Sample records for cell population isolated

  1. The simultaneous isolation of multiple high and low frequent T-cell populations from donor peripheral blood mononuclear cells using the major histocompatibility complex I-Streptamer isolation technology.

    PubMed

    Roex, Marthe C J; Hageman, Lois; Heemskerk, Matthias T; Veld, Sabrina A J; van Liempt, Ellis; Kester, Michel G D; Germeroth, Lothar; Stemberger, Christian; Falkenburg, J H Frederik; Jedema, Inge

    2018-04-01

    Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers. First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device. T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable. This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  2. Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.

    PubMed

    Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus

    2011-06-06

    Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  4. Gene Expression in Single Cells Isolated from the CWR-R1 Prostate Cancer Cell Line and Human Prostate Tissue Based on the Side Population Phenotype.

    PubMed

    Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J

    2016-09-01

    Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary.

  5. Gene Expression in Single Cells Isolated from the CWR-R1 Prostate Cancer Cell Line and Human Prostate Tissue Based on the Side Population Phenotype

    PubMed Central

    Gangavarapu, Kalyan J; Miller, Austin; Huss, Wendy J

    2016-01-01

    Defining biological signals at the single cell level can identify cancer initiating driver mutations. Techniques to isolate single cells such as microfluidics sorting and magnetic capturing systems have limitations such as: high cost, labor intense, and the requirement of a large number of cells. Therefore, the goal of our current study is to identify a cost and labor effective, reliable, and reproducible technique that allows single cell isolation for analysis to promote regular laboratory use, including standard reverse transcription PCR (RT-PCR). In the current study, we utilized single prostate cells isolated from the CWR-R1 prostate cancer cell line and human prostate clinical specimens, based on the ATP binding cassette (ABC) transporter efflux of dye cycle violet (DCV), side population assay. Expression of four genes: ABCG2; Aldehyde dehydrogenase1A1 (ALDH1A1); androgen receptor (AR); and embryonic stem cell marker, Oct-4, were determined. Results from the current study in the CWR-R1 cell line showed ABCG2 and ALDH1A1 gene expression in 67% of single side population cells and in 17% or 100% of non-side population cells respectively. Studies using single cells isolated from clinical specimens showed that the Oct-4 gene is detected in only 22% of single side population cells and in 78% of single non-side population cells. Whereas, AR gene expression is in 100% single side population and non-side population cells isolated from the same human prostate clinical specimen. These studies show that performing RT-PCR on single cells isolated by FACS can be successfully conducted to determine gene expression in single cells from cell lines and enzymatically digested tissue. While these studies provide a simple yes/no expression readout, the more sensitive quantitative RT-PCR would be able to provide even more information if necessary. PMID:27785389

  6. FACS-based Isolation of Neural and Glioma Stem Cell Populations from Fresh Human Tissues Utilizing EGF Ligand

    PubMed Central

    Tome-Garcia, Jessica; Doetsch, Fiona; Tsankova, Nadejda M.

    2018-01-01

    Direct isolation of human neural and glioma stem cells from fresh tissues permits their biological study without prior culture and may capture novel aspects of their molecular phenotype in their native state. Recently, we demonstrated the ability to prospectively isolate stem cell populations from fresh human germinal matrix and glioblastoma samples, exploiting the ability of cells to bind the Epidermal Growth Factor (EGF) ligand in fluorescence-activated cell sorting (FACS). We demonstrated that FACS-isolated EGF-bound neural and glioblastoma populations encompass the sphere-forming colonies in vitro, and are capable of both self-renewal and multilineage differentiation. Here we describe in detail the purification methodology of EGF-bound (i.e., EGFR+) human neural and glioma cells with stem cell properties from fresh postmortem and surgical tissues. The ability to prospectively isolate stem cell populations using native ligand-binding ability opens new doors for understanding both normal and tumor cell biology in uncultured conditions, and is applicable for various downstream molecular sequencing studies at both population and single-cell resolution. PMID:29516026

  7. Isolation of skeletal muscle stem cells by fluorescence-activated cell sorting.

    PubMed

    Liu, Ling; Cheung, Tom H; Charville, Gregory W; Rando, Thomas A

    2015-10-01

    The prospective isolation of purified stem cell populations has dramatically altered the field of stem cell biology, and it has been a major focus of research across tissues in different organisms. Muscle stem cells (MuSCs) are now among the most intensely studied stem cell populations in mammalian systems, and the prospective isolation of these cells has allowed cellular and molecular characterizations that were not dreamed of a decade ago. In this protocol, we describe how to isolate MuSCs from limb muscles of adult mice by fluorescence-activated cell sorting (FACS). We provide a detailed description of the physical and enzymatic dissociation of mononucleated cells from limb muscles, a procedure that is essential in order to maximize cell yield. We also describe a FACS-based method that is used subsequently to obtain highly pure populations of either quiescent or activated MuSCs (VCAM(+)CD31(-)CD45(-)Sca1(-)). The isolation process takes ∼5-6 h to complete. The protocol also allows for the isolation of endothelial cells, hematopoietic cells and mesenchymal stem cells from muscle tissue.

  8. Prospective Isolation and Comparison of Human Germinal Matrix and Glioblastoma EGFR+ Populations with Stem Cell Properties.

    PubMed

    Tome-Garcia, Jessica; Tejero, Rut; Nudelman, German; Yong, Raymund L; Sebra, Robert; Wang, Huaien; Fowkes, Mary; Magid, Margret; Walsh, Martin; Silva-Vargas, Violeta; Zaslavsky, Elena; Friedel, Roland H; Doetsch, Fiona; Tsankova, Nadejda M

    2017-05-09

    Characterization of non-neoplastic and malignant human stem cell populations in their native state can provide new insights into gliomagenesis. Here we developed a purification strategy to directly isolate EGFR +/- populations from human germinal matrix (GM) and adult subventricular zone autopsy tissues, and from de novo glioblastoma (GBM) resections, enriching for cells capable of binding EGF ligand ( LB EGFR + ), and uniquely compared their functional and molecular properties. LB EGFR + populations in both GM and GBM encompassed all sphere-forming cells and displayed proliferative stem cell properties in vitro. In xenografts, LB EGFR + GBM cells showed robust tumor initiation and progression to high-grade, infiltrative gliomas. Whole-transcriptome sequencing analysis confirmed enrichment of proliferative pathways in both developing and neoplastic freshly isolated EGFR + populations, and identified both unique and shared sets of genes. The ability to prospectively isolate stem cell populations using native ligand-binding capacity opens new doors onto understanding both normal human development and tumor cell biology. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Detection and isolation of rare cells by 2-step enrichment high-speed flow cytometry/cell sorting and single cell LEAP laser ablation

    NASA Astrophysics Data System (ADS)

    Zordan, M. D.; Leary, James F.

    2011-02-01

    The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.

  10. Human Prostate Side Population Cells Demonstrate Stem Cell Properties in Recombination with Urogenital Sinus Mesenchyme

    PubMed Central

    Foster, Barbara A.; Gangavarapu, Kalyan J.; Mathew, Grinu; Azabdaftari, Gissou; Morrison, Carl D.; Miller, Austin; Huss, Wendy J.

    2013-01-01

    Stem cell enrichment provides a tool to examine prostate stem cells obtained from benign and malignant tissue. Functional assays can enrich stem cells based on common stem cell phenotypes, such as high ATP binding cassette (ABC) transporter mediated efflux of Hoechst substrates (side population assay). This functional assay is based upon mechanisms that protect cells from environmental insult thus contributing to the survival and protection of the stem cell population. We have isolated and analyzed cells digested from twelve clinical prostate specimens based on the side population assay. Prostate stem cell properties of the isolated cells were tested by serial recombination with rat urogenital mesenchyme. Recombinants with side population cells demonstrate an increase in the frequency of human ductal growth and the number of glands per recombinant when compared to recombinants with non-side population cells. Isolated cells were capable of prostatic growth for up to three generations in the recombination assay with as little as 125 sorted prostate cells. The ability to reproducibly use cells isolated by fluorescence activated cell sorting from human prostate tissue is an essential step to a better understanding of human prostate stem cell biology. ABC transporter G2 (ABCG2) was expressed in recombinants from side population cells indicating the side population cells have self-renewal properties. Epithelial cell differentiation of recombinants was determined by immunohistochemical analysis for expression of the basal, luminal, and neuroendocrine markers, p63, androgen receptor, prostate specific antigen, and chromogranin A, respectively. Thus, the ABCG2 expressing side population demonstrates multipotency and self-renewal properties indicating stem cells are within this population. PMID:23383057

  11. Isolation and Purification of Satellite Cells for Skeletal Muscle Tissue Engineering

    PubMed Central

    Syverud, Brian C; Lee, Jonah D; VanDusen, Keith W; Larkin, Lisa M

    2015-01-01

    Engineered skeletal muscle holds promise as a source of graft tissue for the repair of traumatic injuries such as volumetric muscle loss. The resident skeletal muscle stem cell, the satellite cell, has been identified as an ideal progenitor for tissue engineering due to its role as an essential player in the potent skeletal muscle regeneration mechanism. A significant challenge facing tissue engineers, however, is the isolation of sufficiently large satellite cell populations with high purity. The two common isolation techniques, single fiber explant culture and enzymatic dissociation, can yield either a highly pure satellite cell population or a suitably large number or cells but fail to do both simultaneously. As a result, it is often necessary to use a purification technique such as pre-plating or cell sorting to enrich the satellite cell population post-isolation. Furthermore, the absence of complex chemical and biophysical cues influencing the in vivo satellite cell “niche” complicates the culture of isolated satellite cells. Techniques under investigation to maximize myogenic proliferation and differentiation in vitro are described in this article, along with current methods for isolating and purifying satellite cells. PMID:26413555

  12. Isolation, Culture, and Differentiation of Bone Marrow Stromal Cells and Osteoclast Progenitors from Mice.

    PubMed

    Maridas, David E; Rendina-Ruedy, Elizabeth; Le, Phuong T; Rosen, Clifford J

    2018-01-06

    Bone marrow stromal cells (BMSCs) constitute a cell population routinely used as a representation of mesenchymal stem cells in vitro. They reside within the bone marrow cavity alongside hematopoietic stem cells (HSCs), which can give rise to red blood cells, immune progenitors, and osteoclasts. Thus, extractions of cell populations from the bone marrow results in a very heterogeneous mix of various cell populations, which can present challenges in experimental design and confound data interpretation. Several isolation and culture techniques have been developed in laboratories in order to obtain more or less homogeneous populations of BMSCs and HSCs invitro. Here, we present two methods for isolation of BMSCs and HSCs from mouse long bones: one method that yields a mixed population of BMSCs and HSCs and one method that attempts to separate the two cell populations based on adherence. Both methods provide cells suitable for osteogenic and adipogenic differentiation experiments as well as functional assays.

  13. Genome size differentiates co-occurring populations of the planktonic diatom Ditylum brightwellii (Bacillariophyta)

    PubMed Central

    2010-01-01

    Background Diatoms are one of the most species-rich groups of eukaryotic microbes known. Diatoms are also the only group of eukaryotic micro-algae with a diplontic life history, suggesting that the ancestral diatom switched to a life history dominated by a duplicated genome. A key mechanism of speciation among diatoms could be a propensity for additional stable genome duplications. Across eukaryotic taxa, genome size is directly correlated to cell size and inversely correlated to physiological rates. Differences in relative genome size, cell size, and acclimated growth rates were analyzed in isolates of the diatom Ditylum brightwellii. Ditylum brightwellii consists of two main populations with identical 18s rDNA sequences; one population is distributed globally at temperate latitudes and the second appears to be localized to the Pacific Northwest coast of the USA. These two populations co-occur within the Puget Sound estuary of WA, USA, although their peak abundances differ depending on local conditions. Results All isolates from the more regionally-localized population (population 2) possessed 1.94 ± 0.74 times the amount of DNA, grew more slowly, and were generally larger than isolates from the more globally distributed population (population 1). The ITS1 sequences, cell sizes, and genome sizes of isolates from New Zealand were the same as population 1 isolates from Puget Sound, but their growth rates were within the range of the slower-growing population 2 isolates. Importantly, the observed genome size difference between isolates from the two populations was stable regardless of time in culture or the changes in cell size that accompany the diatom life history. Conclusions The observed two-fold difference in genome size between the D. brightwellii populations suggests that whole genome duplication occurred within cells of population 1 ultimately giving rise to population 2 cells. The apparent regional localization of population 2 is consistent with a recent divergence between the populations, which are likely cryptic species. Genome size variation is known to occur in other diatom genera; we hypothesize that genome duplication may be an active and important mechanism of genetic and physiological diversification and speciation in diatoms. PMID:20044934

  14. Isolation, separation, and characterization of epithelial and connective cells from rat palate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, Victor Paul

    1979-01-01

    Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less

  15. Isolation and Characterization of Cancer Stem Cells of the Non-Small-Cell Lung Cancer (A549) Cell Line.

    PubMed

    Halim, Noor Hanis Abu; Zakaria, Norashikin; Satar, Nazilah Abdul; Yahaya, Badrul Hisham

    2016-01-01

    Cancer is a major health problem worldwide. The failure of current treatments to completely eradicate cancer cells often leads to cancer recurrence and dissemination. Studies have suggested that tumor growth and spread are driven by a minority of cancer cells that exhibit characteristics similar to those of normal stem cells, thus these cells are called cancer stem cells (CSCs). CSCs are believed to play an important role in initiating and promoting cancer. CSCs are resistant to currently available cancer therapies, and understanding the mechanisms that control the growth of CSCs might have great implications for cancer therapy. Cancer cells are consist of heterogeneous population of cells, thus methods of identification, isolation, and characterisation of CSCs are fundamental to obtain a pure CSC populations. Therefore, this chapter describes in detail a method for isolating and characterizing a pure population of CSCs from heterogeneous population of cancer cells and CSCs based on specific cell surface markers.

  16. Identification of Metastatic Tumor Stem Cell

    DTIC Science & Technology

    2010-09-01

    addition to a tumor stem cell , an existence of a metastatic stem cell is predicted. Despite the critical importance of the concept, this idea has not been...isolating stem cell population from a unique set of breast tumor cell lines and by examining their metastatic behavior in an animal model. The overall...will (i) isolate stem - cell population from non-metastatic and metastatic cells of a pair of syngenic breast tumor cell lines, and test their metastatic

  17. Isolation and Applications of Prostate Side Population Cells Based on Dye Cycle Violet Efflux

    PubMed Central

    Gangavarapu, Kalyan J.; Huss, Wendy J.

    2011-01-01

    This unit describes methods for the digestion of human prostate clinical specimens, dye cycle violet (DCV) staining procedure for the identification, isolation, and quantitation of radiolabeled dihydrotestosterone (DHT) retention of side population cells. The principle of the side population assay is based on differential efflux of DCV, a cell membrane permeable fluorescent dye, by cells with high ATP binding cassette (ABC) transporter activity. Cells with high ABC transporter activity efflux DCV and fall in the lower left quadrant of a flow cytograph are designated as “side population” cells. This unit emphasizes tissue digestion, DCV staining, flow settings for sorting side population cells and quantitation of radiolabeled DHT retention. PMID:21400686

  18. Muscle-derived stem cells isolated as non-adherent population give rise to cardiac, skeletal muscle and neural lineages.

    PubMed

    Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne

    2008-04-01

    Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.

  19. The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells.

    PubMed

    Fan, F; Bellister, S; Lu, J; Ye, X; Boulbes, D R; Tozzi, F; Sceusi, E; Kopetz, S; Tian, F; Xia, L; Zhou, Y; Bhattacharya, R; Ellis, L M

    2015-02-03

    Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.

  20. A multicenter study to standardize reporting and analyses of fluorescence-activated cell-sorted murine intestinal epithelial cells

    PubMed Central

    Magness, Scott T.; Puthoff, Brent J.; Crissey, Mary Ann; Dunn, James; Henning, Susan J.; Houchen, Courtney; Kaddis, John S.; Kuo, Calvin J.; Li, Linheng; Lynch, John; Martin, Martin G.; May, Randal; Niland, Joyce C.; Olack, Barbara; Qian, Dajun; Stelzner, Matthias; Swain, John R.; Wang, Fengchao; Wang, Jiafang; Wang, Xinwei; Yan, Kelley; Yu, Jian

    2013-01-01

    Fluorescence-activated cell sorting (FACS) is an essential tool for studies requiring isolation of distinct intestinal epithelial cell populations. Inconsistent or lack of reporting of the critical parameters associated with FACS methodologies has complicated interpretation, comparison, and reproduction of important findings. To address this problem a comprehensive multicenter study was designed to develop guidelines that limit experimental and data reporting variability and provide a foundation for accurate comparison of data between studies. Common methodologies and data reporting protocols for tissue dissociation, cell yield, cell viability, FACS, and postsort purity were established. Seven centers tested the standardized methods by FACS-isolating a specific crypt-based epithelial population (EpCAM+/CD44+) from murine small intestine. Genetic biomarkers for stem/progenitor (Lgr5 and Atoh 1) and differentiated cell lineages (lysozyme, mucin2, chromogranin A, and sucrase isomaltase) were interrogated in target and control populations to assess intra- and intercenter variability. Wilcoxon's rank sum test on gene expression levels showed limited intracenter variability between biological replicates. Principal component analysis demonstrated significant intercenter reproducibility among four centers. Analysis of data collected by standardized cell isolation methods and data reporting requirements readily identified methodological problems, indicating that standard reporting parameters facilitate post hoc error identification. These results indicate that the complexity of FACS isolation of target intestinal epithelial populations can be highly reproducible between biological replicates and different institutions by adherence to common cell isolation methods and FACS gating strategies. This study can be considered a foundation for continued method development and a starting point for investigators that are developing cell isolation expertise to study physiology and pathophysiology of the intestinal epithelium. PMID:23928185

  1. A putative mesenchymal stem cells population isolated from adult human testes.

    PubMed

    Gonzalez, R; Griparic, L; Vargas, V; Burgee, K; Santacruz, P; Anderson, R; Schiewe, M; Silva, F; Patel, A

    2009-08-07

    Mesenchymal stem cells (MSCs) isolated from several adult human tissues are reported to be a promising tool for regenerative medicine. In order to broaden the array of tools for therapeutic application, we isolated a new population of cells from adult human testis termed gonadal stem cells (GSCs). GSCs express CD105, CD166, CD73, CD90, STRO-1 and lack hematopoietic markers CD34, CD45, and HLA-DR which are characteristic identifiers of MSCs. In addition, GSCs express pluripotent markers Oct4, Nanog, and SSEA-4. GSCs propagated for at least 64 population doublings and exhibited clonogenic capability. GSCs have a broad plasticity and the potential to differentiate into adipogenic, osteogenic, and chondrogenic cells. These studies demonstrate that GSCs are easily obtainable stem cells, have growth kinetics and marker expression similar to MSCs, and differentiate into mesodermal lineage cells. Therefore, GSCs may be a valuable tool for therapeutic applications.

  2. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, James P.

    1997-01-01

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned.

  3. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, J.P.

    1997-07-29

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned. 15 figs.

  4. Isolation and gene expression analysis of single potential human spermatogonial stem cells.

    PubMed

    von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N

    2016-04-01

    It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. The role of CD133 in the identification and characterisation of tumour-initiating cells in non-small-cell lung cancer.

    PubMed

    Tirino, Virginia; Camerlingo, Rosa; Franco, Renato; Malanga, Donatella; La Rocca, Antonello; Viglietto, Giuseppe; Rocco, Gaetano; Pirozzi, Giuseppe

    2009-09-01

    Emerging evidence suggests that specific sub-populations of cancer cells with stem cell characteristics within the bulk of tumours are implicated in the pathogenesis of heterogeneous malignant tumours. The cells that drive tumour growth have been denoted cancer-initiating cells or cancer stem cells (hereafter CSCs). CSCs have been isolated initially from leukaemias and subsequently from several solid tumours including brain, breast, prostate, colon and lung cancer. This study aimed at isolating and characterising the population of tumour-initiating cells in non-small-cell lung cancer (NSCLC). Specimens of NSCLC obtained from 89 patients undergoing tumour resection at the Cancer National Institute of Naples were analysed. Three methods to isolate the tumour-initiating cells were used: (1) flow cytometry analysis for identification of positive cells for surface markers such as CD24, CD29, CD31, CD34, CD44, CD133 and CD326; (2) Hoechst 33342 dye exclusion test for the identification of a side-population characteristic for the presence of stem cells; (3) non-adherent culture condition able to form spheres with stem cell-like characteristics. Definition of the tumourigenic potential of the cells through soft agar assay and injection into NOD/SCID mice were used to functionally define (in vitro and in vivo) putative CSCs isolated from NSCLC samples. Upon flow cytometry analysis of NSCLC samples, CD133-positive cells were found in 72% of 89 fresh specimens analysed and, on average, represented 6% of the total cells. Moreover, the number of CD133-positive cells increased markedly when the cells, isolated from NSCLC specimens, were grown as spheres in non-adherent culture conditions. Cells from NSCLC, grown as spheres, when assayed in soft agar, give rise to a 3.8-fold larger number of colonies in culture and are more tumourigenic in non-obese diabetic (NOD)/severe combined immunodeficiency (SCID) mice compared with the corresponding adherent cells. We have isolated and characterised a population of CD133-positive cells from NSCLC that is able to give rise to spheres and can act as tumour-initiating cells.

  6. Isolation and culture of neural crest cells from embryonic murine neural tube.

    PubMed

    Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A

    2012-06-02

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from protocols optimized for the culture of rat NC. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC.

  7. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells

    PubMed Central

    Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-01-01

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine1. Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models. PMID:27077489

  8. Protocol for Isolation of Primary Human Hepatocytes and Corresponding Major Populations of Non-parenchymal Liver Cells.

    PubMed

    Kegel, Victoria; Deharde, Daniela; Pfeiffer, Elisa; Zeilinger, Katrin; Seehofer, Daniel; Damm, Georg

    2016-03-30

    Beside parenchymal hepatocytes, the liver consists of non-parenchymal cells (NPC) namely Kupffer cells (KC), liver endothelial cells (LEC) and hepatic Stellate cells (HSC). Two-dimensional (2D) culture of primary human hepatocyte (PHH) is still considered as the "gold standard" for in vitro testing of drug metabolism and hepatotoxicity. It is well-known that the 2D monoculture of PHH suffers from dedifferentiation and loss of function. Recently it was shown that hepatic NPC play a central role in liver (patho-) physiology and the maintenance of PHH functions. Current research focuses on the reconstruction of in vivo tissue architecture by 3D- and co-culture models to overcome the limitations of 2D monocultures. Previously we published a method to isolate human liver cells and investigated the suitability of these cells for their use in cell cultures in Experimental Biology and Medicine(1). Based on the broad interest in this technique the aim of this article was to provide a more detailed protocol for the liver cell isolation process including a video, which will allow an easy reproduction of this technique. Human liver cells were isolated from human liver tissue samples of surgical interventions by a two-step EGTA/collagenase P perfusion technique. PHH were separated from the NPC by an initial centrifugation at 50 x g. Density gradient centrifugation steps were used for removal of dead cells. Individual liver cell populations were isolated from the enriched NPC fraction using specific cell properties and cell sorting procedures. Beside the PHH isolation we were able to separate KC, LEC and HSC for further cultivation. Taken together, the presented protocol allows the isolation of PHH and NPC in high quality and quantity from one donor tissue sample. The access to purified liver cell populations could allow the creation of in vivo like human liver models.

  9. Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.

    PubMed

    Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang

    2014-10-01

    Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.

  10. Procedure for the Isolation of Endothelial Cells from Human Cerebral Arteriovenous Malformation (cAVM) Tissues.

    PubMed

    Hao, Qiang; Chen, Xiao-Lin; Ma, Li; Wang, Tong-Tong; Hu, Yue; Zhao, Yuan-Li

    2018-01-01

    In this study, we successfully established a stable method for the isolation of endothelial cells (ECs) from human cerebral arteriovenous malformation (cAVM) tissues. Despite human cAVM tissues having a minor population of ECs, they play an important role in the manifestation and development of cAVM as well as in hemorrhagic stroke and thrombogenesis. To characterize and understand the biology of ECs in human cAVM (cAVM-ECs), methods for the isolation and purification of these cells are necessary. We have developed this method to reliably obtain pure populations of ECs from cAVMs. To obtain pure cell populations, cAVM tissues were mechanically and enzymatically digested and the resulting single cAVM-ECs suspensions were then labeled with antibodies of specific cell antigens and selected by flow cytometry. Purified ECs were detected using specific makers of ECs by immunostaining and used to study different cellular mechanisms. Compared to the different methods of isolating ECs from tissues, we could isolate ECs from cAVMs confidently, and the numbers of cAVM-ECs harvested were almost similar to the amounts present in vessel components. In addition to optimizing the protocol for isolation of ECs from human cAVM tissues, the protocol could also be applied to isolate ECs from other human neurovascular-diseased tissues. Depending on the tissues, the whole procedure could be completed in about 20 days.

  11. Magnetic-Activated Cell Sorting for the Fast and Efficient Separation of Human and Rodent Schwann Cells from Mixed Cell Populations.

    PubMed

    Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V

    2018-01-01

    To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.

  12. Isolation of hair follicle bulge stem cells from YFP-expressing reporter mice.

    PubMed

    Nakrieko, Kerry-Ann; Irvine, Timothy S; Dagnino, Lina

    2013-01-01

    In this article we provide a method to isolate hair follicle stem cells that have undergone targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26-yellow fluorescent protein (YFP) reporter background, which results in YFP expression in the targeted stem cell population. These cells are isolated and purified by fluorescence-activated cell sorting, using epidermal stem cell-specific markers in conjunction with YFP fluorescence. The purified cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as viability and capacity for directional migration.

  13. Fluorescent Photo-conversion: A second chance to label unique cells.

    PubMed

    Mellott, Adam J; Shinogle, Heather E; Moore, David S; Detamore, Michael S

    2015-03-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the "unique" cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2 , allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2 -transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2 , offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population.

  14. Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube

    PubMed Central

    Pfaltzgraff, Elise R.; Mundell, Nathan A.; Labosky, Patricia A.

    2012-01-01

    The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter23. The method presented here is adapted from protocols optimized for the culture of rat NC11,13. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC2,24-28. PMID:22688801

  15. Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.

    PubMed

    Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R

    2017-07-01

    The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.

  16. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells.

    PubMed

    Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon

    2011-10-23

    To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.

  17. Isolation of major pancreatic cell types and long-term culture-initiating cells using novel human surface markers.

    PubMed

    Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus

    2008-09-01

    We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.

  18. Functional heterogeneity and heritability in CHO cell populations.

    PubMed

    Davies, Sarah L; Lovelady, Clare S; Grainger, Rhian K; Racher, Andrew J; Young, Robert J; James, David C

    2013-01-01

    In this study, we address the hypothesis that it is possible to exploit genetic/functional variation in parental Chinese hamster ovary (CHO) cell populations to isolate clonal derivatives that exhibit superior, heritable attributes for biomanufacturing--new parental cell lines which are inherently more "fit for purpose." One-hundred and ninety-nine CHOK1SV clones were isolated from a donor CHOK1SV parental population by limiting dilution cloning and microplate image analysis, followed by primary analysis of variation in cell-specific proliferation rate during extended deep-well microplate suspension culture of individual clones to accelerate genetic drift in isolated cultures. A subset of 100 clones were comparatively evaluated for transient production of a recombinant monoclonal antibody (Mab) and green fluorescent protein following transfection of a plasmid vector encoding both genes. The heritability of both cell-specific proliferation rate and Mab production was further assessed using a subset of 23 clones varying in functional capability that were subjected to cell culture regimes involving both cryopreservation and extended sub-culture. These data showed that whilst differences in transient Mab production capability were not heritable per se, clones exhibiting heritable variation in specific proliferation rate, endocytotic transfectability and N-glycan processing were identified. Finally, for clonal populations most "evolved" by extended sub-culture in vitro we investigated the relationship between cellular protein biomass content, specific proliferation rate and cell surface N-glycosylation. Rapid-specific proliferation rate was inversely correlated to CHO cell size and protein content, and positively correlated to cell surface glycan content, although substantial clone-specific variation in ability to accumulate cell biomass was evident. Taken together, our data reveal the dynamic nature of the CHO cell functional genome and the potential to evolve and isolate CHO cell variants with improved functional properties in vitro. Copyright © 2012 Wiley Periodicals, Inc.

  19. Antarctic isolation: immune and viral studies

    NASA Technical Reports Server (NTRS)

    Tingate, T. R.; Lugg, D. J.; Muller, H. K.; Stowe, R. P.; Pierson, D. L.

    1997-01-01

    Stressful environmental conditions are a major determinant of immune reactivity. This effect is pronounced in Australian National Antarctic Research Expedition populations exposed to prolonged periods of isolation in the Antarctic. Alterations of T cell function, including depression of cutaneous delayed-type hypersensitivity responses and a peak 48.9% reduction of T cell proliferation to the mitogen phytohaemagglutinin, were documented during a 9-month period of isolation. T cell dysfunction was mediated by changes within the peripheral blood mononuclear cell compartment, including a paradoxical atypical monocytosis associated with altered production of inflammatory cytokines. There was a striking reduction in the production by peripheral blood mononuclear cells of the predominant pro-inflammatory monokine TNF-alpha and changes were also detected in the production of IL-1, IL-2, IL-6, IL-1ra and IL-10. Prolonged Antarctic isolation is also associated with altered latent herpesvirus homeostasis, including increased herpesvirus shedding and expansion of the polyclonal latent Epstein-Barr virus-infected B cell population. These findings have important long-term health implications.

  20. Advanced Method for Isolation of Mouse Hepatocytes, Liver Sinusoidal Endothelial Cells, and Kupffer Cells.

    PubMed

    Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji

    2017-01-01

    Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.

  1. Mesenchymal stem cells support neuronal fiber growth in an organotypic brain slice co-culture model.

    PubMed

    Sygnecka, Katja; Heider, Andreas; Scherf, Nico; Alt, Rüdiger; Franke, Heike; Heine, Claudia

    2015-04-01

    Mesenchymal stem cells (MSCs) have been identified as promising candidates for neuroregenerative cell therapies. However, the impact of different isolation procedures on the functional and regenerative characteristics of MSC populations has not been studied thoroughly. To quantify these differences, we directly compared classically isolated bulk bone marrow-derived MSCs (bulk BM-MSCs) to the subpopulation Sca-1(+)Lin(-)CD45(-)-derived MSCs(-) (SL45-MSCs), isolated by fluorescence-activated cell sorting from bulk BM-cell suspensions. Both populations were analyzed with respect to functional readouts, that are, frequency of fibroblast colony forming units (CFU-f), general morphology, and expression of stem cell markers. The SL45-MSC population is characterized by greater morphological homogeneity, higher CFU-f frequency, and significantly increased nestin expression compared with bulk BM-MSCs. We further quantified the potential of both cell populations to enhance neuronal fiber growth, using an ex vivo model of organotypic brain slice co-cultures of the mesocortical dopaminergic projection system. The MSC populations were cultivated underneath the slice co-cultures without direct contact using a transwell system. After cultivation, the fiber density in the border region between the two brain slices was quantified. While both populations significantly enhanced fiber outgrowth as compared with controls, purified SL45-MSCs stimulated fiber growth to a larger degree. Subsequently, we analyzed the expression of different growth factors in both cell populations. The results show a significantly higher expression of brain-derived neurotrophic factor (BDNF) and basic fibroblast growth factor in the SL45-MSCs population. Altogether, we conclude that MSC preparations enriched for primary MSCs promote neuronal regeneration and axonal regrowth, more effectively than bulk BM-MSCs, an effect that may be mediated by a higher BDNF secretion.

  2. Fluorescent Photo-conversion: A second chance to label unique cells

    PubMed Central

    Mellott, Adam J.; Shinogle, Heather E.; Moore, David S.; Detamore, Michael S.

    2014-01-01

    Not all cells behave uniformly after treatment in tissue engineering studies. In fact, some treated cells display no signs of treatment or show unique characteristics not consistent with other treated cells. What if the “unique” cells could be isolated from a treated population, and further studied? Photo-convertible reporter proteins, such as Dendra2, allow for the ability to selectively identify unique cells with a secondary label within a primary labeled treated population. In the current study, select cells were identified and labeled through photo-conversion of Dendra2-transfected human Wharton's Jelly cells (hWJCs) for the first time. Robust photo-conversion of green-to-red fluorescence was achieved consistently in arbitrarily selected cells, allowing for precise cell identification of select hWJCs. The current study demonstrates a method that offers investigators the opportunity to selectively label and identify unique cells within a treated population for further study or isolation from the treatment population. Photo-convertible reporter proteins, such as Dendra2, offer the ability over non-photo-convertible reporter proteins, such as green fluorescent protein, to analyze unique individual cells within a treated population, which allows investigators to gain more meaningful information on how a treatment affects all cells within a target population. PMID:25914756

  3. Effect of Fibroblast-Like Cells of Mesenchymal Origin of Cytotoxic Activity of Lymphocytes against NK-Sensitive Target Cells.

    PubMed

    Lupatov, A Yu; Kim, Ya S; Bystrykh, O A; Vakhrushev, I V; Pavlovich, S V; Yarygin, K N; Sukhikh, G T

    2017-02-01

    We studied immunosuppressive properties of skin fibroblasts and mesenchymal stromal cells against NK cells. In vitro experiments showed that mesenchymal stromal cells isolated from human umbilical cord and human skin fibroblasts can considerably attenuate cytotoxic activity of NK cells against Jurkat cells sensitive to NK-mediated lysis. NK cells cultured in lymphocyte population exhibited higher cytotoxic activity than isolated NK cells. Mesenchymal stromal cells or fibroblasts added 1:1 to lymphocyte culture almost completely suppressed NK cell cytotoxicity. This suggests that fibroblast-like cells can suppress not only isolated NK cells, but also NK cells in natural cell microenvironment.

  4. Isolation, Culture, and Motility Measurements of Epidermal Melanocytes from GFP-Expressing Reporter Mice.

    PubMed

    Dagnino, Lina; Crawford, Melissa

    2018-03-27

    In this article, we provide a method to isolate primary epidermal melanocytes from reporter mice, which also allow targeted gene inactivation. The mice from which these cells are isolated are bred into a Rosa26 mT/mG reporter background, which results in GFP expression in the targeted melanocytic cell population. These cells are isolated and cultured to >95% purity. The cells can be used for gene expression studies, clonogenic experiments, and biological assays, such as capacity for migration. Melanocytes are slow moving cells, and we also provide a method to measure motility using individual cell tracking and data analysis.

  5. Isolation and characterization of true mesenchymal stem cells derived from human term decidua capable of multilineage differentiation into all 3 embryonic layers.

    PubMed

    Macias, Maria I; Grande, Jesús; Moreno, Ana; Domínguez, Irene; Bornstein, Rafael; Flores, Ana I

    2010-11-01

    The objective of the study was to isolate and characterize a population of mesenchymal stem cells (MSCs) from human term placental membranes. We isolated an adherent cell population from extraembryonic membranes. Morphology, phenotype, growth characteristics, karyotype, and immunological and differentiation properties were analyzed. The isolated placental MSCs were from maternal origin and named as decidua-derived mesenchymal stem cells (DMSCs). DMSCs differentiated into derivatives of all germ layers. It is the first report about placental MSC differentiation into alveolar type II cells. Clonally expanded DMSCs differentiated into all embryonic layers, including pulmonary cells. DMSCs showed higher life span than placental cells from fetal origin and proliferated without genomic instability. The data suggest that DMSCs are true multipotent MSCs, distinguishing them from other placental MSCs. DMSCs could be safely used in the mother as a potential source of MSCs for pelvic floor dysfunctions and immunological diseases. Additionally, frozen DMSCs can be stored for both autologous and allogeneic tissue regeneration. Copyright © 2010 Mosby, Inc. All rights reserved.

  6. Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.

    PubMed

    Martins, José Paulo; Santos, Jorge Miguel; de Almeida, Joana Marto; Filipe, Mariana Alves; de Almeida, Mariana Vargas Teixeira; Almeida, Sílvia Cristina Paiva; Água-Doce, Ana; Varela, Alexandre; Gilljam, Mari; Stellan, Birgitta; Pohl, Susanne; Dittmar, Kurt; Lindenmaier, Werner; Alici, Evren; Graça, Luís; Cruz, Pedro Estilita; Cruz, Helder Joaquim; Bárcia, Rita Nogueira

    2014-01-17

    Standardization of mesenchymal stromal cells (MSCs) manufacturing is urgently needed to enable translational activities and ultimately facilitate comparison of clinical trial results. In this work we describe the adaptation of a proprietary method for isolation of a specific umbilical cord tissue-derived population of MSCs, herein designated by its registered trademark as UCX®, towards the production of an advanced therapy medicinal product (ATMP). The adaptation focused on different stages of production, from cell isolation steps to cell culturing and cryopreservation. The origin and quality of materials and reagents were considered and steps for avoiding microbiological and endotoxin contamination of the final cell product were implemented. Cell isolation efficiency, MSCs surface markers and genetic profiles, originating from the use of different medium supplements, were compared. The ATMP-compliant UCX® product was also cryopreserved avoiding the use of dimethyl sulfoxide, an added benefit for the use of these cells as an ATMP. Cells were analyzed for expansion capacity and longevity. The final cell product was further characterized by flow cytometry, differentiation potential, and tested for contaminants at various passages. Finally, genetic stability and immune properties were also analyzed. The isolation efficiency of UCX® was not affected by the introduction of clinical grade enzymes. Furthermore, isolation efficiencies and phenotype analyses revealed advantages in the use of human serum in cell culture as opposed to human platelet lysate. Initial decontamination of the tissue followed by the use of mycoplasma- and endotoxin-free materials and reagents in cell isolation and subsequent culture, enabled the removal of antibiotics during cell expansion. UCX®-ATMP maintained a significant expansion potential of 2.5 population doublings per week up to passage 15 (P15). They were also efficiently cryopreserved in a DMSO-free cryoprotectant medium with approximately 100% recovery and 98% viability post-thaw. Additionally, UCX®-ATMP were genetically stable upon expansion (up to P15) and maintained their immunomodulatory properties. We have successfully adapted a method to consistently isolate, expand and cryopreserve a well-characterized population of human umbilical cord tissue-derived MSCs (UCX®), in order to obtain a cell product that is compliant with cell therapy. Here, we present quality and safety data that support the use of the UCX® as an ATMP, according to existing international guidelines.

  7. Cardiac side population cells and Sca-1-positive cells.

    PubMed

    Nagai, Toshio; Matsuura, Katsuhisa; Komuro, Issei

    2013-01-01

    Since the resident cardiac stem/progenitor cells were discovered, their ability to maintain the architecture and functional integrity of adult heart has been broadly explored. The methods for isolation and purification of the cardiac stem cells are crucial for the precise analysis of their developmental origin and intrinsic potential as tissue stem cells. Stem cell antigen-1 (Sca-1) is one of the useful cell surface markers to purify the cardiac progenitor cells. Another purification strategy is based on the high efflux ability of the dye, which is a common feature of tissue stem cells. These dye-extruding cells have been called side population cells because they locate in the side of dye-retaining cells after fluorescent cell sorting. In this chapter, we describe the methodology for the isolation of cardiac SP cells and Sca-1 positive cells.

  8. SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon.

    PubMed

    Hutton, Scott R; Pevny, Larysa H

    2011-04-01

    The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Selection of G1 Phase Yeast Cells for Synchronous Meiosis and Sporulation.

    PubMed

    Stuart, David T

    2017-01-01

    Centrifugal elutriation is a procedure that allows the fractionation of cell populations based upon their size and shape. This allows cells in distinct cell cycle stages can be captured from an asynchronous population. The technique is particularly helpful when performing an experiment to monitor the progression of cells through the cell cycle or meiosis. Yeast sporulation like gametogenesis in other eukaryotes initiates from the G1 phase of the cell cycle. Conveniently, S. cerevisiae arrest in G1 phase when starved for nutrients and so withdrawal of nitrogen and glucose allows cells to abandon vegetative growth in G1 phase before initiating the sporulation program. This simple starvation protocol yields a partial synchronization that has been used extensively in studies of progression through meiosis and sporulation. By using centrifugal elutriation it is possible to isolate a homogeneous population of G1 phase cells and induce them to sporulate synchronously, which is beneficial for investigating progression through meiosis and sporulation. An additionally benefit of this protocol is that cell populations can be isolated based upon size and both large and small cell populations can be tested for progression through meiosis and sporulation. Here we present a protocol for purification of G1 phase diploid cells for examining synchronous progression through meiosis and sporulation.

  10. In search of the skeletal stem cell: isolation and separation strategies at the macro/micro scale for skeletal regeneration.

    PubMed

    Gothard, David; Tare, Rahul S; Mitchell, Peter D; Dawson, Jonathan I; Oreffo, Richard O C

    2011-04-07

    Skeletal stem cells (SSCs) show great capacity for bone and cartilage repair however, current in vitro cultures are heterogeneous displaying a hierarchy of differentiation potential. SSCs represent the diminutive true multipotent stem cell fraction of bone marrow mononuclear cell (BMMNC) populations. Endeavours to isolate SSCs have generated a multitude of separation methodologies. SSCs were first identified and isolated by their ability to adhere to culture plastic. Once isolated, further separation is achieved via culture in selective or conditioned media (CM). Indeed, preferential SSC growth has been demonstrated through selective in vitro culture conditions. Other approaches have utilised cell morphology (size and shape) as selection criteria. Studies have also targeted SSCs based on their preferential adhesion to specified compounds, individually or in combination, on both macro and microscale platforms. Nevertheless, most of these methods which represent macroscale function with relatively high throughput, yield insufficient purity. Consequently, research has sought to downsize isolation methodologies to the microscale for single cell analysis. The central approach is identification of the requisite cell populations of SSC-specific surface markers that can be targeted for isolation by either positive or negative selection. SELEX and phage display technology provide apt means to sift through substantial numbers of candidate markers. In contrast, single cell analysis is the paramount advantage of microfluidics, a relatively new field for cell biology. Here cells can be separated under continuous or discontinuous flow according to intrinsic phenotypic and physicochemical properties. The combination of macroscale quantity with microscale specificity to generate robust high-throughput (HT) technology for pure SSC sorting, isolation and enrichment offers significant implications therein for skeletal regenerative strategies as a consequence of lab on chip derived methodology.

  11. The Isolation of Pure Populations of Neurons by Laser Capture Microdissection: Methods and Application in Neuroscience.

    PubMed

    Morris, Renée; Mehta, Prachi

    2018-01-01

    In mammals, the central nervous system (CNS) is constituted of various cellular elements, posing a challenge to isolating specific cell types to investigate their expression profile. As a result, tissue homogenization is not amenable to analyses of motor neurons profiling as these represent less than 10% of the total spinal cord cell population. One way to tackle the problem of tissue heterogeneity and obtain meaningful genomic, proteomic, and transcriptomic profiling is to use laser capture microdissection technology (LCM). In this chapter, we describe protocols for the capture of isolated populations of motor neurons from spinal cord tissue sections and for downstream transcriptomic analysis of motor neurons with RT-PCR. We have also included a protocol for the immunological confirmation that the captured neurons are indeed motor neurons. Although focused on spinal cord motor neurons, these protocols can be easily optimized for the isolation of any CNS neurons.

  12. HIV-1 isolation from infected peripheral blood mononuclear cells.

    PubMed

    Dispinseri, Stefania; Saba, Elisa; Vicenzi, Elisa; Kootstra, Neeltje A; Schuitemaker, Hanneke; Scarlatti, Gabriella

    2014-01-01

    Human immunodeficiency virus 1 (HIV-1) isolation from peripheral blood mononuclear cells (PBMCs) allows retrieval of replication-competent viral variants. In order to impose the smallest possible selective pressure on the viral isolates, isolation must be carried out in primary cultures of cells and not in tumor derived cell lines. The procedure involves culture of PBMCs from an infected patient with phytohemagglutinin (PHA)-stimulated PBMC from seronegative donors, which provide susceptible target cells for HIV replication. HIV can be isolated from the bulk population of PBMCs or after cloning of the cells to obtain viral biological clones. Viral production is determined with p24 antigen (Ag) detection assays or with reverse transcriptase (RT) activity assay. Once isolated, HIV-1 can be propagated by infecting PHA-stimulated PBMCs from healthy donors. Aliquots from culture with a high production of virus are stored for later use.

  13. Head and Neck Cancer Stem Cells: The Side Population

    PubMed Central

    Tabor, Mark H.; Clay, Matthew R.; Owen, John H.; Bradford, Carol R.; Carey, Thomas E.; Wolf, Gregory T.; Prince, Mark E.P.

    2014-01-01

    Background The cancer stem cell (CSC) hypothesis concludes that a subpopulation of tumor cells can self-renew, causing tumor growth, treatment failure, and recurrence. Several tumor studies have identified cells able to efflux Hoechst 33342 dye; the side population (SP). SP cells and CSCs share many characteristics, suggesting the SP isolated from malignant tumors contains CSCs. Methods The SP was isolated from a head and neck cancer cell line and analyzed for CSC-like characteristics. Results The SP demonstrated the ability to reproduce both SP and non-side population (NSP) cells from as few as one cell. The SP had lower expression of active β-catenin and more resistance to 5-Fluorouracil; the SP also demonstrated greater expression of BMI-1 (4.3-fold) and ABCG2 (1.4-fold). SPs were identified in 2 primary human tumors. Conclusions The SP in head and neck cancer cell lines may serve as a valuable in-vitro model for CSCs leading to the development of novel treatment strategies. PMID:21344428

  14. Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System.

    PubMed

    Lemaire, Clementine A; Liu, Sean Z; Wilkerson, Charles L; Ramani, Vishnu C; Barzanian, Nasim A; Huang, Kuo-Wei; Che, James; Chiu, Michael W; Vuppalapaty, Meghah; Dimmick, Adam M; Carlo, Dino Di; Kochersperger, Michael L; Crouse, Steve C; Jeffrey, Stefanie S; Englert, Robert F; Hengstler, Stephan; Renier, Corinne; Sollier-Christen, Elodie

    2018-02-01

    Tumor tissue biopsies are invasive, costly, and collect a limited cell population not completely reflective of patient cancer cell diversity. Circulating tumor cells (CTCs) can be isolated from a simple blood draw and may be representative of the diverse biology from multiple tumor sites. The VTX-1 Liquid Biopsy System was designed to automate the isolation of clinically relevant CTC populations, making the CTCs available for easy analysis. We present here the transition from a cutting-edge microfluidic innovation in the lab to a commercial, automated system for isolating CTCs directly from whole blood. As the technology evolved into a commercial system, flexible polydimethylsiloxane microfluidic chips were replaced by rigid poly(methyl methacrylate) chips for a 2.2-fold increase in cell recovery. Automating the fluidic processing with the VTX-1 further improved cancer cell recovery by nearly 1.4-fold, with a 2.8-fold decrease in contaminating white blood cells and overall improved reproducibility. Two isolation protocols were optimized that favor either the cancer cell recovery (up to 71.6% recovery) or sample purity (≤100 white blood cells/mL). The VTX-1's performance was further tested with three different spiked breast or lung cancer cell lines, with 69.0% to 79.5% cell recovery. Finally, several cancer research applications are presented using the commercial VTX-1 system.

  15. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells.

    PubMed

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F; Broering, Ruth

    2015-01-01

    Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Cell preparation yielded the following cell counts per gram of liver tissue: 2.0 ± 0.4 × 10(7) hepatocytes, 1.8 ± 0.5 × 10(6 )Kupffer cells, 4.3 ± 1.9 × 10(5) liver sinusoidal endothelial cells, and 3.2 ± 0.5 × 10(5) stellate cells. Hepatocytes were identified by albumin (95.5 ± 1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5 ± 1.2%) and exhibited phagocytic activity, as determined with 1 μm latex beads. Endothelial cells were CD146(+) (97.8 ± 1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1 ± 1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease.

  16. Evidence of heterogeneity within bovine satellite cells isolated from young and adult animals.

    PubMed

    Li, J; Gonzalez, J M; Walker, D K; Hersom, M J; Ealy, A D; Johnson, S E

    2011-06-01

    Satellite cells are a heterogeneous population of myogenic precursors responsible for muscle growth and repair in mammals. The objectives of the experiment were to examine the growth rates and degree of heterogeneity within bovine satellite cells (BSC) isolated from young and adult animals. The BSC were harvested from the semimembranosus of young (4.3 ± 0.5 d) and adult (estimated 24 to 27 mo) cattle and cultured en masse. Young animal BSC re-enter the cell cycle sooner and reach maximal 5-ethynyl-2'-deoxyuridine (EdU) incorporation earlier (P < 0.05) than adult contemporaries. Adult BSC contain fewer (P < 0.05) MyoD and myogenin immunopositive nuclei than BSC isolated from young animals after 3, 4, and 5 d in culture. These results indicate that BSC from young animals activate, proliferate, and differentiate sooner than isolates from adult animals. Lineage heterogeneity within BSC was examined using antibodies specific for Pax7 and Myf5, lineage markers of satellite cells, and myoblasts. Immunocytochemistry revealed the majority of Pax7-expressing BSC also express Myf5; a minor population (~5%) fails to exhibit Myf5 immunoreactivity. The percentage of Pax7:Myf5 BSC from young animals decreases sooner (P < 0.05) in culture than adult BSC, indicating a more rapid rate of muscle fiber formation. A subpopulation immunopositive for Myf5 only was identified in both ages of BSC isolates. The growth kinetics and heterogeneity of young BSC was further evaluated by clonal analysis. Single cell clones were established and analyzed after 10 d. Colonies segregated into 2 groups based upon population doubling time. Immunostaining of the slow-growing colonies (population doubling time ≥ 3 d) revealed that a portion exhibited asymmetric distribution of the lineage markers Pax7 and Myf5, similar to self-renewable mouse muscle stem cells. In summary, these results offer insight into the heterogeneity of BSC and provide evidence for subtle differences between rodent and bovine myogenic precursors.

  17. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    PubMed Central

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  18. Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry.

    PubMed

    Jan, Taha A; Chai, Renjie; Sayyid, Zahra N; Cheng, Alan G

    2011-12-23

    Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.

  19. Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.

    PubMed

    Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio

    2014-07-01

    S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.

  20. Direct Isolation, Culture and Transplant of Mouse Skeletal Muscle Derived Endothelial Cells with Angiogenic Potential

    PubMed Central

    Ieronimakis, Nicholas; Balasundaram, Gayathri; Reyes, Morayma

    2008-01-01

    Background Although diseases associated with microvascular endothelial dysfunction are among the most prevalent illnesses to date, currently no method exists to isolate pure endothelial cells (EC) from skeletal muscle for in vivo or in vitro study. Methodology By utilizing multicolor fluorescent-activated cell sorting (FACS), we have isolated a distinct population of Sca-1+, CD31+, CD34dim and CD45− cells from skeletal muscles of C57BL6 mice. Characterization of this population revealed these cells are functional EC that can be expanded several times in culture without losing their phenotype or capabilities to uptake acetylated low-density lipoprotein (ac-LDL), produce nitric oxide (NO) and form vascular tubes. When transplanted subcutaneously or intramuscularly into the tibialis anterior muscle, EC formed microvessels and integrated with existing vasculature. Conclusion This method, which is highly reproducible, can be used to study the biology and role of EC in diseases such as peripheral vascular disease. In addition this method allows us to isolate large quantities of skeletal muscle derived EC with potential for therapeutic angiogenic applications. PMID:18335025

  1. C-kit+ cells isolated from developing kidneys are a novel population of stem cells with regenerative potential

    PubMed Central

    Rangel, Erika B; Gomes, Samirah A; Dulce, Raul A; Premer, Courtney; Rodrigues, Claudia O; Kanashiro-Takeuchi, Rosemeire M; Oskouei, Behzad; Carvalho, Decio A; Ruiz, Phillip; Reiser, Jochen; Hare, Joshua M

    2013-01-01

    The presence of tissue specific precursor cells is an emerging concept in organ formation and tissue homeostasis. Several progenitors are described in the kidneys. However, their identity as a true stem cell remains elusive. Here, we identify a neonatal kidney-derived c-kit+ cell population that fulfills all of the criteria as a stem cell. These cells were found in the thick ascending limb of Henle's loop and exhibited clonogenicity, self-renewal, and multipotentiality with differentiation capacity into mesoderm and ectoderm progeny. Additionally, c-kit+ cells formed spheres in nonadherent conditions when plated at clonal density and expressed markers of stem cells, progenitors, and differentiated cells. Ex-vivo expanded c-kit+ cells integrated into several compartments of the kidney, including tubules, vessels, and glomeruli, and contributed to functional and morphological improvement of the kidney following acute ischemia-reperfusion injury in rats. Together these findings document a novel neonatal rat kidney c-kit+ stem cell population that can be isolated, expanded, cloned, differentiated, and employed for kidney repair following acute kidney injury. These cells have important biological and therapeutic implications. PMID:23733311

  2. FACS-based isolation, propagation and characterization of mouse embryonic cardiomyocytes based on VCAM-1 surface marker expression.

    PubMed

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes.

  3. FACS-Based Isolation, Propagation and Characterization of Mouse Embryonic Cardiomyocytes Based on VCAM-1 Surface Marker Expression

    PubMed Central

    Pontén, Annica; Walsh, Stuart; Malan, Daniela; Xian, Xiaojie; Schéele, Susanne; Tarnawski, Laura; Fleischmann, Bernd K.; Jovinge, Stefan

    2013-01-01

    Purification of cardiomyocytes from the embryonic mouse heart, embryonic stem (ES) or induced pluripotent stem cells (iPS) is a challenging task and will require specific isolation procedures. Lately the significance of surface markers for the isolation of cardiac cell populations with fluorescence activated cell sorting (FACS) has been acknowledged, and the hunt for cardiac specific markers has intensified. As cardiomyocytes have traditionally been characterized by their expression of specific transcription factors and structural proteins, and not by specific surface markers, this constitutes a significant bottleneck. Lately, Flk-1, c-kit and the cellular prion protein have been reported to specify cardiac progenitors, however, no surface markers have so far been reported to specify a committed cardiomyocyte. Herein show for the first time, that embryonic cardiomyocytes can be isolated with 98% purity, based on their expression of vascular cell adhesion molecule-1 (VCAM-1). The FACS-isolated cells express phenotypic markers for embryonic committed cardiomyocytes but not cardiac progenitors. An important aspect of FACS is to provide viable cells with retention of functionality. We show that VCAM-1 positive cardiomyocytes can be isolated with 95% viability suitable for in vitro culture, functional assays or expression analysis. In patch-clamp experiments we provide evidence of functionally intact cardiomyocytes of both atrial and ventricular subtypes. This work establishes that cardiomyocytes can be isolated with a high degree of purity and viability through FACS, based on specific surface marker expression as has been done in the hematopoietic field for decades. Our FACS protocol represents a significant advance in which purified populations of cardiomyocytes may be isolated and utilized for downstream applications, such as purification of ES-cell derived cardiomyocytes. PMID:24386094

  4. Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei

    PubMed Central

    Park, Kyunghyuk; Frost, Jennifer M.; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee

    2016-01-01

    The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75–90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction. PMID:27788573

  5. From the rat to the beta cell: a fast and effective technique of separation of Langerhans islets and direct purification of pancreatic beta cells.

    PubMed

    Tamagno, Gianluca; Vigolo, Simonetta; Olivieri, Massimiliano; Martini, Chiara; De Carlo, Eugenio

    2014-01-01

    Isolated Langerhans islets represent a useful model for the study of the endocrine pancreas. The possibility to purify pancreatic beta cells from a mixed Langerhans islet cell population may lead towards a dedicated focus on beta cell research. We describe an effective and rapid immunomagnetic technique for the direct purification of beta cells from isolated Langerhans islets of rat. After the sacrifice of the rat, the Langerhans islets were separated by ductal injection of the pancreas with collagenase, altered to a mixed Langerhans islet cell population and incubated with conditioned immunomagnetic beads targeted to the beta cell surface. The beads were previously coated with a specific antibody against the surface of the beta cell, namely K14D10. The suspension of mixed Langerhans islet cells and immunomagnetic K14D10-conditioned beads was pelleted by a magnetic particle concentrator to isolate the bead-bound cells, which were finally suspended in a culture medium. The purified cells were immunoreactive for insulin and no glucagon-positive cells were detected at immunocytochemistry. Real Time PCR confirmed the purification of the pancreatic beta cells. This immunomagnetic technique allows a rapid, effective and consistent purification of beta cells from isolated Langerhans islets in a direct manner by conditioning the immunomagnetic beads only. This technique is easy, fast and reproducible. It promises to be a reliable method for providing purified beta cells for in vitro research.

  6. Rare cell isolation and analysis in microfluidics

    PubMed Central

    Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun

    2014-01-01

    Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985

  7. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  8. Liquid scintillation counting for /sup 14/C uptake of single algal cells isolated from natural samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivkin, R.B.; Seliger, H.H.

    1981-07-01

    Short term rates of /sup 14/C uptake for single cells and small numbers of isolated algal cells of five phytoplankton species from natural populations were measured by liquid scintillation counting. Regression analysis of uptake rates per cell for cells isolated from unialgal cultures of seven species of dinoflagellates, ranging in volume from ca. 10/sup 3/ to 10/sup 7/ ..mu..m/sup 3/, gave results identical to uptake rates per cell measured by conventional /sup 14/C techniques. Relative standard errors or regression coefficients ranged between 3 and 10%, indicating that for any species there was little variation in photosynthesis per cell.

  9. Zonal hierarchy of differentiation markers and nestin expression during oval cell mediated rat liver regeneration.

    PubMed

    Koenig, Sarah; Probst, Irmelin; Becker, Heinz; Krause, Petra

    2006-12-01

    Oval cells constitute a heterogeneous population of proliferating progenitors found in rat livers following carcinogenic treatment (2-acetylaminofluorene and 70% hepatectomy). The aim of this study was to investigate the cellular pattern of various differentiation and cell type markers in this model of liver regeneration. Immunophenotypic characterisation revealed at least two subtypes emerging from the portal field. First, a population of oval cells formed duct-like structures and expressed bile duct (CD49f) as well as hepatocytic markers (alpha-foetoprotein, CD26). Second, a population of non-ductular oval cells was detected between and distally from the ductules expressing the neural marker nestin and the haematopoietic marker Thy1. Following oval cell isolation, a subset of the nestin-positive cells was shown to co-express hepatocytic and epithelial markers (albumin, CD26, pancytokeratin) and could be clearly distinguished from anti-desmin reactive hepatic stellate cells. The gene expression profiles (RT-PCR) of isolated oval cells and oval cell liver tissue were found to be similar to foetal liver (ED14). The present results suggest that the two oval cell populations are organised in a zonal hierarchy with a marker gradient from the inner (displaying hepatocytic and biliary markers) to the outer zone (showing hepatocytic and extrahepatic progenitor markers) of the proliferating progeny clusters.

  10. Are nestin-positive mesenchymal stromal cells a better source of cells for CNS repair?

    PubMed

    Lindsay, Susan L; Barnett, Susan C

    2017-06-01

    In recent years there has been a great deal of research within the stem cell field which has led to the definition and classification of a range of stem cells from a plethora of tissues and organs. Stem cells, by classification, are considered to be pluri- or multipotent and have both self-renewal and multi-differentiation capabilities. Presently there is a great deal of interest in stem cells isolated from both embryonic and adult tissues in the hope they hold the therapeutic key to restoring or treating damaged cells in a number of central nervous system (CNS) disorders. In this review we will discuss the role of mesenchymal stromal cells (MSCs) isolated from human olfactory mucosa, with particular emphasis on their potential role as a candidate for transplant mediated repair in the CNS. Since nestin expression defines the entire population of olfactory mucosal derived MSCs, we will compare these cells to a population of neural crest derived nestin positive population of bone marrow-MSCs. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Single cell gene expression profiling of cortical osteoblast lineage cells.

    PubMed

    Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon

    2013-03-01

    In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Approaching the molecular origins of collective dynamics in oscillating cell populations

    PubMed Central

    Mehta, Pankaj; Gregor, Thomas

    2011-01-01

    From flocking birds, to organ generation, to swarming bacterial colonies, biological systems often exhibit collective behaviors. Here, we review recent advances in our understanding of collective dynamics in cell populations. We argue that understanding population-level oscillations requires examining the system under consideration at three different levels of complexity: at the level of isolated cells, homogenous populations, and spatially structured populations. We discuss the experimental and theoretical challenges this poses and highlight how new experimental techniques, when combined with conceptual tools adapted from physics, may help us overcome these challenges. PMID:20934869

  13. Isolation of Primary Human Skeletal Muscle Cells

    PubMed Central

    Spinazzola, Janelle M.; Gussoni, Emanuela

    2017-01-01

    Primary myoblast culture is a valuable tool in research of muscle disease, pathophysiology, and pharmacology. This protocol describes techniques for dissociation of cells from human skeletal muscle biopsies and enrichment for a highly myogenic population by fluorescence-activated cell sorting (FACS). We also describe methods for assessing myogenicity and population expansion for subsequent in vitro study. PMID:29152538

  14. Isolation of osteoprogenitors from human jaw periosteal cells: a comparison of two magnetic separation methods.

    PubMed

    Olbrich, Marcus; Rieger, Melanie; Reinert, Siegmar; Alexander, Dorothea

    2012-01-01

    Human jaw periosteum tissue contains osteoprogenitors that have potential for tissue engineering applications in oral and maxillofacial surgeries. To isolate osteoprogenitor cells from heterogeneous cell populations, we used the specific mesenchymal stem cell antigen-1 (MSCA-1) antibody and compared two magnetic separation methods. We analyzed the obtained MSCA-1(+) and MSCA-1(-) fractions in terms of purity, yield of positive/negative cells and proliferative and mineralization potentials. The analysis of cell viability after separation revealed that the EasySep method yielded higher viability rates, whereas the flow cytometry results showed a higher purity for the MACS-separated cell fractions. The mineralization capacity of the osteogenic induced MSCA-1(+) cells compared with the MSCA-1(-) controls using MACS was 5-fold higher, whereas the same comparison after EasySep showed no significant differences between both fractions. By analyzing cell proliferation, we detected a significant difference between the proliferative potential of the osteogenic cells versus untreated cells after the MACS and EasySep separations. The differentiated cells after MACS separation adjusted their proliferative capacity, whereas the EasySep-separated cells failed to do so. The protein expression analysis showed small differences between the two separation methods. Our findings suggest that MACS is a more suitable separation method to isolate osteoprogenitors from the entire jaw periosteal cell population.

  15. Bovine dedifferentiated adipose tissue (DFAT) cells

    PubMed Central

    Wei, Shengjuan; Du, Min; Jiang, Zhihua; Duarte, Marcio S; Fernyhough-Culver, Melinda; Albrecht, Elke; Will, Katja; Zan, Linsen; Hausman, Gary J; Elabd, Elham M Youssef; Bergen, Werner G; Basu, Urmila; Dodson, Michael V

    2013-01-01

    Dedifferentiated fat cells (DFAT cells) are derived from lipid-containing (mature) adipocytes, which possess the ability to symmetrically or asymmetrically proliferate, replicate, and redifferentiate/transdifferentiate. Robust cell isolation and downstream culture methods are needed to isolate large numbers of DFAT cells from any (one) adipose depot in order to establish population dynamics and regulation of the cells within and across laboratories. In order to establish more consistent/repeatable methodology here we report on two different methods to establish viable DFAT cell cultures: both traditional cell culture flasks and non-traditional (flat) cell culture plates were used for ceiling culture establishment. Adipocytes (maternal cells of the DFAT cells) were easier to remove from flat culture plates than flasks and the flat plates also allowed cloning rings to be utilized for cell/cell population isolation. While additional aspects of usage of flat-bottomed cell culture plates may yet need to be optimized by definition of optimum bio-coating to enhance cell attachment, utilization of flat plate approaches will allow more efficient study of the dedifferentiation process or the DFAT progeny cells. To extend our preliminary observations, dedifferentiation of Wagyu intramuscular fat (IMF)-derived mature adipocytes and redifferentiation ability of DFAT cells utilizing the aforementioned isolation protocols were examined in traditional basal media/differentiation induction media (DMI) containing adipogenic inducement reagents. In the absence of treatment approximately 10% isolated Wagyu IMF-mature adipocytes dedifferentiated spontaneously and 70% DFAT cells displayed protracted adipogenesis 12 d after confluence in vitro. Lipid-free intracellular vesicles in the cytoplasm (vesicles possessing an intact membrane but with no any observable or stainable lipid inside) were observed during redifferentiation. One to 30% DFAT cells redifferentiated into lipid-assimilating adipocytes in the DMI media, with distinct lipid-droplets in the cytoplasm and with no observable lipid-free vesicles inside. Moreover, a high confluence level promoted the redifferentiation efficiency of DFAT cells. Wagyu IMF dedifferentiated DFAT cells exhibited unique adipogenesis modes in vitro, revealing a useful cell model for studying adipogenesis and lipid metabolism. PMID:23991361

  16. All-In-One: Advanced preparation of Human Parenchymal and Non-Parenchymal Liver Cells

    PubMed Central

    Werner, Melanie; Driftmann, Sabrina; Kleinehr, Kathrin; Kaiser, Gernot M.; Mathé, Zotlan; Treckmann, Juergen-Walter; Paul, Andreas; Skibbe, Kathrin; Timm, Joerg; Canbay, Ali; Gerken, Guido; Schlaak, Joerg F.; Broering, Ruth

    2015-01-01

    Background & Aims Liver cells are key players in innate immunity. Thus, studying primary isolated liver cells is necessary for determining their role in liver physiology and pathophysiology. In particular, the quantity and quality of isolated cells are crucial to their function. Our aim was to isolate a large quantity of high-quality human parenchymal and non-parenchymal cells from a single liver specimen. Methods Hepatocytes, Kupffer cells, liver sinusoidal endothelial cells, and stellate cells were isolated from liver tissues by collagenase perfusion in combination with low-speed centrifugation, density gradient centrifugation, and magnetic-activated cell sorting. The purity and functionality of cultured cell populations were controlled by determining their morphology, discriminative cell marker expression, and functional activity. Results Cell preparation yielded the following cell counts per gram of liver tissue: 2.0±0.4×107 hepatocytes, 1.8±0.5×106 Kupffer cells, 4.3±1.9×105 liver sinusoidal endothelial cells, and 3.2±0.5×105 stellate cells. Hepatocytes were identified by albumin (95.5±1.7%) and exhibited time-dependent activity of cytochrome P450 enzymes. Kupffer cells expressed CD68 (94.5±1.2%) and exhibited phagocytic activity, as determined with 1μm latex beads. Endothelial cells were CD146+ (97.8±1.1%) and exhibited efficient uptake of acetylated low-density lipoprotein. Hepatic stellate cells were identified by the expression of α-smooth muscle actin (97.1±1.5%). These cells further exhibited retinol (vitamin A)-mediated autofluorescence. Conclusions Our isolation procedure for primary parenchymal and non-parenchymal liver cells resulted in cell populations of high purity and quality, with retained physiological functionality in vitro. Thus, this system may provide a valuable tool for determining liver function and disease. PMID:26407160

  17. CD24-Positive Cells from Normal Adult Mouse Liver Are Hepatocyte Progenitor Cells

    PubMed Central

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M.; Rao, Pulivarthi H.

    2011-01-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45−, Ter119−) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes. PMID:21361791

  18. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells.

    PubMed

    Qiu, Qiong; Hernandez, Julio Cesar; Dean, Adam M; Rao, Pulivarthi H; Darlington, Gretchen J

    2011-12-01

    The identification of specific cell surface markers that can be used to isolate liver progenitor cells will greatly facilitate experimentation to determine the role of these cells in liver regeneration and their potential for therapeutic transplantation. Previously, the cell surface marker, CD24, was observed to be expressed on undifferentiated bipotential mouse embryonic liver stem cells and 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced oval cells. Here, we describe the isolation and characterization of a rare, primary, nonhematopoietic, CD24+ progenitor cell population from normal, untreated mouse liver. By immunohistochemistry, CD24-expressing cells in normal adult mouse liver were colocalized with CK19-positive cholangiocytes. This nonhematopoietic (CD45-, Ter119-) CD24+ cell population isolated by flow cytometry represented 0.04% of liver cells and expressed several markers of liver progenitor/oval cells. The immunophenotype of nonhematopoietic CD24+ cells was CD133, Dlk, and Sca-1 high, but c-Kit, Thy-1, and CD34 low. The CD24+ cells had increased expression of CK19, epithelial cell adhesion molecule, Sox 9, and FN14 compared with the unsorted cells. Upon transplantation of nonhematopoietic CD24+ cells under the sub-capsule of the livers of Fah knockout mice, cells differentiated into mature functional hepatocytes. Analysis of X and Y chromosome complements were used to determine whether or not fusion of the engrafted cells with the recipient hepatocytes occurred. No cells were found that contained XXXY or any other combination of donor and host sex chromosomes as would be expected if cell fusion had occurred. These results suggested that CD24 can be used as a cell surface marker for isolation of hepatocyte progenitor cells from normal adult liver that are able to differentiate into hepatocytes.

  19. Separation of mouse testis cells on a Celsep (TM) apparatus and their usefulness as a source of high molecular weight DNA or RNA

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Gizang-Ginsberg, E.; Engelmyer, E.; Gavin, B. J.; Ponzetto, C.

    1985-01-01

    The use of a self-contained unit-gravity cell separation apparatus for separation of populations of mouse testicular cells is described. The apparatus, a Celsep (TM), maximizes the unit area over which sedimentation occurs, reduces the amount of separation medium employed, and is quite reproducible. Cells thus isolated have been good sources for isolation of DNA, and notably, high molecular weight RNA.

  20. Optofluidic Cell Selection from Complex Microbial Communities for Single-Genome Analysis

    PubMed Central

    Landry, Zachary C.; Giovanonni, Stephen J.; Quake, Stephen R.; Blainey, Paul C.

    2013-01-01

    Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy. PMID:24060116

  1. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like self-renewal and multipotential differentiation capacity.

    PubMed

    Randelli, Pietro; Conforti, Erika; Piccoli, Marco; Ragone, Vincenza; Creo, Pasquale; Cirillo, Federica; Masuzzo, Pamela; Tringali, Cristina; Cabitza, Paolo; Tettamanti, Guido; Gagliano, Nicoletta; Anastasia, Luigi

    2013-07-01

    Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. Controlled laboratory study. Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.

  2. Computational design optimization for microfluidic magnetophoresis

    PubMed Central

    Plouffe, Brian D.; Lewis, Laura H.; Murthy, Shashi K.

    2011-01-01

    Current macro- and microfluidic approaches for the isolation of mammalian cells are limited in both efficiency and purity. In order to design a robust platform for the enumeration of a target cell population, high collection efficiencies are required. Additionally, the ability to isolate pure populations with minimal biological perturbation and efficient off-chip recovery will enable subcellular analyses of these cells for applications in personalized medicine. Here, a rational design approach for a simple and efficient device that isolates target cell populations via magnetic tagging is presented. In this work, two magnetophoretic microfluidic device designs are described, with optimized dimensions and operating conditions determined from a force balance equation that considers two dominant and opposing driving forces exerted on a magnetic-particle-tagged cell, namely, magnetic and viscous drag. Quantitative design criteria for an electromagnetic field displacement-based approach are presented, wherein target cells labeled with commercial magnetic microparticles flowing in a central sample stream are shifted laterally into a collection stream. Furthermore, the final device design is constrained to fit on standard rectangular glass coverslip (60 (L)×24 (W)×0.15 (H) mm3) to accommodate small sample volume and point-of-care design considerations. The anticipated performance of the device is examined via a parametric analysis of several key variables within the model. It is observed that minimal currents (<500 mA) are required to generate magnetic fields sufficient to separate cells from the sample streams flowing at rate as high as 7 ml∕h, comparable to the performance of current state-of-the-art magnet-activated cell sorting systems currently used in clinical settings. Experimental validation of the presented model illustrates that a device designed according to the derived rational optimization can effectively isolate (∼100%) a magnetic-particle-tagged cell population from a homogeneous suspension even in a low abundance. Overall, this design analysis provides a rational basis to select the operating conditions, including chamber and wire geometry, flow rates, and applied currents, for a magnetic-microfluidic cell separation device. PMID:21526007

  3. An automated image processing routine for segmentation of cell cytoplasms in high-resolution autofluorescence images

    NASA Astrophysics Data System (ADS)

    Walsh, Alex J.; Skala, Melissa C.

    2014-02-01

    The heterogeneity of genotypes and phenotypes within cancers is correlated with disease progression and drug-resistant cellular sub-populations. Therefore, robust techniques capable of probing majority and minority cell populations are important both for cancer diagnostics and therapy monitoring. Herein, we present a modified CellProfiler routine to isolate cytoplasmic fluorescence signal on a single cell level from high resolution auto-fluorescence microscopic images.

  4. High-throughput microfluidic device for rare cell isolation

    NASA Astrophysics Data System (ADS)

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L.

    2015-06-01

    Enumerating and analyzing circulating tumor cells (CTCs)—cells that have been shed from primary solid tumors—can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  5. High-Throughput Microfluidic Device for Rare Cell Isolation.

    PubMed

    Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L

    2015-05-04

    Enumerating and analyzing circulating tumor cells (CTCs)-cells that have been shed from primary solid tumors-can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.

  6. Hepatic progenitor populations in embryonic, neonatal, and adult liver.

    PubMed

    Brill, S; Holst, P; Sigal, S; Zvibel, I; Fiorino, A; Ochs, A; Somasundaran, U; Reid, L M

    1993-12-01

    Oval cells, small cells with oval-shaped nuclei, are induced to proliferate in the livers of animals treated with carcinogens and are thought to be related to liver stem cells and/or committed liver progenitor cell populations. We have developed protocols for identifying and isolating antigenically related cell populations present in normal tissues using monoclonal antibodies to oval cell antigens and fluorescence-activated cell sorting. We have isolated oval cell-antigen-positive (OCAP) cells from embryonic, neonatal, and adult rat livers and have identified culture conditions permitting their growth in culture. The requirements for growth of the OCAP cells included substrata of type IV collagen mixed with laminin, basal medium with complex lipids and low calcium, specific growth factors (most potently, insulin-like growth factor II and granulocyte-macrophage colony-stimulating factor), and co-cultures of embryonic, liver-specific stroma, strongly suggesting paracrine signaling between hepatic and hemopoietic precursor cells. The growing OCAP cultures proved to be uniformly expressing oval cell markers but were nevertheless a mixture of hepatic and hemopoietic precursor cells. To separate the hepatic and hemopoietic subpopulations of OCAP cells, we surveyed known antibodies and found ones that uniquely identify either hepatic or hemopoietic cells. Several of these antibodies were used in panning procedures and fluorescence-activated cell sorting to eliminate contaminant cell populations, particularly hemopoietic and endothelial cells. Using specific flow cytometric parameters, three cellular subpopulations could be isolated separately that were identified by immunochemistry and molecular hybridization assays as probable: (i) committed progenitors to hepatocytes; (ii) committed progenitors to bile ducts; or (iii) a mixed population of hemopoietic cells that contained a small percentage of hepatic blasts that are possibly pluripotent. The hepatic precursor cells have been characterized using immunochemistry, flow cytometry, and molecular hybridization assays. The hepatic blasts are small (7-10 microns) cells with high nuclear to cytoplasmic ratios and with minimal complexity of the cytoplasm. Cultures of the committed progenitors were found to differentiate into cells with recognizable parenchymal cell fates. We discuss our studies in the context of our model of the liver as stem cell and lineage system and suggest that a slow, unidirectional, terminal differentiation process, paralleling more rapid ones in the skin or gut, occurs at all times in the liver and is thought to vary primarily in kinetics during quiescent versus regenerative states.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Bacterial charity work leads to population-wide resistance.

    PubMed

    Lee, Henry H; Molla, Michael N; Cantor, Charles R; Collins, James J

    2010-09-02

    Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.

  8. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells.

    PubMed

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-12-16

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 'contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments.

  9. An Integrated Microfluidic Chip System for Single-Cell Secretion Profiling of Rare Circulating Tumor Cells

    PubMed Central

    Deng, Yuliang; Zhang, Yu; Sun, Shuai; Wang, Zhihua; Wang, Minjiao; Yu, Beiqin; Czajkowsky, Daniel M.; Liu, Bingya; Li, Yan; Wei, Wei; Shi, Qihui

    2014-01-01

    Genetic and transcriptional profiling, as well as surface marker identification of single circulating tumor cells (CTCs) have been demonstrated. However, quantitatively profiling of functional proteins at single CTC resolution has not yet been achieved, owing to the limited purity of the isolated CTC populations and a lack of single-cell proteomic approaches to handle and analyze rare CTCs. Here, we develop an integrated microfluidic system specifically designed for streamlining isolation, purification and single-cell secretomic profiling of CTCs from whole blood. Key to this platform is the use of photocleavable ssDNA-encoded antibody conjugates to enable a highly purified CTC population with <75 ‘contaminated' blood cells. An enhanced poly-L-lysine barcode pattern is created on the single-cell barcode chip for efficient capture rare CTC cells in microchambers for subsequent secreted protein profiling. This system was extensively evaluated and optimized with EpCAM-positive HCT116 cells seeded into whole blood. Patient blood samples were employed to assess the utility of the system for isolation, purification and single-cell secretion profiling of CTCs. The CTCs present in patient blood samples exhibit highly heterogeneous secretion profile of IL-8 and VEGF. The numbers of secreting CTCs are found not in accordance with CTC enumeration based on immunostaining in the parallel experiments. PMID:25511131

  10. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.

  11. Generation of monoclonal antibodies specific for cell surface molecules expressed on early mouse endoderm.

    PubMed

    Gadue, Paul; Gouon-Evans, Valerie; Cheng, Xin; Wandzioch, Ewa; Zaret, Kenneth S; Grompe, Markus; Streeter, Philip R; Keller, Gordon M

    2009-09-01

    The development of functional cell populations such as hepatocytes and pancreatic beta cells from embryonic stem cell (ESC) is dependent on the efficient induction of definitive endoderm early in the differentiation process. To monitor definitive endoderm formation in mouse ESC differentiation cultures in a quantitative fashion, we generated a reporter cell line that expresses human CD25 from the Foxa3 locus and human CD4 from the Foxa2 locus. Induction of these reporter ESCs with high concentrations of activin A led to the development of a CD25-Foxa3+CD4-Foxa2+ population within 4-5 days of culture. Isolation and characterization of this population showed that it consists predominantly of definitive endoderm that is able to undergo hepatic specification under the appropriate conditions. To develop reagents that can be used for studies on endoderm development from unmanipulated ESCs, from induced pluripotent stem cells, and from the mouse embryo, we generated monoclonal antibodies against the CD25-Foxa3+CD4-Foxa2+ population. With this approach, we identified two antibodies that react specifically with endoderm from ESC cultures and from the early embryo. The specificity of these antibodies enables one to quantitatively monitor endoderm development in ESC differentiation cultures, to study endoderm formation in the embryo, and to isolate pure populations of culture- or embryo-derived endodermal cells.

  12. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations.

    PubMed

    Harkness, Linda; Zaher, Walid; Ditzel, Nicholas; Isa, Adiba; Kassem, Moustapha

    2016-01-11

    Identification of surface markers for prospective isolation of functionally homogenous populations of human skeletal (stromal, mesenchymal) stem cells (hMSCs) is highly relevant for cell therapy protocols. Thus, we examined the possible use of CD146 to subtype a heterogeneous hMSC population. Using flow cytometry and cell sorting, we isolated two distinct hMSC-CD146(+) and hMSC-CD146(-) cell populations from the telomerized human bone marrow-derived stromal cell line (hMSC-TERT). Cells were examined for differences in their size, shape and texture by using high-content analysis and additionally for their ability to differentiate toward osteogenesis in vitro and form bone in vivo, and their migrational ability in vivo and in vitro was investigated. In vitro, the two cell populations exhibited similar growth rate and differentiation capacity to osteoblasts and adipocytes on the basis of gene expression and protein production of lineage-specific markers. In vivo, hMSC-CD146(+) and hMSC-CD146(-) cells formed bone and bone marrow organ when implanted subcutaneously in immune-deficient mice. Bone was enriched in hMSC-CD146(-) cells (12.6 % versus 8.1 %) and bone marrow elements enriched in implants containing hMSC-CD146(+) cells (0.5 % versus 0.05 %). hMSC-CD146(+) cells exhibited greater chemotactic attraction in a transwell migration assay and, when injected intravenously into immune-deficient mice following closed femoral fracture, exhibited wider tissue distribution and significantly increased migration ability as demonstrated by bioluminescence imaging. Our studies demonstrate that CD146 defines a subpopulation of hMSCs capable of bone formation and in vivo trans-endothelial migration and thus represents a population of hMSCs suitable for use in clinical protocols of bone tissue regeneration.

  13. Fibro/Adipogenic Progenitors (FAPs): Isolation by FACS and Culture.

    PubMed

    Low, Marcela; Eisner, Christine; Rossi, Fabio

    2017-01-01

    Fibro/adipogenic progenitors (FAPs ) are tissue-resident mesenchymal stromal cells (MSCs). Current literature supports a role for these cells in the homeostasis and repair of multiple tissues suggesting that FAPs may have extensive therapeutic potential in the treatment of numerous diseases. In this context, it is crucial to establish efficient and reproducible procedures to purify FAP populations from various tissues. Here, we describe a protocol for the isolation and cell culture of FAPs from murine skeletal muscle using fluorescence -activated cell sorting (FACS), which is particularly useful for experiments where high cell purity is an essential requirement. Identification, isolation, and cell culture of FAPs represent powerful tools that will help us to understand the role of these cells in different conditions and facilitate the development of safe and effective new treatments for diseases.

  14. Assessment of different protocols for the isolation and purification of gut associated lymphoid cells from the gilthead seabream (Sparus aurata L.)

    PubMed Central

    2007-01-01

    Teleost gut associated lymphoid tissue (GALT) consists of leucocyte populations located both intraepithelially and in the lamina propria with no structural organization. The present study aims to assess different protocols for the isolation of GALT cells from an important fish species in the Mediterranean aquaculture, the gilthead seabream. Mechanical, chemical and enzymatic treatments were assayed. Nylon wool columns and continuous density gradients were used for further separation of cell subpopulations. Light microscopy and flow cytometry showed that the highest density band (HD) consisted of a homogeneous lymphocytic population, whereas the intermediate density band (ID) corresponded to epithelial and secretory cells and some lymphocytes. Respiratory burst activity of total cell suspensions revealed very low numbers of potential phagocytic cells, reflecting results from light microscopy and reports in other teleost species. The present data set up the basis for future functional characterization of GALT in seabream. PMID:18213363

  15. Isolation, molecular cloning and in vitro expression of rhesus monkey (Macaca mulatta) prominin-1.s1 complementary DNA encoding a potential hematopoietic stem cell antigen.

    PubMed

    Husain, S M; Shou, Y; Sorrentino, B P; Handgretinger, R

    2006-10-01

    Human prominin-1 (CD133 or AC133) is an important cell surface marker used to isolate primitive hematopoietic stem cells. The commercially available antibody to human prominin-1 does not recognize rhesus prominin-1. Therefore, we isolated, cloned and characterized the complementary DNA (cDNA) of rhesus prominin-1 gene and determined its coding potential. Following the nomenclature of prominin family of genes, we named this cDNA as rhesus prominin-1.s1. The amino acid sequence data of the putative rhesus prominin-1.s1 could be used in designing antigenic peptides to raise antibodies for use in isolation of pure populations of rhesus prominin-1(+) hematopoietic cells. To the best of our knowledge, there has been no previously published report about the isolation of a prominin-1 cDNA from rhesus monkey (Macaca mulatta).

  16. Isolation of Primary Mouse Trophoblast Cells and Trophoblast Invasion Assay

    PubMed Central

    Pennington, Kathleen A.; Schlitt, Jessica M.; Schulz, Laura C.

    2012-01-01

    The placenta is responsible for the transport of nutrients, gasses and growth factors to the fetus, as well as the elimination of wastes. Thus, defects in placental development have important consequences for the fetus and mother, and are a major cause of embryonic lethality. The major cell type of the fetal portion of the placenta is the trophoblast. Primary mouse placental trophoblast cells are a useful tool for studying normal and abnormal placental development, and unlike cell lines, may be isolated and used to study trophoblast at specific stages of pregnancy. In addition, primary cultures of trophoblast from transgenic mice may be used to study the role of particular genes in placental cells. The protocol presented here is based on the description by Thordarson et al.1, in which a percoll gradient is used to obtain a relatively pure trophoblast cell population from isolated mouse placentas. It is similar to the more widely used methods for human trophoblast cell isolation2-3. Purity may be assessed by immunocytochemical staining of the isolated cells for cytokeratin 74. Here, the isolated cells are then analyzed using a matrigel invasion assay to assess trophoblast invasiveness in vitro5-6. The invaded cells are analyzed by immunocytochemistry and stained for counting. PMID:22257865

  17. Early impact of social isolation and breast tumor progression in mice.

    PubMed

    Madden, Kelley S; Szpunar, Mercedes J; Brown, Edward B

    2013-03-01

    Evidence from cancer patients and animal models of cancer indicates that exposure to psychosocial stress can promote tumor growth and metastasis, but the pathways underlying stress-induced cancer pathogenesis are not fully understood. Social isolation has been shown to promote tumor progression. We examined the impact of social isolation on breast cancer pathogenesis in adult female severe combined immunodeficiency (SCID) mice using the human breast cancer cell line, MDA-MB-231, a high β-adrenergic receptor (AR) expressing line. When group-adapted mice were transferred into single housing (social isolation) one week prior to MB-231 tumor cell injection into a mammary fat pad (orthotopic), no alterations in tumor growth or metastasis were detected compared to group-housed mice. When social isolation was delayed until tumors were palpable, tumor growth was transiently increased in singly-housed mice. To determine if sympathetic nervous system activation was associated with increased tumor growth, spleen and tumor norepinephrine (NE) was measured after social isolation, in conjunction with tumor-promoting macrophage populations. Three days after transfer to single housing, spleen weight was transiently increased in tumor-bearing and non-tumor-bearing mice in conjunction with reduced splenic NE concentration and elevated CD11b+Gr-1+ macrophages. At day 10 after social isolation, no changes in spleen CD11b+ populations or NE were detected in singly-housed mice. In the tumors, social isolation increased CD11b+Gr-1+, CD11b+Gr-1-, and F4/80+ macrophage populations, with no change in tumor NE. The results indicate that a psychological stressor, social isolation, elicits dynamic but transient effects on macrophage populations that may facilitate tumor growth. The transiency of the changes in peripheral NE suggest that homeostatic mechanisms may mitigate the impact of social isolation over time. Studies are underway to define the neuroendocrine mechanisms underlying the tumor-promoting effects of social isolation, and to determine the contributions of increased tumor macrophages to tumor pathogenesis. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Ovarian cancer stem cells.

    PubMed

    Zeimet, A G; Reimer, D; Sopper, S; Boesch, M; Martowicz, A; Roessler, J; Wiedemair, A M; Rumpold, H; Untergasser, G; Concin, N; Hofstetter, G; Muller-Holzner, E; Fiegl, H; Marth, C; Wolf, D; Pesta, M; Hatina, J

    2012-01-01

    Because of its semi-solid character in dissemination and growth, advanced ovarian cancer with its hundreds of peritoneal tumor nodules and plaques appears to be an excellent in vivo model for studying the cancer stem cell hypothesis. The most important obstacle, however, is to adequately define and isolate these tumor-initiating cells endowed with the properties of anoikis-resistance and unlimited self-renewal. Until now, no universal single marker or marker constellation has been found to faithfully isolate (ovarian) cancer stem cells. As these multipotent cells are known to possess highly elaborated efflux systems for cytotoxic agents, these pump systems have been exploited to outline putative stem cells as a side-population (SP) via dye exclusion analysis. Furthermore, the cells in question have been isolated via flow cytometry on the basis of cell surface markers thought to be characteristic for stem cells.In the Vienna variant of the ovarian cancer cell line A2780 a proof-of-principle model with both a stable SP and a stable ALDH1A1+ cell population was established. Double staining clearly revealed that both cell fractions were not identical. Of note, A2780V cells were negative for expression of surface markers CD44 and CD117 (c-kit). When cultured on monolayers of healthy human mesothelial cells, green-fluorescence-protein (GFP)-transfected SP of A2780V exhibited spheroid-formation, whereas non-side-population (NSP) developed a spare monolayer growing over the healthy mesothelium. Furthermore, A2780V SP was found to be partially resistant to platinum. However, this resistance could not be explained by over-expression of the "excision repair cross-complementation group 1" (ERCC1) gene, which is essentially involved in the repair of platinated DNA damage. ERCC1 was, nonetheless, over-expressed in A2780V cells grown as spheres under stem cell-selective conditions as compared to adherent monolayers cultured under differentiating conditions. The same was true for the primary ovarian cancer cells B-57.In summary our investigations indicate that even in multi-passaged cancer cell lines hierarchic government of growth and differentiation is conserved and that the key cancer stem cell population may be composed of small overlapping cell fractions defined by various arbitrary markers.

  19. Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data.

    PubMed

    Mirshafiee, Vahid; Harley, Brendan A C; Kraft, Mary L

    2018-05-07

    Characterization of the heterogeneity within stem cell populations, which affects their differentiation potential, is necessary for the design of artificial cultures for stem cell expansion. In this study, we assessed whether self-organizing maps (SOMs) of single-cell time-of-flight secondary ion mass spectrometry (TOF-SIMS) data provide insight into the spectral, and thus the related functional heterogeneity between and within three hematopoietic cell populations. SOMs were created of TOF-SIMS data from individual hematopoietic stem and progenitor cells (HSPCs), lineage-committed common lymphoid progenitors (CLPs), and fully differentiated B cells that had been isolated from murine bone marrow via conventional flow cytometry. The positions of these cells on the SOMs and the spectral variation between adjacent map units, shown on the corresponding unified distance matrix (U-matrix), indicated the CLPs exhibited the highest intrapopulation spectral variation, regardless of the age of the donor mice. SOMs of HSPCs, CLPs, and B cells isolated from young and old mice using the same surface antigen profiles revealed the HSPCs exhibited the most age-related spectral variation, whereas B cells exhibited the least. These results demonstrate that SOMs of single-cell spectra enable characterizing the heterogeneity between and within cell populations that lie along distinct differentiation pathways.

  20. Isolation, Characterization, and Purification of Macrophages from Tissues Affected by Obesity-related Inflammation.

    PubMed

    Allen, Joselyn N; Dey, Adwitia; Nissly, Ruth; Fraser, James; Yu, Shan; Balandaram, Gayathri; Peters, Jeffrey M; Hankey-Giblin, Pamela A

    2017-04-03

    Obesity promotes a chronic inflammatory state that is largely mediated by tissue-resident macrophages as well as monocyte-derived macrophages. Diet-induced obesity (DIO) is a valuable model in studying the role of macrophage heterogeneity; however, adequate macrophage isolations are difficult to acquire from inflamed tissues. In this protocol, we outline the isolation steps and necessary troubleshooting guidelines derived from our studies for obtaining a suitable population of tissue-resident macrophages from mice following 18 weeks of high-fat (HFD) or high-fat/high-cholesterol (HFHCD) diet intervention. This protocol focuses on three hallmark tissues studied in obesity and atherosclerosis including the liver, white adipose tissues (WAT), and the aorta. We highlight how dualistic usage of flow cytometry can achieve a new dimension of isolation and characterization of tissue-resident macrophages. A fundamental section of this protocol addresses the intricacies underlying tissue-specific enzymatic digestions and macrophage isolation, and subsequent cell-surface antibody staining for flow cytometric analysis. This protocol addresses existing complexities underlying fluorescent-activated cell sorting (FACS) and presents clarifications to these complexities so as to obtain broad range characterization from adequately sorted cell populations. Alternate enrichment methods are included for sorting cells, such as the dense liver, allowing for flexibility and time management when working with FACS. In brief, this protocol aids the researcher to evaluate macrophage heterogeneity from a multitude of inflamed tissues in a given study and provides insightful troubleshooting tips that have been successful for favorable cellular isolation and characterization of immune cells in DIO-mediated inflammation.

  1. A simple modification of the separation method reduces heterogeneity of adipose-derived stem cells.

    PubMed

    Griesche, Nadine; Luttmann, Werner; Luttmann, Arlette; Stammermann, Thekla; Geiger, Helmut; Baer, Patrick C

    2010-01-01

    High hopes are put into the use of mesenchymal stem cells (MSCs) in various approaches for tissue engineering and regenerative medicine. MSCs are derived from different tissues with only small differences in their phenotype or their differentiation potential, but higher differences in the cell yield. Since fat is easily accessible and contains a high amount of MSCs to be isolated, adipose-derived stem cells (ASCs) are very promising for clinical approaches. ASCs are not a completely homogeneous cell population. Our study was initiated to explore an easy and convenient method to reduce heterogeneity. We tested different isolation methods: (1) the standard isolation method for ASCs based on plastic attachment, (2) the standard method with an initial washing step after 60 min of adherence and (3) immunomagnetic isolation by 4 typical markers (CD49a, CD90, CD105 and CD271). Cells isolated by these methods were evaluated using quantitative PCR and flow cytometry as well as by their differentiation potential. Washing led to a significantly lower expression of desmin, smA and six2, and a higher expression of the stem cell markers nestin, oct-4 and sall-1, compared to standard isolated cells, while the immunomagnetically isolated cells showed no significant changes. All cells independent of the isolation method could be induced to differentiate into adipocytes and osteoblasts. Our study demonstrates that a simple washing step reduces heterogeneity of cultured ASCs according to PCR analysis, whereas the immunomagnetic isolation only showed minor advantages compared to the standard method, but the disadvantage of significantly lower cell yields in the primary isolates. Copyright 2010 S. Karger AG, Basel.

  2. Isolation of Small SSEA-4-Positive Putative Stem Cells from the Ovarian Surface Epithelium of Adult Human Ovaries by Two Different Methods

    PubMed Central

    Virant-Klun, Irma; Skutella, Thomas; Hren, Matjaz; Gruden, Kristina; Cvjeticanin, Branko; Vogler, Andrej; Sinkovec, Jasna

    2013-01-01

    The adult ovarian surface epithelium has already been proposed as a source of stem cells and germinal cells in the literature, therefore it has been termed the “germinal epithelium”. At present more studies have confirmed the presence of stem cells expressing markers of pluripotency in adult mammalian ovaries, including humans. The aim of this study was to isolate a population of stem cells, based on the expression of pluripotency-related stage-specific embryonic antigen-4 (SSEA-4) from adult human ovarian surface epithelium by two different methods: magnetic-activated cell sorting and fluorescence-activated cell sorting. Both methods made it possible to isolate a similar, relatively homogenous population of small, SSEA-4-positive cells with diameters of up to 4 μm from the suspension of cells retrieved by brushing of the ovarian cortex biopsies in reproductive-age and postmenopausal women and in women with premature ovarian failure. The immunocytochemistry and genetic analyses revealed that these small cells—putative stem cells—expressed some primordial germ cell and pluripotency-related markers and might be related to the in vitro development of oocyte-like cells expressing some oocyte-specific transcription factors in the presence of donated follicular fluid with substances important for oocyte growth and development. The stemness of these cells needs to be further researched. PMID:23509763

  3. Tumor-Initiating Cells and Methods of Use

    NASA Technical Reports Server (NTRS)

    Hlatky, Lynn (Inventor)

    2014-01-01

    Provided herein are an isolated or enriched population of tumor initiating cells derived from normal cells, cells susceptible to neoplasia, or neoplastic cells. Methods of use of the cells for screening for anti-hyperproliferative agents, and use of the cells for animal models of hyperproliferative disorders including metastatic cancer, diagnostic methods, and therapeutic methods are provided.

  4. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells.

    PubMed

    Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K

    2011-04-26

    Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population.

  5. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells

    PubMed Central

    2011-01-01

    Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population. PMID:21521521

  6. Side population cells of pancreatic cancer show characteristics of cancer stem cells responsible for resistance and metastasis.

    PubMed

    Niess, Hanno; Camaj, Peter; Renner, Andrea; Ischenko, Ivan; Zhao, Yue; Krebs, Stefan; Mysliwietz, Josef; Jäckel, Carsten; Nelson, Peter J; Blum, Helmut; Jauch, Karl-Walter; Ellwart, Joachim W; Bruns, Christiane J

    2015-06-01

    Cancer stem cells (CSCs) have been proposed to underlie the initiation and maintenance of tumor growth and the development of chemoresistance in solid tumors. The identification and role of these important cells in pancreatic cancer remains controversial. Here, we isolate side population (SP) cells from the highly aggressive and metastatic human pancreatic cancer cell line L3.6pl and evaluate their potential role as models for CSCs. SP cells were isolated following Hoechst 33342 staining of L3.6pl cells. SP, non-SP, and unsorted L3.6pl cells were orthotopically xenografted into the pancreas of nude mice and tumor growth observed. RNA was analyzed by whole genome array and pathway mapping was performed. Drug resistant variants of L3.6pl were developed and examined for SP proportions and evaluated for surface expression of known CSC markers. A distinct SP with the ability to self-renew and differentiate into non-SP cells was isolated from L3.6pl (0.9 % ± 0.22). SP cells showed highly tumorigenic and metastatic characteristics after orthotopic injection. Transcriptomic analysis identified modulation of gene networks linked to tumorigenesis, differentiation, and metastasization in SP cells relative to non-SP cells. Wnt, NOTCH, and EGFR signaling pathways associated with tumor stem cells were altered in SP cells. When cultured with increasing concentrations of gemcitabine, the proportion of SP cells, ABCG2(+), and CD24(+) cells were significantly enriched, whereas 5-fluorouracil (5-FU) treatment lowered the percentage of SP cells. SP cells were distinct from cells positive for previously postulated pancreatic CSC markers. The Hoechst-induced side population in L3.6pl cells comprises a subset of tumor cells displaying aggressive growth and metastasization, increased gemcitabine-, but not 5-FU resistance. The cells may act as a partial model for CSC biology.

  7. Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS− cell populations

    PubMed Central

    El-Sayed, Karim M Fawzy; Paris, Sebastian; Graetz, Christian; Kassem, Neemat; Mekhemar, Mohamed; Ungefroren, Hendrick; Fändrich, Fred; Dörfer, Christof

    2015-01-01

    Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study's aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS+) and STRO-1-negative (MACS−) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS+ and MACS− cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS+ and MACS− cell fractions showed plastic adherence. MACS+ cells, in contrast to MACS− cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P<0.01). More than 95% of MACS+ cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS− cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95% of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS+ cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS− cells demonstrated slight osteogenic potential. Unstimulated MACS+ cells showed significantly higher expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS− cells demonstrated higher expression of osteonectin (P<0.05; Mann–Whitney). The present study is the first to compare gingival MACS+ and MACS− cell populations demonstrating that MACS+ cells, in contrast to MACS− cells, harbour stem/progenitor cell characteristics. This study also validates the effectiveness of the STRO-1/MACS+ technique for the isolation of gingival stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS+ cells are a unique renewable source of multipotent stem/progenitor cells. PMID:25257881

  8. Role of adrenal hormones and prostaglandins in the control of mouse thymocytes lysis.

    PubMed

    Durant, S; Seillan, C; Duval, D; Homo-Delarche, F

    1984-01-01

    The cytolytic actions of glucocorticoids and of agents increasing cyclic AMP were studied in vitro in thymocyte suspensions isolated from adrenalectomized or hydrocortisone-treated mice. Although considered as corticoresistant cells, the thymocytes isolated from hydrocortisone-treated mice were lysed to the same extent although more slowly in vitro by dexamethasone than whole thymocyte populations (i.e. corticosensitive cells). Moreover, these two cell populations were shown to contain comparable amounts of glucocorticoid receptors and to be almost equally sensitive to the metabolic effects of glucocorticoids when measured by inhibition of RNA and DNA synthesis. Studies performed with corticosensitive cells showed that prostaglandin E2, isoproterenol and dibutyrilcyclic AMP were also able to induce cell lysis and that, isoproterenol and dexamethasone exerted additive cytolytic action in vitro. In vivo experiments showed also an additive effect of steroids and isoproterenol on thymus atrophy. In contrast, cells isolated from hydrocortisone-treated animals were not sensitive to the cytotoxic action of prostaglandin E2, isoproterenol and dibutyril cyclic AMP. This difference between the two populations was not associated with any difference in the responsiveness of adenylate cyclase as determined following isoproterenol-induced accumulation of cyclic AMP. The cytolytic action of dexamethasone but also that of prostaglandin E2 and isoproterenol, could be blocked in the presence of cycloheximide, an inhibitor of protein synthesis, thus suggesting that glucocorticoids and agents increasing cyclic AMP control the synthesis of some proteins involved in the triggering of cell lysis. Among the hypotheses proposed to explain the differences between in vitro and in vivo sensitivity of lymphoid cell to glucocorticoids, it was suggested that the drug may in vivo indirectly control the viability or the proliferation of thymocytes through the release of other mediators. We have shown that in vivo injection of hydrocortisone induces an accumulation of fatty acids in the whole thymus gland but not in the isolated thymocytes. Since exogenous fatty acids exert cytolytic actions on isolated thymocytes, we suggest that glucocorticoids may exert in vivo an indirect toxic action by promoting the release of fatty acids from adipose tissue or other sources.

  9. Mesenchymal Stem Cells for Vascular Target Discovery in Breast Cancer-Associated Angiogenesis

    DTIC Science & Technology

    2004-09-01

    Matrigel plug and sorted by flow cytometry . Sorting of these retrieved cells based on co-expression of the GFP marker and cell- surface endothelial...express the green fluorescent protein (GFP) and clonal MSC populations can be isolated and phenotypically and genotypically analyzed by flow cytometry ...monoclonal populations of these GFP+ murine MSCs and conducted flow cytometry analysis to determine their phenotype. Specifically, we determined if

  10. Affinity Versus Label-Free Isolation of Circulating Tumor Cells: Who Wins?

    PubMed

    Murlidhar, Vasudha; Rivera-Báez, Lianette; Nagrath, Sunitha

    2016-09-01

    The study of circulating tumor cells (CTCs) has been made possible by many technological advances in their isolation. Their isolation has seen many fronts, but each technology brings forth a new set of challenges to overcome. Microfluidics has been a key player in the capture of CTCs and their downstream analysis, with the aim of shedding light into their clinical application in cancer and metastasis. Researchers have taken diverging paths to isolate such cells from blood, ranging from affinity-based isolation targeting surface antigens expressed on CTCs, to label-free isolation taking advantage of the size differences between CTCs and other blood cells. For both major groups, many microfluidic technologies have reported high sensitivity and specificity for capturing CTCs. However, the question remains as to the superiority among these two isolation techniques, specifically to identify different CTC populations. This review highlights the key aspects of affinity and label-free microfluidic CTC technologies, and discusses which of these two would be the highest benefactor for the study of CTCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of cell surface characteristics and manure-application practices on Escherichia coli populations in the subsurface: A three-farm study

    NASA Astrophysics Data System (ADS)

    Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.

    2010-12-01

    The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears to minimize environmental stresses, like UV radiation, desiccation and temperature fluctuation, typically found on the soil surface. Our findings indicate that E. coli strains above the surface are largely diverse, until they enter subsurface environments where specific extracellular characteristics are likely advantageous for survival and/or transport.

  12. Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources

    DTIC Science & Technology

    2013-10-01

    stem cell lines have been successfully isolated from adults, in this proposal we aim to isolate and characterize GSC populations from pediatric patients. In the past two years we have successfully derived and cultured eight patient-derived pediatric glioma stem cell lines. In the past year we have continued molecular and phenotypic characterization of these lines. This characterization included analysis of gene expression and patient-specific gene mutations, and also proof-of-concept shRNA screens. In addition we have begun to identify candidate

  13. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.

    PubMed

    Huang, Song-Bin; Wu, Min-Hsien; Lin, Yen-Heng; Hsieh, Chia-Hsun; Yang, Chih-Liang; Lin, Hung-Chih; Tseng, Ching-Ping; Lee, Gwo-Bin

    2013-04-07

    Negative selection-based circulating tumor cell (CTC) isolation is believed valuable to harvest more native, and in particular all possible CTCs without biases relevant to the properties of surface antigens on the CTCs. Under such a cell isolation strategy, however, the CTC purity is normally compromised. To address this issue, this study reports the integration of optically-induced-dielectrophoretic (ODEP) force-based cell manipulation, and a laminar flow regime in a microfluidic platform for the isolation of untreated, and highly pure CTCs after conventional negative selection-based CTC isolation. In the design, six sections of moving light-bar screens were continuously and simultaneously exerted in two parallel laminar flows to concurrently separate the cancer cells from the leukocytes based on their size difference and electric properties. The separated cell populations were further partitioned, delivered, and collected through the two flows. With this approach, the cancer cells can be isolated in a continuous, effective, and efficient manner. In this study, the operating conditions of ODEP for the manipulation of prostate cancer (PC-3) and human oral cancer (OEC-M1) cells, and leukocytes with minor cell aggregation phenomenon were first characterized. Moreover, performances of the proposed method for the isolation of cancer cells were experimentally investigated. The results showed that the presented CTC isolation scheme was able to isolate PC-3 cells or OEC-M1 cells from a leukocyte background with high recovery rate (PC-3 cells: 76-83%, OEC-M1 cells: 61-68%), and high purity (PC-3 cells: 74-82%, OEC-M1 cells: 64-66%) (set flow rate: 0.1 μl min(-1) and sample volume: 1 μl). The latter is beyond what is currently possible in the conventional CTC isolations. Moreover, the viability of isolated cancer cells was evaluated to be as high as 94 ± 2%, and 95 ± 3% for the PC-3, and OEC-M1 cells, respectively. Furthermore, the isolated cancer cells were also shown to preserve their proliferative capability. As a whole, this study has presented an ODEP-based microfluidic platform that is capable of isolating CTCs in a continuous, label-free, cell-friendly, and particularly highly pure manner. All these traits are found particularly meaningful for exploiting the harvested CTCs for the subsequent cell-based, or biochemical assays.

  14. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy.

    PubMed

    Baldwin, Kismet; Urbinati, Fabrizia; Romero, Zulema; Campo-Fernandez, Beatriz; Kaufman, Michael L; Cooper, Aaron R; Masiuk, Katelyn; Hollis, Roger P; Kohn, Donald B

    2015-05-01

    Autologous hematopoietic stem cell (HSC) gene therapy for sickle cell disease has the potential to treat this illness without the major immunological complications associated with allogeneic transplantation. However, transduction efficiency by β-globin lentiviral vectors using CD34-enriched cell populations is suboptimal and large vector production batches may be needed for clinical trials. Transducing a cell population more enriched for HSC could greatly reduce vector needs and, potentially, increase transduction efficiency. CD34(+) /CD38(-) cells, comprising ∼1%-3% of all CD34(+) cells, were isolated from healthy cord blood CD34(+) cells by fluorescence-activated cell sorting and transduced with a lentiviral vector expressing an antisickling form of beta-globin (CCL-β(AS3) -FB). Isolated CD34(+) /CD38(-) cells were able to generate progeny over an extended period of long-term culture (LTC) compared to the CD34(+) cells and required up to 40-fold less vector for transduction compared to bulk CD34(+) preparations containing an equivalent number of CD34(+) /CD38(-) cells. Transduction of isolated CD34(+) /CD38(-) cells was comparable to CD34(+) cells measured by quantitative PCR at day 14 with reduced vector needs, and average vector copy/cell remained higher over time for LTC initiated from CD34(+) /38(-) cells. Following in vitro erythroid differentiation, HBBAS3 mRNA expression was similar in cultures derived from CD34(+) /CD38(-) cells or unfractionated CD34(+) cells. In vivo studies showed equivalent engraftment of transduced CD34(+) /CD38(-) cells when transplanted in competition with 100-fold more CD34(+) /CD38(+) cells. This work provides initial evidence for the beneficial effects from isolating human CD34(+) /CD38(-) cells to use significantly less vector and potentially improve transduction for HSC gene therapy. © 2015 AlphaMed Press.

  15. The role of cell size in density gradient electrophoretic separation of mouse leukemia cells according to position in the cell cycle

    NASA Technical Reports Server (NTRS)

    Plank, L. D.; Kunze, M. E.; Todd, P. W.

    1985-01-01

    Cultured mouse leukemia cells line L5178Y were subjected to upward electrophoresis in a density gradient and the slower migrating cell populations were enriched in G2 cells. It is indicated that this cell line does not change electrophoretic mobility through the cell cycle. The possibility that increased sedimentation downward on the part of the larger G2 cells caused this separation was explored. Two different cell populations were investigated. The log phase population was found to migrate upward faster than the G2 population, and a similar difference between their velocities and calculated on the basis of a 1 um diameter difference between the two cell populations. The G2 and G1 enriched populations were isolated by Ficoll density gradient sedimentation. The bottom fraction was enriched in G2 cells and the top fraction was enriched with G1 cells, especially when compared with starting materials. The electrophoretic mobilities of these two cell populations did not differ significantly from one another. Cell diameter dependent migration curves were calculated and were found to be different. Families of migration curves that differ when cell size is considered as a parameter are predicted.

  16. Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives.

    PubMed

    Cima, Igor; Wen Yee, Chay; Iliescu, Florina S; Phyo, Wai Min; Lim, Kiat Hon; Iliescu, Ciprian; Tan, Min Han

    2013-01-01

    This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.

  17. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria-Martinez, Albert; Universitat de Barcelona, Barcelona; Barquinero, Jordi

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture andmore » sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.« less

  18. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.

    PubMed

    Santamaria-Martínez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinós, Tomàs; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventós, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45(-), CD81(+) and Sca-1(+)). We also demonstrated that SP clonal cells secrete transforming growth factor beta1 (TGF-beta1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-beta1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  19. Efficient Isolation Protocol for B and T Lymphocytes from Human Palatine Tonsils

    PubMed Central

    Assadian, Farzaneh; Sandström, Karl; Laurell, Göran; Svensson, Catharina; Akusjärvi, Göran; Punga, Tanel

    2015-01-01

    Tonsils form a part of the immune system providing the first line of defense against inhaled pathogens. Usually the term “tonsils” refers to the palatine tonsils situated at the lateral walls of the oral part of the pharynx. Surgically removed palatine tonsils provide a convenient accessible source of B and T lymphocytes to study the interplay between foreign pathogens and the host immune system. This video protocol describes the dissection and processing of surgically removed human palatine tonsils, followed by the isolation of the individual B and T cell populations from the same tissue sample. We present a method, which efficiently separates tonsillar B and T lymphocytes using an antibody-dependent affinity protocol. Further, we use the method to demonstrate that human adenovirus infects specifically the tonsillar T cell fraction. The established protocol is generally applicable to efficiently and rapidly isolate tonsillar B and T cell populations to study the role of different types of pathogens in tonsillar immune responses. PMID:26650582

  20. CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed. PMID:23437366

  1. Characterization and Separation of Cancer Cells with a Wicking Fiber Device.

    PubMed

    Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L

    2017-12-01

    Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.

  2. A Combined Negative and Positive Enrichment Assay for Cancer Cells Isolation and Purification.

    PubMed

    Cheng, Boran; Wang, Shuyi; Chen, Yuanyuan; Fang, Yuan; Chen, Fangfang; Wang, Zhenmeng; Xiong, Bin

    2016-02-01

    Cancer cells that detach from solid tumor and circulate in the peripheral blood (CTCs) have been considered as a new "biomarker" for the detection and characterization of cancers. However, isolating and detecting cancer cells from the cancer patient peripheral blood have been technically challenging, owing to the small sub-population of CTCs (a few to hundreds per milliliter). Here we demonstrate a simple and efficient cancer cells isolation and purification method. A biocompatible and surface roughness controllable TiO2 nanofilm was deposited onto a glass slide to achieve enhanced topographic interactions with nanoscale cellular surface components, again, anti-CD45 (a leukocyte common antigen) and anti-EpCAM (epithelial cell adhesion molecule) were then coated onto the surface of the nanofilm for advance depletion of white blood cells (WBCs) and specific isolation of CTCs, respectively. Comparing to the conventional positive enrichment technology, this method exhibited excellent biocompatibility and equally high capture efficiency. Moreover, the maximum number of background cells (WBCs) was removed, and viable and functional cancer cells were isolated with high purity. Utilizing the horizontally packed TiO2 nanofilm improved pure CTC-capture through combining cell-capture-agent and cancer cell-preferred nanoscale topography, which represented a new method capable of obtaining biologically functional CTCs for subsequent molecular analysis. © The Author(s) 2014.

  3. Kupffer Cell Isolation for Nanoparticle Toxicity Testing

    PubMed Central

    Bourgognon, Maxime; Klippstein, Rebecca; Al-Jamal, Khuloud T.

    2015-01-01

    The large majority of in vitro nanotoxicological studies have used immortalized cell lines for their practicality. However, results from nanoparticle toxicity testing in immortalized cell lines or primary cells have shown discrepancies, highlighting the need to extend the use of primary cells for in vitro assays. This protocol describes the isolation of mouse liver macrophages, named Kupffer cells, and their use to study nanoparticle toxicity. Kupffer cells are the most abundant macrophage population in the body and constitute part of the reticulo-endothelial system (RES), responsible for the capture of circulating nanoparticles. The Kupffer cell isolation method reported here is based on a 2-step perfusion method followed by purification on density gradient. The method, based on collagenase digestion and density centrifugation, is adapted from the original protocol developed by Smedsrød et al. designed for rat liver cell isolation and provides high yield (up to 14 x 106 cells per mouse) and high purity (>95%) of Kupffer cells. This isolation method does not require sophisticated or expensive equipment and therefore represents an ideal compromise between complexity and cell yield. The use of heavier mice (35-45 g) improves the yield of the isolation method but also facilitates remarkably the procedure of portal vein cannulation. The toxicity of functionalized carbon nanotubes f-CNTs was measured in this model by the modified LDH assay. This method assesses cell viability by measuring the lack of structural integrity of Kupffer cell membrane after incubation with f-CNTs. Toxicity induced by f-CNTs can be measured consistently using this assay, highlighting that isolated Kupffer cells are useful for nanoparticle toxicity testing. The overall understanding of nanotoxicology could benefit from such models, making the nanoparticle selection for clinical translation more efficient. PMID:26327223

  4. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure.

    PubMed

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; Schröder, Rasmus R

    2015-08-01

    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  5. Sequence variation of functional HTLV-II tax alleles among isolates from an endemic population: lack of evidence for oncogenic determinant in tax.

    PubMed

    Hjelle, B; Chaney, R

    1992-02-01

    Human T-cell leukemia-lymphoma virus type II (HTLV-II) has been isolated from patients with hairy cell leukemia (HCL). We previously described a population with longstanding endemic HTLV-II infection, and showed that there is no increased risk for HCL in the affected groups. We thus have direct evidence that the endemic form(s) of HTLV-II cause HCL infrequently, if at all. By comparison, there is reason to suspect that the viruses isolated from patients with HCL had an etiologic role in the disease in those patients. One way to reconcile these conflicting observations is to consider that isolates of HTLV-II might differ in oncogenic potential. To determine whether the structure of the putative oncogenic determinant of HTLV-II, tax2, might differ in the new isolates compared to the tax of the prototype HCL isolate, MO, four new functional tax cDNAs were cloned from new isolates. Sequence analysis showed only minor (0.9-2.0%) amino acid variation compared to the published sequence of MO tax2. Some codons were consistently different from published sequences of the MO virus, but in most cases, such variations were also found in each of two tax2 clones we isolated from the MO T-cell line. These variations rendered the new clones more similar to the tax1 of the pathogenic virus HTLV-I. Thus we find no evidence that pathologic determinants of HTLV-II can be assigned to the tax gene.

  6. The isolation and in vitro expansion of hepatic Sca-1 progenitor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Elizabeth, E-mail: Elizabeth.Clayton@ed.ac.uk; Forbes, Stuart J.

    2009-04-17

    The intra-hepatic population of liver progenitor cells expands during liver injury when hepatocyte proliferation is inhibited. These cells can be purified by density gradient centrifugation and cultured. Separated by size only this population contains small cells of hematopoietic, epithelial and endothelial lineages and is thought to contain liver stem cells. The identity of liver stem cells remains unknown although there is some evidence that tissue Sca1{sup +} CD45{sup -} cells display progenitor cell characteristics. We identified both intra-hepatic and gall bladder Sca1{sup +} cells following liver injury and expanded ex vivo Sca1 cells as part of heterogenous cell culture ormore » as a purified population. We found significant difference between the proliferation of Sca-1 cells when plated on laminin or collagen I while proliferation of heterogenous population was not affected by the extracellular matrix indicating the necessity for culture of Sca1{sup +} cells with laminin matrix or laminin producing cells in long term liver progenitor cell cultures.« less

  7. The morphology, proliferation rate, and population doubling time factor of adipose-derived mesenchymal stem cells cultured on to non-aqueous SiO2, TiO2, and hybrid sol-gel-derived oxide coatings.

    PubMed

    Marycz, Krzysztof; Krzak-Roś, Justyna; Donesz-Sikorska, Anna; Śmieszek, Agnieszka

    2014-11-01

    In recent years, much attention has been paid to the development of tissue engineering and regenerative medicine, especially when stem cells of various sources are concerned. In addition to the interest in mesenchymal stem cells isolated from bone marrow, recently more consideration has been given to stem cells isolated from adipose tissue (AdMSCs), due to their less invasive method of collection as well as their ease of isolation and culture. However, the development of regenerative medicine requires both the application of biocompatible material and the stem cells to accelerate the regeneration. In this study, we investigated the morphology, proliferation rate index (PRi), and population doubling time factor of adipose-derived mesenchymal stem cells cultured on non-aqueous sol-gel-derived SiO2, TiO2, and SiO2/TiO2 oxide coatings. The results indicated an increase in PRi of AdMSCs when cultured on to titanium dioxide, suggesting its high attractiveness for AdMSCs. In addition, the proper morphology and the shortest doubling time of AdMSCs were observed when cultured on titanium dioxide coating. © 2014 Wiley Periodicals, Inc.

  8. EGFR-Based Immunoisolation as a Recovery Target for Low-EpCAM CTC Subpopulation

    PubMed Central

    Vila, Ana; Abal, Miguel; Muinelo-Romay, Laura; Rodriguez-Abreu, Carlos; Rivas, José; López-López, Rafael; Costa, Clotilde

    2016-01-01

    Circulating tumour cells (CTCs) play a key role in the metastasis process, as they are responsible for micrometastasis and are a valuable tool for monitoring patients in real-time. Moreover, efforts to develop new strategies for CTCs isolation and characterisation, and the translation of CTCs into clinical practice needs to overcome the limitation associated with the sole use of Epithelial Cell Adhesion Molecule (EpCAM) expression to purify this tumour cell subpopulation. CTCs are rare events in the blood of patients and are believed to represent the epithelial population from a primary tumour of epithelial origin, thus EpCAM immunoisolation is considered an appropriate strategy. The controversy stems from the impact that the more aggressive mesenchymal tumour phenotypes might have on the whole CTC population. In this work, we first characterised a panel of cell lines representative of tumour heterogeneity, confirming the existence of tumour cell subpopulations with restricted epithelial features and supporting the limitations of EpCAM-based technologies. We next developed customised polystyrene magnetic beads coated with antibodies to efficiently isolate the phenotypically different subpopulations of CTCs from the peripheral blood mononuclear cells (PBMCs) of patients with metastatic cancer. Besides EpCAM, we propose Epidermal Growth Factor Receptor (EGFR) as an additional isolation marker for efficient CTCs detection. PMID:27711186

  9. Skeletal stem cell isolation: A review on the state-of-the-art microfluidic label-free sorting techniques.

    PubMed

    Xavier, Miguel; Oreffo, Richard O C; Morgan, Hywel

    2016-01-01

    Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Avoidance of Maternal Cell Contamination and Overgrowth in Isolating Fetal Chorionic Villi Mesenchymal Stem Cells from Human Term Placenta

    PubMed Central

    Sardesai, Varda S.; Shafiee, Abbas; Fisk, Nicholas M.

    2017-01-01

    Abstract Human placenta is rich in mesenchymal stem/stromal cells (MSC), with their origin widely presumed fetal. Cultured placental MSCs are confounded by a high frequency of maternal cell contamination. Our recent systematic review concluded that only a small minority of placental MSC publications report fetal/maternal origin, and failed to discern a specific methodology for isolation of fetal MSC from term villi. We determined isolation conditions to yield fetal and separately maternal MSC during ex vivo expansion from human term placenta. MSCs were isolated via a range of methods in combination; selection from various chorionic regions, different commercial media, mononuclear cell digest and/or explant culture. Fetal and maternal cell identities were quantitated in gender‐discordant pregnancies by XY chromosome fluorescence in situ hybridization. We first demonstrated reproducible maternal cell contamination in MSC cultures from all chorionic anatomical locations tested. Cultures in standard media rapidly became composed entirely of maternal cells despite isolation from fetal villi. To isolate pure fetal cells, we validated a novel isolation procedure comprising focal dissection from the cotyledonary core, collagenase/dispase digestion and explant culture in endothelial growth media that selected, and provided a proliferative environment, for fetal MSC. Comparison of MSC populations within the same placenta confirmed fetal to be smaller, more osteogenic and proliferative than maternal MSC. We conclude that in standard media, fetal chorionic villi‐derived MSC (CV‐MSC) do not grow readily, whereas maternal MSC proliferate to result in maternal overgrowth during culture. Instead, fetal CV‐MSCs require isolation under specific conditions, which has implications for clinical trials using placental MSC. Stem Cells Translational Medicine 2017;6:1070–1084 PMID:28205414

  11. Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mori, Luca; Bellini, Alberto; Stacey, Martin A.

    2005-03-10

    Myofibroblasts play a key role in wound closure but their origin is poorly understood. To investigate whether fibrocytes contribute to myofibroblast population, we examined the phenotype of fibrocytes and myofibroblasts present in the wounded skin of BALB/c mice. During wound healing, there was a marked increase in the number of cells expressing the myofibroblast marker {alpha}-smooth muscle actin in the granulation tissue. Between 4 and 7 days post-wounding, more than 50% of these cells also expressed the CD13 antigen. CD13{sup +}/collagen I{sup +} fibrocytes could be isolated at an early stage of the healing process from digested fragments of woundedmore » tissue by fluorescence-activated cell sorting. Like authentic fibrocytes, these cells were also CD45{sup +}/CD34{sup +}/CD14{sup -}. Between 4 and 7 days post-injury, 61.4% of the isolated fibrocytes were found to express {alpha}-smooth muscle actin gene and protein. We repeated similar experiments in female mice that had received a male whole bone marrow transplant after total body irradiation. By in situ hybridization, we identified the Y chromosome in the nuclei of the majority of fibrocytes isolated from the wounded tissue of these animals. Our data indicate that circulating fibrocytes contribute to the myofibroblast population in the wounded skin and that they originate from the bone marrow.« less

  12. Cloning of Plasmodium falciparum by single-cell sorting

    PubMed Central

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  13. Preparation of isolated nuclei from K 562 haemopoietic cell line for high resolution scanning electron microscopy.

    PubMed

    Reipert, S; Reipert, B M; Allen, T D

    1994-09-01

    The aim of the work is to visualise nuclear pore complexes (NPCs) in mammalian cells by high resolution scanning electron microscopy. A detergent-free isolation protocol was employed to obtain clean nuclei from the haemopoietic cell line K 562. Nuclear isolation was performed by mechanical homogenisation under hypotonic conditions followed by purification of the nuclear fraction. The isolated nuclei were attached to silicon chips, fixed, critical point dried, and sputter coated with a thin film (3-4 nm) of tantalum. Analysis of the nuclear surface by scanning electron microscopy (SEM) revealed a strong sensitivity of the outer nuclear membrane (ONM) to disruption during the isolation procedure. A significant reduction of the characteristic pattern of damage to the ONM was achieved by means of an isopicnic centrifugation on an isoosmolar balanced Percoll gradient. Analysis of the population of isolated nuclei by flow cytometry showed no signs of cell cycle specific losses of nuclei during isolation. The SEM investigations of the morphology of the nuclear envelope (NE) and of substructural details of NPCs and polyribosomes were performed using an in-lens field emission scanning electron microscope.

  14. Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo.

    PubMed

    Cottle, Beverley J; Lewis, Fiona C; Shone, Victoria; Ellison-Hughes, Georgina M

    2017-07-04

    The development of cellular therapies to treat muscle wastage with disease or age is paramount. Resident muscle satellite cells are not currently regarded as a viable cell source due to their limited migration and growth capability ex vivo. This study investigated the potential of muscle-derived PW1 + /Pax7 - interstitial progenitor cells (PICs) as a source of tissue-specific stem/progenitor cells with stem cell properties and multipotency. Sca-1 + /PW1 + PICs were identified on tissue sections from hind limb muscle of 21-day-old mice, isolated by magnetic-activated cell sorting (MACS) technology and their phenotype and characteristics assessed over time in culture. Green fluorescent protein (GFP)-labelled PICs were used to determine multipotency in vivo in a tumour formation assay. Isolated PICs expressed markers of pluripotency (Oct3/4, Sox2, and Nanog), were clonogenic, and self-renewing with >60 population doublings, and a population doubling time of 15.8 ± 2.9 h. PICs demonstrated an ability to generate both striated and smooth muscle, whilst also displaying the potential to differentiate into cell types of the three germ layers both in vitro and in vivo. Moreover, PICs did not form tumours in vivo. These findings open new avenues for a variety of solid tissue engineering and regeneration approaches, utilising a single multipotent stem cell type isolated from an easily accessible source such as skeletal muscle.

  15. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression.

    PubMed

    Höglund Åberg, Carola; Antonoglou, Georgios; Haubek, Dorte; Kwamin, Francis; Claesson, Rolf; Johansson, Anders

    2013-01-01

    The cytolethal distending toxin (Cdt) is a highly conserved exotoxin that are produced by a number of Gram negative bacteria, including Aggregatibacter actinomycetemcomitans, and affects mammalian cells by inhibiting cell division and causing apoptosis. A complete cdt-operon is present in the majority of A. actinomycetemcomitans, but the proportion of isolates that lack cdt-encoding genes (A, B and C) varies according to the population studied. The objectives of this study were to examine serotype, Cdt-genotype, and Cdt-activity in isolates of A. actinomycetemcomitans collected from an adolescent West African population and to examine the association between the carrier status of A. actinomycetemcomitans and the progression of attachment loss (AL). A total of 249 A. actinomycetemcomitans isolates from 200 Ghanaian adolescents were examined for serotype and cdt-genotype by PCR. The activity of the Cdt-toxin was examined by DNA-staining of exposed cultured cells and documented with flow cytometry. The periodontal status of the participants was examined at baseline and at a two-year follow-up. Presence of all three cdt-encoding genes was detected in 79% of the examined A. actinomycetemcomitans isolates. All these isolates showed a substantial Cdt-activity. The two different cdt-genotypes (with and without presence of all three cdt-encoding genes) showed a serotype-dependent distribution pattern. Presence of A. actinomycetemcomitans was significantly associated with progression of AL (OR = 5.126; 95% CI = [2.994-8.779], p<0.001). A. actinomycetemcomitans isolated from the Ghanaian adolescents showed a distribution of serotype and cdt-genotype in line with results based on other previously studied populations. Presence of A. actinomycetemcomitans was significantly associated with disease progression, in particular the b serotype, whereas the association with disease progression was not particularly related to cdt-genotype, and Cdt-activity.

  16. A Rapid Method of Isolating Neoantigen-specific T Cell Receptor Sequences | NCI Technology Transfer Center | TTC

    Cancer.gov

    Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.

  17. A high-throughput screen for single gene activities: isolation of apoptosis inducers.

    PubMed

    Albayrak, Timur; Grimm, Stefan

    2003-05-16

    We describe a novel genetic screen that is performed by transfecting every individual clone of an expression library into a separate population of cells in a high-throughput mode. The screen allows one to achieve a hitherto unattained sensitivity in expression cloning which was exploited in a first read-out to clone apoptosis-inducing genes. This led to the isolation of several genes whose proteins induce distinct phenotypes of apoptosis in 293T cells. One of the isolated genes is the tumor suppressor cytochrome b(L) (cybL), a component of the respiratory chain complex II, that diminishes the activity of this complex for apoptosis induction. This gene is more efficient and specific for causing cell death than a drug with the same activity. These results suggest further applications, both of the isolated genes and the screen.

  18. Porcine uterus contains a population of mesenchymal stem cells.

    PubMed

    Miernik, Katarzyna; Karasinski, Janusz

    2012-02-01

    The uterus has a remarkable ability of cycling remodeling throughout the reproductive life of the female. Recent findings in the human and mouse indicate that adult stem/progenitor cells may play a prominent role in the maintenance of uterine endometrial and myometrial homeostasis. We aimed to characterize the prospective stem/progenitor cells in the porcine uterus and establish a new model for uterine stem cell research. In this study, we demonstrated that cells isolated from porcine uterus have capacity for in vitro differentiation into adipogenic and osteogenic lineages and express the mesenchymal stem cell (MSC) markers CD29, CD44, CD144, CD105, and CD140b as revealed by RT-PCR. Moreover, we showed that some cells isolated from the porcine uterus when cultured at low density produce large clones with an efficiency of 0.035%. Simultaneously, they were negative for hematopoietic stem cell markers such as CD34 and CD45. Low expression of nestin, which is specific for neural stem cells and various progenitor cells, was also detected. We conclude that the porcine uterus contains a small population of undifferentiated cells with MSC-like properties similar to human and mouse uteri.

  19. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy

    PubMed Central

    Bieback, Karen; Brinkmann, Irena

    2010-01-01

    Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory. Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential. PMID:21607124

  20. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275

  1. Application of laser-capture microdissection to analysis of gene expression in the testis.

    PubMed

    Sluka, Pavel; O'Donnell, Liza; McLachlan, Robert I; Stanton, Peter G

    2008-01-01

    The isolation and molecular analysis of highly purified cell populations from complex, heterogeneous tissues has been a challenge for many years. Spermatogenesis in the testis is a particularly difficult process to study given the unique multiple cellular associations within the seminiferous epithelium, making the isolation of specific cell types difficult. Laser-capture microdissection (LCM) is a recently developed technique that enables the isolation of individual cell populations from complex tissues. This technology has enhanced our ability to directly examine gene expression in enriched testicular cell populations by routine methods of gene expression analysis, such as real-time RT-PCR, differential display, and gene microarrays. The application of LCM has however introduced methodological hurdles that have not been encountered with more conventional molecular analyses of whole tissue. In particular, tissue handling (i.e. fixation, storage, and staining), consumables (e.g. slide choice), staining reagents (conventional H&E vs. fluorescence), extraction methods, and downstream applications have all required re-optimisation to facilitate differential gene expression analysis using the small amounts of material obtained using LCM. This review will discuss three critical issues that are essential for successful procurement of cells from testicular tissue sections; tissue morphology, capture success, and maintenance of molecular integrity. The importance of these issues will be discussed with specific reference to the two most commonly used LCM systems; the Arcturus PixCell IIe and PALM systems. The rat testis will be used as a model, and emphasis will be placed on issues of tissue handling, processing, and staining methods, including the application of fluorescence techniques to assist in the identification of cells of interest for the purposes of mRNA expression analysis.

  2. Long-term Persistence of Innate Lymphoid Cells in the Gut After Intestinal Transplantation.

    PubMed

    Weiner, Joshua; Zuber, Julien; Shonts, Brittany; Yang, Suxiao; Fu, Jianing; Martinez, Mercedes; Farber, Donna L; Kato, Tomoaki; Sykes, Megan

    2017-10-01

    Little is known about innate lymphoid cell (ILC) populations in the human gut, and the turnover of these cells and their subsets after transplantation has not been described. Intestinal samples were taken from 4 isolated intestine and 3 multivisceral transplant recipients at the time of any operative resection, such as stoma closure or revision. ILCs were isolated and analyzed by flow cytometry. The target population was defined as being negative for lineage markers and double-positive for CD45/CD127. Cells were further stained to define ILC subsets and a donor-specific or recipient-specific HLA marker to analyze chimerism. Donor-derived ILCs were found to persist greater than 8 years after transplantation. Additionally, the percentage of cells thought to be lymphoid tissue inducer cells among donor ILCs was far higher than that among recipient ILCs. Our findings demonstrate that donor-derived ILCs persist long-term after transplantation and support the notion that human lymphoid tissue inducer cells may form in the fetus and persist throughout life, as hypothesized in rodents. Correlation between chimerism and rejection, graft failure, and patient survival requires further study.

  3. Negative Enrichment and Isolation of Circulating Tumor Cells for Whole Genome Amplification.

    PubMed

    Kanwar, Nisha; Done, Susan J

    2017-01-01

    Circulating tumor cells (CTCs) are a rare population of cells found in the peripheral blood of patients with many types of cancer such as breast, prostate, colon, and lung cancers. Higher numbers of these cells in blood are associated with a poorer prognosis of patients. Genomic profiling of CTCs would help characterize markers specific for the identification of these cells in blood, and also define genomic alterations that give these cells a metastatic advantage over other cells in the primary tumor. Here, we describe an immunomagnetic method to enrich CTCs from the blood of patients with breast cancer, followed by single-cell laser capture microdissection to isolate single CTCs. Whole genome amplification of isolated CTCs allows for many downstream applications to be performed to aide in their characterization, such as whole genome or exome sequencing, Single Nucleotide Polymorphism (SNP) and copy number analysis, and targeted sequencing or quantitative Polymerase Chain Reaction (qPCR) for genomic analyses.

  4. Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat.

    PubMed

    Petersen, B E; Goff, J P; Greenberger, J S; Michalopoulos, G K

    1998-02-01

    Hepatic oval cells (HOC) are a small subpopulation of cells found in the liver when hepatocyte proliferation is inhibited and followed by some type of hepatic injury. HOC can be induced to proliferate using a 2-acetylaminofluorene (2-AAF)/hepatic injury (i.e., CCl4, partial hepatectomy [PHx]) protocol. These cells are believed to be bipotential, i.e., able to differentiate into hepatocytes or bile ductular cells. In the past, isolation of highly enriched populations of these cells has been difficult. Thy-1 is a cell surface marker used in conjunction with CD34 and lineage-specific markers to identify hematopoietic stem cells. Thy-1 antigen is not normally expressed in adult liver, but is expressed in fetal liver, presumably on the hematopoietic cells. We report herein that HOC express high levels of Thy-1. Immunohistochemistry revealed that the cells expressing Thy-1 were indeed oval cells, because they also expressed alpha-fetoprotein (AFP), gamma-glutamyl transpeptidase (GGT), cytokeratin 19 (CK-19), OC.2, and OV-6, all known markers for oval cell identification. In addition, the Thy-1+ cells were negative for desmin, a marker specific for Ito cells. Using Thy-1 antibody as a new marker for the identification of oval cells, a highly enriched population was obtained. Using flow cytometric methods, we isolated a 95% to 97% pure Thy-1+ oval cell population. Our results indicate that cell sorting using Thy-1 could be an attractive tool for future studies, which would facilitate both in vivo and in vitro studies of HOC.

  5. The Wnt5a Receptor, Receptor Tyrosine Kinase-Like Orphan Receptor 2, Is a Predictive Cell Surface Marker of Human Mesenchymal Stem Cells with an Enhanced Capacity for Chondrogenic Differentiation.

    PubMed

    Dickinson, Sally C; Sutton, Catherine A; Brady, Kyla; Salerno, Anna; Katopodi, Theoni; Williams, Rhys L; West, Christopher C; Evseenko, Denis; Wu, Ling; Pang, Suzanna; Ferro de Godoy, Roberta; Goodship, Allen E; Péault, Bruno; Blom, Ashley W; Kafienah, Wael; Hollander, Anthony P

    2017-11-01

    Multipotent mesenchymal stem cells (MSCs) have enormous potential in tissue engineering and regenerative medicine. However, until now, their development for clinical use has been severely limited as they are a mixed population of cells with varying capacities for lineage differentiation and tissue formation. Here, we identify receptor tyrosine kinase-like orphan receptor 2 (ROR2) as a cell surface marker expressed by those MSCs with an enhanced capacity for cartilage formation. We generated clonal human MSC populations with varying capacities for chondrogenesis. ROR2 was identified through screening for upregulated genes in the most chondrogenic clones. When isolated from uncloned populations, ROR2+ve MSCs were significantly more chondrogenic than either ROR2-ve or unfractionated MSCs. In a sheep cartilage-repair model, they produced significantly more defect filling with no loss of cartilage quality compared with controls. ROR2+ve MSCs/perivascular cells were present in developing human cartilage, adult bone marrow, and adipose tissue. Their frequency in bone marrow was significantly lower in patients with osteoarthritis (OA) than in controls. However, after isolation of these cells and their initial expansion in vitro, there was greater ROR2 expression in the population derived from OA patients compared with controls. Furthermore, osteoarthritis-derived MSCs were better able to form cartilage than MSCs from control patients in a tissue engineering assay. We conclude that MSCs expressing high levels of ROR2 provide a defined population capable of predictably enhanced cartilage production. Stem Cells 2017;35:2280-2291. © 2017 AlphaMed Press.

  6. The Wnt5a Receptor, Receptor Tyrosine Kinase‐Like Orphan Receptor 2, Is a Predictive Cell Surface Marker of Human Mesenchymal Stem Cells with an Enhanced Capacity for Chondrogenic Differentiation

    PubMed Central

    Dickinson, Sally C.; Sutton, Catherine A.; Brady, Kyla; Salerno, Anna; Katopodi, Theoni; Williams, Rhys L.; West, Christopher C.; Evseenko, Denis; Wu, Ling; Pang, Suzanna; Ferro de Godoy, Roberta; Goodship, Allen E.; Péault, Bruno; Blom, Ashley W.; Kafienah, Wael

    2017-01-01

    Abstract Multipotent mesenchymal stem cells (MSCs) have enormous potential in tissue engineering and regenerative medicine. However, until now, their development for clinical use has been severely limited as they are a mixed population of cells with varying capacities for lineage differentiation and tissue formation. Here, we identify receptor tyrosine kinase‐like orphan receptor 2 (ROR2) as a cell surface marker expressed by those MSCs with an enhanced capacity for cartilage formation. We generated clonal human MSC populations with varying capacities for chondrogenesis. ROR2 was identified through screening for upregulated genes in the most chondrogenic clones. When isolated from uncloned populations, ROR2+ve MSCs were significantly more chondrogenic than either ROR2–ve or unfractionated MSCs. In a sheep cartilage‐repair model, they produced significantly more defect filling with no loss of cartilage quality compared with controls. ROR2+ve MSCs/perivascular cells were present in developing human cartilage, adult bone marrow, and adipose tissue. Their frequency in bone marrow was significantly lower in patients with osteoarthritis (OA) than in controls. However, after isolation of these cells and their initial expansion in vitro, there was greater ROR2 expression in the population derived from OA patients compared with controls. Furthermore, osteoarthritis‐derived MSCs were better able to form cartilage than MSCs from control patients in a tissue engineering assay. We conclude that MSCs expressing high levels of ROR2 provide a defined population capable of predictably enhanced cartilage production. Stem Cells 2017;35:2280–2291 PMID:28833807

  7. Postnatal extra-embryonic tissues as a source of multiple cell types for regenerative medicine applications.

    PubMed

    Gubar, O S; Rodnichenko, A E; Vasyliev, R G; Zlatska, A V; Zubov, D O

    2017-09-01

    We aimed to isolate and characterize the cell types which could be obtained from postnatal extra-embryonic tissues. Fresh tissues (no more than 12 h after delivery) were used for enzymatic or explants methods of cell isolation. Obtained cultures were further maintained at 5% oxygen. At P3 cell phenotype was assessed by fluorescence-activated cell sorting, population doubling time was calculated and the multilineage differentiation assay was performed. We have isolated multiple cell types from postnatal tissues. Namely, placental mesenchymal stromal cells from placenta chorionic disc, chorionic membrane mesenchymal stromal cells (ChM-MSC) from free chorionic membrane, umbilical cord MSC (UC-MSC) from whole umbilical cord, human umbilical vein endothelial cells (HUVEC) from umbilical vein, amniotic epithelial cells (AEC) and amniotic MSC (AMSC) from amniotic membrane. All isolated cell types displayed high proliferation rate together with the typical MSC phenotype: CD73 + CD90 + CD105 + CD146 + CD166+CD34 - CD45 - HLA-DR - . HUVEC constitutively expressed key markers CD31 and CD309. Most MSC and AEC were capable of osteogenic and adipogenic differentiation. We have shown that a wide variety of cell types can be easily isolated from extra-embryonic tissues and expanded ex vivo for regenerative medicine applications. These cells possess typical MSC properties and can be considered an alternative for adult MSC obtained from bone marrow or fat, especially for allogeneic use.

  8. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells

    PubMed Central

    Hess, David A.; Wirthlin, Louisa; Craft, Timothy P.; Herrbrich, Phillip E.; Hohm, Sarah A.; Lahey, Ryan; Eades, William C.; Creer, Michael H.; Nolta, Jan A.

    2006-01-01

    The development of novel cell-based therapies requires understanding of distinct human hematopoietic stem and progenitor cell populations. We recently isolated reconstituting hematopoietic stem cells (HSCs) by lineage depletion and purification based on high aldehyde dehydrogenase activity (ALDHhiLin- cells). Here, we further dissected the ALDHhi-Lin- population by selection for CD133, a surface molecule expressed on progenitors from hematopoietic, endothelial, and neural lineages. ALDHhiCD133+Lin- cells were primarily CD34+, but also included CD34-CD38-CD133+ cells, a phenotype previously associated with repopulating function. Both ALDHhiCD133-Lin- and ALDHhiCD133+Lin- cells demonstrated distinct clonogenic progenitor function in vitro, whereas only the ALDHhiCD133+Lin- population seeded the murine bone marrow 48 hours after transplantation. Significant human cell repopulation was observed only in NOD/SCID and NOD/SCID β2M-null mice that received transplants of ALDHhiCD133+Lin- cells. Limiting dilution analysis demonstrated a 10-fold increase in the frequency of NOD/SCID repopulating cells compared with CD133+Lin- cells, suggesting that high ALDH activity further purified cells with repopulating function. Transplanted ALDHhiCD133+Lin- cells also maintained primitive hematopoietic phenotypes (CD34+CD38-) and demonstrated enhanced repopulating function in recipients of serial, secondary transplants. Cell selection based on ALDH activity and CD133 expression provides a novel purification of HSCs with long-term repopulating function and may be considered an alternative to CD34 cell selection for stem cell therapies. PMID:16269619

  9. Human Neural Cell-Based Biosensor

    DTIC Science & Technology

    2011-03-11

    following areas: (1) neural progenitor isolation from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic...from induced pluripotent stem cells , (2) directed differentiation of progenitors into dopaminergic neurons, motoneurons and astrocytes using defined...progenitors from mixed populations, such as induced pluripotent stem cells (iPSCs). We also developed lentiviral based methods to generate iPSCs in

  10. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  11. Isolation and functional characteristics of adherent phagocytic cells from mouse Peyer's patches.

    PubMed Central

    MacDonald, T T; Carter, P B

    1982-01-01

    Attempts were made to isolate adherent phagocytic cells (macrophages) from mouse Peyer's patch cell suspensions. Cell suspensions prepared by teasing apart the Peyer's patches contained no adherent phagocytic cells. However, if Peyer's patch fragments were treated with collagenase to disrupt the tissue matrix, cells prepared in this way contained a subpopulation of adherent phagocytic cells. These cells comprised only 0.1-0.2% of the total nucleated cell population of the Peyer's patch. Similar cells could also be isolated from the Peyer's patches of germ-free mice, but as judged by their ability to ingest opsonized erythrocytes, these cells were less activated than cells from the Peyer's patches of normal mice. Adherent cells from the Peyer's patches of normal mice could present antigen (ovalbumin) to T cells, and Peyer's patches cell suspensions containing adherent cells could be stimulated in vitro to produce an anti-sheep red blood cell plaque-forming cell response in the absence of 2-mercaptoethanol. These studies show that although the frequency of phagocytic adherent cells is extremely low in Peyer's patches, these cells have functions consistent with that of adherent cells in other lymphoid tissues. PMID:7068173

  12. Isolation of a circulating CD45−, CD34dim cell population and validation of their endothelial phenotype

    PubMed Central

    Tropea, Margaret M.; Harper, Bonnie J. A.; Graninger, Grace M.; Phillips, Terry M.; Ferreyra, Gabriela; Mostowski, Howard S.; Danner, Robert L.; Suffredini, Anthony F.; Solomon, Michael A.

    2016-01-01

    Summary Accurately detecting circulating endothelial cells (CECs) is important since their enumeration has been proposed as a biomarker to measure injury to the vascular endothelium. However, there is no single methodology for determining CECs in blood, making comparison across studies difficult. Many methods for detecting CECs rely on characteristic cell surface markers and cell viability indicators, but lack secondary validation. Here, a CEC population in healthy adult human subjects was identified by flow cytometry as CD45−, CD34dim that is comparable to a previously described CD45−, CD31bright population. In addition, nuclear staining with 7-aminoactinomycin D (7-AAD) was employed as a standard technique to exclude dead cells. Unexpectedly, the CD45−, CD34dim, 7-AAD− CECs lacked surface detectable CD146, a commonly used marker of CECs. Furthermore, light microscopy revealed this cell population to be composed primarily of large cells without a clearly defined nucleus. Nevertheless, immunostains still demonstrated the presence of the lectin Ulex europaeus and van Willebrand factor. Ultramicro analytical immunochemistry assays for the endothelial cell proteins CD31, CD34, CD62E, CD105, CD141, CD144 and vWF indicated these cells possess an endothelial phenotype. However, only a small amount of RNA, which was mostly degraded, could be isolated from these cells. Thus the majority of CECs in healthy individuals as defined by CD45−, CD34dim, and 7-AAD− have shed their CD146 surface marker and are senescent cells without an identifiable nucleus and lacking RNA of sufficient quantity and quality for transcriptomal analysis. This study highlights the importance of secondary validation of CEC identification. PMID:25057108

  13. Isolation of osteogenic cells from the trauma-activated periosteum

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hsiao; Bullock, John

    1987-12-01

    Closed, greenstick type fractures were created in adult male white New Zealand rabbits. After a waiting period of 5 days the developing callous and bone approximately 1 cm to each side of the callous was harvested and cell cultures established. Biochemical assays for total protein, alkaline phosphatase activity and glycosamino-glycan content were performed on spent media collected at each change and upon the cells after their termination, in an attempt to more fully characterize the osteoblast population. Since little is known about bone forming cells isolated from this source it is important to establish baseline data so as to be able to relate reactions of these cells to altered environmental conditions.

  14. Isolating and Analyzing Cells of the Pancreas Mesenchyme by Flow Cytometry.

    PubMed

    Epshtein, Alona; Sakhneny, Lina; Landsman, Limor

    2017-01-28

    The pancreas is comprised of epithelial cells that are required for food digestion and blood glucose regulation. Cells of the pancreas microenvironment, including endothelial, neuronal, and mesenchymal cells were shown to regulate cell differentiation and proliferation in the embryonic pancreas. In the adult, the function and mass of insulin-producing cells were shown to depend on cells in their microenvironment, including pericyte, immune, endothelial, and neuronal cells. Lastly, changes in the pancreas microenvironment were shown to regulate pancreas tumorigenesis. However, the cues underlying these processes are not fully defined. Therefore, characterizing the different cell types that comprise the pancreas microenvironment and profiling their gene expression are crucial to delineate the tissue development and function under normal and diseased states. Here, we describe a method that allows for the isolation of mesenchymal cells from the pancreas of embryonic, neonatal, and adult mice. This method utilizes the enzymatic digestion of mouse pancreatic tissue and the subsequent fluorescence-activated cell sorting (FACS) or flow-cytometric analysis of labeled cells. Cells can be labeled by either immunostaining for surface markers or by the expression of fluorescent proteins. Cell isolation can facilitate the characterization of genes and proteins expressed in cells of the pancreas mesenchyme. This protocol was successful in isolating and culturing highly enriched mesenchymal cell populations from the embryonic, neonatal, and adult mouse pancreas.

  15. Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications

    PubMed Central

    Petsche Connell, Jennifer; Camci-Unal, Gulden; Khademhosseini, Ali

    2013-01-01

    Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the various methods of isolating, sorting, and culturing AFSC are compared, along with techniques for inducing differentiation into cardiac myocytes and endothelial cells. Although research has not demonstrated complete and high-yield cardiac differentiation, AFSC have been shown to effectively differentiate into endothelial cells and can effectively support cardiac tissue. Additionally, several tissue engineering and regenerative therapeutic approaches for the use of these cells in heart patches, injection after myocardial infarction, heart valves, vascularized scaffolds, and blood vessels are summarized. These applications show great promise in the treatment of congenital cardiovascular defects, and further studies of isolation, culture, and differentiation of AFSC will help to develop their use for tissue engineering, regenerative medicine, and cardiovascular therapies. PMID:23350771

  16. Functional and phenotypic characterization of CD8+CD28+ and CD28- T cells in atopic individuals sensitized to Dermatophagoides pteronyssinus.

    PubMed

    Lourenço, O; Fonseca, A M; Paiva, A; Arosa, F A; Taborda-Barata, L

    2006-01-01

    CD8+ T suppressor cells may play a role in immunoregulation. Recent studies have characterized this population by the lack of the CD28 molecule. These CD8+CD28 T cells differ phenotypically and functionally from CD8 + CD28 + T cells. Little is known about CD8 + CD28 cells in atopy. Our aim was to analyze the phenotype and functional properties of CD8 + CD28T cells in atopic and non-atopic individuals. Peripheral blood mononuclear cells (PBMC) were obtained after density gradient centrifugation. CD8 + CD28 and CD8 + CD28 + T cells were isolated using immunomagnetic beads. Relative percentages of these cells and expression of several phenotypic markers were analyzed by flow cytometry. Proliferation was assessed by thymidine incorporation in isolated populations and in co-cultures with PBMC using Dermatophagoides pteronyssinus as stimulus. Cytokine synthesis was evaluated in culture supernatants by cytometric bead array. The relative percentages of CD8+CD28 T cells and their phenotypic expression in atopic and non-atopic volunteers were not significantly different. However, CD8 + CD28 T cells showed greater proliferation than did CD8+CD28+ T cells when stimulated with D. pteronyssinus, although cytokine synthesis patterns were similar. CD8+CD28 co-cultures with PBMC showed greater proliferation than CD8+CD28+ T cell co-cultures, but cytokine synthesis patterns were not different. Our data confirm phenotypic and functional differences between CD28+ and CD28 T cells, irrespective of atopic status. Purified human CD8+CD28 T cells, freshly isolated from peripheral blood, do not have suppressor properties on allergen-specific proliferation or on cytokine synthesis in PBMC.

  17. Transcriptional profiling of CD31(+) cells isolated from murine embryonic stem cells.

    PubMed

    Mariappan, Devi; Winkler, Johannes; Chen, Shuhua; Schulz, Herbert; Hescheler, Jürgen; Sachinidis, Agapios

    2009-02-01

    Identification of genes involved in endothelial differentiation is of great interest for the understanding of the cellular and molecular mechanisms involved in the development of new blood vessels. Mouse embryonic stem (mES) cells serve as a potential source of endothelial cells for transcriptomic analysis. We isolated endothelial cells from 8-days old embryoid bodies by immuno-magnetic separation using platelet endothelial cell adhesion molecule-1 (also known as CD31) expressed on both early and mature endothelial cells. CD31(+) cells exhibit endothelial-like behavior by being able to incorporate DiI-labeled acetylated low-density lipoprotein as well as form tubular structures on matrigel. Quantitative and semi-quantitative PCR analysis further demonstrated the increased expression of endothelial transcripts. To ascertain the specific transcriptomic identity of the CD31(+) cells, large-scale microarray analysis was carried out. Comparative bioinformatic analysis reveals an enrichment of the gene ontology categories angiogenesis, blood vessel morphogenesis, vasculogenesis and blood coagulation in the CD31(+) cell population. Based on the transcriptomic signatures of the CD31(+) cells, we conclude that this ES cell-derived population contains endothelial-like cells expressing a mesodermal marker BMP2 and possess an angiogenic potential. The transcriptomic characterization of CD31(+) cells enables an in vitro functional genomic model to identify genes required for angiogenesis.

  18. Droplet barcoding for single cell transcriptomics applied to embryonic stem cells

    PubMed Central

    Klein, Allon M; Mazutis, Linas; Akartuna, Ilke; Tallapragada, Naren; Veres, Adrian; Li, Victor; Peshkin, Leonid; Weitz, David A; Kirschner, Marc W

    2015-01-01

    Summary It has long been the dream of biologists to map gene expression at the single cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after LIF withdrawal. The reproducibility of these high-throughput single cell data allowed us to deconstruct cell populations and infer gene expression relationships. PMID:26000487

  19. Isolation and functional interrogation of adult human prostate epithelial stem cells at single cell resolution.

    PubMed

    Hu, Wen-Yang; Hu, Dan-Ping; Xie, Lishi; Li, Ye; Majumdar, Shyama; Nonn, Larisa; Hu, Hong; Shioda, Toshi; Prins, Gail S

    2017-08-01

    Using primary cultures of normal human prostate epithelial cells, we developed a novel prostasphere-based, label-retention assay that permits identification and isolation of stem cells at a single cell level. Their bona fide stem cell nature was corroborated using in vitro and in vivo regenerative assays and documentation of symmetric/asymmetric division. Robust WNT10B and KRT13 levels without E-cadherin or KRT14 staining distinguished individual stem cells from daughter progenitors in spheroids. Following FACS to isolate label-retaining stem cells from label-free progenitors, RNA-seq identified unique gene signatures for the separate populations which may serve as useful biomarkers. Knockdown of KRT13 or PRAC1 reduced sphere formation and symmetric self-renewal highlighting their role in stem cell maintenance. Pathways analysis identified ribosome biogenesis and membrane estrogen-receptor signaling enriched in stem cells with NF-ĸB signaling enriched in progenitors; activities that were biologically confirmed. Further, bioassays identified heightened autophagy flux and reduced metabolism in stem cells relative to progenitors. These approaches similarly identified stem-like cells from prostate cancer specimens and prostate, breast and colon cancer cell lines suggesting wide applicability. Together, the present studies isolate and identify unique characteristics of normal human prostate stem cells and uncover processes that maintain stem cell homeostasis in the prostate gland. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Who Are the Okinawans? Ancestry, Genome Diversity, and Implications for the Genetic Study of Human Longevity From a Geographically Isolated Population

    PubMed Central

    Hsueh, Wen-Chi; He, Qimei; Willcox, D. Craig; Nievergelt, Caroline M.; Donlon, Timothy A.; Kwok, Pui-Yan; Suzuki, Makoto; Willcox, Bradley J.

    2014-01-01

    Isolated populations have advantages for genetic studies of longevity from decreased haplotype diversity and long-range linkage disequilibrium. This permits smaller sample sizes without loss of power, among other utilities. Little is known about the genome of the Okinawans, a potential population isolate, recognized for longevity. Therefore, we assessed genetic diversity, structure, and admixture in Okinawans, and compared this with Caucasians, Chinese, Japanese, and Africans from HapMap II, genotyped on the same Affymetrix GeneChip Human Mapping 500K array. Principal component analysis, haplotype coverage, and linkage disequilibrium decay revealed a distinct Okinawan genome—more homogeneity, less haplotype diversity, and longer range linkage disequilibrium. Population structure and admixture analyses utilizing 52 global reference populations from the Human Genome Diversity Cell Line Panel demonstrated that Okinawans clustered almost exclusively with East Asians. Sibling relative risk (λs) analysis revealed that siblings of Okinawan centenarians have 3.11 times (females) and 3.77 times (males) more likelihood of centenarianism. These findings suggest that Okinawans are genetically distinct and share several characteristics of a population isolate, which are prone to develop extreme phenotypes (eg, longevity) from genetic drift, natural selection, and population bottlenecks. These data support further exploration of genetic influence on longevity in the Okinawans. PMID:24444611

  1. The Structure of Resting Bacterial Populations in Soil and Subsoil Permafrost

    NASA Astrophysics Data System (ADS)

    Soina, Vera S.; Mulyukin, Andrei L.; Demkina, Elena V.; Vorobyova, Elena A.; El-Registan, Galina I.

    2004-09-01

    The structure of individual cells in microbial populations in situ of the Arctic and Antarctic permafrost was studied by scanning and transmission electron microscopy methods and compared with that of cyst-like resting forms generated under special conditions by the non-sporeforming bacteria Arthrobacter and Micrococcus isolated from the permafrost. Electron microscopy examination of microorganisms in situ revealed several types of bacterial cells having no signs of damage, including "dwarf" curved forms similar to nanoforms. Intact bacterial cells in situ and frozen cultures of the permafrost isolates differed from vegetative cells by thickened cell walls, the altered structure of cytoplasm, and the compact nucleoid, and were similar in these features to cyst-like resting forms of non-spore-forming "permafrost" bacterial strains of Arthrobacter and Micrococcus spp. Cyst-like cells, being resistant to adverse external factors, are regarded as being responsible for survival of the non-spore-formers under prolonged exposure to subzero temperatures and can be a target to search for living microorganisms in natural environments both on the Earth and on extraterrestrial bodies.

  2. Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy.

    PubMed

    Pozzobon, Michela; Piccoli, Martina; De Coppi, Paolo

    2014-06-01

    Stem cell therapy is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention toward amniotic membrane and amniotic fluid stem cells, since these sources possess many advantages: first of all as cells can be extracted from discarded foetal material it is inexpensive, secondly abundant stem cells can be obtained and finally, these stem cell sources are free from ethical considerations. Many studies have demonstrated the differentiation potential in vitro and in vivo toward mesenchymal and non-mesenchymal cell types; in addition the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. This review offers an overview on markers characterisation and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources.

  3. Isolation and Characterisation of Mesenchymal Stem Cells from Rat Bone Marrow and the Endosteal Niche: A Comparative Study

    PubMed Central

    Yusop, Norhayati; Battersby, Paul; Alraies, Amr; Moseley, Ryan

    2018-01-01

    Within bone, mesenchymal stromal cells (MSCs) exist within the bone marrow stroma (BM-MSC) and the endosteal niche, as cells lining compact bone (CB-MSCs). This study isolated and characterised heterogeneous MSC populations from each niche and subsequently investigated the effects of extensive cell expansion, analysing population doublings (PDs)/cellular senescence, colony-forming efficiencies (CFEs), MSC cell marker expression, and osteogenic/adipogenic differentiation. CB-MSCs and BM-MSCs demonstrated similar morphologies and PDs, reaching 100 PDs. Both populations exhibited consistent telomere lengths (12–17 kb), minimal senescence, and positive telomerase expression. CB-MSCs (PD15) had significantly lower CFEs than PD50. CB-MSCs and BM-MSCs both expressed MSC (CD73/CD90/CD105); embryonic (Nanog) and osteogenic markers (Runx2, osteocalcin) but no hematopoietic markers (CD45). CB-MSCs (PD15) strongly expressed Oct4 and p16INK4A. At early PDs, CB-MSCs possessed a strong osteogenic potency and low potency for adipogenesis, whilst BM-MSCs possessed greater overall bipotentiality for osteogenesis and adipogenesis. At PD50, CB-MSCs demonstrated reduced potency for both osteogenesis and adipogenesis, compared to BM-MSCs at equivalent PDs. This study demonstrates similarities in proliferative and mesenchymal cell characteristics between CB-MSCs and BM-MSCs, but contrasting multipotentiality. Such findings support further comparisons of human CB-MSCs and BM-MSCs, facilitating selection of optimal MSC populations for regenerative medicine purposes. PMID:29765418

  4. Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

    PubMed

    Dahlin, Joakim S; Malinovschi, Andrei; Öhrvik, Helena; Sandelin, Martin; Janson, Christer; Alving, Kjell; Hallgren, Jenny

    2016-01-28

    Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function. © 2016 by The American Society of Hematology.

  5. Isolation and characterization of canine perivascular stem/stromal cells for bone tissue engineering.

    PubMed

    James, Aaron W; Zhang, Xinli; Crisan, Mihaela; Hardy, Winters R; Liang, Pei; Meyers, Carolyn A; Lobo, Sonja; Lagishetty, Venu; Childers, Martin K; Asatrian, Greg; Ding, Catherine; Yen, Yu-Hsin; Zou, Erin; Ting, Kang; Peault, Bruno; Soo, Chia

    2017-01-01

    For over 15 years, human subcutaneous adipose tissue has been recognized as a rich source of tissue resident mesenchymal stem/stromal cells (MSC). The isolation of perivascular progenitor cells from human adipose tissue by a cell sorting strategy was first published in 2008. Since this time, the interest in using pericytes and related perivascular stem/stromal cell (PSC) populations for tissue engineering has significantly increased. Here, we describe a set of experiments identifying, isolating and characterizing PSC from canine tissue (N = 12 canine adipose tissue samples). Results showed that the same antibodies used for human PSC identification and isolation are cross-reactive with canine tissue (CD45, CD146, CD34). Like their human correlate, canine PSC demonstrate characteristics of MSC including cell surface marker expression, colony forming unit-fibroblast (CFU-F) inclusion, and osteogenic differentiation potential. As well, canine PSC respond to osteoinductive signals in a similar fashion as do human PSC, such as the secreted differentiation factor NEL-Like Molecule-1 (NELL-1). Nevertheless, important differences exist between human and canine PSC, including differences in baseline osteogenic potential. In summary, canine PSC represent a multipotent mesenchymogenic cell source for future translational efforts in tissue engineering.

  6. Radioisotopic Method for Measuring Cell Division Rates of Individual Species of Diatoms from Natural Populations †

    PubMed Central

    Rivkin, Richard B.

    1986-01-01

    Silicon is an essential element for diatom frustule synthesis and is usually taken up only by dividing cells. With 68Ge, a radioactive analog of Si, the cell cycle marker event of frustule formation was identified for individual species of diatom. The frequency of cells within a population undergoing this division event was estimated, and the cell division rate was calculated. In laboratory cultures, these rates of cell division and those calculated from changes in cell numbers were similar. By dual labeling with 68Ge(OH)4 and NaH14CO3, rates of cell division and photosynthesis were coincidently measured for diatoms both in laboratory cultures and when isolated from natural populations in estuarine, offshore, and polar environments. These techniques permit the coupling between photosynthesis and cell division to be examined in situ for individual species of diatom. PMID:16347039

  7. The effects of simulated hypogravity on murine bone marrow cells

    NASA Technical Reports Server (NTRS)

    Lawless, Desales

    1989-01-01

    Mouse bone marrow cells grown in complete medium at unit gravity were compared with a similar population cultured in conditions that mimic some aspects of microgravity. After the cells adjusted to the conditions that simulated microgravity, they proliferated as fetal or oncogenic populations; their numbers doubled in twelve hour periods. Differentiated subpopulations were depleted from the heterogeneous mixture with time and the undifferentiated hematopoietic stem cells increased in numbers. The cells in the control groups in unit gravity and those in the bioreactors in conditions of microgravity were monitored under a number of parameters. Each were phenotyped as to cell surface antigens using a panel of monoclonal antibodies and flow cytometry. Other parameters compared included: pH, glucose uptake, oxygen consumption and carbon-dioxide production. Nuclear DNA was monitored by flow cytometry. Functional responses were studied by mitogenic stimulation by various lectins. The importance of these findings should have relevance to the space program. Cells should behave predictably in zero gravity; specific populations can be eliminated from diverse populations and other populations isolated. The availability of stem cell populations will enhance both bone marrow and gene transplant programs. Stem cells will permit developmental biologists study the paths of hematopoiesis.

  8. Potential probiotic attributes and antagonistic activity of an indigenous isolate Lactobacillus plantarum DM5 from an ethnic fermented beverage "Marcha" of north eastern Himalayas.

    PubMed

    Das, Deeplina; Goyal, Arun

    2014-05-01

    A novel isolate DM5 identified as Lactobacillus plantarum displayed in vitro probiotic properties as well as antimicrobial activity. It showed adequate level of survival to the harsh conditions of the gastrointestinal tract and survived low acidic pH 2.5 for 5 h. Artificial gastric juice and intestinal fluidic environment decreased the initial viable cell population of isolate DM5 only by 7% and 13%, respectively, while lysozyme (200 µg/ml) and bile salt (0.5%) enhanced its growth. It was found to deconjugate taurodeoxycholic acid, indicating its potential to reduce hypercholesterolemia. Isolate DM5 demonstrated cell surface hydrophobicity of 53% and autoaggregation of 54% which are the prerequisite for adhesion to epithelial cells and colonization to host. Bacteriocin activity of isolate was found to be 6400 AU/ml as it inhibited the growth of food borne pathogens Escherichia coli, Staphylococcus aureus, and Alcaligenes faecalis. The bactericidal action of bacteriocin from isolate was analyzed by flow cytometry, rendering its use as prospective probiotic and starter culture in food industry.

  9. The effect of in vivo and in vitro irradiation (25 Gy) on the subsequent in vitro growth of satellite cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Schultz, E.; Cassens, R. G.

    1996-01-01

    The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P>0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P>0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (P<0.05) over this time. At later time periods, satellite cell number increased (P<0.05) in irradiated cultures indicating that a population of satellite cells survived irradiation. The results of these in vitro experiments suggest that a 25 Gy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.

  10. Mutational dynamics of the SARS coronavirus in cell culture and human populations isolated in 2003

    PubMed Central

    Vega, Vinsensius B; Ruan, Yijun; Liu, Jianjun; Lee, Wah Heng; Wei, Chia Lin; Se-Thoe, Su Yun; Tang, Kin Fai; Zhang, Tao; Kolatkar, Prasanna R; Ooi, Eng Eong; Ling, Ai Ee; Stanton, Lawrence W; Long, Philip M; Liu, Edison T

    2004-01-01

    Background The SARS coronavirus is the etiologic agent for the epidemic of the Severe Acute Respiratory Syndrome. The recent emergence of this new pathogen, the careful tracing of its transmission patterns, and the ability to propagate in culture allows the exploration of the mutational dynamics of the SARS-CoV in human populations. Methods We sequenced complete SARS-CoV genomes taken from primary human tissues (SIN3408, SIN3725V, SIN3765V), cultured isolates (SIN848, SIN846, SIN842, SIN845, SIN847, SIN849, SIN850, SIN852, SIN3408L), and five consecutive Vero cell passages (SIN2774_P1, SIN2774_P2, SIN2774_P3, SIN2774_P4, SIN2774_P5) arising from SIN2774 isolate. These represented individual patient samples, serial in vitro passages in cell culture, and paired human and cell culture isolates. Employing a refined mutation filtering scheme and constant mutation rate model, the mutation rates were estimated and the possible date of emergence was calculated. Phylogenetic analysis was used to uncover molecular relationships between the isolates. Results Close examination of whole genome sequence of 54 SARS-CoV isolates identified before 14th October 2003, including 22 from patients in Singapore, revealed the mutations engendered during human-to-Vero and Vero-to-human transmission as well as in multiple Vero cell passages in order to refine our analysis of human-to-human transmission. Though co-infection by different quasipecies in individual tissue samples is observed, the in vitro mutation rate of the SARS-CoV in Vero cell passage is negligible. The in vivo mutation rate, however, is consistent with estimates of other RNA viruses at approximately 5.7 × 10-6 nucleotide substitutions per site per day (0.17 mutations per genome per day), or two mutations per human passage (adjusted R-square = 0.4014). Using the immediate Hotel M contact isolates as roots, we observed that the SARS epidemic has generated four major genetic groups that are geographically associated: two Singapore isolates, one Taiwan isolate, and one North China isolate which appears most closely related to the putative SARS-CoV isolated from a palm civet. Non-synonymous mutations are centered in non-essential ORFs especially in structural and antigenic genes such as the S and M proteins, but these mutations did not distinguish the geographical groupings. However, no non-synonymous mutations were found in the 3CLpro and the polymerase genes. Conclusions Our results show that the SARS-CoV is well adapted to growth in culture and did not appear to undergo specific selection in human populations. We further assessed that the putative origin of the SARS epidemic was in late October 2002 which is consistent with a recent estimate using cases from China. The greater sequence divergence in the structural and antigenic proteins and consistent deletions in the 3' – most portion of the viral genome suggest that certain selection pressures are interacting with the functional nature of these validated and putative ORFs. PMID:15347429

  11. Isolation of Human Colon Stem Cells Using Surface Expression of PTK7.

    PubMed

    Jung, Peter; Sommer, Christian; Barriga, Francisco M; Buczacki, Simon J; Hernando-Momblona, Xavier; Sevillano, Marta; Duran-Frigola, Miquel; Aloy, Patrick; Selbach, Matthias; Winton, Douglas J; Batlle, Eduard

    2015-12-08

    Insertion of reporter cassettes into the Lgr5 locus has enabled the characterization of mouse intestinal stem cells (ISCs). However, low cell surface abundance of LGR5 protein and lack of high-affinity anti-LGR5 antibodies represent a roadblock to efficiently isolate human colonic stem cells (hCoSCs). We set out to identify stem cell markers that would allow for purification of hCoSCs. In an unbiased approach, membrane-enriched protein fractions derived from in vitro human colonic organoids were analyzed by quantitative mass spectrometry. Protein tyrosine pseudokinase PTK7 specified a cell population within human colonic organoids characterized by highest self-renewal and re-seeding capacity. Antibodies recognizing the extracellular domain of PTK7 allowed us to isolate and expand hCoSCs directly from patient-derived mucosa samples. Human PTK7+ cells display features of canonical Lgr5+ ISCs and include a fraction of cells that undergo differentiation toward enteroendocrine lineage that resemble crypt label retaining cells (LRCs). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Cloning of Plasmodium falciparum by single-cell sorting.

    PubMed

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balduino, Alex, E-mail: balduino@uva.edu.br; Mello-Coelho, Valeria; National Institute on Aging, National Institute of Health, Baltimore, MD

    In the bone marrow cavity, hematopoietic stem cells (HSC) have been shown to reside in the endosteal and subendosteal perivascular niches, which play specific roles on HSC maintenance. Although cells with long-term ability to reconstitute full hematopoietic system can be isolated from both niches, several data support a heterogenous distribution regarding the cycling behavior of HSC. Whether this distinct behavior depends upon the role played by the stromal populations which distinctly create these two niches is a question that remains open. In the present report, we used our previously described in vivo assay to demonstrate that endosteal and subendosteal stromalmore » populations are very distinct regarding skeletal lineage differentiation potential. This was further supported by a microarray-based analysis, which also demonstrated that these two stromal populations play distinct, albeit complementary, roles in HSC niche. Both stromal populations were preferentially isolated from the trabecular region and behave distinctly in vitro, as previously reported. Even though these two niches are organized in a very close range, in vivo assays and molecular analyses allowed us to identify endosteal stroma (F-OST) cells as fully committed osteoblasts and subendosteal stroma (F-RET) cells as uncommitted mesenchymal cells mainly represented by perivascular reticular cells expressing high levels of chemokine ligand, CXCL12. Interestingly, a number of cytokines and growth factors including interleukin-6 (IL-6), IL-7, IL-15, Hepatocyte growth factor (HGF) and stem cell factor (SCF) matrix metalloproteases (MMPs) were also found to be differentially expressed by F-OST and F-RET cells. Further microarray analyses indicated important mechanisms used by the two stromal compartments in order to create and coordinate the 'quiescent' and 'proliferative' niches in which hematopoietic stem cells and progenitors reside.« less

  14. In–Depth Characterization of Viral Isolates from Plasma and Cells Compared with Plasma Circulating Quasispecies in Early HIV-1 Infection

    PubMed Central

    Erkizia, Itziar; Pino, Maria; Pou, Christian; Paredes, Roger; Clotet, Bonaventura; Martinez-Picado, Javier; Prado, Julia G.

    2012-01-01

    Background The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However, overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS) technology in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral isolates and in vivo quasispecies. Methodology/Principal Findings We amplified by DPS HIV-1 genomic regions covering gag, protease, integrase and env-V3 to characterize paired isolates from plasma and peripheral blood mononuclear cells and compare them with total plasma viral RNA in four recently HIV-1 infected subjects. Our study demonstrated the presence of unique haplotypes scattered between sample types with conservation of major variants. In addition, no differences in intra- and inter-population encoded protein variability were found between the different types of isolates or when these were compared to plasma viral RNA within subjects. Additionally, in vitro experiments demonstrated phenotypic similarities in terms of replicative capacity and co-receptor usage between viral isolates and plasma viral RNA. Conclusion This study is the first in-depth comparison and characterization of viral isolates from different sources and plasma circulating quasispecies using DPS in recently HIV-1 infected subjects. Our data supports the use of primary isolates regardless of their plasma or cellular origin to define genetic variability and biological traits of circulating HIV-1 quasispecies. PMID:22393441

  15. Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.

    PubMed

    Letouzey, Vincent; Tan, Ker Sin; Deane, James A; Ulrich, Daniela; Gurung, Shanti; Ong, Y Rue; Gargett, Caroline E

    2015-01-01

    Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.

  16. A Theileria parva Isolate of Low Virulence Infects a Subpopulation of Lymphocytes

    PubMed Central

    Geysen, Dirk; Goddeeris, Bruno M.; Awino, Elias; Dobbelaere, Dirk A. E.; Naessens, Jan

    2012-01-01

    Theileria parva is a tick-transmitted protozoan parasite that infects and transforms bovine lymphocytes. We have previously shown that Theileria parva Chitongo is an isolate with a lower virulence than that of T. parva Muguga. Lower virulence appeared to be correlated with a delayed onset of the logarithmic growth phase of T. parva Chitongo-transformed peripheral blood mononuclear cells after in vitro infection. In the current study, infection experiments with WC1+ γδ T cells revealed that only T. parva Muguga could infect these cells and that no transformed cells could be obtained with T. parva Chitongo sporozoites. Subsequent analysis of the susceptibility of different cell lines and purified populations of lymphocytes to infection and transformation by both isolates showed that T. parva Muguga sporozoites could attach to and infect CD4+, CD8+, and WC1+ T lymphocytes, but T. parva Chitongo sporozoites were observed to bind only to the CD8+ T cell population. Flow cytometry analysis of established, transformed clones confirmed this bias in target cells. T. parva Muguga-transformed clones consisted of different cell surface phenotypes, suggesting that they were derived from either host CD4+, CD8+, or WC1+ T cells. In contrast, all in vitro and in vivo T. parva Chitongo-transformed clones expressed CD8 but not CD4 or WC1, suggesting that the T. parva Chitongo-transformed target cells were exclusively infected CD8+ lymphocytes. Thus, a role of cell tropism in virulence is likely. Since the adhesion molecule p67 is 100% identical between the two strains, a second, high-affinity adhesin that determines target cell specificity appears to exist. PMID:22202119

  17. Diversity analysis of lactic acid bacteria in takju, Korean rice wine.

    PubMed

    Jin, Jianbo; Kim, So-Young; Jin, Qing; Eom, Hyun-Ju; Han, Nam Soo

    2008-10-01

    To investigate the lactic acid bacterial population in Korean traditional rice wines, biotyping was performed using cell morphology and whole-cell protein pattern analysis by SDSPAGE, and then the isolates were identified by 16S rRNA sequencing analysis. Based on the morphological characteristics, 103 LAB isolates were detected in wine samples, characterized by whole-cell protein pattern analysis, and they were then divided into 18 patterns. By gene sequencing of 16S rRNA, the isolates were identified as Lactobacillus paracasei, Lb. arizonensis, Lb. plantarum, Lb. harbinensis, Lb. parabuchneri, Lb. brevis, and Lb. hilgardii when listed by their frequency of occurrence. It was found that the difference in bacterial diversity between rice and grape wines depends on the raw materials, especially the composition of starch and glucose.

  18. Clonal analysis of synovial fluid stem cells to characterize and identify stable mesenchymal stromal cell/mesenchymal progenitor cell phenotypes in a porcine model: a cell source with enhanced commitment to the chondrogenic lineage.

    PubMed

    Ando, Wataru; Kutcher, Josh J; Krawetz, Roman; Sen, Arindom; Nakamura, Norimasa; Frank, Cyril B; Hart, David A

    2014-06-01

    Previous studies have demonstrated that porcine synovial membrane stem cells can adhere to a cartilage defect in vivo through the use of a tissue-engineered construct approach. To optimize this model, we wanted to compare effectiveness of tissue sources to determine whether porcine synovial fluid, synovial membrane, bone marrow and skin sources replicate our understanding of synovial fluid mesenchymal stromal cells or mesenchymal progenitor cells from humans both at the population level and the single-cell level. Synovial fluid clones were subsequently isolated and characterized to identify cells with a highly characterized optimal phenotype. The chondrogenic, osteogenic and adipogenic potentials were assessed in vitro for skin, bone marrow, adipose, synovial fluid and synovial membrane-derived stem cells. Synovial fluid cells then underwent limiting dilution analysis to isolate single clonal populations. These clonal populations were assessed for proliferative and differentiation potential by use of standardized protocols. Porcine-derived cells demonstrated the same relationship between cell sources as that demonstrated previously for humans, suggesting that the pig may be an ideal preclinical animal model. Synovial fluid cells demonstrated the highest chondrogenic potential that was further characterized, demonstrating the existence of a unique clonal phenotype with enhanced chondrogenic potential. Porcine stem cells demonstrate characteristics similar to those in human-derived mesenchymal stromal cells from the same sources. Synovial fluid-derived stem cells contain an inherent phenotype that may be optimal for cartilage repair. This must be more fully investigated for future use in the in vivo tissue-engineered construct approach in this physiologically relevant preclinical porcine model. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  19. Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.

    PubMed

    Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam

    2014-05-01

    The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.

  20. The biology of recent thymic emigrants.

    PubMed

    Fink, Pamela J

    2013-01-01

    The generation of the TCRαβ lineage of T cells occurs in the thymus through a series of orchestrated developmental events that result in a carefully selected population of CD4 or CD8 lineage-committed TCR(+) thymocytes capable of recognizing foreign antigen in the context of self MHC. T cells first exit the thymus in a phenotypically and functionally immature state and require an approximately 3-week period of post-thymic maturation before transitioning into the mature T cell compartment. A greater understanding of recent thymic emigrant biology has come with the development of methods to exclusively identify and isolate this population for further characterization. I now review current knowledge about the phenotype and function of this key but understudied population of peripheral T cells.

  1. Reporter-Based Isolation of Developmental Myogenic Progenitors

    PubMed Central

    Kheir, Eyemen; Cusella, Gabriella; Messina, Graziella; Cossu, Giulio; Biressi, Stefano

    2018-01-01

    The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS). The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors. PMID:29674978

  2. Characterization of human skeletal stem and bone cell populations using dielectrophoresis.

    PubMed

    Ismail, A; Hughes, M P; Mulhall, H J; Oreffo, R O C; Labeed, F H

    2015-02-01

    Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorders. However, identifying and sorting these cells remains a challenge in the absence of unique skeletal stem cell markers. DEP provides an ideal method for identifying subsets of cells without the need for markers by using their dielectric properties. This study used a 3D dielectrophoretic well chip device to determine the dielectric characteristics of two osteosarcoma cell lines (MG-63 and SAOS-2) and an immunoselected enriched skeletal stem cell fraction (STRO-1 positive cell) of human bone marrow. Skeletal cells were exposed to a series of different frequencies to induce dielectrophoretic cell movement, and a model was developed to generate the membrane and cytoplasmic properties of the cell populations. Differences were observed in the dielectric properties of MG-63, SAOS-2 and STRO-1 enriched skeletal populations, which could potentially be used to sort cells in mixed populations. This study provide evidence of the ability to characterize different human skeletal stem and mature cell populations, and acts as a proof-of-concept that dielectrophoresis can be exploited to detect, isolate and separate skeletal cell populations from heterogeneous bone marrow cell populations. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Isolation and Quantitative Immunocytochemical Characterization of Primary Myogenic Cells and Fibroblasts from Human Skeletal Muscle

    PubMed Central

    Agley, Chibeza C.; Rowlerson, Anthea M.; Velloso, Cristiana P.; Lazarus, Norman L.; Harridge, Stephen D. R.

    2015-01-01

    The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56+ and later as CD56+/desmin+ cells and (ii) muscle-derived fibroblasts, identified as CD56– and TE-7+. Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56+ cells bound to microbeads are retained by the field whereas CD56– cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package. PMID:25650991

  4. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal

    PubMed Central

    Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.

    2015-01-01

    To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399

  5. Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.

    PubMed

    Hahn, Soojung; Yoo, Jongman

    2017-08-17

    An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.

  6. Human mesenchymal stem cells: a bank perspective on the isolation, characterization and potential of alternative sources for the regeneration of musculoskeletal tissues.

    PubMed

    Moroni, Lorenzo; Fornasari, Pier Maria

    2013-04-01

    The continuous discovery of human mesenchymal stem cells (hMSCs) in different tissues is stirring up a tremendous interest as a cell source for regenerative medicine therapies. Historically, hMSCs have been always considered a sub-population of mononuclear cells present in the bone marrow (BM). Although BM-hMSCs are still nowadays considered as the most promising mesenchymal stem cell population to reach the clinics due to their capacity to differentiate into multiple tissues, hMSCs derived from other adult and fetal tissues have also demonstrated to possess similar differentiation capacities. Furthermore, different reports have highlighted a higher recurrence of hMSCs in some of these tissues as compared to BM. This offer a fascinating panorama for cell banking, since the creation of a stem cell factory could be envisioned where hMSCs are stocked and used for ad hoc clinical applications. In this review, we summarize the main findings and state of the art in hMSCs isolation, characterization, and differentiation from alternative tissue sources and we attempt to compare their potency for musculoskeletal regeneration. Copyright © 2012 Wiley Periodicals, Inc.

  7. Generation of genome-modified Drosophila cell lines using SwAP.

    PubMed

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  8. Whole Genome Amplification of Labeled Viable Single Cells Suited for Array-Comparative Genomic Hybridization.

    PubMed

    Kroneis, Thomas; El-Heliebi, Amin

    2015-01-01

    Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.

  9. Wiring Together Synthetic Bacterial Consortia to Create a Biological Integrated Circuit.

    PubMed

    Perry, Nicolas; Nelson, Edward M; Timp, Gregory

    2016-12-16

    The promise of adapting biology to information processing will not be realized until engineered gene circuits, operating in different cell populations, can be wired together to express a predictable function. Here, elementary biological integrated circuits (BICs), consisting of two sets of transmitter and receiver gene circuit modules with embedded memory placed in separate cell populations, were meticulously assembled using live cell lithography and wired together by the mass transport of quorum-sensing (QS) signal molecules to form two isolated communication links (comlinks). The comlink dynamics were tested by broadcasting "clock" pulses of inducers into the networks and measuring the responses of functionally linked fluorescent reporters, and then modeled through simulations that realistically captured the protein production and molecular transport. These results show that the comlinks were isolated and each mimicked aspects of the synchronous, sequential networks used in digital computing. The observations about the flow conditions, derived from numerical simulations, and the biofilm architectures that foster or silence cell-to-cell communications have implications for everything from decontamination of drinking water to bacterial virulence.

  10. Methods of cell purification: a critical juncture for laboratory research and translational science.

    PubMed

    Amos, Peter J; Cagavi Bozkulak, Esra; Qyang, Yibing

    2012-01-01

    Research in cell biology and the development of translational technologies are driven by competition, public expectations, and regulatory oversight, putting these fields at a critical juncture. Success in these fields is quickly becoming dependent on the ability of researchers to identify and isolate specific cell populations from heterogeneous mixtures accurately and efficiently. Many methods for cell purification have been developed, and each has advantages and disadvantages that must be considered in light of the intended application. Current cell separation strategies make use of surface proteins, genetic expression, and physics to isolate specific cells by phenotypic traits. Cell purification is also dependent on the cellular reagents available for use and the intended application, as these factors may preclude certain mechanisms used in the processes of labeling and sorting cells. Copyright © 2011 S. Karger AG, Basel.

  11. Cell Motility and Invasiveness of Neurofibromin-Deficient Neural Crest Cells and Malignant Triton Tumor Lines

    DTIC Science & Technology

    2005-06-01

    derived cells, we isolated first branchial arch mesenchymal populations, as well as trigeminal ganglion non-neuronal cells, from mouse embryos and measured...demonstrate that loss of neurofibromin affects the invasiveness of neural crest-derived (trigeminal ganglion) and cranial mesenchymal ( branchial arch) cell...trigeminal and branchial arch cells between El0 and El 2 indicates that the roles of neurofibromin in controlling motility may become increasingly

  12. Controlled viable release of selectively captured label-free cells in microchannels.

    PubMed

    Gurkan, Umut Atakan; Anand, Tarini; Tas, Huseyin; Elkan, David; Akay, Altug; Keles, Hasan Onur; Demirci, Utkan

    2011-12-07

    Selective capture of cells from bodily fluids in microchannels has broadly transformed medicine enabling circulating tumor cell isolation, rapid CD4(+) cell counting for HIV monitoring, and diagnosis of infectious diseases. Although cell capture methods have been demonstrated in microfluidic systems, the release of captured cells remains a significant challenge. Viable retrieval of captured label-free cells in microchannels will enable a new era in biological sciences by allowing cultivation and post-processing. The significant challenge in release comes from the fact that the cells adhere strongly to the microchannel surface, especially when immuno-based immobilization methods are used. Even though fluid shear and enzymes have been used to detach captured cells in microchannels, these methods are known to harm cells and affect cellular characteristics. This paper describes a new technology to release the selectively captured label-free cells in microchannels without the use of fluid shear or enzymes. We have successfully released the captured CD4(+) cells (3.6% of the mononuclear blood cells) from blood in microfluidic channels with high specificity (89% ± 8%), viability (94% ± 4%), and release efficiency (59% ± 4%). We have further validated our system by specifically capturing and controllably releasing the CD34(+) stem cells from whole blood, which were quantified to be 19 cells per million blood cells in the blood samples used in this study. Our results also indicated that both CD4(+) and CD34(+) cells released from the microchannels were healthy and amenable for in vitro culture. Manual flow based microfluidic method utilizes inexpensive, easy to fabricate microchannels allowing selective label-free cell capture and release in less than 10 minutes, which can also be used at the point-of-care. The presented technology can be used to isolate and purify a broad spectrum of cells from mixed populations offering widespread applications in applied biological sciences, such as tissue engineering, regenerative medicine, rare cell and stem cell isolation, proteomic/genomic research, and clonal/population analyses.

  13. Restoring the quantity and quality of elderly human mesenchymal stem cells for autologous cell-based therapies.

    PubMed

    Block, Travis J; Marinkovic, Milos; Tran, Olivia N; Gonzalez, Aaron O; Marshall, Amanda; Dean, David D; Chen, Xiao-Dong

    2017-10-27

    Degenerative diseases are a major public health concern for the aging population and mesenchymal stem cells (MSCs) have great potential for treating many of these diseases. However, the quantity and quality of MSCs declines with aging, limiting the potential efficacy of autologous MSCs for treating the elderly population. Human bone marrow (BM)-derived MSCs from young and elderly donors were obtained and characterized using standard cell surface marker criteria (CD73, CD90, CD105) as recommended by the International Society for Cellular Therapy (ISCT). The elderly MSC population was isolated into four subpopulations based on size and stage-specific embryonic antigen-4 (SSEA-4) expression using fluorescence-activated cell sorting (FACS), and subpopulations were compared to the unfractionated young and elderly MSCs using assays that evaluate MSC proliferation, quality, morphology, intracellular reactive oxygen species, β-galactosidase expression, and adenosine triphosphate (ATP) content. The ISCT-recommended cell surface markers failed to detect any differences between young and elderly MSCs. Here, we report that elderly MSCs were larger in size and displayed substantially higher concentrations of intracellular reactive oxygen species and β-galactosidase expression and lower amounts of ATP and SSEA-4 expression. Based on these findings, cell size and SSEA-4 expression were used to separate the elderly MSCs into four subpopulations by FACS. The original populations (young and elderly MSCs), as well as the four subpopulations, were then characterized before and after culture on tissue culture plastic and BM-derived extracellular matrix (BM-ECM). The small SSEA-4-positive subpopulation representing ~ 8% of the original elderly MSC population exhibited a "youthful" phenotype that was similar to that of young MSCs. The biological activity of this elderly subpopulation was inhibited by senescence-associated factors produced by the unfractionated parent population. After these "youthful" cells were isolated and expanded (three passages) on a "young microenvironment" (i.e., BM-ECM produced by BM cells from young donors), the number of cells increased ≈ 17,000-fold to 3 × 10 9 cells and retained their "youthful" phenotype. These results suggest that it is feasible to obtain large numbers of high-quality autologous MSCs from the elderly population and establish personal stem cell banks that will allow serial infusions of "rejuvenated" MSCs for treating age-related diseases.

  14. Heterogeneous Human Periodontal Ligament-Committed Progenitor and Stem Cell Populations Exhibit a Unique Cementogenic Property Under In Vitro and In Vivo Conditions.

    PubMed

    Shinagawa-Ohama, Rei; Mochizuki, Mai; Tamaki, Yuichi; Suda, Naoto; Nakahara, Taka

    2017-05-01

    An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.

  15. Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament.

    PubMed

    Navabazam, Ali Reza; Sadeghian Nodoshan, Fatemeh; Sheikhha, Mohammad Hasan; Miresmaeili, Sayyed Mohsen; Soleimani, Mehrdad; Fesahat, Farzaneh

    2013-03-01

    Human dental stem cells have high proliferative potential for self-renewal that is important to the regenerative capacity of the tissue. Objective : The aim was to isolate human dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC) and periapical follicle stem cells (PAFSC) for their potential role in tissue regeneration. In this experimental study, the postnatal stem cells were isolated from dental pulp, preapical follicle and periodontal ligament .The cells were stained for different stem cell markers by immunocytochemistry. To investigate the mesenchymal nature of cells, differentiation potential along osteoblastic and adipogenic lineages and gene expression profile were performed. For proliferation potential assay, Brdu staining and growth curve tests were performed. Finally, all three cell types were compared together regarding their proliferation, differentiation and displaying phenotype. The isolated cell populations have similar fibroblastic like morphology and expressed all examined cell surface molecule markers. These cells were capable of differentiating into osteocyte with different capability and adipocyte with the same rate. PAFSCs showed more significant proliferation rate than others. Reverse transcriptase PCR (RT-PCR) for nanog, oct4, Alkaline phosphatase (ALP) and glyceraldehydes-3-phosphate dehydrogenease (GADPH) as control gene showed strong positive expression of these genes in all three isolated cell types. PDLSCs, DPSCs and PAFSCs exist in various tissues of the teeth and can use as a source of mesenchymal stem cells for developing bioengineered organs and also in craniomaxillofacial reconstruction with varying efficiency in differentiation and proliferation.

  16. A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood.

    PubMed

    Monti, Manuela; Imberti, Barbara; Bianchi, Niccolò; Pezzotta, Anna; Morigi, Marina; Del Fante, Claudia; Redi, Carlo Alberto; Perotti, Cesare

    2017-09-01

    Very small embryonic-like cells (VSELs) are a population of very rare pluripotent stem cells isolated in adult murine bone marrow and many other tissues and organs, including umbilical cord blood (UCB). VSEL existence is still not universally accepted by the scientific community, so for this purpose, we sought to investigate whether presumptive VSELs (pVSELs) could be isolated from human UCB with an improved protocol based on the isolation of enriched progenitor cells by depletion of nonprogenitor cells with magnetic separation. Progenitor cells, likely including VSELs, cultured with retinoic acid were able to form dense colonies and cystic embryoid bodies and to differentiate toward the ecto-meso-endoderm lineages as shown by the positivity to specific markers. VSEL differentiative potential toward mesodermal lineage was further demonstrated in vitro upon exposure to an established inductive protocol, which induced the acquisition of renal progenitor cell phenotype. VSEL-derived renal progenitors showed regenerative potential in a cisplatin model of acute kidney injury by restoring renal function and tubular structure through induction of proliferation of endogenous renal cells. The data presented here foster the great debate that surrounds VSELs and, more in general, the existence of cells endowed with pluripotent features in adult tissues. In fact, the possibility to find and isolate subpopulations of cells that fully fit all the criteria utilized to define pluripotency remains, nowadays, almost unproven. Thus, efforts to better characterize the phenotype of these intriguing cells are crucial to understand their possible applications for regenerative and precision medicine purposes.

  17. ATP release from freshly isolated guinea-pig bladder urothelial cells: a quantification and study of the mechanisms involved.

    PubMed

    McLatchie, Linda M; Fry, Christopher H

    2015-06-01

    To quantify the amount of ATP released from freshly isolated bladder urothelial cells, study its control by intracellular and extracellular calcium and identify the pathways responsible for its release. Urothelial cells were isolated from male guinea-pig urinary bladders and stimulated to release ATP by imposition of drag forces by repeated pipetting. ATP was measured using a luciferin-luciferase assay and the effects of modifying internal and external calcium concentration and blockers of potential release pathways studied. Freshly isolated guinea-pig urothelial cells released ATP at a mean (sem) rate of 1.9 (0.1) pmoles/mm(2) cell membrane, corresponding to about 700 pmoles/g of tissue, and about half [49 (6)%, n = 9) of the available cell ATP. This release was reduced to a mean (sem) of 0.46 (0.08) pmoles/mm(2) (160 pmoles/g) with 1.8 mm external calcium, and was increased about two-fold by increasing intracellular calcium. The release from umbrella cells was not significantly different from a mixed intermediate and basal cell population, suggesting that all three groups of cells release a similar amount of ATP per unit area. ATP release was reduced by ≈ 50% by agents that block pannexin and connexin hemichannels. It is suggested that the remainder may involve vesicular release. A significant fraction of cellular ATP is released from isolated urothelial cells by imposing drag forces that cause minimal loss of cell viability. This release involves multiple release pathways, including hemichannels and vesicular release. © 2014 The Authors BJU International © 2014 BJU International.

  18. Isolation and characterization of node/notochord-like cells from mouse embryonic stem cells.

    PubMed

    Winzi, Maria K; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2011-11-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP(+) cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen's node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures.

  19. Isolation and Characterization of Node/Notochord-Like Cells from Mouse Embryonic Stem Cells

    PubMed Central

    Winzi, Maria K.; Hyttel, Poul; Dale, Jacqueline Kim; Serup, Palle

    2014-01-01

    The homeobox gene Noto is expressed in the node and its derivative the notochord. Here we use a targeted Noto-GFP reporter to isolate and characterize node/notochord-like cells derived from mouse embryonic stem cells. We find very few Noto-expressing cells after spontaneous differentiation. However, the number of Noto-expressing cells was increased when using Activin A to induce a Foxa2- and Brachyury-expressing progenitor population, whose further differentiation into Noto-expressing cells was improved by simultaneous inhibition of BMP, Wnt, and retinoic acid signaling. Noto-GFP+ cells expressed the node/notochord markers Noto, Foxa2, Shh, Noggin, Chordin, Foxj1, and Brachyury; showed a vacuolarization characteristic of notochord cells; and can integrate into midline structures when grafted into Hensen’s node of gastrulating chicken embryos. The ability to generate node/notochord-like cells in vitro will aid the biochemical characterization of these developmentally important structures. PMID:21351873

  20. Therapeutic implications of an enriched cancer stem-like cell population in a human osteosarcoma cell line

    PubMed Central

    2012-01-01

    Background Osteosarcoma is a bone-forming tumor of mesenchymal origin that presents a clinical pattern that is consistent with the cancer stem cell model. Cells with stem-like properties (CSCs) have been identified in several tumors and hypothesized as the responsible for the relative resistance to therapy and tumor relapses. In this study, we aimed to identify and characterize CSCs populations in a human osteosarcoma cell line and to explore their role in the responsiveness to conventional therapies. Methods CSCs were isolated from the human MNNG/HOS cell line using the sphere formation assay and characterized in terms of self-renewal, mesenchymal stem cell properties, expression of pluripotency markers and ABC transporters, metabolic activity and tumorigenicity. Cell's sensitivity to conventional chemotherapeutic agents and to irradiation was analyzed and related with cell cycle-induced alterations and apoptosis. Results The isolated CSCs were found to possess self-renewal and multipotential differentiation capabilities, express markers of pluripotent embryonic stem cells Oct4 and Nanog and the ABC transporters P-glycoprotein and BCRP, exhibit low metabolic activity and induce tumors in athymic mice. Compared with parental MNNG/HOS cells, CSCs were relatively more resistant to both chemotherapy and irradiation. None of the treatments have induced significant cell-cycle alterations and apoptosis in CSCs. Conclusions MNNG/HOS osteosarcoma cells contain a stem-like cell population relatively resistant to conventional chemotherapeutic agents and irradiation. This resistant phenotype appears to be related with some stem features, namely the high expression of the drug efflux transporters P-glycoprotein and BCRP and their quiescent nature, which may provide a biological basis for resistance to therapy and recurrence commonly observed in osteosarcoma. PMID:22475227

  1. Expression of GFP under the control of the RNA helicase VASA permits fluorescence-activated cell sorting isolation of human primordial germ cells.

    PubMed

    Tilgner, Katarzyna; Atkinson, Stuart P; Yung, Sun; Golebiewska, Anna; Stojkovic, Miodrag; Moreno, Ruben; Lako, Majlinda; Armstrong, Lyle

    2010-01-01

    The isolation of significant numbers of human primordial germ cells at several developmental stages is important for investigations of the mechanisms by which they are able to undergo epigenetic reprogramming. Only small numbers of these cells can be obtained from embryos of appropriate developmental stages, so the differentiation of human embryonic stem cells is essential to obtain sufficient numbers of primordial germ cells to permit epigenetic examination. Despite progress in the enrichment of human primordial germ cells using fluorescence-activated cell sorting (FACS), there is still no definitive marker of the germ cell phenotype. Expression of the widely conserved RNA helicase VASA is restricted to germline cells, but in contrast to species such as Mus musculus in which reporter constructs expressing green fluorescent protein (GFP) under the control of a Vasa promoter have been developed, such reporter systems are lacking in human in vitro models. We report here the generation and characterization of human embryonic stem cell lines stably carrying a VASA-pEGFP-1 reporter construct that expresses GFP in a population of differentiating human embryonic stem cells that show expression of characteristic markers of primordial germ cells. This population shows a different pattern of chromatin modifications to those obtained by FACS enrichment of Stage Specific Antigen one expressing cells in our previous publication.

  2. Phylogeny of lymphocyte heterogeneity: the cellular requirements for the mixed leucocyte reaction with channel catfish.

    PubMed Central

    Miller, N W; Deuter, A; Clem, L W

    1986-01-01

    Vigorous mixed leucocyte reactions (MLR) were obtained using channel catfish peripheral blood leucocytes (PBL) when equal numbers of responder and stimulator cells (5 X 10(5) cells each) were cocultured. The use of 2000 rads of X-irradiation was sufficient to block subsequent proliferative responses of the stimulator cells. The cellular requirements for channel catfish MLR responses were assessed by using three functionally distinct leucocyte subpopulations isolated from the PBL. B cells (sIg+ lymphocytes) and T cells (sIg- lymphocytes) were isolated by an indirect panning procedure employing a monoclonal antibody specific for channel catfish Ig. A third population, monocytes, was isolated or depleted by adherence to baby hamster kidney cell microexudate-coated surfaces or adherence to Sephadex G-10, respectively. The results indicated that only the T cells were able to respond in the fish MLR, with monocytes being required as accessory cells. In contrast, all three cell types could function as stimulator cells. In addition, it was observed that low in vitro culture temperatures inhibited the generation of channel catfish MLRs, thereby supporting the contention that low temperature immunosuppression in fish results from a preferential inhibition of the generation of primary T-cell responses. PMID:2944817

  3. A simple method for purification of vestibular hair cells and non-sensory cells, and application for proteomic analysis.

    PubMed

    Herget, Meike; Scheibinger, Mirko; Guo, Zhaohua; Jan, Taha A; Adams, Christopher M; Cheng, Alan G; Heller, Stefan

    2013-01-01

    Mechanosensitive hair cells and supporting cells comprise the sensory epithelia of the inner ear. The paucity of both cell types has hampered molecular and cell biological studies, which often require large quantities of purified cells. Here, we report a strategy allowing the enrichment of relatively pure populations of vestibular hair cells and non-sensory cells including supporting cells. We utilized specific uptake of fluorescent styryl dyes for labeling of hair cells. Enzymatic isolation and flow cytometry was used to generate pure populations of sensory hair cells and non-sensory cells. We applied mass spectrometry to perform a qualitative high-resolution analysis of the proteomic makeup of both the hair cell and non-sensory cell populations. Our conservative analysis identified more than 600 proteins with a false discovery rate of <3% at the protein level and <1% at the peptide level. Analysis of proteins exclusively detected in either population revealed 64 proteins that were specific to hair cells and 103 proteins that were only detectable in non-sensory cells. Statistical analyses extended these groups by 53 proteins that are strongly upregulated in hair cells versus non-sensory cells and vice versa by 68 proteins. Our results demonstrate that enzymatic dissociation of styryl dye-labeled sensory hair cells and non-sensory cells is a valid method to generate pure enough cell populations for flow cytometry and subsequent molecular analyses.

  4. Use of regenerative tissue for urinary diversion.

    PubMed

    Sopko, Nikolai A; Kates, Max; Bivalacqua, Trinity J

    2015-11-01

    There is a large interest in developing tissue engineered urinary diversions (TEUDs) in order to reduce the significant morbidity that results from utilization of the alimentary tract in the urinary system. Preclinical trials have been favorable but durable clinical results have not been realized. The present article will review the pertinent concepts for the clinical development of a successful TEUD. Studies continue to identify novel scaffold materials and cell populations that are combined to generate TEUDs. Scaffold composition range from synthetic material to decelluarized bladder tissue. Cell types vary from fully differentiated adult populations such as smooth muscle cells isolated from the bladder to stem cell populations including mesenchymal stem cells and induced pluripotent stem cells. Each scaffold and cell type has its advantages and disadvantages with no clear superior component having been identified. Recent clinical trials have been disappointing, supporting the need for additional investigation. Successful application of TEUDs requires a complex interplay of scaffold, cells, and host environment. Studies continue to investigate candidate scaffold materials, cell populations, and combinations thereof to determine which will best recapitulate the complex structure of the human genitourinary tract.

  5. Multi-locus variable-number tandem repeat analysis of Bordetella pertussis isolates circulating in Poland in the period 1959-2013.

    PubMed

    Mosiej, Ewa; Krysztopa-Grzybowska, Katarzyna; Polak, Maciej; Prygiel, Marta; Lutyńska, Anna

    2017-06-01

    Despite the long history of pertussis vaccination and high vaccination coverage in Poland and many other developed countries, pertussis incidence rates have increased substantially, making whooping cough one of the most prevalent vaccine-preventable diseases. Among the factors potentially involved in pertussis resurgence, the adaptation of the Bordetella pertussis population to country-specific vaccine-induced immunity through selection of non-vaccine-type strains still needs detailed studies. Multi-locus variable-number tandem repeat analysis (MLVA), also linked to MLST and PFGE profiling, was applied to trace the genetic changes in the B. pertussis population circulating in Poland in the period 1959-2013 versus country-specific vaccine strains. Generally, among 174 B. pertussis isolates, 31 MLVA types were detected, of which 11 were not described previously. The predominant MLVA types of recent isolates in Poland were different from those of the typical isolates circulating in other European countries. The MT27 type, currently predominant in Europe, was rarely seen and detected in only five isolates among all studied. The features of the vaccine strains used for production of the pertussis component of a national whole-cell diphtheria-tetanus-pertussis (DTP) vaccine, as studied by MLVA and MLST tools, were found to not match those observed in the currently circulating B. pertussis isolates in Poland. Differences traced by MLVA in relation to the MLST and PFGE profiling confirmed that the B. pertussis strain types currently observed elsewhere in Europe, even if appearing in Poland, were not able to successfully disseminate within a human population in Poland that has been vaccinated with a whole-cell pertussis vaccine not used in other countries.

  6. Ultrasound guided transplantation of enriched and cryopreserved spermatogonial cell suspension in goats.

    PubMed

    Kaul, G; Kaur, J; Rafeeqi, T A

    2010-12-01

    Spermatogonial stem cells transplantation provides a unique approach for studying spermatogenesis. Initially developed in mice, this technique has now been extended in farm animals and provides an alternative means to preserve valuable male germ line and to produce transgenic animals. The aim of this study was to enrich type A spermatogonial cells amongst the isolated cells from goat testis, to cryopreserve these enriched populations of cells and their subsequent transplantation in unrelated recipient goats under ultrasound guidance. The cells were isolated enzymatically and enriched by differential plating and separation on discontinuous percoll gradient. Ultrasound guided injection of trypan blue dye into rete testis resulted in 20-30% filling of the seminiferous tubules. Prior to transplantation, the cells were labelled with a fluorescent dye to trace donor cells in recipient seminiferous tubules after transplantation. The fluorescent-labelled cells were observed up to 12 weeks after transplantation. © 2009 Blackwell Verlag GmbH.

  7. Amnion: a potent graft source for cell therapy in stroke.

    PubMed

    Yu, Seong Jin; Soncini, Maddalena; Kaneko, Yuji; Hess, David C; Parolini, Ornella; Borlongan, Cesar V

    2009-01-01

    Regenerative medicine is a new field primarily based on the concept of transplanting exogenous or stimulating endogenous stem cells to generate biological substitutes and improve tissue functions. Recently, amnion-derived cells have been reported to have multipotent differentiation ability, and these cells have attracted attention as a novel cell source for cell transplantation therapy. Cells isolated from amniotic membrane can differentiate into all three germ layers, have low immunogenicity and anti-inflammatory function, and do not require the destruction of human embryos for their isolation, thus circumventing the ethical debate commonly associated with the use of human embryonic stem cells. Accumulating evidence now suggests that the amnion, which had been discarded after parturition, is a highly potent transplant material in the field of regenerative medicine. In this report, we review the current progress on the characterization of MSCs derived from the amnion as a remarkable transplantable cell population with therapeutic potential for multiple CNS disorders, especially stroke.

  8. Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.

    PubMed

    Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B

    2016-05-01

    Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.

  9. Novel population of small tumour-initiating stem cells in the ovaries of women with borderline ovarian cancer

    PubMed Central

    Virant-Klun, Irma; Stimpfel, Martin

    2016-01-01

    Small stem cells with diameters of up to 5 μm previously isolated from adult human ovaries indicated pluripotency and germinal lineage, especially primordial germ cells, and developed into primitive oocyte-like cells in vitro. Here, we show that a comparable population of small stem cells can be found in the ovarian tissue of women with borderline ovarian cancer, which, in contrast to small stem cells in “healthy” ovaries, formed spontaneous tumour-like structures and expressed some markers related to pluripotency and germinal lineage. The gene expression profile of these small putative cancer stem cells differed from similar cells sorted from “healthy” ovaries by 132 upregulated and 97 downregulated genes, including some important forkhead box and homeobox genes related to transcription regulation, developmental processes, embryogenesis, and ovarian cancer. These putative cancer stem cells are suggested to be a novel population of ovarian tumour-initiating cells in humans. PMID:27703207

  10. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.

    PubMed

    Klein, Allon M; Mazutis, Linas; Akartuna, Ilke; Tallapragada, Naren; Veres, Adrian; Li, Victor; Peshkin, Leonid; Weitz, David A; Kirschner, Marc W

    2015-05-21

    It has long been the dream of biologists to map gene expression at the single-cell level. With such data one might track heterogeneous cell sub-populations, and infer regulatory relationships between genes and pathways. Recently, RNA sequencing has achieved single-cell resolution. What is limiting is an effective way to routinely isolate and process large numbers of individual cells for quantitative in-depth sequencing. We have developed a high-throughput droplet-microfluidic approach for barcoding the RNA from thousands of individual cells for subsequent analysis by next-generation sequencing. The method shows a surprisingly low noise profile and is readily adaptable to other sequencing-based assays. We analyzed mouse embryonic stem cells, revealing in detail the population structure and the heterogeneous onset of differentiation after leukemia inhibitory factor (LIF) withdrawal. The reproducibility of these high-throughput single-cell data allowed us to deconstruct cell populations and infer gene expression relationships. VIDEO ABSTRACT. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Fluorescent-Magnetic-Biotargeting Multifunctional Nanobioprobes for Detecting and Isolating Multiple Types of Tumor Cells

    PubMed Central

    Song, Er-Qun; Hu, Jun; Wen, Cong-Ying; Tian, Zhi-Quan; Yu, Xu; Zhang, Zhi-Ling; Shi, Yun-Bo; Pang, Dai-Wen

    2011-01-01

    Fluorescent-magnetic-biotargeting multifunctional nanobioprobes (FMBMNs) have attracted great attention in recent years due to their increasing, important applications in biomedical research, clinical diagnosis, and biomedicine. We have previously developed such nanobioprobes for the detection and isolation of a single kind of tumor cells. Detection and isolation of multiple tumor markers or tumor cells from complex samples sensitively and with high efficiency is critical for the early diagnosis of tumors, especially malignant tumors or cancers, which will improve clinical diagnosis outcomes and help to select effective treatment approaches. Here, we expanded the application of the monoclonal antibody (mAb)-coupled FMBMNs for multiplexed assays. Multiple types of cancer cells, such as leukemia cells and prostate cancer cells, were detected and collected from mixed samples within 25 minutes by using a magnet and an ordinary fluorescence microscope. The capture efficiencies of mAb-coupled FMBMNs for the above mentioned two types of cells were 96% and 97% respectively. Furthermore, by using the mAb-coupled FMBMNs, specific and sensitive detection and rapid separation of a small number of spiked leukemia cells and prostate cancer cells in a large population of cultured normal cells (about 0.01% were tumor cells) were achieved simply and inexpensively without any sample pretreatment before cell analysis. Therefore, mAb-coupled multicolour FMBMNs may be used for very sensitive detection and rapid isolation of multiple cancer cells in biomedical research and medical diagnostics. PMID:21250650

  12. Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology.

    PubMed

    Son, Kiho; Mukherjee, Manali; McIntyre, Brendan A S; Eguez, Jose C; Radford, Katherine; LaVigne, Nicola; Ethier, Caroline; Davoine, Francis; Janssen, Luke; Lacy, Paige; Nair, Parameswaran

    2017-10-01

    Clinically relevant and reliable reports derived from in vitro research are dependent on the choice of cell isolation protocols adopted between different laboratories. Peripheral blood eosinophils are conventionally isolated using density-gradient centrifugation followed by immunomagnetic selection (positive/negative) while neutrophils follow a more simplified dextran-sedimentation methodology. With the increasing sophistication of molecular techniques, methods are now available that promise protocols with reduced user-manipulations, improved efficiency, and better yield without compromising the purity of enriched cell populations. These recent techniques utilize immunomagnetic particles with multiple specificities against differential cell surface markers to negatively select non-target cells from whole blood, greatly reducing the cost/time taken to isolate granulocytes. Herein, we compare the yield efficiencies, purity and baseline activation states of eosinophils/neutrophils isolated using one of these newer protocols that use immunomagnetic beads (MACSxpress isolation) vs. the standard isolation procedures. The study shows that the MACSxpress method consistently allowed higher yields per mL of peripheral blood compared to conventional methods (P<0.001, n=8, Wilcoxon paired test), with high isolation purities for both eosinophils (95.0±1.7%) and neutrophils (94.2±10.1%) assessed by two methods: Wright's staining and flow cytometry. In addition, enumeration of CD63 + (marker for eosinophil activation) and CD66b + (marker for neutrophil activation) cells within freshly isolated granulocytes, respectively, confirmed that conventional protocols using density-gradient centrifugation caused cellular activation of the granulocytes at baseline compared to the MACSxpress method. In conclusion, MACSxpress isolation kits were found to be superior to conventional techniques for consistent purifications of eosinophils and neutrophils that were suitable for activation assays involving degranulation markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Induction of insulin-producing cells from human pancreatic progenitor cells.

    PubMed

    Noguchi, H; Naziruddin, B; Shimoda, M; Fujita, Y; Chujo, D; Takita, M; Peng, H; Sugimoto, K; Itoh, T; Tamura, Y; Olsen, G S; Kobayashi, N; Onaca, N; Hayashi, S; Levy, M F; Matsumoto, S

    2010-01-01

    We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we sought to identify and isolate human pancreatic stem/progenitor cells. We also tested whether growth factors and protein transduction of pancreatic and duodenal homeobox factor-1 (PDX-1) and BETA2/NeuroD into human pancreatic stem/progenitor cells induced insulin or pancreas-related gene expressions. Human pancreata from brain-dead donors were used for islet isolation with the standard Ricordi technique modified by the Edmonton protocol. The cells from a duct-rich population were cultured in several media, based on those designed for mouse pancreatic or for human embryonic stem cells. To induce cell differentiation, cells were cultured for 2 weeks with exendin-4, nicotinamide, keratinocyte growth factor, PDX-1 protein, or BETA2/NeuroD protein. The cells in serum-free media showed morphologies similar to a mouse pancreatic stem cell line, while the cells in the medium for human embryonic stem cells formed fibroblast-like morphologies. The nucleus/cytoplasm ratios of the cells in each culture medium decreased during the culture. The cells stopped dividing after 30 days, suggesting that they had entered senescence. The cells treated with induction medium differentiated into insulin-producing cells, expressing pancreas-related genes. Duplications of cells from a duct-rich population were limited. Induction therapy with several growth factors and transduction proteins might provide a potential new strategy for induction of transplantable insulin-producing cells. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Viral Impacts on Total Abundance and Clonal Composition of the Harmful Bloom-Forming Phytoplankton Heterosigma akashiwo

    PubMed Central

    Tarutani, Kenji; Nagasaki, Keizo; Yamaguchi, Mineo

    2000-01-01

    Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments. PMID:11055943

  15. Isolation and in vitro cultivation of the aphid pathogenic fungus Entomophthora planchoniana.

    PubMed

    Freimoser, F M; Jensen, A B; Tuor, U; Aebi, M; Eilenberg, J

    2001-12-01

    Entomophthora planchoniana is an important fungal pathogen of aphids. Although Entomophthora chromaphidis has been considered a synonym for E. planchoniana, the two species are now separated, and E. planchoniana is reported not to grow in vitro. In this paper, we describe for the first time the isolation and cultivation of this species. Entomophthora planchoniana was isolated from a population of Ovatus crataegarius (Homoptera, Aphididae), which was infected by E. planchoniana only. The isolates did not sporulate, but the sequence of the small subunit rDNA and the restriction fragment length polymorphism patterns of the first part of the large subunit rDNA and the ITS II region confirm that the isolates were E. planchoniana. The isolated fungus grew in a medium consisting of Grace's insect cell culture medium supplemented with lactalbumin hydrolysate, yeastolate, and 10% fetal bovine serum or in GLEN medium with 10% fetal bovine serum. Vegetative cells of E. planchoniana were long and club-shaped and did not stain with Calcofluor, thus suggesting that they were protoplasts.

  16. Photobiomodulation of freshly isolated human adipose tissue-derived stromal vascular fraction cells by pulsed light-emitting diodes for direct clinical application.

    PubMed

    Priglinger, E; Maier, J; Chaudary, S; Lindner, C; Wurzer, C; Rieger, S; Redl, H; Wolbank, S; Dungel, P

    2018-06-01

    A highly interesting source for adult stem cells is adipose tissue, from which the stromal vascular fraction (SVF)-a heterogeneous cell population including the adipose-derived stromal/stem cells-can be obtained. To enhance the regenerative potential of freshly isolated SVF cells, low-level light therapy (LLLT) was used. The effects of pulsed blue (475 nm), green (516 nm), and red (635 nm) light from light-emitting diodes applied on freshly isolated SVF were analysed regarding cell phenotype, cell number, viability, adenosine triphosphate content, cytotoxicity, and proliferation but also osteogenic, adipogenic, and proangiogenic differentiation potential. The colony-forming unit fibroblast assay revealed a significantly increased colony size after LLLT with red light compared with untreated cells, whereas the frequency of colony-forming cells was not affected. LLLT with green and red light resulted in a stronger capacity to form vascular tubes by SVF when cultured within 3D fibrin matrices compared with untreated cells, which was corroborated by increased number and length of the single tubes and a significantly higher concentration of vascular endothelial growth factor. Our study showed beneficial effects after LLLT on the vascularization potential and proliferation capacity of SVF cells. Therefore, LLLT using pulsed light-emitting diode light might represent a new approach for activation of freshly isolated SVF cells for direct clinical application. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Lycopersicon esculentum lectin is a marker of transient amplifying cells in in vitro cultures of isolated limbal stem cells.

    PubMed

    Vergallo, C; Fonseca, T; Pizzi, G; Dini, L

    2010-08-01

    The maintenance of a healthy corneal epithelium under both normal and wound healing conditions is achieved by a population of stem cells (SCs) located in the basal epithelium at the corneoscleral limbus. In the light of the development of strategies for reconstruction of the ocular surface in patients with limbal stem cell deficiency, a major challenge in corneal SCs biology remains the ability to identify stem cells in situ and in vitro. To date, not so much markers exist for the identification of different phenotypes. CESCs (corneal epithelial stem cells) isolated from limbal biopsies were maintained in primary culture for 14 days and stained with Hoechst and a panel of FITC-conjugated lectins. All lectins, with the exception of Lycopersicon esculentum, labelled CESCs irrespective of the degree of differentiation. Lycopersicon esculentum, that binds N-acetylglucosamine oligomers, labelled intensely only the surface of TACs (single corneal epithelial stem cells better than colonial cells). These results suggest that Lycopersicon esculentum lectin is a useful and easy-to-use marker for the in vitro identification of TACs (transient amplifying cells) in cultures of isolated CESCs. Copyright 2010. Published by Elsevier Ltd.

  18. Isolation and characterization of mesenchymal progenitors derived from the bone marrow of goats native from northeastern Brazil.

    PubMed

    Silva Filho, Osmar Ferreira da; Argôlo Neto, Napoleão Martins; Carvalho, Maria Acelina Martins de; Carvalho, Yulla Klinger de; Diniz, Anaemilia das Neves; Moura, Laécio da Silva; Ambrósio, Carlos Eduardo; Monteiro, Janaína Munuera; Almeida, Hatawa Melo de; Miglino, Maria Angélica; Alves, Jacyara de Jesus Rosa Pereira; Macedo, Kássio Vieira; Rocha, Andressa Rego da; Feitosa, Matheus Levi Tajra; Alves, Flávio Ribeiro

    2014-08-01

    To characterize bone marrow progenitors cells grown in vitro, using native goats from northeastern Brazil as animal model. Ten northeastern Brazil native goats of both genders were used from the Piauí Federal University Agricultural Science Center's (UFPI) - Goat Farming Sector. Bone marrow aspirates where taken from the tibial ridge and seeded on culture plates for isolation, expansion and Flow Cytometry (expression markers - Oct-3/4, PCNA, Ck-Pan, Vimentina, Nanog). Progenitor cells showed colonies characterized by the presence of cell pellets with fibroblastoid morphology. Cell confluence was taken after 14 days culture and the non-adherent mononuclear cell progressive reduction. After the first passage, 94.36% cell viability was observed, starting from 4.6 x 106 cell/mL initially seeded. Cells that went through flow cytometry showed positive expression for Oct-3/4, PCNA, Ck-Pan, Vimentina, and Nanog. Bone marrow progenitor isolated of native goats from northeastern Brazil showed expression markers also seen in embryonic stem cells (Oct-3/4, Nanog), markers of cell proliferation (PCNA) and markers for mesenchymal cells (Vimentina and Ck-pan), which associated to morphological and culture growth features, suggest the existence of a mesenchymal stem cell (MSC) population in the goat bone marrow stromal cells studied.

  19. Simultaneous Multiparameter Cellular Energy Metabolism Profiling of Small Populations of Cells.

    PubMed

    Kelbauskas, Laimonas; Ashili, Shashaanka P; Lee, Kristen B; Zhu, Haixin; Tian, Yanqing; Meldrum, Deirdre R

    2018-03-12

    Functional and genomic heterogeneity of individual cells are central players in a broad spectrum of normal and disease states. Our knowledge about the role of cellular heterogeneity in tissue and organism function remains limited due to analytical challenges one encounters when performing single cell studies in the context of cell-cell interactions. Information based on bulk samples represents ensemble averages over populations of cells, while data generated from isolated single cells do not account for intercellular interactions. We describe a new technology and demonstrate two important advantages over existing technologies: first, it enables multiparameter energy metabolism profiling of small cell populations (<100 cells)-a sample size that is at least an order of magnitude smaller than other, commercially available technologies; second, it can perform simultaneous real-time measurements of oxygen consumption rate (OCR), extracellular acidification rate (ECAR), and mitochondrial membrane potential (MMP)-a capability not offered by any other commercially available technology. Our results revealed substantial diversity in response kinetics of the three analytes in dysplastic human epithelial esophageal cells and suggest the existence of varying cellular energy metabolism profiles and their kinetics among small populations of cells. The technology represents a powerful analytical tool for multiparameter studies of cellular function.

  20. Electrolytic Valving Isolation for Cell Co-Culture Microenvironment with Controlled Cell Pairing Ratios

    PubMed Central

    Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik

    2016-01-01

    Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341

  1. Enrichment and isolation of neurons from adult mouse brain for ex vivo analysis.

    PubMed

    Berl, Sabina; Karram, Khalad; Scheller, Anja; Jungblut, Melanie; Kirchhoff, Frank; Waisman, Ari

    2017-05-01

    Isolation of neurons from the adult mouse CNS is important in order to study their gene expression during development or the course of different diseases. Here we present two different methods for the enrichment or isolation of neurons from adult mouse CNS. These methods: are either based on flow cytometry sorting of eYFP expressing neurons, or by depletion of non-neuronal cells by sorting with magnetic-beads. Enrichment by FACS sorting of eYFP positive neurons results in a population of 62.4% NeuN positive living neurons. qPCR data shows a 3-5fold upregulation of neuronal markers. The isolation of neurons based on depletion of non-neuronal cells using the Miltenyi Neuron Isolation Kit, reaches a purity of up to 86.5%. qPCR data of these isolated neurons shows an increase in neuronal markers and an absence of glial markers, proving pure neuronal RNA isolation. Former data related to neuronal gene expression are mainly based on histology, which does not allow for high-throughput transcriptome analysis to examine differential gene expression. These protocols can be used to study cell type specific gene expression of neurons to unravel their function in the process of damage to the CNS. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Screening of Peptide Libraries against Protective Antigen of Bacillus anthracis in a Disposable Microfluidic Cartridge

    PubMed Central

    Kogot, Joshua M.; Zhang, Yanting; Moore, Stephen J.; Pagano, Paul; Stratis-Cullum, Dimitra N.; Chang-Yen, David; Turewicz, Marek; Pellegrino, Paul M.; de Fusco, Andre; Soh, H. Tom; Stagliano, Nancy E.

    2011-01-01

    Bacterial surface peptide display has gained popularity as a method of affinity reagent generation for a wide variety of applications ranging from drug discovery to pathogen detection. In order to isolate the bacterial clones that express peptides with high affinities to the target molecule, multiple rounds of manual magnetic activated cell sorting (MACS) followed by multiple rounds of fluorescence activated cell sorting (FACS) are conventionally used. Although such manual methods are effective, alternative means of library screening which improve the reproducibility, reduce the cost, reduce cross contamination, and minimize exposure to hazardous target materials are highly desired for practical application. Toward this end, we report the first semi-automated system demonstrating the potential for screening bacterially displayed peptides using disposable microfluidic cartridges. The Micro-Magnetic Separation platform (MMS) is capable of screening a bacterial library containing 3×1010 members in 15 minutes and requires minimal operator training. Using this system, we report the isolation of twenty-four distinct peptide ligands that bind to the protective antigen (PA) of Bacilus anthracis in three rounds of selection. A consensus motif WXCFTC was found using the MMS and was also found in one of the PA binders isolated by the conventional MACS/FACS approach. We compared MMS and MACS rare cell recovery over cell populations ranging from 0.1% to 0.0000001% and found that both magnetic sorting methods could recover cells down to 0.0000001% initial cell population, with the MMS having overall lower standard deviation of cell recovery. We believe the MMS system offers a compelling approach towards highly efficient, semi-automated screening of molecular libraries that is at least equal to manual magnetic sorting methods and produced, for the first time, 15-mer peptide binders to PA protein that exhibit better affinity and specificity than peptides isolated using conventional MACS/FACS. PMID:22140433

  3. Intestinal Escherichia coli colonization in a mallard duck population over four consecutive winter seasons.

    PubMed

    Rödiger, Stefan; Kramer, Toni; Frömmel, Ulrike; Weinreich, Jörg; Roggenbuck, Dirk; Guenther, Sebastian; Schaufler, Katharina; Schröder, Christian; Schierack, Peter

    2015-09-01

    We report the population structure and dynamics of one Escherichia coli population of wild mallard ducks in their natural environment over four winter seasons, following the characterization of 100 isolates each consecutive season. Macro-restriction analysis was used to define isolates variously as multi- or 1-year pulsed-field gel electrophoresis (PFGE) types. Isolates were characterized genotypically based on virulence-associated genes (VAGs), phylogenetic markers, and phenotypically based on haemolytic activity, antimicrobial resistance, adhesion to epithelial cells, microcin production, motility and carbohydrate metabolism. Only 12 out of 220 PFGE types were detectable over more than one winter, and classified as multi-year PFGE types. There was a dramatic change of PFGE types within two winter seasons. Nevertheless, the genetic pool (VAGs) and antimicrobial resistance pattern remained remarkably stable. The high diversity and dynamics of this E. coli population were also demonstrated by the occurrence of PFGE subtypes and differences between isolates of one PFGE type (based on VAGs, antimicrobial resistance and adhesion rates). Multi- and 1-year PFGE types differed in antimicrobial resistance, VAGs and adhesion. Other parameters were not prominent colonization factors. In conclusion, the high diversity, dynamics and stable genetic pool of an E. coli population seem to enable their successful colonization of host animal population over time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  4. Continuous flow microfluidic separation and processing of rare cells and bioparticles found in blood - A review.

    PubMed

    Antfolk, Maria; Laurell, Thomas

    2017-05-01

    Rare cells in blood, such as circulating tumor cells or fetal cells in the maternal circulation, posses a great prognostic or diagnostic value, or for the development of personalized medicine, where the study of rare cells could provide information to more specifically targeted treatments. When conventional cell separation methods, such as flow cytometry or magnetic activated cell sorting, have fallen short other methods are desperately sought for. Microfluidics have been extensively used towards isolating and processing rare cells as it offers possibilities not present in the conventional systems. Furthermore, microfluidic methods offer new possibilities for cell separation as they often rely on non-traditional biomarkers and intrinsic cell properties. This offers the possibility to isolate cell populations that would otherwise not be targeted using conventional methods. Here, we provide an extensive review of the latest advances in continuous flow microfluidic rare cell separation and processing with each cell's specific characteristics and separation challenges as a point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Single marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehyrdrogenase

    PubMed Central

    Clay, MR.; Tabor, M.; Owen, J.; Carey, TE.; Bradford, CR.; Wolf, GT.; Wicha, MS.; Prince, ME.

    2010-01-01

    Background According to the cancer stem cell (CSC) theory only a small subset of cancer cells are capable of forming tumors. We previously reported that CD44 isolates tumorigenic cells from HNSCC. Recent studies indicate that aldehyde dehydrogenase (ALDH) activity may represent a more specific marker of CSCs. Methods Six primary HNSCC were collected. Cells with high and low ALDH activity (ALDHhigh/ALDHlow) were isolated. ALDHhigh and ALDHlow populations were implanted into NOD/SCID mice and monitored for tumor development. Results ALDHhigh cells represented a small percentage of the tumor cells (1-7.8%). ALDHhigh cells formed tumors from as few as 500 cells in 24/45 implantations while only 3/37 implantations of ALDHlow cells formed tumors. Conclusions ALDHhigh cells comprise a subpopulation cells in HNSCC that are tumorigenic and capable of producing tumors at very low numbers. This finding indicates that ALDH activity on its own is a highly selective marker for CSCs in HNSCC. PMID:20073073

  6. Yeast fermentation affected by homo- and hetero-fermentative Lactobacilli isolated from fuel ethanol distilleries with sugarcane products as substrates

    USDA-ARS?s Scientific Manuscript database

    The antagonism between by yeast and lactobacilli is largely dependent on the initial population of each organism. While homo-fermentative lactobacillus present higher inhibitory effect upon yeast when in equal cell number, in industrial fuel ethanol conditions where high yeast cell densities prevail...

  7. Non-canonical Wnt signaling enhances differentiation of Sca1+/c-kit+ adipose-derived murine stromal vascular cells into spontaneously beating cardiac myocytes.

    PubMed

    Palpant, Nathan J; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M

    2007-09-01

    Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to establish methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody-tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies.

  8. Non-canonical Wnt Signaling Enhances differentiation of Sca1+/c-kit+ Adipose-derived Murine Stromal Vascular Cells into Spontaneously Beating Cardiac Myocytes

    PubMed Central

    Palpant, Nathan J.; Yasuda, So-ichiro; MacDougald, Ormond; Metzger, Joseph M.

    2007-01-01

    Recent reports have described a stem cell population termed stromal vascular cells (SVCs) derived from the stromal vascular fraction of adipose tissue, which are capable of intrinsic differentiation into spontaneously beating cardiomyocytes in vitro. The objective of this study was to further define the cardiac lineage differentiation potential of SVCs in vitro and to derive methods for enriching SVC-derived beating cardiac myocytes. SVCs were isolated from the stromal vascular fraction of murine adipose tissue. Cells were cultured in methylcellulose-based murine stem cell media. Analysis of SVC-derived beating myocytes included Western blot, and calcium imaging. Enrichment of acutely isolated SVCs was carried out using antibody tagged magnetic nanoparticles, and pharmacologic manipulation of Wnt and cytokine signaling. Under initial media conditions, spontaneously beating SVCs expressed both cardiac developmental and adult protein isoforms. Functionally, this specialized population can spontaneously contract and pace under field stimulation, and shows the presence of coordinated calcium transients. Importantly, this study provides evidence for two independent mechanisms of enriching the cardiac differentiation of SVCs. First, this study shows that differentiation of SVCs into cardiac myocytes is augmented by non-canonical Wnt agonists, canonical Wnt antagonists, and cytokines. Second, SVCs capable of cardiac lineage differentiation can be enriched by selection for stem cell-specific membrane markers Sca1 and c-kit. Adipose-derived SVCs are a unique population of stem cells that show evidence of cardiac lineage development making them a potential source for stem cell-based cardiac regeneration studies. PMID:17706246

  9. Equine CD4+ CD25high T cells exhibit regulatory activity by close contact and cytokine-dependent mechanisms in vitro

    PubMed Central

    Hamza, Eman; Gerber, Vinzenz; Steinbach, Falko; Marti, Eliane

    2011-01-01

    Horses are particularly prone to allergic and autoimmune diseases, but little information about equine regulatory T cells (Treg) is currently available. The aim of this study therefore was to investigate the existence of CD4+ Treg cells in horses, determine their suppressive function as well as their mechanism of action. Freshly isolated peripheral blood mononuclear cells (PBMC) from healthy horses were examined for CD4, CD25 and forkhead box P3 (FoxP3) expression. We show that equine FoxP3 is expressed constitutively by a population of CD4+ CD25+ T cells, mainly in the CD4+ CD25high subpopulation. Proliferation of CD4+ CD25− sorted cells stimulated with irradiated allogenic PBMC was significantly suppressed in co-culture with CD4+ CD25high sorted cells in a dose-dependent manner. The mechanism of suppression by the CD4+ CD25high cell population is mediated by close contact as well as interleukin (IL)-10 and transforming growth factor-β1 (TGF-β1) and probably other factors. In addition, we studied the in vitro induction of CD4+ Treg and their characteristics compared to those of freshly isolated CD4+ Treg cells. Upon stimulation with a combination of concanavalin A, TGF-β1 and IL-2, CD4+ CD25+ T cells which express FoxP3 and have suppressive capability were induced from CD4+ CD25− cells. The induced CD4+ CD25high express higher levels of IL-10 and TGF-β1 mRNA compared to the freshly isolated ones. Thus, in horses as in man, the circulating CD4+ CD25high subpopulation contains natural Treg cells and functional Treg can be induced in vitro upon appropriate stimulation. Our study provides the first evidence of the regulatory function of CD4+ CD25+ cells in horses and offers insights into ex vivo manipulation of Treg cells. PMID:21977999

  10. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy.

    PubMed

    Tao, Wensi; Ayala-Haedo, Juan A; Field, Matthew G; Pelaez, Daniel; Wester, Sara T

    2017-12-01

    The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell-specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways.

  11. Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Mononuclear Cells Using Sendai Virus.

    PubMed

    Soares, Filipa A C; Pedersen, Roger A; Vallier, Ludovic

    2016-01-01

    This protocol describes the efficient isolation of peripheral blood mononuclear cells from circulating blood via density gradient centrifugation and subsequent generation of integration-free human induced pluripotent stem cells. Peripheral blood mononuclear cells are cultured for 9 days to allow expansion of the erythroblast population. The erythroblasts are then used to derive human induced pluripotent stem cells using Sendai viral vectors, each expressing one of the four reprogramming factors Oct4, Sox2, Klf4, and c-Myc.

  12. Myeloid differentiation architecture of leukocyte transcriptome dynamics in perceived social isolation

    PubMed Central

    Cole, Steven W.; Capitanio, John P.; Chun, Katie; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cacioppo, John T.

    2015-01-01

    To define the cellular mechanisms of up-regulated inflammatory gene expression and down-regulated antiviral response in people experiencing perceived social isolation (loneliness), we conducted integrative analyses of leukocyte gene regulation in humans and rhesus macaques. Five longitudinal leukocyte transcriptome surveys in 141 older adults showed up-regulation of the sympathetic nervous system (SNS), monocyte population expansion, and up-regulation of the leukocyte conserved transcriptional response to adversity (CTRA). Mechanistic analyses in a macaque model of perceived social isolation confirmed CTRA activation and identified selective up-regulation of the CD14++/CD16− classical monocyte transcriptome, functional glucocorticoid desensitization, down-regulation of Type I and II interferons, and impaired response to infection by simian immunodeficiency virus (SIV). These analyses identify neuroendocrine-related alterations in myeloid cell population dynamics as a key mediator of CTRA transcriptome skewing, which may both propagate perceived social isolation and contribute to its associated health risks. PMID:26598672

  13. Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure.

    PubMed

    Yun, Hongmin; Zhou, Yi; Wills, Andrew; Du, Yiqin

    2016-06-01

    Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration.

  14. Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure

    PubMed Central

    Yun, Hongmin; Zhou, Yi; Wills, Andrew

    2016-01-01

    Abstract Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration. PMID:27183473

  15. Isolation and Characterization of Canine Amniotic Membrane-Derived Multipotent Stem Cells

    PubMed Central

    Kim, Hyung-Sik; Kang, Kyung-Sun

    2012-01-01

    Recent studies have shown that amniotic membrane tissue is a rich source of stem cells in humans. In clinical applications, the amniotic membrane tissue had therapeutic effects on wound healing and corneal surface reconstruction. Here, we successfully isolated and identified multipotent stem cells (MSCs) from canine amniotic membrane tissue. We cultured the canine amniotic membrane-derived multipotent stem cells (cAM-MSCs) in low glucose DMEM medium. cAM-MSCs have a fibroblast-like shape and adhere to tissue culture plastic. We characterized the immunophenotype of cAM-MSCs by flow cytometry and measured cell proliferation by the cumulative population doubling level (CPDL). We performed differentiation studies for the detection of trilineage multipotent ability, under the appropriate culture conditions. Taken together, our results show that cAM-MSCs could be a rich source of stem cells in dogs. Furthermore, cAM-MSCs may be useful as a cell therapy application for veterinary regenerative medicine. PMID:23024756

  16. Isolation and Characterization of Extracellular Vesicles from Adult Schistosoma japonicum.

    PubMed

    Liu, Juntao; Zhu, Lihui; Wang, Lihui; Chen, Yongjun; Giri, Bikash Ranjan; Li, Jianjun; Cheng, Guofeng

    2018-05-22

    Extracellular vesicles (EVs) are membranous vesicles released by a variety of cells into the extracellular microenvironment. EVs represent a population of heterogeneous vesicles, whose size range between 40 and 1,000 nm. Accumulated evidence indicated that EVs play important regulatory roles in pathogen-host interactions. A deep understanding of schistosome EVs should provide insights into the mechanisms underlying schistosome-host interactions, enabling development of novel strategies against schistosomiasis. Here, we aim to further study EVs functions in schistosomes by presenting a protocol for the isolation and characterization of EVs from adult Schistosoma japonicum (S. japonicum). EVs were isolated from in vitro culture medium using centrifugation combined with a commercial exosome isolation kit. The isolated S. japonicum EVs (SjEVs) typically possess a diameter of 100 - 400 nm, and are characterized by transmission electronic microscopy and western blotting. The usage of PKH67 dye-labeled SjEVs has demonstrated that SjEVs are internalized by the recipient cells. Overall, our protocol provides an alternative method for isolating EVs from adult schistosomes; the isolated SjEVs may be suitable for functional analysis.

  17. Base Composition Differences between Avian Myeloblastosis Virus Transfer RNA and Transfer RNA Isolated from Host Cells

    PubMed Central

    Randerath, Kurt; Rosenthal, Leonard J.; Zamecnik, Paul C.

    1971-01-01

    Using a novel chemical tritium derivative method, we have determined the base composition of 4S RNA isolated from an RNA tumor virus, the avian myeloblastosis virus, and from normal and neoplastic host cells. Extensive differences were detected, particularly with respect to the amount of methylated bases in the viral RNA. The viral 4S RNA, which fulfills the criteria for designation as transfer RNA, appears to be derived from a precursor pool that is different from the precursor population of host-cell 4S RNA. These results are discussed in regard to the possible relationship between transfer RNA of avian mycoblastosis virus and cellular transfer RNA. Images PMID:4332019

  18. Laser capture microdissection to study flower morphogenesis

    NASA Astrophysics Data System (ADS)

    Pawełkowicz, Magdalena Ewa; Skarzyńska, Agnieszka; Kowalczuk, Cezary; PlÄ der, Wojciech; Przybecki, Zbigniew

    2017-08-01

    Laser Capture Microdissection (LCM) is a sample preparation microscopic method that enables isolation of an interesting cell or cells population from human, animal or plant tissue. This technique allows for obtaining pure sample from heterogeneous mixture. From isolated cells, it is possible to obtain the appropriate quality material used for genomic research in transcriptomics, proteomics and metabolomics. We used LCM method to study flower morphogenesis and specific bud's organ organization and development. The genes expression level in developing flower buds of male (B10) and female (2gg) lines were analyzed with qPCR. The expression was checked for stamen and carpel primordia obtained with LCM and for whole flower buds at successive stages of growth.

  19. New procedure for epidermal cell isolation using kiwi fruit actinidin, and improved culture of melanocytes in the presence of leukaemia inhibitory factor and forskolin.

    PubMed

    Yarani, Reza; Mansouri, Kamran; Mohammadi-Motlagh, Hamid Reza; Bakhtiari, Mitra; Mostafaie, Ali

    2013-06-01

    Conventional isolation of epidermis from the dermis and disruption of epidermal sheets to liberate the cells, are performed using proteolytic enzymes such as thermolysin or collagenase. Selective population expansion of melanocytes is achieved by suppressing proliferation of keratinocytes and fibroblasts in epidermal cell suspensions, using phorbol esters and cholera toxin. Here, we introduce a new procedure for isolation of epidermal cells, using proteolytic activity of kiwi fruit actinidin, and also an improved growth medium for melanocytes in the presence of leukaemia inhibitory factor (LIF) and forskolin. Dermo-epidermal separation and epidermal sheet cell dispersion were performed using actinidin compared to conventional proteases including collagenase, thermolysin or trypsin. Thereafter, melanocyte culture was performed in two common media and one modified medium to discover optimization for these cells. We found that dermo-epidermal separation and epidermal sheet cell dispersion using kiwi fruit actinidin were considerably better than previously used methods, both from the aspect of less fibroblast and keratinocyte contamination, and of more viable native cells. Also, melanocytes proliferated better in phorbol ester- and cholera toxin-free proliferation medium supplemented with LIF and forskolin. Less contamination and higher numbers of viable cells were actinidin preferential for separation of epidermis and isolation of epidermal cells. Supplementation of LIF and forskolin to new medium increased proliferation potential of melanocytes in comparison to exogenous mitogens. © 2013 Blackwell Publishing Ltd.

  20. Designing Peptide-Based HIV Vaccine for Chinese

    PubMed Central

    Fan, Xiaojuan

    2014-01-01

    CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese. PMID:25136573

  1. Designing peptide-based HIV vaccine for Chinese.

    PubMed

    Shu, Jiayi; Fan, Xiaojuan; Ping, Jie; Jin, Xia; Hao, Pei

    2014-01-01

    CD4+ T cells are central to the induction and maintenance of CD8+ T cell and antibody-producing B cell responses, and the latter are essential for the protection against disease in subjects with HIV infection. How to elicit HIV-specific CD4+ T cell responses in a given population using vaccines is one of the major areas of current HIV vaccine research. To design vaccine that targets specifically Chinese, we assembled a database that is comprised of sequences from 821 Chinese HIV isolates and 46 human leukocyte antigen (HLA) DR alleles identified in Chinese population. We then predicted 20 potential HIV epitopes using bioinformatics approaches. The combination of these 20 epitopes has a theoretical coverage of 98.1% of the population for both the prevalent HIV genotypes and also Chinese HLA-DR types. We suggest that testing this vaccine experimentally will facilitate the development of a CD4+ T cell vaccine especially catered for Chinese.

  2. Postenrichment Population Differentials Using Buffered Listeria Enrichment Broth: Implications of the Presence of Listeria innocua on Listeria monocytogenes in Food Test Samples†

    PubMed Central

    KEYS, ASHLEY L.; DAILEY, RACHEL C.; HITCHINS, ANTHONY D.; SMILEY, R. DERIKE

    2016-01-01

    The recovery of low levels of Listeria monocytogenes from foods is complicated by the presence of competing microorganisms. Nonpathogenic species of Listeria pose a particular problem because variation in growth rate during the enrichment step can produce more colonies of these nontarget cells on selective and/or differential media, resulting in a preferential recovery of nonpathogens, especially Listeria innocua. To gauge the extent of this statistical barrier to pathogen recovery, 10 isolates each of L. monocytogenes and L. innocua were propagated together from approximately equal initial levels using the current U.S. Food and Drug Administration’s enrichment procedure. In the 100 isolate pairs, an average 1.3-log decrease was found in the 48-h enrichment L. monocytogenes population when L. innocua was present. In 98 of the 100 isolate pairs, L. innocua reached higher levels at 48 h than did L. monocytogenes, with a difference of 0.2 to 2.4 log CFU/ml. The significance of these population differences was apparent by an increase in the difficulty of isolating L. monocytogenes by the streak plating method. L. monocytogenes went completely undetected in 18 of 30 enrichment cultures even after colony isolation was attempted on Oxoid chromogenic Listeria agar. This finding suggests that although both Listeria species were present on the plate, the population differential between them restricted L. monocytogenes to areas of the plate with confluent growth and that isolated individual colonies were only L. innocua. PMID:24215687

  3. mAb C19 targets a novel surface marker for the isolation of human cardiac progenitor cells from human heart tissue and differentiated hESCs.

    PubMed

    Leung, Hau Wan; Moerkamp, Asja T; Padmanabhan, Jayanthi; Ng, Sze-Wai; Goumans, Marie-José; Choo, Andre

    2015-05-01

    Cardiac progenitor cells (CPCs) have been isolated from adult and developing hearts using an anti-mouse Sca-1 antibody. However, the absence of a human Sca-1 homologue has hampered the clinical application of the CPCs. Therefore, we generated novel monoclonal antibodies (mAbs) specifically raised against surface markers expressed by resident human CPCs. Here, we explored the suitability of one of these mAbs, mAb C19, for the identification, isolation and characterization of CPCs from fetal heart tissue and differentiating cultures of human embryonic stem cells (hESCs). Using whole-cell immunization, mAbs were raised against Sca-1+ CPCs and screened for reactivity to various CPC lines by flow cytometry. mAb C19 was found to be specific for Sca-1+ CPCs, with high cell surface binding capabilities. mAb C19 stained small stem-like cells in cardiac tissue sections. Moreover, during differentiation of hESCs towards cardiomyocytes, a transient population of cells with mAb C19 reactivity was identified and isolated using magnetic-activated cell sorting. Their cell fate was tracked and found to improve cardiomyocyte purity from hESC-derived cultures. mAb C19+ CPCs, from both hESC differentiation and fetal heart tissues, were maintained and expanded in culture, while retaining their CPC-like characteristics and their ability to further differentiate into cardiomyocytes by stimulation with TGFβ1. Finally, gene expression profiling of these mAb C19+ CPCs suggested a highly angiogenic nature, which was further validated by cell-based angiogenesis assays. mAb C19 is a new surface marker for the isolation of multipotent CPCs from both human heart tissues and differentiating hESCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A reproducible method for the isolation and expansion of ovine mesenchymal stromal cells from bone marrow for use in regenerative medicine preclinical studies.

    PubMed

    Caminal, Marta; Vélez, Roberto; Rabanal, Rosa Maria; Vivas, Daniel; Batlle-Morera, Laura; Aguirre, Màrius; Barquinero, Jordi; García, Joan; Vives, Joaquim

    2017-12-01

    The use of multipotent mesenchymal stromal cells (MSCs) as candidate medicines for treating a variety of pathologies is based on their qualities as either progenitors for the regeneration of damaged tissue or producers of a number of molecules with pharmacological properties. Preclinical product development programmes include the use of well characterized cell populations for proof of efficacy and safety studies before testing in humans. In the field of orthopaedics, an increasing number of translational studies use sheep as an in vivo test system because of the similarities with humans in size and musculoskeletal architecture. However, robust and reproducible methods for the isolation, expansion, manipulation and characterization of ovine MSCs have not yet been standardised. The present study describes a method for isolation and expansion of fibroblastic-like, adherent ovine MSCs that express CD44, CD90, CD140a, CD105 and CD166, and display trilineage differentiation potential. The 3-week bioprocess proposed here typically yielded cell densities of 1.4 × 10 4 MSCs/cm 2 at passage 2, with an expansion factor of 37.8 and approximately eight cumulative population doublings. The osteogenic potential of MSCs derived following this methodology was further evaluated in vivo in a translational model of osteonecrosis of the femoral head, in which the persistence of grafted cells in the host tissue and their lineage commitment into osteoblasts and osteocytes was demonstrated by tracking enhanced green fluorescent protein-labelled cells. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. In vitro and in vivo approaches to study osteocyte biology.

    PubMed

    Kalajzic, Ivo; Matthews, Brya G; Torreggiani, Elena; Harris, Marie A; Divieti Pajevic, Paola; Harris, Stephen E

    2013-06-01

    Osteocytes, the most abundant cell population of the bone lineage, have been a major focus in the bone research field in recent years. This population of cells that resides within mineralized matrix is now thought to be the mechanosensory cell in bone and plays major roles in the regulation of bone formation and resorption. Studies of osteocytes had been impaired by their location, resulting in numerous attempts to isolate primary osteocytes and to generate cell lines representative of the osteocytic phenotype. Progress has been achieved in recent years by utilizing in vivo genetic technology and generation of osteocyte directed transgenic and gene deficiency mouse models. We will provide an overview of the current in vitro and in vivo models utilized to study osteocyte biology. We discuss generation of osteocyte-like cell lines and isolation of primary osteocytes and summarize studies that have utilized these cellular models to understand the functional role of osteocytes. Approaches that attempt to selectively identify and isolate osteocytes using fluorescent protein reporters driven by regulatory elements of genes that are highly expressed in osteocytes will be discussed. In addition, recent in vivo studies utilizing overexpression or conditional deletion of various genes using dentin matrix protein (Dmp1) directed Cre recombinase are outlined. In conclusion, evaluation of the benefits and deficiencies of currently used cell lines/genetic models in understanding osteocyte biology underlines the current progress in this field. The future efforts will be directed towards developing novel in vitro and in vivo models that would additionally facilitate in understanding the multiple roles of osteocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Integration of Magnetic Bead-Based Cell Selection into Complex Isolations

    PubMed Central

    2018-01-01

    Magnetic bead-based analyte capture has emerged as a ubiquitous method in cell isolation, enabling the highly specific capture of target populations through simple magnetic manipulation. To date, no “one-size fits all” magnetic bead has been widely adopted leading to an overwhelming number of commercial beads. Ultimately, the ideal bead is one that not only facilitates cell isolation but also proves compatible with the widest range of downstream applications and analytic endpoints. Despite the diverse offering of sizes, coatings, and conjugation chemistries, few studies exist to benchmark the performance characteristics of different commercially available beads; importantly, these bead characteristics ultimately determine the ability of a bead to integrate into the user’s assay. In this report, we evaluate bead-based cell isolation considerations, approaches, and results across a subset of commercially available magnetic beads (Dynabeads FlowComps, Dynabeads CELLection, GE Healthcare Sera-Mag SpeedBeads streptavidin-blocked magnetic particles, Dynabeads M-270s, Dynabeads M-280s) to compare and contrast both capture-specific traits (i.e., purity, capture efficacy, and contaminant isolations) and endpoint compatibility (i.e., protein localization, fluorescence imaging, and nucleic acid extraction). We identify specific advantages and contexts of use in which distinct bead products may facilitate experimental goals and integrate into downstream applications. PMID:29732449

  7. High CD49f expression is associated with osteosarcoma tumor progression: a study using patient-derived primary cell cultures.

    PubMed

    Penfornis, Patrice; Cai, David Z; Harris, Michael R; Walker, Ryan; Licini, David; Fernandes, Joseph D A; Orr, Griffin; Koganti, Tejaswi; Hicks, Chindo; Induru, Spandana; Meyer, Mark S; Khokha, Rama; Barr, Jennifer; Pochampally, Radhika R

    2014-08-01

    Overall prognosis for osteosarcoma (OS) is poor despite aggressive treatment options. Limited access to primary tumors, technical challenges in processing OS tissues, and the lack of well-characterized primary cell cultures has hindered our ability to fully understand the properties of OS tumor initiation and progression. In this study, we have isolated and characterized cell cultures derived from four central high-grade human OS samples. Furthermore, we used the cell cultures to study the role of CD49f in OS progression. Recent studies have implicated CD49f in stemness and multipotency of both cancer stem cells and mesenchymal stem cells. Therefore, we investigated the role of CD49f in osteosarcomagenesis. First, single cell suspensions of tumor biopsies were subcultured and characterized for cell surface marker expression. Next, we characterized the growth and differentiation properties, sensitivity to chemotherapy drugs, and anchorage-independent growth. Xenograft assays showed that cell populations expressing CD49f(hi) /CD90(lo) cell phenotype produced an aggressive tumor. Multiple lines of evidence demonstrated that inhibiting CD49f decreased the tumor-forming ability. Furthermore, the CD49f(hi) /CD90(lo) cell population is generating more aggressive OS tumor growth and indicating this cell surface marker could be a potential candidate for the isolation of an aggressive cell type in OSs. © 2014 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  8. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Pei; Li, Li; Qi, Hui

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas thatmore » expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.« less

  9. Real time and label free profiling of clinically relevant exosomes

    PubMed Central

    Sina, Abu Ali Ibn; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G.; Shiddiky, Muhammad J. A.; Trau, Matt

    2016-01-01

    Tumor-derived exosomes possess significant clinical relevance due to their unique composition of genetic and protein material that is representative of the parent tumor. Specific isolation as well as identification of proportions of these clinically relevant exosomes (CREs) from biological samples could help to better understand their clinical significance as cancer biomarkers. Herein, we present a simple approach for quantification of the proportion of CREs within the bulk exosome population isolated from patient serum. This proportion of CREs can potentially inform on the disease stage and enable non-invasive monitoring of inter-individual variations in tumor-receptor expression levels. Our approach utilises a Surface Plasmon Resonance (SPR) platform to quantify the proportion of CREs in a two-step strategy that involves (i) initial isolation of bulk exosome population using tetraspanin biomarkers (i.e., CD9, CD63), and (ii) subsequent detection of CREs within the captured bulk exosomes using tumor-specific markers (e.g., human epidermal growth factor receptor 2 (HER2)). We demonstrate the isolation of bulk exosome population and detection of as low as 10% HER2(+) exosomes from samples containing designated proportions of HER2(+) BT474 and HER2(−) MDA-MB-231 cell derived exosomes. We also demonstrate the successful isolation of exosomes from a small cohort of breast cancer patient samples and identified that approximately 14–35% of their bulk population express HER2. PMID:27464736

  10. Real time and label free profiling of clinically relevant exosomes.

    PubMed

    Sina, Abu Ali Ibn; Vaidyanathan, Ramanathan; Dey, Shuvashis; Carrascosa, Laura G; Shiddiky, Muhammad J A; Trau, Matt

    2016-07-28

    Tumor-derived exosomes possess significant clinical relevance due to their unique composition of genetic and protein material that is representative of the parent tumor. Specific isolation as well as identification of proportions of these clinically relevant exosomes (CREs) from biological samples could help to better understand their clinical significance as cancer biomarkers. Herein, we present a simple approach for quantification of the proportion of CREs within the bulk exosome population isolated from patient serum. This proportion of CREs can potentially inform on the disease stage and enable non-invasive monitoring of inter-individual variations in tumor-receptor expression levels. Our approach utilises a Surface Plasmon Resonance (SPR) platform to quantify the proportion of CREs in a two-step strategy that involves (i) initial isolation of bulk exosome population using tetraspanin biomarkers (i.e., CD9, CD63), and (ii) subsequent detection of CREs within the captured bulk exosomes using tumor-specific markers (e.g., human epidermal growth factor receptor 2 (HER2)). We demonstrate the isolation of bulk exosome population and detection of as low as 10% HER2(+) exosomes from samples containing designated proportions of HER2(+) BT474 and HER2(-) MDA-MB-231 cell derived exosomes. We also demonstrate the successful isolation of exosomes from a small cohort of breast cancer patient samples and identified that approximately 14-35% of their bulk population express HER2.

  11. Prediction of Developmentally Competent Chromatin Conformation in Mouse Antral Oocytes.

    PubMed

    Daszkiewicz, Regina; Szymoniak, Magdalena; Gąsior, Łukasz; Polański, Zbigniew

    Mouse prophase oocytes isolated from antral follicles may possess two alternative types of chromatin configuration: NSN configuration represents more dispersed chromatin and is characteristic mainly for growing oocytes whereas SN configuration, attained upon oocyte growth, comprises more condensed chromatin with a significant fraction concentrated around the nucleolus. Importantly, fully grown oocytes isolated from antral follicles represent a non-homogenous population in which some oocytes posses NSN-type and others SN-type of chromatin conformation. From these two, only oocytes with SN configuration are able to complete full development upon fertilization. We show that among mouse oocytes isolated from antral follicles, those surrounded by cumulus cells were larger and more frequently possessed SN chromatin than oocytes lacking the complete cumulus cell layer. Females primed with PMSG gave a higher number of oocytes with a complete layer of cumulus cells and the frequency of oocytes with SN chromatin was also elevated. Within the whole population of isolated antral oocytes, we observed subtle variation in size which allowed fractionation of oocytes under a stereomicroscope into groups representing oocytes of slightly different sizes. The occurrence of SN chromatin configuration was highly dependent on the oocyte size and its frequency increased gradually in subsequent size groups reaching 95-100% in the group representing the largest oocytes. These findings demonstrate that the subtle differences in the size of antral oocytes allow prediction of the status of their chromatin, thus providing a simple, fast, non-invasive and non-expensive way to select good quality oocytes for ART purposes in mammals.

  12. Circulating Angiogenic Cells can be Derived from Cryopreserved Peripheral Blood Mononuclear Cells

    PubMed Central

    Sofrenovic, Tanja; McEwan, Kimberly; Crowe, Suzanne; Marier, Jenelle; Davies, Robbie; Suuronen, Erik J.; Kuraitis, Drew

    2012-01-01

    Background Cell transplantation for regenerative medicine has become an appealing therapeutic method; however, stem and progenitor cells are not always freshly available. Cryopreservation offers a way to freeze cells as they are generated, for storage and transport until required for therapy. This study was performed to assess the feasibility of cryopreserving peripheral blood mononuclear cells (PBMCs) for the subsequent in vitro generation of their derived therapeutic population, circulating angiogenic cells (CACs). Methods PBMCs were isolated from healthy human donors. Freshly isolated cells were either analyzed immediately or cryopreserved in media containing 6% plasma serum and 5% dimethyl sulfoxide. PBMCs were thawed after being frozen for 1 (early thaw) or 28 (late thaw) days and analyzed, or cultured for 4 days to generate CACs. Analysis of the cells consisted of flow cytometry for viability and phenotype, as well as functional assays for their adhesion and migration potential, cytokine secretion, and in vivo angiogenic potential. Results The viability of PBMCs and CACs as well as their adhesion and migration properties did not differ greatly after cryopreservation. Phenotypic changes did occur in PBMCs and to a lesser extent in CACs after freezing; however the potent CD34+VEGFR2+CD133+ population remained unaffected. The derived CACs, while exhibiting changes in inflammatory cytokine secretion, showed no changes in the secretion of important regenerative and chemotactic cytokines, nor in their ability to restore perfusion in ischemic muscle. Conclusion Overall, it appears that changes do occur in cryopreserved PBMCs and their generated CACs; however, the CD34+VEGFR2+CD133+ progenitor population, the secretion of pro-vasculogenic factors, and the in vivo angiogenic potential of CACs remain unaffected by cryopreservation. PMID:23133548

  13. Further analyses of human kidney cell populations separated on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  14. Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes

    PubMed Central

    Tarnawski, Laura; Xian, Xiaojie; Monnerat, Gustavo; Macaulay, Iain C.; Malan, Daniela; Borgman, Andrew; Wu, Sean M.; Fleischmann, Bernd K.; Jovinge, Stefan

    2015-01-01

    In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes. PMID:26323090

  15. Composition of Mineral Produced by Dental Mesenchymal Stem Cells

    PubMed Central

    Volponi, A.A.; Gentleman, E.; Fatscher, R.; Pang, Y.W.Y.; Gentleman, M.M.; Sharpe, P.T.

    2015-01-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. PMID:26253190

  16. RNA-Sequencing Gene Expression Profiling of Orbital Adipose-Derived Stem Cell Population Implicate HOX Genes and WNT Signaling Dysregulation in the Pathogenesis of Thyroid-Associated Orbitopathy

    PubMed Central

    Tao, Wensi; Ayala-Haedo, Juan A.; Field, Matthew G.; Pelaez, Daniel; Wester, Sara T.

    2017-01-01

    Purpose The purpose of this study was to characterize the intrinsic cellular properties of orbital adipose-derived stem cells (OASC) from patients with thyroid-associated orbitopathy (TAO) and healthy controls. Methods Orbital adipose tissue was collected from a total of nine patients: four controls and five patients with TAO. Isolated OASC were characterized with mesenchymal stem cell–specific markers. Orbital adipose-derived stem cells were differentiated into three lineages: chondrocytes, osteocytes, and adipocytes. Reverse transcription PCR of genes involved in the adipogenesis, chondrogenesis, and osteogenesis pathways were selected to assay the differentiation capacities. RNA sequencing analysis (RNA-seq) was performed and results were compared to assess for differences in gene expression between TAO and controls. Selected top-ranked results were confirmed by RT-PCR. Results Orbital adipose-derived stem cells isolated from orbital fat expressed high levels of mesenchymal stem cell markers, but low levels of the pluripotent stem cell markers. Orbital adipose-derived stem cells isolated from TAO patients exhibited an increase in adipogenesis, and a decrease in chondrogenesis and osteogenesis. RNA-seq disclosed 54 differentially expressed genes. In TAO OASC, expression of early neural crest progenitor marker (WNT signaling, ZIC genes and MSX2) was lost. Meanwhile, ectopic expression of HOXB2 and HOXB3 was found in the OASC from TAO. Conclusion Our results suggest that there are intrinsic genetic and cellular differences in the OASC populations derived from TAO patients. The upregulation in adipogenesis in OASC of TAO may be is consistent with the clinical phenotype. Downregulation of early neural crest markers and ectopic expression of HOXB2 and HOXB3 in TAO OASC demonstrate dysregulation of developmental and tissue patterning pathways. PMID:29214313

  17. Reproductive stage-dependent effects of additional cryoprotectant agents for the cryopreservation of stallion germ cells.

    PubMed

    Jung, Heejun; Kim, Namyoung; Yoon, Minjung

    2016-10-01

    The main objective of this study was to evaluate the efficacy of an additional cryoprotectant in 10% dimethyl sulfoxide (DMSO) on cryopreserving germ cells from stallions at different reproductive stages. Testicular samples were obtained from pre-pubertal (1-1.5 yr, n=6) and post-pubertal (3-7 yr, n=5) stallions. Germ cells were isolated using a two-enzyme digestion procedure and cryopreserved in minimal essential medium alpha containing 10% fetal bovine serum and 10% DMSO with or without addition of trehalose (50, 100, or 200mM) or polyethylene glycol (PEG, 2.5, 5, or 10%). Viability, cell population, and viable population were assessed after 1 and 3 months of cryopreservation. The viable UTF1-positive population of pre-pubertal stallion germ cells was also measured using immunocytochemistry after 1 and 3 months of cryopreservation. As expected, the viability, cell population, and viable cell population were significantly reduced after 1 and 3 months of cryopreservation. At the pre-pubertal stage, the addition of trehalose or PEG to 10% DMSO did not show any effect on the viability, cell population, viable cell population, or viable UTF1-positive germ cells at either 1 or 3 months after cryopreservation. However, at the post-pubertal stage, the viable population was significantly higher in germ cells that were cryopreserved with 5% or 10% PEG, than in the cells cryopreserved with 10% DMSO only. In conclusion, PEG at 5% or 10% added to 10% DMSO serves as an optimal cryoprotectant agent for the cryopreservation of germ cells from post-pubertal stallions. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Modeling Bacteriocin Resistance and Inactivation of Listeria innocua LMG 13568 by Lactobacillus sakei CTC 494 under Sausage Fermentation Conditions

    PubMed Central

    Leroy, Frédéric; Lievens, Kristoff; De Vuyst, Luc

    2005-01-01

    In mixed cultures, bacteriocin production by the sausage isolate Lactobacillus sakei CTC 494 rapidly inactivated sensitive Listeria innocua LMG 13568 cells, even at low bacteriocin activity levels. A small fraction of the listerial population was bacteriocin resistant. However, sausage fermentation conditions inhibited regrowth of resistant cells. PMID:16269805

  19. Hepatic dendritic cell subsets in the mouse.

    PubMed

    Jomantaite, Ieva; Dikopoulos, Nektarios; Kröger, Andrea; Leithäuser, Frank; Hauser, Hansjörg; Schirmbeck, Reinhold; Reimann, Jörg

    2004-02-01

    The CD11c(+) cell population in the non-parenchymal cell population of the mouse liver contains dendritic cells (DC), NK cells, B cells and T cells. In the hepatic CD11c(+) DC population from immunocompetent or immunodeficient [recombinase-activating gene-1 (RAG1)(-/-)] C57BL/6 mice (rigorously depleted of T cells, B cells and NK cells), we identified a B220(+) CD11c(int) subset of 'plasmacytoid' DC, and a B220(-) CD11c(+) DC subset. The latter DC population could be subdivided into a major, immature (CD40(lo) CD80(lo) CD86(lo) MHC class II(lo)) CD11c(int) subset, and a minor, mature (CD40(hi) CD80(hi) CD86(hi) MHC class II(hi)) CD11c(hi) subset. Stimulated B220(+) but not B220(-) DC produced type I interferon. NKT cell activation in vivo increased the number of liver B220(-) DC three- to fourfold within 18 h post-injection, and up-regulated their surface expression of activation marker, while it contracted the B220(+) DC population. Early in virus infection, the hepatic B220(+) DC subset expanded, and both, the B220(+) as well as B220(-) DC populations in the liver matured. In vitro, B220(-) but not B220(+) DC primed CD4(+) or CD8(+)T cells. Expression of distinct marker profiles and functions, and distinct early reaction to activation signals hence identify two distinct B220(+) and B220(-) subsets in CD11c(+) DC populations freshly isolated from the mouse liver.

  20. Label-free identification of white blood cell using optical diffraction tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yoon, Jonghee; Kim, Kyoohyun; Kim, Min-hyeok; Kang, Suk-Jo; Park, YongKeun

    2016-03-01

    White blood cells (WBC) have crucial roles in immune systems which defend the host against from disease conditions and harmful invaders. Various WBC subsets have been characterized and reported to be involved in many pathophysiologic conditions. It is crucial to isolate a specific WBC subset to study its pathophysiological roles in diseases. Identification methods for a specific WBC population are rely on invasive approaches, including Wright-Gimesa staining for observing cellular morphologies and fluorescence staining for specific protein markers. While these methods enable precise classification of WBC populations, they could disturb cellular viability or functions. In order to classify WBC populations in a non-invasive manner, we exploited optical diffraction tomography (ODT). ODT is a three-dimensional (3-D) quantitative phase imaging technique that measures 3-D refractive index (RI) distributions of individual WBCs. To test feasibility of label-free classification of WBC populations using ODT, we measured four subtypes of WBCs, including B cell, CD4 T cell, CD8 T cell, and natural killer (NK) cell. From measured 3-D RI tomograms of WBCs, we obtain quantitative structural and biochemical information and classify each WBC population using a machine learning algorithm.

  1. Phage-resistance linked to cell heterogeneity in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1.

    PubMed

    Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge

    2008-12-10

    The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.

  2. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures

    PubMed Central

    Zeitlin, PL; Hubbard, AL

    1982-01-01

    A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase exposure was tested. Freshly isolated cells, dissociated cells that were re-exposed to collagenase, and perfused livers exposed to collagenase without a Ca(++)-free pre-perfusion, were found to bind 110-240 percent more(125)I-ASOR after 1 h at 37 degrees C that they did at 0 time. This recovery of surface ASGP binding activity occurred in the absence of significant protein synthesis (i.e., basal medium or 1 mM cycloheximide). Suspensions of isolated, unpolarized hepatocytes were placed in monolayer culture for 24 h and confluent cells were demonstrated to reestablish morphologically distinct plasma membrane regions analogous to bile canalicular, lateral, and sinusoidal surfaces in vivo. More than 95 percent of these cells maintained the capacity to bind, internalize, and degrade (125)I-ASOR at levels comparable to those of the freshly isolated population. ASOR-HRP (at 5 degrees C) was specifically bound to all plasma membrane surfaces of repolarized hepatocytes (cultured for 24 h) except those lining bile canalicular-like spaces. Thus, both isolated, unpolarized hepatocytes and cells cultured under conditions that promote morphological reestablishment of polarity maintain the pathway for receptor- mediated endocytosis of ASGPs. PMID:6282890

  3. Massively parallel digital transcriptional profiling of single cells

    PubMed Central

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  4. Development of a Prognostic Marker for Lung Cancer Using Analysis of Tumor Evolution

    DTIC Science & Technology

    2017-08-01

    SUPPLEMENTARY NOTES 14. ABSTRACT The goal of this project is to sequence the exomes of single tumor cells from tumors in order to construct evolutionary trees...dissociation, tumor cell isolation, whole genome amplification, and exome sequencing. We have begun to sequence the exomes of single cells and to...of populations, the evolution of tumor cells within a tumor can be diagrammed on a phylogenetic tree. The more diverse a tumor’s phylogenetic tree

  5. Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages.

    PubMed

    Jiao, Fei; Wang, Juan; Dong, Zhao-Lun; Wu, Min-Juan; Zhao, Ting-Bao; Li, Dan-Dan; Wang, Xin

    2012-08-01

    Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them "human limb bud-derived mesenchymal stem cells" (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro.

  6. Cell cloning-on-the-spot by using an attachable silicone cylinder.

    PubMed

    Park, Hong Bum; Son, Wonseok; Chae, Dong Han; Lee, Jisu; Kim, Il-Woung; Yang, Woomi; Sung, Jae Kyu; Lim, Kyu; Lee, Jun Hee; Kim, Kyung-Hee; Park, Jong-Il

    2016-06-10

    Cell cloning is a laboratory routine to isolate and keep particular properties of cultured cells. Transfected or other genetically modified cells can be selected by the traditional microbiological cloning. In addition, common laboratory cell lines are prone to genotypic drift during their continual culture, so that supplementary cloning steps are often required to maintain correct lineage phenotypes. Here, we designed a silicone-made attachable cloning cylinder, which facilitated an easy and bona fide cloning of interested cells. This silicone cylinder was easy to make, showed competent stickiness to laboratory plastics including culture dishes, and hence enabled secure isolation and culture for days of selected single cells, especially, on the spots of preceding cell-plating dishes under microscopic examination of visible cellular phenotypes. We tested the silicone cylinder in the monoclonal subcloning from a heterogeneous population of a breast cancer cell line, MDA-MB-231, and readily established independent MDA-MB-231 subclones showing different sublineage phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Concise Review: Therapeutic Potential of Adipose Tissue-Derived Angiogenic Cells

    PubMed Central

    Brinchmann, Jan E.

    2012-01-01

    Inadequate blood supply to tissues is a leading cause of morbidity and mortality today. Ischemic symptoms caused by obstruction of arterioles and capillaries are currently not treatable by vessel replacement or dilatation procedures. Therapeutic angiogenesis, the treatment of tissue ischemia by promoting the proliferation of new blood vessels, has recently emerged as one of the most promising therapies. Neovascularization is most often attempted by introduction of angiogenic cells from different sources. Emerging evidence suggests that adipose tissue (AT) is an excellent reservoir of autologous cells with angiogenic potential. AT yields two cell populations of importance for neovascularization: AT-derived mesenchymal stromal cells, which likely act predominantly as pericytes, and AT-derived endothelial cells (ECs). In this concise review we discuss different physiological aspects of neovascularization, briefly present cells isolated from the blood and bone marrow with EC properties, and then discuss isolation and cell culture strategies, phenotype, functional capabilities, and possible therapeutic applications of angiogenic cells obtained from AT. PMID:23197872

  8. Fundamentals and Application of Magnetic Particles in Cell Isolation and Enrichment

    PubMed Central

    Plouffe, Brian D.; Murthy, Shashi K.; Lewis, Laura H.

    2014-01-01

    Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell separation systems. PMID:25471081

  9. Side population cells in the human vocal fold.

    PubMed

    Yamashita, Masaru; Hirano, Shigeru; Kanemaru, Shin-ichi; Tsuji, Shunichiro; Suehiro, Atsushi; Ito, Juichi

    2007-11-01

    The regenerative processes of the vocal fold, or the existence of stem cells in the folds, are unknown. Side population (SP) cells are defined as cells that have the ability to exclude the DNA binding dye, Hoechst 33342. They are regarded as a cell population enriched with stem cells and can be isolated from non-SP cells by a fluorescence-activated cell sorter. This study was designed to determine whether SP cells exist in the human vocal fold, as a first step in elucidating the regenerative mechanisms of the vocal fold. Seven human excised larynges were used in this study. Two were used for fluorescence-activated cell sorter analysis, and 5 were subjected to immunohistochemical analysis with antibodies against an adenosine triphosphate binding cassette transporter family member, ABCG2, which is expressed in SP cells. The number of SP cells in the human vocal fold was about 0.2% of the total number of cells. ABCG2-positive cells were identified in both the epithelium and subepithelial tissue throughout the entire vocal fold. This preliminary study demonstrated the existence of SP cells in the human vocal fold. Further studies are warranted to clarify how these cells work in the vocal fold, particularly in the regenerative process.

  10. Cell Growth Characteristics, Differentiation Frequency, and Immunophenotype of Adult Ear Mesenchymal Stem Cells

    PubMed Central

    Staszkiewicz, Jaroslaw; Frazier, Trivia P.; Rowan, Brian G.; Bunnell, Bruce A.; Chiu, Ernest S.; Gimble, Jeffrey M.

    2010-01-01

    Ear mesenchymal stem cells (EMSCs) represent a readily accessible population of stem-like cells that are adherent, clonogenic, and have the ability to self-renew. Previously, we have demonstrated that they can be induced to differentiate into adipocyte, osteocyte, chondrocyte, and myocyte lineages. The purpose of the current study was to characterize the growth kinetics of the cells and to determine their ability to form colonies of fibroblasts, adipocytes, osteocytes, and chondrocytes. In addition, the immunophenotypes of freshly isolated and culture-expanded cells were evaluated. From 1 g of tissue, we were able to isolate an average of 7.8 × 106 cells exhibiting a cell cycle length of ∼2–3 days. Colony-forming unit (CFU) assays indicated high proliferation potential, and confirmed previously observed multipotentiality of the cells. Fluorescence-activated cell sorting (FACS) showed that EMSCs were negative for hematopoietic markers (CD4, CD45), proving that they did not derive from circulating hematopoietic cells. The FACS analyses also showed high expression of stem cell antigen-1 (Sca-1) with only a minor population of cells expressing CD117, thus identifying Sca-1 as the more robust stem cell biomarker. Additionally, flow cytometry data revealed that the expression patterns of hematopoietic, stromal, and stem cell markers were maintained in the passaged EMSCs, consistent with the persistence of an undifferentiated state. This study indicates that EMSCs provide an alternative model for in vitro analyses of adult mesenchymal stem cells (MSCs). Further studies will be necessary to determine their utility for tissue engineering and regenerative medical applications. PMID:19400629

  11. Evaluation of an in vitro toxicogenetic mouse model for hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, Stephanie M.; Bradford, Blair U.; Soldatow, Valerie Y.

    2010-12-15

    Numerous studies support the fact that a genetically diverse mouse population may be useful as an animal model to understand and predict toxicity in humans. We hypothesized that cultures of hepatocytes obtained from a large panel of inbred mouse strains can produce data indicative of inter-individual differences in in vivo responses to hepato-toxicants. In order to test this hypothesis and establish whether in vitro studies using cultured hepatocytes from genetically distinct mouse strains are feasible, we aimed to determine whether viable cells may be isolated from different mouse inbred strains, evaluate the reproducibility of cell yield, viability and functionality overmore » subsequent isolations, and assess the utility of the model for toxicity screening. Hepatocytes were isolated from 15 strains of mice (A/J, B6C3F1, BALB/cJ, C3H/HeJ, C57BL/6J, CAST/EiJ, DBA/2J, FVB/NJ, BALB/cByJ, AKR/J, MRL/MpJ, NOD/LtJ, NZW/LacJ, PWD/PhJ and WSB/EiJ males) and cultured for up to 7 days in traditional 2-dimensional culture. Cells from B6C3F1, C57BL/6J, and NOD/LtJ strains were treated with acetaminophen, WY-14,643 or rifampin and concentration-response effects on viability and function were established. Our data suggest that high yield and viability can be achieved across a panel of strains. Cell function and expression of key liver-specific genes of hepatocytes isolated from different strains and cultured under standardized conditions are comparable. Strain-specific responses to toxicant exposure have been observed in cultured hepatocytes and these experiments open new opportunities for further developments of in vitro models of hepatotoxicity in a genetically diverse population.« less

  12. Regulation of voltage-gated potassium channels attenuates resistance of side-population cells to gefitinib in the human lung cancer cell line NCI-H460.

    PubMed

    Choi, Seon Young; Kim, Hang-Rae; Ryu, Pan Dong; Lee, So Yeong

    2017-02-21

    Side-population (SP) cells that exclude anti-cancer drugs have been found in various tumor cell lines. Moreover, SP cells have a higher proliferative potential and drug resistance than main population cells (Non-SP cells). Also, several ion channels are responsible for the drug resistance and proliferation of SP cells in cancer. To confirm the expression and function of voltage-gated potassium (Kv) channels of SP cells, these cells, as well as highly expressed ATP-binding cassette (ABC) transporters and stemness genes, were isolated from a gefitinib-resistant human lung adenocarcinoma cell line (NCI-H460), using Hoechst 33342 efflux. In the present study, we found that mRNA expression of Kv channels in SP cells was different compared to Non-SP cells, and the resistance of SP cells to gefitinib was weakened with a combination treatment of gefitinib and Kv channel blockers or a Kv7 opener, compared to single-treatment gefitinib, through inhibition of the Ras-Raf signaling pathway. The findings indicate that Kv channels in SP cells could be new targets for reducing the resistance to gefitinib.

  13. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness.

    PubMed

    Leung, Thomas Ho-Yin; Tang, Hermit Wai-Man; Siu, Michelle Kwan-Yee; Chan, David Wai; Chan, Karen Kar-Loen; Cheung, Annie Nga-Yin; Ngan, Hextan Yuen-Sheung

    2018-02-01

    Accumulating evidence indicates that the human papillomavirus (HPV) E6 protein plays a crucial role in the development of cervical cancer. Subpopulations of cells that reside within tumours are responsible for tumour resistance to cancer therapy and recurrence. However, the identity of such cells residing in cervical cancer and their relationship with the HPV-E6 protein have not been identified. Here, we isolated sphere-forming cells, which showed self-renewal ability, from primary cervical tumours. Gene expression profiling revealed that cluster of differentiation (CD) 55 was upregulated in primary cervical cancer sphere cells. Flow-cytometric analysis detected abundant CD55(+) populations among a panel of HPV-positive cervical cancer cell lines, whereas few CD55(+) cells were found in HPV-negative cervical cancer and normal cervical epithelial cell lines. The CD55(+) subpopulation isolated from the C33A cell line showed significant sphere-forming ability and enhanced tumourigenicity, cell migration, and radioresistance. In contrast, the suppression of CD55 in HPV-positive CaSki cells inhibited tumourigenicity both in vitro and in vivo, and sensitized cells to radiation treatment. In addition, ectopic expression of the HPV-E6 protein in HPV-negative cervical cancer cells dramatically enriched the CD55(+) subpopulation. CRISPR/Cas9 knockout of CD55 in an HPV-E6-overexpressing stable clone abolished the tumourigenic effects of the HPV-E6 protein. Taken together, our data suggest that HPV-E6 protein expression enriches the CD55(+) population, which contributes to tumourigenicity and radioresistance in cervical cancer cells. Targeting CD55 via CRISPR/Cas9 may represent a novel avenue for developing new strategies and effective therapies for the treatment of cervical cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Sparing of extraocular muscle in aging and muscular dystrophies: A myogenic precursor cell hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallestad, Kristen M.; Hebert, Sadie L.; McDonald, Abby A.

    2011-04-01

    The extraocular muscles (EOM) are spared from pathology in aging and many forms of muscular dystrophy. Despite many studies, this sparing remains an enigma. The EOM have a distinct embryonic lineage compared to somite-derived muscles, and we have shown that they continuously remodel throughout life, maintaining a population of activated satellite cells even in aging. These data suggested the hypothesis that there is a population of myogenic precursor cells (mpcs) in EOM that is different from those in limb, with either elevated numbers of stem cells and/or mpcs with superior proliferative capacity compared to mpcs in limb. Using flow cytometry,more » EOM and limb muscle mononuclear cells were compared, and a number of differences were seen. Using two different cell isolation methods, EOM have significantly more mpcs per mg muscle than limb skeletal muscle. One specific subpopulation significantly increased in EOM compared to limb was positive for CD34 and negative for Sca-1, M-cadherin, CD31, and CD45. We named these the EOMCD34 cells. Similar percentages of EOMCD34 cells were present in both newborn EOM and limb muscle. They were retained in aged EOM, whereas the population decreased significantly in adult limb muscle and were extremely scarce in aged limb muscle. Most importantly, the percentage of EOMCD34 cells was elevated in the EOM from both the mdx and the mdx/utrophin{sup -/-} (DKO) mouse models of DMD and extremely scarce in the limb muscles of these mice. In vitro, the EOMCD34 cells had myogenic potential, forming myotubes in differentiation media. After determining a media better able to induce proliferation in these cells, a fusion index was calculated. The cells isolated from EOM had a 40% higher fusion index compared to the same cells isolated from limb muscle. The EOMCD34 cells were resistant to both oxidative stress and mechanical injury. These data support our hypothesis that the EOM may be spared in aging and in muscular dystrophies due to a subpopulation of mpcs, the EOMCD34 cells, that are retained in significantly higher percentages in normal, mdx and DKO mice EOM, appear to be resistant to elevated levels of oxidative stress and toxins, and actively proliferate throughout life. Current studies are focused on further defining the EOMCD34 cell subtype molecularly, with the hopes that this may shed light on a cell type with potential therapeutic use in patients with sarcopenia, cachexia, or muscular dystrophy.« less

  15. Culture of somatic cells isolated from frozen-thawed equine semen using fluorescence-assisted cell sorting.

    PubMed

    Brom-de-Luna, Joao Gatto; Canesin, Heloísa Siqueira; Wright, Gus; Hinrichs, Katrin

    2018-03-01

    Nuclear transfer using somatic cells from frozen semen (FzSC) would allow cloning of animals for which no other genetic material is available. Horses are one of the few species for which cloning is commercially feasible; despite this, there is no information available on the culture of equine FzSC. After preliminary trials on equine FzSC, recovered by density-gradient centrifugation, resulted in no growth, we hypothesized that sperm in the culture system negatively affected cell proliferation. Therefore, we evaluated culture of FzSC isolated using fluorescence-assisted cell sorting. In Exp. 1, sperm were labeled using antibodies to a sperm-specific antigen, SP17, and unlabeled cells were collected. This resulted in high sperm contamination. In Exp. 2, FzSC were labeled using an anti-MHC class I antibody. This resulted in an essentially pure population of FzSC, 13-25% of which were nucleated. Culture yielded no proliferation in any of nine replicates. In Exp. 3, 5 × 10 3 viable fresh, cultured horse fibroblasts were added to the frozen-thawed, washed semen, then this suspension was labeled and sorted as for Exp. 2. The enriched population had a mean of five sperm per recovered somatic cell; culture yielded formation of monolayers. In conclusion, an essentially pure population of equine FzSC could be obtained using sorting for presence of MHC class I antigens. No equine FzSC grew in culture; however, the proliferation of fibroblasts subjected to the same processing demonstrated that the labeling and sorting methods, and the presence of few sperm in culture, were compatible with cell viability. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Protein expression differs between neural progenitor cells from the adult rat brain subventricular zone and olfactory bulb.

    PubMed

    Maurer, Martin H; Feldmann, Robert E; Bürgers, Heinrich F; Kuschinsky, Wolfgang

    2008-01-16

    Neural progenitor cells can be isolated from various regions of the adult mammalian brain, including the forebrain structures of the subventricular zone and the olfactory bulb. Currently it is unknown whether functional differences in these progenitor cell populations can already be found on the molecular level. Therefore, we compared protein expression profiles between progenitor cells isolated from the subventricular zone and the olfactory bulb using a proteomic approach based on two-dimensional gel electrophoresis and mass spectrometry. The subventricular zone and the olfactory bulb are connected by the Rostral Migratory Stream (RMS), in which glial fibrillary acidic protein (GFAP)-positive cells guide neuroblasts. Recent literature suggested that these GFAP-positive cells possess neurogenic potential themselves. In the current study, we therefore compared the cultured neurospheres for the fraction of GFAP-positive cells and their morphology of over a prolonged period of time. We found significant differences in the protein expression patterns between subventricular zone and olfactory bulb neural progenitor cells. Of the differentially expressed protein spots, 105 were exclusively expressed in the subventricular zone, 23 showed a lower expression and 51 a higher expression in the olfactory bulb. The proteomic data showed that more proteins are differentially expressed in olfactory bulb progenitors with regard to proteins involved in differentiation and microenvironmental integration, as compared to the subventricular zone progenitors. Compared to 94% of all progenitors of the subventricular zone expressed GFAP, nearly none in the olfactory bulb cultures expressed GFAP. Both GFAP-positive subpopulations differed also in morphology, with the olfactory bulb cells showing more branching. No differences in growth characteristics such as doubling time, and passage lengths could be found over 26 consecutive passages in the two cultures. In this study, we describe differences in protein expression of neural progenitor populations isolated from two forebrain regions, the subventricular zone and the olfactory bulb. These subpopulations can be characterized by differential expression of marker proteins. We isolated fractions of progenitor cells with GFAP expression from both regions, but the GFAP-positive cells differed in number and morphology. Whereas in vitro growth characteristics of neural progenitors are preserved in both regions, our proteomic and immunohistochemical data suggest that progenitor cells from the two regions differ in morphology and functionality, but not in their proliferative capacity.

  17. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas

    PubMed Central

    Rovira, Meritxell; Scott, Sherri-Gae; Liss, Andrew S.; Jensen, Jan; Thayer, Sarah P.; Leach, Steven D.

    2009-01-01

    The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing “pancreatospheres” in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas. PMID:20018761

  18. Human Uterine Leiomyoma Stem/Progenitor Cells Expressing CD34 and CD49b Initiate Tumors In Vivo

    PubMed Central

    Ono, Masanori; Moravek, Molly B.; Coon, John S.; Navarro, Antonia; Monsivais, Diana; Dyson, Matthew T.; Druschitz, Stacy A.; Malpani, Saurabh S.; Serna, Vanida A.; Qiang, Wenan; Chakravarti, Debabrata; Kim, J. Julie; Bulun, Serdar E.

    2015-01-01

    Context: Uterine leiomyoma is the most common benign tumor in reproductive-age women. Using a dye-exclusion technique, we previously identified a side population of leiomyoma cells exhibiting stem cell characteristics. However, unless mixed with mature myometrial cells, these leiomyoma side population cells did not survive or grow well in vitro or in vivo. Objective: The objective of this study was to identify cell surface markers to isolate leiomyoma stem/progenitor cells. Design: Real-time PCR screening was used to identify cell surface markers preferentially expressed in leiomyoma side population cells. In vitro colony-formation assay and in vivo tumor-regeneration assay were used to demonstrate functions of leiomyoma stem/progenitor cells. Results: We found significantly elevated CD49b and CD34 gene expression in side population cells compared with main population cells. Leiomyoma cells were sorted into three populations based on the expression of CD34 and CD49b: CD34+/CD49b+, CD34+/CD49b−, and CD34−/CD49b− cells, with the majority of the side population cells residing in the CD34+/CD49b+ fraction. Of these populations, CD34+/CD49b+ cells expressed the lowest levels of estrogen receptor-α, progesterone receptor, and α-smooth muscle actin, but the highest levels of KLF4, NANOG, SOX2, and OCT4, confirming their more undifferentiated status. The stemness of CD34+/CD49b+ cells was also demonstrated by their strongest in vitro colony-formation capacity and in vivo tumor-regeneration ability. Conclusions: CD34 and CD49b are cell surface markers that can be used to enrich a subpopulation of leiomyoma cells possessing stem/progenitor cell properties; this technique will accelerate efforts to develop new therapies for uterine leiomyoma. PMID:25658015

  19. Urokinase production by electrophoretically separated cultured human embryonic kidney cells

    NASA Technical Reports Server (NTRS)

    Kunze, M. E.; Plank, L. D.; Giranda, V.; Sedor, K.; Todd, P. W.

    1985-01-01

    Urokinase is a plasminogen activator found in urine. Relatively pure preparations have been tested in Europe, Japan and the United States for the treatment of deep vein thrombosis and other dangerous blood clots. Human embryonic kidney cell cultures have been found to produce urokinase at much higher concentrations, but less than 5% of the cells in typical cultures are producers. Since human diploid cells become senescent in culture the selection of clones derived from single cells will not provide enough material to be useful, so a bulk purification method is needed for the isolation of urokinase producing cell populations. Preparative cell electrophoresis was chosen as the method, since evidence exists that human embryonic cell cultures are richly heterogeneous with respect to electrophoretic mobility, and preliminary electrophoretic separations on the Apollo-Soyuz space flight produced cell populations that were rich in urokinase production. Similarly, erythropoietin is useful in the treatment of certain anemias and is a kidney cell duct, and electrophoretically enriched cell populations producing this product have been reported. Thus, there is a clear need for diploid human cells that produce these products, and there is evidence that such cells should be separable by free-flow cell electrophoresis.

  20. Automated Microfluidic Filtration and Immunocytochemistry Detection System for Capture and Enumeration of Circulating Tumor Cells and Other Rare Cell Populations in Blood.

    PubMed

    Pugia, Michael; Magbanua, Mark Jesus M; Park, John W

    2017-01-01

    Isolation by size using a filter membrane offers an antigen-independent method for capturing rare cells present in blood of cancer patients. Multiple cell types, including circulating tumor cells (CTCs), captured on the filter membrane can be simultaneously identified via immunocytochemistry (ICC) analysis of specific cellular biomarkers. Here, we describe an automated microfluidic filtration method combined with a liquid handling system for sequential ICC assays to detect and enumerate non-hematologic rare cells in blood.

  1. Droplet microfluidics--a tool for single-cell analysis.

    PubMed

    Joensson, Haakan N; Andersson Svahn, Helene

    2012-12-03

    Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cis-regulatory landscapes of four cell types of the retina

    PubMed Central

    Hartl, Dominik; Jüttner, Josephine

    2017-01-01

    Abstract The retina is composed of ∼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photoreceptors as well as rare inter-neuron populations such as horizontal and starburst amacrine cells. Integration of this information reveals sequence determinants and candidate transcription factors for controlling cellular specialization. Additionally, we refined parallel reporter assays to enable studying the transcriptional activity of large collection of sequences in individual cell-types isolated from a tissue. We provide proof of concept for this approach and its scalability by characterizing the transcriptional capacity of several hundred putative regulatory sequences within individual retinal cell-types. This generates a catalogue of cis-regulatory regions active in retinal cell types and we further demonstrate their utility as potential resource for cellular tagging and manipulation. PMID:29059322

  3. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer.

    PubMed

    Hyun, Kyung-A; Koo, Gi-Bang; Han, Hyunju; Sohn, Joohyuk; Choi, Wonshik; Kim, Seung-Il; Jung, Hyo-Il; Kim, You-Sun

    2016-04-26

    The dissemination of circulating tumor cells (CTCs) requires the Epithelial-to-Mesenchymal transition (EMT), in which cells lose their epithelial characteristics and acquire more mesenchymal-like phenotypes. Current isolation of CTCs relies on affinity-based approaches reliant on the expression of Epithelial Cell Adhesion Molecule (EpCAM). Here we show EMT-induced breast cancer cells maintained in prolonged mammosphere culture conditions possess increased EMT markers and cancer stem cell markers, as well as reduced cell mass and size by quantitative phase microscopy; however, EpCAM expression is dramatically decreased in these cells. Moreover, CTCs isolated from breast cancer patients using a label-free microfluidic flow fractionation device had differing expression patterns of EpCAM, indicating that affinity approaches reliant on EpCAM expression may underestimate CTC number and potentially miss critical subpopulations. Further characterization of CTCs, including low-EpCAM populations, using this technology may improve detection techniques and cancer diagnosis, ultimately improving cancer treatment.

  4. [Therapeutic strategies targeting brain tumor stem cells].

    PubMed

    Toda, Masahiro

    2009-07-01

    Progress in stem cell research reveals cancer stem cells to be present in a variety of malignant tumors. Since they exhibit resistance to anticancer drugs and radiotherapy, analysis of their properties has been rapidly carried forward as an important target for the treatment of intractable malignancies, including brain tumors. In fact, brain cancer stem cells (BCSCs) have been isolated from brain tumor tissue and brain tumor cell lines by using neural stem cell culture methods and isolation methods for side population (SP) cells, which have high drug-efflux capacity. Although the analysis of the properties of BCSCs is the most important to developing methods in treating BCSCs, the absence of BCSC purification methods should be remedied by taking it up as an important research task in the immediate future. Thus far, there are no effective treatment methods for BCSCs, and several treatment methods have been proposed based on the cell biology characteristics of BCSCs. In this article, I outline potential treatment methods damaging treatment-resistant BCSCs, including immunotherapy which is currently a topic of our research.

  5. Preclinical Assessment of the Proliferation Capacity of Gingival and Periodontal Ligament Stem Cells from Diabetic Patients.

    PubMed

    Assem, Mostafa; Kamal, Samia; Sabry, Dina; Soliman, Nadia; Aly, Riham M

    2018-02-15

    Stem cells have recently received great interest as potential therapeutics alternative for a variety of diseases. The oral and maxillofacial region, in particular, encompasses a variety of distinctive mesenchymal (MSC) populations and is characterized by a potent multilineage differentiation capacity. In this report, we aimed to investigate the effect of diabetes on the proliferation potential of stem cells isolated from controlled diabetic patients (type 2) and healthy individuals. The proliferation rate of gingival and periodontal derived stem cells isolated from diabetic & healthy individuals were compared using MTT Assay. Expression levels of Survivin in isolated stem cells from all groups were measured by qRt - PCR. There was a significantly positive correlation between proliferation rate and expression of Survivin in all groups which sheds light on the importance of Survivin as a reliable indicator of proliferation. The expression of Survivin further confirmed the proliferation results from MTT Assay where the expression of stem cells from non - diabetic individuals was higher than diabetic patients. Taking together all the results, it could be concluded that PDLSC and GSC are promising candidates for autologous regenerative therapy due to their ease of accessibility in addition to their high proliferative rates.

  6. Isolation and characterization of multipotent human periodontal ligament stem cells.

    PubMed

    Gay, I C; Chen, S; MacDougall, M

    2007-08-01

    Periodontal ligament (PDL) repair is thought to involve mesenchymal progenitor cells capable of forming fibroblasts, osteoblasts and cementoblasts. However, full characterization of PDL stem cell (SC) populations has not been achieved. To isolate and characterize PDLSC and assess their capability to differentiate into bone, cartilage and adipose tissue. Human PDL cells were stained for STRO-1, FACS sorted and expanded in culture. Human bone marrow SC (BMSC) served as a positive control. PDLSC and BMSC were cultured using standard conditions conducive for osteogenic, chondrogenic and adipogenic differentiation. Osteogenic induction was assayed using alizarine red S staining and expression of alkaline phosphatase (ALP) and bone sialoprotein (BSP). Adipogenic induction was assayed using Oil Red O staining and the expression of PPAR gamma 2 (early) and LPL (late) adipogenic markers. Chondrogenic induction was assayed by collagen type II expression and toluidine blue staining. Human PDL tissue contains about 27% STRO-1 positive cells with 3% strongly positive. In osteogenic cultures ALP was observed by day-7 in BMSC and day-14 in PDLSC. BSP expression was detectable by day-7; with more intense staining in PDLSC cultures. In adipogenic cultures both cell populations showed positive Oil Red O staining by day-25 with PPAR gamma 2 and LPL expression. By day-21, both BMSC and PDLSC chondrogenic induced cultures expressed collagen type II and glycosaminoglycans. The PDL contains SC that have the potential to differentiate into osteoblasts, chondrocytes and adipocytes, comparable with previously characterized BMSC. This adult PDLSC population can be utilized for potential therapeutic procedures related to PDL regeneration.

  7. Identification and genetic analysis of cancer cells with PCR-activated cell sorting

    PubMed Central

    Eastburn, Dennis J.; Sciambi, Adam; Abate, Adam R.

    2014-01-01

    Cell sorting is a central tool in life science research for analyzing cellular heterogeneity or enriching rare cells out of large populations. Although methods like FACS and FISH-FC can characterize and isolate cells from heterogeneous populations, they are limited by their reliance on antibodies, or the requirement to chemically fix cells. We introduce a new cell sorting technology that robustly sorts based on sequence-specific analysis of cellular nucleic acids. Our approach, PCR-activated cell sorting (PACS), uses TaqMan PCR to detect nucleic acids within single cells and trigger their sorting. With this method, we identified and sorted prostate cancer cells from a heterogeneous population by performing >132 000 simultaneous single-cell TaqMan RT-PCR reactions targeting vimentin mRNA. Following vimentin-positive droplet sorting and downstream analysis of recovered nucleic acids, we found that cancer-specific genomes and transcripts were significantly enriched. Additionally, we demonstrate that PACS can be used to sort and enrich cells via TaqMan PCR reactions targeting single-copy genomic DNA. PACS provides a general new technical capability that expands the application space of cell sorting by enabling sorting based on cellular information not amenable to existing approaches. PMID:25030902

  8. Microaspiration of Solanum tuberosum root cells at early stages of infection by Globodera pallida.

    PubMed

    Kooliyottil, Rinu; Dandurand, Louise-Marie; Kuhl, Joseph C; Caplan, Allan; Xiao, Fangming

    2017-01-01

    Sedentary endoparasitic cyst nematodes form a feeding structure in plant roots, called a syncytium. Syncytium formation involves extensive transcriptional modifications, which leads to cell modifications such as increased cytoplasmic streaming, enlarged nuclei, increased numbers of organelles, and replacement of a central vacuole by many small vacuoles. When whole root RNA is isolated and analyzed, transcript changes manifested in the infected plant cells are overshadowed by gene expression from cells of the entire root system. Use of microaspiration allows isolation of the content of nematode infected cells from a heterogeneous cell population. However, one challenge with this method is identifying the nematode infected cells under the microscope at early stages of infection. This problem was addressed by staining nematode juveniles with a fluorescent dye prior to infection so that the infected cells could be located and microaspirated. In the present study, we used the fluorescent vital stain PKH26 coupled with a micro-rhizosphere chamber to locate the infected nematode Globodera pallida in Solanum tuberosum root cells. This enabled microaspiration of nematode-infected root cells during the early stages of parasitism. To study the transcriptional events occurring in these cells, an RNA isolation method from microaspirated samples was optimized, and subsequently the RNA was purified using magnetic beads. With this method, we obtained an RNA quality number of 7.8. For transcriptome studies, cDNA was synthesized from the isolated RNA and assessed by successfully amplifying several pathogenesis related protein coding genes. The use of PKH26 stained nematode juveniles enabled early detection of nematode infected cells for microaspiration. To investigate transcriptional changes in low yielding RNA samples, bead-based RNA extraction procedures minimized RNA degradation and provided high quality RNA. This protocol provides a robust procedure to analyze gene expression in nematode-infected cells.

  9. Different characteristics of mesenchymal stem cells isolated from different layers of full term placenta

    PubMed Central

    Ha, Chul-Won; Kim, Jin A; Heo, Jin-Chul; Han, Woo-Jung; Oh, Soo-Young; Choi, Suk-Joo

    2017-01-01

    Background The placenta is a very attractive source of mesenchymal stem cells (MSCs) for regenerative medicine due to readily availability, non-invasive acquisition, and avoidance of ethical issues. Isolating MSCs from parts of placenta tissue has obtained growing interest because they are assumed to exhibit different proliferation and differentiation potentials due to complex structures and functions of the placenta. The objective of this study was to isolate MSCs from different parts of the placenta and compare their characteristics. Methods Placenta was divided into amniotic epithelium (AE), amniotic membrane (AM), chorionic membrane (CM), chorionic villi (CV), chorionic trophoblast without villi (CT-V), decidua (DC), and whole placenta (Pla). Cells isolated from each layer were subjected to analyses for their morphology, proliferation ability, surface markers, and multi-lineage differentiation potential. MSCs were isolated from all placental layers and their characteristics were compared. Findings Surface antigen phenotype, morphology, and differentiation characteristics of cells from all layers indicated that they exhibited properties of MSCs. MSCs from different placental layers had different proliferation rates and differentiation potentials. MSCs from CM, CT-V, CV, and DC had better population doubling time and multi-lineage differentiation potentials compared to those from other layers. Conclusions Our results indicate that MSCs with different characteristics can be isolated from all layers of term placenta. These finding suggest that it is necessary to appropriately select MSCs from different placental layers for successful and consistent outcomes in clinical applications. PMID:28225815

  10. Cattle NK Cell Heterogeneity and the Influence of MHC Class I

    PubMed Central

    Allan, Alasdair J.; Sanderson, Nicholas D.; Gubbins, Simon; Ellis, Shirley A.

    2015-01-01

    Primate and rodent NK cells form highly heterogeneous lymphocyte populations owing to the differential expression of germline-encoded receptors. Many of these receptors are polymorphic and recognize equally polymorphic determinants of MHC class I. This diversity can lead to individuals carrying NK cells with different specificities. Cattle have an unusually diverse repertoire of NK cell receptor genes predicted to encode receptors that recognize MHC class I. To begin to examine whether this genetic diversity leads to a diverse NK cell population, we isolated peripheral NK cells from cattle with different MHC homozygous genotypes. Cytokine stimulation differentially influenced the transcription of five receptors at the cell population level. Using dilution cultures, we found that a further seven receptors were differentially transcribed, including five predicted to recognize MHC class I. Moreover, there was a statistically significant reduction in killer cell lectin-like receptor mRNA expression between cultures with different CD2 phenotypes and from animals with different MHC class I haplotypes. This finding confirms that cattle NK cells are a heterogeneous population and reveals that the receptors creating this diversity are influenced by the MHC. The importance of this heterogeneity will become clear as we learn more about the role of NK cells in cattle disease resistance and vaccination. PMID:26216890

  11. Human Oral Mucosa and Gingiva

    PubMed Central

    Zhang, Q.Z.; Nguyen, A.L.; Yu, W.H.; Le, A.D.

    2012-01-01

    Mesenchymal stem cells (MSCs) represent a heterogeneous population of progenitor cells with self-renewal and multipotent differentiation potential. Aside from their regenerative role, extensive in vitro and in vivo studies have demonstrated that MSCs are capable of potent immunomodulatory effects on a variety of innate and adaptive immune cells. In this article, we will review recent experimental studies on the characterization of a unique population of MSCs derived from human oral mucosa and gingiva, especially their immunomodulatory and anti-inflammatory functions and their application in the treatment of several in vivo models of inflammatory diseases. The ease of isolation, accessible tissue source, and rapid ex vivo expansion, with maintenance of stable stem-cell-like phenotypes, render oral mucosa- and gingiva-derived MSCs a promising alternative cell source for MSC-based therapies. PMID:22988012

  12. Human Mesenchymal Stem Cells Derived From Limb Bud Can Differentiate into All Three Embryonic Germ Layers Lineages

    PubMed Central

    Jiao, Fei; Wang, Juan; Dong, Zhao-lun; Wu, Min-juan; Zhao, Ting-bao; Li, Dan-dan

    2012-01-01

    Abstract Mesenchymal stem cells (MSCs) have been isolated from many sources, including adults and fetuses. Previous studies have demonstrated that, compared with their adult counterpart, fetal MSCs with several remarkable advantages may be a better resource for clinical applications. In this study, we successfully isolated a rapidly proliferating cell population from limb bud of aborted fetus and termed them “human limb bud–derived mesenchymal stem cells” (hLB-MSCs). Characteristics of their morphology, phenotype, cell cycle, and differentiation properties were analyzed. These adherent cell populations have a typically spindle-shaped morphology. Flow cytometry analysis showed that hLB-MSCs are positive for CD13, CD29, CD90, CD105, and CD106, but negative for CD3, CD4, CD5, CD11b, CD14, CD15, CD34, CD45, CD45RA, and HLA-DR. The detection of cell cycle from different passages indicated that hLB-MSCs have a similar potential for propagation during long culture in vitro. The most novel finding here is that, in addition to their mesodermal differentiation (osteoblasts and adipocytes), hLB-MSCs can also differentiated into extramesenchymal lineages, such as neural (ectoderm) and hepatic (endoderm) progenies. These results indicate that hLB-MSCs have a high level of plasticity and can differentiate into cell lineages from all three embryonic layers in vitro. PMID:22775353

  13. Isolation and Characterization of Human Lung Lymphatic Endothelial Cells

    PubMed Central

    Lorusso, Bruno; Falco, Angela; Madeddu, Denise; Frati, Caterina; Cavalli, Stefano; Graiani, Gallia; Gervasi, Andrea; Rinaldi, Laura; Lagrasta, Costanza; Maselli, Davide; Gnetti, Letizia; Silini, Enrico M.; Quaini, Eugenio; Ampollini, Luca; Carbognani, Paolo; Quaini, Federico

    2015-01-01

    Characterization of lymphatic endothelial cells from the respiratory system may be crucial to investigate the role of the lymphatic system in the normal and diseased lung. We describe a simple and inexpensive method to harvest, isolate, and expand lymphatic endothelial cells from the human lung (HL-LECs). Fifty-five samples of healthy lung selected from patients undergoing lobectomy were studied. A two-step purification tool, based on paramagnetic sorting with monoclonal antibodies to CD31 and Podoplanin, was employed to select a pure population of HL-LECs. The purity of HL-LECs was assessed by morphologic criteria, immunocytochemistry, flow cytometry, and functional assays. Interestingly, these cells retain in vitro several receptor tyrosine kinases (RTKs) implicated in cell survival and proliferation. HL-LECs represent a clinically relevant cellular substrate to study lymphatic biology, lymphoangiogenesis, interaction with microbial agents, wound healing, and anticancer therapy. PMID:26137493

  14. Adaptation and Preadaptation of Salmonella enterica to Bile

    PubMed Central

    Hernández, Sara B.; Cota, Ignacio; Ducret, Adrien; Aussel, Laurent; Casadesús, Josep

    2012-01-01

    Bile possesses antibacterial activity because bile salts disrupt membranes, denature proteins, and damage DNA. This study describes mechanisms employed by the bacterium Salmonella enterica to survive bile. Sublethal concentrations of the bile salt sodium deoxycholate (DOC) adapt Salmonella to survive lethal concentrations of bile. Adaptation seems to be associated to multiple changes in gene expression, which include upregulation of the RpoS-dependent general stress response and other stress responses. The crucial role of the general stress response in adaptation to bile is supported by the observation that RpoS− mutants are bile-sensitive. While adaptation to bile involves a response by the bacterial population, individual cells can become bile-resistant without adaptation: plating of a non-adapted S. enterica culture on medium containing a lethal concentration of bile yields bile-resistant colonies at frequencies between 10−6 and 10−7 per cell and generation. Fluctuation analysis indicates that such colonies derive from bile-resistant cells present in the previous culture. A fraction of such isolates are stable, indicating that bile resistance can be acquired by mutation. Full genome sequencing of bile-resistant mutants shows that alteration of the lipopolysaccharide transport machinery is a frequent cause of mutational bile resistance. However, selection on lethal concentrations of bile also provides bile-resistant isolates that are not mutants. We propose that such isolates derive from rare cells whose physiological state permitted survival upon encountering bile. This view is supported by single cell analysis of gene expression using a microscope fluidic system: batch cultures of Salmonella contain cells that activate stress response genes in the absence of DOC. This phenomenon underscores the existence of phenotypic heterogeneity in clonal populations of bacteria and may illustrate the adaptive value of gene expression fluctuations. PMID:22275872

  15. Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions.

    PubMed

    Olszewska, Magdalena A; Kocot, Aleksandra M; Łaniewska-Trokenheim, Łucja

    2015-04-20

    Changes in pH are significant environmental stresses that may be encountered by lactobacilli during fermentation processes or passage through the gastrointestinal tract. Here, we report the cell response of Lactobacillus spp. isolated from traditionally fermented cabbage subjected to acid/alkaline treatments at pH 2.5, 7.4 and 8.1, which represented pH conditions of the gastrointestinal tract. Among six isolates, four species of Lactobacillus plantarum and two of Lactobacillus brevis were identified by fluorescence in situ hybridization (FISH). The fluorescence-based strategy of combining carboxyfluorescein diacetate (CFDA) and propidium iodine (PI) into a dual-staining assay was used together with epifluorescence microscopy (EFM) and flow cytometry (FCM) for viability assessment. The results showed that the cells maintained esterase activity and membrane integrity at pH 8.1 and 7.4. There was also no loss of culturability as shown by plate counts. In contrast, the majority of 2.5 pH-treated cells had a low extent of esterase activity, and experienced membrane perturbation. For these samples, an extensive loss of culturability was demonstrated. Comparison of the results of an in situ assessment with that of the conventional culturing method has revealed that although part of the stressed population was unable to grow on the growth media, it was deemed viable using a CFDA/PI assay. However, there was no significant change in the cell morphology among pH-treated lactobacilli populations. These analyses are expected to be useful in understanding the cell response of Lactobacillus strains to pH stress and may facilitate future investigation into functional and industrial aspects of this response. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake.

    PubMed

    Navarro, Jason B; Moser, Duane P; Flores, Andrea; Ross, Christian; Rosen, Michael R; Dong, Hailiang; Zhang, Gengxin; Hedlund, Brian P

    2009-02-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.

  17. Bacterial succession within an ephemeral hypereutrophic mojave desert playa lake

    USGS Publications Warehouse

    Navarro, J.B.; Moser, D.P.; Flores, A.; Ross, C.; Rosen, Michael R.; Dong, H.; Zhang, G.; Hedlund, B.P.

    2009-01-01

    Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of 1 ?????106 cells ml-1 of culturable heterotrophs was replaced by a dense population of more than 1????????109 cells ml-1, which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria. ?? 2008 Springer Science+Business Media, LLC.

  18. DSG2 Is a Functional Cell Surface Marker for Identification and Isolation of Human Pluripotent Stem Cells.

    PubMed

    Park, Jongjin; Son, Yeonsung; Lee, Na Geum; Lee, Kyungmin; Lee, Dong Gwang; Song, Jinhoi; Lee, Jaemin; Kim, Seokho; Cho, Min Ji; Jang, Ju-Hong; Lee, Jangwook; Park, Jong-Gil; Kim, Yeon-Gu; Kim, Jang-Seong; Lee, Jungwoon; Cho, Yee Sook; Park, Young-Jun; Han, Baek Soo; Bae, Kwang-Hee; Han, Seungmin; Kang, Byunghoon; Haam, Seungjoo; Lee, Sang-Hyun; Lee, Sang Chul; Min, Jeong-Ki

    2018-06-08

    Pluripotent stem cells (PSCs) represent the most promising clinical source for regenerative medicine. However, given the cellular heterogeneity within cultivation and safety concerns, the development of specific and efficient tools to isolate a pure population and eliminate all residual undifferentiated PSCs from differentiated derivatives is a prerequisite for clinical applications. In this study, we raised a monoclonal antibody and identified its target antigen as desmoglein-2 (DSG2). DSG2 co-localized with human PSC (hPSC)-specific cell surface markers, and its expression was rapidly downregulated upon differentiation. The depletion of DSG2 markedly decreased hPSC proliferation and pluripotency marker expression. In addition, DSG2-negative population in hPSCs exhibited a notable suppression in embryonic body and teratoma formation. The actions of DSG2 in regulating the self-renewal and pluripotency of hPSCs were predominantly exerted through the regulation of β-catenin/Slug-mediated epithelial-to-mesenchymal transition. Our results demonstrate that DSG2 is a valuable PSC surface marker that is essential for the maintenance of PSC self-renewal. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Association of Mycoplasma hominis and Ureaplasma urealyticum with some indicators of nonspecific vaginitis.

    PubMed

    Cedillo-Ramírez, L; Gil, C; Zago, I; Yáñez, A; Giono, S

    2000-01-01

    The purpose of this study was to determine the isolation rates of Mycoplasma hominis and Ureaplasma urealyticum from three populations of women and also to relate the presence of these microorganisms with some indicators of nonspecific vaginitis. Three hundred vaginal swabs were taken from delivery, pregnant and control (not pregnant) women. Cultures were done in E broth supplemented with arginine or urea. M. hominis was isolated in 5% at delivery, 12% from pregnant and 5% from control women and U. urealyticum was isolated in 21%, 31% and 28% respectively. There was statistical difference in the isolation rate of M. hominis in pregnant women respect to the other groups. Both microorganisms were more frequently isolated in women with acid vaginal pH, amine-like odor in KOH test, clue cells and leucorrhea. M. hominis was isolated in 17% and U. urealyticum in 52% from women with nonspecific vaginitis. M. hominis was isolated in 2% and U. urealyticum in 13% from women without nonspecific vaginitis. Although the presence of clue cells and amine-like odor in KOH test have relationship with Gardnerella vaginalis, these tests could also suggest the presence of these mycoplasmas.

  20. [Effect of penicillin and the habitat medium in the body of bacterial carriers on the intercellular bonds in populations of the meningococcus and pertussis microbe].

    PubMed

    Vysotskiĭ, V V; Smirnova-Mutusheva, M A; Efimova, O G; Bakulina, N A

    1983-04-01

    The relationship of the bacterial cells in populations and their adhesion activity is at present one of the research priorities in microbiological studies. The stimulating effect of penicillin on the development of morphologically different intercellular bonds (IB) in populations of the pertussis causative agent and first of all derivatives or evaginates of the cell wall membranes was observed. Morphologically similar systems and polytubular IB were detected in populations of meningococcal strains isolated from carriers having no signs of the disease. Correlation between the after-effect of penicillin and the presence of the causative agent in bacterial carriers was shown. Unknown systems of interlacing tubular structures not directly bound with the cells, the walls of which were single contour membranes were determined in the meningococcal populations treated with penicillin. IB were observed in the population in the form of transpopulation cords. Morphologically different IB playing the role of specialized organelles might be considered as factors of the functional unity of the bacterial population as a multicellular system.

  1. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  2. [Expression of embryonic markers in pterygium derived mesenchymal cells].

    PubMed

    Pascual, G; Montes, M A; Pérez-Rico, C; Pérez-Kohler, B; Bellón, J M; Buján, J

    2010-12-01

    Destruction of the limbal epithelium barrier is the most important mechanism of pterygium formation (conjunctiva proliferation, encroaching onto the cornea). It is thought to arise from activated and proliferating limbal epithelial stem cells. The objective of this study is to evaluate the presence of undifferentiated mesenchymal cells (stem cells) in cultured cells extracted from human pterygium. Cells from 6 human pterygium were isolated by explantation and placed in cultures with amniomax medium. Once the monolayer was reached the cells were seeded onto 24 well microplates. The cells were studied in the second sub-culture. The immunohistochemical expression of different embryonic stem cell markers, OCT3/4 and CD9, was analysed. The differentiated phenotypes were characterised with the monoclonal antibodies anti-CD31, α-actin and vimentin. All the cell populations obtained from pterygium showed vimentin expression. Less than 1% of the cells were positive for CD31 and α-actin markers. The majority of the cell population was positive for OCT3/4 and CD9. The cell population obtained from pterygium expressed mesenchymal cell phenotype and embryonic markers, such us OCT3/4 and CD9. This undifferentiated population could be involved in the large recurrence rate of this type of tissue after surgery. Copyright © 2010 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  3. Gene expression profiling of single cells on large-scale oligonucleotide arrays

    PubMed Central

    Hartmann, Claudia H.; Klein, Christoph A.

    2006-01-01

    Over the last decade, important insights into the regulation of cellular responses to various stimuli were gained by global gene expression analyses of cell populations. More recently, specific cell functions and underlying regulatory networks of rare cells isolated from their natural environment moved to the center of attention. However, low cell numbers still hinder gene expression profiling of rare ex vivo material in biomedical research. Therefore, we developed a robust method for gene expression profiling of single cells on high-density oligonucleotide arrays with excellent coverage of low abundance transcripts. The protocol was extensively tested with freshly isolated single cells of very low mRNA content including single epithelial, mature and immature dendritic cells and hematopoietic stem cells. Quantitative PCR confirmed that the PCR-based global amplification method did not change the relative ratios of transcript abundance and unsupervised hierarchical cluster analysis revealed that the histogenetic origin of an individual cell is correctly reflected by the gene expression profile. Moreover, the gene expression data from dendritic cells demonstrate that cellular differentiation and pathway activation can be monitored in individual cells. PMID:17071717

  4. The Pseudopod System for Axon-Glia Interactions: Stimulation and Isolation of Schwann Cell Protrusions that Form in Response to Axonal Membranes.

    PubMed

    Poitelon, Yannick; Feltri, M Laura

    2018-01-01

    In the peripheral nervous system, axons dictate the differentiation state of Schwann cells. Most of this axonal influence on Schwann cells is due to juxtacrine interactions between axonal transmembrane molecules (e.g., the neuregulin growth factor) and receptors on the Schwann cell (e.g., the ErbB2/ErbB3 receptor). The fleeting nature of this interaction together with the lack of synchronicity in the development of the Schwann cell population limits our capability to study this phenomenon in vivo. Here we present a simple Boyden Chamber-based method to study this important cell-cell interaction event. We isolate the early protrusions of Schwann cells that are generated in response to juxtacrine stimulation by sensory neuronal membranes. This method is compatible with a large array of current biochemical analyses and provides an effective approach to study biomolecules that are differentially localized in Schwann cell protrusions and cell bodies in response to axonal signals. A similar approach can be extended to different kinds of cell-cell interactions.

  5. Genomic insights from whole genome sequencing of four clonal outbreak Campylobacter jejuni assessed within the global C. jejuni population.

    PubMed

    Clark, Clifford G; Berry, Chrystal; Walker, Matthew; Petkau, Aaron; Barker, Dillon O R; Guan, Cai; Reimer, Aleisha; Taboada, Eduardo N

    2016-12-03

    Whole genome sequencing (WGS) is useful for determining clusters of human cases, investigating outbreaks, and defining the population genetics of bacteria. It also provides information about other aspects of bacterial biology, including classical typing results, virulence, and adaptive strategies of the organism. Cell culture invasion and protein expression patterns of four related multilocus sequence type 21 (ST21) C. jejuni isolates from a significant Canadian water-borne outbreak were previously associated with the presence of a CJIE1 prophage. Whole genome sequencing was used to examine the genetic diversity among these isolates and confirm that previous observations could be attributed to differential prophage carriage. Moreover, we sought to determine the presence of genome sequences that could be used as surrogate markers to delineate outbreak-associated isolates. Differential carriage of the CJIE1 prophage was identified as the major genetic difference among the four outbreak isolates. High quality single-nucleotide variant (hqSNV) and core genome multilocus sequence typing (cgMLST) clustered these isolates within expanded datasets consisting of additional C. jejuni strains. The number and location of homopolymeric tract regions was identical in all four outbreak isolates but differed from all other C. jejuni examined. Comparative genomics and PCR amplification enabled the identification of large chromosomal inversions of approximately 93 kb and 388 kb within the outbreak isolates associated with transducer-like proteins containing long nucleotide repeat sequences. The 93-kb inversion was characteristic of the outbreak-associated isolates, and the gene content of this inverted region displayed high synteny with the reference strain. The four outbreak isolates were clonally derived and differed mainly in the presence of the CJIE1 prophage, validating earlier findings linking the prophage to phenotypic differences in virulence assays and protein expression. The identification of large, genetically syntenous chromosomal inversions in the genomes of outbreak-associated isolates provided a unique method for discriminating outbreak isolates from the background population. Transducer-like proteins appear to be associated with the chromosomal inversions. CgMLST and hqSNV analysis also effectively delineated the outbreak isolates within the larger C. jejuni population structure.

  6. Isolation and Characterization of a Neuropathogenic Simian Immunodeficiency Virus Derived from a Sooty Mangabey

    PubMed Central

    Novembre, Francis J.; De Rosayro, Juliette; O’Neil, Shawn P.; Anderson, Daniel C.; Klumpp, Sherry A.; McClure, Harold M.

    1998-01-01

    Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease. PMID:9765429

  7. Recovery of autologous sickle cells by hypotonic wash.

    PubMed

    Wilson, Emily; Kezeor, Kelly; Crosby, Monica

    2018-01-01

    It is important to isolate autologous red blood cells (RBCs) from transfused RBCs in samples from recently transfused patients to ensure that accurate serologic results are obtained. Typically, this isolation can be performed using methods that separate patient reticulocytes from transfused, older donor RBCs. Patients with sickle cell disease (SCD), however, characteristically have RBCs with altered membrane and morphological features, causing their RBCs to take on a sickle-shape appearance different from the biconcave disc-shape appearance of "normal" RBCs. These characteristics enable the use of hypotonic saline solution to lyse normal RBCs while allowing "sickle cells" to remain intact. Because many patients with SCD undergo frequent transfusions to treat their condition, the use of hypotonic saline solution provides a rapid method to obtain autologous RBCs for serologic testing from this patient population using standard laboratory equipment and supplies.

  8. A novel insect-specific flavivirus replicates only in Aedes-derived cells and persists at high prevalence in wild Aedes vigilax populations in Sydney, Australia.

    PubMed

    McLean, Breeanna J; Hobson-Peters, Jody; Webb, Cameron E; Watterson, Daniel; Prow, Natalie A; Nguyen, Hong Duyen; Hall-Mendelin, Sonja; Warrilow, David; Johansen, Cheryl A; Jansen, Cassie C; van den Hurk, Andrew F; Beebe, Nigel W; Schnettler, Esther; Barnard, Ross T; Hall, Roy A

    2015-12-01

    To date, insect-specific flaviviruses (ISFs) have only been isolated from mosquitoes and increasing evidence suggests that ISFs may affect the transmission of pathogenic flaviviruses. To investigate the diversity and prevalence of ISFs in Australian mosquitoes, samples from various regions were screened for flaviviruses by ELISA and RT-PCR. Thirty-eight pools of Aedes vigilax from Sydney in 2007 yielded isolates of a novel flavivirus, named Parramatta River virus (PaRV). Sequencing of the viral RNA genome revealed it was closely related to Hanko virus with 62.3% nucleotide identity over the open reading frame. PaRV failed to grow in vertebrate cells, with only Aedes-derived mosquito cell lines permissive to replication, suggesting a narrow host range. 2014 collections revealed that PaRV had persisted in A. vigilax populations in Sydney, with 88% of pools positive. Further investigations into its mode of transmission and potential to influence vector competence of A. vigilax for pathogenic viruses are warranted. Copyright © 2015. Published by Elsevier Inc.

  9. Biophysical isolation and identification of circulating tumor cells.

    PubMed

    Che, James; Yu, Victor; Garon, Edward B; Goldman, Jonathan W; Di Carlo, Dino

    2017-04-11

    Isolation and enumeration of circulating tumor cells (CTCs) from blood is important for determining patient prognosis and monitoring treatment. Methods based on affinity to cell surface markers have been applied to both purify (via immunoseparation) and identify (via immunofluorescence) CTCs. However, variability of cell biomarker expression associated with tumor heterogeneity and evolution and cross-reactivity of antibody probes have long complicated CTC enrichment and immunostaining. Here, we report a truly label-free high-throughput microfluidic approach to isolate, enumerate, and characterize the biophysical properties of CTCs using an integrated microfluidic device. Vortex-mediated deformability cytometry (VDC) consists of an initial vortex region which enriches large CTCs, followed by release into a downstream hydrodynamic stretching region which deforms the cells. Visualization and quantification of cell deformation with a high-speed camera revealed populations of large (>15 μm diameter) and deformable (aspect ratio >1.2) CTCs from 16 stage IV lung cancer samples, that are clearly distinguished by increased deformability compared to contaminating blood cells and rare large cells isolated from healthy patients. The VDC technology demonstrated a comparable positive detection rate of putative CTCs above healthy baseline (93.8%) with respect to standard immunofluorescence (71.4%). Automation allows full enumeration of CTCs from a 10 mL vial of blood within <1 h after sample acquisition, compared with 4+ hours with standard approaches. Moreover, cells are released into any collection vessel for further downstream analysis. VDC shows potential for accurate CTC enumeration without labels and confirms the unique highly deformable biophysical properties of large CTCs circulating in blood.

  10. Isolation, identification and multipotential differentiation of mouse adipose tissue-derived stem cells.

    PubMed

    Taha, Masoumeh Fakhr; Hedayati, Vahideh

    2010-08-01

    Bone marrow and adipose tissue have provided two suitable sources of mesenchymal stem cells. Although previous studies have confirmed close similarities between bone marrow-derived stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs), the molecular phenotype of ADSCs is still poorly identified. In the present study, mouse ADSCs were isolated from the inguinal fat pad of 12-14 weeks old mice. Freshly isolated and three passaged ADSCs were analyzed for the expression of OCT4, Sca-1, c-kit and CD34 by RT-PCR. Three passaged ADSCs were analyzed by flow cytometry for the presence of CD11b, CD45, CD31, CD29 and CD44. Moreover, cardiogenic, adipogenic and neurogenic differentiation of ADSCs were induced in vitro. Freshly isolated ADSCs showed the expression of OCT4, Sca-1, c-kit and CD34, and two days cultured ADSCs were positively immunostained with anti-OCT4 monoclonal antibody. After three passages, the expression of OCT4, c-kit and CD34 eliminated, while the expression of Sca-1 showed a striking enhancement. These cells were identified positive for CD29 and CD44 markers, and they showed the lack of CD45 and CD31 expression. Three passaged ADSCs were differentiated to adipocyte-, cardiomyocyte- and neuron-like cells that were identified based on the positive staining with Sudan black, anti-cardiac troponin I antibody and anti-map-2 antibody, respectively. In conclusion, adipose tissue contains a stem cell population that seems to be a good multipotential cell candidate for the future cell replacement therapy. Copyright 2010 Elsevier Ltd. All rights reserved.

  11. Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline.

    PubMed

    Piovia-Scott, Jonah; Pope, Karen; Worth, S Joy; Rosenblum, Erica Bree; Poorten, Thomas; Refsnider, Jeanine; Rollins-Smith, Louise A; Reinert, Laura K; Wells, Heather L; Rejmanek, Dan; Lawler, Sharon; Foley, Janet

    2015-07-01

    The fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused declines and extinctions in amphibians worldwide, and there is increasing evidence that some strains of this pathogen are more virulent than others. While a number of putative virulence factors have been identified, few studies link these factors to specific epizootic events. We documented a dramatic decline in juvenile frogs in a Bd-infected population of Cascades frogs (Rana cascadae) in the mountains of northern California and used a laboratory experiment to show that Bd isolated in the midst of this decline induced higher mortality than Bd isolated from a more stable population of the same species of frog. This highly virulent Bd isolate was more toxic to immune cells and attained higher density in liquid culture than comparable isolates. Genomic analyses revealed that this isolate is nested within the global panzootic lineage and exhibited unusual genomic patterns, including increased copy numbers of many chromosomal segments. This study integrates data from multiple sources to suggest specific phenotypic and genomic characteristics of the pathogen that may be linked to disease-related declines.

  12. Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions.

    PubMed

    Ponnusamy, Loganathan; Schal, Coby; Wesson, Dawn M; Arellano, Consuelo; Apperson, Charles S

    2015-09-23

    The mosquitoes Aedes aegypti and Aedes albopictus are vectors of pathogenic viruses that cause major human illnesses including dengue, yellow fever and chikungunya. Both mosquito species are expanding their geographic distributions and now occur worldwide in temperate and tropical climates. Collection of eggs in oviposition traps (ovitraps) is commonly used for monitoring and surveillance of container-inhabiting Aedes populations by public health agencies charged with managing mosquito-transmitted illness. Addition of an organic infusion in these traps increases the number of eggs deposited. Gravid females are guided to ovitraps by volatile chemicals produced from the breakdown of organic matter by microbes. We previously isolated and cultured 14 species of bacteria from attractive experimental infusions, made from the senescent leaves of canebrake bamboo (Arundinaria gigantea). Cultures were grown for 24 h at 28 °C with constant shaking (120 rpm) and cell densities were determined with a hemocytometer. Behavioral responses to single bacterial isolates and to a mix of isolates at different cell densities were evaluated using two-choice sticky-screen bioassay methods with gravid Ae. aegypti and Ae. albopictus. In behavioral assays of a mix of 14 bacterial isolates, significantly greater attraction responses were exhibited by Ae. aegypti and Ae. albopictus to bacterial densities of 10(7) and 10(8) cells/mL than to the control medium. When we tested single bacterial isolates, seven isolates (B1, B2, B3, B5, B12, B13 and B14) were significantly attractive to Ae. aegypti, and six isolates (B1, B5, B7, B10, B13 and B14) significantly attracted Ae. albopictus. Among all the isolates tested at three different cell densities, bacterial isolates B1, B5, B13 and B14 were highly attractive to both Aedes species. Our results show that at specific cell densities, some bacteria significantly influence the attraction of gravid Ae. aegypti and Ae. albopictus females to potential oviposition sites. Attractive bacterial isolates, when formulated for sustained release of attractants, could be coupled with an ovitrap containing a toxicant to achieve area-wide management of Aedes mosquitoes.

  13. Efficient and high yield isolation of myoblasts from skeletal muscle.

    PubMed

    Shahini, Aref; Vydiam, Kalyan; Choudhury, Debanik; Rajabian, Nika; Nguyen, Thy; Lei, Pedro; Andreadis, Stelios T

    2018-05-24

    Skeletal muscle (SkM) regeneration relies on the activity of myogenic progenitors that reside beneath the basal lamina of myofibers. Here, we describe a protocol for the isolation of the SkM progenitors from young and old mice by exploiting their outgrowth potential from SkM explants on matrigel coated dishes in the presence of high serum, chicken embryo extract and basic fibroblast growth factor. Compared to other protocols, this method yields a higher number of myoblasts (10-20 million) by enabling the outgrowth of these cells from tissue fragments. The majority of outgrowth cells (~90%) were positive for myogenic markers such as α7-integrin, MyoD, and Desmin. The myogenic cell population could be purified to 98% with one round of pre-plating on collagen coated dishes, where differential attachment of fibroblasts and other non-myogenic progenitors separates them from myoblasts. Moreover, the combination of high serum medium and matrigel coating provided a proliferation advantage to myogenic cells, which expanded rapidly (~24 h population doubling), while non-myogenic cells diminished over time, thereby eliminating the need for further purification steps such as FACS sorting. Finally, myogenic progenitors gave rise to multinucleated myotubes that exhibited sarcomeres and spontaneous beating in the culture dish. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Composition of Mineral Produced by Dental Mesenchymal Stem Cells.

    PubMed

    Volponi, A A; Gentleman, E; Fatscher, R; Pang, Y W Y; Gentleman, M M; Sharpe, P T

    2015-11-01

    Mesenchymal stem cells isolated from different dental tissues have been described to have osteogenic/odontogenic-like differentiation capacity, but little attention has been paid to the biochemical composition of the material that each produces. Here, we used Raman spectroscopy to analyze the mineralized materials produced in vitro by different dental cell populations, and we compared them with the biochemical composition of native dental tissues. We show that different dental stem cell populations produce materials that differ in their mineral and matrix composition and that these differ from those of native dental tissues. In vitro, BCMP (bone chip mass population), SCAP (stem cells from apical papilla), and SHED (stem cells from human-exfoliated deciduous teeth) cells produce a more highly mineralized matrix when compared with that produced by PDL (periodontal ligament), DPA (dental pulp adult), and GF (gingival fibroblast) cells. Principal component analyses of Raman spectra further demonstrated that the crystallinity and carbonate substitution environments in the material produced by each cell type varied, with DPA cells, for example, producing a more carbonate-substituted mineral and with SCAP, SHED, and GF cells creating a less crystalline material when compared with other dental stem cells and native tissues. These variations in mineral composition reveal intrinsic differences in the various cell populations, which may in turn affect their specific clinical applications. © International & American Associations for Dental Research 2015.

  15. Tools for Genomic and Transcriptomic Analysis of Microbes at Single-Cell Level

    PubMed Central

    Chen, Zixi; Chen, Lei; Zhang, Weiwen

    2017-01-01

    Microbiologists traditionally study population rather than individual cells, as it is generally assumed that the status of individual cells will be similar to that observed in the population. However, the recent studies have shown that the individual behavior of each single cell could be quite different from that of the whole population, suggesting the importance of extending traditional microbiology studies to single-cell level. With recent technological advances, such as flow cytometry, next-generation sequencing (NGS), and microspectroscopy, single-cell microbiology has greatly enhanced the understanding of individuality and heterogeneity of microbes in many biological systems. Notably, the application of multiple ‘omics’ in single-cell analysis has shed light on how individual cells perceive, respond, and adapt to the environment, how heterogeneity arises under external stress and finally determines the fate of the whole population, and how microbes survive under natural conditions. As single-cell analysis involves no axenic cultivation of target microorganism, it has also been demonstrated as a valuable tool for dissecting the microbial ‘dark matter.’ In this review, current state-of-the-art tools and methods for genomic and transcriptomic analysis of microbes at single-cell level were critically summarized, including single-cell isolation methods and experimental strategies of single-cell analysis with NGS. In addition, perspectives on the future trends of technology development in the field of single-cell analysis was also presented. PMID:28979258

  16. Binding of human endothelium to Ulex europaeus I-coated Dynabeads: application to the isolation of microvascular endothelium.

    PubMed

    Jackson, C J; Garbett, P K; Nissen, B; Schrieber, L

    1990-06-01

    A major problem encountered when isolating human microvascular endothelium is the presence of contaminating cells such as fibroblasts that rapidly over-grow the endothelial cells. We describe here a simple, rapid technique for purifying endothelial cells derived from the microvasculature of neonatal foreskin and osteoarthritic and rheumatoid arthritic synovium. This technique is based on the selective binding of the lectin Ulex europaeus I (UEA I) to the endothelial cell surface via fucose residues. Initially UEA I was covalently bound to tosyl-activated super-paramagnetic polystyrene beads (Dynabeads) by incubation for 24 h at room temperature. Cells were isolated by extracting microvascular segments from enzyme-treated (trypsin and Pronase) cubes of tissue. The mixed population of cells obtained were purified by incubating them at 4 degrees C for 10 min with the UEA I-coated Dynabeads. Endothelium bound to the beads whilst contaminating cells were removed by five washes with HBSS using a magnetic particle concentrator. The endothelial cells thus obtained grew to confluence as a cobblestone-like monolayer and expressed von Willebrand factor antigen. The cells were released from the Dynabeads by the competitive binding of fucose (10 min at 4 degrees C). This new method is simple and reproducible and allows pure human microvascular endothelial cells to be cultured within 2 h of obtaining a specimen.

  17. Isolation, culture and biological characteristics of multipotent porcine tendon-derived stem cells.

    PubMed

    Yang, Jinjuan; Zhao, Qianjun; Wang, Kunfu; Ma, Caiyun; Liu, Hao; Liu, Yingjie; Guan, Weijun

    2018-06-01

    Tendon-derived stem cells (TDSCs), a postulated multi-potential stem cell population, play significant role in the postnatal replenishment of tendon injuries. However, the majority of experimental materials were obtained from horse, rat, human and rabbit, but rarely from pig. In this research, 1‑day‑old pig was chosen as experimental sample source to isolate and culture TDSCs in vitro. Specific markers of TDSCs were then characterized by immunofluorescence and reverse transcription polymerase chain reaction (RT‑PCR) assays. The results showed that TDSCs could be expanded for 11 passages in vitro. The expression of specific markers, such as collagen Ⅰ, collagen Ⅲ, α‑smooth muscle actin (α‑SMA), CD105 and CD90 were observed by immunofluorescence and RT‑PCR. TDSCs were induced to differentiate into adipocytes, osteoblasts and chondrocytes, respectively. These results suggest that TDSCs isolated from porcine tendon exhibit the characteristics of multipotent stem cells. TDSCs, therefore, may be potential candidates for cellular transplantation therapy and tissue engineering in tendon injuries.

  18. [Study of migration and distribution of bone marrow cells transplanted animals with B16 melanoma ].

    PubMed

    Poveshchenko, A F; Solovieva, A O; Zubareva, K E; Strunkin, D N; Gricyk, O B; Poveshchenko, O V; Shurlygina, A V; Konenkov, V I

    2017-01-01

    Purpose. Reveal features migration and distribution of syngeneic bone marrow cells (BMC) and subpopulations (MSC) after transplantation into the recipient carrier B16 melanoma bodies. Methods. We used mouse male and female C57BL/6 mice. Induction of Tumor Growth: B16 melanoma cells implanted subcutaneously into right hind paw of female C57BL/6 mice at a dose of 2.5 x 105 cells / mouse. migration study in vivo distribution and BMC and MSC was performed using genetic markers - Y-chromosome specific sequence line male C57Bl/6 syngeneic intravenous transplantation in females using the polymerase chain reaction (PCR) in real time on Authorized Termal Cycler - Light Cycler 480 II / 96 (Roche). Introduction suspension of unseparated bone marrow cells, mesenchymal stem cells from donor to recipient male mice (syngeneic recipient female C57BL/6), followed by isolation of recipients of organs was performed at regular intervals, then of organ recipients isolated DNA. Results. It was shown that bone marrow cells positive for Y-chromosome in migrate lymphoid (lymph nodes, spleen, bone marrow) or in non-lymphoid organs (liver, heart, brain, skin) syngeneic recipients. In addition to the migration of cells from the bone marrow to other organs, there is a way back migration of cells from the circulation to the bone marrow. B16 melanoma stimulates the migration of transplanted MSCs and BMC in bone marrow. It is found that tumor growth enhanced migration of transplanted bone marrow cells, including populations of MSCs in the bone marrow. In the early stages of tumor formation MSC migration activity higher than the BMC. In the later stages of tumor formation undivided population of bone marrow cells migrate to the intense swelling compared with a population of MSCs. Conclusion. The possibility of using bone marrow MSCs for targeted therapy of tumor diseases, because migration of MSCs in tumor tissue can be used to effectively deliver anticancer drugs.

  19. Systematically labeling developmental stage-specific genes for the study of pancreatic β-cell differentiation from human embryonic stem cells.

    PubMed

    Liu, Haisong; Yang, Huan; Zhu, Dicong; Sui, Xin; Li, Juan; Liang, Zhen; Xu, Lei; Chen, Zeyu; Yao, Anzhi; Zhang, Long; Zhang, Xi; Yi, Xing; Liu, Meng; Xu, Shiqing; Zhang, Wenjian; Lin, Hua; Xie, Lan; Lou, Jinning; Zhang, Yong; Xi, Jianzhong; Deng, Hongkui

    2014-10-01

    The applications of human pluripotent stem cell (hPSC)-derived cells in regenerative medicine has encountered a long-standing challenge: how can we efficiently obtain mature cell types from hPSCs? Attempts to address this problem are hindered by the complexity of controlling cell fate commitment and the lack of sufficient developmental knowledge for guiding hPSC differentiation. Here, we developed a systematic strategy to study hPSC differentiation by labeling sequential developmental genes to encompass the major developmental stages, using the directed differentiation of pancreatic β cells from hPSCs as a model. We therefore generated a large panel of pancreas-specific mono- and dual-reporter cell lines. With this unique platform, we visualized the kinetics of the entire differentiation process in real time for the first time by monitoring the expression dynamics of the reporter genes, identified desired cell populations at each differentiation stage and demonstrated the ability to isolate these cell populations for further characterization. We further revealed the expression profiles of isolated NGN3-eGFP(+) cells by RNA sequencing and identified sushi domain-containing 2 (SUSD2) as a novel surface protein that enriches for pancreatic endocrine progenitors and early endocrine cells both in human embryonic stem cells (hESC)-derived pancreatic cells and in the developing human pancreas. Moreover, we captured a series of cell fate transition events in real time, identified multiple cell subpopulations and unveiled their distinct gene expression profiles, among heterogeneous progenitors for the first time using our dual reporter hESC lines. The exploration of this platform and our new findings will pave the way to obtain mature β cells in vitro.

  20. Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.

    PubMed

    Tapia, Olga; Gerace, Larry

    2016-01-01

    We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.

  1. A simple and cost-effective method for isolation and expansion of human fetal pancreas derived mesenchymal stem cells.

    PubMed

    Larijani, Bagher; Arjmand, Babak; Ahmadbeigi, Naser; Falahzadeh, Khadijeh; Soleimani, Masoud; Sayahpour, Forough Azam; Aghayan, Hamid Reza

    2015-11-01

    Previous studies have suggested mesenchymal stem cells (MSCs) as a suitable source for cell replacement therapy in diabetes. MSCs have successfully isolated from different adult and fetal tissues, including the pancreas. In vitro studies have shown that human fetal pancreatic stem cells could be extensively expanded and differentiated into islet-like structures. Here, we introduce a simple and cost-effective method for the generation of MSCs from the human fetal pancreas (FPMSCs). To isolate FPMSCs, pancreata from four aborted fetuses (second trimester) were processed with short collagenase digestion. The resulting tissue fragments were transferred to a basic media (DMEM+15%FBS) without adding any growth factor. After 10 to14 days, fibroblast-like cells were harvested and passaged six times for further evaluations. Flow cytometry analysis and three-lineage differentiation capacity have demonstrated that these cells have MSC-like properties. We also continuously passaged samples of FPMSCs and found no evidence for chromosomal instability and morphological changes until 10th subculture. Moreover, our cell culture protocol can be easily modified and translated into a GMP-compliant one. The results of current study demonstrated that our simple and inexpensive method could yield a pure population of FPMSCs that might be suitable for transplantation.

  2. Application of a Novel Population of Multipotent Stem Cells Derived from Skin Fibroblasts as Donor Cells in Bovine SCNT

    PubMed Central

    Pan, Shaohui; Chen, Wuju; Liu, Xu; Xiao, Jiajia; Wang, Yanqin; Liu, Jun; Du, Yue; Wang, Yongsheng; Zhang, Yong

    2015-01-01

    Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4+ cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4+ cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4+ cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4+ cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4− cells. Moreover, blastocysts derived from SSEA-4+ cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4– derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4+ cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle. PMID:25602959

  3. Application of a novel population of multipotent stem cells derived from skin fibroblasts as donor cells in bovine SCNT.

    PubMed

    Pan, Shaohui; Chen, Wuju; Liu, Xu; Xiao, Jiajia; Wang, Yanqin; Liu, Jun; Du, Yue; Wang, Yongsheng; Zhang, Yong

    2015-01-01

    Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4(+) cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4(+) cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4(+) cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4(+) cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4(-) cells. Moreover, blastocysts derived from SSEA-4(+) cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4(-) derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4(+) cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle.

  4. Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo.

    PubMed

    Macpherson, Heather; Keir, Pamela; Webb, Sheila; Samuel, Kay; Boyle, Shelagh; Bickmore, Wendy; Forrester, Lesley; Dorin, Julia

    2005-06-01

    Recent work has indicated that adult bone marrow-derived cells have the ability to contribute to both the haematopoietic system and other organs. Haematopoietic reconstitution by whole bone marrow and selected but not fully characterised cell populations have resulted in reports indicating high-level repopulation of lung epithelia. The well-characterised cells from the side population have a robust ability for haematopoietic reconstitution. We have used freshly isolated side population cells derived from ROSA26 adult bone marrow and demonstrate that despite being unable to contribute to embryos following blastocyst injection, or air liquid interface cultures or denuded tracheal xenografts, they could contribute to the tracheal epithelium in vivo. Epithelial damage is reported to be important in encouraging the recruitment of marrow-derived stem cells into non-haematopoietic organs. Here we demonstrate that mice engrafted with side population cells have donor-derived cells present in the epithelial lining of the trachea following damage and repair. Donor-derived cells were found at a frequency of 0.83%. Widefield and confocal microscopy revealed donor cells that expressed cytokeratins, indicative of cells of an epithelial nature. These results imply that SP haematopoietic stem cells from the bone marrow do not have the ability to contribute to airway epithelia themselves but require factors present in vivo to allow them to acquire characteristics of this tissue.

  5. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa) Stably Transfected with SPARC.

    PubMed

    Slusser-Nore, Andrea; Larson-Casey, Jennifer L; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R

    2016-01-01

    This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.

  6. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa) Stably Transfected with SPARC

    PubMed Central

    Slusser-Nore, Andrea; Larson-Casey, Jennifer L.; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.

    2016-01-01

    Background This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Methods Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. Results It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Conclusions Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA. PMID:26783756

  7. Bulge Region as a Putative Hair Follicle Stem Cells Niche: A Brief Review

    PubMed Central

    JOULAI VEIJOUYE, Sanaz; YARI, Abazar; HEIDARI, Fatemeh; SAJEDI, Nayereh; GHOROGHI MOGHANI, Fatemeh; NOBAKHT, Maliheh

    2017-01-01

    Background: Hair follicle stem cells exist in different sites. Most of the hair follicle stem cells are reside in niche called bulge. Bulge region is located between the opening of sebaceous gland and the attachment site of the arrector pili muscle. Methods: Data were collected using databases and resources of PubMed, Web of Science, Science Direct, Scopus, MEDLINE and their references from the earliest available published to identify English observational studies on hair follicle bulge region. Results: Bulge stem cells are pluripotent with high proliferative capacity. Specific markers allow the bulge cells to be isolated from mouse or human hair follicle. Stem cells isolated from bulge region are label retaining and slow cycling hence these cells are defined as label-retaining cells. Bulge cell populations, due to their plasticity nature are able to differentiate into distinct linage and could contribute in tissue regeneration. Conclusion: The current review discuss about bulge stem cells characteristics and biology including their cycle, location, plasticity, specific markers and regenerative nature. Also the differences between mouse and human hair follicles are investigated. PMID:29026781

  8. Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma.

    PubMed

    Kalra, Hina; Adda, Christopher G; Liem, Michael; Ang, Ching-Seng; Mechler, Adam; Simpson, Richard J; Hulett, Mark D; Mathivanan, Suresh

    2013-11-01

    Exosomes are nanovesicles released by a variety of cells and are detected in body fluids including blood. Recent studies have highlighted the critical application of exosomes as personalized targeted drug delivery vehicles and as reservoirs of disease biomarkers. While these research applications have created significant interest and can be translated into practice, the stability of exosomes needs to be assessed and exosome isolation protocols from blood plasma need to be optimized. To optimize methods to isolate exosomes from blood plasma, we performed a comparative evaluation of three exosome isolation techniques (differential centrifugation coupled with ultracentrifugation, epithelial cell adhesion molecule immunoaffinity pull-down, and OptiPrep(TM) density gradient separation) using normal human plasma. Based on MS, Western blotting and microscopy results, we found that the OptiPrep(TM) density gradient method was superior in isolating pure exosomal populations, devoid of highly abundant plasma proteins. In addition, we assessed the stability of exosomes in plasma over 90 days under various storage conditions. Western blotting analysis using the exosomal marker, TSG101, revealed that exosomes are stable for 90 days. Interestingly, in the context of cellular uptake, the isolated exosomes were able to fuse with target cells revealing that they were indeed biologically active. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. A stem cell apostasy: A tale of 4 H words

    PubMed Central

    Quesenberry, Peter J.; Goldberg, Laura R.; Dooner, Mark S.

    2014-01-01

    The field of hematopoietic stem cell biology has become increasingly dominated by the pursuit and study of highly purified populations of hematopoietic stem cells (HSCs). Such HSCs are typically isolated based on their cell surface marker expression patterns and ultimately defined by their multipotency and capacity for self-generation. However, even with progressively more stringent stem cell separation techniques, the resultant HSC population remains heterogeneous with respect to both self-renewal and differentiation capacity. Critical studies on un-separated whole bone marrow (WBM) have definitively shown that long-term engraftable hematopoietic stem cells are in active cell cycle and thus continually changing phenotype. Therefore, they cannot be purified by current approaches dependent on stable surface epitope expression because the surface markers are continually changing as well. These critical cycling cells are discarded with current stem cell purifications. Despite this, research defining such characteristics as self-renewal capacity, lineage-commitment, bone marrow niches, and proliferative state of HSCs continues to focus predominantly on this small sub-population of purified marrow cells. This review discusses the research leading to the hierarchical model of hematopoiesis and questions the dogmas pertaining to HSC quiescence and purification. PMID:25183450

  10. Menstrual Blood as a Potential Source of Endometrial Derived CD3+ T Cells

    PubMed Central

    Sabbaj, Steffanie; Hel, Zdenek; Richter, Holly E.; Mestecky, Jiri; Goepfert, Paul A.

    2011-01-01

    Studies of T cell-mediated immunity in the human female genital tract have been problematic due to difficulties associated with the collection of mucosal samples. Consequently, most studies rely on biopsies from the lower female genital tract or remnant tissue from hysterectomies. Availability of samples from healthy women is limited, as most studies are carried out in women with underlying pathologies. Menstruation is the cyclical sloughing off of endometrial tissue, and thus it should be a source of endometrial cells without the need for a biopsy. We isolated and phenotyped T cells from menstrual and peripheral blood and from endometrial biopsy-derived tissue from healthy women to determine the types of T cells present in this compartment. Our data demonstrated that T cells isolated from menstrual blood are a heterogeneous population of cells with markers reminiscent of blood and mucosal cells as well as unique phenotypes not represented in either compartment. T cells isolated from menstrual blood expressed increased levels of HLA-DR, αEβ7 and CXCR4 and reduced levels of CD62L relative to peripheral blood. Menstrual blood CD4+ T cells were enriched for cells expressing both CCR7 and CD45RA, markers identifying naïve T cells and were functional as determined by antigen-specific intracellular cytokine production assays. These data may open new avenues of investigation for cell mediated immune studies involving the female reproductive tract without the need for biopsies. PMID:22174921

  11. Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in cells, mosquitoes, and mice.

    PubMed

    Pesko, Kendra N; Fitzpatrick, Kelly A; Ryan, Elizabeth M; Shi, Pei-Yong; Zhang, Bo; Lennon, Niall J; Newman, Ruchi M; Henn, Matthew R; Ebel, Gregory D

    2012-05-25

    Most RNA viruses exist in their hosts as a heterogeneous population of related variants. Due to error prone replication, mutants are constantly generated which may differ in individual fitness from the population as a whole. Here we characterize three WNV isolates that contain, along with full-length genomes, mutants with large internal deletions to structural and nonstructural protein-coding regions. The isolates were all obtained from lorikeets that died from WNV at the Rio Grande Zoo in Albuquerque, NM between 2005 and 2007. The deletions are approximately 2kb, in frame, and result in the elimination of the complete envelope, and portions of the prM and NS-1 proteins. In Vero cell culture, these internally deleted WNV genomes function as defective interfering particles, reducing the production of full-length virus when introduced at high multiplicities of infection. In mosquitoes, the shortened WNV genomes reduced infection and dissemination rates, and virus titers overall, and were not detected in legs or salivary secretions at 14 or 21 days post-infection. In mice, inoculation with internally deleted genomes did not attenuate pathogenesis relative to full-length or infectious clone derived virus, and shortened genomes were not detected in mice at the time of death. These observations provide evidence that large deletions may occur within flavivirus populations more frequently than has generally been appreciated and suggest that they impact population phenotype minimally. Additionally, our findings suggest that highly similar mutants may frequently occur in particular vertebrate hosts. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Differential Expression and Immunolocalization of Antioxidant Enzymes in Entamoeba histolytica Isolates during Metronidazole Stress

    PubMed Central

    Iyer, Lakshmi Rani; Singh, Nishant; Verma, Anil Kumar; Paul, Jaishree

    2014-01-01

    Entamoeba histolytica infections are endemic in the Indian subcontinent. Five to eight percent of urban population residing under poor sanitary conditions suffers from Entamoeba infections. Metronidazole is the most widely prescribed drug used for amoebiasis. In order to understand the impact of metronidazole stress on the parasite, we evaluated the expression of two antioxidant enzymes, peroxiredoxin and FeSOD, in Entamoeba histolytica isolates during metronidazole stress. The results reveal that, under metronidazole stress, the mRNA expression levels of these enzymes did not undergo any significant change. Interestingly, immunolocalization studies with antibodies targeting peroxiredoxin indicate differential localization of the protein in the cell during metronidazole stress. In normal conditions, all the Entamoeba isolates exhibit presence of peroxiredoxin in the nucleus as well as in the membrane; however with metronidazole stress the protein localized mostly to the membrane. The change in the localization pattern was more pronounced when the cells were subjected to short term metronidazole stress compared to cells adapted to metronidazole. The protein localization to the cell membrane could be the stress response mechanism in these isolates. Colocalization pattern of peroxiredoxin with CaBp1, a cytosolic protein, revealed that the membrane and nuclear localization was specific to peroxiredoxin during metronidazole stress. PMID:25013795

  13. RNA isolation from mammalian cells using porous polymer monoliths: an approach for high-throughput automation.

    PubMed

    Chatterjee, Anirban; Mirer, Paul L; Zaldivar Santamaria, Elvira; Klapperich, Catherine; Sharon, Andre; Sauer-Budge, Alexis F

    2010-06-01

    The life science and healthcare communities have been redefining the importance of ribonucleic acid (RNA) through the study of small molecule RNA (in RNAi/siRNA technologies), micro RNA (in cancer research and stem cell research), and mRNA (gene expression analysis for biologic drug targets). Research in this field increasingly requires efficient and high-throughput isolation techniques for RNA. Currently, several commercial kits are available for isolating RNA from cells. Although the quality and quantity of RNA yielded from these kits is sufficiently good for many purposes, limitations exist in terms of extraction efficiency from small cell populations and the ability to automate the extraction process. Traditionally, automating a process decreases the cost and personnel time while simultaneously increasing the throughput and reproducibility. As the RNA field matures, new methods for automating its extraction, especially from low cell numbers and in high throughput, are needed to achieve these improvements. The technology presented in this article is a step toward this goal. The method is based on a solid-phase extraction technology using a porous polymer monolith (PPM). A novel cell lysis approach and a larger binding surface throughout the PPM extraction column ensure a high yield from small starting samples, increasing sensitivity and reducing indirect costs in cell culture and sample storage. The method ensures a fast and simple procedure for RNA isolation from eukaryotic cells, with a high yield both in terms of quality and quantity. The technique is amenable to automation and streamlined workflow integration, with possible miniaturization of the sample handling process making it suitable for high-throughput applications.

  14. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, S.; Tanaka, J.; Okada, S.

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP)more » cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.« less

  15. Isolation and Propagation of Mesenchymal Stem Cells from the Lacrimal Gland

    PubMed Central

    You, Samantha; Kublin, Claire L.; Avidan, Orna; Miyasaki, David

    2011-01-01

    Purpose. Previously, it was reported that the murine lacrimal gland is capable of repair after experimentally induced injury and that the number of stem/progenitor cells was increased during the repair phase (2–3 days after injury). The aim of the present study was to determine whether these cells can be isolated from the lacrimal gland and propagated in vitro. Methods. Lacrimal gland injury was induced by injection of interleukin (IL)-1, and injection of saline vehicle served as control. Two and half days after injection, the lacrimal glands were removed and used to prepare explants or acinar cells for tissue culture. Cells derived from the explants and the acinar cells were grown in DMEM supplemented with 10% fetal bovine serum. Cells were stained for the stem cells markers, nestin, vimentin, ABCG2, and Sca-1. Cell proliferation was measured using an antibody against Ki67 or a cell-counting kit. The adipogenic capability of these cells was also tested in vitro. Results. Results show that nestin-positive cells can be isolated from IL-1–injected, but not saline-injected, lacrimal glands. A population of nestin-positive cells was also positive for vimentin, an intermediate filament protein expressed by mesenchymal cells. In addition, cultured cells expressed two other markers of stem cells, ABCG2 and Sca-1. These cells proliferated in vitro and can be induced to form adipocytes, attesting to their mesenchymal stem cell property. Conclusions. Murine lacrimal glands contain mesenchymal stem cells that seem to play a pivotal role in tissue repair. PMID:21178145

  16. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer.

    PubMed

    Javed, Shifa; Sharma, Bal Krishan; Sood, Swati; Sharma, Sanjeev; Bagga, Rashmi; Bhattacharyya, Shalmoli; Rayat, Charan Singh; Dhaliwal, Lakhbir; Srinivasan, Radhika

    2018-04-02

    Cervical cancer is a major cause of cancer-related mortality in women in the developing world. Cancer Stem cells (CSC) have been implicated in treatment resistance and metastases development; hence understanding their significance is important. Primary culture from tissue biopsies of invasive cervical cancer and serial passaging was performed for establishing cell lines. Variable Number Tandem Repeat (VNTR) assay was performed for comparison of cell lines with their parental tissue. Tumorsphere and Aldefluor assays enabled isolation of cancer stem cells (CSC); immunofluorescence and flow cytometry were performed for their surface phenotypic expression in cell lines and in 28 tissue samples. Quantitative real-time PCR for stemness and epithelial-mesenchymal transition (EMT) markers, MTT cytotoxicity assay, cell cycle analysis and cell kinetic studies were performed. Four low-passage novel cell lines designated RSBS-9, - 14 and - 23 from squamous cell carcinoma and RSBS-43 from adenocarcinoma of the uterine cervix were established. All were HPV16+. VNTR assay confirmed their uniqueness and derivation from respective parental tissue. CSC isolated from these cell lines showed CD133 + phenotype. In tissue samples of untreated invasive cervical cancer, CD133 + CSCs ranged from 1.3-23% of the total population which increased 2.8-fold in radiation-resistant cases. Comparison of CD133 + with CD133 - bulk population cells revealed increased tumorsphere formation and upregulation of stemness and epithelial-mesenchymal transition (EMT) markers with no significant difference in cisplatin sensitivity. Low-passage cell lines developed would serve as models for studying tumor biology. Cancer Stem Cells in cervical cancer display CD133 + phenotype and are increased in relapsed cases and hence should be targeted for achieving remission.

  17. Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.

    PubMed

    Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J

    2016-09-09

    The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.

  18. Revisiting Cardiac Cellular Composition

    PubMed Central

    Pinto, Alexander R.; Ilinykh, Alexei; Ivey, Malina J.; Kuwabara, Jill T.; D'Antoni, Michelle L.; Debuque, Ryan; Chandran, Anjana; Wang, Lina; Arora, Komal; Rosenthal, Nadia; Tallquist, Michelle D.

    2015-01-01

    Rationale Accurate knowledge of the cellular composition of the heart is essential to fully understand the changes that occur during pathogenesis and to devise strategies for tissue engineering and regeneration. Objective To examine the relative frequency of cardiac endothelial cells, hematopoietic-derived cells and fibroblasts in the mouse and human heart. Methods and Results Using a combination of genetic tools and cellular markers, we examined the occurrence of the most prominent cell types in the adult mouse heart. Immunohistochemistry revealed that endothelial cells constitute over 60%, hematopoietic-derived cells 5–10%, and fibroblasts under 20% of the non-myocytes in the heart. A refined cell isolation protocol and an improved flow cytometry approach provided an independent means of determining the relative abundance of non-myocytes. High dimensional analysis and unsupervised clustering of cell populations confirmed that endothelial cells are the most abundant cell population. Interestingly, fibroblast numbers are smaller than previously estimated, and two commonly assigned fibroblast markers, Sca-1 and CD90, underrepresent fibroblast numbers. We also describe an alternative fibroblast surface marker that more accurately identifies the resident cardiac fibroblast population. Conclusions This new perspective on the abundance of different cell types in the heart demonstrates that fibroblasts comprise a relatively minor population. By contrast, endothelial cells constitute the majority of non-cardiomyocytes and are likely to play a greater role in physiologic function and response to injury than previously appreciated. PMID:26635390

  19. Analysis of cellular autofluorescence in touch samples by flow cytometry: implications for front end separation of trace mixture evidence.

    PubMed

    Katherine Philpott, M; Stanciu, Cristina E; Kwon, Ye Jin; Bustamante, Eduardo E; Greenspoon, Susan A; Ehrhardt, Christopher J

    2017-07-01

    The goal of this study was to survey optical and biochemical variation in cell populations deposited onto a surface through touch or contact and identify specific features that may be used to distinguish and then sort cell populations from separate contributors in a trace biological mixture. Although we were not able to detect meaningful biochemical variation in touch samples deposited by different contributors through preliminary antibody surveys, we did observe distinct differences in red autofluorescence emissions (650-670 nm), with as much as a tenfold difference in mean fluorescence intensities observed between certain pairs of donors. Results indicate that the level of red autofluorescence in touch samples can be influenced by a donor's contact with specific material prior to handling the substrate from which cells were collected. In particular, we observed increased red autofluorescence in cells deposited subsequent to handling laboratory gloves, plant material, and certain types of marker ink, which could be easily visualized microscopically or using flow cytometry, and persisted after hand washing. To test whether these observed optical differences could potentially be used as the basis for a cell separation workflow, a controlled two-person touch mixture was separated into two fractions via fluorescence-activated cell sorting (FACS) using gating criteria based on intensity of 650-670 nm emissions and then subjected to DNA analysis. Genetic analysis of the sorted fractions provided partial DNA profiles that were consistent with separation of individual contributors from the mixture suggesting that variation in autofluorescence signatures, even if driven by extrinsic factors, may nonetheless be a useful means of isolating contributors to some touch mixtures. Graphical Abstract Conceptual workflow diagram. Trace biological mixtures containing cells from multiple individuals are analyzed by flow cytometry. Cells are then physically separated into two populations based on intensity of red autofluorescence using Fluorescence Activated Cell Sorting. Each isolated cell fraction is subjected to DNA analysis resulting in a DNA profile for each contributor.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greene, Carol Ann, E-mail: carol.greene@auckland.ac.nz; Chang, Chuan-Yuan; Fraser, Cameron J.

    Cells thought to be stem cells isolated from the cornea of the eye have been shown to exhibit neurogenic potential. We set out to uncover the identity and location of these cells within the cornea and to elucidate their neuronal protein and gene expression profile during the process of switching to a neuron-like cell. Here we report that every cell of the adult human and rat corneal stroma is capable of differentiating into a neuron-like cell when treated with neurogenic differentiation specifying growth factors. Furthermore, the expression of genes regulating neurogenesis and mature neuronal structure and function was increased. Themore » switch from a corneal stromal cell to a neuron-like cell was also shown to occur in vivo in intact corneas of living rats. Our results clearly indicate that lineage specifying growth factors can affect changes in the protein and gene expression profiles of adult cells, suggesting that possibly many adult cell populations can be made to switch into another type of mature cell by simply modifying the growth factor environment. - Highlights: • Adult corneal stromal cells can differentiated into neuron-like cells. • Neuronal specification of the adult stromal cell population is stochastic. • Neuronal specification in an adult cell population can be brought about by growth factors.« less

  1. Prostate Cancer Stem Cells: Viewing Signaling Cascades at a Finer Resolution.

    PubMed

    Lin, Xiukun; Farooqi, Ammad Ahmad; Qureshi, Muhammad Zahid; Romero, Mirna Azalea; Tabassum, Sobia; Ismail, Muhammad

    2016-06-01

    It is becoming characteristically more understandable that within tumor cells, there lies a sub-population of tumor cells with "stem cell" like properties and remarkable ability of self-renewal. Many features of these self-renewing cells are comparable with normal stem cells and are termed as "cancer stem cells". Accumulating experimentally verified data has started to scratch the surface of spatio-temporally dysregulated intracellular signaling cascades in the biology of prostate cancer stem cells. We partition this multicomponent review into how different signaling cascades operate in cancer stem cells and how bioactive ingredients isolated from natural sources may modulate signaling network.

  2. The Metastatic Potential and Chemoresistance of Human Pancreatic Cancer Stem Cells

    PubMed Central

    Bhagwandin, Vikash J.; Bishop, J. Michael; Wright, Woodring E.; Shay, Jerry W.

    2016-01-01

    Cancer stem cells (CSCs) typically have the capacity to evade chemotherapy and may be the principal source of metastases. CSCs for human pancreatic ductal carcinoma (PDAC) have been identified, but neither the metastatic potential nor the chemoresistance of these cells has been adequately evaluated. We have addressed these issues by examining side-population (SP) cells isolated from the Panc-1 and BxPC3 lines of human PDAC cells, the oncogenotypes of which differ. SP cells could be isolated from monolayers of Panc-1, but only from spheroids of BxPC3. Using orthotopic xenografts into the severely immunocompromised NSG mouse, we found that SP cells isolated from both cell lines produced tumors that were highly metastatic, in contrast to previous experience with PDAC cell lines. SP cells derived from both cell lines expressed the ABCG2 transporter, which was demonstrably responsible for the SP phenotype. SP cells gave rise to non-SP (NSP) cells in vitro and in vivo, a transition that was apparently due to posttranslational inhibition of the ABCG2 transporter. Twenty-two other lines of PDAC cells also expressed ABCG2. The sensitivity of PDAC SP cells to the vinca alkaloid vincristine could be greatly increased by verapamil, a general inhibitor of transporters. In contrast, verapamil had no effect on the killing of PDAC cells by gemcitabine, the current first-line therapeutic for PDAC. We conclude that the isolation of SP cells can be a convenient and effective tool for the study of PDAC CSCs; that CSCs may be the principal progenitors of metastasis by human PDAC; that the ABCG2 transporter is responsible for the SP phenotype in human PDAC cells, and may be a ubiquitous source of drug-resistance in PDAC, but does not confer resistance to gemcitabine; and that inhibition of ABCG2 might offer a useful adjunct in a therapeutic attack on the CSCs of PDAC. PMID:26859746

  3. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology.

    PubMed

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B; Goldman, Jonathan; Rao, Jianyu; Sledge, George W; Pegram, Mark D; Sheth, Shruti; Jeffrey, Stefanie S; Kulkarni, Rajan P; Sollier, Elodie; Di Carlo, Dino

    2016-03-15

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells.

  4. Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

    PubMed Central

    Che, James; Yu, Victor; Dhar, Manjima; Renier, Corinne; Matsumoto, Melissa; Heirich, Kyra; Garon, Edward B.; Goldman, Jonathan; Rao, Jianyu; Sledge, George W.; Pegram, Mark D.; Sheth, Shruti; Jeffrey, Stefanie S.; Kulkarni, Rajan P.; Sollier, Elodie; Di Carlo, Dino

    2016-01-01

    Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells. PMID:26863573

  5. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells

    NASA Astrophysics Data System (ADS)

    Yang, Ruifeng; Zheng, Ying; Burrows, Michelle; Liu, Shujing; Wei, Zhi; Nace, Arben; Guo, Wei; Kumar, Suresh; Cotsarelis, George; Xu, Xiaowei

    2014-01-01

    Epithelial stem cells (EpSCs) in the hair follicle bulge are required for hair follicle growth and cycling. The isolation and propagation of human EpSCs for tissue engineering purposes remains a challenge. Here we develop a strategy to differentiate human iPSCs (hiPSCs) into CD200+/ITGA6+ EpSCs that can reconstitute the epithelial components of the hair follicle and interfollicular epidermis. The hiPSC-derived CD200+/ITGA6+ cells show a similar gene expression signature as EpSCs directly isolated from human hair follicles. Human iPSC-derived CD200+/ITGA6+ cells are capable of generating all hair follicle lineages including the hair shaft, and the inner and outer root sheaths in skin reconstitution assays. The regenerated hair follicles possess a KRT15+ stem cell population and produce hair shafts expressing hair-specific keratins. These results suggest an approach for generating large numbers of human EpSCs for tissue engineering and new treatments for hair loss, wound healing and other degenerative skin disorders.

  6. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells

    PubMed Central

    Peters, Derek T.; Henderson, Christopher A.; Warren, Curtis R.; Friesen, Max; Xia, Fang; Becker, Caroline E.; Musunuru, Kiran; Cowan, Chad A.

    2016-01-01

    ABSTRACT Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. PMID:27143754

  7. Flow cytometric characterization of culture expanded multipotent mesenchymal stromal cells (MSCs) from horse adipose tissue: towards the definition of minimal stemness criteria.

    PubMed

    Pascucci, L; Curina, G; Mercati, F; Marini, C; Dall'Aglio, C; Paternesi, B; Ceccarelli, P

    2011-12-15

    In the last decades, multipotent mesenchymal progenitor cells have been isolated from many adult tissues of different species. The International Society for Cellular Therapy (ISCT) has recently established that multipotent mesenchymal stromal cells (MSCs) is the currently recommended designation. In this study, we used flow cytometry to evaluate the expression of several molecules related to stemness (CD90, CD44, CD73 and STRO-1) in undifferentiated, early-passaged MSCs isolated from adipose tissue of four donor horses (AdMSCs). The four populations unanimously expressed high levels of CD90 and CD44. On the contrary, they were unexpectedly negative to CD73. A small percentage of the cells, finally, showed the expression of STRO-1. This last result might be due to the existence of a small subpopulation of STRO-1+ cells or to a poor cross-reactivity of the antibody. A remarkable donor-to-donor consistency and reproducibility of these findings was demonstrated. The data presented herein support the idea that equine AdMSCs may be easily isolated and selected by adherence to tissue culture plastic and exhibit a surface profile characterized by some peculiar differences in comparison to those described in other species. Continued characterization of these cells will help to clarify several aspects of their biology and may ultimately enable the isolation of specific, purified subpopulations. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Acute Malaria Induces PD1+CTLA4+ Effector T Cells with Cell-Extrinsic Suppressor Function

    PubMed Central

    Mackroth, Maria Sophia; Abel, Annemieke; Steeg, Christiane; Schulze zur Wiesch, Julian; Jacobs, Thomas

    2016-01-01

    In acute Plasmodium falciparum (P. falciparum) malaria, the pro- and anti-inflammatory immune pathways must be delicately balanced so that the parasitemia is controlled without inducing immunopathology. An important mechanism to fine-tune T cell responses in the periphery is the induction of coinhibitory receptors such as CTLA4 and PD1. However, their role in acute infections such as P. falciparum malaria remains poorly understood. To test whether coinhibitory receptors modulate CD4+ T cell functions in malaria, blood samples were obtained from patients with acute P. falciparum malaria treated in Germany. Flow cytometric analysis showed a more frequent expression of CTLA4 and PD1 on CD4+ T cells of malaria patients than of healthy control subjects. In vitro stimulation with P. falciparum-infected red blood cells revealed a distinct population of PD1+CTLA4+CD4+ T cells that simultaneously produced IFNγ and IL10. This antigen-specific cytokine production was enhanced by blocking PD1/PDL1 and CTLA4. PD1+CTLA4+CD4+ T cells were further isolated based on surface expression of PD1 and their inhibitory function investigated in-vitro. Isolated PD1+CTLA4+CD4+ T cells suppressed the proliferation of the total CD4+ population in response to anti-CD3/28 and plasmodial antigens in a cell-extrinsic manner. The response to other specific antigens was not suppressed. Thus, acute P. falciparum malaria induces P. falciparum-specific PD1+CTLA4+CD4+ Teffector cells that coproduce IFNγ and IL10, and inhibit other CD4+ T cells. Transient induction of regulatory Teffector cells may be an important mechanism that controls T cell responses and might prevent severe inflammation in patients with malaria and potentially other acute infections. PMID:27802341

  9. Investigation of the indigenous fungal community populating barley grains: Secretomes and xylanolytic potential.

    PubMed

    Sultan, Abida; Frisvad, Jens C; Andersen, Birgit; Svensson, Birte; Finnie, Christine

    2017-10-03

    The indigenous fungal species populating cereal grains produce numerous plant cell wall-degrading enzymes including xylanases, which could play important role in plant-pathogen interactions and in adaptation of the fungi to varying carbon sources. To gain more insight into the grain surface-associated enzyme activity, members of the populating fungal community were isolated, and their secretomes and xylanolytic activities assessed. Twenty-seven different fungal species were isolated from grains of six barley cultivars over different harvest years and growing sites. The isolated fungi were grown on medium containing barley flour or wheat arabinoxylan as sole carbon source. Their secretomes and xylanase activities were analyzed using SDS-PAGE and enzyme assays and were found to vary according to species and carbon source. Secretomes were dominated by cell wall degrading enzymes with xylanases and xylanolytic enzymes being the most abundant. A 2-DE-based secretome analysis of Aspergillus niger and the less-studied pathogenic fungus Fusarium poae grown on barley flour and wheat arabinoxylan resulted in identification of 82 A. niger and 31 F. poae proteins many of which were hydrolytic enzymes, including xylanases. The microorganisms that inhabit the surface of cereal grains are specialized in production of enzymes such as xylanases, which depolymerize plant cell walls. Integration of gel-based proteomics approach with activity assays is a powerful tool for analysis and characterization of fungal secretomes and xylanolytic activities which can lead to identification of new enzymes with interesting properties, as well as provide insight into plant-fungal interactions, fungal pathogenicity and adaptation. Understanding the fungal response to host niche is of importance to uncover novel targets for potential symbionts, anti-fungal agents and biotechnical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Expression microdissection adapted to commercial laser dissection instruments

    PubMed Central

    Hanson, Jeffrey C; Tangrea, Michael A; Kim, Skye; Armani, Michael D; Pohida, Thomas J; Bonner, Robert F; Rodriguez-Canales, Jaime; Emmert-Buck, Michael R

    2016-01-01

    Laser-based microdissection facilitates the isolation of specific cell populations from clinical or animal model tissue specimens for molecular analysis. Expression microdissection (xMD) is a second-generation technology that offers considerable advantages in dissection capabilities; however, until recently the method has not been accessible to investigators. This protocol describes the adaptation of xMD to commonly used laser microdissection instruments and to a commercially available handheld laser device in order to make the technique widely available to the biomedical research community. The method improves dissection speed for many applications by using a targeting probe for cell procurement in place of an operator-based, cell-by-cell selection process. Moreover, xMD can provide improved dissection precision because of the unique characteristics of film activation. The time to complete the protocol is highly dependent on the target cell population and the number of cells needed for subsequent molecular analysis. PMID:21412274

  11. Isolation and characteristics of CD133‑/A2B5+ and CD133‑/A2B5‑ cells from the SHG139s cell line.

    PubMed

    Han, Yong; Wang, Hangzhou; Huang, Yulun; Cheng, Zhe; Sun, Ting; Chen, Guilin; Xie, Xueshun; Zhou, Youxin; Du, Ziwei

    2015-12-01

    In glioma tissues, there are small cell populations with the capability of sustaining tumor formation. These cells are referred to as glioma stem cells (GSCs). However, the presence of subpopulations of GSCs, and the differences between each subpopulation remain to be fully elucidated. In the present study, CD133‑/A2B5‑ and CD133‑/A2B5+ cells from the SHG139 GSC cell line (SHG139s) were isolated using magnetic‑activated cell sorting. Following xenografting into nude mice, the two isolated subpopulations generated tumors. The characteristics of the two subpopulations were investigated extensively, and it was found that the two exhibited cancer stem cell characteristics. These cells expressed stem cell markers, exhibited a neurosphere‑like appearance, and were found to exhibit self‑renewal and multipotency capabilities. Subsequently, the self‑renewal and proliferation abilities of the two subpopulations were compared. It was found that the A2B5‑ cells had a higher proliferative index and a higher self‑renewal ability, compared with the A2B5+ cells. In addition, the A2B5‑ cells exhibited increased angiogenic ability. However, the invasion ability of the A2B5+ cells was higher than that of the A2B5‑ cells. Taken together, the results of the present study suggested that there are different cell subpopulations in GSCs, and each subpopulation has its own properties.

  12. A CD133-expressing murine liver oval cell population with bilineage potential.

    PubMed

    Rountree, C Bart; Barsky, Lora; Ge, Shundi; Zhu, Judy; Senadheera, Shantha; Crooks, Gay M

    2007-10-01

    Although oval cells are postulated to be adult liver stem cells, a well-defined phenotype of a bipotent liver stem cell remains elusive. The heterogeneity of cells within the oval cell fraction has hindered lineage potential studies. Our goal was to identify an enriched population of bipotent oval cells using a combination of flow cytometry and single cell gene expression in conjunction with lineage-specific liver injury models. Expression of cell surface markers on nonparenchymal, nonhematopoietic (CD45-) cells were characterized. Cell populations were isolated by flow cytometry for gene expression studies. 3,5-Diethoxycarbonyl-1,4-dihydrocollidine toxic injury induced cell cycling and expansion specifically in the subpopulation of oval cells in the periportal zone that express CD133. CD133+CD45- cells expressed hepatoblast and stem cell-associated genes, and single cells coexpressed both hepatocyte and cholangiocyte-associated genes, indicating bilineage potential. CD133+CD45- cells proliferated in response to liver injury. Following toxic hepatocyte damage, CD133+CD45- cells demonstrated upregulated expression of the hepatocyte gene Albumin. In contrast, toxic cholangiocyte injury resulted in upregulation of the cholangiocyte gene Ck19. After 21-28 days in culture, CD133+CD45- cells continued to generate cells of both hepatocyte and cholangiocyte lineages. Thus, CD133 expression identifies a population of oval cells in adult murine liver with the gene expression profile and function of primitive, bipotent liver stem cells. In response to lineage-specific injury, these cells demonstrate a lineage-appropriate genetic response. Disclosure of potential conflicts of interest is found at the end of this article.

  13. Analysis of gene expression in small numbers of purified hemopoietic progenitor cells by RT-PCR.

    PubMed

    Ziegler, B L; Lamping, C P; Thoma, S J; Fliedner, T M

    1995-05-01

    Primitive hemopoietic stem cells represent the most probable targets for genetic alterations due to exposure to ionizing irradiation or chemical carcinogens. We have applied a two-step protocol for the purification of CD34+HLA-DR-/low hemopoietic progenitor cells from cord blood (CB). CD34+ cells were isolated by monoclonal antibody (mAb) against CD34 (My10) and immunomagnetic beads. Beads were cleaved off the CD34+ cells by enzymatic treatment with chymopapain. Due to chymopapain-resistance of epitopes recognized by the used mAbs purity control of CD34+ cells and separation into CD34+HLA-DR-/low and CD34+HLA-DR+ subsets could be performed by using flow cytometry. Two miniaturized procedures were applied to isolate poly(A)+ mRNA for the reverse transcription polymerase chain reaction (RT-PCR) from small numbers of CD34+HLA-DR-/low cells. In five experiments, the mean purity of immunomagnetically isolated CD34+ cells was 93.8% +/- 3.9. Flow cytometry sorting of CD34+ cells resulted in pure CD34+HLA-DR-/low populations (purity > 98.8%; range 98.8% to 99.9%; viability > 96%) with an average yield of 2600 +/- 800 cells/5 x 10(7) low density CB cells. By RT-PCR using both poly(A)+ mRNA isolation procedures, sequences corresponding to CD34 and beta 2-microglobulin were amplified from as few as 20 cells. Furthermore, a sequence-independent RT-PCR (SIP-RT-PCR) was applied to amplify the cDNA derived from five erythroblasts isolated from a burst-forming unit-erythroid (BFU-E). Upon hybridization, full-length c-fos message was detected in the SIP-RT-PCR amplified material. Our data demonstrate that gene expression can be detected at the transcriptional level in small numbers of hemopoietic progenitor cells. In addition, the SIP-RT-PCR may allow the amplification of unique mRNA species when subtractive hybridization procedures are performed. The presented data should be useful to analyze gene expression in rare subsets of radiation-exposed immature hemopoietic stem/progenitor cells.

  14. Surface-Micromachined Microfiltration Membranes for Efficient Isolation and Functional Immunophenotyping of Subpopulations of Immune Cells

    PubMed Central

    Oh, Boram; Lam, Raymond H. W.; Fan, Rong; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-01-01

    An accurate measurement of the immune status in patients with immune system disorders is critical in evaluating the stage of diseases and tailoring drug treatments. The functional cellular immunity test is a promising method to establish the diagnosis of immune dysfunctions. The conventional functional cellular immunity test involves measurements of the capacity of peripheral blood mononuclear cells to produce pro-inflammatory cytokines when stimulated ex vivo. However, this “bulk” assay measures the overall reactivity of a population of lymphocytes and monocytes, making it difficult to pinpoint the phenotype or real identity of the reactive immune cells involved. In this research, we develop a large surface micromachined polydimethylsiloxane (PDMS) microfiltration membrane (PMM) with high porosity, which is integrated in a microfluidic microfiltration platform. Using the PMM with functionalized microbeads conjugated with antibodies against specific cell surface proteins, we demonstrated rapid, efficient and high-throughput on-chip isolation, enrichment, and stimulation of subpopulations of immune cells from blood specimens. Furthermore, the PMM-integrated microfiltration platform, coupled with a no-wash homogeneous chemiluminescence assay (“AlphaLISA”), enables us to demonstrate rapid and sensitive on-chip immunophenotyping assays for subpopulations of immune cells isolated directly from minute quantities of blood samples. PMID:23335389

  15. Cell separation technique in dilectrophoretic chip with bulk electrode

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Tay, Francis E. H.; Xu, Guolin; Yu, Liming

    2006-01-01

    This paper presents a new technique for separation of two cell populations in a dielectrophoretic chip with bulk silicon electrode. A characteristic of the dielectrophoretic chip is its "sandwich" structure: glass/silicon/glass that generates a unique definition of the microfluidic channel with conductive walls (silicon) and isolating floor and ceiling (glass). The structure confers the opportunity to use the electrodes not only to generate a gradient of the electric field but also to generate a gradient of velocity of the fluid inside the channel. This interesting combination gives rise to a new solution for dielectrophoretic separation of two cell populations. The separation method consists of four steps. First, the microchannel is field with the cells mixture. Second, the cells are trapped in different locations of the microfluidic channel, the cell population which exhibits positive dielectrophoresis is trapped in the area where the distance between the electrodes is the minimum whilst, the other population that exhibit negative dielectrophoresis is trapped where the distance between electrodes is the maximum. In the next step, increasing the flow in the microchannel will result in an increased hydrodynamic force that sweeps the cells trapped by positive dielectrophoresis out of the chip. In the last step, the electric field is removed and the second population is sweep out and collected at the outlet. The device was tested for separation of dead yeast cells from live yeast cells. The paper presents analytical aspects of the separation method a comparative study between different electrode profiles and experimental results.

  16. Isolation, Characterization and Growth Kinetic Comparison of Bone Marrow and Adipose Tissue Mesenchymal Stem Cells of Guinea Pig.

    PubMed

    Aliborzi, Ghaem; Vahdati, Akbar; Mehrabani, Davood; Hosseini, Seyed Ebrahim; Tamadon, Amin

    2016-05-30

    Mesenchymal stem cells (MSCs) from different sources have different characteristics. Moreover, MSCs are not isolated and characterized in Guinea pig for animal model of cell therapy. was the isolating of bone marrow MSCs (BM-MSCs) and adipose tissue MSCs (AT-MSCs) from Guinea pig and assessing their characteristics. In this study, bone marrow and adipose tissue were collected from three Guinea pigs and cultured and expanded through eight passages. BM-MSCs and AT-MSCs at passages 2, 5 and 8 were seeded in 24-well plates in triplicate. Cells were counted from each well 1~7 days after seeding to determine population doubling time (PDT) and cell growth curves. Cells of passage 3 were cultured in osteogenic and adipogenic differentiation media. BM-MSCs and AT-MSCs attached to the culture flask and displayed spindle-shaped morphology. Proliferation rate of AT-MSCs in the analyzed passages was more than BM-MSCs. The increase in the PDT of MSCs occurs with the increase in the number of passages. Moreover, after culture of BM-MSCs and AT-MSCs in differentiation media, the cells differentiated toward osteoblasts and adipocytes as verified by Alizarin Red staining and Oil Red O staining, respectively. BM-MSCs and AT-MSCs of Guinea pig could be valuable source of multipotent stem cells for use in experimental and preclinical studies in animal models.

  17. Validation of RNA-based molecular clonotype analysis for virus-specific CD8+ T-cells in formaldehyde-fixed specimens isolated from peripheral blood

    PubMed Central

    van Bockel, David; Price, David A.; Asher, Tedi E.; Venturi, Vanessa; Suzuki, Kazuo; Warton, Kristina; Davenport, Miles P.; Cooper, David A.; Douek, Daniel C.; Kelleher, Anthony D.

    2007-01-01

    Recent advances in the field of molecular clonotype analysis have enabled detailed repertoire characterization of viably isolated antigen-specific T cell populations directly ex vivo. However, in the absence of a biologically contained FACS facility, peripheral blood mononuclear cell (PBMC) preparations derived from patients infected with agents such as HIV must be formaldehyde fixed to inactivate the pathogen; this procedure adversely affects nucleic acid template quality. Here, we developed and validated a method to amplify and sequence mRNA species derived from formaldehyde fixed PBMC specimens. Antigen-specific CD8+ cytotoxic T-lymphocyte populations were identified with standard fluorochrome-conjugated peptide-major histocompatibility complex class I tetramers refolded around synthetic peptides representing immunodominant epitopes from HIV p24 Gag (KRWII[M/L]GLNK/HLA B*2705) and CMV pp65 (NLVPMVATV/HLA A*0201 and TPRVTGGGAM/HLA B*0702), and acquired in separate laboratories with or without fixation. In the presence of proteinase K pre-treatment, the observed antigen-specific CD8+ T-cell repertoire determined by molecular clonotype analysis was statistically no different whether derived from fixed or unfixed PBMC. However, oligo-dT recovery methods were not suitable for use with fixed tissue as significant skewing of clonotypic representation was observed. Thus, we have developed a reliable RNA-based method for molecular clonotype analysis that is compatible with formaldehyde fixation and therefore suitable for use with primary human samples isolated by FACS outside the context of a biological safety level 3 containment facility. PMID:17716684

  18. Morphological patterns in children with ganglion related enteric neuronal abnormalities.

    PubMed

    Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood

    2011-01-01

    Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.

  19. One Bacterial Cell, One Complete Genome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated frommore » the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.« less

  20. Annexin II is associated with mRNAs which may constitute a distinct subpopulation.

    PubMed Central

    Vedeler, A; Hollås, H

    2000-01-01

    Protein-mRNA interactions affect mRNA transport, anchorage, stability and translatability in the cytoplasm. During the purification of three subpopulations of polysomes, it was observed that a 36-kDa protein, identified as annexin II, is associated with only one specific population of polysomes, namely cytoskeleton-associated polysomes. This association appears to be calcium-dependent since it was sensitive to EGTA and could be reconstituted in vitro. UV irradiation resulted in partial, EGTA-resistant cross-linking of annexin II to the polysomes. Binding of (32)P-labelled total RNA to proteins isolated from the cytoskeleton-bound polysomes on a NorthWestern blot resulted in a radioactive band having the same mobility as annexin II and, most importantly, purified native annexin II immobilized on nitrocellulose specifically binds mRNA. The mRNA population isolated from cytoskeleton-bound polysomes binds to annexin II with the highest affinity as compared with those isolated from free or membrane-bound polysomes. Interestingly, the annexin II complex, isolated from porcine small intestinal microvilli was a far better substrate for mRNA binding than the complex derived from transformed Krebs II ascites cells. When cytoskeleton-associated polysomes were split into 60 S and 40 S ribosomal subunits, and a peak containing mRNA complexes, annexin II fractionated with the mRNAs. Finally, using affinity purification of mRNA on poly(A)(+)-coupled magnetic beads, annexin II was only detected in association with messenger ribonucleoproteins (mRNPs) present in the cytoskeletal fraction (non-polysomal mRNPs). These results, derived from both in vitro experiments and cell fractionation, suggest that annexin II binds directly to the RNA moiety of mRNP complexes containing a specific population of mRNAs. PMID:10839987

  1. Maintenance of “stem cell” features of cartilage cell sub-populations during in vitro propagation

    PubMed Central

    2013-01-01

    Background The discovery of mesenchymal stem cells (MSCs) or MSC-like cells in cartilage tissue does not tie in well with the established view that MSCs derive from a perivascular niche. The presence of MSCs may raise concerns about specificity and application safety, particularly in terms of the regulatory site. The aim of the present study was to investigate the benefits or possible risks of the MSC-like properties of cells isolated from cartilage in the context of autologous chondrocyte implantation. Methods Chondrocytic cells were isolated from cartilage or intervertebral disc tissue. Flow cytometry was used to analyze the expression of cell surface antigens. MSC-like cells were either enriched or depleted by means of magnetic cell sorting (MACS) involving the monoclonal antibodies W5C5/SUSD2 and W8B2/MSCA-1. We addressed the issues of prolonged expansion of such cells as well as the influence of culture medium as a trigger for selecting a single cell type. Established protocols were used to study in vitro differentiation. In addition to histological and biochemical assessment, the acquired phenotypes were also evaluated on the mRNA transcript level. Results In the studied cells, we found strongly analogous expression of antigens typically expressed on MSCs, including CD49e, CD73, CD90, CD105, CD140b and CD166. The expression of W5C5 and W8B2 antigens in cartilage cell sub-populations did not correlate with multi-potency. We demonstrated that a chondroid precursor, but not a bona fide multipotent mesenchymal, cell type can be obtained under established in vitro culture conditions. The culture media used for expansion influenced the cell phenotype. Conclusions The risk of adverse adipose or osseous differentiation is not posed by expanded chondrocyte cultures, even after enrichment of putative MSC-like cell populations by MACS. It is possible that this limited “stemness” in chondrocytes, expanded for use in ACI, may instead be beneficial as it allows re-differentiation under appropriate conditions despite prolonged times in culture. PMID:23363653

  2. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention.

    PubMed

    van Langelaar, Jamie; van der Vuurst de Vries, Roos M; Janssen, Malou; Wierenga-Wolf, Annet F; Spilt, Isis M; Siepman, Theodora A; Dankers, Wendy; Verjans, Georges M G M; de Vries, Helga E; Lubberts, Erik; Hintzen, Rogier Q; van Luijn, Marvin M

    2018-05-01

    Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6+CXCR3+), and not Th17 (CCR6+CXCR3-) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6+ and CCR6-CD8+ T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6+CXCR3+CCR4-) expressed the highest very late antigen-4 levels and selectively accumulated in natalizumab-treated patients who remained free of clinical relapses. This was not found in patients who experienced relapses during natalizumab treatment. The enhanced potential of Th17.1 cells to infiltrate the central nervous system was supported by their predominance in cerebrospinal fluid of early multiple sclerosis patients and their preferential transmigration across human brain endothelial layers. These findings reveal a dominant contribution of Th1-like Th17 subpopulations, in particular Th17.1 cells, to clinical disease activity and provide a strong rationale for more specific and earlier use of T cell-targeted therapy in multiple sclerosis.

  3. Identification of a Population of Epidermal Squamous Cell Carcinoma Cells with Enhanced Potential for Tumor Formation

    PubMed Central

    Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R.; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L.; Eckert, Richard L.

    2013-01-01

    Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation. PMID:24376802

  4. Diverse CLE peptides from cyst nematode species

    USDA-ARS?s Scientific Manuscript database

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  5. Cancer stemness and metastatic potential of the novel tumor cell line K3: an inner mutated cell of bone marrow-derived mesenchymal stem cells.

    PubMed

    Qian, Hui; Ding, Xiaoqing; Zhang, Jiao; Mao, Fei; Sun, Zixuan; Jia, Haoyuan; Yin, Lei; Wang, Mei; Zhang, Xu; Zhang, Bin; Yan, Yongmin; Zhu, Wei; Xu, Wenrong

    2017-06-13

    Mesenchymal stem cells (MSCs) transplantation has been used for therapeutic applications in various diseases. Here we report MSCs can malignantly transform in vivo. The novel neoplasm was found on the tail of female rat after injection with male rat bone marrow-derived MSCs (rBM-MSCs) and the new tumor cell line, K3, was isolated from the neoplasm. The K3 cells expressed surface antigens and pluripotent genes similar to those of rBM-MSCs and presented tumor cell features. Moreover, the K3 cells contained side population cells (SP) like cancer stem cells (CSCs), which might contribute to K3 heterogeneity and tumorigenic capacity. To investigate the metastatic potential of K3 cells, we established the nude mouse models of liver and lung metastases and isolated the corresponding metastatic cell lines K3-F4 and K3-B6. Both K3-F4 and K3-B6 cell lines with higher metastatic potential acquired more mesenchymal and stemness-related features. Epithelial-mesenchymal transition is a potential mechanism of K3-F4 and K3-B6 formation.

  6. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    PubMed

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.

  7. Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells

    PubMed Central

    Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu

    2017-01-01

    Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1′-dioctadecyl-3,3,3′,3′-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration. PMID:29067104

  8. Cis-regulatory landscapes of four cell types of the retina.

    PubMed

    Hartl, Dominik; Krebs, Arnaud R; Jüttner, Josephine; Roska, Botond; Schübeler, Dirk

    2017-11-16

    The retina is composed of ∼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photoreceptors as well as rare inter-neuron populations such as horizontal and starburst amacrine cells. Integration of this information reveals sequence determinants and candidate transcription factors for controlling cellular specialization. Additionally, we refined parallel reporter assays to enable studying the transcriptional activity of large collection of sequences in individual cell-types isolated from a tissue. We provide proof of concept for this approach and its scalability by characterizing the transcriptional capacity of several hundred putative regulatory sequences within individual retinal cell-types. This generates a catalogue of cis-regulatory regions active in retinal cell types and we further demonstrate their utility as potential resource for cellular tagging and manipulation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Lymphocyte subpopulations of intestinal mucosa in inflammatory bowel disease.

    PubMed Central

    Eade, O E; Andre-Ukena, S S; Moulton, C; MacPherson, B; Beeken, W L

    1980-01-01

    Lymphocyte subpopulations in peripheral blood (PBL) and intestinal mucosa (IML) of 10 patients with inflammatory bowel disease (IBD) were compared with those of 11 non-IBD controls. PBL were separated on Ficoll/hypaque gradients, and IML were isolated by incubation in dithiothreitol, EDTA, and collagenase. These methods yielded cells of good viability and with intact HLA A and B-antigens. T-cells, identified by neuraminidase-treated sheep RBC rosettes and non-specific esterase staining, comprised approximately 91% of the IML from normal mucosa of all groups. B-cells, identified by erythrocyte-antibody-complement rosettes and surface immunoglobulins, were only 7% of these IML populations. Cell yields were two-fold or more greater from abnormal IBD mucosa, with T-cells ranging from 55 to 95% and B-cells from 2 to 36%. The percentage of Fc receptor bearing cells was low in all specimens. By these methods, T-lymphocytes predominated in intestinal mucosa of both IBD and non-IBD patients, but there is marked increase in the percentage of B-cells isolated from abnormal mucosa in IBD. Images Fig. 1 Fig. 2 Fig. 3 Fig. 11 PMID:6968706

  10. Virus and Host Factors Affecting the Clinical Outcome of Bluetongue Virus Infection

    PubMed Central

    Caporale, Marco; Di Gialleonorado, Luigina; Janowicz, Anna; Wilkie, Gavin; Shaw, Andrew; Savini, Giovanni; Van Rijn, Piet A.; Mertens, Peter; Di Ventura, Mauro

    2014-01-01

    ABSTRACT Bluetongue is a major infectious disease of ruminants caused by bluetongue virus (BTV), an arbovirus transmitted by Culicoides. Here, we assessed virus and host factors influencing the clinical outcome of BTV infection using a single experimental framework. We investigated how mammalian host species, breed, age, BTV serotypes, and strains within a serotype affect the clinical course of bluetongue. Results obtained indicate that in small ruminants, there is a marked difference in the susceptibility to clinical disease induced by BTV at the host species level but less so at the breed level. No major differences in virulence were found between divergent serotypes (BTV-8 and BTV-2). However, we observed striking differences in virulence between closely related strains of the same serotype collected toward the beginning and the end of the European BTV-8 outbreak. As observed previously, differences in disease severity were also observed when animals were infected with either blood from a BTV-infected animal or from the same virus isolated in cell culture. Interestingly, with the exception of two silent mutations, full viral genome sequencing showed identical consensus sequences of the virus before and after cell culture isolation. However, deep sequencing analysis revealed a marked decrease in the genetic diversity of the viral population after passaging in mammalian cells. In contrast, passaging in Culicoides cells increased the overall number of low-frequency variants compared to virus never passaged in cell culture. Thus, Culicoides might be a source of new viral variants, and viral population diversity can be another factor influencing BTV virulence. IMPORTANCE Bluetongue is one of the major infectious diseases of ruminants. It is caused by an arbovirus known as bluetongue virus (BTV). The clinical outcome of BTV infection is extremely variable. We show that there are clear links between the severity of bluetongue and the mammalian host species infected, while at the breed level differences were less evident. No differences were observed in the virulence of two different BTV serotypes (BTV-8 and BTV-2). In contrast, we show that the European BTV-8 strain isolated at the beginning of the bluetongue outbreak in 2006 was more virulent than a strain isolated toward the end of the outbreak. In addition, we show that there is a link between the variability of the BTV population as a whole and virulence, and our data also suggest that Culicoides cells might function as an “incubator” of viral variants. PMID:24991012

  11. Clonal population of adult stem cells: life span and differentiation potential.

    PubMed

    Seruya, Mitchel; Shah, Anup; Pedrotty, Dawn; du Laney, Tracey; Melgiri, Ryan; McKee, J Andrew; Young, Henry E; Niklason, Laura E

    2004-01-01

    Adult stem cells derived from bone marrow, connective tissue, and solid organs can exhibit a range of differentiation potentials. Some controversy exists regarding the classification of mesenchymal stem cells as bona fide stem cells, which is in part derived from the limited ability to propagate true clonal populations of precursor cells. We isolated putative mesenchymal stem cells from the connective tissue of an adult rat (rMSC), and generated clonal populations via three rounds of dilutional cloning. The replicative potential of the clonal rMSC line far exceeded Hayflick's limit of 50-70 population doublings. The high capacity for self-renewal in vitro correlated with telomerase activity, as demonstrated by telomerase repeat amplification protocol (TRAP) assay. Exposure to nonspecific differentiation culture medium revealed multilineage differentiation potential of rMSC clones. Immunostaining confirmed the appearance of mesodermal phenotypes, including adipocytes possessing lipid-rich vacuoles, chondrocytes depositing pericellular type II collagen, and skeletal myoblasts expressing MyoD1. Importantly, the spectrum of differentiation capability was sustained through repeated passaging. Furthermore, serum-free conditions that led to high-efficiency smooth muscle differentiation were identified. rMSCs plated on collagen IV-coated surfaces and exposed to transforming growth factor-beta1 (TGF-beta1) differentiated into a homogeneous population expressing alpha-actin and calponin. Hence, clonogenic analysis confirmed the presence of a putative MSC population derived from the connective tissue of rat skeletal muscle. The ability to differentiate into a smooth muscle cell (SMC) phenotype, combined with a high proliferative capacity, make such a connective tissue-derived MSC population ideal for applications in vascular tissue construction.

  12. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate

    PubMed Central

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-01-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation. PMID:24018851

  13. A Novel Porcine Model for Future Studies of Cell-enriched Fat Grafting

    PubMed Central

    Sørensen, Celine L.; Vester-Glowinski, Peter V.; Herly, Mikkel; Kurbegovic, Sorel; Ørholt, Mathias; Svalgaard, Jesper D.; Kølle, Stig-Frederik T.; Kristensen, Annemarie T.; Talman, Maj-Lis M.; Drzewiecki, Krzysztof T.; Fischer-Nielsen, Anne

    2018-01-01

    Background: Cell-enriched fat grafting has shown promising results for improving graft survival, although many questions remain unanswered. A large animal model is crucial for bridging the gap between rodent studies and human trials. We present a step-by-step approach in using the Göttingen minipig as a model for future studies of cell-enriched large volume fat grafting. Methods: Fat grafting was performed as bolus injections and structural fat grafting. Graft retention was assessed by magnetic resonance imaging after 120 days. The stromal vascular fraction (SVF) was isolated from excised fat and liposuctioned fat from different anatomical sites and analyzed. Porcine adipose-derived stem/stromal cells (ASCs) were cultured in different growth supplements, and population doubling time, maximum cell yield, expression of surface markers, and differentiation potential were investigated. Results: Structural fat grafting in the breast and subcutaneous bolus grafting in the abdomen revealed average graft retention of 53.55% and 15.28%, respectively, which are similar to human reports. Liposuction yielded fewer SVF cells than fat excision, and abdominal fat had the most SVF cells/g fat with SVF yields similar to humans. Additionally, we demonstrated that porcine ASCs can be readily isolated and expanded in culture in allogeneic porcine platelet lysate and fetal bovine serum and that the use of 10% porcine platelet lysate or 20% fetal bovine serum resulted in population doubling time, maximum cell yield, surface marker profile, and trilineage differentiation that were comparable with humans. Conclusions: The Göttingen minipig is a feasible and cost-effective, large animal model for future translational studies of cell-enriched fat grafting. PMID:29876178

  14. Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells.

    PubMed

    Jaleco, A C; Blom, B; Res, P; Weijer, K; Lanier, L L; Phillips, J H; Spits, H

    1997-07-15

    The presence of T and NK cells in the human fetal liver and the fact that fetal liver hemopoietic progenitor cells develop into T and NK cells suggest a role for the fetal liver compartment in T and NK cell development. In this work, we show that the capacity of fetal liver progenitors to develop into T cells, in a human/mouse fetal thymic organ culture system, is restricted to an immature subset of CD34+ CD38- cells. No T cell-committed precursors are contained within the more differentiated CD34+ CD38+ population. This conclusion is supported by the observations that no TCR-delta gene rearrangements and no pre-TCR-alpha expression can be detected in this population. However, NK cells were derived from CD34+ CD38- and CD34+ CD38+ fetal liver cells cultured in the presence of IL-15, IL-7, and Flt-3 ligand. Eighty to ninety percent of cells arising from the CD34+ CD38+ population expressed the NK cell-associated markers CD56, CD16, CD94, and NKR-P1A. Several subpopulations of NK cell precursors were identified by differential expression of these receptors. Based on the detection of populations with a similar antigenic profile in freshly isolated fetal liver cells, we propose a model of NK cell differentiation. Collectively, our findings suggest that CD34+ cells differentiate into NK cells, but not into mature T cells, in the human fetal liver.

  15. Isolation and Characterization of Human Anterior Cruciate Ligament-Derived Vascular Stem Cells

    PubMed Central

    Matsumoto, Tomoyuki; Ingham, Sheila M.; Mifune, Yutaka; Osawa, Aki; Logar, Alison; Usas, Arvydas; Kuroda, Ryosuke; Kurosaka, Masahiro; Fu, Freddie H.

    2012-01-01

    The anterior cruciate ligament (ACL) usually fails to heal after rupture mainly due to the inability of the cells within the ACL tissue to establish an adequate healing process, making graft reconstruction surgery a necessity. However, some reports have shown that there is a healing potential of ACL with primary suture repair. Although some reports showed the existence of mesenchymal stem cell-like cells in human ACL tissues, their origin still remains unclear. Recently, blood vessels have been reported to represent a rich supply of stem/progenitor cells with a characteristic expression of CD34 and CD146. In this study, we attempted to validate the hypothesis that CD34- and CD146-expressing vascular cells exist in hACL tissues, have a potential for multi-lineage differentiation, and are recruited to the rupture site to participate in the intrinsic healing of injured ACL. Immunohistochemistry and flow cytometry analysis of hACL tissues demonstrated that it contains significantly more CD34 and CD146-positive cells in the ACL ruptured site compared with the noninjured midsubstance. CD34+CD45− cells isolated from ACL ruptured site showed higher expansionary potentials than CD146+CD45− and CD34−CD146−CD45− cells, and displayed higher differentiation potentials into osteogenic, adipogenic, and angiogenic lineages than the other cell populations. Immunohistochemistry of fetal and adult hACL tissues demonstrated a higher number of CD34 and CD146-positive cells in the ACL septum region compared with the midsubstance. In conclusion, our findings suggest that the ACL septum region contains a population of vascular-derived stem cells that may contribute to ligament regeneration and repair at the site of rupture. PMID:21732814

  16. Contrasting Responses of Kupffer Cells and Inflammatory Mononuclear Phagocytes to Biliary Obstruction in a Mouse Model of Cholestatic Liver Injury

    PubMed Central

    Duwaerts, Caroline C.; Gehring, Stephan; Cheng, Chao-Wen; van Rooijen, Nico; Gregory, Stephen H.

    2012-01-01

    Background Biliary obstruction and cholestasis are serious complications of many liver diseases. While resident hepatic macrophages (Kupffer cells) are frequently implicated in disease progression, most studies fail to differentiate the contribution of Kupffer cells and inflammatory mononuclear phagocytes (iMNPs) that infiltrate the liver subsequent to obstruction. Aim This study was undertaken to examine the roles and potential interactions of these two disparate mononuclear phagocyte populations in hepatic injury attending cholestasis. Methods Female, C57Bl/6 mice were injected with magnetic beads on day three prior to sham operation or bile duct ligation (BDL) in order to facilitate subsequent Kupffer cell isolation. Three days post surgery, animals were euthanized, and bead-containing Kupffer cells and iMNPs were separated, purified, and analyzed. To examine the ability of Kupffer cells to modulate iMNP activity, iMNPs were isolated from the livers of intact and Kupffer cell-depleted mice on day 3 post-surgery and compared. Results Purified Kupffer cells and iMNP populations obtained from BDL mice exhibited heterogeneous morphologies rendering them visually indistinguishable. iMNPs, however, were characterized by the increased expression of Ly-6C and CD11b and the elevated production of chemokines/cytokines characteristic of inflammatory cells. In the absence of Kupffer cells, iMNPs immigrating to the liver following BDL exhibited significant decreases in CD11b and Ly-6C expression, and in pro-inflammatory chemokine/cytokine production. Conclusions Kupffer cells and iMNPs exhibit disparate biological responses to biliary obstruction and cholestasis. Kupffer cells play a key role in regulating iMNP influx and activity. PMID:23240869

  17. Enrichment and Detection of Circulating Tumor Cells and Other Rare Cell Populations by Microfluidic Filtration.

    PubMed

    Pugia, Michael; Magbanua, Mark Jesus M; Park, John W

    2017-01-01

    The current standard methods for isolating circulating tumor cells (CTCs) from blood involve EPCAM-based immunomagnetic approaches. A major disadvantage of these strategies is that CTCs with low EPCAM expression will be missed. Isolation by size using filter membranes circumvents the reliance on this cell surface marker, and can facilitate the capture not only of EPCAM-negative CTCs but other rare cells as well. These cells that are trapped on the filter membrane can be characterized by immunocytochemistry (ICC) , enumerated and profiled to elucidate their clinical significance. In this chapter, we discuss advances in filtration systems to capture rare cells as well as downstream ICC methods to detect and identify these cells. We highlight our recent clinical study demonstrating the feasibility of using a novel method consisting of automated microfluidic filtration and sequential ICC for detection and enumeration of CTCs, as well as circulating mesenchymal cells (CMCs), circulating endothelial cells (CECs), and putative circulating stem cells (CSCs). We hypothesize that simultaneous analysis of circulating rare cells in blood of cancer patients may lead to a better understanding of disease progression and development of resistance to therapy.

  18. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    PubMed

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Method for autologous single skin cell isolation for regenerative cell spray transplantation with non-cultured cells.

    PubMed

    Gerlach, Jörg C; Johnen, Christa; Ottomann, Christian; Ottoman, Christian; Bräutigam, Kirsten; Plettig, Jörn; Belfekroun, Claudia; Münch, Sandra; Hartmann, Bernd

    2011-03-01

    There is a therapeutic gap for patients with deep partial thickness wounds (Grade IIb) of moderate size that were initially not treated with split- or mesh grafting to avoid overgrafting, but developed delayed wound healing around two weeks after injury--at which time grafting is typically not indicated anymore. Delayed wound healing is often associated with esthetically unsatisfactory results and sometimes functional problems. An innovative cell isolation method for cell spray transplantation at the point of care, which eliminates cell culture prior to treatment, was implemented for this population of burn patients in our center. Autologous skin cell spray transplantation was initiated by taking healthy skin. The dermal/epidermal layers were separated using enzymatic digestion with 40 min dispase application, followed by 15 min trypsin application for basal kerationcyte isolation, 7 min cell washing by centrifugation, followed by transferring the cells for spraying into Ringer lactate solution. The procedure was performed on site in a single session immediately following the biopsy. After sharp wound debridement, cells were immediately transplanted by deposition with a cell sprayer for even distribution of the cell suspension. Eight patients were treated (mean age 30.3 years, mean burn total body surface area 14%, mean Abbreviated Burn Severity Index (5 points). The mean time to complete re-epithelialization was 12.6 days. All patients exhibited wound healing with improved esthetic and functional quality. Our initial experience for the use of non-cultured cells using a two-enzyme approach with cell washing suggests shortened time for wound closure, suggesting that the method may potentially avoid longer-term complications.

  20. Temperature range and degree of acidity growth of isolate of indigenous bacteria on fermented feed “fermege”

    NASA Astrophysics Data System (ADS)

    Isnawati; Trimulyono, G.

    2018-01-01

    Fermege is a fermented feed of ruminants, especially goats made from water hyacinth (Eichhornia crassipes). Temperature range and pH need to know in making starter formula for acceleration of fermentation process at making ruminant feed made from this materials. The starter formula expired period can be extended by adjusting starter storage temperature and pH of the starter. This research was aimed to find the temperature and pH range for the growth of isolate of indigenous bacteria “fermege.” This research is an explorative research conducted by growing bacteria isolate indigenous fermege in liquid medium with various pH and incubation in various temperature. Bacterial population was calculated based on turbidity of bacterial suspension with turbidometer. The stages of this research were to isolate the bacteria present in the fermege, purify the isolates found, and then grow the isolates in a liquid medium with various pH values. The isolated bacterials were incubated at different temperature variations. The cell population density of the isolates was calculated after incubation for 24 hours. The results showed there were eight indigenous bacterial isolates. All isolates can grow in the pH range 6 and 7. Two isolates (Bacillus subtilis and B. pumilus) can grow at 4°C. All isolates obtained can grow at a temperature of 30°C. Isolates Bacillus badius, B. subtilis, B. cereus, Pseudomonas stutzeri and P. diminuta can grow at 50°C. Based on research indicates that indigenous fermege bacterial isolates have the ability to grow in the neutral pH range and temperature range between 4°C and 50°C.

  1. Isolation and characterization of orf viruses from Korean black goats.

    PubMed

    Oem, Jae-Ku; Chung, Joon-Yee; Kim, Yong-Joo; Lee, Kyoung-Ki; Kim, Seong-Hee; Jung, Byeong-Yeal; Hyun, Bang-Hun

    2013-01-01

    Five cases of orf virus infection in Korean black goats were diagnosed in our laboratory between 2010 and 2011. One orf virus (ORF/2011) was isolated from an ovine testis cell line (OA3.Ts) for use as a vaccine candidate. Sequences of the major envelope protein and orf virus interferon resistance genes were determined and compared with published reference sequences. Phylogenetic analyses revealed that orf viruses from Korean black goats were most closely related to an isolate (ORF/09/Korea) from dairy goats in Korea. This result indicates that the orf viruses might have been introduced from dairy goats into the Korean black goat population.

  2. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  3. Hydrophobicity and biofilm formation of lipophilic skin corynebacteria.

    PubMed

    Kwaszewska, Anna K; Brewczyńska, Anna; Szewczyk, Eligia M

    2006-01-01

    Lipophilic corynebacteria isolated as natural flora of human skin were examined. Among 119 assayed strains 94% presented a hydrophobic cell surface and 75.6% were able to form biofilms. These attributes, as well as aggregation in liquid media, were statistically connected with each other and promote the developing of biofilms on solid surfaces. This was characteristic of all the lipophilic Corynebacterium species found on human skin that were examined in this study. C. jeikeium and CDC group G2 strains dominated in this population, and they could be responsible for investigated features in the whole lipophilic skin bacterial population. These two groups are the most common coryneform bacteria isolated from nosocomial infections and these attributes most likely promote them to cause opportunistic infections.

  4. Environmental Impact of Tributyltin-Resistant Marine Bacteria in the Indigenous Microbial Population of Tributyltin-Polluted Surface Sediments.

    PubMed

    Mimura, Haruo; Yagi, Masahiro; Yoshida, Kazutoshi

    2017-01-01

     We compared the TBT-resistant ability of resting cells prepared from isolates that formed colonies on nutrient agar plates containing 100 µM tributyltin (TBT) chloride, such as Photobacterium sp. TKY1, Halomonas sp. TKY2, and Photobacterium sp. NGY1, with those from taxonomically similar type strains. Photobacterium sp. TKY1 showed the highest ability among those three isolates. The number of surviving Photobacterium sp. TKY1 cells was hardly decreased after 1 h of exposure to 100 µM TBTCl, regardless of the number of resting cells in the range from 10 9.4 to 10 4.2 CFU mL -1 . In such an experimental condition, the maximum number of TBT molecules available to associate with a single cell was estimated to be approximately 6.0 x 10 11.8 . Resting cells prepared from type strains Photobacterium ganghwense JCM 12487 T and P. halotolerans LMG 22194 T , which have 16S rDNA sequences highly homologous with those of Photobacterium sp. TKY1, showed sensitivity to TBT, indicating that TBT-resistant marine bacterial species are not closely related in spite of their taxonomic similarity. We also estimated the impact of TBT-resistant bacterial species to indigenous microbial populations of TBT-polluted surface sediments. The number of surviving TBT-sensitive Vibrio natriegens ATCC 14048 T cells, 10 6.2±0.3 CFU mL -1 , was reduced to 10 4.4±0.4 CFU mL -1 when TBT-resistant Photobacterium sp. TKY1 cells, 10 9.1±0.2 CFU mL -1 , coexisted with 10 9.4±0.2 CFU mL -1 of V. natriegens ATCC 14048 T cells in the presence of 100 µM TBTCl. These results indicate that the toxicity of TBT to TBT-sensitive marine bacterial populations might be enhanced when a TBT-resistant marine bacterial species inhabits TBT-polluted surface sediments.

  5. Compartmental genomics in living cells revealed by single-cell nanobiopsy.

    PubMed

    Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader

    2014-01-28

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.

  6. Stem Cell-Like Differentiation Potentials of Endometrial Side Population Cells as Revealed by a Newly Developed In Vivo Endometrial Stem Cell Assay

    PubMed Central

    Miyazaki, Kaoru; Maruyama, Tetsuo; Masuda, Hirotaka; Yamasaki, Akiko; Uchida, Sayaka; Oda, Hideyuki; Uchida, Hiroshi; Yoshimura, Yasunori

    2012-01-01

    Background Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP), but not endometrial main population cells (EMP), exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche) to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. Methodology/Principal Findings ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom), a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. Conclusions/Significance We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue reconstitution. Using this assay, we demonstrated that ESP cells differentiated into multiple endometrial lineages in the niche provided by whole endometrial cells, indicating that ESP cells are genuine endometrial stem/progenitor cells. PMID:23226538

  7. Bordetella pertussis isolates in Finland: Serotype and fimbrial expression

    PubMed Central

    Heikkinen, Eriikka; Xing, Dorothy K; Ölander, Rose-Marie; Hytönen, Jukka; Viljanen, Matti K; Mertsola, Jussi; He, Qiushui

    2008-01-01

    Background Bordetella pertussis causes whooping cough or pertussis in humans. It produces several virulence factors, of which the fimbriae are considered adhesins and elicit immune responses in the host. B. pertussis has three distinct serotypes Fim2, Fim3 or Fim2,3. Generally, B. pertussis Fim2 strains predominate in unvaccinated populations, whereas Fim3 strains are often isolated in vaccinated populations. In Finland, pertussis vaccination was introduced in 1952. The whole-cell vaccine contained two strains, 18530 (Fim3) since 1962 and strain 1772 (Fim2,3) added in 1976. After that the vaccine has remained the same until 2005 when the whole-cell vaccine was replaced by the acellular vaccine containing pertussis toxin and filamentous hemagglutinin. Our aims were to study serotypes of Finnish B. pertussis isolates from 1974 to 2006 in a population with > 90% vaccination coverage and fimbrial expression of the isolates during infection. Serotyping was done by agglutination and serotype-specific antibody responses were determined by blocking ELISA. Results Altogether, 1,109 isolates were serotyped. Before 1976, serotype distributions of Fim2, Fim3 and Fim2,3 were 67%, 19% and 10%, respectively. From 1976 to 1998, 94% of the isolates were Fim2 serotype. Since 1999, the frequency of Fim3 strains started to increase and reached 83% during a nationwide epidemic in 2003. A significant increase in level of serum IgG antibodies against purified fimbriae was observed between paired sera of 37 patients. The patients infected by Fim3 strains had antibodies which blocked the binding of monoclonal antibodies to Fim3 but not to Fim2. Moreover, about one third of the Fim2 strain infected patients developed antibodies capable of blocking of binding of both anti-Fim2 and Fim3 monoclonal antibodies. Conclusion Despite extensive vaccinations in Finland, B. pertussis Fim2 strains were the most common serotype. Emergence of Fim3 strains started in 1999 and coincided with nationwide epidemics. Results of serotype-specific antibody responses suggest that Fim2 strains could express Fim3 during infection, showing a difference in fimbrial expression between in vivo and in vitro. PMID:18816412

  8. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).

    PubMed

    Mehta, Prachi; Premkumar, Brian; Morris, Renée

    2016-08-03

    The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Identification, characterization and isolation of a common progenitor for osteoclasts, macrophages and dendritic cells from murine bone marrow and periphery

    PubMed Central

    Jacome-Galarza, Christian E.; Lee, Sun-Kyeong; Lorenzo, Joseph A.; LeonardoAguila, Hector

    2012-01-01

    Osteoclasts are specialized bone resorbing cells that derive from monocyte precursors. We have identified three populations of cells with high osteoclastogenic potential in murine bone marrow, which expressed the phenotype: B220−CD3−CD11b−/low CD115+ and either CD117hi, CD117intermediate or CD117low. We have evaluated these populations for their ability to also generate macrophages and dendritic cells. At a single cell level, the population expressing higher CD117 levels was able to generate bone-resorbing osteoclasts, phagocytic macrophages and antigen-presenting dendritic cells in vitro with efficiencies of over 90 percent, indicating that there exists a common developmental pathway for these cell types. Cells with osteoclastogenic potential also exist in blood and peripheral hematopoietic organs. Their functional meaning and/or their relationship with bone marrow progenitors is not well established. Hence, we characterized murine peripheral cell populations for their ability to form osteoclasts, macrophages and dendritic cells in vitro. The spleen and peripheral blood monocyte progenitors share phenotypic markers with bone marrow progenitors, but differ in their expression of CD11b, which was low in bone marrow but high in periphery. We propose that circulating monocyte progenitors are derived from a common bone marrow osteoclasts/macrophage/dendritic cell progenitor (OcMDC), which we have now characterized at a clonal level. However, the lineage relationship between the bone marrow and peripheral monocyte progenitors has yet to be defined. PMID:23165930

  10. Defining the identity of human adipose-derived mesenchymal stem cells.

    PubMed

    Montelatici, Elisa; Baluce, Barbara; Ragni, Enrico; Lavazza, Cristiana; Parazzi, Valentina; Mazzola, Riccardo; Cantarella, Giovanna; Brambilla, Massimiliano; Giordano, Rosaria; Lazzari, Lorenza

    2015-02-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are an ideal population for regenerative medical application. Both the isolation procedure and the culturing conditions are crucial steps, since low yield can limit further cell therapies, especially when minimal adipose tissue harvests are available for cell expansion. To date, a standardized procedure encompassing both isolation sites and expansion methods is missing, thus making the choice of the most appropriate conditions for the preparation of ADMSCs controversial, especially in view of the different applications needed. In this study, we compared the effects of three different commercial media (DMEM, aMEM, and EGM2), routinely used for ADMSCs expansion, and two supplements, FBS and human platelet lysate, recently proven to be an effective alternative to prevent xenogeneic antibody transfer and immune alloresponse in the host. Notably, all the conditions resulted in being safe for ADMSCs isolation and expansion with platelet lysate supplementation giving the highest isolation and proliferation rates, together with a commitment for osteogenic lineage. Then, we proved that the high ADMSC hematopoietic supportive potential is performed through a constant and abundant secretion of both GCSF and SCF. In conclusion, this study further expands the knowledge on ADMSCs, defining their identity definition and offers potential options for in vitro protocols for clinical production, especially related to HSC expansion without use of exogenous cytokines or genetic modifications.

  11. Intraepithelial, lamina propria and Peyer's patch lymphocytes of the rat small intestine: isolation and characterization in terms of immunoglobulin markers and receptors for monoclonal antibodies.

    PubMed Central

    Lyscom, N; Brueton, M J

    1982-01-01

    Methods have been determined for the isolation, purification and subsequent characterization of separate populations of rat intestinal lymphoid cells, namely intraepithelial (IEL), lamina propria (LPL) and Peyer's patch lymphocytes (PPL). Dissociation of the epithelium from the basement membrane with subsequent release of IEL was achieved by citrate buffer incubation followed by vortex agitation. LPL were released from the remaining tissue by scraping, and PPL were similarly obtained. Some preparations of lamina propria were further subjected to collagenase digestion. After filtration and density gradient centrifugation, average yields of 220 x 10(4) IEL, 54 x 10(4) LPL and 220 x 10(4) PPL per gram of gut were obtained. Immunofluorescence characterization demonstrated that cells bearing the MRC OX8 (T-suppressor) marker predominated in IE1 (73%) and were present in lower concentrations in LPL (26%) and PPL (6%). Cells with the W3/25 (T-helper) marker accounted for a small proportion of each of the lymphocyte preparations. IE1 were unusual in containing a population of cells which were negative for the W3/13 marker for T cells, but were MRC OX8 positive. B lymphocytes were present in PPL (55%) and LPL (31%), but were virtually absent in IEL (less than 1%). Few plasma cells were observed. The techniques described will allow functional investigations to be made and lead to a better understanding of mucosal immunity. Images Figure 2 PMID:7040214

  12. Systems biology: A tool for charting the antiviral landscape.

    PubMed

    Bowen, James R; Ferris, Martin T; Suthar, Mehul S

    2016-06-15

    The host antiviral programs that are initiated following viral infection form a dynamic and complex web of responses that we have collectively termed as "the antiviral landscape". Conventional approaches to studying antiviral responses have primarily used reductionist systems to assess the function of a single or a limited subset of molecules. Systems biology is a holistic approach that considers the entire system as a whole, rather than individual components or molecules. Systems biology based approaches facilitate an unbiased and comprehensive analysis of the antiviral landscape, while allowing for the discovery of emergent properties that are missed by conventional approaches. The antiviral landscape can be viewed as a hierarchy of complexity, beginning at the whole organism level and progressing downward to isolated tissues, populations of cells, and single cells. In this review, we will discuss how systems biology has been applied to better understand the antiviral landscape at each of these layers. At the organismal level, the Collaborative Cross is an invaluable genetic resource for assessing how genetic diversity influences the antiviral response. Whole tissue and isolated bulk cell transcriptomics serves as a critical tool for the comprehensive analysis of antiviral responses at both the tissue and cellular levels of complexity. Finally, new techniques in single cell analysis are emerging tools that will revolutionize our understanding of how individual cells within a bulk infected cell population contribute to the overall antiviral landscape. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mesenchymal Stem Cell-Mediated Functional Tooth Regeneration in Swine

    PubMed Central

    Fang, Dianji; Yamaza, Takayoshi; Seo, Byoung-Moo; Zhang, Chunmei; Liu, He; Gronthos, Stan; Wang, Cun-Yu; Shi, Songtao; Wang, Songlin

    2006-01-01

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance. PMID:17183711

  14. Formation of resting cells by non-spore-forming microorganisms as a strategy of long-term survival in the environment

    NASA Astrophysics Data System (ADS)

    Mulyukin, Andrei L.; Soina, Vera S.; Demkina, Elena V.; Kozlova, Alla N.; Suzina, Natalia E.; Dmitriev, Vladimir V.; Duda, Vitalii I.; El'-Registan, Galina I.

    2003-01-01

    Non-spore-forming bacteria of the genera Micrococcus and Arthrobacter, including the isolates from permafrost sediments, were found to be able to form cystlike cells under special conditions. Cystlike cells maintained the viability during long-term storage (for up to several years), had undetectable respiratory activity and the elevated resistance to heating and other unfavorable conditions, possessed the specific fine structure and morphology, and were formed in the life cycles of the microorganism. These properties allow cystlike cells to be attributed to a new type of resting microbial forms. Furthermore, the distinctive feature of resting cystlike cells was their low P/S ratios and high Ca/K ratios in comparison to vegetative cells as shown by X-ray microanalysis. The experimentally obtained bacterial cystlike cells with thickened and laminated cell walls and altered texture of the cytoplasm were similar to the cells abundant in native microbial populations isolated from permafrost sediments and ancient soils of the Kolyma lowland (Siberia, Russia). Due to the inherent elevated resistance to adverse conditions and maintenance of viability for prolonged periods, resting cystlike cells are likely to ensure long-term survival of non-spore-forming bacteria in cold environments.

  15. Unveiling adaptation using high-resolution lineage tracking

    NASA Astrophysics Data System (ADS)

    Blundell, Jamie; Levy, Sasha; Fisher, Daniel; Petrov, Dmitri; Sherlock, Gavin

    2013-03-01

    Human diseases such as cancer and microbial infections are adaptive processes inside the human body with enormous population sizes: between 106 -1012 cells. In spite of this our understanding of adaptation in large populations is limited. The key problem is the difficulty in identifying anything more than a handful of rare, large-effect beneficial mutations. The development and use of molecular barcodes allows us to uniquely tag hundreds of thousands of cells and enable us to track tens of thousands of adaptive mutations in large yeast populations. We use this system to test some of the key theories on which our understanding of adaptation in large populations is based. We (i) measure the fitness distribution in an evolving population at different times, (ii) identify when an appreciable fraction of clones in the population have at most a single adaptive mutation and isolate a large number of clones with independent single adaptive mutations, and (iii) use this clone collection to determine the distribution of fitness effects of single beneficial mutations.

  16. Application of Cell-Specific Isolation to the Study of Dopamine Signaling in Drosophila

    PubMed Central

    Iyer, Eswar Prasad R.; Iyer, Srividya Chandramouli; Cox, Daniel N.

    2014-01-01

    Dopamine neurotransmission accounts for a number of important brain functions across species including memory formation, the anticipation of reward, cognitive facilities, and drug addiction. Despite this functional significance, relatively little is known of the cellular pathways associated with drug-induced molecular adaptations within individual neurons. Due to its genetic tractability, simplicity, and economy of scale, Drosophila melanogaster has become an important tool in the study of neurological disease states, including drug addiction. To facilitate high-resolution functional analyses of dopamine signaling, it is highly advantageous to obtain genetic material, such as RNA or protein, from a homogeneous cell source. This process can be particularly challenging in most organisms including small model system organisms such as Drosophila melanogaster. Magnetic bead-based cell sorting has emerged as a powerful tool that can be used to isolate select populations of cells, from a whole organism or tissue such as the brain, for genomic as well as proteomic expression profiling. Coupled with the temporal and spatial specificity of the GAL4/UAS system, we demonstrate the application of magnetic bead-based cell sorting towards the isolation of dopaminergic neurons from the Drosophila adult nervous system. RNA derived from these neurons is of high quality and suitable for downstream applications such as microarray expression profiling or quantitative rtPCR. The versatility of this methodology stems from the fact that the cell-specific isolation method employed can be used under a variety of experimental conditions designed to survey molecular adaptations in dopamine signaling neurons including in response to drugs of abuse. PMID:23296786

  17. Liver tissue fragments obtained from males are the most promising source of human hepatocytes for cell-based therapies - Flow cytometric analysis of albumin expression.

    PubMed

    Zakrzewska, Karolina Ewa; Samluk, Anna; Wencel, Agnieszka; Dudek, Krzysztof; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz

    2017-01-01

    Cell-based therapies that could provide an alternative treatment for the end-stage liver disease require an adequate source of functional hepatocytes. There is little scientific evidence for the influence of patient's age, sex, and chemotherapy on the cell isolation efficiency and metabolic activity of the harvested hepatocytes. The purpose of this study was to investigate whether hepatocytes derived from different sources display differential viability and biosynthetic capacity. Liver cells were isolated from 41 different human tissue specimens. Hepatocytes were labeled using specific antibodies and analyzed using flow cytometry. Multiparametric analysis of the acquired data revealed statistically significant differences between some studied groups of patients. Generally, populations of cells isolated from the male specimens had greater percentage of biosynthetically active hepatocytes than those from the female ones regardless of age and previous chemotherapy of the patient. Based on the albumin staining (and partially on the α-1-antitrypsin labeling) after donor liver exclusion (6 out of 41 samples), our results indicated that: 1. samples obtained from males gave a greater percentage of active hepatocytes than those from females (p = 0.034), and 2. specimens from the males after chemotherapy greater than those from the treated females (p = 0.032).

  18. s-SHIP expression identifies a subset of murine basal prostate cells as neonatal stem cells

    PubMed Central

    Brocqueville, Guillaume; Chmelar, Renee S.; Bauderlique-Le Roy, Hélène; Deruy, Emeric; Tian, Lu; Vessella, Robert L.; Greenberg, Norman M.; Bourette, Roland P.

    2016-01-01

    Isolation of prostate stem cells (PSCs) is crucial for understanding their biology during normal development and tumorigenesis. In this aim, we used a transgenic mouse model expressing GFP from the stem cell-specific s-SHIP promoter to mark putative stem cells during postnatal prostate development. Here we show that cells identified by GFP expression are present transiently during early prostate development and localize to the basal cell layer of the epithelium. These prostate GFP+ cells are a subpopulation of the Lin− CD24+ Sca-1+ CD49f+ cells and are capable of self-renewal together with enhanced growth potential in sphere-forming assay in vitro, a phenotype consistent with that of a PSC population. Transplantation assays of prostate GFP+ cells demonstrate reconstitution of prostate ducts containing both basal and luminal cells in renal grafts. Altogether, these results demonstrate that s-SHIP promoter expression is a new marker for neonatal basal prostate cells exhibiting stem cell properties that enables PSCs in situ identification and isolation via a single consistent parameter. Transcriptional profiling of these GFP+ neonatal stem cells showed an increased expression of several components of the Wnt signaling pathway. It also identified stem cell regulators with potential applications for further analyses of normal and cancer stem cells. PMID:27081082

  19. Enrichment of putative prostate cancer stem cells after androgen deprivation: upregulation of pluripotency transactivators concurs with resistance to androgen deprivation in LNCaP cell lines.

    PubMed

    Seiler, Daniel; Zheng, Junying; Liu, Gentao; Wang, Shunyou; Yamashiro, Joyce; Reiter, Robert E; Huang, Jiaoti; Zeng, Gang

    2013-09-01

    Prostate cancer stem cells (PCSC) offer theoretical explanations to many clinical and biological behaviors of the disease in human. In contrast to approaches of using side populations and cell-surface markers to isolate and characterize the putative PCSC, we hypothesize that androgen deprivation leads to functional enrichment of putative PCSC. Human prostate cancer lines LNCaP, LAPC4 and LAPC9 were depleted of androgen in cell cultures and in castrated SCID mice. The resultant androgen deprivation-resistant or castration-resistant populations, in particular in LNCaP and its derivative cell lines, displayed increased expression of pluripotency transactivators and significantly higher tumorigenicity. Individual tumor cell clones were isolated from castration-resistant bulk cultures of LNCaP (CR-LNCaP) and tested for tumorigenicity in male SCID mice under limiting dilution conditions. As few as 200 cells were able to form spheres in vitro, and generate tumors with similar growth kinetics as 10(6) LNCaP or 10(4) CR-LNCaP cells in vivo. These putative PCSC were CD44(+) /CD24(-) and lack the expression of prostate lineage proteins. When transplanted into the prostate of an intact male SCID mouse, these putative PCSC seemed to show limited differentiation into Ck5(+) , Ck8(+) , Ck5(+) /Ck8(+) , and AR(+) cells. On the other hand, stable transduction of LNCaP with retrovirus encoding Sox2 led to androgen-deprivation resistant growth and down-regulation of major prostate lineage gene products in vitro. Concurrence of overexpression of pluripotency transactivators and resistance to androgen deprivation supported the role of putative PCSC in the emergence of prostate cancer resistant to androgen deprivation. © 2013 Wiley Periodicals, Inc.

  20. Bordetella pertussis population dynamics and phylogeny in Japan after adoption of acellular pertussis vaccines.

    PubMed

    Zomer, Aldert; Otsuka, Nao; Hiramatsu, Yukihiro; Kamachi, Kazunari; Nishimura, Naoko; Ozaki, Takao; Poolman, Jan; Geurtsen, Jeroen

    2018-05-17

    Bordetella pertussis, the causative agent of whooping cough, has experienced a resurgence in the past 15 years, despite the existence of both whole-cell and acellular vaccines. Here, we performed whole genome sequencing analysis of 149 clinical strains, provided by the National Institute of Infectious Diseases (NIID), Japan, isolated in 1982-2014, after Japan became the first country to adopt acellular vaccines against B. pertussis. Additionally, we sequenced 39 strains provided by the Konan Kosei Hospital in Aichi prefecture, Japan, isolated in 2008-2013. The genome sequences afforded insight into B. pertussis genome variability and population dynamics in Japan, and revealed that the B. pertussis population in Japan was characterized by two major clades that divided more than 40 years ago. The pertactin gene was disrupted in about 20 % of the 149 NIID isolates, by either a deletion within the signal sequence (ΔSS) or the insertion of IS element IS481 (prn :: IS481). Phylogeny suggests that the parent clones for these isolates originated in Japan. Divergence dating traced the first generation of the pertactin-deficient mutants in Japan to around 1990, and indicated that strains containing the alternative pertactin allele prn2 may have appeared in Japan around 1974. Molecular clock data suggested that observed fluctuations in B. pertussis population size may have coincided with changes in vaccine usage in the country. The continuing failure to eradicate the disease warrants an exploration of novel vaccine compositions.

  1. Adult Human Gingival Epithelial Cells as a Source for Whole-tooth Bioengineering

    PubMed Central

    Angelova Volponi, A.; Kawasaki, M.; Sharpe, P.T.

    2013-01-01

    Teeth develop from interactions between embryonic oral epithelium and neural-crest-derived mesenchyme. These cells can be separated into single-cell populations and recombined to form normal teeth, providing a basis for bioengineering new teeth if suitable, non-embryonic cell sources can be identified. We show here that cells can be isolated from adult human gingival tissue that can be expanded in vitro and, when combined with mouse embryonic tooth mesenchyme cells, form teeth. Teeth with developing roots can be produced from this cell combination following transplantation into renal capsules. These bioengineered teeth contain dentin and enamel with ameloblast-like cells and rests of Malassez of human origin. PMID:23458883

  2. Supplementation of conventional freezing medium with a combination of catalase and trehalose results in better protection of surface molecules and functionality of hematopoietic cells.

    PubMed

    Sasnoor, Lalita M; Kale, Vaijayanti P; Limaye, Lalita S

    2003-10-01

    Our previous studies had shown that a combination of the bio-antioxidant catalase and the membrane stabilizer trehalose in the conventional freezing mixture affords better cryoprotection to hematopoietic cells as judged by clonogenic assays. In the present investigation, we extended these studies using several parameters like responsiveness to growth factors, expression of growth factor receptors, adhesion assays, adhesion molecule expression, and long-term culture-forming ability. Cells were frozen with (test cells) or without additives (control cells) in the conventional medium containing 10% dimethylsulfoxide (DMSO). Experiments were done on mononuclear cells (MNC) from cord blood/fetal liver hematopoietic cells (CB/FL) and CD34(+) cells isolated from frozen MNC. Our results showed that the responsiveness of test cells to the two early-acting cytokines, viz. interleukin-3 (IL-3) and stem cell factor (SCF) in CFU assays was better than control cells as seen by higher colony formation at limiting concentrations of these cytokines. We, therefore, analyzed the expression of these two growth factor receptors by flow cytometry. We found that in cryopreserved test MNC, as well as CD34(+) cells isolated from them, the expression of both cytokine receptors was two- to three-fold higher than control MNC and CD34(+) cells isolated from them. Adhesion assays carried out with CB/FL-derived CD34(+) cells and KG1a cells showed significantly higher adherence of test cells to M210B4 than respective control cells. Cryopreserved test MNC as well as CD34(+) cells isolated from them showed increased expression of adhesion molecules like CD43, CD44, CD49d, and CD49e. On isolated CD34(+) cells and KG1a cells, there was a two- to three-fold increase in a double-positive population expressing CD34/L-selectin in test cells as compared to control cells. Long-term cultures (LTC) were set up with frozen MNC as well as with CD34(+) cells. Clonogenic cells from LTC were enumerated at the end of the fifth week. There was a significantly increased formation of CFU from test cells than from control cells, indicating better preservation of early progenitors in test cells. Our results suggest that use of a combination of catalase and trehalose as a supplement in the conventional freezing medium results in better protection of growth factor receptors, adhesion molecules, and functionality of hematopoietic cells, yielding a better graft quality.

  3. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    PubMed

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-03-15

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.

  5. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng-Yu; Nestvold, Janne, E-mail: j.m.nestvold@medisin.uio.no; Rekdal, Øystein

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cellmore » marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. - Highlights: • Spontaneously transformed rat MSCs (rTMSCs) share characteristics with normal MSCs. • rTMSCs possess a side population, enriched with tumorigenic cells. • rTMSCs model fibrosarcoma in vivo.« less

  6. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis

    PubMed Central

    Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David

    2017-01-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411

  7. Bone marrow contributes to the population of pancreatic stellate cells in mice.

    PubMed

    Watanabe, Takashi; Masamune, Atsushi; Kikuta, Kazuhiro; Hirota, Morihisa; Kume, Kiyoshi; Satoh, Kennichi; Shimosegawa, Tooru

    2009-12-01

    Activated pancreatic stellate cells (PSCs) play a pivotal role in the development of pancreatic fibrosis. The origin of activated PSCs has been thought to be transformation of quiescent PSCs residing locally in the pancreas. Recent studies have suggested that bone marrow (BM)-derived cells participate in regeneration processes in various organs. This study aimed to clarify the contribution of BM-derived cells to the population of PSCs in mice. We transplanted BM cells from male enhanced green fluorescent protein transgenic mice into female C57BL/6 mice after lethal irradiation. Eight weeks after BM transplantation, chronic pancreatitis was induced by administration of six intra-abdominal injections of cerulein (50 microg/kg body wt) at 1-h intervals, 3 days per week, for the total of 6 wk. BM-derived cells were tracked by green fluorescent protein expression and in situ hybridization for the Y-chromosome. Eight weeks after BM transplantation, BM-derived cells accounted for 8.7% of the desmin (a marker of PSCs)-positive cells in the pancreas. We could isolate BM-derived cells, which contained lipid droplets and expressed desmin. They could be transformed to myofibroblast-like cells by culture in vitro, further supporting that BM contributed to the population of quiescent PSCs. After induction of pancreatic fibrosis, BM-derived cells accounted for 20.2% of alpha-smooth muscle actin-positive activated PSCs. The contribution of BM-derived cells to pancreatic ductal cells (positive for cytokeratin-19) was rare and less than 1%. In conclusion, our results suggested that BM-derived cells contributed to the population of PSCs in mice.

  8. Alterations of DNA content in human endometrial stromal cells transfected with a temperature-sensitive SV40: tetraploidization and physiological consequences.

    PubMed

    Rinehart, C A; Mayben, J P; Butler, T D; Haskill, J S; Kaufman, D G

    1992-01-01

    The normal genomic stability of human cells is reversed during neoplastic transformation. The SV40 large T antigen alters the DNA content in human endometrial stromal cells in a manner that relates to neoplastic progression. Human endometrial stromal cells were transfected with a plasmid containing the A209 temperature-sensitive mutant of SV40 (tsSV40), which is also defective in the viral origin of replication. Ninety-seven clonal transfectants from seven different primary cell strains were isolated. Initial analysis revealed that 20% of the clonal populations (19/97) had an apparent diploid DNA content, 35% (34/97) had an apparent tetraploid DNA content, and the remainder were mixed populations of diploid and tetraploid cells. No aneuploid populations were observed. Diploid tsSV40 transformed cells always give rise to a population of cells with a tetraploid DNA content when continuously cultured at the permissive temperature. The doubling of DNA content can be vastly accelerated by the sudden reintroduction of large T antigen activity following a shift from non-permissive to permissive temperature. Tetraploid tsSV40 transfected cells have a lower capacity for anchorage-independent growth and earlier entry into 'crisis' than diploid cells. These results indicate that during the pre-crisis, extended lifespan phase of growth, the SV40 large T antigen causes a doubling of DNA content. This apparent doubling of DNA content does not confer growth advantage during the extended lifespan that precedes 'crisis'.

  9. Isolation and characterization of vascular endothelial cells derived from fetal tooth buds of miniature swine.

    PubMed

    Nasu, Masanori; Nakahara, Taka; Tominaga, Noriko; Tamaki, Yuichi; Ide, Yoshiaki; Tachibana, Toshiaki; Ishikawa, Hiroshi

    2013-03-01

    The aim of the present study was to isolate endothelial cells from tooth buds (unerupted deciduous teeth) of miniature swine. Mandibular molar tooth buds harvested from swine fetuses at fetal days 90-110 were cultured in growth medium supplemented with 15% fetal bovine serum in 100-mm culture dishes until the primary cells outgrown from the tooth buds reached confluence. A morphologically defined set of pavement-shaped primary cells were picked up manually with filter paper containing trypsin/ethylenediamine tetraacetic acid solution and transferred to a separate dish. A characterization of the cellular characteristics and a functional analysis of the cultured cells at passages 3 to 5 were performed using immunofluorescence, a reverse transcriptase polymerase chain reaction assay, a tube formation assay, and transmission electron microscopy. The isolated cells grew in a pavement arrangement and showed the characteristics of contact inhibition upon reaching confluence. The population doubling time was ~48 h at passage 3. As shown by immunocytostaining and western blotting with specific antibodies, the cells produced the endothelial marker proteins such as vascular endothelial cadherin, von Willebrand factor, and vascular endothelial growth factor receptor-2. Observation with time-lapse images showed that small groups of cells aggregated and adhered to each other to form tube-like structures. Moreover, as revealed through transmission electron microscopy, these adherent cells had formed junctional complexes. These endothelial cells from the tooth buds of miniature swine are available as cell lines for studies on tube formation and use in regenerative medical science.

  10. Identification of Newly Committed Pancreatic Cells in the Adult Mouse Pancreas.

    PubMed

    Socorro, Mairobys; Criscimanna, Angela; Riva, Patricia; Tandon, Manuj; Prasadan, Krishna; Guo, Ping; Humar, Abhinav; Husain, Sohail Z; Leach, Steven D; Gittes, George K; Esni, Farzad

    2017-12-13

    Multipotent epithelial cells with high Aldehyde dehydrogenase activity have been previously reported to exist in the adult pancreas. However, whether they represent true progenitor cells remains controversial. In this study, we isolated and characterized cells with ALDH activity in the adult mouse or human pancreas during physiological conditions or injury. We found that cells with ALDH activity are abundant in the mouse pancreas during early postnatal growth, pregnancy, and in mouse models of pancreatitis and type 1 diabetes (T1D). Importantly, a similar population of cells is found abundantly in healthy children, or in patients with pancreatitis or T1D. We further demonstrate that cells with ALDH activity can commit to either endocrine or acinar lineages, and can be divided into four sub-populations based on CD90 and Ecadherin expression. Finally, our in vitro and in vivo studies show that the progeny of ALDH1 + /CD90 - /Ecad - cells residing in the adult mouse pancreas have the ability to initiate Pancreatic and duodenal homeobox (Pdx1) expression for the first time. In summary, we provide evidence for the existence of a sortable population of multipotent non-epithelial cells in the adult pancreas that can commit to the pancreatic lineage following proliferation and mesenchymal to epithelial transition (MET).

  11. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance.

    PubMed

    Schmidt, Felix; Efferth, Thomas

    2016-06-16

    Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1) single cell isolation (e.g., by laser-capture microdissection), fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase), and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems). Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbieri, Federica; Wurth, Roberto; Ratto, Alessandra

    Current carcinogenesis theory states that only a small subset of tumor cells, the cancer stem cells or tumor initiating cells (TICs), are responsible for tumor formation and progression. Human breast cancer-initiating cells have been identified as CD44-expressing cells, which retain tumorigenic activity and display stem cell-like properties. Spontaneous feline mammary carcinoma (FMC) is an aggressive cancer, which shows biological similarities to the human tumor counterpart. We report the isolation and phenotypic characterization of FMC-derived stem/progenitor cells, showing in vitro self-renewal, long-lasting proliferation and in vivo tumorigenicity. Twenty-one FMC samples were collected, histologically classified and characterized for the expression of Ki67,more » EGFR, ER-{alpha} and CD44, by immunohistochemistry. By culture in stem cell permissive conditions, we isolated, from 13 FMCs, a CD44-positive subpopulation able to survive and proliferate in vitro as mammospheres of different sizes and morphologies. When injected in NOD/SCID mice, FMC stem-like cells initiate tumors, generating cell heterogeneity and recapitulating the original histotype. In serum-containing medium, spheroid cells showed differentiation properties as shown by morphological changes, the loss of CD44 expression and tumorigenic potential. These data show that stem-defined culture of FMC enriches for TICs and validate the use of these cells as a suitable model for comparative oncology studies of mammary biology and testing therapeutic strategies aimed at eradicating TICs. -- Highlights: Black-Right-Pointing-Pointer Feline mammary carcinoma contain a sub-population of stem-like cells expressing CD44 Black-Right-Pointing-Pointer These grow as spheres in serum-free medium and self-renew Black-Right-Pointing-Pointer Isolated stem-like cancer cells initiate tumor in immunodeficient mice Black-Right-Pointing-Pointer Xenografted tumors are phenotypically similar to the original tumor Black-Right-Pointing-Pointer Upon differentiation, cells grow as monolayers, loosing the tumorigenic potential.« less

  13. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential

    PubMed Central

    Alongi, Dominick J; Yamaza, Takayoshi; Song, Yingjie; Fouad, Ashraf F; Romberg, Elaine E; Shi, Songtao; Tuan, Rocky S; Huang, George T-J

    2011-01-01

    Background Potent stem/progenitor cells have been isolated from normal human dental pulps termed dental pulp stem cells (DPSCs). However, it is unknown whether these cells exist in inflamed pulps (IPs). Aims To determine whether DPSCs can be identified and isolated from IPs; and if they can be successfully cultured, whether they retain tissue regeneration potential in vivo. Materials & methods DPSCs from freshly collected normal pulps (NPs) and IPs were characterized in vitro and their tissue regeneration potential tested using an in vivo study model. Results The immunohistochemical analysis showed that IPs expressed higher levels of mesenchymal stem cell markers STRO-1, CD90, CD105 and CD146 compared with NPs (p < 0.05). Flow cytometry analysis showed that DPSCs from both NPs and IPs expressed moderate to high levels of CD146, stage-specific embryonic antigen-4, CD73 and CD166. Total population doubling of DPSCs-IPs (44.6 ± 2.9) was lower than that of DPSCs-NPs (58.9 ± 2.5) (p < 0.05), and DPSCs-IPs appeared to have a decreased osteo/dentinogenic potential compared with DPSCs-NPs based on the mineral deposition in cultures. Nonetheless, DPSCs-IPs formed pulp/dentin complexes similar to DPSCs-NPs when transplanted into immunocompromised mice. Conclusion DPSCs-IPs can be isolated and their mesenchymal stem cell marker profiles are similar to those from NPs. Although some stem cell properties of DPSCs-IPs were altered, cells from some samples remained potent in tissue regeneration in vivo. PMID:20465527

  14. Phenotypic transformation of smooth muscle cells from porcine coronary arteries is associated with connexin 43

    PubMed Central

    ZHANG, XUMIN; WANG, XIAODONG; ZHOU, XIAOHUI; MA, XIAOYE; YAO, YIAN; LIU, XUEBO

    2016-01-01

    The current study aimed to investigate the relevance of the gap junction protein connexin Cx43 in coronary artery smooth muscle cell (SMC) heterogeneity and coronary artery restenosis. SMCs were isolated from the coronary artery of 3-month-old pigs using enzymatic digestion. Two distinct SMC populations were isolated: Rhomboid (R) and spindle-shaped (S) cells. S-SMCs exhibited relatively lower rates of proliferation, exhibiting a classic ''hills-and valleys'' growth pattern; R-SMCs displayed increased proliferation rates, growing as mono- or multi-layers. Immunofluorescent staining, polymerase chain reaction and western blotting were used to assess the expression of Cx40 and Cx43 in SMCs. For further evaluation, cultured SMCs were treated with 10 ng/ml platelet-derived growth factor (PDGF)-BB with or without the gap junction blocker 18α-glycyrrhetinic acid. Stent-induced restenosis was assessed in vivo. Different expression patterns were observed for Cx40 and Cx43 in R- and S-SMCs. Cx40 was the most abundant Cx in S-SMCs, whereas CX43 was identified at relatively higher levels than Cx40 in R-SMCs. Notably, PDGF-BB converted S-SMCs to R-SMCs, with increased Cx43 expression, while 18α-glycyrrhetinic acid inhibited the PDGF-BB-induced phenotypic alterations in S-SMCs. Additionally, restenosis was confirmed in pigs 1-month subsequent to stent placement. R-SMCs were the major cell population isolated from stent-induced restenosis artery tissues, and exhibited markedly increased Cx43 expression, in accordance with the in vitro data described above. In conclusion, the phenotypic transformation of coronary artery SMCs is closely associated with Cx43, which is involved in restenosis. These observations provide a basis for the use of Cx43 as a novel target in restenosis prevention. PMID:27175888

  15. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting.

    PubMed

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase.

  16. Cell-cycle synchronisation of bloodstream forms of Trypanosoma brucei using Vybrant DyeCycle Violet-based sorting

    PubMed Central

    Kabani, Sarah; Waterfall, Martin; Matthews, Keith R.

    2010-01-01

    Studies on the cell-cycle of Trypanosoma brucei have revealed several unusual characteristics that differ from the model eukaryotic organisms. However, the inability to isolate homogenous populations of parasites in distinct cell-cycle stages has limited the analysis of trypanosome cell division and complicated the understanding of mutant phenotypes with possible impact on cell-cycle related events. Although hydroxyurea-induced cell-cycle arrest in procyclic and bloodstream forms has been applied recently with success, such block-release protocols can complicate the analysis of cell-cycle regulated events and have the potential to disrupt important cell-cycle checkpoints. An alternative approach based on flow cytometry of parasites stained with Vybrant DyeCycle Orange circumvents this problem, but is restricted to procyclic form parasites. Here, we apply Vybrant Dyecycle Violet staining coupled with flow cytometry to effectively select different cell-cycle stages of bloodstream form trypanosomes. Moreover, the sorted parasites remain viable, although synchrony is rapidly lost. This method enables cell-cycle enrichment of populations of trypanosomes in their mammal infective stage, particularly at the G1 phase. PMID:19729042

  17. The effect of gestational diabetes on proliferation capacity and viability of human umbilical cord-derived stromal cells.

    PubMed

    Wajid, Nadia; Naseem, Rashida; Anwar, Sanam Saiqa; Awan, Sana Javaid; Ali, Muhammad; Javed, Sara; Ali, Fatima

    2015-09-01

    Stomal cells derived from Wharton's jelly of human umbilical cord (WJMSCs) are considered as the potential therapeutic agents for regeneration and are getting famous for stem cell banking. Our study aims to evaluate the effects of gestational diabetes on proliferation capacity and viability of WJMSCs. Mesenchymal stromal cells were isolated from Wharton's jelly of human umbilical cords from normal and gestational diabetic (DWJMSCs) mothers. Growth patterns of both types of cells were analyzed through MTT assay and population doubling time. Cell survival, cell death and glucose utilization were estimated through trypan blue exclusion assay, LDH assay and glucose detection assay respectively. Angiogenic ability was evaluated by immunocytochemistry and ELISA for VEGF A. Anti-cancerous potential was analyzed on HeLa cells. DWJMSCs exhibited low proliferative rate, increased population doubling time, reduced cell viability and increased cell death. Interestingly, DWJMSCs were found to have a reduced glucose utilization and anti-cancerous ability while enhanced angiogenic ability. Gestational diabetes induces adverse effects on growth, angiogenic and anti-cancerous potential of WJMSCs.

  18. [Effect of BRL 25000 (clavulanic acid-amoxicillin) on bacterial flora in human feces].

    PubMed

    Motohiro, T; Tanaka, K; Koga, T; Shimada, Y; Tomita, N; Sakata, Y; Fujimoto, T; Nishiyama, T; Kuda, N; Ishimoto, K

    1985-02-01

    BRL 25000 (187.5 and 375 mg tablets), a formulation of CVA-K and AMPC in the ratio of 1:2, and AMPC (as control drug) were administered to healthy volunteers, aged 20 approximately 28 years and weighing 60 approximately 85 kg (68.8 kg, on average). Each drug was administered 3 times a day (after meals) for 5 days and the volunteers were separated into 3 groups of 4 subjects each. The effect on the fecal flora was studied before dosage, during administration (day 3 and 5) and day 3 and 5 after the administration course was completed. Studies were undertaken to isolate C. difficile on the last day of administration and 3 and 5 days after administration had ceased. Fecal concentrations and the susceptibility of the isolates to AMPC, CVA-K and BRL 25000 were measured. Side effects and laboratory findings were studied. The results obtained were as follows: 1. In BRL 25000 (187.5 mg X 3/day) group, the population of E. coli was on average, 1 X 10(6) approximately 9 X 10(6) cells/g feces before initiation of administration and it increased by 2 logarithms 3 and 5 days after initiation of administration. By 3 and 5 days after end of administration, the E. coli population was similar to the initial population. The population of Klebsiella sp. was 1 X 10(6) approximately 9 X 10(6) cells/g feces on average before commencement of dosage and it increased by 2 logarithms 3 days after initiation of administration but there was no consistent change in the Klebsiella sp. population thereafter. The Enterobacter sp., population was not consistent neither was the population of other Enterobacteriaceae. In total, the mean Enterobacteriaceae population was 1 X 10(7) approximately 9 X 10(7) cells/g feces before initiation of administration and increased by 2 logarithms 3 days after initiation of administration, and then returned to the initial level 5 days after end of administration. No consistent changes in population were noted for the other Gram-negative bacilli. The Staphylococcus sp. population was 1 X 10(6) approximately 9 X 10(6) cells/g feces on average before initiation of administration. This organism was detected in only 1 case 3 days after initiation of administration and in another 5 days after initiation of administration, thereafter, the population was similar to the initial population.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. Isolation and functional assessment of cutaneous stem cells.

    PubMed

    Doucet, Yanne S; Owens, David M

    2015-01-01

    The epidermis and associated appendages of the skin represent a multi-lineage tissue that is maintained by perpetual rounds of renewal. During homeostasis, turnover of epidermal lineages is achieved by input from regionalized keratinocytes stem or progenitor populations with little overlap from neighboring niches. Over the last decade, molecular markers selectively expressed by a number of these stem or progenitor pools have been identified, allowing for the isolation and functional assessment of stem cells and genetic lineage tracing analysis within intact skin. These advancements have led to many fundamental observations about epidermal stem cell function such as the identification of their progeny, their role in maintenance of skin homeostasis, or their contribution to wound healing. In this chapter, we provide a methodology to identify and isolate epidermal stem cells and to assess their functional role in their respective niche. Furthermore, recent evidence has shown that the microenvironment also plays a crucial role in stem cell function. Indeed, epidermal cells are under the influence of surrounding fibroblasts, adipocytes, and sensory neurons that provide extrinsic signals and mechanical cues to the niche and contribute to skin morphogenesis and homeostasis. A better understanding of these microenvironmental cues will help engineer in vitro experimental models with more relevance to in vivo skin biology. New approaches to address and study these environmental cues in vitro will also be addressed.

  20. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells.

    PubMed

    Peters, Derek T; Henderson, Christopher A; Warren, Curtis R; Friesen, Max; Xia, Fang; Becker, Caroline E; Musunuru, Kiran; Cowan, Chad A

    2016-05-01

    Hepatocyte-like cells (HLCs) are derived from human pluripotent stem cells (hPSCs) in vitro, but differentiation protocols commonly give rise to a heterogeneous mixture of cells. This variability confounds the evaluation of in vitro functional assays performed using HLCs. Increased differentiation efficiency and more accurate approximation of the in vivo hepatocyte gene expression profile would improve the utility of hPSCs. Towards this goal, we demonstrate the purification of a subpopulation of functional HLCs using the hepatocyte surface marker asialoglycoprotein receptor 1 (ASGR1). We analyzed the expression profile of ASGR1-positive cells by microarray, and tested their ability to perform mature hepatocyte functions (albumin and urea secretion, cytochrome activity). By these measures, ASGR1-positive HLCs are enriched for the gene expression profile and functional characteristics of primary hepatocytes compared with unsorted HLCs. We have demonstrated that ASGR1-positive sorting isolates a functional subpopulation of HLCs from among the heterogeneous cellular population produced by directed differentiation. © 2016. Published by The Company of Biologists Ltd.

  1. Degradation of 17α-methyltestosterone by Rhodococcus sp. and Nocardioides sp. isolated from a masculinizing pond of Nile tilapia fry.

    PubMed

    Homklin, Supreeda; Ong, Say Kee; Limpiyakorn, Tawan

    2012-06-30

    17α-Methyltestosterone (MT), a synthetic anabolic androgenic steroid, is widely used in aquafarming for the production of an all male fish population such as Nile tilapia. This study isolated, identified and characterized MT-degrading bacteria in the sediment and water from a masculinizing pond of Nile tilapia fry. Based on the phylogeny, physiological properties and cell morphology, the three isolated MT-degrading bacteria were related closely to Rhodococcus equi, Nocardioides aromaticivorans, and Nocardioides nitrophenolicus. Growth of the three isolated strains was found to be inhibited for MT concentrations in the range of 1.0-10mg/L. The inhibition of cell growth was found to be modeled using the Haldane's substrate inhibition model. The kinetic constants ranged from 0.13 to 0.19h(-1) for μ(max), 0.7-24.8mg/L for K(s) and 19.6-76.2mg/L for K(i). Androgenic activity using β-galactosidase assay showed that all strains degraded MT to the products with no androgenic potency. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Substrate-induced growth and isolation of Acidobacteria from acidic Sphagnum peat.

    PubMed

    Pankratov, Timofei A; Serkebaeva, Yulia M; Kulichevskaya, Irina S; Liesack, Werner; Dedysh, Svetlana N

    2008-05-01

    Fluorescence in situ hybridization (FISH) was applied to estimate the population size of the poorly characterized phylum Acidobacteria in acidic peat sampled from nine different Sphagnum-dominated wetlands of Northern Russia. The cell numbers of these bacteria in oxic peat layers ranged from 0.4 x 10(6) to 1.3 x 10(7) cells per g of wet peat, comprising up to 4% of total bacterial cells. Substrate-induced growth of acidobacteria was observed after amendment of peat samples with glucose, pectin, xylan, starch, ethanol and methanol, while weak or no response was obtained for acetate, pyruvate, mannitol and cellobiose. Using low-nutrient media and FISH-mediated monitoring of the isolation procedure, we succeeded in obtaining nine strains of acidobacteria in pure cultures. These strains belonged to subdivisions 1 and 3 of the Acidobacteria and represented strictly aerobic, heterotrophic organisms. Except for methanol, the substrate utilization patterns of these isolates matched the results obtained in our substrate-amendment experiments with native peat. All strains were also capable of utilizing galacturonic acid, a characteristic component of the cell wall in Sphagnum spp, which is released during moss decomposition. Most isolates from subdivision 1 were truly acidophilic organisms with the growth optimum at pH 3.5-4.5, while the isolates from subdivision 3 grew optimally at pH 5.5-6.5. Another important phenotypic trait of novel strains was their capability of active growth at low temperatures. Both acidophily and low-temperature growth are consistent with the occurrence of acidobacteria in cold and acidic northern wetlands.

  3. Transformation of primary human hepatocytes in hepatocellular carcinoma.

    PubMed

    Montalbano, Mauro; Rastellini, Cristiana; Wang, Xiaofu; Corsello, Tiziana; Eltorky, Mahmoud A; Vento, Renza; Cicalese, Luca

    2016-03-01

    Hepatocellular carcinoma (HCC) is the most common primary liver cancer. Currently, there is limited knowledge of neoplastic transformation of hepatocytes in HCC. In clinical practice, the high rate of HCC local recurrence suggests the presence of different hepatocyte populations within the liver and particularly in the tumor proximity. The present study investigated primary human hepatocyte cultures obtained from liver specimens of patients affected by cirrhosis and HCC, their proliferation and transformation. Liver samples were obtained from seven HCC cirrhotic patients and from three patients with normal liver (NL). Immediately after surgery, cell outgrowth and primary cultures were obtained from the HCC lesion, the cirrhotic tissue proximal (CP, 1-3 cm) and distal (CD, >5 cm) to the margin of the neoplastic lesion, or from NL. Cells were kept in culture for 16 weeks. Morphologic analyses were performed and proliferation rate of the different cell populations compared over time. Glypican-3, Heppar1, Arginase1 and CD-44 positivity were tested. The degree of invasiveness of cells acquiring neoplastic characteristics was studied with a transwell migration assay. We observed that HCC cells maintained their morphology and unmodified neoplastic characteristics when cultured. Cells isolated from CP, showed a progressive morphologic transformation in HCC-like cells accompanied by modification of markers expression with signs of invasiveness. Absence of HCC contamination in the CP isolates was confirmed. In CD samples some of these characteristics were present and at significantly lower levels. With the present study, we are the first to have identified and describe the existence of human hepatocytes near the cancerous lesion that can transform in HCC in vitro.

  4. Role of medullary progenitor cells in epithelial cell migration and proliferation

    PubMed Central

    Chen, Dong; Chen, Zhiyong; Zhang, Yuning; Park, Chanyoung; Al-Omari, Ahmed

    2014-01-01

    This study is aimed at characterizing medullary interstitial progenitor cells and to examine their capacity to induce tubular epithelial cell migration and proliferation. We have isolated a progenitor cell side population from a primary medullary interstitial cell line. We show that the medullary progenitor cells (MPCs) express CD24, CD44, CXCR7, CXCR4, nestin, and PAX7. MPCs are CD34 negative, which indicates that they are not bone marrow-derived stem cells. MPCs survive >50 passages, and when grown in epithelial differentiation medium develop phenotypic characteristics of epithelial cells. Inner medulla collecting duct (IMCD3) cells treated with conditioned medium from MPCs show significantly accelerated cell proliferation and migration. Conditioned medium from PGE2-treated MPCs induce tubule formation in IMCD3 cells grown in 3D Matrigel. Moreover, most of the MPCs express the pericyte marker PDGFR-b. Our study shows that the medullary interstitium harbors a side population of progenitor cells that can differentiate to epithelial cells and can stimulate tubular epithelial cell migration and proliferation. The findings of this study suggest that medullary pericyte/progenitor cells may play a critical role in collecting duct cell injury repair. PMID:24808539

  5. Characteristics of chromosome instability in the human lymphoblast cell line WTK1

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Evans, H. H.

    2001-01-01

    The characteristics of spontaneous and radiation-induced chromosome instability were determined in each of 50 individual clones isolated from control populations of human lymphoblasts (WTK1), as well as from populations of these cells previously exposed to two different types of ionizing radiation, Fe-56 and Cs-137. The types of chromosome instability did not appear to change in clones surviving radiation exposure. Aneuploidy, polyploidy, chromosome dicentrics and translocations, and chromatid breaks and gaps were found in both control and irradiated clones. The primary effect of radiation exposure was to increase the number of cells within any one clone that had chromosome alterations. Chromosome instability was associated with telomere shortening and elevated levels of apoptosis. The results suggest that the proximal cause of chromosome instability is telomere shortening.

  6. Evaluation of oral keratinocyte progenitor and T-lymphocite cells response during early healing after augmentation of keratinized gingiva with a 3D collagen matrix - a pilot study.

    PubMed

    Rusu, Darian; Calenic, Bogdan; Greabu, Maria; Kralev, Alexander; Boariu, Marius; Bojin, Florina; Anghel, Simona; Paunescu, Virgil; Vela, Octavia; Calniceanu, Horia; Stratul, Stefan-Ioan

    2016-07-07

    The aim of the present study is to analyze the behavior of selected populations of oral keratinocytes and T-lymphocytes, responsible for re-constructing and maintaining the oral epithelial tissue architecture, following augmentation of the keratinized oral mucosa using a 3D-collagen matrix. Different groups of oral keratinocytes were isolated from biopsies harvested from 3 patients before the surgical procedure, as well as 7 and 14 days after the augmentation procedure. T-lymphocytes were isolated from peripheral blood at same timepoints. Keratinocytes were characterized for stem and differentiation markers, such as p63, cytokeratin 10 and 14, and in vitro parameters, such as cell viability, cell size and colony-forming efficiency. T-lymphocytes were analyzed for viability and the expression of various cluster of differentiation markers. The methods included magnetic separation of cell populations, immunofluorescence, flow cytometry, and histology of oral biopsies. Both at 7 and 14 days, the majority of cells that repopulate the matrix were actively proliferating/progenitor oral keratinocytes with the phenotype integrin alfa6beta4 + CD71+. These cells display in vitro characteristics similar to the progenitor cells analyzed before the matrix placement. T-lymphocytes expressed CD8 and CD69 markers, while CD25 was absent. The study shows that two weeks after the collagen membrane placement, the healing process appeared to be histologically complete, with no abnormal immune response induced by the matrix, however, with a higher than usual content of active proliferating cells, the majority of keratinocytes being characterized as transit amplifying cells.

  7. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time

    PubMed Central

    Josefsson, Lina; von Stockenstrom, Susanne; Faria, Nuno R.; Sinclair, Elizabeth; Bacchetti, Peter; Killian, Maudi; Epling, Lorrie; Tan, Alice; Ho, Terence; Lemey, Philippe; Shao, Wei; Hunt, Peter W.; Somsouk, Ma; Wylie, Will; Douek, Daniel C.; Loeb, Lisa; Custer, Jeff; Hoh, Rebecca; Poole, Lauren; Deeks, Steven G.; Hecht, Frederick; Palmer, Sarah

    2013-01-01

    The source and dynamics of persistent HIV-1 during long-term combinational antiretroviral therapy (cART) are critical to understanding the barriers to curing HIV-1 infection. To address this issue, we isolated and genetically characterized HIV-1 DNA from naïve and memory T cells from peripheral blood and gut-associated lymphoid tissue (GALT) from eight patients after 4–12 y of suppressive cART. Our detailed analysis of these eight patients indicates that persistent HIV-1 in peripheral blood and GALT is found primarily in memory CD4+ T cells [CD45RO+/CD27(+/−)]. The HIV-1 infection frequency of CD4+ T cells from peripheral blood and GALT was higher in patients who initiated treatment during chronic compared with acute/early infection, indicating that early initiation of therapy results in lower HIV-1 reservoir size in blood and gut. Phylogenetic analysis revealed an HIV-1 genetic change between RNA sequences isolated before initiation of cART and intracellular HIV-1 sequences from the T-cell subsets after 4–12 y of suppressive cART in four of the eight patients. However, evolutionary rate analyses estimated no greater than three nucleotide substitutions per gene region analyzed during all of the 4–12 y of suppressive therapy. We also identified a clearly replication-incompetent viral sequence in multiple memory T cells in one patient, strongly supporting asynchronous cell replication of a cell containing integrated HIV-1 DNA as the source. This study indicates that persistence of a remarkably stable population of infected memory cells will be the primary barrier to a cure, and, with little evidence of viral replication, this population could be maintained by homeostatic cell proliferation or other processes. PMID:24277811

  8. The effect of anaerobic fungal inoculation on the fermentation characteristics of rice straw silages.

    PubMed

    Lee, S M; Guan, L L; Eun, J-S; Kim, C-H; Lee, S J; Kim, E T; Lee, S S

    2015-03-01

    To identify whether the supplement of anaerobic fungi isolates with cellulolytic activities accelerates the silage fermentation. Three fungal isolates with the highest cellulolytic activities among 45 strains of anaerobic fungal stock in our laboratory were selected and used as silage inoculants. The rice straw (RS) was ensiled for 10, 30, 60, 90 and 120 days with four treatments of anaerobic fungi derived from the control (no fungus), Piromyces M014 (isolated from the rumen of the Korean native goat), Orpinomyces R001 (isolated from the duodenum of Korean native cattle) and Neocallimastix M010 (isolated from the guts of termites), respectively. The silages inoculated with pure strains of fungi showed a higher fungal population (P < 0.05) when compared to the control silage. In situ ruminal DM disappearance of RS silage (RSS) was improved with fungal treatment. SEM observation showed live fungal cells inoculated in RS could survive during the ensiling process. Overall, this study indicated that the inoculation of anaerobic fungi decreased the cell wall content of the RSS and increased in situ dry matter disappearance. The supplementation of anaerobic fungi isolates to RSS as a silage inoculant improves the RSS quality. This is the first study showing the potential application of supplement of anaerobic fungi isolated from the guts may be applied industrially as an alternate feed additive that improves the silage quality. © 2014 The Society for Applied Microbiology.

  9. Microarray Detection Call Methodology as a Means to Identify and Compare Transcripts Expressed within Syncytial Cells from Soybean (Glycine max) Roots Undergoing Resistant and Susceptible Reactions to the Soybean Cyst Nematode (Heterodera glycines)

    PubMed Central

    Klink, Vincent P.; Overall, Christopher C.; Alkharouf, Nadim W.; MacDonald, Margaret H.; Matthews, Benjamin F.

    2010-01-01

    Background. A comparative microarray investigation was done using detection call methodology (DCM) and differential expression analyses. The goal was to identify genes found in specific cell populations that were eliminated by differential expression analysis due to the nature of differential expression methods. Laser capture microdissection (LCM) was used to isolate nearly homogeneous populations of plant root cells. Results. The analyses identified the presence of 13,291 transcripts between the 4 different sample types. The transcripts filtered down into a total of 6,267 that were detected as being present in one or more sample types. A comparative analysis of DCM and differential expression methods showed a group of genes that were not differentially expressed, but were expressed at detectable amounts within specific cell types. Conclusion. The DCM has identified patterns of gene expression not shown by differential expression analyses. DCM has identified genes that are possibly cell-type specific and/or involved in important aspects of plant nematode interactions during the resistance response, revealing the uniqueness of a particular cell population at a particular point during its differentiation process. PMID:20508855

  10. Latest biomaterials and technology in dentistry.

    PubMed

    Zandparsa, Roya

    2014-01-01

    Navigation technology is applied successfully in oral and maxillofacial surgery. Laser beams are used for caries removal. With nanodentistry, it is possible to maintain comprehensive oral health care. Nanorobots induce oral analgesia, desensitize teeth, and manipulate the tissue. They can also be used for preventive, restorative, and curative procedures. Strategies to engineer tissue can be categorized into 3 major classes: conductive, inductive, and cell transplantation approaches. Several populations of cells with stem cell properties have been isolated from different parts of the tooth. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Identification and characterization of mouse otic sensory lineage genes

    PubMed Central

    Hartman, Byron H.; Durruthy-Durruthy, Robert; Laske, Roman D.; Losorelli, Steven; Heller, Stefan

    2015-01-01

    Vertebrate embryogenesis gives rise to all cell types of an organism through the development of many unique lineages derived from the three primordial germ layers. The otic sensory lineage arises from the otic vesicle, a structure formed through invagination of placodal non-neural ectoderm. This developmental lineage possesses unique differentiation potential, giving rise to otic sensory cell populations including hair cells, supporting cells, and ganglion neurons of the auditory and vestibular organs. Here we present a systematic approach to identify transcriptional features that distinguish the otic sensory lineage (from early otic progenitors to otic sensory populations) from other major lineages of vertebrate development. We used a microarray approach to analyze otic sensory lineage populations including microdissected otic vesicles (embryonic day 10.5) as well as isolated neonatal cochlear hair cells and supporting cells at postnatal day 3. Non-otic tissue samples including periotic tissues and whole embryos with otic regions removed were used as reference populations to evaluate otic specificity. Otic populations shared transcriptome-wide correlations in expression profiles that distinguish members of this lineage from non-otic populations. We further analyzed the microarray data using comparative and dimension reduction methods to identify individual genes that are specifically expressed in the otic sensory lineage. This analysis identified and ranked top otic sensory lineage-specific transcripts including Fbxo2, Col9a2, and Oc90, and additional novel otic lineage markers. To validate these results we performed expression analysis on select genes using immunohistochemistry and in situ hybridization. Fbxo2 showed the most striking pattern of specificity to the otic sensory lineage, including robust expression in the early otic vesicle and sustained expression in prosensory progenitors and auditory and vestibular hair cells and supporting cells. PMID:25852475

  12. Development of a micromanipulation method for single cell isolation of prokaryotes and its application in food safety.

    PubMed

    Hohnadel, Marisa; Maumy, Myriam; Chollet, Renaud

    2018-01-01

    For nearly a century, conventional microbiological methods have been standard practice for detecting and identifying pathogens in food. Nevertheless, the microbiological safety of food has improved and various rapid methods have been developed to overcome the limitations of conventional methods. Alternative methods are expected to detect low cell numbers, since the presence in food of even a single cell of a pathogenic organism may be infectious. With respect to low population levels, the performance of a detection method is assessed by producing serial dilutions of a pure bacterial suspension to inoculate representative food matrices with highly diluted bacterial cells (fewer than 10 CFU/ml). The accuracy of data obtained by multiple dilution techniques is not certain and does not exclude some colonies arising from clumps of cells. Micromanipulation techniques to capture and isolate single cells from environmental samples were introduced more than 40 years ago. The main limitation of the current micromanipulation technique is still the low recovery rate for the growth of a single cell in culture medium. In this study, we describe a new single cell isolation method and demonstrate that it can be used successfully to grow various types of microorganism from picked individual cells. Tests with Gram-positive and Gram-negative organisms, including cocci, rods, aerobes, anaerobes, yeasts and molds showed growth recovery rates from 60% to 100% after micromanipulation. We also highlight the use of our method to evaluate and challenge the detection limits of standard detection methods in food samples contaminated by a single cell of Salmonella enterica.

  13. Isolation of a rhabdovirus during outbreaks of disease in cyprinid fish species at fishery sites in England.

    PubMed

    Way, K; Bark, S J; Longshaw, C B; Denham, K L; Dixon, P F; Feist, S W; Gardiner, R; Gubbins, M J; Le Deuff, R M; Martin, P D; Stone, D M; Taylor, G R

    2003-12-03

    A virus was isolated during disease outbreaks in bream Abramis brama, tench Tinca tinca, roach Rutilis rutilis and crucian carp Carassius carassius populations at 6 fishery sites in England in 1999. Mortalities at the sites were primarily among recently introduced fish and the predominant fish species affected was bream. The bream stocked at 5 of the 6 English fishery sites were found to have originated from the River Bann, Northern Ireland. Most fish presented few consistent external signs of disease but some exhibited clinical signs similar to those of spring viraemia of carp (SVC), with extensive skin haemorrhages, ulceration on the flanks and internal signs including ascites and petechial haemorrhages. The most prominent histopathological changes were hepatocellular necrosis, interstitial nephritis and splenitis. The virus induced a cytopathic effect in tissue cultures (Epithelioma papulosum cyprini [EPC] cells) at 20 degrees C and produced moderate signals in an enzyme immunoassay (EIA) for the detection of SVC virus. The virus showed a close serological relationship to pike fry rhabdovirus in both EIA and serum neutralisation assays and to a rhabdovirus isolated during a disease outbreak in a bream population in the River Bann in 1998. A high degree of sequence similarity (> or = 99.5% nucleotide identity) was observed between the English isolates and those from the River Bann. Experimental infection of juvenile bream, tench and carp with EPC cell-grown rhabdovirus by bath and intraperitoneal injection resulted in a 40% mortality of bream in the injection group only. The virus was re-isolated from pooled kidney, liver and spleen tissue samples from moribund bream. The field observations together with the experimental results indicate that this rhabdovirus is of low virulence but may have the potential to cause significant mortality in fishes under stress.

  14. Isolation and characterization of mouse innate lymphoid cells.

    PubMed

    Halim, Timotheus Y F; Takei, Fumio

    2014-08-01

    Innate lymphoid cells (ILCs) are rare populations of cytokine-producing lymphocytes and are divided into three groups, namely ILC1, ILC2, and ILC3, based on the cytokines that they produce. They comprise less than 1% of lymphocytes in mucosal tissues and express no unique cell surface markers. Therefore, they can only be identified by combinations of multiple cell surface markers and further characterized by cytokine production in vitro. Thus, multicolor flow cytometry is the only reliable method to purify and characterize ILCs. Here we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILC2 and ILC3. Copyright © 2014 John Wiley & Sons, Inc.

  15. New markers for tracking endoderm induction and hepatocyte differentiation from human pluripotent stem cells

    PubMed Central

    Holtzinger, Audrey; Streeter, Philip R.; Sarangi, Farida; Hillborn, Scott; Niapour, Maryam; Ogawa, Shinichiro; Keller, Gordon

    2015-01-01

    The efficient generation of hepatocytes from human pluripotent stem cells (hPSCs) requires the induction of a proper endoderm population, broadly characterized by the expression of the cell surface marker CXCR4. Strategies to identify and isolate endoderm subpopulations predisposed to the liver fate do not exist. In this study, we generated mouse monoclonal antibodies against human embryonic stem cell-derived definitive endoderm with the goal of identifying cell surface markers that can be used to track the development of this germ layer and its specification to a hepatic fate. Through this approach, we identified two endoderm-specific antibodies, HDE1 and HDE2, which stain different stages of endoderm development and distinct derivative cell types. HDE1 marks a definitive endoderm population with high hepatic potential, whereas staining of HDE2 tracks with developing hepatocyte progenitors and hepatocytes. When used in combination, the staining patterns of these antibodies enable one to optimize endoderm induction and hepatic specification from any hPSC line. PMID:26493401

  16. Identification of reassortant pandemic H1N1 influenza virus in Korean pigs.

    PubMed

    Han, Jae Yeon; Park, Sung Jun; Kim, Hye Kwon; Rho, Semi; Nguyen, Giap Van; Song, Daesub; Kang, Bo Kyu; Moon, Hyung Jun; Yeom, Min Joo; Park, Bong Kyun

    2012-05-01

    Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.

  17. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci.

    PubMed

    Hanson, D F; Murphy, P A; Windle, B E

    1980-06-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophages. When mononuclear cells were added back to purified neutrophils, no pyrogen was produced that could not be accounted for by the number of macrophages added. Rabbit blood cells were similarly fractionated on colloidal silica gradients. Again, endogenous pyrogen was made only by the adherent mononuclear population. The neutrophils isolated on these gradients appeared to be morphologically normal and were 85% viable as judged by dye exclusion. They showed normal random motility. Both blood and exudate neutrophils responded chemotactically to N-formyl Met-Leu-Phe, and blood neutrophils responded chemotactically to zymosan-activated serum. Both kinds of neutrophils phagocytosed zymosan particles and both killed opsonized S. epidermidis in a roller tube system. Both blood and exudate neutrophils showed normal superoxide production when stimulated with opsonized zymosan particles. This evidence suggests that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that they contain.

  18. Failure of rabbit neutrophils to secrete endogenous pyrogen when stimulated with staphylococci

    PubMed Central

    1980-01-01

    Cells obtained from acute peritoneal exudates in rabbits were separated into neutrophil and mononuclear populations by centrifugation on colloidal silica gradients. When these populations were separately incubated in tissue culture medium in the presence of opsonized Staphylococcus epidermidis, endogenous pyrogen was secreted only by the adherent cells of the mononuclear population. Pyrogen production by neutrophils could not have amounted to as much as 1% of the pyrogen produced by macrophages. When mononuclear cells were added back to purified neutrophils, no pyrogen was produced that could not be accounted for by the number of macrophages added. Rabbit blood cells were similarly fractionated on colloidal silica gradients. Again, endogenous pyrogen was made only by the adherent mononuclear population. The neutrophils isolated on these gradients appeared to be morphologically normal and were 85% viable as judged by dye exclusion. They showed normal random motility. Both blood and exudate neutrophils responded chemotactically to N-formyl Met-Leu-Phe, and blood neutrophils responded chemotactically to zymosan-activated serum. Both kinds of neutrophils phagocytosed zymosan particles and both killed opsonized S. epidermidis in a roller tube system. Both blood and exudate neutrophils showed normal superoxide production when stimulated with opsonized zymosan particles. This evidence suggests that macrophages are the only source of endogenous pyrogens, and that pyrogens secreted by cell populations that are rich in neutrophils are to be attributed to the monocytes or macrophages that they contain. PMID:6247413

  19. Evidence for mesenchymal-like sub-populations within squamous cell carcinomas possessing chemoresistance and phenotypic plasticity.

    PubMed

    Basu, D; Nguyen, T-T K; Montone, K T; Zhang, G; Wang, L-P; Diehl, J A; Rustgi, A K; Lee, J T; Weinstein, G S; Herlyn, M

    2010-07-22

    Variable drug responses among malignant cells within individual tumors may represent a barrier to their eradication using chemotherapy. Carcinoma cells expressing mesenchymal markers resist conventional and epidermal growth factor receptor (EGFR)-targeted chemotherapy. In this study, we evaluated whether mesenchymal-like sub-populations within human squamous cell carcinomas (SCCs) with predominantly epithelial features contribute to overall therapy resistance. We identified a mesenchymal-like subset expressing low E-cadherin (Ecad-lo) and high vimentin within the upper aerodigestive tract SCCs. This subset was both isolated from the cell lines and was identified in xenografts and primary clinical specimens. The Ecad-lo subset contained more low-turnover cells, correlating with resistance to the conventional chemotherapeutic paclitaxel in vitro. Epidermal growth factor induced less stimulation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways in Ecad-lo cells, which was likely due to lower EGFR expression in this subset and correlated with in vivo resistance to the EGFR-targeted antibody, cetuximab. The Ecad-lo and high E-cadherin subsets were dynamic in phenotype, showing the capacity to repopulate each other from single-cell clones. Taken together, these results provide evidence for a low-turnover, mesenchymal-like sub-population in SCCs with diminished EGFR pathway function and intrinsic resistance to conventional and EGFR-targeted chemotherapies.

  20. Assessment of the role of circulating breast cancer cells in tumor formation and metastatic potential using in vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Hwu, Derrick; Boutrus, Steven; Greiner, Cherry; Dimeo, Theresa; Kuperwasser, Charlotte; Georgakoudi, Irene

    2011-04-01

    The identification of breast cancer patients who will ultimately progress to metastatic disease is of significant clinical importance. The quantification and assessment of circulating tumor cells (CTCs) has been proposed as one strategy to monitor treatment effectiveness and disease prognosis. However, CTCs have been an elusive population of cells to study because of their small number and difficulties associated with isolation protocols. In vivo flow cytometry (IVFC) can overcome these limitations and provide insights in the role these cells play during primary and metastatic tumor growth. In this study, we used two-color IVFC to examine, for up to ten weeks following orthotopic implantation, changes in the number of circulating human breast cells expressing GFP and a population of circulating hematopoietic cells with strong autofluorescence. We found that the number of detected CTCs in combination with the number of red autofluorescent cells (650 to 690 nm) during the first seven days following implantation was predictive in development of tumor formation and metastasis eight weeks later. These results suggest that the combined detection of these two cell populations could offer a novel approach in the monitoring and prognosis of breast cancer progression, which in turn could aid significantly in their effective treatment.

  1. A High-Resolution Proteomic Landscaping of Primary Human Dental Stem Cells: Identification of SHED- and PDLSC-Specific Biomarkers.

    PubMed

    Taraslia, Vasiliki; Lymperi, Stefania; Pantazopoulou, Vasiliki; Anagnostopoulos, Athanasios K; Papassideri, Issidora S; Basdra, Efthimia K; Bei, Marianna; Kontakiotis, Evangelos G; Tsangaris, George Th; Stravopodis, Dimitrios J; Anastasiadou, Ema

    2018-01-05

    Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways.

  2. A High-Resolution Proteomic Landscaping of Primary Human Dental Stem Cells: Identification of SHED- and PDLSC-Specific Biomarkers

    PubMed Central

    Taraslia, Vasiliki; Lymperi, Stefania; Pantazopoulou, Vasiliki; Anagnostopoulos, Athanasios K.; Basdra, Efthimia K.; Bei, Marianna; Kontakiotis, Evangelos G.; Tsangaris, George Th.; Stravopodis, Dimitrios J.; Anastasiadou, Ema

    2018-01-01

    Dental stem cells (DSCs) have emerged as a promising tool for basic research and clinical practice. A variety of adult stem cell (ASC) populations can be isolated from different areas within the dental tissue, which, due to their cellular and molecular characteristics, could give rise to different outcomes when used in potential applications. In this study, we performed a high-throughput molecular comparison of two primary human adult dental stem cell (hADSC) sub-populations: Stem Cells from Human Exfoliated Deciduous Teeth (SHEDs) and Periodontal Ligament Stem Cells (PDLSCs). A detailed proteomic mapping of SHEDs and PDLSCs, via employment of nano-LC tandem-mass spectrometry (MS/MS) revealed 2032 identified proteins in SHEDs and 3235 in PDLSCs. In total, 1516 proteins were expressed in both populations, while 517 were unique for SHEDs and 1721 were exclusively expressed in PDLSCs. Further analysis of the recorded proteins suggested that SHEDs predominantly expressed molecules that are involved in organizing the cytoskeletal network, cellular migration and adhesion, whereas PDLSCs are highly energy-producing cells, vastly expressing proteins that are implicated in various aspects of cell metabolism and proliferation. Applying the Rho-GDI signaling pathway as a paradigm, we propose potential biomarkers for SHEDs and for PDLSCs, reflecting their unique features, properties and engaged molecular pathways. PMID:29304003

  3. Fetal bovine bone marrow is a rich source of CD34+ hematopoietic progenitors with myelo-monocytic colony-forming activity.

    PubMed

    Pessa-Morikawa, Tiina; Niku, Mikael; Iivanainen, Antti

    2012-03-01

    The CD34 glycoprotein is an important marker of hematopoietic stem cells. We used a polyclonal rabbit anti-bovine CD34 antibody to stain fetal and adult bovine bone marrow cells. Flow cytometry revealed a low side scatter (SSC(low)) population of cells that were CD34(+) but negative for leukocyte lineage markers CD11b, CD14 or CD2. Hematopoietic colony assays with CD34(+) and CD34(-) bone marrow cells suggested that the colony-forming potential in SSC(low) bone marrow cells was confined to the CD34(+) fraction. In contrast, this population was not enriched for cells expressing high aldehyde dehydrogenase activity, a metabolic marker that has been used to characterize hematopoietic stem cells. Thus, the CD34 antigen can be used to identify and isolate bovine bone marrow cells exhibiting clonogenic potential in vitro. Moreover, the proportion of CD34(+) cells is very high in fetal bovine bone marrow, indicating it as a rich source of hematopoietic progenitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Isolation and Phenotyping of Intestinal Macrophages.

    PubMed

    Petit, Vanessa

    2018-01-01

    Macrophages are one of the most abundant leucocytes in the intestinal mucosa where they are essential for maintaining homeostasis. However they are also implicated in the pathogenesis of disorders such as inflammatory bowel disease (IBD), offering potential targets for novel therapies.Tissue macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These unique phenotypes likely reflect the heterogeneity of tissue macrophage origins and influence the tissue environment in which they reside. Here we describe how we can characterize and isolate the colonic macrophages.

  5. Population Genomics of Reduced Vancomycin Susceptibility in Staphylococcus aureus

    PubMed Central

    Rishishwar, Lavanya; Kraft, Colleen S.

    2016-01-01

    ABSTRACT The increased prevalence of vancomycin-intermediate Staphylococcus aureus (VISA) is an emerging health care threat. Genome-based comparative methods hold great promise to uncover the genetic basis of the VISA phenotype, which remains obscure. S. aureus isolates were collected from a single individual that presented with recurrent staphylococcal bacteremia at three time points, and the isolates showed successively reduced levels of vancomycin susceptibility. A population genomic approach was taken to compare patient S. aureus isolates with decreasing vancomycin susceptibility across the three time points. To do this, patient isolates were sequenced to high coverage (~500×), and sequence reads were used to model site-specific allelic variation within and between isolate populations. Population genetic methods were then applied to evaluate the overall levels of variation across the three time points and to identify individual variants that show anomalous levels of allelic change between populations. A successive reduction in the overall levels of population genomic variation was observed across the three time points, consistent with a population bottleneck resulting from antibiotic treatment. Despite this overall reduction in variation, a number of individual mutations were swept to high frequency in the VISA population. These mutations were implicated as potentially involved in the VISA phenotype and interrogated with respect to their functional roles. This approach allowed us to identify a number of mutations previously implicated in VISA along with allelic changes within a novel class of genes, encoding LPXTG motif-containing cell-wall-anchoring proteins, which shed light on a novel mechanistic aspect of vancomycin resistance. IMPORTANCE The emergence and spread of antibiotic resistance among bacterial pathogens are two of the gravest threats to public health facing the world today. We report the development and application of a novel population genomic technique aimed at uncovering the evolutionary dynamics and genetic determinants of antibiotic resistance in Staphylococcus aureus. This method was applied to S. aureus cultures isolated from a single patient who showed decreased susceptibility to the vancomycin antibiotic over time. Our approach relies on the increased resolution afforded by next-generation genome-sequencing technology, and it allowed us to discover a number of S. aureus mutations, in both known and novel gene targets, which appear to have evolved under adaptive pressure to evade vancomycin mechanisms of action. The approach we lay out in this work can be applied to resistance to any number of antibiotics across numerous species of bacterial pathogens. PMID:27446992

  6. Response of γδ T cells to plant-derived tannins

    PubMed Central

    Holderness, Jeff; Hedges, Jodi F.; Daughenbaugh, Katie; Kimmel, Emily; Graff, Jill; Freedman, Brett; Jutila, Mark A.

    2008-01-01

    Many pharmaceutical drugs are isolated from plants used in traditional medicines. Through screening plant extracts, both traditional medicines and compound libraries, new pharmaceutical drugs continue to be identified. Currently, two plant-derived agonists for γδ T cells are described. These plant-derived agonists impart innate effector functions upon distinct γδ T cell subsets. Plant tannins represent one class of γδ T cell agonist and preferentially activate the mucosal population. Mucosal γδ T cells function to modulate tissue immune responses and induce epithelium repair. Select tannins, isolated from apple peel, rapidly induce immune gene transcription in γδ T cells, leading to cytokine production and increased responsiveness to secondary signals. Activity of these tannin preparations tracks to the procyanidin fraction, with the procyanidin trimer (C1) having the most robust activity defined to date. The response to the procyanidins is evolutionarily conserved in that responses are seen with human, bovine, and murine γδ T cells. Procyanidin-induced responses described in this review likely account for the expansion of mucosal γδ T cells seen in mice and rats fed soluble extracts of tannins. Procyanidins may represent a novel approach for treatment of tissue damage, chronic infection, and autoimmune therpies. PMID:19166386

  7. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells

    PubMed Central

    Golebiewska, Anna; Bougnaud, Sébastien; Stieber, Daniel; Brons, Nicolaas H. C.; Vallar, Laurent; Hertel, Frank; Klink, Barbara; Schröck, Evelin; Bjerkvig, Rolf

    2013-01-01

    The identification and significance of cancer stem-like cells in malignant gliomas remains controversial. It has been proposed that cancer stem-like cells display increased drug resistance, through the expression of ATP-binding cassette transporters that detoxify cells by effluxing exogenous compounds. Here, we investigated the ‘side population’ phenotype based on efflux properties of ATP-binding cassette transporters in freshly isolated human glioblastoma samples and intracranial xenografts derived thereof. Using fluorescence in situ hybridization analysis on sorted cells obtained from glioblastoma biopsies, as well as human tumour xenografts developed in immunodeficient enhanced green fluorescence protein-expressing mice that allow an unequivocal tumour-stroma discrimination, we show that side population cells in human glioblastoma are non-neoplastic and exclusively stroma-derived. Tumour cells were consistently devoid of efflux properties regardless of their genetic background, tumour ploidy or stem cell associated marker expression. Using multi-parameter flow cytometry we identified the stromal side population in human glioblastoma to be brain-derived endothelial cells with a minor contribution of astrocytes. In contrast with their foetal counterpart, neural stem/progenitor cells in the adult brain did not display the side population phenotype. Of note, we show that CD133-positive cells often associated with cancer stem-like cells in glioblastoma biopsies, do not represent a homogenous cell population and include CD31-positive endothelial cells. Interestingly, treatment of brain tumours with the anti-angiogenic agent bevacizumab reduced total vessel density, but did not affect the efflux properties of endothelial cells. In conclusion our findings contribute to an unbiased identification of cancer stem-like cells and stromal cells in brain neoplasms, and provide novel insight into the complex issue of drug delivery to the brain. Since efflux properties of endothelial cells are likely to compromise drug availability, transiently targeting ATP-binding cassette transporters may be a valuable therapeutic strategy to improve treatment effects in brain tumours. PMID:23460667

  8. Compartmental Genomics in Living Cells Revealed by Single-Cell Nanobiopsy

    PubMed Central

    Actis, Paolo; Maalouf, Michelle; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R. Adam; Pourmand, Nader

    2014-01-01

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis. PMID:24279711

  9. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence.

    PubMed

    Wiley, Christopher D; Flynn, James M; Morrissey, Christapher; Lebofsky, Ronald; Shuga, Joe; Dong, Xiao; Unger, Marc A; Vijg, Jan; Melov, Simon; Campisi, Judith

    2017-10-01

    Senescent cells play important roles in both physiological and pathological processes, including cancer and aging. In all cases, however, senescent cells comprise only a small fraction of tissues. Senescent phenotypes have been studied largely in relatively homogeneous populations of cultured cells. In vivo, senescent cells are generally identified by a small number of markers, but whether and how these markers vary among individual cells is unknown. We therefore utilized a combination of single-cell isolation and a nanofluidic PCR platform to determine the contributions of individual cells to the overall gene expression profile of senescent human fibroblast populations. Individual senescent cells were surprisingly heterogeneous in their gene expression signatures. This cell-to-cell variability resulted in a loss of correlation among the expression of several senescence-associated genes. Many genes encoding senescence-associated secretory phenotype (SASP) factors, a major contributor to the effects of senescent cells in vivo, showed marked variability with a subset of highly induced genes accounting for the increases observed at the population level. Inflammatory genes in clustered genomic loci showed a greater correlation with senescence compared to nonclustered loci, suggesting that these genes are coregulated by genomic location. Together, these data offer new insights into how genes are regulated in senescent cells and suggest that single markers are inadequate to identify senescent cells in vivo. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  10. Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover.

    PubMed

    Bergmann, Olaf; Zdunek, Sofia; Alkass, Kanar; Druid, Henrik; Bernard, Samuel; Frisén, Jonas

    2011-01-15

    Assays to quantify myocardial renewal rely on the accurate identification of cardiomyocyte nuclei. We previously ¹⁴C birth dated human cardiomyocytes based on the nuclear localization of cTroponins T and I. A recent report by Kajstura et al. suggested that cTroponin I is only localized to the nucleus in a senescent subpopulation of cardiomyocytes, implying that ¹⁴C birth dating of cTroponin T and I positive cell populations underestimates cardiomyocyte renewal in humans. We show here that the isolation of cell nuclei from the heart by flow cytometry with antibodies against cardiac Troponins T and I, as well as pericentriolar material 1 (PCM-1), allows for isolation of close to all cardiomyocyte nuclei, based on ploidy and marker expression. We also present a reassessment of cardiomyocyte ploidy, which has important implications for the analysis of cell turnover, and iododeoxyuridine (IdU) incorporation data. These data provide the foundation for reliable analysis of cardiomyocyte turnover in humans. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Isolated cell behavior drives the evolution of antibiotic resistance

    PubMed Central

    Artemova, Tatiana; Gerardin, Ylaine; Dudley, Carmel; Vega, Nicole M; Gore, Jeff

    2015-01-01

    Bacterial antibiotic resistance is typically quantified by the minimum inhibitory concentration (MIC), which is defined as the minimal concentration of antibiotic that inhibits bacterial growth starting from a standard cell density. However, when antibiotic resistance is mediated by degradation, the collective inactivation of antibiotic by the bacterial population can cause the measured MIC to depend strongly on the initial cell density. In cases where this inoculum effect is strong, the relationship between MIC and bacterial fitness in the antibiotic is not well defined. Here, we demonstrate that the resistance of a single, isolated cell—which we call the single-cell MIC (scMIC)—provides a superior metric for quantifying antibiotic resistance. Unlike the MIC, we find that the scMIC predicts the direction of selection and also specifies the antibiotic concentration at which selection begins to favor new mutants. Understanding the cooperative nature of bacterial growth in antibiotics is therefore essential in predicting the evolution of antibiotic resistance. PMID:26227664

  12. Identification of microbes from the surfaces of food-processing lines based on the flow cytometric evaluation of cellular metabolic activity combined with cell sorting.

    PubMed

    Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K

    2016-09-01

    In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.

  13. Primary microglia isolation from mixed glial cell cultures of neonatal rat brain tissue.

    PubMed

    Tamashiro, Tami T; Dalgard, Clifton Lee; Byrnes, Kimberly R

    2012-08-15

    Microglia account for approximately 12% of the total cellular population in the mammalian brain. While neurons and astrocytes are considered the major cell types of the nervous system, microglia play a significant role in normal brain physiology by monitoring tissue for debris and pathogens and maintaining homeostasis in the parenchyma via phagocytic activity. Microglia are activated during a number of injury and disease conditions, including neurodegenerative disease, traumatic brain injury, and nervous system infection. Under these activating conditions, microglia increase their phagocytic activity, undergo morpohological and proliferative change, and actively secrete reactive oxygen and nitrogen species, pro-inflammatory chemokines and cytokines, often activating a paracrine or autocrine loop. As these microglial responses contribute to disease pathogenesis in neurological conditions, research focused on microglia is warranted. Due to the cellular heterogeneity of the brain, it is technically difficult to obtain sufficient microglial sample material with high purity during in vivo experiments. Current research on the neuroprotective and neurotoxic functions of microglia require a routine technical method to consistently generate pure and healthy microglia with sufficient yield for study. We present, in text and video, a protocol to isolate pure primary microglia from mixed glia cultures for a variety of downstream applications. Briefly, this technique utilizes dissociated brain tissue from neonatal rat pups to produce mixed glial cell cultures. After the mixed glial cultures reach confluency, primary microglia are mechanically isolated from the culture by a brief duration of shaking. The microglia are then plated at high purity for experimental study. The principle and protocol of this methodology have been described in the literature. Additionally, alternate methodologies to isolate primary microglia are well described. Homogenized brain tissue may be separated by density gradient centrifugation to yield primary microglia. However, the centrifugation is of moderate length (45 min) and may cause cellular damage and activation, as well as, cause enriched microglia and other cellular populations. Another protocol has been utilized to isolate primary microglia in a variety of organisms by prolonged (16 hr) shaking while in culture. After shaking, the media supernatant is centrifuged to isolate microglia. This longer two-step isolation method may also perturb microglial function and activation. We chiefly utilize the following microglia isolation protocol in our laboratory for a number of reasons: (1) primary microglia simulate in vivo biology more faithfully than immortalized rodent microglia cell lines, (2) nominal mechanical disruption minimizes potential cellular dysfunction or activation, and (3) sufficient yield can be obtained without passage of the mixed glial cell cultures. It is important to note that this protocol uses brain tissue from neonatal rat pups to isolate microglia and that using older rats to isolate microglia can significantly impact the yield, activation status, and functional properties of isolated microglia. There is evidence that aging is linked with microglia dysfunction, increased neuroinflammation and neurodegenerative pathologies, so previous studies have used ex vivo adult microglia to better understand the role of microglia in neurodegenerative diseases where aging is important parameter. However, ex vivo microglia cannot be kept in culture for prolonged periods of time. Therefore, while this protocol extends the life of primary microglia in culture, it should be noted that the microglia behave differently from adult microglia and in vitro studies should be carefully considered when translated to an in vivo setting.

  14. Mesenchymal stem cells derived from human exocrine pancreas express transcription factors implicated in beta-cell development.

    PubMed

    Baertschiger, Reto M; Bosco, Domenico; Morel, Philippe; Serre-Beinier, Veronique; Berney, Thierry; Buhler, Leo H; Gonelle-Gispert, Carmen

    2008-07-01

    Transplantation of in vitro generated islets or insulin-producing cells represents an attractive option to overcome organ shortage. The aim of this study was to isolate, expand, and characterize cells from human exocrine pancreas and analyze their potential to differentiate into beta cells. Fibroblast-like cells growing out of human exocrine tissue were characterized by flow cytometry and by their capacity to differentiate into mesenchymal cell lineages. During cell expansion and after differentiation toward beta cells, expression of transcription factors of endocrine pancreatic progenitors was analyzed by reverse transcription polymerase chain reaction. Cells emerged from 14/18 human pancreatic exocrine fractions and were expanded up to 40 population doublings. These cells displayed surface antigens similar to mesenchymal stem cells from bone marrow. A culture of these cells in adipogenic and chondrogenic differentiation media allowed differentiation into adipocyte- and chondrocyte-like cells. During expansion, cells expressed transcription factors implicated in islet development such as Isl1, Nkx2.2, Nkx6.1, nestin, Ngn3, Pdx1, and NeuroD. Activin A and hepatocyte growth factor induced an expression of insulin, glucagon, and glucokinase. Proliferating cells with characteristics of mesenchymal stem cells and endocrine progenitors were isolated from exocrine tissue. Under specific conditions, these cells expressed little insulin. Human pancreatic exocrine tissue might thus be a source of endocrine cell progenitors.

  15. Isolation and identification of infectious salmon anaemia virus (ISAV) from Coho salmon in Chile.

    PubMed

    Kibenge, F S; Gárate, O N; Johnson, G; Arriagada, R; Kibenge, M J; Wadowska, D

    2001-05-04

    The isolation of infectious salmon anaemia virus (ISAV) from asymptomatic wild fish species including wild salmon, sea trout and eel established that wild fish can be a reservoir of ISAV for farmed Atlantic salmon. This report characterizes the biological properties of ISAV isolated from a disease outbreak in farmed Coho salmon in Chile and compares it with ISAV isolated from farmed Atlantic salmon in Canada and Europe. The virus that was isolated from Coho salmon tissues was initially detected with ISAV-specific RT-PCR (reverse transcription-polymerase chain reaction). The ability of the virus to grow in cell culture was poor, as cytopathology was not always conspicuous and isolation required passage in the presence of trypsin. Virus replication in cell culture was detected by RT-PCR and IFAT (indirect fluorescent antibody test), and the virus morphology was confirmed by positive staining electron microscopy. Further analysis of the Chilean virus revealed similarities to Canadian ISAV isolates in their ability to grow in the CHSE-214 cell line and in viral protein profile. Sequence analysis of genome segment 2, which encodes the viral RNA polymerase PB1, and segment 8, which encodes the nonstructural proteins NS1 and NS2, showed the Chilean virus to be very similar to Canadian strains of ISAV. This high sequence similarity of ISAV strains of geographically distinct origins illustrates the highly conserved nature of ISAV proteins PB1, NS1 and NS2 of ISAV. It is noteworthy that ISAV was associated with disease outbreaks in farmed Coho salmon in Chile without corresponding clinical disease in farmed Atlantic salmon. This outbreak, which produced high mortality in Coho salmon due to ISAV, is unique and may represent the introduction of the virus to a native wild fish population or a new strain of ISAV.

  16. A CENTRIFUGAL ELUTRIATION METHOD TO ISOLATE AND PURIFY DISTINCT CELL POPULATIONS FROM A HETEROGENEOUS INVERTEBRATE GASTROINTESTINAL ORGAN FOR PHYSIOLOGICAL STUDIES. (R823068)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  17. COPPER TRANSPORT BY ISOLATED AND PURIFIED DISTINCT CELL POPULATIONS OF THE LOBSTER (HOMARUS AMERICANUS) HEPATOPANCREAS USING A FLUOROMETRIC DYE. (R823068)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. The Isolation and Enrichment of Large Numbers of Highly Purified Mouse Spleen Dendritic Cell Populations and Their In Vitro Equivalents.

    PubMed

    Vremec, David

    2016-01-01

    Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.

  19. Differential expression of neuroleukin in osseous tissues and its involvement in mineralization during osteoblast differentiation

    NASA Technical Reports Server (NTRS)

    Zhi, J.; Sommerfeldt, D. W.; Rubin, C. T.; Hadjiargyrou, M.

    2001-01-01

    Osteoblast differentiation is a multistep process that involves critical spatial and temporal regulation of cellular processes marked by the presence of a large number of differentially expressed molecules. To identify key functional molecules, we used differential messenger RNA (mRNA) display and compared RNA populations isolated from the defined transition phases (proliferation, matrix formation, and mineralization) of the MC3T3-E1 osteoblast-like cell line. Using this approach, a complementary DNA (cDNA) fragment was isolated and identified as neuroleukin (NLK), a multifunctional cytokine also known as autocrine motility factor (AMF), phosphoglucose isomerase (PGI; phosphohexose isomerase [PHI]), and maturation factor (MF). Northern analysis showed NLK temporal expression during MC3T3-E1 cell differentiation with a 3.5-fold increase during matrix formation and mineralization. Immunocytochemical studies revealed the presence of NLK in MC3T3-E1 cells as well as in the surrounding matrix, consistent with a secreted molecule. In contrast, the NLK receptor protein was detected primarily on the cell membrane. In subsequent studies, a high level of NLK expression was identified in osteoblasts and superficial articular chondrocytes in bone of 1-, 4-, and 8-month-old normal mice, as well as in fibroblasts, proliferating chondrocytes, and osteoblasts within a fracture callus. However, NLK was not evident in hypertrophic chondrocytes or osteocytes. In addition, treatment of MC3T3 cells with 6-phosphogluconic acid (6PGA; a NLK inhibitor) resulted in diminishing alkaline phosphatase (ALP) activity and mineralization in MC3T3-E1 cells, especially during the matrix formation stage of differentiating cells. Taken together, these data show specific expression of NLK in discrete populations of bone and cartilage cells and suggest a possible role for this secreted protein in bone development and regeneration.

  20. The Use of Blood Vessel–Derived Stem Cells for Meniscal Regeneration and Repair

    PubMed Central

    OSAWA, AKI; HARNER, CHRISTOPHER D.; GHARAIBEH, BURHAN; MATSUMOTO, TOMOYUKI; MIFUNE, YUTAKA; KOPF, SEBASTIAN; INGHAM, SHEILA J. M.; SCHREIBER, VERENA; USAS, ARVYDAS; HUARD, JOHNNY

    2015-01-01

    Purpose Surgical repairs of tears in the vascular region of the meniscus usually heal better than repairs performed in the avascular region; thus, we hypothesized that this region might possess a richer supply of vascular-derived stem cells than the avascular region. Methods In this study, we analyzed 6 menisci extracted from aborted human fetuses and 12 human lateral menisci extracted from adult human subjects undergoing total knee arthroplasty. Menisci were immunostained for CD34 (a stem cell marker) and CD146 (a pericyte marker) in situ, whereas other menisci were dissected into two regions (peripheral and inner) and used to isolate meniscus-derived cells by flow cytometry. Cell populations expressing CD34 and CD146 were tested for their multi-lineage differentiation potentials, including chondrogenic, osteogenic, and adipogenic lineages. Fetal peripheral meniscus cells were transplanted by intracapsular injection into the knee joints of an athymic rat meniscal tear model. Rat menisci were extracted and histologically evaluated after 4 wk posttransplantation. Results Immunohistochemistry and flow cytometric analyses demonstrated that a higher number of CD34- and CD146-positive cells were found in the peripheral region compared with the inner region. The CD34- and CD146-positive cells isolated from the vascular region of both fetal and adult menisci demonstrated multilineage differentiation capacities and were more potent than cells isolated from the inner (avascular) region. Fetal CD34- and CD146-positive cells transplanted into the athymic rat knee joint were recruited into the meniscal tear sites and contributed to meniscus repair. Conclusions The vascularized region of the meniscus contains more stem cells than the avascular region. These meniscal-derived stem cells were multi-potent and contributed to meniscal regeneration. PMID:23247715

  1. Identification and isolation from either adult human bone marrow or G-CSF-mobilized peripheral blood of CD34(+)/CD133(+)/CXCR4(+)/ Lin(-)CD45(-) cells, featuring morphological, molecular, and phenotypic characteristics of very small embryonic-like (VSEL) stem cells.

    PubMed

    Sovalat, Hanna; Scrofani, Maurice; Eidenschenk, Antoinette; Pasquet, Stéphanie; Rimelen, Valérie; Hénon, Philippe

    2011-04-01

    Recently, we demonstrated that normal human bone marrow (hBM)-derived CD34(+) cells, released into the peripheral blood after granulocyte colony-stimulating factor mobilization, contain cell subpopulations committed along endothelial and cardiac differentiation pathways. These subpopulations could play a key role in the regeneration of post-ischemic myocardial lesion after their direct intracardiac delivery. We hypothesized that these relevant cells might be issued from very small embryonic-like stem cells deposited in the BM during ontogenesis and reside lifelong in the adult BM, and that they could be mobilized into peripheral blood by granulocyte colony-stimulating factor. Samples of normal hBM and leukapheresis products harvested from cancer patients after granulocyte colony-stimulating factor mobilization were analyzed and sorted by multiparameter flow cytometry strategy. Immunofluorescence and reverse transcription quantitative polymerase chain reaction assays were performed to analyze the expression of typical pluripotent stem cells markers. A population of CD34(+)/CD133(+)/CXCR4(+)/Lin(-) CD45(-) immature cells was first isolated from the hBM or from leukapheresis products. Among this population, very small (2-5 μm) cells expressing Oct-4, Nanog, and stage-specific embryonic antigen-4 at protein and messenger RNA levels were identified. Our study supports the hypothesis that very small embryonic-like stem cells constitute a "mobile" pool of primitive/pluripotent stem cells that could be released from the BM into the peripheral blood under the influence of various physiological or pathological stimuli. In order to fully support that hBM- and leukapheresis product-derived very small embryonic-like stem cells are actually pluripotent, we are currently testing their ability to differentiate in vitro into cells from all three germ layers. Copyright © 2011 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.

  2. Sympathetic Nervous System Modulation of Inflammation and Remodeling in the Hypertensive Heart

    PubMed Central

    Levick, Scott P.; Murray, David B.; Janicki, Joseph S.; Brower, Gregory L.

    2010-01-01

    Chronic activation of the sympathetic nervous system (SNS) is a key component of cardiac hypertrophy and fibrosis. However, previous studies have provided evidence to also implicate inflammatory cells, including mast cells, in the development of cardiac fibrosis. The current study investigated the potential interaction of cardiac mast cells with the SNS. Eight week old male SHR were sympathectomized to establish the effect of the SNS on cardiac mast cell density, myocardial remodeling and cytokine production in the hypertensive heart. Age-matched WKY served as controls. Cardiac fibrosis and hypertension were significantly attenuated and left ventricular mass normalized while cardiac mast cell density was markedly increased in sympathectomized SHR. Sympathectomy normalized myocardial levels of IFN-γ, IL-6 and IL-10, but had no effect on IL-4. The effect of norepinephrine and substance P on isolated cardiac mast cell activation was investigated as potential mechanisms of interaction between the two. Only substance P elicited mast cell degranulation. Substance P was also shown to induce the production of angiotensin II by a mixed population of isolated cardiac inflammatory cells, including mast cells, lymphocytes and macrophages. These results demonstrate the ability of neuropeptides to regulate inflammatory cell function, providing a potential mechanism by which the SNS and afferent nerves may interact with inflammatory cells in the hypertensive heart. PMID:20048196

  3. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis

    PubMed Central

    Cosenza, Stella; Toupet, Karine; Maumus, Marie; Luz-Crawford, Patricia; Blanc-Brude, Olivier; Jorgensen, Christian; Noël, Danièle

    2018-01-01

    Objectives: Mesenchymal stem cells (MSCs) release extracellular vesicles (EVs) that display a therapeutic effect in inflammatory disease models. Although MSCs can prevent arthritis, the role of MSCs-derived EVs has never been reported in rheumatoid arthritis. This prompted us to compare the function of exosomes (Exos) and microparticles (MPs) isolated from MSCs and investigate their immunomodulatory function in arthritis. Methods: MSCs-derived Exos and MPs were isolated by differential ultracentrifugation. Immunosuppressive effects of MPs or Exos were investigated on T and B lymphocytes in vitro and in the Delayed-Type Hypersensitivity (DTH) and Collagen-Induced Arthritis (CIA) models. Results: Exos and MPs from MSCs inhibited T lymphocyte proliferation in a dose-dependent manner and decreased the percentage of CD4+ and CD8+ T cell subsets. Interestingly, Exos increased Treg cell populations while parental MSCs did not. Conversely, plasmablast differentiation was reduced to a similar extent by MSCs, Exos or MPs. IFN-γ priming of MSCs before vesicles isolation did not influence the immunomodulatory function of isolated Exos or MPs. In DTH, we observed a dose-dependent anti-inflammatory effect of MPs and Exos, while in the CIA model, Exos efficiently decreased clinical signs of inflammation. The beneficial effect of Exos was associated with fewer plasmablasts and more Breg-like cells in lymph nodes. Conclusions: Both MSCs-derived MPs and Exos exerted an anti-inflammatory role on T and B lymphocytes independently of MSCs priming. However, Exos were more efficient in suppressing inflammation in vivo. Our work is the first demonstration of the therapeutic potential of MSCs-derived EVs in inflammatory arthritis. PMID:29507629

  4. Paracrine Pathways in Uterine Leiomyoma Stem Cells Involve Insulinlike Growth Factor 2 and Insulin Receptor A.

    PubMed

    Moravek, Molly B; Yin, Ping; Coon, John S; Ono, Masanori; Druschitz, Stacy A; Malpani, Saurabh S; Dyson, Matthew T; Rademaker, Alfred W; Robins, Jared C; Wei, Jian-Jun; Kim, J Julie; Bulun, Serdar E

    2017-05-01

    Uterine leiomyomas (fibroids) are the most common benign tumors in women. Recently, three populations of leiomyoma cells were discovered on the basis of CD34 and CD49b expression, but molecular differences between these populations remain unknown. To define differential gene expression and signaling pathways in leiomyoma cell populations. Cells from human leiomyoma tissue were sorted by flow cytometry into three populations: CD34+/CD49b+, CD34+/CD49b-, and CD34-/CD49b-. Microarray gene expression profiling and pathway analysis were performed. To investigate the insulinlike growth factor (IGF) pathway, real-time quantitative polymerase chain reaction, immunoblotting, and 5-ethynyl-2'-deoxyuridine incorporation studies were performed in cells isolated from fresh leiomyoma. Research laboratory. Eight African American women. None. Gene expression patterns, cell proliferation, and differentiation. A total of 1164 genes were differentially expressed in the three leiomyoma cell populations, suggesting a hierarchical differentiation order whereby CD34+/CD49b+ stem cells differentiate to CD34+/CD49b- intermediary cells, which then terminally differentiate to CD34-/CD49b- cells. Pathway analysis revealed differential expression of several IGF signaling pathway genes. IGF2 was overexpressed in CD34+/CD49b- vs CD34-/CD49b- cells (83-fold; P < 0.05). Insulin receptor A (IR-A) expression was higher and IGF1 receptor lower in CD34+/CD49b+ vs CD34-/CD49b- cells (15-fold and 0.35-fold, respectively; P < 0.05). IGF2 significantly increased cell number (1.4-fold; P < 0.001), proliferation indices, and extracellular signal-regulated kinase (ERK) phosphorylation. ERK inhibition decreased IGF2-stimulated cell proliferation. IGF2 and IR-A are important for leiomyoma stem cell proliferation and may represent paracrine signaling between leiomyoma cell types. Therapies targeting the IGF pathway should be investigated for both treatment and prevention of leiomyomas. Copyright © 2017 by the Endocrine Society

  5. CD71(high) population represents primitive erythroblasts derived from mouse embryonic stem cells.

    PubMed

    Chao, Ruihua; Gong, Xueping; Wang, Libo; Wang, Pengxiang; Wang, Yuan

    2015-01-01

    The CD71/Ter119 combination has been widely used to reflect dynamic maturation of erythrocytes in vivo. However, because CD71 is expressed on all proliferating cells, it is unclear whether it can be utilized as an erythrocyte-specific marker during differentiation of embryonic stem cells (ESCs). In this study, we revealed that a population expressing high level of CD71 (CD71(high)) during mouse ESC differentiation represented an in vitro counterpart of yolk sac-derived primitive erythroblasts (EryPs) isolated at 8.5days post coitum. In addition, these CD71(high) cells went through "maturational globin switching" and enucleated during terminal differentiation in vitro that were similar to the yolk sac-derived EryPs in vivo. We further demonstrated that the formation of CD71(high) population was regulated differentially by key factors including Scl, HoxB4, Eaf1, and Klf1. Taken together, our study provides a technical advance that allows efficient segregation of EryPs from differentiated ESCs in vitro for further understanding molecular regulation during primitive erythropoiesis. Copyright © 2014. Published by Elsevier B.V.

  6. Bio optofluidics cell sorter: cell-BOCS concept and applications

    NASA Astrophysics Data System (ADS)

    Roth, Tue; Glückstad, Jesper

    2012-03-01

    The cell-BOCS is a novel microfluidics based cell-sorting instrument utilizing next generation optical trapping technology developed at the Technical University of Denmark. It is targeted emerging bio-medical research and diagnostics markets where it for certain applications offers a number of advantages over conventional fluorescence activated cell-sorting (FACSTM) technology. Advantages include gentle handling of cells, sterile sorting, easy operation, small footprint and lower cost allowing out-of-core-facility use. Application examples are found within sorting of fragile transfected cells, high value samples and primary cell lines, where traditional FACS technology has limited application due to it's droplet-based approach to cell-sorting. In the diagnostics field, in particular applying the cell-BOCS for isolating pure populations of circulating tumor cells is an area that has generated a lot of interest.

  7. Isolation, culture and chondrogenic differentiation of canine adipose tissue- and bone marrow-derived mesenchymal stem cells--a comparative study.

    PubMed

    Reich, Christine M; Raabe, Oksana; Wenisch, Sabine; Bridger, Philip S; Kramer, Martin; Arnhold, Stefan

    2012-06-01

    In the dog, mesenchymal stem cells (MSCs) have been shown to reside in the bone marrow (bone marrow-derived mesenchymal stem cells: BM-MSCs) as well as in the adipose tissue (adipose tissue-derived stem cells: ADSCs). Potential application fields for these multipotent MSCs in small animal practice are joint diseases as MSCs of both sources have shown to possess chondrogenic differentiation ability. However, it is not clear whether the chondrogenic differentiation potential of cells of these two distinct tissues is truly equal. Therefore, we compared MSCs of both origins in this study in terms of their chondrogenic differentiation ability and suitability for clinical application. BM-MSCs harvested from the femoral neck and ADSCs from intra-abdominal fat tissue were examined for their morphology, population doubling time (PDT) and CD90 surface antigen expression. RT-PCR served to assess expression of pluripotency marker Oct4 and early differentiation marker genes. Chondrogenic differentiation ability was compared and validated using histochemistry, transmission electron microscopy (TEM) and quantitative RT-PCR. Both cell populations presented a highly similar morphology and marker expression in an undifferentiated stage except that freshly isolated ADSCs demonstrated a significantly faster PDT than BM-MSCs. In contrast, BM-MSCs revealed a morphological superior cartilage formation by the production of a more abundant and structured hyaline matrix and higher expression of lineage specific genes under the applied standard differentiation protocol. However, further investigations are necessary in order to find out if chondrogenic differentiation can be improved in canine ADSCs using different protocols and/or supplements.

  8. Differential cell reaction upon Toll-like receptor 4 and 9 activation in human alveolar and lung interstitial macrophages

    PubMed Central

    2010-01-01

    Background Investigations on pulmonary macrophages (MΦ) mostly focus on alveolar MΦ (AM) as a well-defined cell population. Characteristics of MΦ in the interstitium, referred to as lung interstitial MΦ (IM), are rather ill-defined. In this study we therefore aimed to elucidate differences between AM and IM obtained from human lung tissue. Methods Human AM and IM were isolated from human non-tumor lung tissue from patients undergoing lung resection. Cell morphology was visualized using either light, electron or confocal microscopy. Phagocytic activity was analyzed by flow cytometry as well as confocal microscopy. Surface marker expression was measured by flow cytometry. Toll-like receptor (TLR) expression patterns as well as cytokine expression upon TLR4 or TLR9 stimulation were assessed by real time RT-PCR and cytokine protein production was measured using a fluorescent bead-based immunoassay. Results IM were found to be smaller and morphologically more heterogeneous than AM, whereas phagocytic activity was similar in both cell types. HLA-DR expression was markedly higher in IM compared to AM. Although analysis of TLR expression profiles revealed no differences between the two cell populations, AM and IM clearly varied in cell reaction upon activation. Both MΦ populations were markedly activated by LPS as well as DNA isolated from attenuated mycobacterial strains (M. bovis H37Ra and BCG). Whereas AM expressed higher amounts of inflammatory cytokines upon activation, IM were more efficient in producing immunoregulatory cytokines, such as IL10, IL1ra, and IL6. Conclusion AM appear to be more effective as a non-specific first line of defence against inhaled pathogens, whereas IM show a more pronounced regulatory function. These dissimilarities should be taken into consideration in future studies on the role of human lung MΦ in the inflammatory response. PMID:20843333

  9. Synovial fluid progenitors expressing CD90+ from normal but not osteoarthritic joints undergo chondrogenic differentiation without micro-mass culture.

    PubMed

    Krawetz, Roman J; Wu, Yiru Elizabeth; Martin, Liam; Rattner, Jerome B; Matyas, John R; Hart, David A

    2012-01-01

    Mesenchymal progenitor cells (MPCs) can differentiate into osteoblasts, adipocytes, and chondrocytes, and are in part responsible for maintaining tissue integrity. Recently, a progenitor cell population has been found within the synovial fluid that shares many similarities with bone marrow MPCs. These synovial fluid MPCs (sfMPCs) share the ability to differentiate into bone and fat, with a bias for cartilage differentiation. In this study, sfMPCs were isolated from human and canine synovial fluid collected from normal individuals and those with osteoarthritis (human: clinician-diagnosed, canine: experimental) to compare the differentiation potential of CD90+ vs. CD90- sfMPCs, and to determine if CD90 (Thy-1) is a predictive marker of synovial fluid progenitors with chondrogenic capacity in vitro. sfMPCs were derived from synovial fluid from normal and OA knee joints. These cells were induced to differentiate into chondrocytes and analyzed using quantitative PCR, immunofluorescence, and electron microscopy. The CD90+ subpopulation of sfMPCs had increased chondrogenic potential compared to the CD90- population. Furthermore, sfMPCs derived from healthy joints did not require a micro-mass step for efficient chondrogenesis. Whereas sfMPCs from OA synovial fluid retain the ability to undergo chondrogenic differentiation, they require micro-mass culture conditions. Overall, this study has demonstrated an increased chondrogenic potential within the CD90+ fraction of human and canine sfMPCs and that this population of cells derived from healthy normal joints do not require a micro-mass step for efficient chondrogenesis, while sfMPCs obtained from OA knee joints do not differentiate efficiently into chondrocytes without the micro-mass procedure. These results reveal a fundamental shift in the chondrogenic ability of cells isolated from arthritic joint fluids, and we speculate that the mechanism behind this change of cell behavior is exposure to the altered milieu of the OA joint fluid, which will be examined in further studies.

  10. Characterization of Gastric and Neuronal Histaminergic Populations Using a Transgenic Mouse Model

    PubMed Central

    Walker, Angela K.; Park, Won-Mee; Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Zigman, Jeffrey M.

    2013-01-01

    Histamine is a potent biogenic amine that mediates numerous physiological processes throughout the body, including digestion, sleep, and immunity. It is synthesized by gastric enterochromaffin-like cells, a specific set of hypothalamic neurons, as well as a subset of white blood cells, including mast cells. Much remains to be learned about these varied histamine-producing cell populations. Here, we report the validation of a transgenic mouse line in which Cre recombinase expression has been targeted to cells expressing histidine decarboxylase (HDC), which catalyzes the rate-limiting step in the synthesis of histamine. This was achieved by crossing the HDC-Cre mouse line with Rosa26-tdTomato reporter mice, thus resulting in the expression of the fluorescent Tomato (Tmt) signal in cells containing Cre recombinase activity. As expected, the Tmt signal co-localized with HDC-immunoreactivity within the gastric mucosa and gastric submucosa and also within the tuberomamillary nucleus of the brain. HDC expression within Tmt-positive gastric cells was further confirmed by quantitative PCR analysis of mRNA isolated from highly purified populations of Tmt-positive cells obtained by fluorescent activated cell sorting (FACS). HDC expression within these FACS-separated cells was found to coincide with other markers of both ECL cells and mast cells. Gastrin expression was co-localized with HDC expression in a subset of histaminergic gastric mucosal cells. We suggest that these transgenic mice will facilitate future studies aimed at investigating the function of histamine-producing cells. PMID:23555941

  11. Induction of apoptosis by hydrolyzable tannins from Eugenia jambos L. on human leukemia cells.

    PubMed

    Yang, L L; Lee, C Y; Yen, K Y

    2000-08-31

    Eugenia jambos L. (Myrtaceae) is an antipyretic and anti-inflammatory herb of Asian folk medicine. A 70% acetone extract exerted the strongest cytotoxic effects on human leukemia cells (HL-60) from a preliminary screening of 15 plants. The cytotoxic principles were separated by bio-assay-guided fractionation to HL-60 cells; two hydrolyzable tannins (1-O-galloyl castalagin and casuarinin) were isolated from the 70% acetone extract. All significantly inhibited human promyelocytic leukemia cell line HL-60 and showed less cytotoxicity to human adenocarcinoma cell line SK-HEP-1 and normal cell lines of human lymphocytes and Chang liver cells. Thus, these compounds were exhibited the dose-dependent manner in HL-60 cells and the IC(50) were 10.8 and 12.5 microM, respectively. Flow cytometric analysis demonstrated the presence of apoptotic cells with low DNA content, a decrease of cell population at G(2)/M phase, and a concomitant increase of cell population at G(1) phase. The apoptosis induced by these two compounds was also demonstrated by DNA fragmentation assay and microscopic observation. These results suggest that the cytotoxic mechanism of both antitumor principle constituents might be the induction of apoptosis in HL-60 cells.

  12. Ovarian phagocyte subsets and their distinct tissue distribution patterns.

    PubMed

    Carlock, Colin; Wu, Jean; Zhou, Cindy; Ross, April; Adams, Henry; Lou, Yahuan

    2013-01-01

    Ovarian macrophages, which play critical roles in various ovarian events, are probably derived from multiple lineages. Thus, a systemic classification of their subsets is a necessary first step for determination of their functions. Utilizing antibodies to five phagocyte markers, i.e. IA/IE (major histocompatibility complex class II), F4/80, CD11b (Mac-1), CD11c, and CD68, this study investigated subsets of ovarian phagocytes in mice. Three-color immunofluorescence and flow cytometry, together with morphological observation on isolated ovarian cells, demonstrated complicated phenotypes of ovarian phagocytes. Four macrophage and one dendritic cell subset, in addition to many minor phagocyte subsets, were identified. A dendritic cell-like population with a unique phenotype of CD11c(high)IA/IE⁻F4/80⁻ was also frequently observed. A preliminary age-dependent study showed dramatic increases in IA/IE⁺ macrophages and IA/IE⁺ dendritic cells after puberty. Furthermore, immunofluorescences on ovarian sections showed that each subset displayed a distinct tissue distribution pattern. The pattern for each subset may hint to their role in an ovarian function. In addition, partial isolation of ovarian macrophage subset using CD11b antibodies was attempted. Establishment of this isolation method may have provided us a tool for more precise investigation of each subset's functions at the cellular and molecular levels.

  13. Current Status of Islet Cell Transplantation

    PubMed Central

    Ichii, Hirohito; Ricordi, Camillo

    2013-01-01

    Despite substantial advances in islet isolation methods and immunosuppressive protocol, pancreatic islet cell transplantation remains an experimental procedure currently limited to the most severe cases of type 1 diabetes mellitus (T1DM). The objectives of this treatment are to prevent severe hypoglycemic episodes in patients with hypoglycemia unawareness, and to achieve a more physiological metabolic control. Insulin independence and long term-graft function with improvement of quality of life have been obtained in several international islet transplant centers. However, experimental trials of islet transplantation clearly highlighted several obstacles that remain to be overcome before the procedure could be proposed to a much larger patient population. This review provides a brief historical perspective of islet transplantation, islet isolation techniques, the transplant procedure, immunosuppressive therapy, and outlines current challenges and future directions in clinical islet transplantation. PMID:19110649

  14. Transplantation of spermatogonial stem cells isolated from leukemic mice restores fertility without inducing leukemia

    PubMed Central

    Fujita, Kazutoshi; Ohta, Hiroshi; Tsujimura, Akira; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Matsumiya, Kiyomi; Wakayama, Teruhiko; Okuyama, Akihiko

    2005-01-01

    More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia. PMID:15965502

  15. Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth

    PubMed Central

    Walker-York-Moore, Laura; Moore, Sean C.; Fox, Edward M.

    2017-01-01

    Bacillus cereus sensu lato species, as well as Staphylococcus aureus, are important pathogenic bacteria which can cause foodborne illness through the production of enterotoxins. This study characterised enterotoxin genes of these species and examined growth and enterotoxin production dynamics of isolates when grown in milk or meat-based broth. All B. cereus s. l. isolates harboured nheA, hblA and entFM toxin genes, with lower prevalence of bceT and hlyII. When grown at 16 °C, toxin production by individual B. cereus s. l. isolates varied depending on the food matrix; toxin was detected at cell densities below 5 log10(CFU/mL). At 16 °C no staphylococcal enterotoxin C (SEC) production was detected by S. aureus isolates, although low levels of SED production was noted. At 30 °C all S. aureus isolates produced detectable enterotoxin in the simulated meat matrix, whereas SEC production was significantly reduced in milk. Relative to B. cereus s. l. toxin production, S. aureus typically required reaching higher cell numbers to produce detectable levels of enterotoxin. Phylogenetic analysis of the sec and sel genes suggested population evolution which correlated with animal host adaptation, with subgroups of bovine isolates or caprine/ovine isolates noted, which were distinct from human isolates. Taken together, this study highlights the marked differences in the production of enterotoxins both associated with different growth matrices themselves, but also in the behaviour of individual strains when exposed to different food matrices. PMID:28714887

  16. Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth.

    PubMed

    Walker-York-Moore, Laura; Moore, Sean C; Fox, Edward M

    2017-07-15

    Bacillus cereus sensu lato species, as well as Staphylococcus aureus , are important pathogenic bacteria which can cause foodborne illness through the production of enterotoxins. This study characterised enterotoxin genes of these species and examined growth and enterotoxin production dynamics of isolates when grown in milk or meat-based broth. All B. cereus s. l. isolates harboured nheA , hblA and entFM toxin genes, with lower prevalence of bceT and hlyII . When grown at 16 °C, toxin production by individual B. cereus s. l. isolates varied depending on the food matrix; toxin was detected at cell densities below 5 log 10 (CFU/mL). At 16 °C no staphylococcal enterotoxin C (SEC) production was detected by S. aureus isolates, although low levels of SED production was noted. At 30 °C all S. aureus isolates produced detectable enterotoxin in the simulated meat matrix, whereas SEC production was significantly reduced in milk. Relative to B. cereus s. l. toxin production, S. aureus typically required reaching higher cell numbers to produce detectable levels of enterotoxin. Phylogenetic analysis of the sec and sel genes suggested population evolution which correlated with animal host adaptation, with subgroups of bovine isolates or caprine/ovine isolates noted, which were distinct from human isolates. Taken together, this study highlights the marked differences in the production of enterotoxins both associated with different growth matrices themselves, but also in the behaviour of individual strains when exposed to different food matrices.

  17. Extracellular Vesicle Heterogeneity: Subpopulations, Isolation Techniques, and Diverse Functions in Cancer Progression.

    PubMed

    Willms, Eduard; Cabañas, Carlos; Mäger, Imre; Wood, Matthew J A; Vader, Pieter

    2018-01-01

    Cells release membrane enclosed nano-sized vesicles termed extracellular vesicles (EVs) that function as mediators of intercellular communication by transferring biological information between cells. Tumor-derived EVs have emerged as important mediators in cancer development and progression, mainly through transfer of their bioactive content which can include oncoproteins, oncogenes, chemokine receptors, as well as soluble factors, transcripts of proteins and miRNAs involved in angiogenesis or inflammation. This transfer has been shown to influence the metastatic behavior of primary tumors. Moreover, tumor-derived EVs have been shown to influence distant cellular niches, establishing favorable microenvironments that support growth of disseminated cancer cells upon their arrival at these pre-metastatic niches. It is generally accepted that cells release a number of major EV populations with distinct biophysical properties and biological functions. Exosomes, microvesicles, and apoptotic bodies are EV populations most widely studied and characterized. They are discriminated based primarily on their intracellular origin. However, increasing evidence suggests that even within these EV populations various subpopulations may exist. This heterogeneity introduces an extra level of complexity in the study of EV biology and function. For example, EV subpopulations could have unique roles in the intricate biological processes underlying cancer biology. Here, we discuss current knowledge regarding the role of subpopulations of EVs in cancer development and progression and highlight the relevance of EV heterogeneity. The position of tetraspanins and integrins therein will be highlighted. Since addressing EV heterogeneity has become essential for the EV field, current and novel techniques for isolating EV subpopulations will also be discussed. Further dissection of EV heterogeneity will advance our understanding of the critical roles of EVs in health and disease.

  18. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity.

    PubMed

    Tasev, Dimitar; van Wijhe, Michiel H; Weijers, Ester M; van Hinsbergh, Victor W M; Koolwijk, Pieter

    2015-01-01

    Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs. The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS). Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL) retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low β-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator) or uPAR (uPA receptor) by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential. The presented isolation method and subsequent cell expansion in platelet lysate supplemented culture medium permits suitable large-scale propagation of PB-ECFC. For optimal use of PB-ECFCs in clinical settings, our data suggest that 15-20 CPDL is the most adequate maturation stage.

  19. Long-Term Expansion in Platelet Lysate Increases Growth of Peripheral Blood-Derived Endothelial-Colony Forming Cells and Their Growth Factor-Induced Sprouting Capacity

    PubMed Central

    Tasev, Dimitar; van Wijhe, Michiel H.; Weijers, Ester M.; van Hinsbergh, Victor W. M.; Koolwijk, Pieter

    2015-01-01

    Introduction Efficient implementation of peripheral blood-derived endothelial-colony cells (PB-ECFCs) as a therapeutical tool requires isolation and generation of a sufficient number of cells in ex vivo conditions devoid of animal-derived products. At present, little is known how the isolation and expansion procedure in xenogeneic-free conditions affects the therapeutical capacity of PB-ECFCs. Results The findings presented in this study indicate that human platelet lysate (PL) as a serum substitute yields twice more colonies per mL blood compared to the conventional isolation with fetal bovine serum (FBS). Isolated ECFCs displayed a higher proliferative ability in PL supplemented medium than cells in FBS medium during 30 days expansion. The cells at 18 cumulative population doubling levels (CPDL) retained their proliferative capacity, showed higher sprouting ability in fibrin matrices upon stimulation with FGF-2 and VEGF-A than the cells at 6 CPDL, and displayed low β-galactosidase activity. The increased sprouting of PB-ECFCs at 18 CPDL was accompanied by an intrinsic activation of the uPA/uPAR fibrinolytic system. Induced deficiency of uPA (urokinase-type plasminogen activator) or uPAR (uPA receptor) by siRNA technology completely abolished the angiogenic ability of PB-ECFCs in fibrin matrices. During the serial expansion, the gene induction of the markers associated with inflammatory activation such as VCAM-1 and ICAM-1 did not occur or only to limited extent. While further propagation up to 31 CPDL proceeded at a comparable rate, a marked upregulation of inflammatory markers occurred in all donors accompanied by a further increase of uPA/uPAR gene induction. The observed induction of inflammatory genes at later stages of long-term propagation of PB-ECFCs underpins the necessity to determine the right time-point for harvesting of sufficient number of cells with preserved therapeutical potential. Conclusion The presented isolation method and subsequent cell expansion in platelet lysate supplemented culture medium permits suitable large-scale propagation of PB-ECFC. For optimal use of PB-ECFCs in clinical settings, our data suggest that 15–20 CPDL is the most adequate maturation stage. PMID:26076450

  20. Single Cell Gene Expression Profiling of Skeletal Muscle-Derived Cells.

    PubMed

    Gatto, Sole; Puri, Pier Lorenzo; Malecova, Barbora

    2017-01-01

    Single cell gene expression profiling is a fundamental tool for studying the heterogeneity of a cell population by addressing the phenotypic and functional characteristics of each cell. Technological advances that have coupled microfluidic technologies with high-throughput quantitative RT-PCR analyses have enabled detailed analyses of single cells in various biological contexts. In this chapter, we describe the procedure for isolating the skeletal muscle interstitial cells termed Fibro-Adipogenic Progenitors (FAPs ) and their gene expression profiling at the single cell level. Moreover, we accompany our bench protocol with bioinformatics analysis designed to process raw data as well as to visualize single cell gene expression data. Single cell gene expression profiling is therefore a useful tool in the investigation of FAPs heterogeneity and their contribution to muscle homeostasis.

  1. Characterization of Wnt and Notch-Responsive Lgr5+ Hair Cell Progenitors in the Striolar Region of the Neonatal Mouse Utricle

    PubMed Central

    You, Dan; Guo, Luo; Li, Wenyan; Sun, Shan; Chen, Yan; Chai, Renjie; Li, Huawei

    2018-01-01

    Dysfunctions in hearing and balance are largely connected with hair cell (HC) loss. Although regeneration of HCs in the adult cochlea does not occur, there is still limited capacity for HC regeneration in the mammalian utricle from a distinct population of supporting cells (SCs). In response to HC damage, these Lgr5+ SCs, especially those in the striolar region, can regenerate HCs. In this study, we isolated Lgr5+ SCs and Plp1+ SCs (which originate from the striolar and extrastriolar regions, respectively) from transgenic mice by flow cytometry so as to compare the properties of these two subsets of SCs. We found that the Lgr5+ progenitors had greater proliferation and HC regeneration ability than the Plp1+ SCs and that the Lgr5+ progenitors responded more strongly to Wnt and Notch signaling than Plp1+ SCs. We then compared the gene expression profiles of the two populations by RNA-Seq and identified several genes that were significantly differentially expressed between the two populations, including genes involved in the cell cycle, transcription and cell signaling pathways. Targeting these genes and pathways might be a potential way to activate HC regeneration. PMID:29760650

  2. Extracting archaeal populations from iron oxidizing systems

    NASA Astrophysics Data System (ADS)

    Whitmore, L. M.; Hutchison, J.; Chrisler, W.; Jay, Z.; Moran, J.; Inskeep, W.; Kreuzer, H.

    2013-12-01

    Unique environments in Yellowstone National Park offer exceptional conditions for studying microorganisms in extreme and constrained systems. However, samples from some extreme systems often contain inorganic components that pose complications during microbial and molecular analysis. Several archaeal species are found in acidic, geothermal ferric-oxyhydroxide mats; these species have been shown to adhere to mineral surfaces in flocculated colonies. For optimal microbial analysis, (microscopy, flow cytometry, genomic extractions, proteomic analysis, stable isotope analysis, and others), improved techniques are needed to better facilitate cell detachment and separation from mineral surfaces. As a requirement, these techniques must preserve cell structure while simultaneously minimizing organic carryover to downstream analysis. Several methods have been developed for removing sediments from mixed prokaryotic populations, including ultra-centrifugation, nycodenz gradient, sucrose cushions, and cell straining. In this study we conduct a comparative analysis of mechanisms used to detach archaeal cell populations from the mineral interface. Specifically, we evaluated mechanical and chemical approaches for cell separation and homogenization. Methods were compared using confocal microscopy, flow cytometry analyses, and real-time PCR detection. The methodology and approaches identified will be used to optimize biomass collection from environmental specimens or isolates grown with solid phases.

  3. Technical advance: autofluorescence-based sorting: rapid and nonperturbing isolation of ultrapure neutrophils to determine cytokine production.

    PubMed

    Dorward, David A; Lucas, Christopher D; Alessandri, Ana L; Marwick, John A; Rossi, Fiona; Dransfield, Ian; Haslett, Christopher; Dhaliwal, Kevin; Rossi, Adriano G

    2013-07-01

    The technical limitations of isolating neutrophils without contaminating leukocytes, while concurrently minimizing neutrophil activation, is a barrier to determining specific neutrophil functions. We aimed to assess the use of FACS for generating highly pure quiescent neutrophil populations in an antibody-free environment. Peripheral blood human granulocytes and murine bone marrow-derived neutrophils were isolated by discontinuous Percoll gradient and flow-sorted using FSC/SSC profiles and differences in autofluorescence. Postsort purity was assessed by morphological analysis and flow cytometry. Neutrophil activation was measured in unstimulated-unsorted and sorted cells and in response to fMLF, LTB4, and PAF by measuring shape change, CD62L, and CD11b expression; intracellular calcium flux; and chemotaxis. Cytokine production by human neutrophils was also determined. Postsort human neutrophil purity was 99.95% (sem=0.03; n=11; morphological analysis), and 99.68% were CD16(+ve) (sem=0.06; n=11), with similar results achieved for murine neutrophils. Flow sorting did not alter neutrophil activation or chemotaxis, relative to presorted cells, and no differences in response to agonists were observed. Stimulated neutrophils produced IL-1β, although to a lesser degree than CXCL8/IL-8. The exploitation of the difference in autofluorescence between neutrophils and eosinophils by FACS is a quick and effective method for generating highly purified populations for subsequent in vitro study.

  4. [Isolation and Characterization of Multipotent Precursor Cells from Murine Adipose Tissue using a Clinically Approved Cell Separation System].

    PubMed

    Krug, C; Beer, A; Saller, M M; Aszodi, A; Holzbach, T; Giunta, R E; Volkmer, E

    2016-04-01

    Recent studies underscored the clinical potential of adipose-derived multipotent stem-/precursor cells (ASPCs). One of the main hurdles en route to clinical application was to isolate cells without having to perform expansion cultures outside the OR. A new generation of clinically approved, commercially available cell separation systems claims to provide ASPCs ready for application without further expansion cultures. However, it is unclear if the new systems yield sufficient cells of adequate quality for the use in autologous murine models. The aim of this study was to isolate and characterize adipose-derived precursor cells taken from the inguinal fat pat of wistar rats using InGeneron's clinically approved ARC™-cell separation system. We isolated cells from the inguinal fat pad of 3 male Wistar rats according to the manufacturer's protocol. In order to reduce the influence of the atmospheric oxygen on the multipotent precursor cells, one half of the cell suspension was cultivated under hypoxia (2% O2) simulating physiological conditions for ASPCs. As a control, the other half of the cells were cultivated under normoxia (21% O2). Cell surface markers CD90, CD29, CD45 and CD11b/c were analyzed by FACS, and osteogenic and adipogenic differentiation of the ASPCs was performed. Finally, cellular growth characteristics were assessed by evaluation of the cumulative population doublings and CFU assay, and metabolic activity was evaluated by WST-1 assay. Processing time was 90 (± 12) min. 1 g of adipose tissue yielded approximately 60 000 plastic adhering cells. Both groups showed a high expression of the mesenchymal stem cell markers CD90 and CD29 while they were negative for the leucocyte markers CD45 and CD11b/c. A strong osteogenic differentiation and a sufficient adipogenic differentiation potential was proven for all ASPCs. Under hypoxia, ASPCs showed increased proliferation characteristics and CFU efficiency as well as a significantly increased metabolic activity. This study showed that sufficient multipotent ASPCs of appropriate quality can be isolated from the inguinal fat pad of Wistar rats using the ARC™-cell separation system. As shown in previous studies, cultivation of cells under hypoxic conditions increased their stemness. Our findings will enable future studies that focus on autologous transplantation of ASPCs in a rat model, which most closely resembles a possible clinical application. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Baicalin Inhibits IL-17-Mediated Joint Inflammation in Murine Adjuvant-Induced Arthritis

    PubMed Central

    Yang, Xue; Yang, Ji; Zou, Hejian

    2013-01-01

    T-helper-17 (Th17) cells are implicated in a number of inflammatory disorders including rheumatoid arthritis. Antagonism of Th17 cells is a treatment option for arthritis. Here, we report that Baicalin, a compound isolated from the Chinese herb Huangqin (Scutellaria baicalensis Georgi), relieved ankle swelling and protected the joint against inflammatory destruction in a murine adjuvant-induced arthritis model. Baicalin inhibited splenic Th17 cell population expansion in vivo. Baicalin prevented interleukin- (IL-) 17-mediated lymphocyte adhesion to cultured synoviocytes. Baicalin also blocked IL-17-induced intercellular adhesion molecule 1, vascular cell adhesion molecule 1, IL-6, and tumor necrosis factor-alpha mRNA expression in cultured synoviocytes. Collectively, these findings suggest that Baicalin downregulates the joint inflammation caused by IL-17, which is likely produced by an expanded population of splenic Th17 cells in experimental arthritis. Baicalin might be a promising novel therapeutic agent for treating rheumatoid arthritis in humans. PMID:23840239

  6. The RUNX1 +24 enhancer and P1 promoter identify a unique subpopulation of hematopoietic progenitor cells derived from human pluripotent stem cells

    PubMed Central

    Ferrell, Patrick I; Xi, Jiafei; Ma, Chao; Adlakha, Mitali; Kaufman, Dan S.

    2016-01-01

    Derivation of hematopoietic stem cells from human pluripotent stem cells remains a key goal for the fields of developmental biology and regenerative medicine. Here, we use a novel genetic reporter system to prospectively identify and isolate early hematopoietic cells derived from human embryonic stem cells (hESCs) and human induced pluripotent cells (iPSCs). Cloning the human RUNX1c P1 promoter and +24 enhancer to drive expression of tdTomato (tdTom) in hESCs and iPSCs, we demonstrate that tdTom expression faithfully enriches for RUNX1c-expressing hematopoietic progenitor cells. Time-lapse microscopy demonstrated the tdTom+ hematopoietic cells to emerge from adherent cells. Furthermore, inhibition of primitive hematopoiesis by blocking Activin/Nodal signaling promoted the expansion and/or survival of tdTom+ population. Notably, RUNX1c/tdTom+ cells represent only a limited subpopuation of CD34+CD45+ and CD34+CD43+ cells with a unique genetic signature. Using gene array analysis, we find significantly lower expression of Let-7 and mir181a microRNAs in the RUNX1c/tdTom+ cell population. These phenotypic and genetic analyses comparing the RUNX1c/tdTom+ population to CD34+CD45+ umbilical cord blood and fetal liver demonstrate several key differences that likely impact the development of HSCs capable of long-term multilineage engraftment from hESCs and iPSCs. PMID:25546363

  7. The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.

    PubMed

    Assas, Bakri M; Abdulaal, Wesam H; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L

    2017-06-15

    Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment. Copyright © 2017. Published by Elsevier Inc.

  8. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction

    PubMed Central

    Yoon, Young-sup; Wecker, Andrea; Heyd, Lindsay; Park, Jong-Seon; Tkebuchava, Tengiz; Kusano, Kengo; Hanley, Allison; Scadova, Heather; Qin, Gangjian; Cha, Dong-Hyun; Johnson, Kirby L.; Aikawa, Ryuichi; Asahara, Takayuki; Losordo, Douglas W.

    2005-01-01

    We have identified a subpopulation of stem cells within adult human BM, isolated at the single-cell level, that self-renew without loss of multipotency for more than 140 population doublings and exhibit the capacity for differentiation into cells of all 3 germ layers. Based on surface marker expression, these clonally expanded human BM-derived multipotent stem cells (hBMSCs) do not appear to belong to any previously described BM-derived stem cell population. Intramyocardial transplantation of hBMSCs after myocardial infarction resulted in robust engraftment of transplanted cells, which exhibited colocalization with markers of cardiomyocyte (CMC), EC, and smooth muscle cell (SMC) identity, consistent with differentiation of hBMSCs into multiple lineages in vivo. Furthermore, upregulation of paracrine factors including angiogenic cytokines and antiapoptotic factors, and proliferation of host ECs and CMCs, were observed in the hBMSC-transplanted hearts. Coculture of hBMSCs with CMCs, ECs, or SMCs revealed that phenotypic changes of hBMSCs result from both differentiation and fusion. Collectively, the favorable effect of hBMSC transplantation after myocardial infarction appears to be due to augmentation of proliferation and preservation of host myocardial tissues as well as differentiation of hBMSCs for tissue regeneration and repair. To our knowledge, this is the first demonstration that a specific population of multipotent human BM-derived stem cells can induce both therapeutic neovascularization and endogenous and exogenous cardiomyogenesis. PMID:15690083

  9. Isolation and Metabolic Characteristics of Previously Uncultured Members of the Order Aquificales in a Subsurface Gold Mine

    PubMed Central

    Takai, Ken; Hirayama, Hisako; Sakihama, Yuri; Inagaki, Fumio; Yamato, Yu; Horikoshi, Koki

    2002-01-01

    Culture-dependent and -independent techniques were combined to characterize the physiological properties and the ecological impacts of culture-resistant phylotypes of thermophiles within the order Aquificales from a subsurface hot aquifer of a Japanese gold mine. Thermophilic bacteria phylogenetically associated with previously uncultured phylotypes of Aquificales were successfully isolated. 16S ribosomal DNA clone analysis of the entire microbial DNA assemblage and fluorescence in situ whole-cell hybridization analysis indicated that the isolates dominated the microbial population in the subsurface aquifer. The isolates were facultatively anaerobic, hydrogen- or sulfur/thiosulfate-oxidizing, thermophilic chemolithoautotrophs utilizing molecular oxygen, nitrate, ferric iron, arsenate, selenate, and selenite as electron acceptors. Their versatile energy-generating systems may reflect the geochemical conditions of their habitat in the geothermally active subsurface gold mine. PMID:12039766

  10. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Yuan; Akaike, Toshihiro

    2013-03-01

    Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.

  11. Calcium signals in olfactory neurons.

    PubMed

    Tareilus, E; Noé, J; Breer, H

    1995-11-09

    Laser scanning confocal microscopy in combination with the fluorescent calcium indicators Fluo-3 and Fura-Red was employed to estimate the intracellular concentration of free calcium ions in individual olfactory receptor neurons and to monitor temporal and spatial changes in the Ca(2+)-level upon stimulation. The chemosensory cells responded to odorants with a significant increase in the calcium concentration, preferentially in the dendritic knob. Applying various stimulation paradigma, it was found that in a population of isolated cells, subsets of receptor neurons display distinct patterns of responsiveness.

  12. Development of Technologies for Early Detection and Stratification of Breast Cancer

    DTIC Science & Technology

    2014-10-01

    cancer. Similar screening has been done in urine samples with CYR61 and LCN2 (Figure 2a-b). The Moses lab provided breast cancer urine samples and two ...diseased samples, while CYR61 appears to have two different populations whereas diseased urine samples have lower levels of the protein present. More... system for eDAR so that each isolated cell can be deposited into a well of a 96-well plate for high-throughput downstream single-cell digital

  13. Featured Article: Isolation, characterization, and cultivation of human hepatocytes and non-parenchymal liver cells

    PubMed Central

    Pfeiffer, Elisa; Kegel, Victoria; Zeilinger, Katrin; Hengstler, Jan G; Nüssler, Andreas K; Seehofer, Daniel

    2015-01-01

    Primary human hepatocytes (PHH) are considered to be the gold standard for in vitro testing of xenobiotic metabolism and hepatotoxicity. However, PHH cultivation in 2D mono-cultures leads to dedifferentiation and a loss of function. It is well known that hepatic non-parenchymal cells (NPC), such as Kupffer cells (KC), liver endothelial cells (LEC), and hepatic stellate cells (HSC), play a central role in the maintenance of PHH functions. The aims of the present study were to establish a protocol for the simultaneous isolation of human PHH and NPC from the same tissue specimen and to test their suitability for in vitro co-culture. Human PHH and NPC were isolated from tissue obtained by partial liver resection by a two-step EDTA/collagenase perfusion technique. The obtained cell fractions were purified by Percoll density gradient centrifugation. KC, LEC, and HSC contained in the NPC fraction were separated using specific adherence properties and magnetic activated cell sorting (MACS®). Identified NPC revealed a yield of 1.9 × 106 KC, 2.7 × 105 LEC and 4.7 × 105 HSC per gram liver tissue, showing viabilities >90%. Characterization of these NPC showed that all populations went through an activation process, which influenced the cell fate. The activation of KC strongly depended on the tissue quality and donor anamnesis. KC became activated in culture in association with a loss of viability within 4–5 days. LEC lost specific features during culture, while HSC went through a transformation process into myofibroblasts. The testing of different culture conditions for HSC demonstrated that they can attenuate, but not prevent dedifferentiation in vitro. In conclusion, the method described allows the isolation and separation of PHH and NPC in high quality and quantity from the same donor. PMID:25394621

  14. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells

    DOE PAGES

    Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace; ...

    2017-02-27

    Clostridium thermocellum forms biofilms adherent to lignocellulosic feedstock in a typical continuous cell-monolayer to efficiently break down and uptake cellulose hydrolysates. The sessile cells of biofilms may revert to non-adherent planktonic cells through generation of offspring cells or microenvironment constraints such as limited surface area. These interdependent cell populations co-exist and have different contributions to culture activity and growth. Here, we developed a novel bioreactor design to rapidly harvest sessile and planktonic cell populations for omics studies. In RNA-seq analyses, within 3299 protein coding genes, 59% (or 1958 genes) were differentially expressed with a minimum two-fold change between the twomore » cell populations isolated simultaneously at high culture activity. Furthermore, sessile cells had definitive greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division; planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. Our knowledge of these cellular adaptations will aid the engineering of industrially relevant strains for consolidated bioprocessing of solid lignocellulosic biomass« less

  15. Specialized activities and expression differences for Clostridium thermocellum biofilm and planktonic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dumitrache, Alexandru; Klingeman, Dawn M.; Natzke, Jace

    Clostridium thermocellum forms biofilms adherent to lignocellulosic feedstock in a typical continuous cell-monolayer to efficiently break down and uptake cellulose hydrolysates. The sessile cells of biofilms may revert to non-adherent planktonic cells through generation of offspring cells or microenvironment constraints such as limited surface area. These interdependent cell populations co-exist and have different contributions to culture activity and growth. Here, we developed a novel bioreactor design to rapidly harvest sessile and planktonic cell populations for omics studies. In RNA-seq analyses, within 3299 protein coding genes, 59% (or 1958 genes) were differentially expressed with a minimum two-fold change between the twomore » cell populations isolated simultaneously at high culture activity. Furthermore, sessile cells had definitive greater expression of genes involved in catabolism of carbohydrates by glycolysis and pyruvate fermentation, ATP generation by proton gradient, the anabolism of proteins and lipids and cellular functions critical for cell division; planktonic cells had notably higher gene expression for flagellar motility and chemotaxis, cellulosomal cellulases and anchoring scaffoldins, and a range of stress induced homeostasis mechanisms such as oxidative stress protection by antioxidants and flavoprotein co-factors, methionine repair, Fe-S cluster assembly and repair in redox proteins, cell growth control through tRNA thiolation, recovery of damaged DNA by nucleotide excision repair and removal of terminal proteins by proteases. Our knowledge of these cellular adaptations will aid the engineering of industrially relevant strains for consolidated bioprocessing of solid lignocellulosic biomass« less

  16. Tetraspanin CD9 and ectonucleotidase CD73 identify an osteochondroprogenitor population with elevated osteogenic properties.

    PubMed

    Singh, Anju; Lester, Chantel; Drapp, Rebecca; Hu, Dorothy Z; Glimcher, Laurie H; Jones, Dallas

    2015-02-01

    Cell-based bone regeneration strategies offer promise for traumatic bone injuries, congenital defects, non-union fractures and other skeletal pathologies. Postnatal bone remodeling and fracture healing provide evidence that an osteochondroprogenitor cell is present in adult life that can differentiate to remodel or repair the fractured bone. However, cell-based skeletal repair in the clinic is still in its infancy, mostly due to poor characterization of progenitor cells and lack of knowledge about their in vivo behavior. Here, we took a combined approach of high-throughput screening, flow-based cell sorting and in vivo transplantation to isolate markers that identify osteochondroprogenitor cells. We show that the presence of tetraspanin CD9 enriches for osteochondroprogenitors within CD105(+) mesenchymal cells and that these cells readily form bone upon transplantation. In addition, we have used Thy1.2 and the ectonucleotidase CD73 to identify subsets within the CD9(+) population that lead to endochondral or intramembranous-like bone formation. Utilization of this unique cell surface phenotype to enrich for osteochondroprogenitor cells will allow for further characterization of the molecular mechanisms that regulate their osteogenic properties. © 2015. Published by The Company of Biologists Ltd.

  17. The use of fluorescent indoline dyes for side population analysis.

    PubMed

    Kohara, Hiroshi; Watanabe, Kohei; Shintou, Taichi; Nomoto, Tsuyoshi; Okano, Mie; Shirai, Tomoaki; Miyazaki, Takeshi; Tabata, Yasuhiko

    2013-01-01

    Dye efflux assay evaluated by flow cytometry is useful for stem cell studies. The side population (SP) cells, characterized by the capacity to efflux Hoechst 33342 dye, have been shown to be enriched for hematopoietic stem cells (HSCs) in bone marrow. In addition, SP cells are isolated from various tissues and cell lines, and are also potential candidates for cancer stem cells. However, ultra violet (UV) light, which is not common for every flow cytometer, is required to excite Hoechst 33342. Here we showed that a fluorescent indoline dye ZMB793 can be excited by 488-nm laser, equipped in almost all the modern flow cytometers, and ZMB793-excluding cells showed SP phenotype. HSCs were exclusively enriched in the ZMB793-excluding cells, while ZMB793 was localized in cytosol of bone marrow lineage cells. The efflux of ZMB793 dye was mediated by ATP binding cassette (ABC) transporter Abcg2. Moreover, staining properties were affected by the side-chain structure of the dyes. These data indicate that the fluorescent dye ZMB793 could be used for the SP cell analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Cuphiin D1, the macrocyclic hydrolyzable tannin induced apoptosis in HL-60 cell line.

    PubMed

    Wang, C C; Chen, L G; Yang, L L

    2000-02-28

    Cuphiin D1 (CD1), a new macrocyclic hydrolyzable tannin isolated from Cuphea hyssopifolia, has been shown to exert antitumor activity both in vitro and in vivo. In this study, we explored the mechanism of the CD1-induced antitumor effect on human promyelocytic leukemia (HL-60) cells. The results showed that CD1 induced cytotoxicity in HL-60 cells and the IC50 was 16 microM after 36 h treatment. HL-60 cells treated with CD1 for 36 h decreased the uptake of [3H]-labeled thymidine, uridine and leucine in a dose dependent manner. Electron micrographs demonstrated that HL-60 cells treated with 16 microM CD1 for 36 h exhibited chromatin condensation, indicating the apoptosis occurrence. Flow cytometric analysis demonstrated the presence of apoptotic cells with low DNA content, a decrease of cell population at G2/M phase, and a concomitant increase of cell population at G1 phase. CD1 also caused DNA fragmentation and inhibited Bcl-2 expression in the HL-60 cells. These results suggest that the inhibition of Bcl-2 expression in HL-60 cell might account for the mechanism of CD1-induced apoptosis.

  19. Expanding Concepts in Mental Retardation; Scientific Symposium of the Joseph P. Kennedy, Jr., Foundation (3rd, Boston, Massachusetts, 1966).

    ERIC Educational Resources Information Center

    Jervis, George A., Ed.

    The genetics of mental retardation are discussed in terms of geographical isolates, prospects for prevention of trisomic conditions, population genetics, and cytogenetics of Down's syndrome; problems of neurogenesis described are anabolic pathways of galactose and glucose metabolism, abnormal cell migrations in developing brains, and genetic…

  20. Rapid sequence evolution of street rabies glycoprotein is related to the highly heterogeneous nature of the viral population.

    PubMed

    Benmansour, A; Brahimi, M; Tuffereau, C; Coulon, P; Lafay, F; Flamand, A

    1992-03-01

    The sequence of the glycoprotein gene of a street rabies virus was determined directly using fragments of a rabid dog brain after PCR amplification. Compared with that of the prototype strain CVS, this sequence displayed 10% divergence in overall amino acid composition. However only 6% divergence was noted in the ectodomain suggesting that structural constraints are exerted on this portion of the glycoprotein. A human strain isolated on cell culture from the saliva of a patient with clinical rabies had only five amino acid differences with the canine isolate, an indication of their close relatedness. These differences could have originated during transmission from dog to dog, or from dog to man, or during isolation on cell culture; they are nonetheless indicative of a genetic evolution of street rabies virus. This evolution was further evidenced by the selection of cell-adapted variants which displayed new amino acid substitutions in the glycoprotein. One of them concerned antigenic site III where arginine at position 333 was replaced by glutamine. As expected this substitution conferred resistance to a site IIIa monoclonal antibody (MAb), but surprisingly did not abolish neurovirulence for adult mice. However, a decrease in the neurovirulence of the cell-adapted variant in the presence of a site IIIa specific MAb was noted, suggesting that neurovirulence was due to a subpopulation neutralizable by the MAb. Simultaneous presence of both the parental and variant sequences was indeed evidenced in the brain of a mouse inoculated with the cell-adapted variant; during multiplication in the mouse brain, the frequency of the parental sequence rose from less than 10% to nearly 50%, indicating the selective advantage conferred by arginine 333 in nervous tissue. Altogether these results were suggestive of an intrinsic heterogeneity of street rabies virus. This heterogeneity was further demonstrated by the sequencing of molecular clones of the glycoprotein gene, which revealed that only one-third of the viral genomes present in the brain of a rabid dog had the consensus sequence. Two-thirds of the clones analyzed displayed from one to three amino acid substitutions. Such heterogeneous populations have been referred to as quasispecies, a concept which implies heterogeneous populations kept together in a dynamic equilibrium. This equilibrium could be rapidly displaced, giving the virus the capacity to adapt easily to new environmental conditions.

Top