L.] Merr.) seedlings growing in vermiculite in a water-saturated atmosphere. The measurements were made in individual cells by first determining the turgor with a miniature pressure probe, then determining the osmotic potential of solution from the same cell, and finally summing the two potentials. The osmotic potentials were corrected for sample mixing in the probe. The measurements were checked with a thermocouple psychrometer that gave average tissue water potentials. In the elongating region, the water potential was highest near the xylem and lowest near the epidermis and in the center of the pith. In the basal, more mature region of the same stems, water potentials were near zero next to the xylem and throughout the tissue. These basal potentials reflected mostly the potential of the xylem, which extended into the elongating tissues. Thus, the high basal potential confirmed the high potential near the xylem in the elongating tissues. The psychrometer measurements for each tissue gave average potentials that agreed with the average of the cell potentials from the pressure probe. We conclude that a radial gradient was present in the elongating region that formed a water potential field in three dimensions around the xylem and that confirmed the predictions of Molz and Boyer (F.J. Molz and J.S. Boyer [1978] Plant Physiol 62: 423-429). PMID:12231794
Scaffolding for Three-Dimensional Embryonic Vasculogenesis
NASA Astrophysics Data System (ADS)
Kraehenbuehl, Thomas P.; Aday, Sezin; Ferreira, Lino S.
Biomaterial scaffolds have great potential to support efficient vascular differentiation of embryonic stem cells. Vascular cell fate-specific biochemical and biophysical cues have been identified and incorporated into three-dimensional (3D) biomaterials to efficiently direct embryonic vasculogenesis. The resulting vascular-like tissue can be used for regenerative medicine applications, further elucidation of biophysical and biochemical cues governing vasculogenesis, and drug discovery. In this chapter, we give an overview on the following: (1) developmental cues for directed differentiation of human embryonic stem cells (hESCs) into vascular cells, (2) 3D vascular differentiation in embryoid bodies (EBs), (3) preparation of 3D scaffolds for the vascular differentiation of hESCs, and (4) the most significant studies combining scaffolding and hESCs for development of vascular-like tissue.
Biochemical reactions of ozone in plants
J. Brian Mudd
1998-01-01
Plants react biochemically to ozone in three phases: with constitutive chemicals in the apoplastic fluid and cell membranes; by forming messenger molecules by the affected constitutive materials (ethylene); and by responding to the messenger molecules with pathogenic RNAs and proteins. For instance, plant reactions with ozone result in constitutive molecules such as...
Commons, Kathryn G.; Hewitt, Julie C.; Daubenspeck, John A.; Li, Aihua; Kinney, Hannah C.; Nattie, Eugene E.
2011-01-01
Mice deficient in the transcription factor Pet-1−/− have a ∼70% deficiency of brainstem serotonin [5-hydroxytryptamine (5-HT)] neurons and exhibit spontaneous bradycardias in room air at postnatal day (P)5 and P12 and delayed gasping in response to a single episode of anoxia at P4.5 and P9.5 (Cummings KJ, Li A, Deneris ES, Nattie EE. Am J Physiol Regul Integr Comp Physiol 298: R1333–R1342, 2010; and Erickson JT, Sposato BC. J Appl Physiol 106: 1785–1792, 2009). We hypothesized that at a critical age Pet-1−/− mice will fail to autoresuscitate during episodic anoxia, ultimately dying from a failure of gasping to restore heart rate (HR). We exposed P5, P8, and P12 Pet-1−/− mice and wild-type littermates (WT) to four 30-s episodes of anoxia (97% N2-3% CO2), separated by 5 min of room air. We observed excess mortality in Pet-1−/− only at P8: 43% of Pet-1−/− animals survived past the third episode of anoxia while ∼95% of WT survived all four episodes (P = 0.004). No deaths occurred at P5 and at P12, and one of six Pet-1−/− mice died after the fourth episode, while all WT animals survived. At P8, dying Pet-1−/− animals had delayed gasping, recovery of HR, and eupnea after the first two episodes of anoxia (P < 0.001 for each); death ultimately occurred when gasping failed to restore HR. Both high- and low-frequency components of HR variability were abnormally elevated in dying Pet-1−/− animals following the first episode of anoxia. Dying P8 Pet-1−/− animals had significantly fewer 5-HT neurons in the raphe magnus than surviving animals (P < 0.001). Our data indicate a critical developmental window at which a brainstem 5-HT deficiency increases the risk of death during episodes of anoxia. They may apply to the sudden infant death syndrome, which occurs at a critical age and is associated with 5-HT deficiency. PMID:21680874
Ngugi, Charles C; Oyoo-Okoth, Elijah; Mugo-Bundi, James; Orina, Paul Sagwe; Chemoiwa, Emily Jepyegon; Aloo, Peninah A
2015-06-01
We investigated effects of dietary administration of stinging nettle (Urtica dioica) on growth performance, biochemical, hematological and immunological parameters in juvenile and adult Victoria Labeo (Labeo victorianus) against Aeromonas hydrophila. Fish were divided into 4 groups and fed for 4 and 16 weeks with 0%, 1%, 2% and 5% of U. dioica incorporated into the diet. Use of U. dioica in the diet resulted in improved biochemical, hematological and immunological parameters. Among the biochemical parameters; plasma cortisol, glucose, triglyceride and cholesterol decreased while total protein and albumin in fish increased with increasing dietary inclusion of U. dioica. Among the haematology parameters: red blood cell (RBC), white blood cell (WBC) counts, haematocrit (Htc), mean cell haemoglobin (MCH), mean cell haemoglobin concentration (MCHC) and netrophiles increased with increasing dietary inclusion levels of U. dioica, some depending on the fish age. Serum immunoglobulins, lysozyme activity and respiratory burst were the main immunological parameters in the adult and juvenile L. victorianus measured and they all increased with increasing herbal inclusion of U. dioica in the diet. Dietary incorporation of U. dioica at 5% showed significantly higher relative percentage survival (up to 95%) against A. hydrophila. The current results demonstrate that using U. dioica can stimulate fish immunity and make L. victorianus more resistant to bacterial infection (A. hydrophila). Copyright © 2015 Elsevier Ltd. All rights reserved.
Univariate and multivariate methods for chemical mapping of cervical cancer cells
NASA Astrophysics Data System (ADS)
Duraipandian, Shiyamala; Zheng, Wei; Huang, Zhiwei
2012-01-01
Visualization of cells and subcellular organelles are currently carried out using available microscopy methods such as cryoelectron microscopy, and fluorescence microscopy. These methods require external labeling using fluorescent dyes and extensive sample preparations to access the subcellular structures. However, Raman micro-spectroscopy provides a non-invasive, label-free method for imaging the cells with chemical specificity at sub-micrometer spatial resolutions. The scope of this paper is to image the biochemical/molecular distributions in cells associated with cancerous changes. Raman map data sets were acquired from the human cervical carcinoma cell lines (HeLa) after fixation under 785 nm excitation wavelength. The individual spectrum was recorded by raster-scanning the laser beam over the sample with 1μm step size and 10s exposure time. Images revealing nucleic acids, lipids and proteins (phenylalanine, amide I) were reconstructed using univariate methods. In near future, the small pixel to pixel variations will also be imaged using different multivariate methods (PCA, clustering (HCA, K-means, FCM)) to determine the main cellular constitutions. The hyper-spectral image of cell was reconstructed utilizing the spectral contrast at different pixels of the cell (due to the variation in the biochemical distribution) without using fluorescent dyes. Normal cervical squamous cells will also be imaged in order to differentiate normal and cancer cells of cervix using the biochemical changes in different grades of cancer. Based on the information obtained from the pseudo-color maps, constructed from the hyper-spectral cubes, the primary cellular constituents of normal and cervical cancer cells were identified.
NASA Astrophysics Data System (ADS)
Managò, Stefano; Valente, Carmen; Mirabelli, Peppino; Circolo, Diego; Basile, Filomena; Corda, Daniela; de Luca, Anna Chiara
2016-04-01
Acute lymphoblastic leukemia type B (B-ALL) is a neoplastic disorder that shows high mortality rates due to immature lymphocyte B-cell proliferation. B-ALL diagnosis requires identification and classification of the leukemia cells. Here, we demonstrate the use of Raman spectroscopy to discriminate normal lymphocytic B-cells from three different B-leukemia transformed cell lines (i.e., RS4;11, REH, MN60 cells) based on their biochemical features. In combination with immunofluorescence and Western blotting, we show that these Raman markers reflect the relative changes in the potential biological markers from cell surface antigens, cytoplasmic proteins, and DNA content and correlate with the lymphoblastic B-cell maturation/differentiation stages. Our study demonstrates the potential of this technique for classification of B-leukemia cells into the different differentiation/maturation stages, as well as for the identification of key biochemical changes under chemotherapeutic treatments. Finally, preliminary results from clinical samples indicate high consistency of, and potential applications for, this Raman spectroscopy approach.
Kawano, T; Pinontoan, R; Uozumi, N; Morimitsu, Y; Miyake, C; Asada, K; Muto, S
2000-11-01
In the previous paper [Kawano et al. (2000a) Plant Cell Physiol. 41: 1251], we demonstrated that addition of phenylethylamine (PEA) and benzylamine can induce an immediate and transient burst of active oxygen species (AOS) in tobacco suspension culture. Detected AOS include H2O2, superoxide anion and hydroxyl radicals. Use of several inhibitors suggested the presence of monoamine oxidase-like H2O2-generating activity in the cellular soluble fraction. It was also suggested that peroxidase(s) or copper amine oxidase(s) are involved in the extracellular superoxide production as a consequence of H2O2 production. Since more than 85% of the PEA-dependent AOS generating activity was localized in the extracellular space (extracellular fluid + cell wall), extracellularly secreted enzymes, probably peroxidases, may largely contribute to the oxidative burst induced by PEA. The PEA-induced AOS generation was also observed in the horseradish peroxidase (HRP) reaction mixture, supporting the hypothesis that peroxidases catalyze the oxidation of PEA leading to AOS generation. In addition to AOS production, we observed that PEA induced an increase in monodehydroascorbate radicals (MDA) in the cell suspension culture and in HRP reaction mixture using electron spin resonance spectroscopy and the newly invented MDA reductase-coupled method. Here we report that MDA production is an indicator of peroxidase-mediated generation of PEA radical species in tobacco suspension culture.
SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?
Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J
2016-08-01
At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
2011-04-01
a potentially unstable single limb ( Marigold and Patla, 2002; Murray et al., 1985). In theory, adopting a more flexed posture should also lower the...when knowingly traversing slippery terrain ( Marigold and Patla). Despite minimal differences in temporal-spatial values and kinematics for the two...Walking in Healthy Individuals. J. Appl. Physiol. 2008, 104, 747–755. 22 Marigold , D. S.; Patla, A. E. Strategies for Dynamic Stability During
Core Temperature and Surface Heat Flux During Exercise in Heat While Wearing Body Armor
2015-10-26
Table 7, overall dry > humid, there were no significant differences for energy costs (M) between environments. When compared to the estimated M...KB, Givoni B, & Goldman RF. Predicting energy expenditure with loads while standing or walking very slowly. J Appl Physiol 43(4): 577-581, 1977...No. 0704-0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
Assessment Methods for Restrictions in Manual Dexterity: Suitability for Exposure to the Cold
2009-10-01
palm is goat leather. The thermal comfort range of the gloves had been described recently (Zimmermann et al. 2008). Figure 1: Military five...sufficient to maintain the thermal comfort of the body. In the screw/bolt skill test restrictions in manual dexterity due to mechanical and haptical...temperature of the human body. J. Appl. Physiol. 19: 531-533 (1964). [10] Zimmermann, C., Uedelhoven, W. H., Kurz, B., Glitz, K. J.: Thermal comfort range
Enhanced Vascular Effects of Cyclic GMP in Septic Rat Aorta
1988-01-01
enzyme in turn catalyzes Integrative Comp. Physiol. 23): R436-R442, 1988--The mod- the synthesis of 3’,5’-cyclic monophosp#* (cGMP), ulation of... synthesis of endogenous cGMP or after aug- significant disparity in cGMP content of tissue from mentation of intracellular cGMP concentration by treat...and a proposal. J. Vascular reactivity in endotoxin shock: effect of lidocaine or in- Surg. Res. 29: 189-201, 1980. UNCLASSIFIED SECURITY CLASSIFICATION
Expanded Prediction Equations of Human Sweat Loss and Water Needs
2009-01-01
Evaluation of the limits to accurate sweat loss prediction during prolonged exercise. Eur J Appl Physiol 101: 215–224, 2007. 4. Chinevere TD ...113–117, 2001. 17. Miller RG. Simultaneous Statistical Interference (2nd ed.). New York: Springer, 1981. 18. Mitchell JW, Nadel ER, Stolwijk JAJ ...modeling of physiological responses and human performance in the heat. Comput Biol Med 16: 319–329, 1986. 20. Saltin B, Gagge AP, Stolwijk JAJ . Body
Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves
2016-01-01
temperatures and whole-animal oxygen consumption after exercise. Am J Physiol 221: 427-431, 1971. 33. Brouns I, De Proost I, Pintelon I, Timmermans JP...lactic acid production (Fig. 8). The lack of effect is not unexpected because the increase in arterial O2 content by oxygen ventilation is limited to the...triggering the bronchospasm; 2) whether this effect is heightened by acute airway inflammation; and 3) the temperature thresholds of thermal stress in
Gastric Emptying During Exercise: Effects of Acute Heat Stress, Acclimation and Hypohydration,
1987-10-01
dehydrate to 5% of their baseline body weight. Subjects achieving a weight reduction greater than 5% were allowed an appropriate amount of fruit juices ...Saltin. Factors limiting gastric emptying during rest and exercise. J. Appl . Physiol. 37: 679-683, 1974. 3. Costill, D.L., W. F. Krammer, and A. Fisher...Fluid ingestion during distance running. Arch. Environ. Health. 21: 520-525, 1970. 4. Crane, R.K. The physiology of the intestinal absorption of sugars
Lactate Accumulation for Runners and Non-Runners during Various Exercise Tests,
1980-08-21
individual reaches a point at which lactate begins to increase exponentially in the blood. Anaerobic threshold (AT) and lactate turning point (LTP) are terms...Workloads were assigned based upon a previous assessment of the subject’s anaerobic threshold , however, there was no indication of the individual’s...Vodak, 3.H. Wilmore, J. Vodak and P Kurtz. Anaerobic threshold and maximal aerobic power for three modes of exercise. J. Appl. Physiol. 41(4):544-550
Synaptic Plasticity in Visual Cortex: Comparison of Theory with Experiment
1990-01-01
Hubel DH, Wiesel TN (1961) Integrative action in the cat’s lateral geniculate body . J. Physiol. 155:385-398. Hubel DH, Wiesel TN (1962) Receptive...fibers from the lateral geniculate nucleus (LGN) onto a single cortical neuron. Scofield and Cooper (1985) extended this to a network of interconnected...connected network was later 1 simplified by Cooper and Scofield (1988) with the introduction of a mean-field theory, which in effect replaces all of the
Modeling Respiratory Gas Dynamics in the Aviator’s Breathing System. Volume 2. Appendices
1994-05-01
Rideout, at at. Dfference-Differentlat Equations for Fluid C... Flow in Distensible Tubes. IEEE Transactions on Bio-Medlcat C... Enginhering. Vot INE-14...McGraw-Hill; 1970; Chapter 13: 433-450. 12. Astrand, PO; Saltin, B. Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol...1802-1814; 1986. 233. Linehan, JH; Haworth, ST; Nelin, LD; Krenz, GS; Dawson, CA. A Simple Distensible Vessel Model for Interpreting Pulmonary
Foraida, Zahraa I; Kamaldinov, Tim; Nelson, Deirdre A; Larsen, Melinda; Castracane, James
2017-10-15
Development of electrospun nanofibers that mimic the structural, mechanical and biochemical properties of natural extracellular matrices (ECMs) is a promising approach for tissue regeneration. Electrospun fibers of synthetic polymers partially mimic the topography of the ECM, however, their high stiffness, poor hydrophilicity and lack of in vivo-like biochemical cues is not optimal for epithelial cell self-organization and function. In search of a biomimetic scaffold for salivary gland tissue regeneration, we investigated the potential of elastin, an ECM protein, to generate elastin hybrid nanofibers that have favorable physical and biochemical properties for regeneration of the salivary glands. Elastin was introduced to our previously developed poly-lactic-co-glycolic acid (PLGA) nanofiber scaffolds by two methods, blend electrospinning (EP-blend) and covalent conjugation (EP-covalent). Both methods for elastin incorporation into the nanofibers improved the wettability of the scaffolds while only blend electrospinning of elastin-PLGA nanofibers and not surface conjugation of elastin to PLGA fibers, conferred increased elasticity to the nanofibers measured by Young's modulus. After two days, only the blend electrospun nanofiber scaffolds facilitated epithelial cell self-organization into cell clusters, assessed with nuclear area and nearest neighbor distance measurements, leading to the apicobasal polarization of salivary gland epithelial cells after six days, which is vital for cell function. This study suggests that elastin electrospun nanofiber scaffolds have potential application in regenerative therapies for salivary glands and other epithelial organs. Regenerating the salivary glands by mimicking the extracellular matrix (ECM) is a promising approach for long term treatment of salivary gland damage. Despite their topographic similarity to the ECM, electrospun fibers of synthetic polymers lack the biochemical complexity, elasticity and hydrophilicity of the ECM. Elastin is an ECM protein abundant in the salivary glands and responsible for tissue elasticity. Although it's widely used for tissue regeneration of other organs, little is known about its utility in regenerating the salivary tissue. This study describes the use of elastin to improve the elasticity, hydrophilicity and biochemical complexity of synthetic nanofibers and its potential in directing in vivo-like organization of epithelial salivary cells which helps the design of efficient salivary gland regeneration scaffolds. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A model of fluid and solute exchange in the human: validation and implications.
Bert, J L; Gyenge, C C; Bowen, B D; Reed, R K; Lund, T
2000-11-01
In order to understand better the complex, dynamic behaviour of the redistribution and exchange of fluid and solutes administered to normal individuals or to those with acute hypovolemia, mathematical models are used in addition to direct experimental investigation. Initial validation of a model developed by our group involved data from animal experiments (Gyenge, C.C., Bowen, B.D., Reed, R.K. & Bert, J.L. 1999b. Am J Physiol 277 (Heart Circ Physiol 46), H1228-H1240). For a first validation involving humans, we compare the results of simulations with a wide range of different types of data from two experimental studies. These studies involved administration of normal saline or hypertonic saline with Dextran to both normal and 10% haemorrhaged subjects. We compared simulations with data including the dynamic changes in plasma and interstitial fluid volumes VPL and VIT respectively, plasma and interstitial colloid osmotic pressures PiPL and PiIT respectively, haematocrit (Hct), plasma solute concentrations and transcapillary flow rates. The model predictions were overall in very good agreement with the wide range of experimental results considered. Based on the conditions investigated, the model was also validated for humans. We used the model both to investigate mechanisms associated with the redistribution and transport of fluid and solutes administered following a mild haemorrhage and to speculate on the relationship between the timing and amount of fluid infusions and subsequent blood volume expansion.
Eisenhofer, Graeme; Klink, Barbara; Richter, Susan; Lenders, Jacques WM; Robledo, Mercedes
2017-01-01
The tremendous advances over the past two decades in both clinical genetics and biochemical testing of chromaffin cell tumours have led to new considerations about how these aspects of laboratory medicine can be integrated to improve diagnosis and management of affected patients. With germline mutations in 15 genes now identified to be responsible for over a third of all cases of phaeochromocytomas and paragangliomas, these tumours are recognised to have one of the richest hereditary backgrounds among all neoplasms. Depending on the mutation, tumours show distinct differences in metabolic pathways that relate to or even directly impact clinical presentation. At the same time, there has been improved understanding about how catecholamines are synthesised, stored, secreted and metabolised by chromaffin cell tumours. Although the tumours may not always secrete catecholamines it has become clear that almost all continuously produce and metabolise catecholamines. This has not only fuelled changes in laboratory medicine, but has also assisted in recognition of genotype-biochemical phenotype relationships important for diagnostics and clinical care. In particular, differences in catecholamine and energy pathway metabolomes can guide genetic testing, assist with test interpretation and provide predictions about the nature, behaviour and imaging characteristics of the tumours. Conversely, results of genetic testing are important for guiding how routine biochemical testing should be employed and interpreted in surveillance programmes for at-risk patients. In these ways there are emerging needs for modern laboratory medicine to seamlessly integrate biochemical and genetic testing into the diagnosis and management of patients with chromaffin cell tumours. PMID:29332973
Kamran, Mohammad; Sinha, Swati; Dubey, Priyanka; Lynn, Andrew M; Dhar, Suman K
2016-07-01
Cell division in bacteria is initiated by FtsZ, which forms a Z ring at the middle of the cell, between the nucleoids. The Z ring is stabilized by Z ring-associated proteins (Zaps), which crosslink the FtsZ filaments and provide strength. The deletion of Zaps leads to the elongation phenotype with an abnormal Z ring. The components of cell division in Helicobacter pylori are similar to other gram negative bacteria except for the absence of few components including Zaps. Here, we used HHsearch to identify homologs of the missing cell division proteins and got potential hits for ZapA and ZapB, as well as for few other cell division proteins. We further validated the function of the putative ZapA homolog by genetic complementation, immuno-colocalization and biochemical analysis. © 2016 Federation of European Biochemical Societies.
Detection of mast cell secretion by using surface enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Li, Juan; Li, Ren; Zheng, Liqin; Wang, Yuhua; Xie, Shusen; Lin, Juqiang
2016-10-01
Acupuncture can cause a remarkable increase in degranulation of the mast cells, which has attracted the interest of researchers since the 1980s. Surface-enhanced Raman scattering (SERS) could obtain biochemical information with high sensitivity and specificity. In this study, SERS was used to detect the degree of degranulation of mast cells according to different incubate time. Mast cells was incubated with culture medium for 0 h, 12 h and 24 h, then centrifuge the culture medium, decant the supernatant, and discard the mast cell. SERS was performed to obtain the biochemical fingerprinting signatures of the centrifuged medium. The spectra data are then analyzed by spectral peaks attribution and the principal component analysis (PCA). The measured Raman spectra of the two groups were separated well by PCA. It indicated that mast cells had secreted some substances into cultured medium though degranulation did not happen.
Circumferential gap propagation in an anisotropic elastic bacterial sacculus
NASA Astrophysics Data System (ADS)
Taneja, Swadhin; Levitan, Benjamin A.; Rutenberg, Andrew D.
2014-01-01
We have modeled stress concentration around small gaps in anisotropic elastic sheets, corresponding to the peptidoglycan sacculus of bacterial cells, under loading corresponding to the effects of turgor pressure in rod-shaped bacteria. We find that under normal conditions the stress concentration is insufficient to mechanically rupture bacteria, even for gaps up to a micron in length. We then explored the effects of stress-dependent smart autolysins, as hypothesized by A. L. Koch [Adv. Microb. Physiol. 24, 301 (1983), 10.1016/S0065-2911(08)60388-4; Res. Microbiol. 141, 529 (1990), 10.1016/0923-2508(90)90017-K]. We show that the measured anisotropic elasticity of the peptidoglycan (PG) sacculus can lead to stable circumferential propagation of small gaps in the sacculus. This is consistent with the recent observation of circumferential propagation of PG-associated MreB patches in rod-shaped bacteria. We also find a bistable regime of both circumferential and axial gap propagation, which agrees with behavior reported in cytoskeletal mutants of B. subtilis. We conclude that the elastic anisotropies of a bacterial sacculus, as characterized experimentally, may be relevant for maintaining rod-shaped bacterial growth.
Modeling the effects of hypoxia on ATP turnover in exercising muscle
NASA Technical Reports Server (NTRS)
Arthur, P. G.; Hogan, M. C.; Bebout, D. E.; Wagner, P. D.; Hochachka, P. W.
1992-01-01
Most models of metabolic control concentrate on the regulation of ATP production and largely ignore the regulation of ATP demand. We describe a model, based on the results of Hogan et al. (J. Appl. Physiol. 73: 728-736, 1992), that incorporates the effects of ATP demand. The model is developed from the premise that a unique set of intracellular conditions can be measured at each level of ATP turnover and that this relationship is best described by energetic state. Current concepts suggest that cells are capable of maintaining oxygen consumption in the face of declines in the concentration of oxygen through compensatory changes in cellular metabolites. We show that these compensatory changes can cause significant declines in ATP demand and result in a decline in oxygen consumption and ATP turnover. Furthermore we find that hypoxia does not directly affect the rate of anaerobic ATP synthesis and associated lactate production. Rather, lactate production appears to be related to energetic state, whatever the PO2. The model is used to describe the interaction between ATP demand and ATP supply in determining final ATP turnover.
NASA Technical Reports Server (NTRS)
Rajam, M. V.; Weinstein, L. H.; Galston, A. W.
1986-01-01
alpha-Difluoromethylornithine (DFMO), a specific and irreversible inhibitor of the polyamine biosynthetic enzyme ornithine decarboxylase, effectively inhibits mycelial growth of several phytopathogenic fungi on defined media in vitro and provides systemic protection of bean plants against infection by Uromyces phaseoli L. race 0 (MV Rajam, AW Galston 1985 Plant Cell Physiol 26: 683-692; MV Rajam et al. 1985 Proc Natl Acad Sci USA 82: 6874-6878). We now find that application of 0.5 millimolar DFMO to unifoliolate leaves of Pinto beans up to 3 days after inoculation with uredospores of U. phaseoli completely inhibits the growth of the pathogen, while application 4 or 5 days after inoculation results in partial protection against the pathogen. Spores do not germinate on the surface of unifoliolate leaves treated with DFMO 1 day before infection, but addition of spermidine to the DFMO treatments partially reverses the inhibitory effect. The titer of polyamines in bean plants did not decline after DFMO treatment; rather, putrescine and spermidine contents actually rose, probably due to the known but paradoxical stimulation of arginine decarboxylase activity by DFMO.
Agnati, L F; Leo, G; Genedani, S; Piron, L; Rivera, A; Guidolin, D; Fuxe, K
2009-08-01
In this paper a hypothesis that some special signals ("key-signals" excito-amino acids, beta-amyloid peptides and alpha-synuclein) are not only involved in information handling by the neuronal circuits, but also trigger out substantial structural and/or functional changes in the Central Nervous System (CNS) is introduced. This forces the neuronal circuits to move from one stable state towards a new state, but in doing so these signals became potentially dangerous. Several mechanisms are put in action to protect neurons and glial cells from these potentially harmful signals. However, in agreement with the Red Queen Theory of Ageing (Agnati et al. in Acta Physiol Scand 145:301-309, 1992), it is proposed that during ageing these neuroprotective processes become less effective while, in the meantime, a shortage of brain plasticity occurs together with an increased need of plasticity for repairing the wear and tear of the CNS. The paper presents findings supporting the concept that such key-signals in instances such as ageing may favour neurodegenerative processes in an attempt of maximizing neuronal plasticity.
Cavalcante, Dalita G S M; da Silva, Natara D G; Marcarini, Juliana Cristina; Mantovani, Mário Sérgio; Marin-Morales, Maria A; Martinez, Cláudia B R
2014-09-01
Transesterification has proved to be the best option for obtaining biodiesel and, depending on the type of alcohol used in the reaction, the type of biodiesel may be methyl ester or ethyl ester. Leaking biodiesel can reach water bodies, contaminating aquatic organisms, particularly fish. The objective of this study was to determine whether the soluble fraction of biodiesel (Bd), produced by both the ethylic (BdEt) and methylic (BdMt) routes, can cause cytotoxic, biochemical and genotoxic alterations in the hepatocyte cell line of Danio rerio (ZFL). The metabolic activity of the cell was quantified by the MTT reduction method, while genotoxic damage was analyzed by the comet assay with the addition of specific endonucleases. The production of reactive oxygen species (ROS) and antioxidant/biotransformation enzymes activity also were determined. The results indicate that both Bd increased ROS production, glutathione S-transferase activity and the occurrence of DNA damage. BdMt showed higher cytotoxicity than BdEt, and also caused oxidative damage to the DNA. In general, both Bd appear to be stressors for the cells, causing cytotoxic, biochemical and genetic alterations in ZFL cells, but the type and intensity of the changes found appear to be dependent on the biodiesel production route. Copyright © 2014 Elsevier Ltd. All rights reserved.
77 FR 5489 - Identification of Human Cell Lines Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
...-01] Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology... cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding... cell lines accepted on the NIST Applied Genetics Group Web site at http://www.nist.gov/mml/biochemical...
Study of radiation effects on mammalian cells in vitro
NASA Technical Reports Server (NTRS)
Sinclair, W. K.
1968-01-01
Radiation effect on single cells and cell populations of Chinese hamster lung tissue is studied in vitro. The rate and position as the cell progresses through the generation cycle shows division delay, changes in some biochemical processes in the cell, chromosomal changes, colony size changes, and loss of reproductive capacity.
In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals
2011-01-01
Background A critical concern in metabolic engineering is the need to balance the demand and supply of redox intermediates such as NADH. Bioelectrochemical techniques offer a novel and promising method to alleviate redox imbalances during the synthesis of biochemicals and biofuels. Broadly, these techniques reduce intracellular NAD+ to NADH and therefore manipulate the cell's redox balance. The cellular response to such redox changes and the additional reducing power available to the cell can be harnessed to produce desired metabolites. In the context of microbial fermentation, these bioelectrochemical techniques can be used to improve product yields and/or productivity. Results We have developed a method to characterize the role of bioelectrosynthesis in chemical production using the genome-scale metabolic model of E. coli. The results in this paper elucidate the role of bioelectrosynthesis and its impact on biomass growth, cellular ATP yields and biochemical production. The results also suggest that strain design strategies can change for fermentation processes that employ microbial electrosynthesis and suggest that dynamic operating strategies lead to maximizing productivity. Conclusions The results in this paper provide a systematic understanding of the benefits and limitations of bioelectrochemical techniques for biochemical production and highlight how electrical enhancement can impact cellular metabolism and biochemical production. PMID:21967745
Teixeira Neto, Paulo Florentino; Gonçalves, Romélia Pinheiro; Elias, Darcielle Bruna Dias; de Araújo, Cleiton Pinheiro; Magalhães, Hemerson Iury Ferreira
2011-01-01
Background Sickle cell anemia is a hemoglobinopathy caused by a mutation that results in the production of an abnormal hemoglobin molecule, hemoglobin S (Hb S). This is responsible for profound physiological changes, such as the sickling of red blood cells. Several studies have shown that hydroxyurea protects against vaso-occlusive crises. Objective The aim of this study was to evaluate the oxidative stress associated with biochemical parameters in patients with sickle cell anemia treated with hydroxyurea. Methods The study was conducted with 20 male and 25 female patients at the Hospital Universitário Walter Cantídio. The patients were divided into two groups: a study group (n = 12), patients with sickle cell anemia who were receiving hydroxyurea and a control group (n = 33) of sickle cell anemia patients not submitted to hydroxyurea treatment. The biochemical parameters analyzed were ferritin, transferrin, and serum iron. Glutathione was measured in its reduced form to analyze the oxidative state. Results The results showed insignificant increases in the levels of serum iron, transferrin and ferritin in patients treated with hydroxyurea when compared with those who did not take the medication. However, the glutathione levels were significantly higher in patients taking hydroxyurea than in controls. Conclusions These results indicate that hydroxyurea possibly acts as an antioxidant by increasing glutathione levels. PMID:23049297
Kalinchuk, Anna V; Porkka-Heiskanen, Tarja; McCarley, Robert W; Basheer, Radhika
2015-01-01
The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex , lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low-theta power (5-7 Hz), but not high-theta (7-9 Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx ]ex and [AD]ex . Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx ]ex , [AD]ex and low-theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex . Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low-theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Kalinchuk, Anna V.; Porkka-Heiskanen, Tarja; McCarley, Robert W.; Basheer, Radhika
2015-01-01
The tight coordination of biochemical and electrophysiological mechanisms underlies the homeostatic sleep pressure (HSP) produced by sleep deprivation (SD). We have reported that during SD the levels of inducible nitric oxide synthase (iNOS), extracellular nitric oxide (NO), adenosine [AD]ex, lactate [Lac]ex and pyruvate [Pyr]ex increase in the basal forebrain (BF). However, it is not clear whether all of them contribute to HSP leading to increased electroencephalogram (EEG) delta activity during non-rapid eye movement (NREM) recovery sleep (RS) following SD. Previously, we showed that NREM delta increase evident during RS depends on the presence of BF cholinergic (ChBF) neurons. Here, we investigated the role of ChBF cells in coordination of biochemical and EEG changes seen during SD and RS in the rat. Increases in low theta power (5–7Hz), but not high theta (7–9Hz), during SD correlated with the increase in NREM delta power during RS, and with the changes in nitrate/nitrite [NOx]ex and [AD]ex. Lesions of ChBF cells using IgG 192-saporin prevented increases in [NOx]ex, [AD]ex and low theta activity, during SD, but did not prevent increases in [Lac]ex and [Pyr]ex. Infusion of NO donor DETA NONOate into the saporin-treated BF failed to increase NREM RS and delta power, suggesting ChBF cells are important for mediating NO homeostatic effects. Finally, SD-induced iNOS was mostly expressed in ChBF cells, and the intensity of iNOS induction correlated with the increase in low theta activity. Together, our data indicate ChBF cells are important in regulating the biochemical and EEG mechanisms that contribute to HSP. PMID:25369989
[The effect of vegetarian diet on selected biochemical and blood morphology parameters].
Nazarewicz, Rafał
2007-01-01
The objective was to examine whether vegetarian diet influence biochemical parameters of blood and plasma urea in selective vegetarian group. The investigation covered 41 subject, 22 of them had been applying vegetarian diet and 19 were omnivorous. The study shows statistically significant lower values of white blood cells, % and amounts of neutrocytes and insignificant lower level of red blood cells, hemoglobine, hematocrit and platelet in vegetarian group. Significant lower plasma urea level was observed in that group. These changes indicate that high quality deficiency protein was due to vegetarian diet.
2012-01-01
adiponectin, in obesity. Biochem Bio- phys Res Commun 257:79–83 10. Barb D, Pazaitou-Panayiotou K, Mantzoros CS 2006 Adiponectin: a link between obesity and...optotic responses in human MCF7 breast cancer cells. Biochem Bio- phys Res Commun 345:271–279 17. Liu J, Lam JB, Chow KH, Xu A, Lam KS, Moon RT...220 28. Palmieri C, Cheng GJ, Saji S, Zelada-Hedman M, Wärri A, Weihua Z, Van Noorden S, Wahlstrom T, Coombes RC, Warner M, Gustafsson JA 2002
NASA Astrophysics Data System (ADS)
McKnight, Timothy E.; Melechko, Anatoli V.; Griffin, Guy D.; Guillorn, Michael A.; Merkulov, Vladimir I.; Serna, Francisco; Hensley, Dale K.; Doktycz, Mitchel J.; Lowndes, Douglas H.; Simpson, Michael L.
2003-05-01
We demonstrate the integration of vertically aligned carbon nanofibre (VACNF) elements with the intracellular domains of viable cells for controlled biochemical manipulation. Deterministically synthesized VACNFs were modified with either adsorbed or covalently-linked plasmid DNA and were subsequently inserted into cells. Post insertion viability of the cells was demonstrated by continued proliferation of the interfaced cells and long-term (> 22 day) expression of the introduced plasmid. Adsorbed plasmids were typically desorbed in the intracellular domain and segregated to progeny cells. Covalently bound plasmids remained tethered to nanofibres and were expressed in interfaced cells but were not partitioned into progeny, and gene expression ceased when the nanofibre was no longer retained. This provides a method for achieving a genetic modification that is non-inheritable and whose extent in time can be directly and precisely controlled. These results demonstrate the potential of VACNF arrays as an intracellular interface for monitoring and controlling subcellular and molecular phenomena within viable cells for applications including biosensors, in vivo diagnostics, and in vivo logic devices.
Spatiotemporally and Mechanically Controlled Triggering of Mast Cells using Atomic Force Microscopy
Hu, Kenneth K.; Bruce, Marc A.; Butte, Manish J.
2014-01-01
Mast cells are thought to be sensitive to mechanical forces, for example, coughing in asthma or pressure in “physical urticarias”. Conversion of mechanical forces to biochemical signals could potentially augment antigenic signaling. Studying the combined effects of mechanical and antigenic cues on mast cells and other hematopoietic cells has been elusive. Here, we present an approach using a modified atomic force microscope cantilever to deliver antigenic signals to mast cells while simultaneously applying mechanical forces. We developed a strategy to concurrently record degranulation events by fluorescence microscopy during antigenic triggering. Finally, we also measured the mechanical forces generated by mast cells while antigen receptors are ligated. We showed that mast cells respond to antigen delivered by the AFM cantilever with prompt degranulation and the generation of strong pushing and pulling forces. We did not discern any relationship between applied mechanical forces and the kinetics of degranulation. These experiments present a new method for dissecting the interactions of mechanical and biochemical cues in signaling responses of immune cells. PMID:24777418
Martínez-Rendón, Jacqueline; Sánchez-Guzmán, Erika; Rueda, Angélica; González, James; Gulias-Cañizo, Rosario; Aquino-Jarquín, Guillermo; Castro-Muñozledo, Federico; García-Villegas, Refugio
2017-07-01
TRPV4 (transient receptor potential vanilloid 4) is a cation channel activated by hypotonicity, moderate heat, or shear stress. We describe the expression of TRPV4 during the differentiation of a corneal epithelial cell model, RCE1(5T5) cells. TRPV4 is a late differentiation feature that is concentrated in the apical membrane of the outmost cell layer of the stratified epithelia. Ca 2+ imaging experiments showed that TRPV4 activation with GSK1016790A produced an influx of calcium that was blunted by the specific TRPV4 blocker RN-1734. We analyzed the involvement of TRPV4 in RCE1(5T5) epithelial differentiation by measuring the development of transepithelial electrical resistance (TER) as an indicator of the tight junction (TJ) assembly. We showed that TRPV4 activity was necessary to establish the TJ. In differentiated epithelia, activation of TRPV4 increases the TER and the accumulation of claudin-4 in cell-cell contacts. Epidermal Growth Factor (EGF) up-regulates the TER of corneal epithelial cultures, and we show here that TRPV4 activation mimicked this EGF effect. Conversely, TRPV4 inhibition or knock down by specific shRNA prevented the increase in TER. Moreover, TRPP2, an EGF-activated channel that forms heteromeric complexes with TRPV4, is also concentrated in the outmost cell layer of differentiated RCE1(5T5) sheets. This suggests that the EGF regulation of the TJ may involve a heterotetrameric TRPV4-TRPP2 channel. These results demonstrated TRPV4 activity was necessary for the correct establishment of TJ in corneal epithelia and as well as the regulation of both the barrier function of TJ and its ability to respond to EGF. J. Cell. Physiol. 232: 1794-1807, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Nonami, H; Boyer, J S
1990-08-01
Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low psi(w)) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low psi(w) by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low psi(w). It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low psi(w) but that the elastic properties of the walls were of little consequence in this response.
Nonami, Hiroshi; Boyer, John S.
1990-01-01
Measurements with a guillotine psychrometer (H Nonami, JS Boyer [1990] Plant Physiol 94: 1601-1609) indicate that the inhibition of stem growth at low water potentials (low ψw) is accompanied by decreases in cell wall extensibility and tissue hydraulic conductance to water that eventually limit growth rate in soybean (Glycine max L. Merr.). To check this conclusion, we measured cell wall properties and cell hydraulic conductivities with independent techniques in soybean seedlings grown and treated the same way, i.e. grown in the dark and exposed to low ψw by transplanting dark grown seedlings to vermiculite of low water content. Wall properties were measured with an extensiometer modified for intact plants, and conductances were measured with a cell pressure probe in intact plants. Theory was developed to relate the wall measurements to those with the psychrometer. In the elongation zone, the plastic deformability of the walls decreased when measured with the extensiometer while growth was inhibited at low ψw. It increased during a modest growth recovery. This behavior was the same as that for the wall extensibility observed previously with the psychrometer. Tissue that was killed before measurement with the extensiometer also showed a similar response, indicating that changes in wall extensibility represented changes in wall physical properties and not rates of wall biosynthesis. The elastic compliance (reciprocal of bulk elastic modulus) did not change in the elongating or mature tissue. The hydraulic conductivity of cortical cells decreased in the elongating tissue and increased slightly during growth recovery in a response similar to that observed with the psychrometer. We conclude that the plastic properties of the cell walls and the conductance of the cells to water were decreased at low ψw but that the elastic properties of the walls were of little consequence in this response. PMID:16667664
Biochemical and Structural Studies of RNA Modification and Repair
ERIC Educational Resources Information Center
Chan, Chio Mui
2009-01-01
RNA modification, RNA interference, and RNA repair are important events in the cell. This thesis presents three projects related to these three fields. By using both biochemical and structural methods, we characterized enzymatic activities of pseudouridine synthase TruD, solved the structure of "A. aeolicus" GidA, and reconstituted a novel…
Multidimensional biochemical information processing of dynamical patterns
NASA Astrophysics Data System (ADS)
Hasegawa, Yoshihiko
2018-02-01
Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.
Optimal Cytoplasmic Transport in Viral Infections
D'Orsogna, Maria R.; Chou, Tom
2009-01-01
For many viruses, the ability to infect eukaryotic cells depends on their transport through the cytoplasm and across the nuclear membrane of the host cell. During this journey, viral contents are biochemically processed into complexes capable of both nuclear penetration and genomic integration. We develop a stochastic model of viral entry that incorporates all relevant aspects of transport, including convection along microtubules, biochemical conversion, degradation, and nuclear entry. Analysis of the nuclear infection probabilities in terms of the transport velocity, degradation, and biochemical conversion rates shows how certain values of key parameters can maximize the nuclear entry probability of the viral material. The existence of such “optimal” infection scenarios depends on the details of the biochemical conversion process and implies potentially counterintuitive effects in viral infection, suggesting new avenues for antiviral treatment. Such optimal parameter values provide a plausible transport-based explanation of the action of restriction factors and of experimentally observed optimal capsid stability. Finally, we propose a new interpretation of how genetic mutations unrelated to the mechanism of drug action may nonetheless confer novel types of overall drug resistance. PMID:20046829
Chevalier, Michael W.; El-Samad, Hana
2014-01-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled. PMID:25481130
NASA Astrophysics Data System (ADS)
Chevalier, Michael W.; El-Samad, Hana
2014-12-01
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation times of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.
Multidimensional biochemical information processing of dynamical patterns.
Hasegawa, Yoshihiko
2018-02-01
Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.
He, Qili; Su, Guoming; Liu, Keliang; Zhang, Fangcheng; Jiang, Yong; Gao, Jun; Liu, Lida; Jiang, Zhongren; Jin, Minwu; Xie, Huiping
2017-01-01
Hematologic and biochemical analytes of Sprague-Dawley rats are commonly used to determine effects that were induced by treatment and to evaluate organ dysfunction in toxicological safety assessments, but reference intervals have not been well established for these analytes. Reference intervals as presently defined for these analytes in Sprague-Dawley rats have not used internationally recommended statistical method nor stratified by sex. Thus, we aimed to establish sex-specific reference intervals for hematologic and biochemical parameters in Sprague-Dawley rats according to Clinical and Laboratory Standards Institute C28-A3 and American Society for Veterinary Clinical Pathology guideline. Hematology and biochemistry blood samples were collected from 500 healthy Sprague-Dawley rats (250 males and 250 females) in the control groups. We measured 24 hematologic analytes with the Sysmex XT-2100i analyzer, 9 biochemical analytes with the Olympus AU400 analyzer. We then determined statistically relevant sex partitions and calculated reference intervals, including corresponding 90% confidence intervals, using nonparametric rank percentile method. We observed that most hematologic and biochemical analytes of Sprague-Dawley rats were significantly influenced by sex. Males had higher hemoglobin, hematocrit, red blood cell count, red cell distribution width, mean corpuscular volume, mean corpuscular hemoglobin, white blood cell count, neutrophils, lymphocytes, monocytes, percentage of neutrophils, percentage of monocytes, alanine aminotransferase, aspartate aminotransferase, and triglycerides compared to females. Females had higher mean corpuscular hemoglobin concentration, plateletcrit, platelet count, eosinophils, percentage of lymphocytes, percentage of eosinophils, creatinine, glucose, total cholesterol and urea compared to males. Sex partition was required for most hematologic and biochemical analytes in Sprague-Dawley rats. We established sex-specific reference intervals, including corresponding 90% confidence intervals, for Sprague-Dawley rats. Understanding the significant discrepancies in hematologic and biochemical analytes between male and female Sprague-Dawley rats provides important insight into physiological effects in test rats. Establishment of locally sex-specific reference intervals allows a more precise evaluation of animal quality and experimental results of Sprague-Dawley rats in our toxicology safety assessment.
The FEBS Journal in 2018 - putting a bit of color in your life, and your figures.
Martin, Seamus J
2018-01-01
Seamus Martin holds the Smurfit Chair of Medical Genetics at the Smurfit Institute of Genetics, Trinity College Dublin, Ireland. He works on all aspects of cell death control and is especially interested in the links between cell death, cell stress and inflammation. He received the GlaxoSmithKline Award of The Biochemical Society (2006) and The RDS-Irish Times Boyle Medal (2015) for his work on the role of caspases in apoptosis and was elected to the Royal Irish Academy in 2006 and EMBO in 2009. He is the Editor-in-Chief of The FEBS Journal since 2014. © 2018 Federation of European Biochemical Societies.
Engine of life and big bang of evolution: a personal perspective.
Barber, James
2004-01-01
Photosystem II (PS II) is the engine for essentially all life on our planet and its beginning 2.5 billion years ago was the 'big bang of evolution.' It produces reducing equivalents for making organic compounds on an enormous scale and at the same time provides us with an oxygenic atmosphere and protection against UV radiation (in the form of the ozone layer). In 1967, when I began my career in photosynthesis research, little was known about PS II. The Z-scheme had been formulated [Hill and Bendall (1960) Nature 186: 136-137] and Boardman and Anderson [(1964) Nature 203: 166-167] had isolated PS II as a discrete biochemical entity. PS II was known not only to be the source of oxygen but of variable chlorophyll fluorescence [Duysens and Sweers (1963) In: Studies on Microalgae and Photosynthetic Bacteria, pp. 353-372. University of Tokyo Press, Tokyo] and delayed chlorophyll fluorescence [Arnold and Davidson (1954) J Gen Physiol 37: 677-684]. P680 had just been discovered [Döring et al. (1967) Z Naturforsch 22b: 639-644]. No wonder the 'black box of PS II' was described at that time by Bessel Kok and George Cheniae [Current Topics in Bioenergetics 1: 1-47 (1966)] as the 'inner sanctum of photosynthesis.' What a change in our level of understanding of PS II since then! The contributions of many talented scientists have unraveled the mechanisms and structural basis of PS II function and we are now very close to revealing the molecular details of the remarkable and thermodynamically demanding reaction which it catalyzes, namely the splitting of water into its elemental constituents. It has been a privilege to be involved in this journey.
Lee, Jivianne T; Jansen, Mike; Yilma, Abebayehu N; Nguyen, Angels; Desharnais, Robert; Porter, Edith
2010-01-01
Airway secretions possess intrinsic antimicrobial properties that contribute to the innate host defense of the respiratory tract. These microbicidal capabilities have largely been attributed to the presence of antibacterial polypeptides. However, recent investigation has indicated that host-derived lipids including cholesteryl esters also exhibit antimicrobial properties. The purpose of this study was to determine whether sinus secretions contain such antimicrobial lipids and to compare the lipid composition in patients with and without chronic rhinosinusitis (CRS). Maxillary sinus fluid was obtained via antral lavage from subjects with (seven patients) and without (nine patients) a history of CRS. After specimen collection, total lipid was extracted according to Bligh and Dyer (Bligh EG and Dyer WJ, A rapid method of total lipid extraction and purification, Can J Biochem Physiol 37:911-918, 1959) and lipid profiles were obtained by reverse phase high-performance liquid chromatography on an amide-embedded C18 column. In addition, the neutrophil-specific antimicrobial peptides human neutrophil peptides 1-3 (HNP1-3) were quantified by Western immunoblotting. Lipids, including cholesteryl esters, were identified in the maxillary sinus secretions of patients with and without CRS. However, levels of lipid composition differed between the two groups with CRS patients exhibiting greater amounts of all classes of lipids, reaching over 10-fold higher concentration when compared with non-CRS patients. This increase was independent of HNP1-3 content. Sinus secretions of patients with CRS appear to show elevated levels of antimicrobial lipids compared with controls independent from neutrophil influx. This up-regulation suggests that host-derived lipids act as mediators of mucosal immunity in CRS. Further study is necessary to determine if such antimicrobial lipids function alone or synergistically with antibacterial peptides in conferring such inherent microbicidal properties.
The Evolution of the Earliest Cells.
ERIC Educational Resources Information Center
Schopf, J. William
1978-01-01
Describes the unicellular microorganisms of three billion years ago. Explains how these primitive cells gave rise to biochemical systems and the present oxygen-rich atmosphere. Numerous diagrams, charts, and illustrations. (MA)
van Roekel, Hendrik W H; Rosier, Bas J H M; Meijer, Lenny H H; Hilbers, Peter A J; Markvoort, Albert J; Huck, Wilhelm T S; de Greef, Tom F A
2015-11-07
Living cells are able to produce a wide variety of biological responses when subjected to biochemical stimuli. It has become apparent that these biological responses are regulated by complex chemical reaction networks (CRNs). Unravelling the function of these circuits is a key topic of both systems biology and synthetic biology. Recent progress at the interface of chemistry and biology together with the realisation that current experimental tools are insufficient to quantitatively understand the molecular logic of pathways inside living cells has triggered renewed interest in the bottom-up development of CRNs. This builds upon earlier work of physical chemists who extensively studied inorganic CRNs and showed how a system of chemical reactions can give rise to complex spatiotemporal responses such as oscillations and pattern formation. Using purified biochemical components, in vitro synthetic biologists have started to engineer simplified model systems with the goal of mimicking biological responses of intracellular circuits. Emulation and reconstruction of system-level properties of intracellular networks using simplified circuits are able to reveal key design principles and molecular programs that underlie the biological function of interest. In this Tutorial Review, we present an accessible overview of this emerging field starting with key studies on inorganic CRNs followed by a discussion of recent work involving purified biochemical components. Finally, we review recent work showing the versatility of programmable biochemical reaction networks (BRNs) in analytical and diagnostic applications.
Ben-Horin, Shomron; Bank, Ilan; Shinfeld, Ami; Kachel, Erez; Guetta, Victor; Livneh, Avi
2007-05-01
In contrast to pleural effusion or ascites, there are few data regarding the chemical and cell-count parameters of pericardial effusions (PEs) to aid diagnosis. In the present work, all patients who underwent pericardiocentesis during a 9-year period (1995 to 2004) at a tertiary hospital and who had available fluid laboratory results were retrospectively identified. Causes of PE were diagnosed using predetermined criteria. The results of pericardial fluid biochemical and hematologic tests were compared with blood test results and analyzed to identify cut-off points that could distinguish among the various causes or among various groups of causes. Of 173 patients who underwent pericardiocentesis in the study period, 120 had available fluid laboratory results, and these patients constituted the study population. The most common causes of PE were neoplastic, idiopathic, and effusion related to acute pericarditis (accounting for 42, 22, and 17 of 120 patients, respectively). Most fluids (118 of 120) would have been classified as exudates by adopting Light's pleural effusion criteria. Moreover, in all parameters examined, there was a considerable overlap of test results among the different pericardial disorders. Thus, no biochemical or cell-count parameter was found useful at reasonable accuracy for differentiating among the individual causes or among various groups of pericardial disorders. In conclusion, most PEs are exudates. The analysis of pericardial fluid biochemical and cell-count composition is generally not helpful for the diagnosis of most PEs.
Ali, Shakir; Prasad, Ram; Mahmood, Amena; Routray, Indusmita; Shinkafi, Tijjani Salihu; Sahin, Kazim; Kucuk, Omer
2014-01-01
Background: Dried flower bud of Syzygium aromaticum (clove) is rich in eugenol, an antioxidant and antiinflammatory compound that can protect liver against injury. Clove, besides eugenol, also contains other pharmacologically active phytochemicals such as β-sitosterol and ascorbic acid. This study reports the effect of eugenol-rich fraction (ERF) of clove on liver cirrhosis induced by thioacetamide. Methods: Cirrhosis of the liver, which predisposes to hepatocellular carcinoma, was induced by administering thioacetamide (0.03%) in drinking water for 16 weeks. Cirrhotic animals were divided into two groups; the treated group was administered ERF for 9 weeks, one week after discontinuation of thioacetamide, while the other group received normal saline for a similar duration of time. Results: The treatment with ERF, as determined by histopathology and through a battery of biochemical markers of hepatic injury, oxidative stress and drug metabolizing enzymes, significantly ameliorated the signs of liver cirrhosis. It lowered the elevated levels of alkaline phosphatase, γ-glutamyl transferase and other biochemical changes in liver cirrhosis. Histopathology of the liver corroborated the effect of ERF with biochemical findings. ERF treatment further inhibited cell proliferation, as demonstrated by reduced [3H]-thymidine uptake. Conclusions: Data provide evidence supporting the protective action of ERF on liver cirrhosis. The study assumes significance because cirrhosis predisposes the liver to cancer, which is characterized by abnormal cell proliferation. ERF in this study is reported to inhibit hepatic cell proliferation and at the same time decrease oxidative stress, which might be the mechanism of protection against liver cirrhosis. PMID:25574464
Barbosa, Maritza Cavalcante; dos Santos, Talyta Ellen Jesus; de Souza, Geane Félix; de Assis, Lívia Coêlho; Freitas, Max Victor Carioca; Gonçalves, Romélia Pinheiro
2013-01-01
Objective The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. Methods A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. Results Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. Conclusion The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia. PMID:23580881
Lacy, E R
1983-01-01
Carbonic anhydrase (CAH) activity was biochemically measured and histochemically localized (at both the light and electron microscope levels) in isolated opercular membranes from teleost fish, Fundulus heteroclitus, adapted to freshwater (FW), seawater (SW), and double-strength seawater (2 x SW). The normal morphology of this membrane showed that its epithelial portion consisted of five cell types: (1) chloride cells, which have been previously implicated as responsible for the active chloride transport across the epithelium; (2) mucous cells; (3) pavement cells, which formed the major portion of the free epithelial surface; (4) supportive cells, which had an abundance of intermediate (10 nm)-type filaments suggesting a structural role for these cells; and (5) vesicular cells, which were characterized by various types of membrane-bound vesicles, including lysosomes, and numerous free ribosomes. Vesicular cells may be stem cells and/or endocrine cells. Hansson's histochemical method for CAH revealed cobalt sulfide reaction product confined to the following structures in fish from each environment: (1) chloride cells: throughout the cytoplasm and some nuclear staining; (2) mucous cells: throughout the cytoplasm, some nuclear staining, and some in mucous granules; (3) vesicular cells: confined to lysosomes, some of the vesicles, and nucleoli; (4) a small portion of the intracellular space between adjacent vesicular cells and supportive cells; and (5) supportive cells: in nucleoli and occasionally in larger membrane-bound lysosomelike structures. Acetazolamide (10(-5) M) and potassium cyanate (KCNO) (10(-1) M) in Hansson's incubation medium completely inhibited the formation of reaction product. Biochemical determination of CAH activity on vascularly perfused, isolated opercular membranes showed no statistically significant difference in enzyme activity between environmental groups. The following units of activity/mg opercular membrane protein were measured: FW: 0.63 +/- 0.02; SW: 0.43 +/- 0.08; 2 x SW: 0.64 +/- 0.09.
Label-free cell separation and sorting in microfluidic systems
Gossett, Daniel R.; Weaver, Westbrook M.; Mach, Albert J.; Hur, Soojung Claire; Tse, Henry Tat Kwong; Lee, Wonhee; Amini, Hamed
2010-01-01
Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties PMID:20419490
Solute Model or Cellular Energy Model: Practical and Theoretical Aspects of Thirst During Exercise
1989-02-16
are two weaker inhibitors of Na-K ATPase. D20 had the same inhibitory effects when 22 used as the solvent for hypertonic saline in goats (31, 53... Effect on metabolic activity. Am. J. Physiol. 165: 113-127, 1951. 38. Olsson, K. Studies on central regulation of secretion of antidiuretic hormone...of 1.4 osmoles of metabolic end-products (mostly Codes ~i urea and surplus electrolytes) per liter of urine on a mixed European-style diet. Thus, the
Establishing Criteria for Assigning Personnel to Air Force Jobs Requiring Heavy Work
1978-07-01
loads (for example, carrying meat at the slaughterhouse , carrying of sacks, loading wood by hand) wood cutting in the forest by hand tools, agricultural...8217 factor history. Medical Service Digest (United States Air Force), 27(2), 1976, pp. 14-16. 186 Trimeloni, Col. B.D. The Role of Women in the Air Force...Rahden. Effect of training on maximum oxygen intake and on anaerobic metabolism in man. Int. Z. Angew Physiol., 24(2), 1967, pp. 102-110. 188 Wyndham, C.H
1983-06-01
Niven, J.I., McFarland, R.A., and Roughton, F.J. Variations in Visual Thresholds During Carbon Monoxide and Hypoxic Anoxia (abstract). Fed. Proc...and Niven, J.I. Visual Thresholds as an Index of the Modification of the Effects of Anoxia by Glucose. Am. J. Physiol. 144:378-88. 1945. 71... Diphosphoglycerate and Night Vision. Aviat. Space Environ. Med. 52(1):41-44. 1981. 100. Sexton, M., Malone, F. and Farnsworth, D. The Effect of Ultra- violet
2015-10-01
Arterial oxygen saturation was monitored 130 using a finger pulse oximeter and end-tidal CO2 (ETCO2) was collected from a nasal cannula 131 (Cardiocap/5...Johnson et al, J Appl Physiol 2014 PMID 24876357. 5 Keywords Trauma, coagulation, central venous pressure, stroke volume, pulse pressure...Johnson BD, Curry TB, Convertino VA, & Joyner MJ. The association between pulse pressure and stroke volume during lower body negative pressure and
Pharmacological Sparing of Protein in Burn Injury
1989-05-01
skeletal muscle. Diabetes 27:1065-1074, 1978. 7. Gup, F.E., C.L. Long, J.W. Geiger, J.H. Kinney. The significance of altered gluconeogenesis in surgical...humans. Am. J. Physiol. 251(Endocrinol. Metab. 14):E334-E342, 1986. 30. Unger, R.H. Glucagon and insulin: Glucagn ratio in diabetes and other catabolic...illnesses. Diabetes 20:834-838, 1971. 31. Wolfe, R.R., D.N. Herndon, E.J. Peters, F. Jahoor, M.H. Desai, O.B. Holland. Regulation of lipolysis in
Computational Vision: A Critical Review
1989-10-01
Optic News, 15:9-25, 1989. [8] H. B . Barlow and R. W. Levick . The mechanism of directional selectivity in the rabbit’s retina. J. Physiol., 173:477...comparison, other formulations, e.g., [64], used 16 @V A \\E(t=t2) (a) \\ E(t-tl) ( b ) Figure 7: An illustration of the aperture problem. Left: a bar E is...Ballard and C. M. Brown. Computer Vision. Prentice-Hall, Englewood Cliffs, NJ, 1982. [7] D. H. Ballard, R. C. Nelson, and B . Yamauchi. Animate vision
Neural Network Retinal Model Real Time Implementation
1992-09-02
Photoreceptor Coupling and Synapse Nonlinearity on Signal:Noise Ratio in Early Visual Processing", Proc. R. Soc. London, Vol. B 234, pp. 171-197 (1988). [8...Barlow, H.B. and Levick , W.R., "The Mechanism of Directionally Selective Units in the Rabbit’s Retina", J. Physiol. (London), Vol. 178, pp. 477-504 (1965...Vol. B 298, pp. 227-264 (1982). [101 Werblin, F.S., Maguire, G., Lukasiewicz, P., Eliasof, S., and Wu, S., "Neural Interactions Mediating Detection of
1992-01-01
these events appear to be LTS potentials, as originally described in other central regions (Jahnsen and Llings 1984). In some media preoptic neurons, LTS...Kelly, J.S. An intracellular study of grafted and in situ preoptic area neurones in brain slices from normal and hypogonadal mice. J Physiol. 423: 111... central nervous system function. Science 242: 1654-1664, 1988. Llings, R., and Yarom, Y. Electrophysiology of mammalian inferior olivary neurons in vitro
Effects of Aviation Altitudes on Soft Contact Lens Wear.
1986-08-01
with corneal edema may complain of foggy or hazy vision, discomfort, and injection of the conjunctiva (3). If the edema is severe, breakdown of some of...13 L-.. , 4 .F -A % ,Z;: Z’,-1,’ 15. Brennan, N. A. A simple instrument for measuring the water content of hydrogel lenses. International Contact...vertical striae accompanying the wearing of hydrogel lenses. Am J Op tor & Physiol Optics 52(3):185-191 (1975). 23. Hill, R. H. Oxygen demand: The
Detection and Prevention of G-Induced Regional Atelectasis, Edema, and Hypoperfusion.
1975-12-01
Venous admixture in the pulmonary circulation of anesthetized dogs. J Appl Physiol 15:418 (1960). 13. Fowler, W. S., E. R. Cornish, Jr., and S. S...rebreathing method. J Clin Invest 38: 2073-2086 (1959). 18. Mead, J., and C. Collier. Relation of volume history of lungs to respiratory mechanics in... catheterization room for fluoroscopic studies, if these are required. A footrest (Fig. 1, point h), guided by stainless-steel tracks at the base of the table, is
2012-07-01
prostate lobes were dissected free of fat and connective tissue and weighed separately. 2.3. Hormone assays All assays were performed in a single batch...Ferrell, R.E., Roth, S.M., 2005. Androgen receptor CAG repeat polymorphism is associated with fat -free mass in men. J. Appl. Physiol. 98, 132–137. Wu, C.T...S., Kennemer, M.I., Mohan, S., Nazarenko, I., Watanabe, C., Sparks, A.B., Shames , D.S., Gentleman, R., de Sauvage, F.J., Stern, H., Pandita, A
1990-01-22
the thermal insulation of clothing . Ergonomics 2S, 1617-1632. Nielsen, B., Kasson, K. en Aschengreen, F.E. (1988). Heat balance during exercise in...the sun. Eur. J. Appl. Physiol. 58, 189-196. Nielsen, B. (1989). Solar heat load: heat balance during exercise in clothed subjects. Manuscript voor Eur...Institute for Perception, Soesterberg, The Netherlands Heat transport in clothing during irradiation vith heat A.M.J. Pieters and W.A. Lotens ABSTRACT A
1992-10-01
II. Acid Dissociation HPLC Analysis Of Dissociated iANF. Am J Physiol 261(4):E525-E528, 1991. *Published Abstracts* Agnew J, Freund BJ, Dubose D...1991. (C) Letterie GS, Sakas L: Histology Of Proximal Tubal Obstruction In Cases Of Unsuccessful Tubal Canalization. Fertil Steril 56(5):831-835, 1991...C) (SP) Orthopedic Service Green MR, Christensen KP, Embry R: Use of Magnetic Imaging of the Glenoid Labrum in Anterior Shoulder Instability. Am J
1986-08-01
Bombyx mori , isotope [ 14C] studies showed that about 1/3 of the free glycerol pool came from lipids (Yaginuma and Yamashita 1980). However, the same... Bombyx silkworm. Nature, Lond. 180: 606-607. Chino, H. 1958. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori -II. Conversion of...1980. The origin of free glycerol accumulated in diapause eggs of Bombyx mori . Physiol. Entomol. 5: 93-97. Zachariassen, K.E. 1977. Effects of
Regulation of Chloroplastic Carbonic Anhydrase 1
Porter, Michael A.; Grodzinski, Bernard
1983-01-01
It was previously reported that magnesium ion inhibited carbonic anhydrase (Bamberger and Avron 1975 Plant Physiol 56: 481-485). Studies with partially purified carbonic anhydrase from spinach (Spinacia oleracea L.) chloroplasts show that the effect was the result of the chloride counterion and not the magnesium ion. Enzyme activity was reduced 50% upon addition of 3 to 10 millimolar MgCl2 or KCl while all additions of MgSO4 between 0.3 and 10 millimolar were mildly stimulatory. PMID:16663052
Role of the Novel Kinase, H51, in Breast Development, Differentiation, and Carcinogenesis
1999-07-01
epidemiology and prevention of breast cancer. [Review]. European Journal of Cancer & Clinical Oncology, 1988. 24: p. 29-43. 2. Kelsey, J.L., M.D. Gammon...chromosomes to the total 29 kDa - number of mice analyzed for each pair of loci and the most likely gene order are: centromere -Ikaros (11174)-Egfr (O/164)-Krct...J. Cancer Clin. truncated serine/threonine protein kinase from Arabidopsis thaliana. Plant Oncol., 24, 29-43. Physiol., 114, 748. 3. Kelsey, J.L
Pressure Suppresses Serotonin Release by Guinea Pig Striatal Synaptosomes
1988-01-01
neurological syndrome. Brit J Pharmacol 1982; 76:447-452. 5. Wardley-Smith B, Meldrum BS. Effect of excitatory amino acid antagonists on !he high pressure...Res 1974; 1:,-28. *14. IBichard AR, Little HIJ. Drugs that increase Y-aminobutyric acid tr.ansmission prm ict PF..atnst * I the high pressure...Effects of high pressure of heliox on the striatal 5-HIAA and ascorbic acid rates in the rat. Cent Etud Rech Bio-Physiol Rep 84-08. 1984:35. 7
The Effects of Hydrazines of Neuronal Excitability.
1991-12-31
Neurosci. 6, 262, 1983. 39. Latorre, R. Oberhauser, A ., Labarca, P ., and Alvarez, 0. Ann. Rev. Physiol. 51, 385, 1989. 40. Blair L.A. and Dionne V.E. Nature...Westbrook, G.L., and Guthrie, P.B. Nature 309, 261, 1984. 47. Nowack, L., Bregestovski, P ., Ascher, P ., Herbet, A ., and Prochiantz, A . Nature 307, 462...2* Richmond, VA 23298-0599 S.S@SSIOIOIGAGENtcy NAME(1S) AND AOQEE /S(S -- m Dr Cornette AGENCY WJ# A $U AFOSR/NL ’Building 410 Bolling AFB DC 20332-6448
Influence of Fiber Type Composition and Capillary Density on Onset of Blood Lactate Accumulation,
1981-03-25
changes referred to as aerobic and anaerobic thresholds as suggested by e.g. Skinner and McLellan (32). To assess the "breaking point", which re- presents...in man. Acta Physiol Scand Suppl 443, 1976. 37 Wasserman K., Whipp B., Koyal S., Beaver t’. : Anaerobic threshold and respiratory gas exchange during...onset of a net accumulation of lactate in blood, has been proposed to represent a metabolic shift from aerobic to revalent anaerobic energy contribution
2008-05-01
asthma in Cynomolgus monkeys. J Appl Physiol 96:1433-1444, 2003. Task 2. Shibata Y, A Nishiyama, H Ohata, J Gabbard , QN Myrvik, RA Henriksen...Proceeding of “International Symposium on Low-Dose Radiation Exposures and Bio-Defense System. Page 5, 2006. Task 2. Shibata Y, J Gabbard , M Yamashita...killed BCG. J Leukoc Biol 78:1281-1290. 4. Shibata, Y., J. Gabbard , M. Yamashita, S. Tsuji, M. Smith, A. Nishiyama, R. A. Henriksen, and Q. N. Myrvik
Effect of Organophosphate Compounds on Renal Function and Transport.
1983-09-15
DiBona , 15) have presented physiological data that suggest a direct role of the sympathetic nerves in renal tubular sodium reabsorption, i.e., not...tubular sodium reabsorp- tion. Amer. J. Physiol., 233 (1977) F73-81. 16. G.F. DiBona , 1.3. Zambraski, A.S. Aquilera and G.3. Kaloyanides, Neurogenic...reflex renal nerve stimulation. J. Pharuacol. Exptl. flerap.. 198 (1976a) 464-472. 29. 1.3. Zambraski, G.E. DiBona and 0.3. Kloyanides, Specificity of
2000-02-01
M. A. Selland, R. G. McCullough, et al. Beta-adrenergic blockade does not prevent polycythemia or decrease in plasma volume in men at 4300 m altitude...72:1887–1894, 1992. 65. GROVER, R. F., M. A. SELLAND, R. G. MCCULLOUGH, et al. Beta-adrenergic blockade does not prevent polycythemia or decrease in...tolerance following artificially induced polycythemia . Eur. J. Appl. Physiol. 71:416–423, 1995. 118. PEARCY, M., S. ROBINSON, D. I. MILLER, J. T. THOMAS
NASA Technical Reports Server (NTRS)
Oren, A.; Ginzburg, M.; Ginzburg, B. Z.; Hochstein, L. I.; Volcani, B. E.
1990-01-01
An extremely halophilic red archaebacterium isolated from the Dead Sea (Ginzburg et al., J. Gen. Physiol. 55: 187-207, 1970) belongs to the genus Haloarcula and differs sufficiently from the previously described species of the genus to be designated a new species; we propose the name Haloarcula marismortui (Volcani) sp. nov., nom. rev. because of the close resemblance of this organism to "Halobacterium marismortui," which was first described by Volcani in 1940. The type strain is strain ATCC 43049.
1988-04-01
industry jeopardizing its Bryan, G.W. , and P.E. Gibbs. 1979. future. Natl. Fisherman 59(9):77. Zinc--a major inorganic component of nereid polychaete...Physiol. (A) 52:501-503. search. culture methods and oral administration of a polychlorinated Hamaker , J.1. 1898. The nervous r biphenyl. Veroeff...Environ. Contam. Toxicol. 13:347- Blackburn. 198). The influence of 355. benthic infauna on exchange rates of inorganic nitrogen between sediment Goerke, H
1982-03-26
IT NUMBERSCentre for Research in Sensory Psychology and Medical Physics, Dalhousie University, Halifax, Nova. Scotia, Canada B3J IB6 JA...34Background" above has been developed 38 more extensively in an article for Psychological Review, and the implications for skilled eye-limb coordination are...Press. 4. Barlow , H., Blakemore, C.B. and Pettigrew, J.D. (1967) The neural mechanism of binocular depth discrimination. J. Physiol., Lond. 193, 327-342
Investigation of Hematologic and Pathologic Response to Decompression.
1978-05-10
in tadpole and very young kangaroos . Am. J. Physiol. 120:59—74 , 1937. 12. D’ C’~~~’ B.G. and Swanson , H. Bubble free decompression of blood samples...1955. 24. Takeda , Y. Studies of the metabol i~~ 5 and distribution of fibrino— gen in healthy men with autologous I-labe led fibrinogen. J. Clin...this connective tissue protein. However , the metabolism of bone collagen is affected by hormonal control (l0; 3l) and vitamin influences (3 ;ll). It
NASA Astrophysics Data System (ADS)
Atkins, Chad G.; Buckley, Kevin; Chen, Deborah; Schulze, H. G.; Devine, Dana V.; Blades, Michael W.; Turner, Robin F. B.
2015-07-01
Modern transfusion medicine relies on the safe, secure, and cost-effective delivery of donated red blood cells (RBCs). Once isolated, RBCs are suspended in a defined additive solution and stored in plastic blood bags in which, over time, they undergo chemical, physiological, and morphological changes that may have a deleterious impact on some patients. Regulations limit the storage period to 42 days and the cells do not routinely undergo analytical testing before use. In this study, we use Raman spectroscopy to interrogate stored RBCs and we identify metabolic and cell-breakdown products, such as haemoglobin and membrane fragments, that build-up in the blood bags as the cells age. Our work points the way to the development of an instrument which could quickly and easily assess the biochemical nature of stored RBC units before they are transfused.
Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis.
Zhang, Yanjun; Clausmeyer, Jan; Babakinejad, Babak; Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V; Korchev, Yuri
2016-03-22
Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements.
Spearhead Nanometric Field-Effect Transistor Sensors for Single-Cell Analysis
Córdoba, Ainara López; Ali, Tayyibah; Shevchuk, Andrew; Takahashi, Yasufumi; Novak, Pavel; Edwards, Christopher; Lab, Max; Gopal, Sahana; Chiappini, Ciro; Anand, Uma; Magnani, Luca; Coombes, R. Charles; Gorelik, Julia; Matsue, Tomokazu; Schuhmann, Wolfgang; Klenerman, David; Sviderskaya, Elena V.; Korchev, Yuri
2016-01-01
Nanometric field-effect-transistor (FET) sensors are made on the tip of spear-shaped dual carbon nanoelectrodes derived from carbon deposition inside double-barrel nanopipettes. The easy fabrication route allows deposition of semiconductors or conducting polymers to comprise the transistor channel. A channel from electrodeposited poly pyrrole (PPy) exhibits high sensitivity toward pH changes. This property is exploited by immobilizing hexokinase on PPy nano-FETs to give rise to a selective ATP biosensor. Extracellular pH and ATP gradients are key biochemical constituents in the microenvironment of living cells; we monitor their real-time changes in relation to cancer cells and cardiomyocytes. The highly localized detection is possible because of the high aspect ratio and the spear-like design of the nano-FET probes. The accurately positioned nano-FET sensors can detect concentration gradients in three-dimensional space, identify biochemical properties of a single living cell, and after cell membrane penetration perform intracellular measurements. PMID:26816294
Sharma, Ved Parkash; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar
2010-01-01
The indiscriminate use of wireless technologies, particularly of cell phones, has increased the health risks among living organisms including plants. We investigated the impact of cell phone electromagentic field (EMF) radiations (power density, 8.55 microW cm(-2)) on germination, early growth, proteins and carbohydrate contents, and activities of some enzymes in Vigna radiata. Cell phone EMF radiations significantly reduced the seedling length and dry weight of V radiata after exposure for 0.5, 1, 2, and 4 h. Furthermore, the contents of proteins and carbohydrates were reduced in EMF-exposed plants. However, the activities of proteases, alpha-amylases, beta-amylases, polyphenol oxidases, and peroxidases were enhanced in EMF-exposed radicles indicating their role in providing protection against EMF-induced stress. The study concludes that cell phone EMFs impair early growth of V radiata seedlings by inducing biochemical changes.
Imaging trace element distributions in single organelles and subcellular features
NASA Astrophysics Data System (ADS)
Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek
2016-02-01
The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.
Jamier, Vincent; Ba, Lalla A; Jacob, Claus
2010-09-24
Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.
Subcellular localization of celery mannitol dehydrogenase. A cytosolic metabolic enzyme in nuclei.
Yamamoto, Y T; Zamski, E; Williamson, J D; Conkling, M A; Pharr, D M
1997-01-01
Mannitol dehydrogenase (MTD) is the first enzyme in mannitol catabolism in celery (Apium graveolens L. var dulce [Mill] Pers. cv Florida 638). Mannitol is an important photoassimilate, as well as providing plants with resistance to salt and osmotic stress. Previous work has shown that expression of the celery Mtd gene is regulated by many factors, such as hexose sugars, salt and osmotic stress, and salicylic acid. Furthermore, MTD is present in cells of sink organs, phloem cells, and mannitol-grown suspension cultures. Immunogold localization and biochemical analyses presented here demonstrate that celery MTD is localized in the cytosol and nuclei. Although the cellular density of MTD varies among different cell types, densities of nuclear and cytosolic MTD in a given cell are approximately equal. Biochemical analyses of nuclear extracts from mannitol-grown cultured cells confirmed that the nuclear-localized MTD is enzymatically active. The function(s) of nuclear-localized MTD is unknown. PMID:9414553
76 FR 42678 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... collection). Burden Hours: 250. Number of Respondents: 100 (15 cell line limit). Average Hours per Response: 2 hours and 30 minutes (10 minutes/cell line x 15 cell lines). Needs and Uses: The NIST Biochemical...: National Institute of Standards and Technology (NIST) Title: Identification of Human Cell Lines Project...
Palin, Eino JH; Lesonen, Annamari; Farr, Carol L; Euro, Liliya; Suomalainen, Anu; Kaguni, Laurie S
2010-01-01
Mitochondrial DNA polymerase, POLG, is the sole DNA polymerase found in animal mitochondria. In humans, POLGα W748S in cis with an E1143G mutation has been linked to a new type of recessive ataxia, MIRAS, which is the most common inherited ataxia in Finland. We investigated the biochemical phenotypes of the W748S amino acid change, using recombinant human POLG. We measured processive and non-processive DNA polymerase activity, DNA binding affinity, enzyme processivity, and subunit interaction with recombinant POLGβ. In addition, we studied the effects of the W748S and E1143G mutations in primary human cell cultures using retroviral transduction. Here, we examined cell viability, mitochondrial DNA copy number, and products of mitochondrial translation. Our results indicate that the W748S mutant POLGα does not exhibit a clear biochemical phenotype, making it indistinguishable from wild type POLGα and as such, fail to replicate previously published results. Furthermore, results from the cell models were concurrent with the findings from patients, and support our biochemical findings. PMID:20153822
Xu, Xiaofei; Chen, Xinxia; Zhang, Xiruo; Liu, Yixun; Wang, Zhao; Wang, Peng; Du, Yanzhi; Qin, Yingying; Chen, Zi-Jiang
2017-01-01
Are telomere length and telomerase activity associated with biochemical primary ovarian insufficiency (POI)? Shortened telomere length and diminished telomerase activity were associated with biochemical POI. POI is a result of pathological reproductive aging and encompasses occult, biochemical and overt stages. Studies have indicated telomere length as a biomarker for biological aging. A total of 120 patients with biochemical POI and 279 control women were recruited by the Center for Reproductive Medicine of Shandong University. Telomere length in peripheral blood leukocytes (LTL) and granulosa cells (GTL) was measured using a modified Quantitative Polymerase Chain Reaction technique. The relative telomerase activity (RTA) in granulosa cells was detected using a modified quantitative-telomeric repeat amplification protocol assay. After adjusting for age, patients with biochemical POI (n = 120) exhibited significantly shorter LTLs (0.75 ± 0.09 vs 1.79 ± 0.12, P < 0.001; OR = 0.54, 95% CI = 0.43-0.68) and GTLs (0.78 ± 0.09 vs 1.90 ± 0.23, P < 0.001; OR = 0.54, 95% CI = 0.41-0.70) than the controls (n = 279 for LTLs; n = 90 for GTLs). Significantly diminished RTAs in granulosa cells were detected in patients with biochemical POI (n = 31) compared with the controls (n = 38) (1.57 ± 0.59 vs 4.63 ± 0.93, P = 0.025; OR = 0.84, 95% CI = 0.72-0.98). N/A. The cross-sectional nature of this study might have its limit in telomere length as well as telomerase activity along with the progressing decline in ovarian function. These findings suggest that telomere length and telomerase activity may be considered as indicators for progression of ovarian decline. This research was supported by the National Basic Research Program of China (973 Program) (2012CB944700), Science research foundation item of no-earnings health vocation (201402004) and the National Natural Science Foundation of China (31471352, 81270662, 81471509, 81300461, 81522018). The authors have no potential conflict of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
2016-07-01
p38in both the nucleus and the cytoplasm of MDA-MB-231 cells. We will continue with biochemical and biophysical studies towards mapping the binding...descriptions of key accomplishments according to the approved statement of work for Year 1. Aim 2: Biochemical and biophysical characterization of the
Sugiyama, Masakazu; Yoshizumi, Tomoharu; Yoshida, Yoshihiro; Bekki, Yuki; Matsumoto, Yoshihiro; Yoshiya, Shohei; Toshima, Takeo; Ikegami, Toru; Itoh, Shinji; Harimoto, Norifumi; Okano, Shinji; Soejima, Yuji; Shirabe, Ken; Maehara, Yoshihiko
2017-08-01
Autophagy is a homeostatic process regulating turnover of impaired proteins and organelles, and p62 (sequestosome-1, SQSTM1) functions as the autophagic receptor in this process. p62 also functions as a hub for intracellular signaling such as that in the mammalian target of rapamycin (mTOR) pathway. Liver stem/progenitor cells have the potential to differentiate to form hepatocytes or cholangiocytes. In this study, we examined effects of autophagy, p62, and associated signaling on hepatic differentiation. Adult stem/progenitor cells were isolated from the liver of mice with chemically induced liver injury. Effects of autophagy, p62, and related signaling pathways on hepatic differentiation were investigated by silencing the genes for autophagy protein 5 (ATG5) and/or SQSTM1/p62 using small interfering RNAs. Hepatic differentiation was assessed based on increased albumin and hepatocyte nuclear factor 4α, as hepatocyte markers, and decreased cytokeratin 19 and SOX9, as stem/progenitor cell markers. These markers were measured using quantitative RT-PCR, immunofluorescence, and Western blotting. ATG5 silencing decreased active LC3 and increased p62, indicating inhibition of autophagy. Inhibition of autophagy promoted hepatic differentiation in the stem/progenitor cells. Conversely, SQSTM1/p62 silencing impaired hepatic differentiation. A suggested mechanism for p62-dependent hepatic differentiation in our study was activation of the mTOR pathway by amino acids. Amino acid activation of mTOR signaling was enhanced by ATG5 silencing and suppressed by SQSTM1/p62 silencing. Our findings indicated that promoting amino acid sensitivity of the mTOR pathway is dependent on p62 accumulated by inhibition of autophagy and that this process plays an important role in the hepatic differentiation of stem/progenitor cells. J. Cell. Physiol. 232: 2112-2124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Lisenbee, Cayle S.; Heinze, Michael; Trelease, Richard N.
2003-01-01
Previously we reported (R.T. Mullen, C.S. Lisenbee, J.A. Miernyk, R.N. Trelease [1999] Plant Cell 11: 2167–2185) that overexpressed ascorbate peroxidase (APX), a peroxisomal membrane protein, sorted indirectly to Bright Yellow-2 cell peroxisomes via a subdomain of the endoplasmic reticulum (ER; peroxisomal endoplasmic reticulum [pER]). More recently, a pER-like compartment also was identified in pumpkin (Cucurbita pepo) and transformed Arabidopsis cells (K. Nito, K. Yamaguchi, M. Kondo, M. Hayashi, M. Nishimura [2001] Plant Cell Physiol 42: 20–27). Here, we characterize more extensively the localization of endogenous Arabidopsis peroxisomal APX (AtAPX) in cultured wild-type Arabidopsis cells (Arabidopsis var. Landsberg erecta). AtAPX was detected in peroxisomes, but not in an ER subcompartment, using immunofluorescence microscopy. However, AtAPX was detected readily with immunoblots in both peroxisomal and ER fractions recovered from sucrose (Suc) density gradients. Most AtAPX in microsomes (200,000g, 1 h pellet) applied to gradients exhibited a Mg2+-induced shift from a distribution throughout gradients (approximately 18%–40% [w/w] Suc) to ≥42% (w/w) Suc regions of gradients, including pellets, indicative of localization in rough ER vesicles. Immunogold electron microscopy of the latter fractions verified these findings. Further analyses of peroxisomal and rough ER vesicle fractions revealed that AtAPX in both fractions was similarly associated with and located mostly on the cytosolic face of the membranes. Thus, at the steady state, endogenous peroxisomal AtAPX resides at different levels in rough ER and peroxisomes. Collectively, these findings show that rather than being a transiently induced sorting compartment formed in response to overexpressed peroxisomal APX, portions of rough ER (pER) in wild-type cells serve as a constitutive sorting compartment likely involved in posttranslational routing of constitutively synthesized peroxisomal APX. PMID:12805617
Somal, Anjali; Bhat, Irfan A; B, Indu; Singh, Anuj P; Panda, Bibhudatta S K; Desingu, Perumal A; Pandey, Sriti; Bharti, Mukesh K; Pal, Amar; Saikumar, Guttula; Chandra, Vikash; Sharma, Guttula Taru
2017-08-01
This study was conducted to know the impact of cryopreservation on caprine fetal adnexa derived mesenchymal stem cells (MSCs) on the basic stem cell characteristics. Gravid caprine uteri (2-3 months) were collected from local abattoir to derive (amniotic fluid [cAF], amniotic sac [cAS], Wharton's jelly [cWJ], and cord blood [cCB]) MSCs and expanded in vitro. Cells were cryopreserved at 3rd passage (P3) using 10% DMSO. Post-thaw viability and cellular properties were assessed. Cells were expanded to determine growth kinetics, tri-lineage differentiation, localization, and molecular expression of MSCs and pluripotency markers; thereafter, these cells were transplanted in the full-thickness (2 × 2cm 2 ) rat skin wound to determine their wound healing potential. The post-thaw (pt) growth kinetics study suggested that cWJ MSCs expanded more rapidly with faster population doubling time (PDT) than that of other fetal adnexa MSCs. The relative mRNA expression of surface antigens (CD73, CD90, and CD 105) and pluripotency markers (Oct4, KLF, and cMyc) was higher in cWJ MSCs in comparison to cAS, cAF, and cCB MSCs post-thaw. The percent wound contraction on 7th day was more than 50% for all the MSC-treated groups (pre and post-thaw), against 39.55% in the control group. On day 28th, 99% and more wound contraction was observed in cAF, cAF-pt, cAS-pt, cWJ, cWJ-pt, and cCB, MSCs with better scores for epithelization, neovascularization, and collagen characteristics at a non-significant level. It is concluded that these MSCs could be successfully cryopreserved without altering their stemness and wound healing properties. J. Cell. Physiol. 232: 2186-2200, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Thermodynamics of Computational Copying in Biochemical Systems
NASA Astrophysics Data System (ADS)
Ouldridge, Thomas E.; Govern, Christopher C.; ten Wolde, Pieter Rein
2017-04-01
Living cells use readout molecules to record the state of receptor proteins, similar to measurements or copies in typical computational devices. But is this analogy rigorous? Can cells be optimally efficient, and if not, why? We show that, as in computation, a canonical biochemical readout network generates correlations; extracting no work from these correlations sets a lower bound on dissipation. For general input, the biochemical network cannot reach this bound, even with arbitrarily slow reactions or weak thermodynamic driving. It faces an accuracy-dissipation trade-off that is qualitatively distinct from and worse than implied by the bound, and more complex steady-state copy processes cannot perform better. Nonetheless, the cost remains close to the thermodynamic bound unless accuracy is extremely high. Additionally, we show that biomolecular reactions could be used in thermodynamically optimal devices under exogenous manipulation of chemical fuels, suggesting an experimental system for testing computational thermodynamics.
Prostaglandin Actions in Established Insect Cell Lines
USDA-ARS?s Scientific Manuscript database
Prostaglandins (PGs) are oxygenated metabolites of arachidonic acid (AA) and two other C20 polyunsaturated fatty acids that serve as biochemical signals that mediate a wide range of physiological functions in animal cells. For example, PGs influence protein expression in establish insect cell lines ...
Modulation of Intestinal Paracellular Transport by Bacterial Pathogens.
Roxas, Jennifer Lising; Viswanathan, V K
2018-03-25
The passive and regulated movement of ions, solutes, and water via spaces between cells of the epithelial monolayer plays a critical role in the normal intestinal functioning. This paracellular pathway displays a high level of structural and functional specialization, with the membrane-spanning complexes of the tight junctions, adherens junctions, and desmosomes ensuring its integrity. Tight junction proteins, like occludin, tricellulin, and the claudin family isoforms, play prominent roles as barriers to unrestricted paracellular transport. The past decade has witnessed major advances in our understanding of the architecture and function of epithelial tight junctions. While it has been long appreciated that microbes, notably bacterial and viral pathogens, target and disrupt junctional complexes and alter paracellular permeability, the precise mechanisms remain to be defined. Notably, renewed efforts will be required to interpret the available data on pathogen-mediated barrier disruption in the context of the most recent findings on tight junction structure and function. While much of the focus has been on pathogen-induced dysregulation of junctional complexes, commensal microbiota and their products may influence paracellular permeability and contribute to the normal physiology of the gut. Finally, microbes and their products have become important tools in exploring host systems, including the junctional properties of epithelial cells. © 2018 American Physiological Society. Compr Physiol 8:823-842, 2018. Copyright © 2018 American Physiological Society. All rights reserved.
Zhang, Qinnan; Zhong, Liyun; Tang, Ping; Yuan, Yingjie; Liu, Shengde; Tian, Jindong; Lu, Xiaoxu
2017-05-31
Cell refractive index, an intrinsic optical parameter, is closely correlated with the intracellular mass and concentration. By combining optical phase-shifting interferometry (PSI) and atomic force microscope (AFM) imaging, we constructed a label free, non-invasive and quantitative refractive index of single cell measurement system, in which the accurate phase map of single cell was retrieved with PSI technique and the cell morphology with nanoscale resolution was achieved with AFM imaging. Based on the proposed AFM/PSI system, we achieved quantitative refractive index distributions of single red blood cell and Jurkat cell, respectively. Further, the quantitative change of refractive index distribution during Daunorubicin (DNR)-induced Jurkat cell apoptosis was presented, and then the content changes of intracellular biochemical components were achieved. Importantly, these results were consistent with Raman spectral analysis, indicating that the proposed PSI/AFM based refractive index system is likely to become a useful tool for intracellular biochemical components analysis measurement, and this will facilitate its application for revealing cell structure and pathological state from a new perspective.
Kim, Hyeon Young; Kim, Ki-Tae; Kim, Sang Don
2012-08-01
The purpose of this study was to examine the effects of veterinary antibiotics, including amoxicillin (AMX), chlortetracycline (CTC) and tylosin (TYL), on the biochemical mechanism of human embryonic kidney cells (HEK293). CTC and TYL inhibited HEK293 cell proliferation, in both time- and dose-dependent manners, and changed the cell morphology; whereas, AMX showed no cytotoxic effects. The cell cycle analysis of CTC and TYL revealed G1-arrest in HEK293 cells. Western blot analysis also showed that CTC and TYL affected the activation of DNA damage responsive proteins, as well as cell cycle regulatory proteins, such as p53, p21(Waf1/Cip1) and Rb protein, which are crucial in the G1-S transition. The activation of p21(Waf1/Cip1) was significantly up-regulated over time, but there was no change in the level of CDK2 expression. The results of this study suggest that veterinary antibiotics, even at low level concentrations on continuous exposure, can potentially risk the development of human cells.
Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro
Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping
2012-01-01
Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708
Mucinous breast carcinoma with myoepithelial-like spindle cells.
Miyake, Yasuyuki; Hirokawa, Mitsuyoshi; Norimatsu, Yoshiaki; Kanahara, Takuo; Monobe, Yasumasa; Ohno, Setsuyo; Miyamoto, Tomoyuki; Yakushiji, Hiromasa; Sakaguchi, Takuya; Aratake, Yatsuki; Ohno, Eiji
2009-06-01
Appearance of spindle cells has been believed as a benign index of breast cytology. But, we have frequently observed the spindle cells in smears from mucinous carcinoma of the breast. Here, we characterized the biochemical nature of the spindle cells, so as to clarify their identity in cytology. Nineteen cases of breast mucinous carcinoma were used for cytological examination. The spindle cells were located at edges of tumor cell nests and in the backgrounds of cytological specimens. Immunohistological examination revealed that the spindle cells exhibited both immunoreactivity against carcinoembryonic antigen (CEA) and epithelial membrane antigen (EMA). Immunoreactivity against vimentin, cytokeratin, or alpha-smooth muscle actin was, however, not observed. The mode of distribution of biochemical markers suggests that the positive cells for anti-CEA antibody and anti-EMA antibody are tumor cells compressed by mucin, while the vimentin-positive cells are fibroblasts. We assert that the presence of spindle cells can be a characteristic feature of mucinous carcinoma of the breast. Discrimination of the spindle cells in mucinous carcinoma from myoepithelial cells and naked bipolar nuclei in benign lesions was established here. It should facilitate precise diagnosis of breast cancer. (c) 2009 Wiley-Liss, Inc.
Mechanotransduction through Cytoskeleton
NASA Technical Reports Server (NTRS)
Ingber, Donald
2002-01-01
The goal of this project was to characterize the molecular mechanism by which cells recognize and respond to physical forces in their local environment. The project was based on the working hypothesis that cells sense mechanical stresses, such as those due to gravity, through their cell surface adhesion receptors (e.g., integrins) and that they respond as a result of structural arrangements with their internal cytoskeleton (CSK) which are orchestrated through use of tensegrity architecture. In this project, we carried out studies to define the architectural and molecular basis of cellular mechanotransduction. Our major goal was to define the molecular pathway that mediates mechanical force transfer between integrins and the CSK and to determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response. Elucidation of the mechanism by which cells sense mechanical stresses through integrins and translate them into a biochemical response should help us to understand the molecular basis of the cellular response to gravity as well as many other forms of mechanosensation and tissue regulation. The specific aims of this proposal were: 1. To define the molecular basis of mechanical coupling between integrins, vinculin, and the actin CSK; 2. To develop a computer simulation of how mechanical stresses alter CSK structure and test this model in living cells; 3. To determine how mechanical deformation of integrin-CSK linkages is transduced into a biochemical response.
Nanoparticles as biochemical sensors
El-Ansary, Afaf; Faddah, Layla M
2010-01-01
There is little doubt that nanoparticles offer real and new opportunities in many fields, such as biomedicine and materials science. Such particles are small enough to enter almost all areas of the body, including cells and organelles, potentially leading to new approaches in nanomedicine. Sensors for small molecules of biochemical interest are of critical importance. This review is an attempt to trace the use of nanomaterials in biochemical sensor design. The possibility of using nanoparticles functionalized with antibodies as markers for proteins will be elucidated. Moreover, capabilities and applications for nanoparticles based on gold, silver, magnetic, and semiconductor materials (quantum dots), used in optical (absorbance, luminescence, surface enhanced Raman spectroscopy, surface plasmon resonance), electrochemical, and mass-sensitive sensors will be highlighted. The unique ability of nanosensors to improve the analysis of biochemical fluids is discussed either through considering the use of nanoparticles for in vitro molecular diagnosis, or in the biological/biochemical analysis for in vivo interaction with the human body. PMID:24198472
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardona-Felix, Cesar S.; Lara-Gonzalez, Samuel; Brieba, Luis G.
2012-02-08
Proliferating cellular nuclear antigen (PCNA) is a toroidal-shaped protein that is involved in cell-cycle control, DNA replication and DNA repair. Parasitic protozoa are early-diverged eukaryotes that are responsible for neglected diseases. In this work, a PCNA from a parasitic protozoon was identified, cloned and biochemically characterized and its crystal structure was determined. Structural and biochemical studies demonstrate that PCNA from Entamoeba histolytica assembles as a homotrimer that is able to interact with and stimulate the activity of a PCNA-interacting peptide-motif protein from E. histolytica, EhDNAligI. The data indicate a conservation of the biochemical mechanisms of PCNA-mediated interactions between metazoa, yeastmore » and parasitic protozoa.« less
Genetics Home Reference: aldosterone-producing adenoma
... genes. The most commonly mutated gene is KCNJ5 , accounting for an estimated 40 percent of the tumors, ... across cell membranes. These abnormalities overactivate a biochemical process that increases adrenal cell growth and division (proliferation), ...
Fluid shear stress and tumor metastasis
Huang, Qiong; Hu, Xingbin; He, Wanming; Zhao, Yang; Hao, Shihui; Wu, Qijing; Li, Shaowei; Zhang, Shuyi; Shi, Min
2018-01-01
The tumor microenvironment (TME) is a key factor regulating tumor cell invasion and metastasis. The effects of biochemical factors such as stromal cells, immune cells, and cytokines have been previously investigated. Owing to restrictions by the natural barrier between physical and biochemical disciplines, the role of physical factors in tumorigenesis is unclear. However, with the emergence of interdisciplinary mechanobiology and continuous advancements therein in the past 30 years, studies on the effect of physical properties such as hardness or shear stress on tumorigenesis and tumor progression are constantly renewing our understanding of mechanotransduction mechanisms. Shear stress, induced by liquid flow, is known to actively participate in proliferation, apoptosis, invasion, and metastasis of tumor cells. The present review discusses the progress and achievements in studies on tumor fluid microenvironment in recent years, especially fluid shear stress, on tumor metastasis, and presents directions for future study.
Aroch, I; Shpigel, N Y; Avidar, Y; Yakobson, B; King, R; Shamir, M
2005-09-10
Blood from 31 healthy, free-ranging golden jackals held in captivity for seven days was collected while they were anaesthetised. Haematological and serum biochemical measurements were analysed and the 95 per cent confidence interval for each variable was compared with the reference value for domestic dogs. The measurements of their red blood cells were within the reference interval for dogs, but the jackals had higher white blood cell counts and eosinophil counts than dogs. The male jackals had a higher haematocrit, red blood cell count, mean corpuscular volume and mean corpuscular haemoglobin concentration, and a lower red blood cell distribution width than the female jackals. High activities of muscle enzymes were detected in many of the jackals, in several of which the activity of creatine kinase exceeded 5000 U/l; these were considered abnormal.
Self-organizing human cardiac microchambers mediated by geometric confinement
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.
2015-07-01
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.
Gnecco, Juan S; Pensabene, Virginia; Li, David J; Ding, Tianbing; Hui, Elliot E; Bruner-Tran, Kaylon L; Osteen, Kevin G
2017-07-01
The endometrium is the inner lining of the uterus. Following specific cyclic hormonal stimulation, endometrial stromal fibroblasts (stroma) and vascular endothelial cells exhibit morphological and biochemical changes to support embryo implantation and regulate vascular function, respectively. Herein, we integrated a resin-based porous membrane in a dual chamber microfluidic device in polydimethylsiloxane that allows long term in vitro co-culture of human endometrial stromal and endothelial cells. This transparent, 2-μm porous membrane separates the two chambers, allows for the diffusion of small molecules and enables high resolution bright field and fluorescent imaging. Within our primary human co-culture model of stromal and endothelial cells, we simulated the temporal hormone changes occurring during an idealized 28-day menstrual cycle. We observed the successful differentiation of stroma into functional decidual cells, determined by morphology as well as biochemically as measured by increased production of prolactin. By controlling the microfluidic properties of the device, we additionally found that shear stress forces promoted cytoskeleton alignment and tight junction formation in the endothelial layer. Finally, we demonstrated that the endometrial perivascular stroma model was sustainable for up to 4 weeks, remained sensitive to steroids and is suitable for quantitative biochemical analysis. Future utilization of this device will allow the direct evaluation of paracrine and endocrine crosstalk between these two cell types as well as studies of immunological events associated with normal vs. disease-related endometrial microenvironments.
Stem cell homing-based tissue engineering using bioactive materials
NASA Astrophysics Data System (ADS)
Yu, Yinxian; Sun, Binbin; Yi, Chengqing; Mo, Xiumei
2017-06-01
Tissue engineering focuses on repairing tissue and restoring tissue functions by employing three elements: scaffolds, cells and biochemical signals. In tissue engineering, bioactive material scaffolds have been used to cure tissue and organ defects with stem cell-based therapies being one of the best documented approaches. In the review, different biomaterials which are used in several methods to fabricate tissue engineering scaffolds were explained and show good properties (biocompatibility, biodegradability, and mechanical properties etc.) for cell migration and infiltration. Stem cell homing is a recruitment process for inducing the migration of the systemically transplanted cells, or host cells, to defect sites. The mechanisms and modes of stem cell homing-based tissue engineering can be divided into two types depending on the source of the stem cells: endogenous and exogenous. Exogenous stem cell-based bioactive scaffolds have the challenge of long-term culturing in vitro and for endogenous stem cells the biochemical signal homing recruitment mechanism is not clear yet. Although the stem cell homing-based bioactive scaffolds are attractive candidates for tissue defect therapies, based on in vitro studies and animal tests, there is still a long way before clinical application.
Renault, Sylvie; Bonnemain, Jean Louis; Faye, Loïc; Gaudillere, Jean Pierre
1992-01-01
The sporophyte of bryophytes is dependent on the gametophyte for its carbon nutrition. This is especially true of the sporophytes of Polytrichum species, and it was generally thought that sucrose was the main form of sugar for long distance transport in the leptom. In Polytrichum formosum, sucrose was the main soluble sugar of the sporophyte and gametophyte tissues, and the highest concentration (about 230 mm) was found in the haustorium. In contrast, sugars collected from the vaginula apoplast were mainly hexoses, with traces of sucrose and trehalose. p-Chloromercuribenzene sulfonate, a nonpermeant inhibitor of the cell wall invertase, strongly reduced the hexose to sucrose ratio. The highest cell wall invertase activity (pH 4.5) was located in the vaginula, whereas the highest activity of a soluble invertase (pH 7.0) was found in both the vaginula and the haustorium. Glucose uptake was carrier-mediated but only weakly dependent on the external pH and the transmembrane electrical gradient, in contrast to amino acid uptake (S. Renault, C. Despeghel-Caussin, J.L. Bonnemain, S. Delrot [1989] Plant Physiol 90: 913-920). Furthermore, addition of 5 or 50 mm glucose to the incubation medium induced a marginal depolarization of the transmembrane potential difference of the transfer cells and had no effect on the pH of this medium. Glucose was converted to sucrose after its absorption into the haustorium. These results demonstrate the noncontinuity of sucrose at the gametophyte/sporophyte interface. They suggest that its conversion to glucose and fructose at this interface, and the subsequent reconversion to sucrose after hexose absorption by haustorium cells, mainly governs sugar accumulation in this latter organ. PMID:16653202
Neuroprotection and Blood-Brain Barrier Restoration by Salubrinal After a Cortical Stab Injury.
Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo
2017-06-01
Following a central nervous system (CNS) injury, restoration of the blood-brain barrier (BBB) integrity is essential for recovering homeostasis. When this process is delayed or impeded, blood substances and cells enter the CNS parenchyma, initiating an additional inflammatory process that extends the initial injury and causes so-called secondary neuronal loss. Astrocytes and profibrotic mesenchymal cells react to the injury and migrate to the lesion site, creating a new glia limitans that restores the BBB. This process is beneficial for the resolution of the inflammation, neuronal survival, and the initiation of the healing process. Salubrinal is a small molecule with neuroprotective properties in different animal models of stroke and trauma to the CNS. Here, we show that salubrinal increased neuronal survival in the neighbourhood of a cerebral cortex stab injury. Moreover, salubrinal reduced cortical blood leakage into the parenchyma of injured animals compared with injured controls. Adjacent to the site of injury, salubrinal induced immunoreactivity for platelet-derived growth factor subunit B (PDGF-B), a specific mitogenic factor for mesenchymal cells. This effect might be responsible for the increased immunoreactivity for fibronectin and the decreased activation of microglia and macrophages in injured mice treated with salubrinal, compared with injured controls. The immunoreactivity for PDGF-B colocalized with neuronal nuclei (NeuN), suggesting that cortical neurons in the proximity of the injury were the main source of PDGF-B. Our results suggest that after an injury, neurons play an important role in both, the healing process and the restoration of the BBB integrity. J. Cell. Physiol. 232: 1501-1510, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The Molecular Basis of Communication within the Cell.
ERIC Educational Resources Information Center
Berridge, Michael J.
1985-01-01
Only a few substances serve as signals within cells; this indicates that internal signal pathways are remarkably universal. The variety of physiological and biochemical processes regulated by known messengers is discussed along with chemical structures, pathways, inositol-lipid cycles, and cell growth regulation. (DH)
Biochemical basis of 4-hydroxyanisole induced cell toxicity towards B16-F0 melanoma cells.
Moridani, Majid Y
2006-11-18
In the current work we investigated for the first time the biochemical basis of 4-hydroxyanisole (4-HA) induced toxicity in B16-F0 melanoma cells. It was found that dicoumarol, a diaphorase inhibitor, and 1-bromoheptane, a GSH depleting agent, increased 4-HA induced toxicity towards B16-F0 cells whereas dithiothreitol, a thiol containing agent, and ascorbic acid (AA), a reducing agent, largely prevented 4-HA toxicity. TEMPOL and pyrogallol, free radical scavengers, did not significantly prevent 4-HA toxicity towards B16-F0 cells. GSH>AA>NADH prevented the o-quinone formation when 4-HA was metabolized by tyrosinase/O(2). 4-HA metabolism by horseradish peroxidase/H(2)O(2) was prevented more effectively by AA than NADH>GSH. We therefore concluded that quinone formation was the major pathway for 4-HA induced toxicity in B16-F0 melanoma cells whereas free radical formation played a negligible role in the 4-HA induced toxicity.
Wheeler, Richard; Mesnage, Stéphane; Boneca, Ivo G; Hobbs, Jamie K; Foster, Simon J
2011-12-01
Cell morphology and viability in Eubacteria is dictated by the architecture of peptidoglycan, the major and essential structural component of the cell wall. Although the biochemical composition of peptidoglycan is well understood, how the peptidoglycan architecture can accommodate the dynamics of growth and division while maintaining cell shape remains largely unknown. Here, we elucidate the peptidoglycan architecture and dynamics of bacteria with ovoid cell shape (ovococci), which includes a number of important pathogens, by combining biochemical analyses with atomic force and super-resolution microscopies. Atomic force microscopy analysis showed preferential orientation of the peptidoglycan network parallel to the short axis of the cell, with distinct architectural features associated with septal and peripheral wall synthesis. Super-resolution three-dimensional structured illumination fluorescence microscopy was applied for the first time in bacteria to unravel the dynamics of peptidoglycan assembly in ovococci. The ovococci have a unique peptidoglycan architecture and growth mode not observed in other model organisms. © 2011 Blackwell Publishing Ltd.
Perrotta, Silverio; Nobili, Bruno; Rossi, Francesca; Criscuolo, Maria; Iolascon, Achille; Di Pinto, Daniela; Passaro, Irene; Cennamo, Lucia; Oliva, Adriana; Della Ragione, Fulvio
2002-03-15
Vitamin A is a pivotal biochemical factor required for normal proliferation and differentiation as well as for specialized functions, such as vision. The dietary intake of 1500 IU/day is recommended in the first year of life. Here, we report the case of an infant who had been given 62 000 IU/day for 80 days. The infant showed several clinical signs of retinol intoxication, including severe anemia and thrombocytopenia. Bone marrow showed a remarkably reduced number of erythroid and megakaryocytic cells. The interruption of vitamin A treatment was immediately followed by clinical and biochemical recovery. To clarify whether the effects of retinol are due to a direct action on bone marrow cell proliferation, we investigated the activity of retinol (both the drug and the pure molecule) on the growth of K-562, a multipotent hematopoietic cell line, and on bone marrow mesenchymal stem cells. We observed that vitamin A strongly inhibited the proliferation of the cells at concentrations similar to those reached in vivo. Subsequent biochemical analyses of the cell cycle suggested that the effect was mediated by the up-regulation of cyclin-dependent kinase inhibitors, p21(Cip1) and p27(Kip1). These are the first findings to demonstrate that infant hypervitaminosis A causes a severe anemia and thrombocytopenia and that this is probably due to the direct effect of the molecule on the growth of all bone marrow cellular components. Our data also suggest potential bone marrow functional alterations after excessive vitamin A intake because of emerging social habits.
Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma
Chen, Yulong; Terajima, Masahiko; Yang, Yanan; Sun, Li; Ahn, Young-Ho; Pankova, Daniela; Puperi, Daniel S.; Watanabe, Takeshi; Kim, Min P.; Blackmon, Shanda H.; Rodriguez, Jaime; Liu, Hui; Behrens, Carmen; Wistuba, Ignacio I.; Minelli, Rosalba; Scott, Kenneth L.; Sanchez-Adams, Johannah; Guilak, Farshid; Pati, Debananda; Thilaganathan, Nishan; Burns, Alan R.; Creighton, Chad J.; Martinez, Elisabeth D.; Zal, Tomasz; Grande-Allen, K. Jane; Yamauchi, Mitsuo; Kurie, Jonathan M.
2015-01-01
Epithelial tumor metastasis is preceded by an accumulation of collagen cross-links that heighten stromal stiffness and stimulate the invasive properties of tumor cells. However, the biochemical nature of collagen cross-links in cancer is still unclear. Here, we postulated that epithelial tumorigenesis is accompanied by changes in the biochemical type of collagen cross-links. Utilizing resected human lung cancer tissues and a p21CIP1/WAF1-deficient, K-rasG12D-expressing murine metastatic lung cancer model, we showed that, relative to normal lung tissues, tumor stroma contains higher levels of hydroxylysine aldehyde–derived collagen cross-links (HLCCs) and lower levels of lysine aldehyde–derived cross-links (LCCs), which are the predominant types of collagen cross-links in skeletal tissues and soft tissues, respectively. Gain- and loss-of-function studies in tumor cells showed that lysyl hydroxylase 2 (LH2), which hydroxylates telopeptidyl lysine residues on collagen, shifted the tumor stroma toward a high-HLCC, low-LCC state, increased tumor stiffness, and enhanced tumor cell invasion and metastasis. Together, our data indicate that LH2 enhances the metastatic properties of tumor cells and functions as a regulatory switch that controls the relative abundance of biochemically distinct types of collagen cross-links in the tumor stroma. PMID:25664850
Maker, Garth L; Green, Tobias; Mullaney, Ian; Trengove, Robert D
2018-06-07
Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography⁻mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology.
Zolla, Valerio; Nizamutdinova, Irina Tsoy; Scharf, Brian; Clement, Cristina C; Maejima, Daisuke; Akl, Tony; Nagai, Takashi; Luciani, Paola; Leroux, Jean-Christophe; Halin, Cornelia; Stukes, Sabriya; Tiwari, Sangeeta; Casadevall, Arturo; Jacobs, William R; Entenberg, David; Zawieja, David C; Condeelis, John; Fooksman, David R; Gashev, Anatoliy A; Santambrogio, Laura
2015-01-01
The role of lymphatic vessels is to transport fluid, soluble molecules, and immune cells to the draining lymph nodes. Here, we analyze how the aging process affects the functionality of the lymphatic collectors and the dynamics of lymph flow. Ultrastructural, biochemical, and proteomic analysis indicates a loss of matrix proteins, and smooth muscle cells in aged collectors resulting in a decrease in contraction frequency, systolic lymph flow velocity, and pumping activity, as measured in vivo in lymphatic collectors. Functionally, this impairment also translated into a reduced ability for in vivo bacterial transport as determined by time-lapse microscopy. Ultrastructural and proteomic analysis also indicates a decrease in the thickness of the endothelial cell glycocalyx and loss of gap junction proteins in aged lymph collectors. Redox proteomic analysis mapped an aging-related increase in the glycation and carboxylation of lymphatic’s endothelial cell and matrix proteins. Functionally, these modifications translate into apparent hyperpermeability of the lymphatics with pathogen escaping from the collectors into the surrounding tissue and a decreased ability to control tissue fluid homeostasis. Altogether, our data provide a mechanistic analysis of how the anatomical and biochemical changes, occurring in aged lymphatic vessels, compromise lymph flow, tissue fluid homeostasis, and pathogen transport. PMID:25982749
Metabonomics and medicine: the Biochemical Oracle.
Mitchell, Steve; Holmes, Elaine; Carmichael, Paul
2002-10-01
Occasionally, a new idea emerges that has the potential to revolutionize an entire field of scientific endeavour. It is now within our grasp to be able to detect subtle perturbations within the phenomenally complex biochemical matrix of living organisms. The discipline of metabonomics promises an all-encompassing approach to understanding total, yet fundamental, changes occurring in disease processes, drug toxicity and cell function.
Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance.
Saad, M J A; Santos, A; Prada, P O
2016-07-01
Obesity and insulin resistance are the major predisposing factors to comorbidities, such as Type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular and neurodegenerative diseases, and several types of cancer. The prevalence of obesity is still increasing worldwide and now affects a large number of individuals. Here, we review the role of the gut microbiota in the pathophysiology of insulin resistance/obesity. The human intestine is colonized by ∼100 trillion bacteria, which constitute the gut microbiota. Studies have shown that lean and overweight rodents and humans may present differences in the composition of their intestinal flora. Over the past 10 years, data from different sources have established a causal link between the intestinal microbiota and obesity/insulin resistance. It is important to emphasize that diet-induced obesity promotes insulin resistance by mechanisms independent and dependent on gut microbiota. In this review, we present several mechanisms that contribute to explaining the link between intestinal flora and insulin resistance/obesity. The LPS from intestinal flora bacteria can induce a chronic subclinical inflammatory process and obesity, leading to insulin resistance through activation of TLR4. The reduction in circulating SCFA may also have an essential role in the installation of reduced insulin sensitivity and obesity. Other mechanisms include effects of bile acids, branched-chain amino acids (BCAA), and some other lesser-known factors. In the near future, this area should open new therapeutic avenues for obesity/insulin resistance and its comorbidities. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.
Availability of vision and tactile gating: vision enhances tactile sensitivity.
Colino, Francisco L; Lee, Ji-Hang; Binsted, Gordon
2017-01-01
A multitude of events bombard our sensory systems at every moment of our lives. Thus, it is important for the sensory and motor cortices to gate unimportant events. Tactile suppression is a well-known phenomenon defined as a reduced ability to detect tactile events on the skin before and during movement. Previous experiments (Buckingham et al. in Exp Brain Res 201(3):411-419, 2010; Colino et al. in Physiol Rep 2(3):e00267, 2014) found detection rates decrease just prior to and during finger abduction and decrease according to the proximity of the moving effector. However, what effect does vision have on tactile gating? There is ample evidence (see Serino and Haggard in Neurosci Biobehav Rev 34:224-236, 2010) observing increased tactile acuity when participants see their limbs. The present study examined how tactile detection changes in response to visual condition (vision/no vision). Ten human participants used their right hand to reach and grasp a cylinder. Tactors were attached to the index finger and the forearm of both the right and left arm and vibrated at various epochs relative to a "go" tone. Results replicate previous findings from our laboratory (Colino et al. in Physiol Rep 2(3):e00267, 2014). Also, tactile acuity decreased when participants did not have vision. These results indicate that the vision affects the somatosensation via inputs from parietal areas (Konen and Haggard in Cereb Cortex 24(2):501-507, 2014) but does so in a reach-to-grasp context.
Defining functional DNA elements in the human genome
Kellis, Manolis; Wold, Barbara; Snyder, Michael P.; Bernstein, Bradley E.; Kundaje, Anshul; Marinov, Georgi K.; Ward, Lucas D.; Birney, Ewan; Crawford, Gregory E.; Dekker, Job; Dunham, Ian; Elnitski, Laura L.; Farnham, Peggy J.; Feingold, Elise A.; Gerstein, Mark; Giddings, Morgan C.; Gilbert, David M.; Gingeras, Thomas R.; Green, Eric D.; Guigo, Roderic; Hubbard, Tim; Kent, Jim; Lieb, Jason D.; Myers, Richard M.; Pazin, Michael J.; Ren, Bing; Stamatoyannopoulos, John A.; Weng, Zhiping; White, Kevin P.; Hardison, Ross C.
2014-01-01
With the completion of the human genome sequence, attention turned to identifying and annotating its functional DNA elements. As a complement to genetic and comparative genomics approaches, the Encyclopedia of DNA Elements Project was launched to contribute maps of RNA transcripts, transcriptional regulator binding sites, and chromatin states in many cell types. The resulting genome-wide data reveal sites of biochemical activity with high positional resolution and cell type specificity that facilitate studies of gene regulation and interpretation of noncoding variants associated with human disease. However, the biochemically active regions cover a much larger fraction of the genome than do evolutionarily conserved regions, raising the question of whether nonconserved but biochemically active regions are truly functional. Here, we review the strengths and limitations of biochemical, evolutionary, and genetic approaches for defining functional DNA segments, potential sources for the observed differences in estimated genomic coverage, and the biological implications of these discrepancies. We also analyze the relationship between signal intensity, genomic coverage, and evolutionary conservation. Our results reinforce the principle that each approach provides complementary information and that we need to use combinations of all three to elucidate genome function in human biology and disease. PMID:24753594
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevalier, Michael W., E-mail: Michael.Chevalier@ucsf.edu; El-Samad, Hana, E-mail: Hana.El-Samad@ucsf.edu
Noise and stochasticity are fundamental to biology and derive from the very nature of biochemical reactions where thermal motion of molecules translates into randomness in the sequence and timing of reactions. This randomness leads to cell-to-cell variability even in clonal populations. Stochastic biochemical networks have been traditionally modeled as continuous-time discrete-state Markov processes whose probability density functions evolve according to a chemical master equation (CME). In diffusion reaction systems on membranes, the Markov formalism, which assumes constant reaction propensities is not directly appropriate. This is because the instantaneous propensity for a diffusion reaction to occur depends on the creation timesmore » of the molecules involved. In this work, we develop a chemical master equation for systems of this type. While this new CME is computationally intractable, we make rational dimensional reductions to form an approximate equation, whose moments are also derived and are shown to yield efficient, accurate results. This new framework forms a more general approach than the Markov CME and expands upon the realm of possible stochastic biochemical systems that can be efficiently modeled.« less
In its first phase, ToxCast™ is profiling over 300 well-characterized chemicals (primarily pesticides) in over 400 HTS endpoints. These endpoints include biochemical assays of protein function, cell-based transcriptional reporter assays, multi-cell interaction assays, transcripto...
Bergholt, Mads S; Albro, Michael B; Stevens, Molly M
2017-09-01
Tissue engineering (TE) has the potential to improve the outcome for patients with osteoarthritis (OA). The successful clinical translation of this technique as part of a therapy requires the ability to measure extracellular matrix (ECM) production of engineered tissues in vitro, in order to ensure quality control and improve the likelihood of tissue survival upon implantation. Conventional techniques for assessing the ECM content of engineered cartilage, such as biochemical assays and histological staining are inherently destructive. Raman spectroscopy, on the other hand, represents a non-invasive technique for in situ biochemical characterization. Here, we outline current roadblocks in translational Raman spectroscopy in TE and introduce a comprehensive workflow designed to non-destructively monitor and quantify ECM biomolecules in large (>3 mm), live cell TE constructs online. Diffuse near-infrared fiber-optic Raman spectra were measured from live cell cartilaginous TE constructs over a 56-day culturing period. We developed a multivariate curve resolution model that enabled quantitative biochemical analysis of the TE constructs. Raman spectroscopy was able to non-invasively quantify the ECM components and showed an excellent correlation with biochemical assays for measurement of collagen (R 2 = 0.84) and glycosaminoglycans (GAGs) (R 2 = 0.86). We further demonstrated the robustness of this technique for online prospective analysis of live cell TE constructs. The fiber-optic Raman spectroscopy strategy developed in this work offers the ability to non-destructively monitor construct growth online and can be adapted to a broad range of TE applications in regenerative medicine toward controlled clinical translation. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Erickson, Isaac E; van Veen, Steven C; Sengupta, Swarnali; Kestle, Sydney R; Mauck, Robert L
2011-10-01
Cartilage degeneration is common in the aged, and aged chondrocytes are inferior to juvenile chondrocytes in producing cartilage-specific extracellular matrix. Mesenchymal stem cells (MSCs) are an alternative cell type that can differentiate toward the chondrocyte phenotype. Aging may influence MSC chondrogenesis but remains less well studied, particularly in the bovine system. The objectives of this study were (1) to confirm age-related changes in bovine articular cartilage, establish how age affects chondrogenesis in cultured pellets for (2) chondrocytes and (3) MSCs, and (4) determine age-related changes in the biochemical and biomechanical development of clinically relevant MSC-seeded hydrogels. Native bovine articular cartilage from fetal (n = 3 donors), juvenile (n = 3 donors), and adult (n = 3 donors) animals was analyzed for mechanical and biochemical properties (n = 3-5 per donor). Chondrocyte and MSC pellets (n = 3 donors per age) were cultured for 6 weeks before analysis of biochemical content (n = 3 per donor). Bone marrow-derived MSCs of each age were also cultured within hyaluronic acid hydrogels for 3 weeks and analyzed for matrix deposition and mechanical properties (n = 4 per age). Articular cartilage mechanical properties and collagen content increased with age. We observed robust matrix accumulation in three-dimensional pellet culture by fetal chondrocytes with diminished collagen-forming capacity in adult chondrocytes. Chondrogenic induction of MSCs was greater in fetal and juvenile cell pellets. Likewise, fetal and juvenile MSCs in hydrogels imparted greater matrix and mechanical properties. Donor age and biochemical microenvironment were major determinants of both bovine chondrocyte and MSC functional capacity. In vitro model systems should be evaluated in the context of age-related changes and should be benchmarked against human MSC data.