Sample records for cell populations maintained

  1. Mechanisms of fate decision and lineage commitment during haematopoiesis.

    PubMed

    Cvejic, Ana

    2016-03-01

    Blood stem cells need to both perpetuate themselves (self-renew) and differentiate into all mature blood cells to maintain blood formation throughout life. However, it is unclear how the underlying gene regulatory network maintains this population of self-renewing and differentiating stem cells and how it accommodates the transition from a stem cell to a mature blood cell. Our current knowledge of transcriptomes of various blood cell types has mainly been advanced by population-level analysis. However, a population of seemingly homogenous blood cells may include many distinct cell types with substantially different transcriptomes and abilities to make diverse fate decisions. Therefore, understanding the cell-intrinsic differences between individual cells is necessary for a deeper understanding of the molecular basis of their behaviour. Here we review recent single-cell studies in the haematopoietic system and their contribution to our understanding of the mechanisms governing cell fate choices and lineage commitment.

  2. Virus Resistance Is Not Costly in a Marine Alga Evolving under Multiple Environmental Stressors

    PubMed Central

    Heath, Sarah E.; Knox, Kirsten; Vale, Pedro F.; Collins, Sinead

    2017-01-01

    Viruses are important evolutionary drivers of host ecology and evolution. The marine picoplankton Ostreococcus tauri has three known resistance types that arise in response to infection with the Phycodnavirus OtV5: susceptible cells (S) that lyse following viral entry and replication; resistant cells (R) that are refractory to viral entry; and resistant producers (RP) that do not all lyse but maintain some viruses within the population. To test for evolutionary costs of maintaining antiviral resistance, we examined whether O. tauri populations composed of each resistance type differed in their evolutionary responses to several environmental drivers (lower light, lower salt, lower phosphate and a changing environment) in the absence of viruses for approximately 200 generations. We did not detect a cost of resistance as measured by life-history traits (population growth rate, cell size and cell chlorophyll content) and competitive ability. Specifically, all R and RP populations remained resistant to OtV5 lysis for the entire 200-generation experiment, whereas lysis occurred in all S populations, suggesting that resistance is not costly to maintain even when direct selection for resistance was removed, or that there could be a genetic constraint preventing return to a susceptible resistance type. Following evolution, all S population densities dropped when inoculated with OtV5, but not to zero, indicating that lysis was incomplete, and that some cells may have gained a resistance mutation over the evolution experiment. These findings suggest that maintaining resistance in the absence of viruses was not costly. PMID:28282867

  3. The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally Transmitted Factors

    PubMed Central

    Stewart, Frank M.; Levin, Bruce R.

    1977-01-01

    A mathematical model for the population dynamics of conjugationally transmitted plasmids in bacterial populations is presented and its properties analyzed. Consideration is given to nonbacteriocinogenic factors that are incapable of incorporation into the chromosome of their host cells, and to bacterial populations maintained in either continuous (chemostat) or discrete (serial transfer) culture. The conditions for the establishment and maintenance of these infectious extrachromosomal elements and equilibrium frequencies of cells carrying them are presented for different values of the biological parameters: population growth functions, conjugational transfer and segregation rate constants. With these parameters in a biologically realistic range, the theory predicts a broad set of physical conditions, resource concentrations and dilution rates, where conjugationally transmitted plasmids can become established and where cells carrying them will maintain high frequencies in bacterial populations. This can occur even when plasmid-bearing cells are much less fit (i.e., have substantially lower growth rates) than cells free of these factors. The implications of these results and the reality and limitations of the model are discussed and the values of its parameters in natural populations speculated upon. PMID:17248761

  4. Hoechst fluorescence intensity can be used to separate viable bromodeoxyuridine-labeled cells from viable non-bromodeoxyuridine-labeled cells

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.

    2000-01-01

    BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.

  5. Colonization and effector functions of innate lymphoid cells in mucosal tissues

    PubMed Central

    Kim, Myunghoo; Kim, Chang H.

    2016-01-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. PMID:27365193

  6. Effect of Dedifferentiation on Time to Mutation Acquisition in Stem Cell-Driven Cancers

    PubMed Central

    Jilkine, Alexandra; Gutenkunst, Ryan N.

    2014-01-01

    Accumulating evidence suggests that many tumors have a hierarchical organization, with the bulk of the tumor composed of relatively differentiated short-lived progenitor cells that are maintained by a small population of undifferentiated long-lived cancer stem cells. It is unclear, however, whether cancer stem cells originate from normal stem cells or from dedifferentiated progenitor cells. To address this, we mathematically modeled the effect of dedifferentiation on carcinogenesis. We considered a hybrid stochastic-deterministic model of mutation accumulation in both stem cells and progenitors, including dedifferentiation of progenitor cells to a stem cell-like state. We performed exact computer simulations of the emergence of tumor subpopulations with two mutations, and we derived semi-analytical estimates for the waiting time distribution to fixation. Our results suggest that dedifferentiation may play an important role in carcinogenesis, depending on how stem cell homeostasis is maintained. If the stem cell population size is held strictly constant (due to all divisions being asymmetric), we found that dedifferentiation acts like a positive selective force in the stem cell population and thus speeds carcinogenesis. If the stem cell population size is allowed to vary stochastically with density-dependent reproduction rates (allowing both symmetric and asymmetric divisions), we found that dedifferentiation beyond a critical threshold leads to exponential growth of the stem cell population. Thus, dedifferentiation may play a crucial role, the common modeling assumption of constant stem cell population size may not be adequate, and further progress in understanding carcinogenesis demands a more detailed mechanistic understanding of stem cell homeostasis. PMID:24603301

  7. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets

    PubMed Central

    Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland

    2014-01-01

    Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657

  8. Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.

    PubMed

    Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland

    2014-06-06

    Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.

  9. The C. elegans embryonic fate specification factor EGL-18 (GATA) is reutilized downstream of Wnt signaling to maintain a population of larval progenitor cells.

    PubMed

    Gorrepati, Lakshmi; Eisenmann, David M

    2015-01-01

    In metazoans, stem cells in developing and adult tissues can divide asymmetrically to give rise to a daughter that differentiates and a daughter that retains the progenitor fate. Although the short-lived nematode C. elegans does not possess adult somatic stem cells, the lateral hypodermal seam cells behave in a similar manner: they divide once per larval stage to generate an anterior daughter that adopts a non-dividing differentiated fate and a posterior daughter that retains the seam fate and the ability to divide further. Wnt signaling pathway is known to regulate the asymmetry of these divisions and maintain the progenitor cell fate in one daughter, but how activation of the Wnt pathway accomplished this was unknown. We describe here our recent work that identified the GATA transcription factor EGL-18 as a downstream target of Wnt signaling necessary for maintenance of a progenitor population of larval seam cells. EGL-18 was previously shown to act in the initial specification of the seam cells in the embryo. Thus the acquisition of a Wnt-responsive cis-regulatory module allows an embryonic fate specification factor to be reutilized later in life downstream of a different regulator (Wnt signaling) to maintain a progenitor cell population. These results support the use of seam cell development in C. elegans as a simple model system for studying stem and progenitor cell biology.

  10. Colonization and effector functions of innate lymphoid cells in mucosal tissues.

    PubMed

    Kim, Myunghoo; Kim, Chang H

    2016-10-01

    Innate lymphoid cells (ILCs) protect mucosal barrier tissues to fight infection and maintain tissue integrity. ILCs and their progenitors are developmentally programmed to migrate, differentiate and populate various mucosal tissues and associated lymphoid tissues. Functionally mature ILC subsets respond to diverse pathogens such as bacteria, viruses, fungi and parasites in subset-specific manners. In this review, we will discuss how ILCs populate mucosal tissues and regulate immune responses to distinct pathogens to protect the host and maintain tissue integrity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer.

    PubMed

    Archetti, Marco; Ferraro, Daniela A; Christofori, Gerhard

    2015-02-10

    The extensive intratumor heterogeneity revealed by sequencing cancer genomes is an essential determinant of tumor progression, diagnosis, and treatment. What maintains heterogeneity remains an open question because competition within a tumor leads to a strong selection for the fittest subclone. Cancer cells also cooperate by sharing molecules with paracrine effects, such as growth factors, and heterogeneity can be maintained if subclones depend on each other for survival. Without strict interdependence between subclones, however, nonproducer cells can free-ride on the growth factors produced by neighboring producer cells, a collective action problem known in game theory as the "tragedy of the commons," which has been observed in microbial cell populations. Here, we report that similar dynamics occur in cancer cell populations. Neuroendocrine pancreatic cancer (insulinoma) cells that do not produce insulin-like growth factor II (IGF-II) grow slowly in pure cultures but have a proliferation advantage in mixed cultures, where they can use the IGF-II provided by producer cells. We show that, as predicted by evolutionary game theory, producer cells do not go extinct because IGF-II acts as a nonlinear public good, creating negative frequency-dependent selection that leads to a stable coexistence of the two cell types. Intratumor cell heterogeneity can therefore be maintained even without strict interdependence between cell subclones. Reducing the amount of growth factors available within a tumor may lead to a reduction in growth followed by a new equilibrium, which may explain relapse in therapies that target growth factors.

  12. Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics.

    PubMed

    Martinovich, Kelly M; Iosifidis, Thomas; Buckley, Alysia G; Looi, Kevin; Ling, Kak-Ming; Sutanto, Erika N; Kicic-Starcevich, Elizabeth; Garratt, Luke W; Shaw, Nicole C; Montgomery, Samuel; Lannigan, Francis J; Knight, Darryl A; Kicic, Anthony; Stick, Stephen M

    2017-12-21

    Current limitations to primary cell expansion led us to test whether airway epithelial cells derived from healthy children and those with asthma and cystic fibrosis (CF), co-cultured with an irradiated fibroblast feeder cell in F-medium containing 10 µM ROCK inhibitor could maintain their lineage during expansion and whether this is influenced by underlying disease status. Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes. CRAECs can be expanded, cryopreserved and maintain phenotypes over at least 5 passages. Population doublings of CRAEC cultures were significantly greater than standard cultures, but maintained their lineage characteristics. CRAECs from all phenotypes were also capable of fully differentiating at air-liquid interface (ALI) and maintained disease specific characteristics including; defective CFTR channel function cultures and the inability to repair wounds. Our findings indicate that CRAECs derived from children maintain lineage, phenotypic and importantly disease-specific functional characteristics over a specified passage range.

  13. Differentiation Generates Paracrine Cell Pairs That Maintain Basaloid Mouse Mammary Tumors: Proof of Concept

    PubMed Central

    Kim, Soyoung; Goel, Shruti; Alexander, Caroline M.

    2011-01-01

    There is a paradox offered up by the cancer stem cell hypothesis. How are the mixed populations that are characteristic of heterogeneous solid tumors maintained at constant proportion, given their high, and different, mitotic indices? In this study, we evaluate a well-characterized mouse model of human basaloid tumors (induced by the oncogene Wnt1), which comprise mixed populations of mammary epithelial cells resembling their normal basal and luminal counterparts. We show that these cell types are substantially inter-dependent, since the MMTV LTR drives expression of Wnt1 ligand in luminal cells, whereas the functional Wnt1-responsive receptor (Lrp5) is expressed by basal cells, and both molecules are necessary for tumor growth. There is a robust tumor initiating activity (tumor stem cell) in the basal cell population, which is associated with the ability to differentiate into luminal and basal cells, to regenerate the oncogenic paracrine signaling cell pair. However, we found an additional tumor stem cell activity in the luminal cell population. Knowing that tumors depend upon Wnt1-Lrp5, we hypothesized that this stem cell must express Lrp5, and found that indeed, all the stem cell activity could be retrieved from the Lrp5-positive cell population. Interestingly, this reflects post-transcriptional acquisition of Lrp5 protein expression in luminal cells. Furthermore, this plasticity of molecular expression is reflected in plasticity of cell fate determination. Thus, in vitro, Wnt1-expressing luminal cells retro-differentiate to basal cell types, and in vivo, tumors initiated with pure luminal cells reconstitute a robust basal cell subpopulation that is indistinguishable from the populations initiated by pure basal cells. We propose this is an important proof of concept, demonstrating that bipotential tumor stem cells are essential in tumors where oncogenic ligand-receptor pairs are separated into different cell types, and suggesting that Wnt-induced molecular and fate plasticity can close paracrine loops that are usually separated into distinct cell types. PMID:21541292

  14. Cardiac Fibroblast: The Renaissance Cell

    PubMed Central

    Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.

    2012-01-01

    The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782

  15. A population of adult satellite-like cells in Drosophila is maintained through a switch in RNA-isoforms

    PubMed Central

    Boukhatmi, Hadi

    2018-01-01

    Adult stem cells are important for tissue maintenance and repair. One key question is how such cells are specified and then protected from differentiation for a prolonged period. Investigating the maintenance of Drosophila muscle progenitors (MPs) we demonstrate that it involves a switch in zfh1/ZEB1 RNA-isoforms. Differentiation into functional muscles is accompanied by expression of miR-8/miR-200, which targets the major zfh1-long RNA isoform and decreases Zfh1 protein. Through activity of the Notch pathway, a subset of MPs produce an alternate zfh1-short isoform, which lacks the miR-8 seed site. Zfh1 protein is thus maintained in these cells, enabling them to escape differentiation and persist as MPs in the adult. There, like mammalian satellite cells, they contribute to muscle homeostasis. Such preferential regulation of a specific RNA isoform, with differential sensitivity to miRs, is a powerful mechanism for maintaining a population of poised progenitors and may be of widespread significance. PMID:29629869

  16. CD44 staining of cancer stem-like cells is influenced by down-regulation of CD44 variant isoforms and up-regulation of the standard CD44 isoform in the population of cells that have undergone epithelial-to-mesenchymal transition.

    PubMed

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44(high) cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44(high) population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44(high) population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44(high) population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed.

  17. Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells

    PubMed Central

    Mahgoub, Mohamed; Iwami, Shingo; Nakaoka, Shinji; Koizumi, Yoshiki; Shimura, Kazuya; Matsuoka, Masao

    2018-01-01

    Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1–encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis. PMID:29358408

  18. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties.

    PubMed

    Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein

    2017-03-15

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Implementation and Operational Research: CD4 Count Monitoring Frequency and Risk of CD4 Count Dropping Below 200 Cells Per Cubic Millimeter Among Stable HIV-Infected Patients in New York City, 2007-2013.

    PubMed

    Myers, Julie E; Xia, Qiang; Torian, Lucia V; Irvine, Mary; Harriman, Graham; Sepkowitz, Kent A; Shepard, Colin W

    2016-03-01

    The evidence has begun to mount for diminishing the frequency of CD4 count testing. To determine whether these observations were applicable to an urban US population, we used New York City (NYC) surveillance data to explore CD4 testing among stable patients in NYC, 2007-2013. We constructed a population-based retrospective open cohort analysis of NYC HIV surveillance data. HIV+ patients aged ≥ 13 years with stable viral suppression (≥ 1 viral load the previous year; all <400 copies per milliliter) and immune status (≥ 1 CD4 the previous year; all ≥ 200 cells per cubic millimeter) entered the cohort the following year beginning January 1, 2007. Each subsequent year, eligible patients not previously included entered the cohort on January 1. Outcomes were annual frequency of CD4 monitoring and probability of maintaining CD4 ≥ 200 cells per cubic millimeter. A multivariable Cox model identified factors associated with maintaining CD4 ≥ 200 cells per cubic millimeter. During 1.9 years of observation (median), 62,039 patients entered the cohort. The mean annual number of CD4 measurements among stable patients was 2.8 and varied little by year or characteristic. Two years after entering, 93.4% and 97.8% of those with initial CD4 350-499 and CD4 ≥ 500 cells per cubic millimeter, respectively, maintained CD4 ≥ 200 cells per cubic millimeter. Compared to those with initial CD4 ≥ 500 cells per cubic millimeter, those with CD4 200-349 cells per cubic millimeter and CD4 350-499 cells per cubic millimeter were more likely to have a CD4 <200 cells per cubic millimeter, controlling for sex, race, age, HIV risk group, and diagnosis year. In a population-based US cohort with well-controlled HIV, the probability of maintaining CD4 ≥ 200 cells per cubic millimeter for ≥ 2 years was >90% among those with initial CD4 ≥ 350 cells per cubic millimeter, suggesting that limited CD4 monitoring in these patients is appropriate.

  20. Effect of anti-IL-15 administration on T cell and NK cell homeostasis in rhesus macaques

    PubMed Central

    DeGottardi, Maren Q.; Okoye, Afam A.; Vaidya, Mukta; Talla, Aarthi; Konfe, Audrie L.; Reyes, Matthew D.; Clock, Joseph A.; Duell, Derick M.; Legasse, Alfred W.; Sabnis, Amit; Park, Byung S.; Axthelm, Michael K.; Estes, Jacob D.; Reinmann, Keith A.; Sekaly, Rafick-Pierre; Picker, Louis J.

    2016-01-01

    IL-15 has been implicated as a key regulator of T and NK cell homeostasis in multiple systems; however, its specific role in maintaining peripheral T and NK cell populations relative to other gamma-chain (γc) cytokines has not been fully defined in primates. Here, we address this question by determining the effect of IL-15 inhibition with a rhesusized, anti-IL-15 mAb on T and NK cell dynamics in rhesus macaques. Strikingly, anti-IL-15 treatment resulted in rapid depletion of NK cells, and both CD4+ and CD8+ effector memory T cells (TEM) in blood and tissues, with little to no effect on naïve or central memory T cells. Importantly, whereas depletion of NK cells was nearly complete and maintained as long as anti-IL-15 treatment was given, TEM depletion was countered by the onset of massive TEM proliferation, which almost completely restored circulating TEM numbers. Tissue TEM, however, remained significantly reduced, and most TEM maintained very high turnover throughout anti-IL-15 treatment. In the presence of IL-15 inhibition, TEM became increasingly more sensitive to IL-7 stimulation in vivo, and transcriptional analysis of TEM in IL-15-inhibited monkeys revealed engagement of the JAK/STAT signaling pathway, suggesting alternative γc cytokine signaling may support TEM homeostasis in the absence of IL-15. Thus, IL-15 plays a major role in peripheral maintenance of NK cells and TEM. However, whereas most NK cell populations collapse in the absence of IL-15, TEM can be maintained in the face of IL-15 inhibition by the activity of other homeostatic regulators, most likely IL-7. PMID:27430715

  1. A novel rat fibrosarcoma cell line from transformed bone marrow-derived mesenchymal stem cells with maintained in vitro and in vivo stemness properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Meng-Yu; Nestvold, Janne, E-mail: j.m.nestvold@medisin.uio.no; Rekdal, Øystein

    Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cellmore » marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. - Highlights: • Spontaneously transformed rat MSCs (rTMSCs) share characteristics with normal MSCs. • rTMSCs possess a side population, enriched with tumorigenic cells. • rTMSCs model fibrosarcoma in vivo.« less

  2. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations.

    PubMed

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M; Yang, Liwei; LaRocque, Jeannine R; Hall, Julie; Miska, Eric A; Ahmed, Shawn

    2014-10-14

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing.

  3. Caenorhabditis elegans RSD-2 and RSD-6 promote germ cell immortality by maintaining small interfering RNA populations

    PubMed Central

    Sakaguchi, Aisa; Sarkies, Peter; Simon, Matt; Doebley, Anna-Lisa; Goldstein, Leonard D.; Hedges, Ashley; Ikegami, Kohta; Alvares, Stacy M.; Yang, Liwei; LaRocque, Jeannine R.; Hall, Julie; Miska, Eric A.; Ahmed, Shawn

    2014-01-01

    Germ cells are maintained in a pristine non-aging state as they proliferate over generations. Here, we show that a novel function of the Caenorhabditis elegans RNA interference proteins RNAi spreading defective (RSD)-2 and RSD-6 is to promote germ cell immortality at high temperature. rsd mutants cultured at high temperatures became progressively sterile and displayed loss of small interfering RNAs (siRNAs) that target spermatogenesis genes, simple repeats, and transposons. Desilencing of spermatogenesis genes occurred in late-generation rsd mutants, although defective spermatogenesis was insufficient to explain the majority of sterility. Increased expression of repetitive loci occurred in both germ and somatic cells of late-generation rsd mutant adults, suggesting that desilencing of many heterochromatic segments of the genome contributes to sterility. Nuclear RNAi defective (NRDE)-2 promotes nuclear silencing in response to exogenous double-stranded RNA, and our data imply that RSD-2, RSD-6, and NRDE-2 function in a common transgenerational nuclear silencing pathway that responds to endogenous siRNAs. We propose that RSD-2 and RSD-6 promote germ cell immortality at stressful temperatures by maintaining transgenerational epigenetic inheritance of endogenous siRNA populations that promote genome silencing. PMID:25258416

  4. PERSPECTIVES ON CANCER STEM CELLS IN OSTEOSARCOMA

    PubMed Central

    Basu-Roy, Upal; Basilico, Claudio; Mansukhani, Alka

    2012-01-01

    Osteosarcoma is an aggressive pediatric tumor of growing bones that, despite surgery and chemotherapy, is prone to relapse. These mesenchymal tumors are derived from progenitor cells in the osteoblast lineage that have accumulated mutations to escape cell cycle checkpoints leading to excessive proliferation and defects in their ability to differentiate appropriately into mature bone-forming osteoblasts. Like other malignant tumors, osteosarcoma is often heterogeneous, consisting of phenotypically distinct cells with features of different stages of differentiation. The cancer stem cell hypothesis posits that tumors are maintained by stem cells and it is the incomplete eradication of a refractory population of tumor-initiating stem cells that accounts for drug resistance and tumor relapse. In this review we present our current knowledge about the biology of osteosarcoma stem cells from mouse and human tumors, highlighting new insights and unresolved issues in the identification of this elusive population. We focus on factors and pathways that are implicated in maintaining such cells, and differences from paradigms of epithelial cancers. Targeting of the cancer stem cells in osteosarcoma is a promising avenue to explore to develop new therapies for this devastating childhood cancer. PMID:22659734

  5. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis

    PubMed Central

    Moguche, Albanus O.; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P.; Dinh, Crystal; Higdon, Lauren E.; Cambier, C.J.; Sissons, James R.; Gallegos, Alena M.; Fink, Pamela J.

    2015-01-01

    Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1+ cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1+ cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. PMID:25918344

  6. Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells.

    PubMed

    Mahgoub, Mohamed; Yasunaga, Jun-Ichirou; Iwami, Shingo; Nakaoka, Shinji; Koizumi, Yoshiki; Shimura, Kazuya; Matsuoka, Masao

    2018-02-06

    Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1-encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis. Copyright © 2018 the Author(s). Published by PNAS.

  7. CD44 Staining of Cancer Stem-Like Cells Is Influenced by Down-Regulation of CD44 Variant Isoforms and Up-Regulation of the Standard CD44 Isoform in the Population of Cells That Have Undergone Epithelial-to-Mesenchymal Transition

    PubMed Central

    Biddle, Adrian; Gammon, Luke; Fazil, Bilal; Mackenzie, Ian C.

    2013-01-01

    CD44 is commonly used as a cell surface marker of cancer stem-like cells in epithelial tumours, and we have previously demonstrated the existence of two different CD44high cancer stem-like cell populations in squamous cell carcinoma, one having undergone epithelial-to-mesenchymal transition and the other maintaining an epithelial phenotype. Alternative splicing of CD44 variant exons generates a great many isoforms, and it is not known which isoforms are expressed on the surface of the two different cancer stem-like cell phenotypes. Here, we demonstrate that cancer stem-like cells with an epithelial phenotype predominantly express isoforms containing the variant exons, whereas the cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition down-regulate these variant isoforms and up-regulate expression of the standard CD44 isoform that contains no variant exons. In addition, we find that enzymatic treatments used to dissociate cells from tissue culture or fresh tumour specimens cause destruction of variant CD44 isoforms at the cell surface whereas expression of the standard CD44 isoform is preserved. This results in enrichment within the CD44high population of cancer stem-like cells that have undergone an epithelial-to-mesenchymal transition and depletion from the CD44high population of cancer stem-like cells that maintain an epithelial phenotype, and therefore greatly effects the characteristics of any cancer stem-like cell population isolated based on expression of CD44. As well as effecting the CD44high population, enzymatic treatment also reduces the percentage of the total epithelial cancer cell population staining CD44-positive, with potential implications for studies that aim to use CD44-positive staining as a prognostic indicator. Analyses of the properties of cancer stem-like cells are largely dependent on the ability to accurately identify and assay these populations. It is therefore critical that consideration be given to use of multiple cancer stem-like cell markers and suitable procedures for cell isolation in order that the correct populations are assayed. PMID:23437366

  8. Maintenance of algal endosymbionts in Paramecium bursaria: a simple model based on population dynamics.

    PubMed

    Iwai, Sosuke; Fujiwara, Kenji; Tamura, Takuro

    2016-09-01

    Algal endosymbiosis is widely distributed in eukaryotes including many protists and metazoans, and plays important roles in aquatic ecosystems, combining phagotrophy and phototrophy. To maintain a stable symbiotic relationship, endosymbiont population size in the host must be properly regulated and maintained at a constant level; however, the mechanisms underlying the maintenance of algal endosymbionts are still largely unknown. Here we investigate the population dynamics of the unicellular ciliate Paramecium bursaria and its Chlorella-like algal endosymbiont under various experimental conditions in a simple culture system. Our results suggest that endosymbiont population size in P. bursaria was not regulated by active processes such as cell division coupling between the two organisms, or partitioning of the endosymbionts at host cell division. Regardless, endosymbiont population size was eventually adjusted to a nearly constant level once cells were grown with light and nutrients. To explain this apparent regulation of population size, we propose a simple mechanism based on the different growth properties (specifically the nutrient requirements) of the two organisms, and based from this develop a mathematical model to describe the population dynamics of host and endosymbiont. The proposed mechanism and model may provide a basis for understanding the maintenance of algal endosymbionts. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice

    PubMed Central

    Wright, Margaret C.; Reed-Geaghan, Erin G.; Bolock, Alexa M.; Fujiyama, Tomoyuki; Hoshino, Mikio

    2015-01-01

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1+ skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood. PMID:25624394

  10. Coordinated dynamic encoding in the retina using opposing forms of plasticity

    PubMed Central

    Kastner, David B.; Baccus, Stephen A.

    2011-01-01

    The range of natural inputs encoded by a neuron often exceeds its dynamic range. To overcome this limitation, neural populations divide their inputs among different cell classes, as with rod and cone photoreceptors, and adapt by shifting their dynamic range. We report that the dynamic behavior of retinal ganglion cells in salamanders, mice, and rabbits is divided into two opposing forms of short-term plasticity in different cell classes. One population of cells exhibited sensitization—a persistent elevated sensitivity following a strong stimulus. This novel dynamic behavior compensates for the information loss caused by the known process of adaptation occurring in a separate cell population. The two populations divide the dynamic range of inputs, with sensitizing cells encoding weak signals, and adapting cells encoding strong signals. In the two populations, the linear, threshold and adaptive properties are linked to preserve responsiveness when stimulus statistics change, with one population maintaining the ability to respond when the other fails. PMID:21909086

  11. CD4+ Foxp3+ T cells promote aberrant immunoglobulin G production and maintain CD8+ T-cell suppression during chronic liver disease.

    PubMed

    Tedesco, Dana; Thapa, Manoj; Gumber, Sanjeev; Elrod, Elizabeth J; Rahman, Khalidur; Ibegbu, Chris C; Magliocca, Joseph F; Adams, Andrew B; Anania, Frank; Grakoui, Arash

    2017-02-01

    Persistent hepatotropic viral infections are a common etiologic agent of chronic liver disease. Unresolved infection can be attributed to nonfunctional intrahepatic CD8+ T-cell responses. In light of dampened CD8 + T-cell responses, liver disease often manifests systemically as immunoglobulin (Ig)-related syndromes due to aberrant B-cell functions. These two opposing yet coexisting phenomena implicate the potential of altered CD4 + T-cell help. Elevated CD4 + forkhead box P3-positive (Foxp3+) T cells were evident in both human liver disease and a mouse model of chemically induced liver injury despite marked activation and spontaneous IgG production by intrahepatic B cells. While this population suppressed CD8 + T-cell responses, aberrant B-cell activities were maintained due to expression of CD40 ligand on a subset of CD4 + Foxp3+ T cells. In vivo blockade of CD40 ligand attenuated B-cell abnormalities in a mouse model of liver injury. A phenotypically similar population of CD4 + Foxp3+, CD40 ligand-positive T cells was found in diseased livers explanted from patients with chronic hepatitis C infection. This population was absent in nondiseased liver tissues and peripheral blood. Liver disease elicits alterations in the intrahepatic CD4 + T-cell compartment that suppress T-cell immunity while concomitantly promoting aberrant IgG mediated manifestations. (Hepatology 2017;65:661-677). © 2016 by the American Association for the Study of Liver Diseases.

  12. Satellite Cell Self-Renewal.

    PubMed

    Giordani, Lorenzo; Parisi, Alice; Le Grand, Fabien

    2018-01-01

    Adult skeletal muscle is endowed with regenerative potential through partially recapitulating the embryonic developmental program. Upon acute injury or in pathological conditions, quiescent muscle-resident stem cells, called satellite cells, become activated and give rise to myogenic progenitors that massively proliferate, differentiate, and fuse to form new myofibers and restore tissue functionality. In addition, a proportion of activated cells returns back to quiescence and replenish the pool of satellite cells in order to maintain the ability of skeletal muscle tissue to repair. Self-renewal is the process by which stem cells divide to make more stem cells to maintain the stem cell population throughout life. This process is controlled by cell-intrinsic transcription factors regulated by cell-extrinsic signals from the niche and the microenvironment. This chapter provides an overview about the general aspects of satellite cell biology and focuses on the cellular and molecular aspects of satellite cell self-renewal. To date, we are still far from understanding how a very small proportion of the satellite cell progeny maintain their stem cell identity when most of their siblings progress through the myogenic program to construct myofibers. © 2018 Elsevier Inc. All rights reserved.

  13. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis.

    PubMed

    Moguche, Albanus O; Shafiani, Shahin; Clemons, Corey; Larson, Ryan P; Dinh, Crystal; Higdon, Lauren E; Cambier, C J; Sissons, James R; Gallegos, Alena M; Fink, Pamela J; Urdahl, Kevin B

    2015-05-04

    Immune control of persistent infection with Mycobacterium tuberculosis (Mtb) requires a sustained pathogen-specific CD4 T cell response; however, the molecular pathways governing the generation and maintenance of Mtb protective CD4 T cells are poorly understood. Using MHCII tetramers, we show that Mtb-specific CD4 T cells are subject to ongoing antigenic stimulation. Despite this chronic stimulation, a subset of PD-1(+) cells is maintained within the lung parenchyma during tuberculosis (TB). When transferred into uninfected animals, these cells persist, mount a robust recall response, and provide superior protection to Mtb rechallenge when compared to terminally differentiated Th1 cells that reside preferentially in the lung-associated vasculature. The PD-1(+) cells share features with memory CD4 T cells in that their generation and maintenance requires intrinsic Bcl6 and intrinsic ICOS expression. Thus, the molecular pathways required to maintain Mtb-specific CD4 T cells during ongoing infection are similar to those that maintain memory CD4 T cells in scenarios of antigen deprivation. These results suggest that vaccination strategies targeting the ICOS and Bcl6 pathways in CD4 T cells may provide new avenues to prevent TB. © 2015 Moguche et al.

  14. SIRPA is a specific cell-surface marker for isolating cardiomyocytes derived from human pluripotent stem cells.

    PubMed

    Dubois, Nicole C; Craft, April M; Sharma, Parveen; Elliott, David A; Stanley, Edouard G; Elefanty, Andrew G; Gramolini, Anthony; Keller, Gordon

    2011-10-23

    To identify cell-surface markers specific to human cardiomyocytes, we screened cardiovascular cell populations derived from human embryonic stem cells (hESCs) against a panel of 370 known CD antibodies. This screen identified the signal-regulatory protein alpha (SIRPA) as a marker expressed specifically on cardiomyocytes derived from hESCs and human induced pluripotent stem cells (hiPSCs), and PECAM, THY1, PDGFRB and ITGA1 as markers of the nonmyocyte population. Cell sorting with an antibody against SIRPA allowed for the enrichment of cardiac precursors and cardiomyocytes from hESC/hiPSC differentiation cultures, yielding populations of up to 98% cardiac troponin T-positive cells. When plated in culture, SIRPA-positive cells were contracting and could be maintained over extended periods of time. These findings provide a simple method for isolating populations of cardiomyocytes from human pluripotent stem cell cultures, and thereby establish a readily adaptable technology for generating large numbers of enriched cardiomyocytes for therapeutic applications.

  15. Cancer Stem Cells: Dynamic Entities in an Ever-Evolving Paradigm.

    PubMed

    Lopez-Bertoni, Hernando; Li, Yunqing; Laterra, John

    2015-11-01

    The cancer stem cell (CSC) hypothesis postulates that there is a hierarchy of cellular differentiation within cancers and that the bulk population of tumor cells is derived from a relatively small population of multi-potent neoplastic stem-like cells (CSCs). This tumor-initiating cell population plays an important role in maintaining tumor growth through their unlimited self-renewal, therapeutic resistance, and capacity to propagate tumors through asymmetric cell division. Recent findings from multiple laboratories show that cancer progenitor cells have the capacity to de-differentiate and acquire a stem-like phenotype in response to either genetic manipulation or environmental cues. These findings suggest that CSCs and relatively differentiated progenitors coexist in dynamic equilibrium and are subject to bidirectional conversion. In this review, we discuss emerging concepts regarding the stem-like phenotype, its acquisition by cancer progenitor cells, and the molecular mechanisms involved. Understanding the dynamic equilibrium between CSCs and cancer progenitor cells is critical for the development of novel therapeutic strategies that focus on depleting tumors of their tumor-propagating cell population.

  16. Characterization of rabbit limbal epithelial side population cells using RNA sequencing and single-cell qRT-PCR.

    PubMed

    Kameishi, Sumako; Umemoto, Terumasa; Matsuzaki, Yu; Fujita, Masako; Okano, Teruo; Kato, Takashi; Yamato, Masayuki

    2016-05-06

    Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A systems model for immune cell interactions unravels the mechanism of inflammation in human skin.

    PubMed

    Valeyev, Najl V; Hundhausen, Christian; Umezawa, Yoshinori; Kotov, Nikolay V; Williams, Gareth; Clop, Alex; Ainali, Crysanthi; Ouzounis, Christos; Tsoka, Sophia; Nestle, Frank O

    2010-12-02

    Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.

  18. Quiescent gastric stem cells maintain the adult Drosophila stomach.

    PubMed

    Strand, Marie; Micchelli, Craig A

    2011-10-25

    The adult Drosophila copper cell region or "stomach" is a highly acidic compartment of the midgut with pH < 3. In this region, a specialized group of acid-secreting cells similar to mammalian gastric parietal cells has been identified by a unique ultrastructure and by copper-metallothionein fluorescence. However, the homeostatic mechanism maintaining the acid-secreting "copper cells" of the adult midgut has not been examined. Here, we combine cell lineage tracing and genetic analysis to investigate the mechanism by which the gastric epithelium is maintained. Our investigation shows that a molecularly identifiable population of multipotent, self-renewing gastric stem cells (GSSCs) produces the acid-secreting copper cells, interstitial cells, and enteroendocrine cells of the stomach. Our assays demonstrate that GSSCs are largely quiescent but can be induced to regenerate the gastric epithelium in response to environmental challenge. Finally, genetic analysis reveals that adult GSSC maintenance depends on Wnt signaling. Characterization of the GSSC lineage in Drosophila, with striking similarities to mammals, will advance the study of both homeostatic and pathogenic processes in the stomach.

  19. Interplay between population firing stability and single neuron dynamics in hippocampal networks

    PubMed Central

    Slomowitz, Edden; Styr, Boaz; Vertkin, Irena; Milshtein-Parush, Hila; Nelken, Israel; Slutsky, Michael; Slutsky, Inna

    2015-01-01

    Neuronal circuits' ability to maintain the delicate balance between stability and flexibility in changing environments is critical for normal neuronal functioning. However, to what extent individual neurons and neuronal populations maintain internal firing properties remains largely unknown. In this study, we show that distributions of spontaneous population firing rates and synchrony are subject to accurate homeostatic control following increase of synaptic inhibition in cultured hippocampal networks. Reduction in firing rate triggered synaptic and intrinsic adaptive responses operating as global homeostatic mechanisms to maintain firing macro-stability, without achieving local homeostasis at the single-neuron level. Adaptive mechanisms, while stabilizing population firing properties, reduced short-term facilitation essential for synaptic discrimination of input patterns. Thus, invariant ongoing population dynamics emerge from intrinsically unstable activity patterns of individual neurons and synapses. The observed differences in the precision of homeostatic control at different spatial scales challenge cell-autonomous theory of network homeostasis and suggest the existence of network-wide regulation rules. DOI: http://dx.doi.org/10.7554/eLife.04378.001 PMID:25556699

  20. Nonequilibrium Population Dynamics of Phenotype Conversion of Cancer Cells

    PubMed Central

    Zhou, Joseph Xu; Pisco, Angela Oliveira; Qian, Hong; Huang, Sui

    2014-01-01

    Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection) or by environment-instructed transitions (Lamarckism induction). This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance. PMID:25438251

  1. Human amniotic epithelial cells as feeder layer to derive and maintain human embryonic stem cells from poor-quality embryos.

    PubMed

    Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián

    2015-09-01

    Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.

  2. The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair

    PubMed Central

    Galloway, Marc T.; Lalley, Andrea L.; Shearn, Jason T.

    2013-01-01

    ➤ Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. ➤ The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. ➤ Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment. ➤ Current tendon repair rehabilitation protocols focus on implementing early, well-controlled eccentric loading exercises to improve repair outcome. ➤ Tissue engineers look toward incorporating mechanical loading regimens to precondition cell populations for the creation of improved biological augmentations for tendon repair. PMID:24005204

  3. Stress responses at the endometrial-placental interface regulate labyrinthine placental differentiation from trophoblast stem cells.

    PubMed

    Rappolee, D A; Zhou, S; Puscheck, E E; Xie, Y

    2013-05-01

    Development can happen in one of two ways. Cells performing a necessary function can differentiate from stem cells before the need for it arises and stress does not develop. Or need arises before function, stress develops and stress signals are part of the normal stimuli that regulate developmental mechanisms. These mechanisms adjust stem cell differentiation to produce function in a timely and proportional manner. In this review, we will interpret data from studies of null lethal mutants for placental stress genes that suggest the latter possibility. Acknowledged stress pathways participate in stress-induced and -regulated differentiation in two ways. These pathways manage the homeostatic response to maintain stem cells during the stress. Stress pathways also direct stem cell differentiation to increase the first essential lineage and suppress later lineages when stem cell accumulation is diminished. This stress-induced differentiation maintains the conceptus during stress. Pathogenic outcomes arise because population sizes of normal stem cells are first depleted by decreased accumulation. The fraction of stem cells is further decreased by differentiation that is induced to compensate for smaller stem cell populations. Analysis of placental lethal null mutant genes known to mediate stress responses suggests that the labyrinthine placenta develops during, and is regulated by, hypoxic stress.

  4. Division of Labor, Bet Hedging, and the Evolution of Mixed Biofilm Investment Strategies.

    PubMed

    Lowery, Nick Vallespir; McNally, Luke; Ratcliff, William C; Brown, Sam P

    2017-08-08

    Bacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask why bacterial lineages invest simultaneously in both fast- and slow-growing types. We develop a population dynamic model of lineage expansion across a patchy environment and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings. IMPORTANCE Cell types specialized for survival have been observed and described within clonal bacterial populations for decades, but why are these specialists continually produced under benign conditions when such investment comes at a high reproductive cost? Conversely, when survival becomes an imperative, does it ever benefit the population to maintain a pool of rapidly growing but vulnerable planktonic cells? Using a combination of mathematical modeling, simulations, and experiments, we find that mixed investment strategies are favored over a broad range of environmental conditions and rely on a division of labor between cell types, where reproductive specialists amplify survival specialists, which can be transmitted through the environment with a limited mortality rate. We also show that survival specialists benefit rapidly growing populations by serving as a hedge against unpredictable changes in the environment. These results help to clarify the general evolutionary and ecological forces that can generate and maintain diverse subtypes within clonal bacterial populations. Copyright © 2017 Lowery et al.

  5. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    PubMed

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.

  6. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    PubMed Central

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865

  7. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis.

    PubMed

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P; Sadanand, Fulzele; Pei, Lirong; Chang, Chang-Sheng; Choi, Jeong-Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-04-24

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumours, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumours and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment.

  8. Lineage-Restricted Mammary Stem Cells Sustain the Development, Homeostasis, and Regeneration of the Estrogen Receptor Positive Lineage.

    PubMed

    Van Keymeulen, Alexandra; Fioramonti, Marco; Centonze, Alessia; Bouvencourt, Gaëlle; Achouri, Younes; Blanpain, Cédric

    2017-08-15

    The mammary gland (MG) is composed of different cell lineages, including the basal and the luminal cells (LCs) that are maintained by distinct stem cell (SC) populations. LCs can be subdivided into estrogen receptor (ER) + and ER - cells. LCs act as the cancer cell of origin in different types of mammary tumors. It remains unclear whether the heterogeneity found in luminal-derived mammary tumors arises from a pre-existing heterogeneity within LCs. To investigate LC heterogeneity, we used lineage tracing to assess whether the ER + lineage is maintained by multipotent SCs or by lineage-restricted SCs. To this end, we generated doxycycline-inducible ER-rtTA mice that allowed us to perform genetic lineage tracing of ER + LCs and study their fate and long-term maintenance. Our results show that ER + cells are maintained by lineage-restricted SCs that exclusively contribute to the expansion of the ER + lineage during puberty and their maintenance during adult life. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Cardiac side population cells and Sca-1-positive cells.

    PubMed

    Nagai, Toshio; Matsuura, Katsuhisa; Komuro, Issei

    2013-01-01

    Since the resident cardiac stem/progenitor cells were discovered, their ability to maintain the architecture and functional integrity of adult heart has been broadly explored. The methods for isolation and purification of the cardiac stem cells are crucial for the precise analysis of their developmental origin and intrinsic potential as tissue stem cells. Stem cell antigen-1 (Sca-1) is one of the useful cell surface markers to purify the cardiac progenitor cells. Another purification strategy is based on the high efflux ability of the dye, which is a common feature of tissue stem cells. These dye-extruding cells have been called side population cells because they locate in the side of dye-retaining cells after fluorescent cell sorting. In this chapter, we describe the methodology for the isolation of cardiac SP cells and Sca-1 positive cells.

  10. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    PubMed Central

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  11. SOX2 expression levels distinguish between neural progenitor populations of the developing dorsal telencephalon.

    PubMed

    Hutton, Scott R; Pevny, Larysa H

    2011-04-01

    The HMG-Box transcription factor SOX2 is expressed in neural progenitor populations throughout the developing and adult central nervous system and is necessary to maintain their progenitor identity. However, it is unclear whether SOX2 levels are uniformly expressed across all neural progenitor populations. In the developing dorsal telencephalon, two distinct populations of neural progenitors, radial glia and intermediate progenitor cells, are responsible for generating a majority of excitatory neurons found in the adult neocortex. Here we demonstrate, using both cellular and molecular analyses, that SOX2 is differentially expressed between radial glial and intermediate progenitor populations. Moreover, utilizing a SOX2(EGFP) mouse line, we show that this differential expression can be used to prospectively isolate distinct, viable populations of radial glia and intermediate cells for in vitro analysis. Given the limited repertoire of cell-surface markers currently available for neural progenitor cells, this provides an invaluable tool for prospectively identifying and isolating distinct classes of neural progenitor cells from the central nervous system. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Immune Tolerance Maintained by Cooperative Interactions between T Cells and Antigen Presenting Cells Shapes a Diverse TCR Repertoire

    PubMed Central

    Best, Katharine; Chain, Benny; Watkins, Chris

    2015-01-01

    The T cell population in an individual needs to avoid harmful activation by self peptides while maintaining the ability to respond to an unknown set of foreign peptides. This property is acquired by a combination of thymic and extra-thymic mechanisms. We extend current models for the development of self/non-self discrimination to consider the acquisition of self-tolerance as an emergent system level property of the overall T cell receptor repertoire. We propose that tolerance is established at the level of the antigen presenting cell/T cell cluster, which facilitates and integrates cooperative interactions between T cells of different specificities. The threshold for self-reactivity is therefore imposed at a population level, and not at the level of the individual T cell/antigen encounter. Mathematically, the model can be formulated as a linear programing optimization problem that can be implemented as a multiplicative update algorithm, which shows a rapid convergence to a stable state. The model constrains self-reactivity within a predefined threshold, but maintains repertoire diversity and cross reactivity which are key characteristics of human T cell immunity. We show further that the size of individual clones in the model repertoire becomes heterogeneous, and that new clones can establish themselves even when the repertoire has stabilized. Our study combines the salient features of the “danger” model of self/non-self discrimination with the concepts of quorum sensing, and extends repertoire generation models to encompass the establishment of tolerance. Furthermore, the dynamic and continuous repertoire reshaping, which underlies tolerance in this model, suggests opportunities for therapeutic intervention to achieve long-term tolerance following transplantation. PMID:26300880

  13. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system.

    PubMed

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Tong, Chuan; Ti, Dongdong; Chen, Deyun; Chen, Li; Li, Meirong; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2017-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Intermittent IL-7 Signaling Essential for T cell Homeostasis | Center for Cancer Research

    Cancer.gov

    In order for the immune system to mount an appropriate response to foreign antigens throughout a person’s life, the body must maintain a sufficient population of circulating mature, naïve T cells, a process known as T cell homeostasis. Previous studies revealed that this process depends upon signaling from the cytokine interleukin-7 (IL-7) as well as from the T cell antigen

  15. Maintenance of memory-type pathogenic Th2 cells in the pathophysiology of chronic airway inflammation.

    PubMed

    Hirahara, Kiyoshi; Shinoda, Kenta; Endo, Yusuke; Ichikawa, Tomomi; Nakayama, Toshinori

    2018-01-01

    Immunological memory is critical for long-standing protection against microorganisms; however, certain antigen-specific memory CD4 + T helper (Th) cells drive immune-related pathology, including chronic allergic inflammation such as asthma. The IL-5-producing memory-type Tpath2 subset is important for the pathogenesis of chronic allergic inflammation. This memory-type pathogenic Th2 cell population (Tpath2) can be detected in various allergic inflammatory lesions. However, how these pathogenic populations are maintained at the local inflammatory site has remained unclear. We performed a series of experiments using mice model for chronic airway inflammation. We also investigated the human samples from patients with eosinophilic chronic rhinosinusitis. We recently reported that inducible bronchus-associated lymphoid tissue (iBALT) was shaped during chronic inflammation in the lung. We also found that memory-type Tpath2 cells are maintained within iBALT. The maintenance of the Tpath2 cells within iBALT is supported by specific cell subpopulations within the lung. Furthermore, ectopic lymphoid structures consisting of memory CD4 + T cells were found in nasal polyps of eosinophilic chronic rhinosinusitis patients, indicating that the persistence of inflammation is controlled by these structures. Thus, the cell components that organize iBALT formation may be therapeutic targets for chronic allergic airway inflammation.

  16. Beyond NK cells: the expanding universe of innate lymphoid cells.

    PubMed

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  17. Voronoi Based Nanocrystalline Generation Algorithm for Atomistic Simulations

    DTIC Science & Technology

    2016-12-22

    the  time  for reviewing instructions, searching existing data sources, gathering and maintaining the  data needed, and completing and reviewing the...taken when generating nanocrystals (left to right): populating cell with grain centers, sphere of atoms with defined crystal structure centered at...nanocrystals (left to right): populating cell with grain centers, sphere of atoms with defined crystal structure centered at each grain center, identifying atoms

  18. Regulation of stem-like cancer cells by glutamine through β-catenin pathway mediated by redox signaling.

    PubMed

    Liao, Jianwei; Liu, Pan-Pan; Hou, Guoxin; Shao, Jiajia; Yang, Jing; Liu, Kaiyan; Lu, Wenhua; Wen, Shijun; Hu, Yumin; Huang, Peng

    2017-02-28

    Cancer stem cells (CSCs) are thought to play an important role in tumor recurrence and drug resistance, and present a major challenge in cancer therapy. The tumor microenvironment such as growth factors, nutrients and oxygen affect CSC generation and proliferation by providing the necessary energy sources and growth signals. The side population (SP) analysis has been used to detect the stem-like cancer cell populations based on their high expression of ABCG2 that exports Hoechst-33342 and certain cytotoxic drugs from the cells. The purpose of this research is to investigate the effect of a main nutrient molecule, glutamine, on SP cells and the possible underlying mechanism(s). Biochemical assays and flow cytometric analysis were used to evaluate the effect of glutamine on stem-like side population cells in vitro. Molecular analyses including RNAi interfering, qRT-PCR, and immunoblotting were employed to investigate the molecular signaling in response to glutamine deprivation and its influence on tumor formation capacity in vivo. We show that glutamine supports the maintenance of the stem cell phenotype by promoting glutathione synthesis and thus maintaining redox balance for SP cells. A deprivation of glutamine in the culture medium significantly reduced the proportion of SP cells. L-asparaginase, an enzyme that catalyzes the hydrolysis of asparagine and glutamine to aspartic acid and glutamate, respectively, mimics the effect of glutamine withdrawal and also diminished the proportion of SP cells. Mechanistically, glutamine deprivation increases intracellular ROS levels, leading to down-regulation of the β-catenin pathway. Glutamine plays a significant role in maintaining the stemness of cancer cells by a redox-mediated mechanism mediated by β-catenin. Inhibition of glutamine metabolism or deprivation of glutamine by L-asparaginase may be a new strategy to eliminate CSCs and overcome drug resistance.

  19. Primitive Sca-1 Positive Bone Marrow HSC in Mouse Model of Aplastic Anemia: A Comparative Study through Flowcytometric Analysis and Scanning Electron Microscopy

    PubMed Central

    Chatterjee, Sumanta; Basak, Pratima; Das, Prosun; Das, Madhurima; Pereira, Jacintha Archana; Dutta, Ranjan Kumar; Chaklader, Malay; Chaudhuri, Samaresh; Law, Sujata

    2010-01-01

    Self-renewing Hematopoietic Stem Cells (HSCs) are responsible for reconstitution of all blood cell lineages. Sca-1 is the “stem cell antigen” marker used to identify the primitive murine HSC population, the expression of which decreases upon differentiation to other mature cell types. Sca-1+ HSCs maintain the bone marrow stem cell pool throughout the life. Aplastic anemia is a disease considered to involve primary stem cell deficiency and is characterized by severe pancytopenia and a decline in healthy blood cell generation system. Studies conducted in our laboratory revealed that the primitive Sca-1+ BM-HSCs (bone marrow hematopoietic stem cell) are significantly affected in experimental Aplastic animals pretreated with chemotherapeutic drugs (Busulfan and Cyclophosphamide) and there is increased Caspase-3 activity with consecutive high Annexin-V positivity leading to premature apoptosis in the bone marrow hematopoietic stem cell population in Aplastic condition. The Sca-1bright, that is, “more primitive” BM-HSC population was more affected than the “less primitive” BM-HSC Sca-1dim  population. The decreased cell population and the receptor expression were directly associated with an empty and deranged marrow microenvironment, which is evident from scanning electron microscopy (SEM). The above experimental evidences hint toward the manipulation of receptor expression for the benefit of cytotherapy by primitive stem cell population in Aplastic anemia cases. PMID:21048851

  20. Establishment of a Brazilian line of human embryonic stem cells in defined medium: implications for cell therapy in an ethnically diverse population.

    PubMed

    Fraga, Ana M; Sukoyan, Marina; Rajan, Prithi; Braga, Daniela Paes de Almeida Ferreira; Iaconelli, Assumpto; Franco, José Gonçalves; Borges, Edson; Pereira, Lygia V

    2011-01-01

    Pluripotent human embryonic stem (hES) cells are an important experimental tool for basic and applied research, and a potential source of different tissues for transplantation. However, one important challenge for the clinical use of these cells is the issue of immunocompatibility, which may be dealt with by the establishment of hES cell banks to attend different populations. Here we describe the derivation and characterization of a line of hES cells from the Brazilian population, named BR-1, in commercial defined medium. In contrast to the other hES cell lines established in defined medium, BR-1 maintained a stable normal karyotype as determined by genomic array analysis after 6 months in continuous culture (passage 29). To our knowledge, this is the first reported line of hES cells derived in South America. We have determined its genomic ancestry and compared the HLA-profile of BR-1 and another 22 hES cell lines established elsewhere with those of the Brazilian population, finding they would match only 0.011% of those individuals. Our results highlight the challenges involved in hES cell banking for populations with a high degree of ethnic admixture.

  1. Mex3a Marks a Slowly Dividing Subpopulation of Lgr5+ Intestinal Stem Cells.

    PubMed

    Barriga, Francisco M; Montagni, Elisa; Mana, Miyeko; Mendez-Lago, Maria; Hernando-Momblona, Xavier; Sevillano, Marta; Guillaumet-Adkins, Amy; Rodriguez-Esteban, Gustavo; Buczacki, Simon J A; Gut, Marta; Heyn, Holger; Winton, Douglas J; Yilmaz, Omer H; Attolini, Camille Stephan-Otto; Gut, Ivo; Batlle, Eduard

    2017-06-01

    Highly proliferative Lgr5+ stem cells maintain the intestinal epithelium and are thought to be largely homogeneous. Although quiescent intestinal stem cell (ISC) populations have been described, the identity and features of such a population remain controversial. Here we report unanticipated heterogeneity within the Lgr5+ ISC pool. We found that expression of the RNA-binding protein Mex3a labels a slowly cycling subpopulation of Lgr5+ ISCs that contribute to all intestinal lineages with distinct kinetics. Single-cell transcriptome profiling revealed that Lgr5+ cells adopt two discrete states, one of which is defined by a Mex3a expression program and relatively low levels of proliferation genes. During homeostasis, Mex3a+ cells continually shift into the rapidly dividing, self-renewing ISC pool. Chemotherapy and radiation preferentially target rapidly dividing Lgr5+ cells but spare the Mex3a-high/Lgr5+ population, helping to promote regeneration of the intestinal epithelium following toxic insults. Thus, Mex3a defines a reserve-like ISC population within the Lgr5+ compartment. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Differentiation State-Specific Mitochondrial Dynamic Regulatory Networks Are Revealed by Global Transcriptional Analysis of the Developing Chicken Lens

    PubMed Central

    Chauss, Daniel; Basu, Subhasree; Rajakaruna, Suren; Ma, Zhiwei; Gau, Victoria; Anastas, Sara; Brennan, Lisa A.; Hejtmancik, J. Fielding; Menko, A. Sue; Kantorow, Marc

    2014-01-01

    The mature eye lens contains a surface layer of epithelial cells called the lens epithelium that requires a functional mitochondrial population to maintain the homeostasis and transparency of the entire lens. The lens epithelium overlies a core of terminally differentiated fiber cells that must degrade their mitochondria to achieve lens transparency. These distinct mitochondrial populations make the lens a useful model system to identify those genes that regulate the balance between mitochondrial homeostasis and elimination. Here we used an RNA sequencing and bioinformatics approach to identify the transcript levels of all genes expressed by distinct regions of the lens epithelium and maturing fiber cells of the embryonic Gallus gallus (chicken) lens. Our analysis detected more than 15,000 unique transcripts expressed by the embryonic chicken lens. Of these, more than 3000 transcripts exhibited significant differences in expression between lens epithelial cells and fiber cells. Multiple transcripts coding for separate mitochondrial homeostatic and degradation mechanisms were identified to exhibit preferred patterns of expression in lens epithelial cells that require mitochondria relative to lens fiber cells that require mitochondrial elimination. These included differences in the expression levels of metabolic (DUT, PDK1, SNPH), autophagy (ATG3, ATG4B, BECN1, FYCO1, WIPI1), and mitophagy (BNIP3L/NIX, BNIP3, PARK2, p62/SQSTM1) transcripts between lens epithelial cells and lens fiber cells. These data provide a comprehensive window into all genes transcribed by the lens and those mitochondrial regulatory and degradation pathways that function to maintain mitochondrial populations in the lens epithelium and to eliminate mitochondria in maturing lens fiber cells. PMID:24928582

  3. Label retention identifies a multipotent mesenchymal stem cell-like population in the postnatal thymus.

    PubMed

    Osada, Masako; Singh, Varan J; Wu, Kenmin; Sant'Angelo, Derek B; Pezzano, Mark

    2013-01-01

    Thymic microenvironments are essential for the proper development and selection of T cells critical for a functional and self-tolerant adaptive immune response. While significant turnover occurs, it is unclear whether populations of adult stem cells contribute to the maintenance of postnatal thymic epithelial microenvironments. Here, the slow cycling characteristic of stem cells and their property of label-retention were used to identify a K5-expressing thymic stromal cell population capable of generating clonal cell lines that retain the capacity to differentiate into a number of mesenchymal lineages including adipocytes, chondrocytes and osteoblasts suggesting a mesenchymal stem cell-like phenotype. Using cell surface analysis both culture expanded LRCs and clonal thymic mesenchymal cell lines were found to express Sca1, PDGFRα, PDGFRβ,CD29, CD44, CD49F, and CD90 similar to MSCs. Sorted GFP-expressing stroma, that give rise to TMSC lines, contribute to thymic architecture when reaggregated with fetal stroma and transplanted under the kidney capsule of nude mice. Together these results show that the postnatal thymus contains a population of mesenchymal stem cells that can be maintained in culture and suggests they may contribute to the maintenance of functional thymic microenvironments.

  4. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells

    PubMed Central

    Takamura, Shiki

    2018-01-01

    Tissue-resident memory T cells (TRM cells) are a population of immune cells that reside in the lymphoid and non-lymphoid organs without recirculation through the blood. These important cells occupy and utilize unique anatomical and physiological niches that are distinct from those for other memory T cell populations, such as central memory T cells in the secondary lymphoid organs and effector memory T cells that circulate through the tissues. CD8+ TRM cells typically localize in the epithelial layers of barrier tissues where they are optimally positioned to act as sentinels to trigger antigen-specific protection against reinfection. CD4+ TRM cells typically localize below the epithelial layers, such as below the basement membrane, and cluster in lymphoid structures designed to optimize interactions with antigen-presenting cells upon reinfection. A key feature of TRM populations is their ability to be maintained in barrier tissues for prolonged periods of time. For example, skin CD8+ TRM cells displace epidermal niches originally occupied by γδ T cells, thereby enabling their stable persistence for years. It is also clear that the long-term maintenance of TRM cells in different microenvironments is dependent on multiple tissue-specific survival cues, although the specific details are poorly understood. However, not all TRM persist over the long term. Recently, we identified a new spatial niche for the maintenance of CD8+ TRM cells in the lung, which is created at the site of tissue regeneration after injury [termed repair-associated memory depots (RAMD)]. The short-lived nature of RAMD potentially explains the short lifespans of CD8+ TRM cells in this particular tissue. Clearly, a better understanding of the niche-dependent maintenance of TRM cells will be important for the development of vaccines designed to promote barrier immunity. In this review, we discuss recent advances in our understanding of the properties and nature of tissue-specific niches that maintain TRM cells in different tissues. PMID:29904388

  5. Two populations of double minute chromosomes harbor distinct amplicons, the MYC locus at 8q24.2 and a 0.43-Mb region at 14q24.1, in the SW613-S human carcinoma cell line.

    PubMed

    Guillaud-Bataille, M; Brison, O; Danglot, G; Lavialle, C; Raynal, B; Lazar, V; Dessen, P; Bernheim, A

    2009-01-01

    High-level amplifications observed in tumor cells are usually indicative of genes involved in oncogenesis. We report here a high resolution characterization of a new amplified region in the SW613-S carcinoma cell line. This cell line contains tumorigenic cells displaying high-level MYC amplification in the form of double minutes (DM(+) cells) and non tumorigenic cells exhibiting low-level MYC amplification in the form of homogeneously staining regions (DM(-) cells). Both cell types were studied at genomic and functional levels. The DM(+) cells display a second amplification, corresponding to the 14q24.1 region, in a distinct population of DMs. The 0.43-Mb amplified and overexpressed region contains the PLEK2, PIGH, ARG2, VTI1B, RDH11, and ZFYVE26 genes. Both amplicons were stably maintained upon in vitro and in vivo propagation. However, the 14q24.1 amplicon was not found in cells with high-level MYC amplification in the form of HSRs, either obtained after spontaneous integration of endogenous DM MYC copies or after transfection of DM(-) cells with a MYC gene expression vector. These HSR-bearing cells are highly tumorigenic. The 14q24.1 amplification may not play a role in malignancy per se but might contribute to maintaining the amplification in the form of DMs. Copyright 2009 S. Karger AG, Basel.

  6. Muscle Satellite Cell Protein Teneurin‐4 Regulates Differentiation During Muscle Regeneration

    PubMed Central

    Ishii, Kana; Suzuki, Nobuharu; Mabuchi, Yo; Ito, Naoki; Kikura, Naomi; Fukada, So‐ichiro; Okano, Hideyuki; Takeda, Shin'ichi

    2015-01-01

    Abstract Satellite cells are maintained in an undifferentiated quiescent state, but during muscle regeneration they acquire an activated stage, and initiate to proliferate and differentiate as myoblasts. The transmembrane protein teneurin‐4 (Ten‐4) is specifically expressed in the quiescent satellite cells; however, its cellular and molecular functions remain unknown. We therefore aimed to elucidate the function of Ten‐4 in muscle satellite cells. In the tibialis anterior (TA) muscle of Ten‐4‐deficient mice, the number and the size of myofibers, as well as the population of satellite cells, were reduced with/without induction of muscle regeneration. Furthermore, we found an accelerated activation of satellite cells in the regenerated Ten‐4‐deficient TA muscle. The cell culture analysis using primary satellite cells showed that Ten‐4 suppressed the progression of myogenic differentiation. Together, our findings revealed that Ten‐4 functions as a crucial player in maintaining the quiescence of muscle satellite cells. Stem Cells 2015;33:3017–3027 PMID:26013034

  7. Day-night cycles and the sleep-promoting factor, Sleepless, affect stem cell activity in the Drosophila testis.

    PubMed

    Tulina, Natalia M; Chen, Wen-Feng; Chen, Jung Hsuan; Sowcik, Mallory; Sehgal, Amita

    2014-02-25

    Adult stem cells maintain tissue integrity and function by renewing cellular content of the organism through regulated mitotic divisions. Previous studies showed that stem cell activity is affected by local, systemic, and environmental cues. Here, we explore a role of environmental day-night cycles in modulating cell cycle progression in populations of adult stem cells. Using a classic stem cell system, the Drosophila spermatogonial stem cell niche, we reveal daily rhythms in division frequencies of germ-line and somatic stem cells that act cooperatively to produce male gametes. We also examine whether behavioral sleep-wake cycles, which are driven by the environmental day-night cycles, regulate stem cell function. We find that flies lacking the sleep-promoting factor Sleepless, which maintains normal sleep in Drosophila, have increased germ-line stem cell (GSC) division rates, and this effect is mediated, in part, through a GABAergic signaling pathway. We suggest that alterations in sleep can influence the daily dynamics of GSC divisions.

  8. SYNTHETIC BIOLOGY. Emergent genetic oscillations in a synthetic microbial consortium.

    PubMed

    Chen, Ye; Kim, Jae Kyoung; Hirning, Andrew J; Josić, Krešimir; Bennett, Matthew R

    2015-08-28

    A challenge of synthetic biology is the creation of cooperative microbial systems that exhibit population-level behaviors. Such systems use cellular signaling mechanisms to regulate gene expression across multiple cell types. We describe the construction of a synthetic microbial consortium consisting of two distinct cell types—an "activator" strain and a "repressor" strain. These strains produced two orthogonal cell-signaling molecules that regulate gene expression within a synthetic circuit spanning both strains. The two strains generated emergent, population-level oscillations only when cultured together. Certain network topologies of the two-strain circuit were better at maintaining robust oscillations than others. The ability to program population-level dynamics through the genetic engineering of multiple cooperative strains points the way toward engineering complex synthetic tissues and organs with multiple cell types. Copyright © 2015, American Association for the Advancement of Science.

  9. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis

    PubMed Central

    Pathania, Rajneesh; Ramachandran, Sabarish; Elangovan, Selvakumar; Padia, Ravi; Yang, Pengyi; Cinghu, Senthilkumar; Veeranan-Karmegam, Rajalakshmi; Arjunan, Pachiappan; Gnana-Prakasam, Jaya P.; Fulzele, Sadanand; Pei, Lirong; Chang, Chang-Sheng; Choi, Hyeon; Shi, Huidong; Manicassamy, Santhakumar; Prasad, Puttur D.; Sharma, Suash; Ganapathy, Vadivel; Jothi, Raja; Thangaraju, Muthusamy

    2015-01-01

    Mammary stem/progenitor cells (MaSCs) maintain self-renewal of the mammary epithelium during puberty and pregnancy. DNA methylation provides a potential epigenetic mechanism for maintaining cellular memory during self-renewal. Although DNA methyltransferases (DNMTs) are dispensable for embryonic stem cell maintenance, their role in maintaining MaSCs and cancer stem cells (CSCs) in constantly replenishing mammary epithelium is unclear. Here we show that DNMT1 is indispensable for MaSC maintenance. Furthermore, we find that DNMT1 expression is elevated in mammary tumors, and mammary gland-specific DNMT1 deletion protects mice from mammary tumorigenesis by limiting the CSC pool. Through genome-scale methylation studies, we identify ISL1 as a direct DNMT1 target, hypermethylated and downregulated in mammary tumors and CSCs. DNMT inhibition or ISL1 expression in breast cancer cells limits CSC population. Altogether, our studies uncover an essential role for DNMT1 in MaSC and CSC maintenance and identify DNMT1-ISL1 axis as a potential therapeutic target for breast cancer treatment. PMID:25908435

  10. Scalloped and Yorkie are required for cell cycle re-entry of quiescent cells after tissue damage.

    PubMed

    Meserve, Joy H; Duronio, Robert J

    2015-08-15

    Regeneration of damaged tissues typically requires a population of active stem cells. How damaged tissue is regenerated in quiescent tissues lacking a stem cell population is less well understood. We used a genetic screen in the developing Drosophila melanogaster eye to investigate the mechanisms that trigger quiescent cells to re-enter the cell cycle and proliferate in response to tissue damage. We discovered that Hippo signaling regulates compensatory proliferation after extensive cell death in the developing eye. Scalloped and Yorkie, transcriptional effectors of the Hippo pathway, drive Cyclin E expression to induce cell cycle re-entry in cells that normally remain quiescent in the absence of damage. Ajuba, an upstream regulator of Hippo signaling that functions as a sensor of epithelial integrity, is also required for cell cycle re-entry. Thus, in addition to its well-established role in modulating proliferation during periods of tissue growth, Hippo signaling maintains homeostasis by regulating quiescent cell populations affected by tissue damage. © 2015. Published by The Company of Biologists Ltd.

  11. Tumour Cell Heterogeneity

    PubMed Central

    Gay, Laura; Baker, Ann-Marie; Graham, Trevor A.

    2016-01-01

    The population of cells that make up a cancer are manifestly heterogeneous at the genetic, epigenetic, and phenotypic levels. In this mini-review, we summarise the extent of intra-tumour heterogeneity (ITH) across human malignancies, review the mechanisms that are responsible for generating and maintaining ITH, and discuss the ramifications and opportunities that ITH presents for cancer prognostication and treatment. PMID:26973786

  12. The presynaptic ribbon maintains vesicle populations at the hair cell afferent fiber synapse

    PubMed Central

    Becker, Lars; Schnee, Michael E; Niwa, Mamiko; Sun, Willy; Maxeiner, Stephan; Talaei, Sara; Kachar, Bechara; Rutherford, Mark A

    2018-01-01

    The ribbon is the structural hallmark of cochlear inner hair cell (IHC) afferent synapses, yet its role in information transfer to spiral ganglion neurons (SGNs) remains unclear. We investigated the ribbon’s contribution to IHC synapse formation and function using KO mice lacking RIBEYE. Despite loss of the entire ribbon structure, synapses retained their spatiotemporal development and KO mice had a mild hearing deficit. IHCs of KO had fewer synaptic vesicles and reduced exocytosis in response to brief depolarization; a high stimulus level rescued exocytosis in KO. SGNs exhibited a lack of sustained excitatory postsynaptic currents (EPSCs). We observed larger postsynaptic glutamate receptor plaques, potentially compensating for the reduced EPSC rate in KO. Surprisingly, large-amplitude EPSCs were maintained in KO, while a small population of low-amplitude slower EPSCs was increased in number. The ribbon facilitates signal transduction at physiological stimulus levels by retaining a larger residency pool of synaptic vesicles. PMID:29328021

  13. Fecal Microbiota Transplantation, Commensal Escherichia coli and Lactobacillus johnsonii Strains Differentially Restore Intestinal and Systemic Adaptive Immune Cell Populations Following Broad-spectrum Antibiotic Treatment.

    PubMed

    Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M

    2017-01-01

    The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii , respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli , L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of antibiotics-induced collateral damages to the immune system. However, defined intestinal commensals such as E. coli and L. johnsonii have the potential to restore individual functions of intestinal and systemic immunity. In conclusion, our data provide novel insights into the distinct role of individual commensal bacteria in maintaining immune functions during/following dysbiosis induced by antibiotic therapy thereby shaping host immunity and might thus open novel therapeutical avenues in conditions of perturbed microbiota composition.

  14. Fecal Microbiota Transplantation, Commensal Escherichia coli and Lactobacillus johnsonii Strains Differentially Restore Intestinal and Systemic Adaptive Immune Cell Populations Following Broad-spectrum Antibiotic Treatment

    PubMed Central

    Ekmekciu, Ira; von Klitzing, Eliane; Neumann, Christian; Bacher, Petra; Scheffold, Alexander; Bereswill, Stefan; Heimesaat, Markus M.

    2017-01-01

    The essential role of the intestinal microbiota in the well-functioning of host immunity necessitates the investigation of species-specific impacts on this interplay. Aim of this study was to examine the ability of defined Gram-positive and Gram-negative intestinal commensal bacterial species, namely Escherichia coli and Lactobacillus johnsonii, respectively, to restore immune functions in mice that were immunosuppressed by antibiotics-induced microbiota depletion. Conventional mice were subjected to broad-spectrum antibiotic treatment for 8 weeks and perorally reassociated with E. coli, L. johnsonii or with a complex murine microbiota by fecal microbiota transplantation (FMT). Analyses at days (d) 7 and 28 revealed that immune cell populations in the small and large intestines, mesenteric lymph nodes and spleens of mice were decreased after antibiotic treatment but were completely or at least partially restored upon FMT or by recolonization with the respective bacterial species. Remarkably, L. johnsonii recolonization resulted in the highest CD4+ and CD8+ cell numbers in the small intestine and spleen, whereas neither of the commensal species could stably restore those cell populations in the colon until d28. Meanwhile less efficient than FMT, both species increased the frequencies of regulatory T cells and activated dendritic cells and completely restored intestinal memory/effector T cell populations at d28. Furthermore, recolonization with either single species maintained pro- and anti-inflammatory immune functions in parallel. However, FMT could most effectively recover the decreased frequencies of cytokine producing CD4+ lymphocytes in mucosal and systemic compartments. E. coli recolonization increased the production of cytokines such as TNF, IFN-γ, IL-17, and IL-22, particularly in the small intestine. Conversely, only L. johnsonii recolonization maintained colonic IL-10 production. In summary, FMT appears to be most efficient in the restoration of antibiotics-induced collateral damages to the immune system. However, defined intestinal commensals such as E. coli and L. johnsonii have the potential to restore individual functions of intestinal and systemic immunity. In conclusion, our data provide novel insights into the distinct role of individual commensal bacteria in maintaining immune functions during/following dysbiosis induced by antibiotic therapy thereby shaping host immunity and might thus open novel therapeutical avenues in conditions of perturbed microbiota composition. PMID:29321764

  15. Stem cells in the canine pituitary gland and in pituitary adenomas.

    PubMed

    van Rijn, Sarah J; Tryfonidou, Marianna A; Hanson, Jeanette M; Penning, Louis C; Meij, Björn P

    2013-12-01

    Cushing's disease (CD) or pituitary-dependent hypercortisolism is a common endocrinopathy in dogs, with an estimated prevalence of 1 or 2 in 1000 dogs per year. It is caused by an adrenocorticotropic hormone secreting adenoma in the pars distalis or pars intermedia of the pituitary gland. The pituitary gland is a small endocrine gland located in the pituitary fossa. In the postnatal individual, the hypothalamus-pituitary axis plays a central role in maintaining homeostatic functions, like control of metabolism, reproduction, and growth. Stem cells are suggested to play a role in the homeostatic adaptations of the adult pituitary gland, such as the rapid specific cell-type expansion in response to pregnancy or lactation. Several cell populations have been suggested as pituitary stem cells, such as Side Population cells and cells expressing Sox2 or Nestin. These cell populations are discussed in this review. Also, stem and progenitor cells are thought to play a role in pituitary tumorigenesis, such as the development of pituitary adenomas in dogs. There are limited reports on the role of stem cells in pituitary adenomas, especially in dogs. Further studies are needed to identify and characterize this cell population and to develop specific cell targeting therapeutic strategies as a new way of treating canine CD.

  16. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver

    PubMed Central

    Wang, Bruce; Zhao, Ludan; Fish, Matt; Logan, Catriona Y.; Nusse, Roel

    2015-01-01

    Summary The source of new hepatocytes in the uninjured liver has remained an open question. By lineage tracing using the Wnt-responsive gene Axin2, we identify a population of proliferating and self-renewing cells adjacent to the central vein in the liver lobule. These pericentral cells express the early liver progenitor marker Tbx3, are diploid, and thus differ from mature hepatocytes, which are mostly polyploid. The descendants of pericentral cells differentiate into Tbx3-negative, polyploid hepatocytes and can replace all hepatocytes along the liver lobule during homeostatic renewal. Adjacent central vein endothelial cells provide Wnt signals that maintain the pericentral cells, thereby constituting the niche. Thus, we identify a cell population in the liver that subserves homeostatic hepatocyte renewal, characterize its anatomical niche, and identify molecular signals that regulate its activity. PMID:26245375

  17. Macrophage and T cell dynamics during the development and disintegration of mycobacterial granulomas.

    PubMed

    Egen, Jackson G; Rothfuchs, Antonio Gigliotti; Feng, Carl G; Winter, Nathalie; Sher, Alan; Germain, Ronald N

    2008-02-01

    Granulomas play a key role in host protection against mycobacterial pathogens, with their breakdown contributing to exacerbated disease. To better understand the initiation and maintenance of these structures, we employed both high-resolution multiplex static imaging and intravital multiphoton microscopy of Mycobacterium bovis BCG-induced liver granulomas. We found that Kupffer cells directly capture blood-borne bacteria and subsequently nucleate formation of a nascent granuloma by recruiting both uninfected liver-resident macrophages and blood-derived monocytes. Within the mature granuloma, these myeloid cell populations formed a relatively immobile cellular matrix that interacted with a highly dynamic effector T cell population. The efficient recruitment of these T cells was highly dependent on TNF-alpha-derived signals, which also maintained the granuloma structure through preferential effects on uninfected macrophage populations. By characterizing the migration of both innate and adaptive immune cells throughout the process of granuloma development, these studies provide a new perspective on the cellular events involved in mycobacterial containment and escape.

  18. The genetic network controlling plasma cell differentiation.

    PubMed

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  19. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture.

    PubMed

    Zeng, Yi Arial; Nusse, Roel

    2010-06-04

    Adult stem cells have the ability to self-renew and to generate specialized cells. Self-renewal is dependent on extrinsic niche factors but few of those signals have been identified. In addition, stem cells tend to differentiate in the absence of the proper signals and are therefore difficult to maintain in cell culture. The mammary gland provides an excellent system to study self-renewal signals, because the organ develops postnatally, arises from stem cells, and is readily generated from transplanted cells. We show here that adult mammary glands contain a Wnt-responsive cell population that is enriched for stem cells. In addition, stem cells mutant for the negative-feedback regulator Axin2 and therefore sensitized to Wnt signals have a competitive advantage in mammary gland reconstitution assays. In cell culture experiments, exposure to purified Wnt protein clonally expands mammary stem cells for many generations and maintains their ability to generate functional glands in transplantation assays. We conclude that Wnt proteins serve as rate-limiting self-renewal signals acting directly on mammary stem cells. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    PubMed Central

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  1. ABCB5 maintains melanoma-initiating cells through a pro-inflammatory cytokine signaling circuit

    PubMed Central

    Wilson, Brian J.; Saab, Karim R.; Ma, Jie; Schatton, Tobias; Pütz, Pablo; Zhan, Qian; Murphy, George F.; Gasser, Martin; Waaga-Gasser, Ana Maria; Frank, Natasha Y.; Frank, Markus H.

    2014-01-01

    The drug efflux transporter ABCB5 identifies cancer stem-like cells (CSC) in diverse human malignancies, where its expression is associated with clinical disease progression and tumor recurrence. ABCB5 confers therapeutic resistance but other functions in tumorigenesis independent of drug efflux have not been described that might help explain why it is so broadly overexpressed in human cancer. Here we show that in melanoma-initiating cells ABCB5 controls IL-1β secretion which serves to maintain slow-cycling, chemoresistant cells through an IL-1β/IL8/CXCR1 cytokine signaling circuit. This CSC maintenance circuit involved reciprocal paracrine interactions with ABCB5-negative cancer cell populations. ABCB5 blockade induced cellular differentiation, reversed resistance to multiple chemotherapeutic agents, and impaired tumor growth in vivo. Together, our results defined a novel function for ABCB5 in CSC maintenance and tumor growth. PMID:24934811

  2. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    PubMed Central

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  3. Intestinal Mononuclear Phagocytes in Health and Disease.

    PubMed

    Sanders, Theodore J; Yrlid, Ulf; Maloy, Kevin J

    2017-01-01

    The intestine is the tissue of the body with the highest constitutive exposure to foreign antigen and is also a common entry portal for many local and systemic pathogens. Therefore, the local immune system has the unenviable task of balancing efficient responses to dangerous pathogens with tolerance toward beneficial microbiota and food antigens. As in most tissues, the decision between tolerance and immunity is critically governed by the activity of local myeloid cells. However, the unique challenges posed by the intestinal environment have necessitated the development of several specialized mononuclear phagocyte populations with distinct phenotypic and functional characteristics that have vital roles in maintaining barrier function and immune homeostasis in the intestine. Intestinal mononuclear phagocyte populations, comprising dendritic cells and macrophages, are crucial for raising appropriate active immune responses against ingested pathogens. Recent technical advances, including microsurgical approaches allowing collection of cells migrating in intestinal lymph, intravital microscopy, and novel gene-targeting approaches, have led to clearer distinctions between mononuclear phagocyte populations in intestinal tissue. In this review, we present an overview of the various subpopulations of intestinal mononuclear phagocytes and discuss their phenotypic and functional characteristics. We also outline their roles in host protection from infection and their regulatory functions in maintaining immune tolerance toward beneficial intestinal antigens.

  4. In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin.

    PubMed

    Liang, Xing; Graf, Benedikt W; Boppart, Stephen A

    2011-06-01

    The biomechanical properties of living cells depend on their molecular building blocks, and are important for maintaining structure and function in cells, the extracellular matrix, and tissues. These biomechanical properties and forces also shape and modify the cellular and extracellular structures under stress. While many studies have investigated the biomechanics of single cells or small populations of cells in culture, or the properties of organs and tissues, few studies have investigated the biomechanics of complex cell populations in vivo. With the use of advanced multiphoton microscopy to visualize in vivo cell populations in human skin, the biomechanical properties are investigated in a depth-dependent manner in the stratum corneum and epidermis using quasi-static mechanical deformations. A 2D elastic registration algorithm was used to analyze the images before and after deformation to determine displacements in different skin layers. In this feasibility study, the images and results from one human subject demonstrate the potential of the technique for revealing differences in elastic properties between the stratum corneum and the rest of the epidermis. This interrogational imaging methodology has the potential to enable a wide range of investigations for understanding how the biomechanical properties of in vivo cell populations influence function in health and disease.

  5. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche.

    PubMed

    Baghdadi, Meryem B; Castel, David; Machado, Léo; Fukada, So-Ichiro; Birk, David E; Relaix, Frederic; Tajbakhsh, Shahragim; Mourikis, Philippos

    2018-05-01

    The cell microenvironment, which is critical for stem cell maintenance, contains both cellular and non-cellular components, including secreted growth factors and the extracellular matrix 1-3 . Although Notch and other signalling pathways have previously been reported to regulate quiescence of stem cells 4-9 , the composition and source of molecules that maintain the stem cell niche remain largely unknown. Here we show that adult muscle satellite (stem) cells in mice produce extracellular matrix collagens to maintain quiescence in a cell-autonomous manner. Using chromatin immunoprecipitation followed by sequencing, we identified NOTCH1/RBPJ-bound regulatory elements adjacent to specific collagen genes, the expression of which is deregulated in Notch-mutant mice. Moreover, we show that Collagen V (COLV) produced by satellite cells is a critical component of the quiescent niche, as depletion of COLV by conditional deletion of the Col5a1 gene leads to anomalous cell cycle entry and gradual diminution of the stem cell pool. Notably, the interaction of COLV with satellite cells is mediated by the Calcitonin receptor, for which COLV acts as a surrogate local ligand. Systemic administration of a calcitonin derivative is sufficient to rescue the quiescence and self-renewal defects found in COLV-null satellite cells. This study reveals a Notch-COLV-Calcitonin receptor signalling cascade that maintains satellite cells in a quiescent state in a cell-autonomous fashion, and raises the possibility that similar reciprocal mechanisms act in diverse stem cell populations.

  6. Adoptive cell therapy for lymphoma with CD4 T cells depleted of CD137-expressing regulatory T cells.

    PubMed

    Goldstein, Matthew J; Kohrt, Holbrook E; Houot, Roch; Varghese, Bindu; Lin, Jack T; Swanson, Erica; Levy, Ronald

    2012-03-01

    Adoptive immunotherapy with antitumor T cells is a promising novel approach for the treatment of cancer. However, T-cell therapy may be limited by the cotransfer of regulatory T cells (T(reg)). Here, we explored this hypothesis by using 2 cell surface markers, CD44 and CD137, to isolate antitumor CD4 T cells while excluding T(regs). In a murine model of B-cell lymphoma, only CD137(neg)CD44(hi) CD4 T cells infiltrated tumor sites and provided protection. Conversely, the population of CD137(pos)CD44hi CD4 T cells consisted primarily of activated T(regs). Notably, this CD137(pos) T(reg) population persisted following adoptive transfer and maintained expression of FoxP3 as well as CD137. Moreover, in vitro these CD137(pos) cells suppressed the proliferation of effector cells in a contact-dependent manner, and in vivo adding the CD137(pos)CD44(hi) CD4 cells to CD137(neg)CD44(hi) CD4 cells suppressed the antitumor immune response. Thus, CD137 expression on CD4 T cells defined a population of activated T(regs) that greatly limited antitumor immune responses. Consistent with observations in the murine model, human lymphoma biopsies also contained a population of CD137(pos) CD4 T cells that were predominantly CD25(pos)FoxP3(pos) T(regs). In conclusion, our findings identify 2 surface markers that can be used to facilitate the enrichment of antitumor CD4 T cells while depleting an inhibitory T(reg) population.

  7. Canine corneal epithelial cells possess a sustained proliferative capacity and generate a spontaneously derived cell line.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Abe, Momoko; Hayashimoto, Koji; Nakagawa, Takayuki; Nishimura, Ryohei; Tsuzuki, Keiko

    2018-06-01

    We have previously reported characteristics of canine corneal epithelial cells in vitro and found that canine corneal epithelial cells could maintain their proliferative capacity even after continuous culture without the use of feeder cells and growth promoting additives. The objective of this study was to elucidate proliferative characteristics of canine corneal epithelial cells independent of feeder cells and growth promoting additives, with the aim of developing a spontaneously derived corneal epithelial cell line. Canine and rabbit corneal epithelial cells were harvested from the limbus and cultured with, or without, feeder cells and growth promoting additives, and both were passaged continuously until growth arrest. Canine corneal epithelial cells could proliferate independently, and could be passaged more times than rabbit cells. A canine corneal epithelial cell line, cCEpi, which could be passaged more than 100 times without using feeder cells and growth promoting additives, was established. cCEpi cells maintained a cell morphology close to the primary culture and expressed p63, cytokeratin 15 (K15), and K3. Although changes in colony morphology, shortening of the population doubling time and a heteroploid karyotype were observed, cCEpi was not tumorigenic. Stratified cell sheets cultured from cCEpi were morphologically and immunohistologically similar to sheets cultivated from early passage cells. In conclusion, canine corneal epithelial cells can proliferate independent of feeder cells and growth promoting additives. cCEpi maintains properties similar to normal corneal epithelial cells and could be a useful source for studies in cellular biology and for developing novel therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Potential Role of Induced Pluripotent Stem Cells (IPSCs) for Cell-Based Therapy of the Ocular Surface

    PubMed Central

    Casaroli-Marano, Ricardo P.; Nieto-Nicolau, Núria; Martínez-Conesa, Eva M.; Edel, Michael; Álvarez-Palomo, Ana B.

    2015-01-01

    The integrity and normal function of the corneal epithelium are crucial for maintaining the cornea’s transparency and vision. The existence of a cell population with progenitor characteristics in the limbus maintains a dynamic of constant epithelial repair and renewal. Currently, cell-based therapies for bio replacement—cultured limbal epithelial transplantation (CLET) and cultured oral mucosal epithelial transplantation (COMET)—present very encouraging clinical results for treating limbal stem cell deficiency (LSCD) and restoring vision. Another emerging therapeutic approach consists of obtaining and implementing human progenitor cells of different origins in association with tissue engineering methods. The development of cell-based therapies using stem cells, such as human adult mesenchymal or induced pluripotent stem cells (IPSCs), represent a significant breakthrough in the treatment of certain eye diseases, offering a more rational, less invasive, and better physiological treatment option in regenerative medicine for the ocular surface. This review will focus on the main concepts of cell-based therapies for the ocular surface and the future use of IPSCs to treat LSCD. PMID:26239129

  9. A Time to Reap, a Time to Sow: Mitophagy and Biogenesis in Cardiac Pathophysiology

    PubMed Central

    Andres, Allen M.; Stotland, Aleksandr; Queliconi, Bruno B.; Gottlieb, Roberta A.

    2014-01-01

    Balancing mitophagy and mitochondrial biogenesis is essential for maintaining a healthy population of mitochondria and cellular homeostasis. Coordinated interplay between these two forces that govern mitochondrial turnover plays an important role as an adaptive response against various cellular stresses that can compromise cell survival. Failure to maintain the critical balance between mitophagy and mitochondrial biogenesis or homeostatic turnover of mitochondria results in a population of dysfunctional mitochondria that contribute to various disease processes. In this review we outline the mechanics and relationships between mitophagy and mitochondrial biogenesis, and discuss the implications of a disrupted balance between these two forces, with an emphasis on cardiac physiology. PMID:25444712

  10. Population-expression models of immune response

    NASA Astrophysics Data System (ADS)

    Stromberg, Sean P.; Antia, Rustom; Nemenman, Ilya

    2013-06-01

    The immune response to a pathogen has two basic features. The first is the expansion of a few pathogen-specific cells to form a population large enough to control the pathogen. The second is the process of differentiation of cells from an initial naive phenotype to an effector phenotype which controls the pathogen, and subsequently to a memory phenotype that is maintained and responsible for long-term protection. The expansion and the differentiation have been considered largely independently. Changes in cell populations are typically described using ecologically based ordinary differential equation models. In contrast, differentiation of single cells is studied within systems biology and is frequently modeled by considering changes in gene and protein expression in individual cells. Recent advances in experimental systems biology make available for the first time data to allow the coupling of population and high dimensional expression data of immune cells during infections. Here we describe and develop population-expression models which integrate these two processes into systems biology on the multicellular level. When translated into mathematical equations, these models result in non-conservative, non-local advection-diffusion equations. We describe situations where the population-expression approach can make correct inference from data while previous modeling approaches based on common simplifying assumptions would fail. We also explore how model reduction techniques can be used to build population-expression models, minimizing the complexity of the model while keeping the essential features of the system. While we consider problems in immunology in this paper, we expect population-expression models to be more broadly applicable.

  11. ptf1a+, ela3l− cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae

    PubMed Central

    Schmitner, Nicole; Kohno, Kenji

    2017-01-01

    ABSTRACT The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l-negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l-positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b. In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells. PMID:28138096

  12. [Establishment and characterization of a new carcinoma cell line from uterine cervix of Uyghur women].

    PubMed

    Zhang, Lu; Aerziguli, Tursun; Guzalnur, Abliz

    2012-04-01

    To establish a uterine cervical carcinoma cell line of Uyghur ethnical background and to evaluate the related biological characteristics for future biomedical investigations of diseases in the Uyghur population. Poorly-differentiated squamous cell carcinoma specimens of Uyghur patients were obtained and cultured in vitro by enzymatic digestion method, followed by continuous passaging to reach a stable growth determined by cell viability and growth curve. Morphological study, cell cycling and chromosomal analysis were performed. Tumorigenesis study was conducted by inoculation of nude mice. Biomarker (CK17, CD44, Ki-67, CK14 and vimentin) expression was detected by immunofluorescence and immunocytochemical techniques. A cervical carcinoma cell line was successfully established and maintained for 12 months through 70 passages. The cell line had a stable growth with a population doubling time of 51.9 h. Flask method and double agar-agar assay showed that the cell line had colony-forming rates of 32.5% and 15.6%, respectively. Ultrastructural evaluation demonstrated numerous cell surface protrusions or microvilli, a large number of rod-shape structures in cytoplasm, typical desmosomes and nuclear atypia. Chromosomal analysis revealed human karyotype with the number of chromosomes per cell varying from 32 - 97 with a majority of 54 - 86 (60.3%). Xenogeneic tumors formed in nude mice showed histological structures identical to those of the primary tumor. The cells had high expression of CK17, CD44, Ki-67 and vimentin but no CK14 expression. A cervical carcinoma cell line from a female Uyghur patient is successfully established. The cell line has the characteristics of human cervical squamous cell carcinoma, and it is stable with maintaining the characteristic biological and morphological features in vitro for more than 12 months, therefore, qualified as a stable cell line for further biomedical research.

  13. Lentiviral and targeted cellular barcoding reveals ongoing clonal dynamics of cell lines in vitro and in vivo

    PubMed Central

    2014-01-01

    Background Cell lines are often regarded as clonal, even though this simplifies what is known about mutagenesis, transformation and other processes that destabilize them over time. Monitoring these clonal dynamics is important for multiple areas of biomedical research, including stem cell and cancer biology. Tracking the contributions of individual cells to large populations, however, has been constrained by limitations in sensitivity and complexity. Results We utilize cellular barcoding methods to simultaneously track the clonal contributions of tens of thousands of cells. We demonstrate that even with optimal culturing conditions, common cell lines including HeLa, K562 and HEK-293 T exhibit ongoing clonal dynamics. Starting a population with a single clone diminishes but does not eradicate this phenomenon. Next, we compare lentiviral and zinc-finger nuclease barcode insertion approaches, finding that the zinc-finger nuclease protocol surprisingly results in reduced clonal diversity. We also document the expected reduction in clonal complexity when cells are challenged with genotoxic stress. Finally, we demonstrate that xenografts maintain clonal diversity to a greater extent than in vitro culturing of the human non-small-cell lung cancer cell line HCC827. Conclusions We demonstrate the feasibility of tracking and quantifying the clonal dynamics of entire cell populations within multiple cultured cell lines. Our results suggest that cell heterogeneity should be considered in the design and interpretation of in vitro culture experiments. Aside from clonal cell lines, we propose that cellular barcoding could prove valuable in modeling the clonal behavior of heterogeneous cell populations over time, including tumor populations treated with chemotherapeutic agents. PMID:24886633

  14. Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness.

    PubMed

    Del Amo, Pedro Costa; Beneytez, Julio Lahoz; Boelen, Lies; Ahmed, Raya; Miners, Kelly L; Zhang, Yan; Roger, Laureline; Jones, Rhiannon E; Marraco, Silvia A Fuertes; Speiser, Daniel E; Baird, Duncan M; Price, David A; Ladell, Kristin; Macallan, Derek; Asquith, Becca

    2018-06-22

    Adaptive immunity relies on the generation and maintenance of memory T cells to provide protection against repeated antigen exposure. It has been hypothesised that a self-renewing population of T cells, named stem cell-like memory T (TSCM) cells, are responsible for maintaining memory. However, it is not clear if the dynamics of TSCM cells in vivo are compatible with this hypothesis. To address this issue, we investigated the dynamics of TSCM cells under physiological conditions in humans in vivo using a multidisciplinary approach that combines mathematical modelling, stable isotope labelling, telomere length analysis, and cross-sectional data from vaccine recipients. We show that, unexpectedly, the average longevity of a TSCM clone is very short (half-life < 1 year, degree of self-renewal = 430 days): far too short to constitute a stem cell population. However, we also find that the TSCM population is comprised of at least 2 kinetically distinct subpopulations that turn over at different rates. Whilst one subpopulation is rapidly replaced (half-life = 5 months) and explains the rapid average turnover of the bulk TSCM population, the half-life of the other TSCM subpopulation is approximately 9 years, consistent with the longevity of the recall response. We also show that this latter population exhibited a high degree of self-renewal, with a cell residing without dying or differentiating for 15% of our lifetime. Finally, although small, the population was not subject to excessive stochasticity. We conclude that the majority of TSCM cells are not stem cell-like but that there is a subpopulation of TSCM cells whose dynamics are compatible with their putative role in the maintenance of T cell memory.

  15. A closer look at opposing models for the T cell response to pathogens

    NASA Astrophysics Data System (ADS)

    Hanson, Shalla

    2016-06-01

    The problem of understanding the mechanisms of differentiation, activation, and interconversion of phenotypes of CD8+ T cells is one of crucial importance in cancer therapy, owing to both the anti-tumor efficacy of CD8+ T cells as well as the severe toxicity that results from excess expansion of this population. Several opposing theories exist which describe potential pathways for the development of the CD8+ T cell repertoire; however, the accuracy of each remains controversial. Here we review the current hypotheses, provide a critical overview of pivotal biological data from which these theories are derived, and discuss principle population-level implications. Finally, we offer a novel hypothesis which maintains consistency with each of the experimental studies and seeks to unify the currently opposing but not so disparate theories.

  16. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans

    PubMed Central

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2015-01-01

    Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets. PMID:26266953

  17. The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans.

    PubMed

    Striegel, Deborah A; Hara, Manami; Periwal, Vipul

    2015-08-01

    Pancreatic islets of Langerhans consist of endocrine cells, primarily α, β and δ cells, which secrete glucagon, insulin, and somatostatin, respectively, to regulate plasma glucose. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Due to the central functional significance of this local connectivity in the placement of β cells in an islet, it is important to characterize it quantitatively. However, quantification of the seemingly stochastic cytoarchitecture of β cells in an islet requires mathematical methods that can capture topological connectivity in the entire β-cell population in an islet. Graph theory provides such a framework. Using large-scale imaging data for thousands of islets containing hundreds of thousands of cells in human organ donor pancreata, we show that quantitative graph characteristics differ between control and type 2 diabetic islets. Further insight into the processes that shape and maintain this architecture is obtained by formulating a stochastic theory of β-cell rearrangement in whole islets, just as the normal equilibrium distribution of the Ornstein-Uhlenbeck process can be viewed as the result of the interplay between a random walk and a linear restoring force. Requiring that rearrangements maintain the observed quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that β-cell rearrangement is dependent on its connectivity in order to maintain an optimal cluster size in both normal and T2D islets.

  18. Measuring Physical Properties of Neuronal and Glial Cells with Resonant Microsensors

    PubMed Central

    2015-01-01

    Microelectromechanical systems (MEMS) resonant sensors provide a high degree of accuracy for measuring the physical properties of chemical and biological samples. These sensors enable the investigation of cellular mass and growth, though previous sensor designs have been limited to the study of homogeneous cell populations. Population heterogeneity, as is generally encountered in primary cultures, reduces measurement yield and limits the efficacy of sensor mass measurements. This paper presents a MEMS resonant pedestal sensor array fabricated over through-wafer pores compatible with vertical flow fields to increase measurement versatility (e.g., fluidic manipulation and throughput) and allow for the measurement of heterogeneous cell populations. Overall, the improved sensor increases capture by 100% at a flow rate of 2 μL/min, as characterized through microbead experiments, while maintaining measurement accuracy. Cell mass measurements of primary mouse hippocampal neurons in vitro, in the range of 0.1–0.9 ng, demonstrate the ability to investigate neuronal mass and changes in mass over time. Using an independent measurement of cell volume, we find cell density to be approximately 1.15 g/mL. PMID:24734874

  19. Transcription factor Etv5 is essential for the maintenance of alveolar type II cells.

    PubMed

    Zhang, Zhen; Newton, Kim; Kummerfeld, Sarah K; Webster, Joshua; Kirkpatrick, Donald S; Phu, Lilian; Eastham-Anderson, Jeffrey; Liu, Jinfeng; Lee, Wyne P; Wu, Jiansheng; Li, Hong; Junttila, Melissa R; Dixit, Vishva M

    2017-04-11

    Alveolar type II (AT2) cell dysfunction contributes to a number of significant human pathologies including respiratory distress syndrome, lung adenocarcinoma, and debilitating fibrotic diseases, but the critical transcription factors that maintain AT2 cell identity are unknown. Here we show that the E26 transformation-specific (ETS) family transcription factor Etv5 is essential to maintain AT2 cell identity. Deletion of Etv5 from AT2 cells produced gene and protein signatures characteristic of differentiated alveolar type I (AT1) cells. Consistent with a defect in the AT2 stem cell population, Etv5 deficiency markedly reduced recovery following bleomycin-induced lung injury. Lung tumorigenesis driven by mutant KrasG12D was also compromised by Etv5 deficiency. ERK activation downstream of Ras was found to stabilize Etv5 through inactivation of the cullin-RING ubiquitin ligase CRL4 COP1/DET1 that targets Etv5 for proteasomal degradation. These findings identify Etv5 as a critical output of Ras signaling in AT2 cells, contributing to both lung homeostasis and tumor initiation.

  20. Developmental Origin Governs CD8+ T Cell Fate Decisions during Infection.

    PubMed

    Smith, Norah L; Patel, Ravi K; Reynaldi, Arnold; Grenier, Jennifer K; Wang, Jocelyn; Watson, Neva B; Nzingha, Kito; Yee Mon, Kristel J; Peng, Seth A; Grimson, Andrew; Davenport, Miles P; Rudd, Brian D

    2018-06-06

    Heterogeneity is a hallmark feature of the adaptive immune system in vertebrates. Following infection, naive T cells differentiate into various subsets of effector and memory T cells, which help to eliminate pathogens and maintain long-term immunity. The current model suggests there is a single lineage of naive T cells that give rise to different populations of effector and memory T cells depending on the type and amounts of stimulation they encounter during infection. Here, we have discovered that multiple sub-populations of cells exist in the naive CD8 + T cell pool that are distinguished by their developmental origin, unique transcriptional profiles, distinct chromatin landscapes, and different kinetics and phenotypes after microbial challenge. These data demonstrate that the naive CD8 + T cell pool is not as homogeneous as previously thought and offers a new framework for explaining the remarkable heterogeneity in the effector and memory T cell subsets that arise after infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Slow-cycling stem cells in hydra contribute to head regeneration

    PubMed Central

    Govindasamy, Niraimathi; Murthy, Supriya; Ghanekar, Yashoda

    2014-01-01

    ABSTRACT Adult stem cells face the challenge of maintaining tissue homeostasis by self-renewal while maintaining their proliferation potential over the lifetime of an organism. Continuous proliferation can cause genotoxic/metabolic stress that can compromise the genomic integrity of stem cells. To prevent stem cell exhaustion, highly proliferative adult tissues maintain a pool of quiescent stem cells that divide only in response to injury and thus remain protected from genotoxic stress. Hydra is a remarkable organism with highly proliferative stem cells and ability to regenerate at whole animal level. Intriguingly, hydra does not display consequences of high proliferation, such as senescence or tumour formation. In this study, we investigate if hydra harbours a pool of slow-cycling stem cells that could help prevent undesirable consequences of continuous proliferation. Hydra were pulsed with the thymidine analogue 5-ethynyl-2′-deoxyuridine (EdU) and then chased in the absence of EdU to monitor the presence of EdU-retaining cells. A significant number of undifferentiated cells of all three lineages in hydra retained EdU for about 8–10 cell cycles, indicating that these cells did not enter cell cycle. These label-retaining cells were resistant to hydroxyurea treatment and were predominantly in the G2 phase of cell cycle. Most significantly, similar to mammalian quiescent stem cells, these cells rapidly entered cell division during head regeneration. This study shows for the first time that, contrary to current beliefs, cells in hydra display heterogeneity in their cell cycle potential and the slow-cycling cells in this population enter cell cycle during head regeneration. These results suggest an early evolution of slow-cycling stem cells in multicellular animals. PMID:25432513

  2. Hydra, the everlasting embryo, confronts aging.

    PubMed

    Martínez, Daniel E; Bridge, Diane

    2012-01-01

    Existing data imply that the cnidarian Hydra vulgaris does not undergo senescence. In contrast, the related species Hydra oligactis shows increased mortality and physiological deterioration following sexual reproduction. Hydra thus offers the chance to study a striking difference in lifespan in members of the same genus. Adult Hydra possess three well-characterized stem cell populations, one of which gives rise to both somatic cells and gametes. The lack of senescence in Hydra vulgaris raises the question of how these stem cell populations are maintained over long periods of time. Investigation of the roles in Hydra of proteins involved in cellular stress responses in other organisms should provide insight into this issue. Proteins of particular interest include the Hsp70 family proteins and the transcription factor FoxO.

  3. Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover.

    PubMed

    Westera, Liset; van Hoeven, Vera; Drylewicz, Julia; Spierenburg, Gerrit; van Velzen, Jeroen F; de Boer, Rob J; Tesselaar, Kiki; Borghans, José A M

    2015-04-01

    In healthy humans, lymphocyte populations are maintained at a relatively constant size throughout life, reflecting a balance between lymphocyte production and loss. Given the profound immunological changes that occur during healthy aging, including a significant decline in T-cell production by the thymus, lymphocyte maintenance in the elderly is generally thought to require homeostatic alterations in lymphocyte dynamics. Surprisingly, using in vivo (2) H2 O labeling, we find similar dynamics of most lymphocyte subsets between young adult and elderly healthy individuals. As the contribution of thymic output to T-cell production is only minor from young adulthood onward, compensatory increases in peripheral T-cell division rates are not required to maintain the T-cell pool, despite a tenfold decline in thymic output. These fundamental insights will aid the interpretation of further research into aging and clinical conditions related to disturbed lymphocyte dynamics. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells.

    PubMed

    Ponnusamy, Moorthy P; Seshacharyulu, Parthasarathy; Vaz, Arokiapriyanka; Dey, Parama; Batra, Surinder K

    2011-04-26

    Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population.

  5. MUC4 stabilizes HER2 expression and maintains the cancer stem cell population in ovarian cancer cells

    PubMed Central

    2011-01-01

    Background Recent evidence has suggested that the capability of cancer to grow, propagate and relapse after therapy is dependent on a small subset of the cell population within the tumor, called cancer stem cells. Therefore, this subpopulation of cells needs to be targeted with different approaches by identification of unique stem-cell specific target antigens. One of the well known tumor antigens is the epithelial cell mucin MUC4, which is aberrantly expressed in ovarian cancer as compared to the normal ovary and plays a pivotal role in the aggressiveness and metastasis of ovarian cancer cells. In the present study, we aimed to analyze the cancer stem cell population in MUC4 overexpressed ovarian cancer cells. Methods MUC4 was ectopically overexpressed in SKOV3 ovarian cancer cells. Western blot analysis was performed for MUC4, HER2, CD133, ALDH1 and Shh expression in MUC4 overexpressed cells. Confocal analysis of MUC4, HER2 and CD133 was also done in the MUC4 overexpressed cells. CD133 and Hoechst33342 dye staining was used to analyze the cancer stem cell population via FACS method in SKOV3-MUC4 cells. Results MUC4 overexpressed SKOV3 cells showed an increased expression of HER2 compared to control cells. MUC4 overexpression leads to increased (0.1%) side population (SP) and CD133-positive cancer stem cells compared to the control cells. Interestingly, the tumor sphere type circular colony formation was observed only in the MUC4 overexpressed ovarian cancer cells. Furthermore, the cancer stem cell marker CD133 was expressed along with MUC4 in the isolated circular colonies as analyzed by both confocal and western blot analysis. HER2 and cancer stem cell specific marker ALDH1 along with Shh, a self-renewal marker, showed increased expression in the isolated circular colonies compared to MUC4-transfected cells. Conclusion These studies demonstrate that MUC4 overexpression leads to an enriched ovarian cancer stem cell population either directly or indirectly through HER2. In future, this study would be helpful for MUC4-directed therapy for the ovarian cancer stem cell population. PMID:21521521

  6. 40 CFR 799.9780 - TSCA immunotoxicity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quantitative analysis of the effects of a chemical on the numbers of cells in major lymphocyte populations and..., and the research sample shall be stored under conditions that maintain its purity and stability. Prior... type of effect. (ii) All observed results, quantitative and incidental, shall be evaluated by an...

  7. 40 CFR 799.9780 - TSCA immunotoxicity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quantitative analysis of the effects of a chemical on the numbers of cells in major lymphocyte populations and..., and the research sample shall be stored under conditions that maintain its purity and stability. Prior... type of effect. (ii) All observed results, quantitative and incidental, shall be evaluated by an...

  8. 40 CFR 799.9780 - TSCA immunotoxicity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quantitative analysis of the effects of a chemical on the numbers of cells in major lymphocyte populations and..., and the research sample shall be stored under conditions that maintain its purity and stability. Prior... type of effect. (ii) All observed results, quantitative and incidental, shall be evaluated by an...

  9. 40 CFR 799.9780 - TSCA immunotoxicity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quantitative analysis of the effects of a chemical on the numbers of cells in major lymphocyte populations and..., and the research sample shall be stored under conditions that maintain its purity and stability. Prior... type of effect. (ii) All observed results, quantitative and incidental, shall be evaluated by an...

  10. 40 CFR 799.9780 - TSCA immunotoxicity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quantitative analysis of the effects of a chemical on the numbers of cells in major lymphocyte populations and..., and the research sample shall be stored under conditions that maintain its purity and stability. Prior... type of effect. (ii) All observed results, quantitative and incidental, shall be evaluated by an...

  11. Expression of HtKNOT1, a class I KNOX gene, overlaps cell layers and development compartments of differentiating cells in stems and flowers of Helianthus tuberosus.

    PubMed

    Michelotti, V; Giorgetti, L; Geri, C; Cionini, G; Pugliesi, C; Fambrini, M

    2007-10-01

    In plant, post-embryonic development relies on the activities of indeterminate cell populations termed meristems, spatially clustered cell lineages, wherein a subset divides indeterminately. For correct growth, the plant must maintain a constant flow of cells through the meristem, where the input of dividing pluripotent cells offsets the output of differentiating cells. KNOTTED1-like homeobox (KNOX) genes are expressed in specific patterns in the plant meristems and play important roles in maintaining meristematic cell identity. We have analyzed the expression pattern of HtKNOT1, a class I KNOX gene of Helianthus tuberosus, in stems, inflorescence meristems, floral meristems and floral organs. HtKNOT1 is expressed in cambial cells, phloem cells and xylematic parenchyma within apical stem internodes, while in basal internodes HtKNOT1 expression was restricted to the presumptive initials and recently derived phloem cells. In the reproductive phase, HtKNOT1 mRNAs were detected in both the inflorescence and floral meristems as well within lateral organ primordia (i.e. floral bracts, petals, stamens and carpels). In more differentiated flowers, the expression of HtKNOT1 was restricted to developing ovules and pollen mother cells. HtKNOT1 may play a dual role being required to maintain the meristem initials as well as initiating differentiation and/or conferring new cell identity. In particular, it is possible that HtKNOT1 cooperates at floral level with additional factors that more specifically control floral organs and pollen development in H. tuberosus.

  12. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock

    PubMed Central

    Webb, Alexis B; Lengyel, Iván M; Jörg, David J; Valentin, Guillaume; Jülicher, Frank; Morelli, Luis G; Oates, Andrew C

    2016-01-01

    In vertebrate development, the sequential and rhythmic segmentation of the body axis is regulated by a “segmentation clock”. This clock is comprised of a population of coordinated oscillating cells that together produce rhythmic gene expression patterns in the embryo. Whether individual cells autonomously maintain oscillations, or whether oscillations depend on signals from neighboring cells is unknown. Using a transgenic zebrafish reporter line for the cyclic transcription factor Her1, we recorded single tailbud cells in vitro. We demonstrate that individual cells can behave as autonomous cellular oscillators. We described the observed variability in cell behavior using a theory of generic oscillators with correlated noise. Single cells have longer periods and lower precision than the tissue, highlighting the role of collective processes in the segmentation clock. Our work reveals a population of cells from the zebrafish segmentation clock that behave as self-sustained, autonomous oscillators with distinctive noisy dynamics. DOI: http://dx.doi.org/10.7554/eLife.08438.001 PMID:26880542

  13. [PML-RARα and p21 are key factors for maintaining acute promyelocytic leukemia stem cells survival].

    PubMed

    Ding, Fei; Li, Jun-Min

    2011-10-01

    Tumor stem/progenitor cells are the cells with the characteristics of self-renewal, differentiating to all the other cell populations within tumor, which are also regarded as the source of tumor relapse, drug-resistance and metastasis. As a subtype of acute myeloid leukemia, acute promyelocytic leukemia (APL) represents the target of therapy due to the good response of the oncogenic protein PML-RARα to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). This review summarizes the latest research results of APL as follows: (1) there probably are two APL stem/progenitor cell populations within APL, and self-renewal and survival of APL stem/progenitor cells highly depend on PML-RARα expression, cell cycle inhibitor p21, self-renewal associated molecules and chemokines; and (2) ATRA and ATO eradicate APL stem/progenitor cells mainly by PML-RARα degradation, FOXO3A activation and the inhibition of self-renewal-associated signaling pathway of sonic hedgehog. These findings are helpful to improve other tumor therapy.

  14. ERECTA-family receptor kinases regulate stem cell homeostasis via buffering its cytokinin responsiveness in the shoot apical meristem.

    PubMed

    Uchida, Naoyuki; Shimada, Masanori; Tasaka, Masao

    2013-03-01

    Shoot apical meristems (SAMs), which are maintained at the tips of stems, are indeterminate structures and sources of stem cells from which all aerial organs are ultimately derived. Although mechanisms that regulate the homeostasis of the stem cells have been extensively investigated, identification of further unknown regulators should provide better understanding of the regulation. Here, we report that members of the Arabidopsis ERECTA (ER) receptor kinase family redundantly play a significant role in the regulation of stem cell homeostasis. In wild-type seedlings, the expression of WUSCHEL (WUS), a central regulator of the stem cell population, is stimulated by cytokinin. Interestingly, however, the SAM morphology and the expression of CLAVATA3 (CLV3), which is expressed in stem cells and therefore serves as a stem cell marker, are relatively stable against cytokinin treatment regardless of increased WUS expression. These findings indicate the presence of a mechanism to buffer stem cell homeostasis against an increase in cytokinin. Mutant seedlings lacking all ER-family members, which are expressed in the SAM, show an increase in the stem cell population and also the up-regulation of a cytokinin-responsive gene in the SAM. In this mutant, WUS expression is stimulated by cytokinin treatment as efficiently as in wild-type plants. However, in contrast to wild-type plants, SAM morphology and CLV3 expression respond drastically to cytokinin treatment, suggesting that the buffering mechanism to maintain stem cell homeostasis against an increase in cytokinin is severely impaired in this mutant. We suggest that the ER family regulates stem cell homeostasis via buffering its cytokinin responsiveness in the SAM.

  15. Modeling Cancer Cell Growth Dynamics In vitro in Response to Antimitotic Drug Treatment

    PubMed Central

    Lorz, Alexander; Botesteanu, Dana-Adriana; Levy, Doron

    2017-01-01

    Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in “age,” i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug’s effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large “switch-on/switch-off” increase in the average cell-cycle length maintains an active cell population in the long term, with oscillating numbers of proliferative cells and a relatively constant quiescent cell number. PMID:28913178

  16. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance.

    PubMed

    Ito, Kyoko; Turcotte, Raphaël; Cui, Jinhua; Zimmerman, Samuel E; Pinho, Sandra; Mizoguchi, Toshihide; Arai, Fumio; Runnels, Judith M; Alt, Clemens; Teruya-Feldstein, Julie; Mar, Jessica C; Singh, Rajat; Suda, Toshio; Lin, Charles P; Frenette, Paul S; Ito, Keisuke

    2016-12-02

    A single hematopoietic stem cell (HSC) is capable of reconstituting hematopoiesis and maintaining homeostasis by balancing self-renewal and cell differentiation. The mechanisms of HSC division balance, however, are not yet defined. Here we demonstrate, by characterizing at the single-cell level a purified and minimally heterogeneous murine Tie2 + HSC population, that these top hierarchical HSCs preferentially undergo symmetric divisions. The induction of mitophagy, a quality control process in mitochondria, plays an essential role in self-renewing expansion of Tie2 + HSCs. Activation of the PPAR (peroxisome proliferator-activated receptor)-fatty acid oxidation pathway promotes expansion of Tie2 + HSCs through enhanced Parkin recruitment in mitochondria. These metabolic pathways are conserved in human TIE2 + HSCs. Our data thus identify mitophagy as a key mechanism of HSC expansion and suggest potential methods of cell-fate manipulation through metabolic pathways. Copyright © 2016, American Association for the Advancement of Science.

  17. Self-renewal of a purified Tie2+ hematopoietic stem cell population relies on mitochondrial clearance

    PubMed Central

    Ito, Kyoko; Turcotte, Raphaël; Cui, Jinhua; Zimmerman, Samuel E.; Pinho, Sandra; Mizoguchi, Toshihide; Arai, Fumio; Runnels, Judith M.; Alt, Clemens; Teruya-Feldstein, Julie; Mar, Jessica C.; Singh, Rajat; Suda, Toshio; Lin, Charles P.; Frenette, Paul S.; Ito, Keisuke

    2016-01-01

    A single hematopoietic stem cell (HSC) is capable of reconstituting hematopoiesis and maintaining homeostasis by balancing self-renewal and cell differentiation. The mechanisms of HSC division balance, however, are not yet defined. Here we demonstrate, by characterizing at the single-cell level a purified and minimally heterogeneous murine Tie2+ HSC population, that these top hierarchical HSCs preferentially undergo symmetric divisions. The induction of mitophagy, a quality control process in mitochondria, plays an essential role in self-renewing expansion of Tie2+ HSCs. Activation of the PPAR (peroxisome proliferator–activated receptor)–fatty acid oxidation pathway promotes expansion of Tie2+ HSCs through enhanced Parkin recruitment in mitochondria. These metabolic pathways are conserved in human TIE2+ HSCs. Our data thus identify mitophagy as a key mechanism of HSC expansion and suggest potential methods of cell-fate manipulation through metabolic pathways. PMID:27738012

  18. T cells which proliferate in response to concanavalin A include cells which proliferate in mixed leucocyte reactions.

    PubMed

    Watanabe, T; Fathman, C G; Coutinho, A

    1977-09-01

    Selection in long-term culture of alloreactive T cells, by successive in vitro restimulation with semi-allogeneic cells, results in primed responder cell populations which maintain full proliferative reactivity to allogeneic cells as well as to the T cell mitogens concanavalin A (Con A) and phytohemagglutinin (PHA) but are depleted of cells which can effect target cell destruction in either a specific or nonspecific manner. Con A-induced T cell blasts (selected by velocity sedimentation) can revert to small resting lymphocytes in the presence of inert "filler" cells. Con A blasts which have reverted, readily proliferate in response to Con A or allogeneic stimulator cells but are largely depleted of effector killer cells and PHA-responsive cells.

  19. The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues

    PubMed Central

    Row, Richard H.; Tsotras, Steve R.; Goto, Hana; Martin, Benjamin L.

    2016-01-01

    Vertebrate body axis formation depends on a population of bipotential neuromesodermal cells along the posterior wall of the tailbud that make a germ layer decision after gastrulation to form spinal cord and mesoderm. Despite exhibiting germ layer plasticity, these cells never give rise to midline tissues of the notochord, floor plate and dorsal endoderm, raising the question of whether midline tissues also arise from basal posterior progenitors after gastrulation. We show in zebrafish that local posterior signals specify germ layer fate in two basal tailbud midline progenitor populations. Wnt signaling induces notochord within a population of notochord/floor plate bipotential cells through negative transcriptional regulation of sox2. Notch signaling, required for hypochord induction during gastrulation, continues to act in the tailbud to specify hypochord from a notochord/hypochord bipotential cell population. Our results lend strong support to a continuous allocation model of midline tissue formation in zebrafish, and provide an embryological basis for zebrafish and mouse bifurcated notochord phenotypes as well as the rare human congenital split notochord syndrome. We demonstrate developmental equivalency between the tailbud progenitor cell populations. Midline progenitors can be transfated from notochord to somite fate after gastrulation by ectopic expression of msgn1, a master regulator of paraxial mesoderm fate, or if transplanted into the bipotential progenitors that normally give rise to somites. Our results indicate that the entire non-epidermal posterior body is derived from discrete, basal tailbud cell populations. These cells remain receptive to extracellular cues after gastrulation and continue to make basic germ layer decisions. PMID:26674311

  20. The Dinoflagellate Lingulodinium polyedrum Responds to N Depletion by a Polarized Deposition of Starch and Lipid Bodies

    PubMed Central

    Dagenais Bellefeuille, Steve; Dorion, Sonia; Rivoal, Jean; Morse, David

    2014-01-01

    Dinoflagellates are important contributors to the marine phytoplankton and global carbon fixation, but are also infamous for their ability to form the spectacular harmful algal blooms called red tides. While blooms are often associated with high available nitrogen, there are instances where they are observed in oligotrophic environments. In order to maintain their massive population in conditions of nitrogen limitation, dinoflagellates must have evolved efficient adaptive mechanisms. Here we report the physiological responses to nitrogen deprivation in Lingulodinium polyedrum. We find that this species reacts to nitrogen stress, as do most plants and microalgae, by stopping cell growth and diminishing levels of internal nitrogen, in particular in the form of protein and chlorophyll. Photosynthesis is maintained at high levels for roughly a week following nitrate depletion, resulting in accumulated photosynthetic products in the form of starch. During the second week, photosynthesis rates decrease due to a reduction in the number of chloroplasts and the accumulation of neutral lipid droplets. Surprisingly, the starch granules and lipid droplets are seen to accumulate at opposite poles of the cell. Lastly, we observe that cells acclimated to nitrogen-depleted conditions resume normal growth after addition of inorganic nitrogen, but are able to maintain high cell densities far longer than cells grown continuously in nitrogen-replete conditions. PMID:25368991

  1. Epidermal Homeostasis and Radiation Responses in a Multiscale Tissue Modeling Framework

    NASA Technical Reports Server (NTRS)

    Hu, Shaowen; Cucinotta, Francis A.

    2013-01-01

    The surface of skin is lined with several thin layers of epithelial cells that are maintained throughout life time by a small population of stem cells. High dose radiation exposures could injure and deplete the underlying proliferative cells and induce cutaneous radiation syndrome. In this work we propose a multiscale computational model for skin epidermal dynamics that links phenomena occurring at the subcellular, cellular, and tissue levels of organization, to simulate the experimental data of the radiation response of swine epidermis, which is closely similar to human epidermis. Incorporating experimentally measured histological and cell kinetic parameters, we obtain results of population kinetics and proliferation indexes comparable to observations in unirradiated and acutely irradiated swine experiments. At the sub-cellular level, several recently published Wnt signaling controlled cell-cycle models are applied and the roles of key components and parameters are analyzed. Based on our simulation results, we demonstrate that a moderate increase of proliferation rate for the survival proliferative cells is sufficient to fully repopulate the area denuded by high dose radiation, as long as the integrity of underlying basement membrane is maintained. Our work highlights the importance of considering proliferation kinetics as well as the spatial organization of tissues when conducting in vivo investigations of radiation responses. This integrated model allow us to test the validity of several basic biological rules at the cellular level and sub-cellular mechanisms by qualitatively comparing simulation results with published research, and enhance our understanding of the pathophysiological effects of ionizing radiation on skin.

  2. Dormancy in a model of murine B cell lymphoma.

    PubMed

    Uhr, J W; Marches, R

    2001-08-01

    A B cell lymphoma model of dormancy in mice was established by prior immunization to the B cell membrane immunoglobulin idiotype. The antibody to the idiotype was the major factor in inducing and maintaining dormancy and acted primarily as an agonist rather than via effector functions. CD8+ T cells synergized with anti-Id in inducing dormancy by secreting IFN-gamma. Cycling in the dormant population was reduced 3-5 fold, but each mouse contained approximately 10(6) tumor cells in its spleen, some of which were cycling, during the 1.5 years of observation. Thus, replication is balanced by cell death. Copyright 2001 Academic Press.

  3. Poly(3-hydroxybutyrate) anabolism in Cupriavidus necator cultivated at various carbon-to-nitrogen ratios: insights from single-cell Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Tao, Zhanhua; Zhang, Pengfei; Qin, Zhaojun; Li, Yong-Qing; Wang, Guiwen

    2016-09-01

    Cupriavidus necator accumulates large amounts of poly(3-hydroxybutyrate) (PHB), a biodegradable substitute for petroleum-based plastics, under certain nutrient conditions. Conventional solvent-extraction-based methods for PHB quantification only obtain average information from cell populations and, thus, mask the heterogeneity among individual cells. Laser tweezers Raman spectroscopy (LTRS) was used to monitor dynamic changes in the contents of PHB, nucleic acids, and proteins in C. necator at the population and single-cell levels when the microorganism cells were cultivated at various carbon-to-nitrogen ratios. The biosynthetic activities of nucleic acids and proteins were maintained at high levels, and only a small amount of PHB was produced when the bacterial cells were cultured under balanced growth conditions. By contrast, the syntheses of nucleic acids and proteins were blocked, and PHB was accumulated in massive amount inside the microbial cells under nitrogen-limiting growth circumstances. Single-cell analysis revealed a relatively high heterogeneity in PHB level at the early stage of the bacterial growth. Additionally, bacterial cells in populations at certain cultivation stages were composed of two or three subpopulations on the basis of their PHB abundance. Overall, LTRS is a reliable single-cell analysis tool that can provide insights into PHB fermentation.

  4. Discovery of a stem-like multipotent cell fate.

    PubMed

    Paffhausen, Emily S; Alowais, Yasir; Chao, Cara W; Callihan, Evan C; Creswell, Karen; Bracht, John R

    2018-01-01

    Adipose derived stem cells (ASCs) can be obtained from lipoaspirates and induced in vitro to differentiate into bone, cartilage, and fat. Using this powerful model system we show that after in vitro adipose differentiation a population of cells retain stem-like qualities including multipotency. They are lipid (-), retain the ability to propagate, express two known stem cell markers, and maintain the capacity for trilineage differentiation into chondrocytes, adipocytes, and osteoblasts. However, these cells are not traditional stem cells because gene expression analysis showed an overall expression profile similar to that of adipocytes. In addition to broadening our understanding of cellular multipotency, our work may be particularly relevant to obesity-associated metabolic disorders. The adipose expandability hypothesis proposes that inability to differentiate new adipocytes is a primary cause of metabolic syndrome in obesity, including diabetes and cardiovascular disease. Here we have defined a differentiation-resistant stem-like multipotent cell population that may be involved in regulation of adipose expandability in vivo and may therefore play key roles in the comorbidities of obesity.

  5. Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species.

    PubMed

    Ben-Nun, Inbar Friedrich; Montague, Susanne C; Houck, Marlys L; Ryder, Oliver; Loring, Jeanne F

    2015-01-01

    For some highly endangered species there are too few reproductively capable animals to maintain adequate genetic diversity, and extraordinary measures are necessary to prevent their extinction. Cellular reprogramming is a means to capture the genomes of individual animals as induced pluripotent stem cells (iPSCs), which may eventually facilitate reintroduction of genetic material into breeding populations. Here, we describe a method for generating iPSCs from fibroblasts of mammalian endangered species.

  6. Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells

    PubMed Central

    Takeda, Norifumi; Jain, Rajan; LeBoeuf, Matthew R.; Padmanabhan, Arun; Wang, Qiaohong; Li, Li; Lu, Min Min; Millar, Sarah E.; Epstein, Jonathan A.

    2013-01-01

    The mammalian hair follicle relies on adult resident stem cells and their progeny to fuel and maintain hair growth throughout the life of an organism. The cyclical and initially synchronous nature of hair growth makes the hair follicle an ideal system with which to define homeostatic mechanisms of an adult stem cell population. Recently, we demonstrated that Hopx is a specific marker of intestinal stem cells. Here, we show that Hopx specifically labels long-lived hair follicle stem cells residing in the telogen basal bulge. Hopx+ cells contribute to all lineages of the mature hair follicle and to the interfollicular epidermis upon epidermal wounding. Unexpectedly, our analysis identifies a previously unappreciated progenitor population that resides in the lower hair bulb of anagen-phase follicles and expresses Hopx. These cells co-express Lgr5, do not express Shh and escape catagen-induced apoptosis. They ultimately differentiate into the cytokeratin 6-positive (K6) inner bulge cells in telogen, which regulate the quiescence of adjacent hair follicle stem cells. Although previous studies have suggested that K6+ cells arise from Lgr5-expressing lower outer root sheath cells in anagen, our studies indicate an alternative origin, and a novel role for Hopx-expressing lower hair bulb progenitor cells in contributing to stem cell homeostasis. PMID:23487314

  7. HU content and dynamics in Escherichia coli during the cell cycle and at different growth rates.

    PubMed

    Abebe, Anteneh Hailu; Aranovich, Alexander; Fishov, Itzhak

    2017-10-16

    DNA-binding proteins play an important role in maintaining bacterial chromosome structure and functions. Heat-unstable (HU) histone-like protein is one of the most abundant of these proteins and participates in all major chromosome-related activities. Owing to its low sequence specificity, HU fusions with fluorescent proteins were used for general staining of the nucleoid, aiming to reveal its morphology and dynamics. We have exploited a single chromosomal copy of hupA-egfp fusion under the native promoter and used quantitative microscopy imaging to investigate the amount and dynamics of HUα in Escherichia coli cells. We found that in steady-state growing populations the cellular HUα content is proportional to the cell size, whereas its concentration is size independent. Single-cell live microscopy imaging confirmed that the amount of HUα exponentially increases during the cell cycle, but its concentration is maintained constant. This supports the existence of an auto-regulatory mechanism underlying the HUα cellular level, in addition to reflecting the gene copy number. Both the HUα amount and concentration strongly increase with the cell growth rate in different culture media. Unexpectedly, the HU/DNA stoichiometry also remarkably increases with the growth rate. This last finding may be attributed to a higher requirement for maintaining the chromosome structure in nucleoids with higher complexity. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. Copyright © 2017 the American Physiological Society.

  9. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis

    PubMed Central

    Chapman, Mark A.; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David

    2017-01-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173–183, 2009; Kjaer M. Physiol Rev 84: 649–98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins—fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell. PMID:27881411

  10. Immunogenetics and resistance to avian malaria in Hawaiian honeycreepers (Drepanidinae)

    USGS Publications Warehouse

    Jarvi, Susan I.; Atkinson, Carter T.; Fleischer, Robert C.

    2001-01-01

    Although a number of factors have contributed to the decline and extinction of Hawai‘i’s endemic terrestrial avifauna, introduced avian malaria (Plasmodium relicturn) is probably the single most important factor preventing recovery of these birds in low-elevation habitats. Continued decline in numbers, fragmentation of populations, and extinction of species that are still relatively common will likely continue without new, aggressive approaches to managing avian disease. Methods of intervention in the disease cycle such as chemotherapy and vaccine development are not feasible because of efficient immune-evasion strategies evolved by the parasite, technical difficulties associated with treating wild avian populations, and increased risk of selection for more virulent strains of the parasite. We are investigating the natural evolution of disease resistance in some low-elevation native bird populations, particularly Hawai‘i ‘Amakihi (Hemignathus virens), to perfect genetic methods for identifying individuals with a greater immunological capacity to survive malarial infection. We are focusing on genetic analyses of the major histocompatibility complex, due to its critical role in both humoral and cell-mediated immune responses. In the parasite, we are evaluating conserved ribosomal genes as well as variable genes encoding cell-surface molecules as a first step in developing a better understanding of the complex interactions between malarial parasites and the avian immune system. A goal is to provide population managers with new criteria for maintaining long-term population stability for threatened species through the development of methods for evaluating and maintaining genetic diversity in small populations at loci important in immunological responsiveness to pathogens.

  11. ptf1a+ , ela3l- cells are developmentally maintained progenitors for exocrine regeneration following extreme loss of acinar cells in zebrafish larvae.

    PubMed

    Schmitner, Nicole; Kohno, Kenji; Meyer, Dirk

    2017-03-01

    The exocrine pancreas displays a significant capacity for regeneration and renewal. In humans and mammalian model systems, the partial loss of exocrine tissue, such as after acute pancreatitis or partial pancreatectomy induces rapid recovery via expansion of surviving acinar cells. In mouse it was further found that an almost complete removal of acinar cells initiates regeneration from a currently not well-defined progenitor pool. Here, we used the zebrafish as an alternative model to study cellular mechanisms of exocrine regeneration following an almost complete removal of acinar cells. We introduced and validated two novel transgenic approaches for genetically encoded conditional cell ablation in the zebrafish, either by caspase-8-induced apoptosis or by rendering cells sensitive to diphtheria toxin. By using the ela3l promoter for exocrine-specific expression, we show that both approaches allowed cell-type-specific removal of >95% of acinar tissue in larval and adult zebrafish without causing any signs of unspecific side effects. We find that zebrafish larvae are able to recover from a virtually complete acinar tissue ablation within 2 weeks. Using short-term lineage-tracing experiments and EdU incorporation assays, we exclude duct-associated Notch-responsive cells as the source of regeneration. Rather, a rare population of slowly dividing ela3l- negative cells expressing ptf1a and CPA was identified as the origin of the newly forming exocrine cells. Cells are actively maintained, as revealed by a constant number of these cells at different larval stages and after repeated cell ablation. These cells establish ela3l expression about 4-6 days after ablation without signs of increased proliferation in between. With onset of ela3l expression, cells initiate rapid proliferation, leading to fast expansion of the ela3l -positive population. Finally, we show that this proliferation is blocked by overexpression of the Wnt-signaling antagonist dkk1b In conclusion, we show a conserved requirement for Wnt signaling in exocrine tissue expansion and reveal a potential novel progenitor or stem cell population as a source for exocrine neogenesis after complete loss of acinar cells. © 2017. Published by The Company of Biologists Ltd.

  12. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaria-Martinez, Albert; Universitat de Barcelona, Barcelona; Barquinero, Jordi

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture andmore » sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45{sup -}, CD81{sup +} and Sca-1{sup +}). We also demonstrated that SP clonal cells secrete transforming growth factor {beta}1 (TGF-{beta}1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-{beta}1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.« less

  13. Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis.

    PubMed

    Santamaria-Martínez, Albert; Barquinero, Jordi; Barbosa-Desongles, Anna; Hurtado, Antoni; Pinós, Tomàs; Seoane, Joan; Poupon, Marie-France; Morote, Joan; Reventós, Jaume; Munell, Francina

    2009-10-15

    Cancer stem cells are a distinct cellular population that is believed to be responsible for tumor initiation and maintenance. Recent data suggest that solid tumors also contain another type of stem cells, the mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs), which contribute to the formation of tumor-associated stroma. The Hoechst 33342 efflux assay has proved useful to identify a rare cellular fraction, named Side Population (SP), enriched in cells with stem-like properties. Using this assay, we identified SP cells in a prostate cancer xenograft containing human prostate cancer cells and mouse stromal cells. The SP isolation, subculture and sequential sorting allowed the generation of single-cell-derived clones of murine origin that were recognized as MSC by their morphology, plastic adherence, proliferative potential, adipogenic and osteogenic differentiation ability and immunophenotype (CD45(-), CD81(+) and Sca-1(+)). We also demonstrated that SP clonal cells secrete transforming growth factor beta1 (TGF-beta1) and that their inhibition reduces proliferation and accelerates differentiation. These results reveal the existence of SP cells in the stroma of a cancer xenograft, and provide evidence supporting their MSC nature and the role of TGF-beta1 in maintaining their proliferation and undifferentiated status. Our data also reveal the usefulness of the SP assay to identify and isolate MSC cells from carcinomas.

  14. Dicer maintains the identity and function of proprioceptive sensory neurons

    PubMed Central

    O’Toole, Sean M.; Ferrer, Monica M.; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R.

    2017-01-01

    Neuronal cell identity is established during development and must be maintained throughout an animal’s life (Fishell G, Heintz N. Neuron 80: 602–612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899–907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359–373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. PMID:28003412

  15. Dicer maintains the identity and function of proprioceptive sensory neurons.

    PubMed

    O'Toole, Sean M; Ferrer, Monica M; Mekonnen, Jennifer; Zhang, Haihan; Shima, Yasuyuki; Ladle, David R; Nelson, Sacha B

    2017-03-01

    Neuronal cell identity is established during development and must be maintained throughout an animal's life (Fishell G, Heintz N. Neuron 80: 602-612, 2013). Transcription factors critical for establishing neuronal identity can be required for maintaining it (Deneris ES, Hobert O. Nat Neurosci 17: 899-907, 2014). Posttranscriptional regulation also plays an important role in neuronal differentiation (Bian S, Sun T. Mol Neurobiol 44: 359-373, 2011), but its role in maintaining cell identity is less established. To better understand how posttranscriptional regulation might contribute to cell identity, we examined the proprioceptive neurons in the dorsal root ganglion (DRG), a highly specialized sensory neuron class, with well-established properties that distinguish them from other neurons in the ganglion. By conditionally ablating Dicer in mice, using parvalbumin (Pvalb)-driven Cre recombinase, we impaired posttranscriptional regulation in the proprioceptive sensory neuron population. Knockout (KO) animals display a progressive form of ataxia at the beginning of the fourth postnatal week that is accompanied by a cell death within the DRG. Before cell loss, expression profiling shows a reduction of proprioceptor specific genes and an increased expression of nonproprioceptive genes normally enriched in other ganglion neurons. Furthermore, although central connections of these neurons are intact, the peripheral connections to the muscle are functionally impaired. Posttranscriptional regulation is therefore necessary to retain the transcriptional identity and support functional specialization of the proprioceptive sensory neurons. NEW & NOTEWORTHY We have demonstrated that selectively impairing Dicer in parvalbumin-positive neurons, which include the proprioceptors, triggers behavioral changes, a lack of muscle connectivity, and a loss of transcriptional identity as observed through RNA sequencing. These results suggest that Dicer and, most likely by extension, microRNAs are crucially important for maintaining proprioception. Additionally, this study hints at the larger question of how neurons maintain their functional and molecular specificity. Copyright © 2017 the American Physiological Society.

  16. Co-evolution of Human Leukocyte Antigen (HLA) Class I Ligands with Killer-Cell Immunoglobulin-Like Receptors (KIR) in a Genetically Diverse Population of Sub-Saharan Africans

    PubMed Central

    Norman, Paul J.; Hollenbach, Jill A.; Nemat-Gorgani, Neda; Guethlein, Lisbeth A.; Hilton, Hugo G.; Pando, Marcelo J.; Koram, Kwadwo A.; Riley, Eleanor M.; Abi-Rached, Laurent; Parham, Peter

    2013-01-01

    Interactions between HLA class I molecules and killer-cell immunoglobulin-like receptors (KIR) control natural killer cell (NK) functions in immunity and reproduction. Encoded by genes on different chromosomes, these polymorphic ligands and receptors correlate highly with disease resistance and susceptibility. Although studied at low-resolution in many populations, high-resolution analysis of combinatorial diversity of HLA class I and KIR is limited to Asian and Amerindian populations with low genetic diversity. At the other end of the spectrum is the West African population investigated here: we studied 235 individuals, including 104 mother-child pairs, from the Ga-Adangbe of Ghana. This population has a rich diversity of 175 KIR variants forming 208 KIR haplotypes, and 81 HLA-A, -B and -C variants forming 190 HLA class I haplotypes. Each individual we studied has a unique compound genotype of HLA class I and KIR, forming 1–14 functional ligand-receptor interactions. Maintaining this exceptionally high polymorphism is balancing selection. The centromeric region of the KIR locus, encoding HLA-C receptors, is highly diverse whereas the telomeric region encoding Bw4-specific KIR3DL1, lacks diversity in Africans. Present in the Ga-Adangbe are high frequencies of Bw4-bearing HLA-B*53:01 and Bw4-lacking HLA-B*35:01, which otherwise are identical. Balancing selection at key residues maintains numerous HLA-B allotypes having and lacking Bw4, and also those of stronger and weaker interaction with LILRB1, a KIR-related receptor. Correspondingly, there is a balance at key residues of KIR3DL1 that modulate its level of cell-surface expression. Thus, capacity to interact with NK cells synergizes with peptide binding diversity to drive HLA-B allele frequency distribution. These features of KIR and HLA are consistent with ongoing co-evolution and selection imposed by a pathogen endemic to West Africa. Because of the prevalence of malaria in the Ga-Adangbe and previous associations of cerebral malaria with HLA-B*53:01 and KIR, Plasmodium falciparum is a candidate pathogen. PMID:24204327

  17. Depletion of pro-inflammatory CD161(+) double negative (CD3(+)CD4(-)CD8(-)) T cells in AIDS patients is ameliorated by expansion of the γδ T cell population.

    PubMed

    Singleterry, Will L; Henderson, Harold; Cruse, Julius M

    2012-02-01

    In this present investigation, flow cytometry was utilized to evaluate 13 healthy controls and 31 HIV-1 infected patients who had advanced to the AIDS stage of infection (CD4 count below 200 cells/mm(3)), for the expression of CD161 on CD3(+) double negative (DN) (CD3(+)CD4(-)CD8(-)) T cells, CD4(+) T cells, CD8(+) T cells and γδ T cells. The observed depletion of CD161(+) T cells from peripheral circulation was due primarily to the loss of CD4(+)CD161(+) T cells; as these cells represented 8.67±0.74% of the total healthy control peripheral T cell population, while the CD4(+)CD161(+) T cells of the AIDS group represented only 3.35±0.41% (p=<0.0001) of the total peripheral T cell population. We have also shown here that the DN T cell population was more than doubled in the AIDS group, with the DN T cell population expanding from 3.29±0.45% of the healthy control peripheral T cell population to 8.64±1.16% (p=0.0001) of the AIDS group peripheral T cell population. By evaluating the expression of CD161 on the surface of the DN T cells we showed that within the healthy control group, 47.4±4.99% of the DN T cells were positive for the expression of CD161, while only 26.4±3.54% (p=0.002) of the AIDS group's DN T cells expressed CD161. Despite CD161 expression being halved on the DN T cells of the AIDS group, when we compared the total peripheral T cell percentage of CD161(+) DN T cells between the healthy control group and the AIDS group, there was no statistical difference. Even though only 26.4% DN T cells within the AIDS group were positive for CD161(+), the overall DN T cell population had expanded to such an extent that there was no statistical difference between the groups with regard to CD161(+) DN T cells as a percentage of the total peripheral T cell population. Furthermore, we showed that within the DN T cell population, there was an approximate 2:1 ratio of γδ to αβ T cells, and this ratio was maintained in both the healthy control group and the AIDS group. While evaluating γδ T cells we also discovered that CD8(+) γδ T cells were expanded from 0.62±.09% of the healthy control peripheral T cell population to 5.01±.88% (p=<0.0001) of the peripheral T cell population of the AIDS group; and that this population of CD8(+) γδ T cells underwent the same reduction in percentage of cells expressing CD161(+), further demonstrated that the phenomenon of CD161(+) percentage reduction and compensatory increase in total cell population was affecting the entire circulating γδ T cell population. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties

    PubMed Central

    Rendl, Michael; Polak, Lisa; Fuchs, Elaine

    2008-01-01

    Hair follicle (HF) formation is initiated when epithelial stem cells receive cues from specialized mesenchymal dermal papilla (DP) cells. In culture, DP cells lose their HF-inducing properties, but during hair growth in vivo, they reside within the HF bulb and instruct surrounding epithelial progenitors to orchestrate the complex hair differentiation program. To gain insights into the molecular program that maintains DP cell fate, we previously purified DP cells and four neighboring populations and defined their cell-type-specific molecular signatures. Here, we exploit this information to show that the bulb microenvironment is rich in bone morphogenetic proteins (BMPs) that act on DP cells to maintain key signature features in vitro and hair-inducing activity in vivo. By employing a novel in vitro/in vivo hybrid knockout assay, we ablate BMP receptor 1a in purified DP cells. When DPs cannot receive BMP signals, they lose signature characteristics in vitro and fail to generate HFs when engrafted with epithelial stem cells in vivo. These results reveal that BMP signaling, in addition to its key role in epithelial stem cell maintenance and progenitor cell differentiation, is essential for DP cell function, and suggest that it is a critical feature of the complex epithelial–mesenchymal cross-talk necessary to make hair. PMID:18281466

  19. How many TCR clonotypes does a body maintain?

    PubMed Central

    Lythe, Grant; Callard, Robin E.; Hoare, Rollo L.; Molina-París, Carmen

    2016-01-01

    We consider the lifetime of a T cell clonotype, the set of T cells with the same T cell receptor, from its thymic origin to its extinction in a multiclonal repertoire. Using published estimates of total cell numbers and thymic production rates, we calculate the mean number of cells per TCR clonotype, and the total number of clonotypes, in mice and humans. When there is little peripheral division, as in a mouse, the number of cells per clonotype is small and governed by the number of cells with identical TCR that exit the thymus. In humans, peripheral division is important and a clonotype may survive for decades, during which it expands to comprise many cells. We therefore devise and analyse a computational model of homeostasis of a multiclonal population. Each T cell in the model competes for self pMHC stimuli, cells of any one clonotype only recognising a small fraction of the many subsets of stimuli. A constant mean total number of cells is maintained by a balance between cell division and death, and a stable number of clonotypes by a balance between thymic production of new clonotypes and extinction of existing ones. The number of distinct clonotypes in a human body may be smaller than the total number of naive T cells by only one order of magnitude. PMID:26546971

  20. Hoxb4 overexpression in CD4 memory phenotype T cells increases the central memory population upon homeostatic proliferation.

    PubMed

    Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J

    2013-01-01

    Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.

  1. Latest biomaterials and technology in dentistry.

    PubMed

    Zandparsa, Roya

    2014-01-01

    Navigation technology is applied successfully in oral and maxillofacial surgery. Laser beams are used for caries removal. With nanodentistry, it is possible to maintain comprehensive oral health care. Nanorobots induce oral analgesia, desensitize teeth, and manipulate the tissue. They can also be used for preventive, restorative, and curative procedures. Strategies to engineer tissue can be categorized into 3 major classes: conductive, inductive, and cell transplantation approaches. Several populations of cells with stem cell properties have been isolated from different parts of the tooth. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Aging of marrow stromal (skeletal) stem cells and their contribution to age-related bone loss.

    PubMed

    Bellantuono, Ilaria; Aldahmash, Abdullah; Kassem, Moustapha

    2009-04-01

    Marrow stromal cells (MSC) are thought to be stem cells with osteogenic potential and therefore responsible for the repair and maintenance of the skeleton. Age related bone loss is one of the most prevalent diseases in the elder population. It is controversial whether MSC undergo a process of aging in vivo, leading to decreased ability to form and maintain bone homeostasis with age. In this review we summarize evidence of MSC involvement in age related bone loss and suggest new emerging targets for intervention.

  3. Noninvasive High-Throughput Single-Cell Analysis of the Intracellular pH of Saccharomyces cerevisiae by Ratiometric Flow Cytometry

    PubMed Central

    Valkonen, Mari; Mojzita, Dominik; Penttilä, Merja

    2013-01-01

    The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified. PMID:24038689

  4. Noninvasive high-throughput single-cell analysis of the intracellular pH of Saccharomyces cerevisiae by ratiometric flow cytometry.

    PubMed

    Valkonen, Mari; Mojzita, Dominik; Penttilä, Merja; Bencina, Mojca

    2013-12-01

    The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified.

  5. A comparative study of the structural organization of spheres derived from the adult human subventricular zone and glioblastoma biopsies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vik-Mo, Einar Osland, E-mail: e.o.vik-mo@medisin.uio.no; Department of Neurosurgery, Oslo University Hospital, Oslo; Sandberg, Cecilie

    2011-04-15

    Sphere forming assays have been useful to enrich for stem like cells in a range of tumors. The robustness of this system contrasts the difficulties in defining a stem cell population based on cell surface markers. We have undertaken a study to describe the cellular and organizational composition of tumorspheres, directly comparing these to neurospheres derived from the adult human subventricular zone (SVZ). Primary cell cultures from brain tumors were found to contain variable fractions of cells positive for tumor stem cell markers (CD133 (2-93%)/SSEA1 (3-15%)/CXCR4 (1-72%)). All cultures produced tumors upon xenografting. Tumorspheres contained a heterogeneous population of cells,more » but were structurally organized with stem cell markers present at the core of spheres, with markers of more mature glial progenitors and astrocytes at more peripheral location. Ultrastructural studies showed that tumorspheres contained a higher fraction of electron dense cells in the core than the periphery (36% and 19%, respectively). Neurospheres also contained a heterogeneous cell population, but did not have an organization similar to tumorspheres. Although tumorspheres clearly display irregular and neoplastic cells, they establish an organized structure with an outward gradient of differentiation. We suggest that this organization is central in maintaining the tumor stem cell pool.« less

  6. A diverse and intricate signalling network regulates stem cell fate in the shoot apical meristem.

    PubMed

    Dodsworth, Steven

    2009-12-01

    At the shoot apex of plants is a small region known as the shoot apical meristem (SAM) that maintains a population of undifferentiated (stem) cells whilst providing cells for developing lateral organs and the stem. All aerial structures of the plant develop from the SAM post-embryogenesis, enabling plants to grow in a characteristic modular fashion with great phenotypic and developmental plasticity throughout their lifetime. The maintenance of the stem cell population is intimately balanced with cell recruitment into differentiating tissues through intercellular communication involving a complex signalling network. Recent studies have shown that diverse regulators function in SAM maintenance, many of which converge on the WUSCHEL (WUS) gene. In this review the diverse regulatory modules that function in SAM maintenance are discussed: transcriptional and epigenetic control, hormonal regulation, and the balance with organogenesis. The central role of WUS as an integrator of multiple signals is highlighted; in addition, accessory feedback loops emerge as a feature enabling dynamic regulation of the stem cell niche.

  7. PRODUCTION AND CHARACTERIZATION OF MULTIPLE-LAYERED POPULATIONS OF ANIMAL CELLS

    PubMed Central

    Kruse, Paul F.; Miedema, Ed

    1965-01-01

    Dense populations containing 129 x 106 Jensen sarcoma, 134 x 106 DON Chinese hamster, 28.9 x 106 WI-38 human diploid, 61.8 x 106 HEp-2 human carcinoma, and 67.4 x 106 WISH human amnion cells were produced from dilute inocula, 0.85 to 5.33 x 106, in 7 to 8 days in a perfusion system using replicate T-60 flasks. Perfusion rates as high as 560 ml medium/day/T-60 were required to maintain pH (to ca ±0.1 unit) and adequate nutrient supplies. The cell densities encountered are described by the term "monolayer equivalents" (M.E.), defined as number of cells per culture divided by number of cells in a monolayer. The M.E.'s for T-60 cultures containing unusually dense populations of 40 x 106 WI-38 and 250 x 106 DON cells (9-day perfusion) were 5 and 17, respectively, and numbers of cells in illustrations of stained cross-sections of membranes from these cultures were in excellent agreement. Threshold M.E.'s exist below which proliferation is the chief cellular activity and above which one or more cell functions may predominate even though proliferation persists. Cellular nutrition and metabolism may change with changes in M.E., as illustrated in different patterns of glutamic acid, proline, and glycine utilization or production in dense vs. dilute WI-38 cell populations. The results indicated that the role of contact inhibition phenomena in arresting cellular proliferation was diminished in perfusion system environments. PMID:5884626

  8. Quantification of multiple gene expression in individual cells.

    PubMed

    Peixoto, António; Monteiro, Marta; Rocha, Benedita; Veiga-Fernandes, Henrique

    2004-10-01

    Quantitative gene expression analysis aims to define the gene expression patterns determining cell behavior. So far, these assessments can only be performed at the population level. Therefore, they determine the average gene expression within a population, overlooking possible cell-to-cell heterogeneity that could lead to different cell behaviors/cell fates. Understanding individual cell behavior requires multiple gene expression analyses of single cells, and may be fundamental for the understanding of all types of biological events and/or differentiation processes. We here describe a new reverse transcription-polymerase chain reaction (RT-PCR) approach allowing the simultaneous quantification of the expression of 20 genes in the same single cell. This method has broad application, in different species and any type of gene combination. RT efficiency is evaluated. Uniform and maximized amplification conditions for all genes are provided. Abundance relationships are maintained, allowing the precise quantification of the absolute number of mRNA molecules per cell, ranging from 2 to 1.28 x 10(9) for each individual gene. We evaluated the impact of this approach on functional genetic read-outs by studying an apparently homogeneous population (monoclonal T cells recovered 4 d after antigen stimulation), using either this method or conventional real-time RT-PCR. Single-cell studies revealed considerable cell-to-cell variation: All T cells did not express all individual genes. Gene coexpression patterns were very heterogeneous. mRNA copy numbers varied between different transcripts and in different cells. As a consequence, this single-cell assay introduces new and fundamental information regarding functional genomic read-outs. By comparison, we also show that conventional quantitative assays determining population averages supply insufficient information, and may even be highly misleading.

  9. Population Dynamics of Genetic Regulatory Networks

    NASA Astrophysics Data System (ADS)

    Braun, Erez

    2005-03-01

    Unlike common objects in physics, a biological cell processes information. The cell interprets its genome and transforms the genomic information content, through the action of genetic regulatory networks, into proteins which in turn dictate its metabolism, functionality and morphology. Understanding the dynamics of a population of biological cells presents a unique challenge. It requires to link the intracellular dynamics of gene regulation, through the mechanism of cell division, to the level of the population. We present experiments studying adaptive dynamics of populations of genetically homogeneous microorganisms (yeast), grown for long durations under steady conditions. We focus on population dynamics that do not involve random genetic mutations. Our experiments follow the long-term dynamics of the population distributions and allow to quantify the correlations among generations. We focus on three interconnected issues: adaptation of genetically homogeneous populations following environmental changes, selection processes on the population and population variability and expression distributions. We show that while the population exhibits specific short-term responses to environmental inputs, it eventually adapts to a robust steady-state, largely independent of external conditions. Cycles of medium-switch show that the adapted state is imprinted in the population and that this memory is maintained for many generations. To further study population adaptation, we utilize the process of gene recruitment whereby a gene naturally regulated by a specific promoter is placed under a different regulatory system. This naturally occurring process has been recognized as a major driving force in evolution. We have recruited an essential gene to a foreign regulatory network and followed the population long-term dynamics. Rewiring of the regulatory network allows us to expose their complex dynamics and phase space structure.

  10. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells.

    PubMed

    Noyan, Kajsa; Nguyen, Son; Betts, Michael R; Sönnerborg, Anders; Buggert, Marcus

    2018-01-01

    Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a "healthy" state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.

  11. Side population purified from hepatocellular carcinoma cells harbors cancer stem cell-like properties.

    PubMed

    Chiba, Tetsuhiro; Kita, Kaoru; Zheng, Yun-Wen; Yokosuka, Osamu; Saisho, Hiromitsu; Iwama, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki

    2006-07-01

    Recent advances in stem cell biology enable us to identify cancer stem cells in solid tumors as well as putative stem cells in normal solid organs. In this study, we applied side population (SP) cell analysis and sorting to established hepatocellular carcinoma (HCC) cell lines to detect subpopulations that function as cancer stem cells and to elucidate their roles in tumorigenesis. Among four cell lines analyzed, SP cells were detected in Huh7 (0.25%) and PLC/PRF/5 cells (0.80%), but not in HepG2 and Huh6 cells. SP cells demonstrated high proliferative potential and anti-apoptotic properties compared with those of non-SP cells. Immunocytochemistry examination showed that SP fractions contain a large number of cells presenting characteristics of both hepatocyte and cholangiocyte lineages. Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) xenograft transplant experiments showed that only 1 x 10(3) SP cells were sufficient for tumor formation, whereas an injection of 1 x 10(6) non-SP cells did not initiate tumors. Re-analysis of SP cell-derived tumors showed that SP cells generated both SP and non-SP cells and tumor-initiating potential was maintained only in SP cells in serial transplantation. Microarray analysis discriminated a differential gene expression profile between SP and non-SP cells, and several so-called "stemness genes" were upregulated in SP cells in HCC cells. In conclusion, we propose that a minority population, detected as SP cells in HCC cells, possess extreme tumorigenic potential and provide heterogeneity to the cancer stem cell system characterized by distinct hierarchy.

  12. Analysis of growth of tetraploid nuclei in roots of Vicia faba.

    PubMed

    Bansal, J; Davidson, D

    1978-03-01

    Growth of nuclei of a marked population of cells was determined from G1 to prophase in roots of Vicia faba. The cells were marked by inducing them to become tetraploid by treatment with 0.002% colchicine for 1 hr. Variation in nuclear volume is large; it is established in early G1 and maintained through interphase and into prophase. One consequence of this variation is that there is considerable overlap between volumes of nuclei of different ages in the cell cycle; nuclear volume, we suggest, cannot be used as an accurate indicator of the age of the cell in its growth cycle. Nuclei exhibit considerable variation in their growth rate through the cell cycle. Of the marked population of cells, about 65% had completed a cell cycle 14--15 hr after they were formed. These tetraploid nuclei have a cell cycle duration similar to that of fast cycling diploid cells of the same roots. Since they do complete a cell cycle, at least 65% of the nuclei studied must come from rapidly proliferating cells, showing that variability in nuclear volumes must be present in growing cells and cannot be attributed solely to the presence, in our samples, of non-cycling cells.

  13. Nicotinamide extends replicative lifespan of human cells.

    PubMed

    Kang, Hyun Tae; Lee, Hyung Il; Hwang, Eun Seong

    2006-10-01

    We found that an ongoing application of nicotinamide to normal human fibroblasts not only attenuated expression of the aging phenotype but also increased their replicative lifespan, causing a greater than 1.6-fold increase in the number of population doublings. Although nicotinamide by itself does not act as an antioxidant, the cells cultured in the presence of nicotinamide exhibited reduced levels of reactive oxygen species (ROS) and oxidative damage products associated with cellular senescence, and a decelerated telomere shortening rate without a detectable increase in telomerase activity. Furthermore, in the treated cells growing beyond the original Hayflick limit, the levels of p53, p21WAF1, and phospho-Rb proteins were similar to those in actively proliferating cells. The nicotinamide treatment caused a decrease in ATP levels, which was stably maintained until the delayed senescence point. Nicotinamide-treated cells also maintained high mitochondrial membrane potential but a lower respiration rate and superoxide anion level. Taken together, in contrast to its demonstrated pro-aging effect in yeast, nicotinamide extends the lifespan of human fibroblasts, possibly through reduction in mitochondrial activity and ROS production.

  14. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  15. Purification of Immature Neuronal Cells from Neural Stem Cell Progeny

    PubMed Central

    Azari, Hassan; Osborne, Geoffrey W.; Yasuda, Takahiro; Golmohammadi, Mohammad G.; Rahman, Maryam; Deleyrolle, Loic P.; Esfandiari, Ebrahim; Adams, David J.; Scheffler, Bjorn; Steindler, Dennis A.; Reynolds, Brent A.

    2011-01-01

    Large-scale proliferation and multi-lineage differentiation capabilities make neural stem cells (NSCs) a promising renewable source of cells for therapeutic applications. However, the practical application for neuronal cell replacement is limited by heterogeneity of NSC progeny, relatively low yield of neurons, predominance of astrocytes, poor survival of donor cells following transplantation and the potential for uncontrolled proliferation of precursor cells. To address these impediments, we have developed a method for the generation of highly enriched immature neurons from murine NSC progeny. Adaptation of the standard differentiation procedure in concert with flow cytometry selection, using scattered light and positive fluorescent light selection based on cell surface antibody binding, provided a near pure (97%) immature neuron population. Using the purified neurons, we screened a panel of growth factors and found that bone morphogenetic protein-4 (BMP-4) demonstrated a strong survival effect on the cells in vitro, and enhanced their functional maturity. This effect was maintained following transplantation into the adult mouse striatum where we observed a 2-fold increase in the survival of the implanted cells and a 3-fold increase in NeuN expression. Additionally, based on the neural-colony forming cell assay (N-CFCA), we noted a 64 fold reduction of the bona fide NSC frequency in neuronal cell population and that implanted donor cells showed no signs of excessive or uncontrolled proliferation. The ability to provide defined neural cell populations from renewable sources such as NSC may find application for cell replacement therapies in the central nervous system. PMID:21687800

  16. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10.

    PubMed

    Xie, Luokun; Choudhury, Gourav Roy; Winters, Ali; Yang, Shao-Hua; Jin, Kunlin

    2015-01-01

    Forkhead box P3 (Foxp3)(+) regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the CNS under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ (+) CD4(+) Foxp3(+) T-cell population (cerebral Treg cells) in the rat cerebrum, constituting more than 15% of the cerebral CD4(+) T-cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg-cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS-induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL-2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg-cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10

    PubMed Central

    Xie, Luokun; Choudhury, Gourav Roy; Winters, Ali; Yang, Shao-Hua; Jin, Kunlin

    2014-01-01

    Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the central nervous system under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ+CD4+Foxp3+ T-cell population (cerebral Treg cells) in the normal rat cerebrum, constituting more than 15% of the cerebral CD4+ T-cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg-cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS-induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL-2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg-cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the normal rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state. PMID:25329858

  18. Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.

    PubMed

    Martins, José Paulo; Santos, Jorge Miguel; de Almeida, Joana Marto; Filipe, Mariana Alves; de Almeida, Mariana Vargas Teixeira; Almeida, Sílvia Cristina Paiva; Água-Doce, Ana; Varela, Alexandre; Gilljam, Mari; Stellan, Birgitta; Pohl, Susanne; Dittmar, Kurt; Lindenmaier, Werner; Alici, Evren; Graça, Luís; Cruz, Pedro Estilita; Cruz, Helder Joaquim; Bárcia, Rita Nogueira

    2014-01-17

    Standardization of mesenchymal stromal cells (MSCs) manufacturing is urgently needed to enable translational activities and ultimately facilitate comparison of clinical trial results. In this work we describe the adaptation of a proprietary method for isolation of a specific umbilical cord tissue-derived population of MSCs, herein designated by its registered trademark as UCX®, towards the production of an advanced therapy medicinal product (ATMP). The adaptation focused on different stages of production, from cell isolation steps to cell culturing and cryopreservation. The origin and quality of materials and reagents were considered and steps for avoiding microbiological and endotoxin contamination of the final cell product were implemented. Cell isolation efficiency, MSCs surface markers and genetic profiles, originating from the use of different medium supplements, were compared. The ATMP-compliant UCX® product was also cryopreserved avoiding the use of dimethyl sulfoxide, an added benefit for the use of these cells as an ATMP. Cells were analyzed for expansion capacity and longevity. The final cell product was further characterized by flow cytometry, differentiation potential, and tested for contaminants at various passages. Finally, genetic stability and immune properties were also analyzed. The isolation efficiency of UCX® was not affected by the introduction of clinical grade enzymes. Furthermore, isolation efficiencies and phenotype analyses revealed advantages in the use of human serum in cell culture as opposed to human platelet lysate. Initial decontamination of the tissue followed by the use of mycoplasma- and endotoxin-free materials and reagents in cell isolation and subsequent culture, enabled the removal of antibiotics during cell expansion. UCX®-ATMP maintained a significant expansion potential of 2.5 population doublings per week up to passage 15 (P15). They were also efficiently cryopreserved in a DMSO-free cryoprotectant medium with approximately 100% recovery and 98% viability post-thaw. Additionally, UCX®-ATMP were genetically stable upon expansion (up to P15) and maintained their immunomodulatory properties. We have successfully adapted a method to consistently isolate, expand and cryopreserve a well-characterized population of human umbilical cord tissue-derived MSCs (UCX®), in order to obtain a cell product that is compliant with cell therapy. Here, we present quality and safety data that support the use of the UCX® as an ATMP, according to existing international guidelines.

  19. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  20. Bacterial Biofilms as Complex Communities

    NASA Astrophysics Data System (ADS)

    Vlamakis, Hera

    2010-03-01

    Many microbial populations form surface-associated multicellular communities known as biofilms. These multicellular communities are encased in a self-produced extracellular matrix composed of polysaccharides and proteins. Division of labor is a key feature of these communities and different cells serve distinct functions. We have found that in biofilms of the bacterium Bacillus subtilis, different cell types including matrix-producing and sporulating cells coexist and localize to distinct regions within the structured community. We were interested in understanding how these different cell types arise. Using fluorescence reporters under the control of promoters that are specific for distinct cell types we were able to follow the dynamics of differentiation throughout biofilm development. We found that a series of extracellular signals leads to differentiation of distinct cell types during biofilm formation. In addition, we found that extracellular matrix functions as a differentiation signal for timely sporulation within a biofilm and mutants unable to produce matrix were delayed in sporulation. Our results indicate that within a biofilm, cell-cell signaling is directional in that one cell type produces a signal that is sensed by another distinct cell type. Furthermore, once differentiated, cells become resistant to the action of other signaling molecules making it possible to maintain distinct cell populations over prolonged periods.

  1. Eph/Ephrin signalling maintains eye field segregation from adjacent neural plate territories during forebrain morphogenesis

    PubMed Central

    Cavodeassi, Florencia; Ivanovitch, Kenzo; Wilson, Stephen W.

    2013-01-01

    During forebrain morphogenesis, there is extensive reorganisation of the cells destined to form the eyes, telencephalon and diencephalon. Little is known about the molecular mechanisms that regulate region-specific behaviours and that maintain the coherence of cell populations undergoing specific morphogenetic processes. In this study, we show that the activity of the Eph/Ephrin signalling pathway maintains segregation between the prospective eyes and adjacent regions of the anterior neural plate during the early stages of forebrain morphogenesis in zebrafish. Several Ephrins and Ephs are expressed in complementary domains in the prospective forebrain and combinatorial abrogation of their activity results in incomplete segregation of the eyes and telencephalon and in defective evagination of the optic vesicles. Conversely, expression of exogenous Ephs or Ephrins in regions of the prospective forebrain where they are not usually expressed changes the adhesion properties of the cells, resulting in segregation to the wrong domain without changing their regional fate. The failure of eye morphogenesis in rx3 mutants is accompanied by a loss of complementary expression of Ephs and Ephrins, suggesting that this pathway is activated downstream of the regional fate specification machinery to establish boundaries between domains undergoing different programmes of morphogenesis. PMID:24026122

  2. Generation and expansion of highly pure motor neuron progenitors from human pluripotent stem cells.

    PubMed

    Du, Zhong-Wei; Chen, Hong; Liu, Huisheng; Lu, Jianfeng; Qian, Kun; Huang, CindyTzu-Ling; Zhong, Xiaofen; Fan, Frank; Zhang, Su-Chun

    2015-03-25

    Human pluripotent stem cells (hPSCs) have opened new opportunities for understanding human development, modelling disease processes and developing new therapeutics. However, these applications are hindered by the low efficiency and heterogeneity of cell types, such as motorneurons (MNs), differentiated from hPSCs as well as our inability to maintain the potency of lineage-committed progenitors. Here by using a combination of small molecules that regulate multiple signalling pathways, we develop a method to guide human embryonic stem cells to a near-pure population (>95%) of motor neuron progenitors (MNPs) in 12 days, and an enriched population (>90%) of functionally mature MNs in an additional 16 days. More importantly, the MNPs can be expanded for at least five passages so that a single MNP can be amplified to 1 × 10(4). This method is reproducible in human-induced pluripotent stem cells and is applied to model MN-degenerative diseases and in proof-of-principle drug-screening assays.

  3. Calcium/calmodulin-dependent protein kinase II activity regulates the proliferative potential of growth plate chondrocytes.

    PubMed

    Li, Yuwei; Ahrens, Molly J; Wu, Amy; Liu, Jennifer; Dudley, Andrew T

    2011-01-01

    For tissues that develop throughout embryogenesis and into postnatal life, the generation of differentiated cells to promote tissue growth is at odds with the requirement to maintain the stem cell/progenitor cell population to preserve future growth potential. In the growth plate cartilage, this balance is achieved in part by establishing a proliferative phase that amplifies the number of progenitor cells prior to terminal differentiation into hypertrophic chondrocytes. Here, we show that endogenous calcium/calmodulin-dependent protein kinase II (CamkII, also known as Camk2) activity is upregulated prior to hypertrophy and that loss of CamkII function substantially blocks the transition from proliferation to hypertrophy. Wnt signaling and Pthrp-induced phosphatase activity negatively regulate CamkII activity. Release of this repression results in activation of multiple effector pathways, including Runx2- and β-catenin-dependent pathways. We present an integrated model for the regulation of proliferation potential by CamkII activity that has important implications for studies of growth control and adult progenitor/stem cell populations.

  4. Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells.

    PubMed

    Goupille, Olivier; Saint Cloment, Cécile; Lopes, Miguel; Montarras, Didier; Robert, Benoît

    2008-08-01

    Using an nlacZ reporter gene inserted at the Msx1 and Msx2 loci, we could analyze the expression of these homeogenes in the adult mouse. We observed that Msx genes are prominently expressed in a subset of blood vessels. The Msx2nlacZ allele is mainly expressed in a restricted population of mural cells in peripheral arteries and veins. Msx1nlacZ is expressed to a lesser extent by vascular smooth muscle cells of peripheral arteries, but is highly expressed in arterioles and capillaries, making Msx1 a novel marker for a subpopulation of pericytes. Expression is set up early in developing vessels and maintained throughout life. In addition, expression of both genes is observed in a few endothelial cells of the aorta at fetal stages, and only Msx2 continues to be expressed in this layer at the adult stage. These results suggest major functions for Msx genes in vascular mural cell formation and remodeling. Copyright (c) 2008 Wiley-Liss, Inc.

  5. An ER-peroxisome tether exerts peroxisome population control in yeast

    PubMed Central

    Knoblach, Barbara; Sun, Xuejun; Coquelle, Nicolas; Fagarasanu, Andrei; Poirier, Richard L; Rachubinski, Richard A

    2013-01-01

    Eukaryotic cells compartmentalize biochemical reactions into membrane-enclosed organelles that must be faithfully propagated from one cell generation to the next. Transport and retention processes balance the partitioning of organelles between mother and daughter cells. Here we report the identification of an ER-peroxisome tether that links peroxisomes to the ER and ensures peroxisome population control in the yeast Saccharomyces cerevisiae. The tether consists of the peroxisome biogenic protein, Pex3p, and the peroxisome inheritance factor, Inp1p. Inp1p bridges the two compartments by acting as a molecular hinge between ER-bound Pex3p and peroxisomal Pex3p. Asymmetric peroxisome division leads to the formation of Inp1p-containing anchored peroxisomes and Inp1p-deficient mobile peroxisomes that segregate to the bud. While peroxisomes in mother cells are not released from tethering, de novo formation of tethers in the bud assists in the directionality of peroxisome transfer. Peroxisomes are thus stably maintained over generations of cells through their continued interaction with tethers. PMID:23900285

  6. AMOBH: Adaptive Multiobjective Black Hole Algorithm.

    PubMed

    Wu, Chong; Wu, Tao; Fu, Kaiyuan; Zhu, Yuan; Li, Yongbo; He, Wangyong; Tang, Shengwen

    2017-01-01

    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called "adaptive multiobjective black hole algorithm" (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases.

  7. Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces.

    PubMed

    Woody, Scott T; Ives, Anthony R; Nordheim, Erik V; Andrews, John H

    2007-06-01

    Despite the ubiquity and importance of microbes in nature, little is known about their natural population dynamics, especially for those that occupy terrestrial habitats. Here we investigate the dynamics of the yeast-like fungus Aureobasidium pullulans (Ap) on apple leaves in an orchard. We asked three questions. (1) Is variation in fungal population density among leaves caused by variation in leaf carrying capacities and strong density-dependent population growth that maintains densities near carrying capacity? (2) Do resident populations have competitive advantages over immigrant cells? (3) Do Ap dynamics differ at different times during the growing season? To address these questions, we performed two experiments at different times in the growing season. Both experiments used a 2 x 2 factorial design: treatment 1 removed fungal cells from leaves to reveal density-dependent population growth, and treatment 2 inoculated leaves with an Ap strain engineered to express green fluorescent protein (GFP), which made it possible to track the fate of immigrant cells. The experiments showed that natural populations of Ap vary greatly in density due to sustained differences in carrying capacities among leaves. The maintenance of populations close to carrying capacities indicates strong density-dependent processes. Furthermore, resident populations are strongly competitive against immigrants, while immigrants have little impact on residents. Finally, statistical models showed high population growth rates of resident cells in one experiment but not in the other, suggesting that Ap experiences relatively "good" and "bad" periods for population growth. This picture of Ap dynamics conforms to commonly held, but rarely demonstrated, expectations of microbe dynamics in nature. It also highlights the importance of local processes, as opposed to immigration, in determining the abundance and dynamics of microbes on surfaces in terrestrial systems.

  8. Live cell imaging reveals marked variability in myoblast proliferation and fate

    PubMed Central

    2013-01-01

    Background During the process of muscle regeneration, activated stem cells termed satellite cells proliferate, and then differentiate to form new myofibers that restore the injured area. Yet not all satellite cells contribute to muscle repair. Some continue to proliferate, others die, and others become quiescent and are available for regeneration following subsequent injury. The mechanisms that regulate the adoption of different cell fates in a muscle cell precursor population remain unclear. Methods We have used live cell imaging and lineage tracing to study cell fate in the C2 myoblast line. Results Analyzing the behavior of individual myoblasts revealed marked variability in both cell cycle duration and viability, but similarities between cells derived from the same parental lineage. As a consequence, lineage sizes and outcomes differed dramatically, and individual lineages made uneven contributions toward the terminally differentiated population. Thus, the cohort of myoblasts undergoing differentiation at the end of an experiment differed dramatically from the lineages present at the beginning. Treatment with IGF-I increased myoblast number by maintaining viability and by stimulating a fraction of cells to complete one additional cell cycle in differentiation medium, and as a consequence reduced the variability of the terminal population compared with controls. Conclusion Our results reveal that heterogeneity of responses to external cues is an intrinsic property of cultured myoblasts that may be explained in part by parental lineage, and demonstrate the power of live cell imaging for understanding how muscle differentiation is regulated. PMID:23638706

  9. Maintenance and induction of murine embryonic stem cell differentiation using E-cadherin-Fc substrata without colony formation

    NASA Astrophysics Data System (ADS)

    Meng, Qing-Yuan; Akaike, Toshihiro

    2013-03-01

    Induced embryonic stem (ES) cells are expected to be promising cell resources for the observation of the cell behaviors in developmental biology as well as the implantation in cell treatments in human diseases. A recombinant E-cadherin substratum was developed as a cell recognizable substratum to maintain the ES cells' self-renewal and pluripotency at single cell level. Furthermore, the generation of various cell lineages in different germ layers, including hepatic or neural cells, was achieved on the chimeric protein layer precisely and effectively. The induction and isolation of specific cell population was carried out with the enhancing effect of other artificial extracellular matrices (ECMs) in enzyme-free process. The murine ES cell-derived cells showed highly morphological similarities and functional expressions to matured hepatocytes or neural progenitor cells.

  10. Chitosan promotes cancer progression and stem cell properties in association with Wnt signaling in colon and hepatocellular carcinoma cells

    PubMed Central

    Chang, Po-Hsiang; Sekine, Keisuke; Chao, Hsiao-Mei; Hsu, Shan-hui; Chern, Edward

    2017-01-01

    Cancer stem cells (CSCs), a small population of cancer cells, have been considered to be the origin of cancer initiation, recurrence, and metastasis. Tumor microenvironment provides crucial signals for CSCs to maintain stem cell properties and promotes tumorigenesis. Therefore, establishment of an appropriate cell culture system to mimic the microenvironment for CSC studies is an important issue. In this study, we grew colon and hepatocellular carcinoma (HCC) cells on chitosan membranes and evaluated the tumor progression and the CSC properties. Experimental results showed that culturing cancer cells on chitosan increased cell motility, drug resistance, quiescent population, self-renewal capacity, and the expression levels of stemness and CSC marker genes, such as OCT4, NANOG, CD133, CD44, and EpCAM. Furthermore, we demonstrated that chitosan might activate canonical Wnt/β-catenin-CD44 axis signaling in CD44positive colon cancer cells and noncanonical Wnt-STAT3 signaling in CD44negative HCC cells. In conclusion, chitosan as culture substrates activated the essential signaling of CSCs and promoted CSC properties. The chitosan culture system provides a convenient platform for the research of CSC biology and screening of anticancer drugs. PMID:28367998

  11. Quantifying T Lymphocyte Turnover

    PubMed Central

    De Boer, Rob J.; Perelson, Alan S.

    2013-01-01

    Peripheral T cell populations are maintained by production of naive T cells in the thymus, clonal expansion of activated cells, cellular self-renewal (or homeostatic proliferation), and density dependent cell life spans. A variety of experimental techniques have been employed to quantify the relative contributions of these processes. In modern studies lymphocytes are typically labeled with 5-bromo-2′-deoxyuridine (BrdU), deuterium, or the fluorescent dye carboxy-fluorescein diacetate succinimidyl ester (CFSE), their division history has been studied by monitoring telomere shortening and the dilution of T cell receptor excision circles (TRECs) or the dye CFSE, and clonal expansion has been documented by recording changes in the population densities of antigen specific cells. Proper interpretation of such data in terms of the underlying rates of T cell production, division, and death has proven to be notoriously difficult and involves mathematical modeling. We review the various models that have been developed for each of these techniques, discuss which models seem most appropriate for what type of data, reveal open problems that require better models, and pinpoint how the assumptions underlying a mathematical model may influence the interpretation of data. Elaborating various successful cases where modeling has delivered new insights in T cell population dynamics, this review provides quantitative estimates of several processes involved in the maintenance of naive and memory, CD4+ and CD8+ T cell pools in mice and men. PMID:23313150

  12. Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ.

    PubMed

    Good-Jacobson, Kim L; Chen, Yunshun; Voss, Anne K; Smyth, Gordon K; Thomas, Tim; Tarlinton, David

    2014-07-01

    Memory B cells and long-lived bone marrow-resident plasma cells maintain humoral immunity. Little is known about the intrinsic mechanisms that are essential for forming memory B cells or endowing them with the ability to rapidly differentiate upon reexposure while maintaining the population over time. Histone modifications have been shown to regulate lymphocyte development, but their role in regulating differentiation and maintenance of B-cell subsets during an immune response is unclear. Using stage-specific deletion of monocytic leukemia zinc finger protein (MOZ), a histone acetyltransferase, we demonstrate that mutation of this chromatin modifier alters fate decisions in both primary and secondary responses. In the absence of MOZ, germinal center B cells were significantly impaired in their ability to generate dark zone centroblasts, with a concomitant decrease in both cell-cycle progression and BCL-6 expression. In contrast, there was increased differentiation to IgM and low-affinity IgG1(+) memory B cells. The lack of MOZ affected the functional outcome of humoral immune responses, with an increase in secondary germinal centers and a corresponding decrease in secondary high-affinity antibody-secreting cell formation. Therefore, these data provide strong evidence that manipulating epigenetic modifiers can regulate fate decisions during humoral responses, and thus could be targeted for therapeutic intervention.

  13. Cell surface marker profiling of human tracheal basal cells reveals distinct subpopulations, identifies MST1/MSP as a mitogenic signal, and identifies new biomarkers for lung squamous cell carcinomas.

    PubMed

    Van de Laar, Emily; Clifford, Monica; Hasenoeder, Stefan; Kim, Bo Ram; Wang, Dennis; Lee, Sharon; Paterson, Josh; Vu, Nancy M; Waddell, Thomas K; Keshavjee, Shaf; Tsao, Ming-Sound; Ailles, Laurie; Moghal, Nadeem

    2014-12-31

    The large airways of the lungs (trachea and bronchi) are lined with a pseudostratified mucociliary epithelium, which is maintained by stem cells/progenitors within the basal cell compartment. Alterations in basal cell behavior can contribute to large airway diseases including squamous cell carcinomas (SQCCs). Basal cells have traditionally been thought of as a uniform population defined by basolateral position, cuboidal cell shape, and expression of pan-basal cell lineage markers like KRT5 and TP63. While some evidence suggests that basal cells are not all functionally equivalent, few heterogeneously expressed markers have been identified to purify and study subpopulations. In addition, few signaling pathways have been identified that regulate their cell behavior. The goals of this work were to investigate tracheal basal cell diversity and to identify new signaling pathways that regulate basal cell behavior. We used flow cytometry (FACS) to profile cell surface marker expression at a single cell level in primary human tracheal basal cell cultures that maintain stem cell/progenitor activity. FACS results were validated with tissue staining, in silico comparisons with normal basal cell and lung cancer datasets, and an in vitro proliferation assay. We identified 105 surface markers, with 47 markers identifying potential subpopulations. These subpopulations generally fell into more (~ > 13%) or less abundant (~ < 6%) groups. Microarray gene expression profiling supported the heterogeneous expression of these markers in the total population, and immunostaining of large airway tissue suggested that some of these markers are relevant in vivo. 24 markers were enriched in lung SQCCs relative to adenocarcinomas, with four markers having prognostic significance in SQCCs. We also identified 33 signaling receptors, including the MST1R/RON growth factor receptor, whose ligand MST1/MSP was mitogenic for basal cells. This work provides the largest description to date of molecular diversity among human large airway basal cells. Furthermore, these markers can be used to further study basal cell function in repair and disease, and may aid in the classification and study of SQCCs.

  14. T cells establish and maintain CNS viral infection in HIV-infected humanized mice.

    PubMed

    Honeycutt, Jenna B; Liao, Baolin; Nixon, Christopher C; Cleary, Rachel A; Thayer, William O; Birath, Shayla L; Swanson, Michael D; Sheridan, Patricia; Zakharova, Oksana; Prince, Francesca; Kuruc, JoAnn; Gay, Cynthia L; Evans, Chris; Eron, Joseph J; Wahl, Angela; Garcia, J Victor

    2018-06-04

    The human brain is an important site of HIV replication and persistence during antiretroviral therapy (ART). Direct evaluation of HIV infection in the brains of otherwise healthy individuals is not feasible; therefore, we performed a large-scale study of bone marrow/liver/thymus (BLT) humanized mice as an in vivo model to study HIV infection in the brain. Human immune cells, including CD4+ T cells and macrophages, were present throughout the BLT mouse brain. HIV DNA, HIV RNA, and/or p24+ cells were observed in the brains of HIV-infected animals, regardless of the HIV isolate used. HIV infection resulted in decreased numbers of CD4+ T cells, increased numbers of CD8+ T cells, and a decreased CD4+/CD8+ T cell ratio in the brain. Using humanized T cell-only mice (ToM), we demonstrated that T cells establish and maintain HIV infection of the brain in the complete absence of human myeloid cells. HIV infection of ToM resulted in CD4+ T cell depletion and a reduced CD4+/CD8+ T cell ratio. ART significantly reduced HIV levels in the BLT mouse brain, and the immune cell populations present were indistinguishable from those of uninfected controls, which demonstrated the effectiveness of ART in controlling HIV replication in the CNS and returning cellular homeostasis to a pre-HIV state.

  15. Production and characterization of multiple-layered populations of animal cells.

    PubMed

    Kruse, P F; Miedema, E

    1965-11-01

    Dense populations containing 129 x 10(6) Jensen sarcoma, 134 x 10(6) DON Chinese hamster, 28.9 x 10(6) WI-38 human diploid, 61.8 x 10(6) HEp-2 human carcinoma, and 67.4 x 10(6) WISH human amnion cells were produced from dilute inocula, 0.85 to 5.33 x 10(6), in 7 to 8 days in a perfusion system using replicate T-60 flasks. Perfusion rates as high as 560 ml medium/day/T-60 were required to maintain pH (to ca +/-0.1 unit) and adequate nutrient supplies. The cell densities encountered are described by the term "monolayer equivalents" (M.E.), defined as number of cells per culture divided by number of cells in a monolayer. The M.E.'s for T-60 cultures containing unusually dense populations of 40 x 10(6) WI-38 and 250 x 10(6) DON cells (9-day perfusion) were 5 and 17, respectively, and numbers of cells in illustrations of stained cross-sections of membranes from these cultures were in excellent agreement. Threshold M.E.'s exist below which proliferation is the chief cellular activity and above which one or more cell functions may predominate even though proliferation persists. Cellular nutrition and metabolism may change with changes in M.E., as illustrated in different patterns of glutamic acid, proline, and glycine utilization or production in dense vs. dilute WI-38 cell populations. The results indicated that the role of contact inhibition phenomena in arresting cellular proliferation was diminished in perfusion system environments.

  16. Taste Bud Homeostasis in Health, Disease, and Aging

    PubMed Central

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50–100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8–12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging. PMID:24287552

  17. Taste bud homeostasis in health, disease, and aging.

    PubMed

    Feng, Pu; Huang, Liquan; Wang, Hong

    2014-01-01

    The mammalian taste bud is an onion-shaped epithelial structure with 50-100 tightly packed cells, including taste receptor cells, supporting cells, and basal cells. Taste receptor cells detect nutrients and toxins in the oral cavity and transmit the sensory information to gustatory nerve endings in the buds. Supporting cells may play a role in the clearance of excess neurotransmitters after their release from taste receptor cells. Basal cells are precursor cells that differentiate into mature taste cells. Similar to other epithelial cells, taste cells turn over continuously, with an average life span of about 8-12 days. To maintain structural homeostasis in taste buds, new cells are generated to replace dying cells. Several recent studies using genetic lineage tracing methods have identified populations of progenitor/stem cells for taste buds, although contributions of these progenitor/stem cell populations to taste bud homeostasis have yet to be fully determined. Some regulatory factors of taste cell differentiation and degeneration have been identified, but our understanding of these aspects of taste bud homoeostasis remains limited. Many patients with various diseases develop taste disorders, including taste loss and taste distortion. Decline in taste function also occurs during aging. Recent studies suggest that disruption or alteration of taste bud homeostasis may contribute to taste dysfunction associated with disease and aging.

  18. Mortality in well controlled HIV in the continuous antiretroviral therapy arms of the SMART and ESPRIT trials compared with the general population.

    PubMed

    Rodger, Alison J; Lodwick, Rebecca; Schechter, Mauro; Deeks, Steven; Amin, Janaki; Gilson, Richard; Paredes, Roger; Bakowska, Elzbieta; Engsig, Frederik N; Phillips, Andrew

    2013-03-27

    Due to the success of antiretroviral therapy (ART), it is relevant to ask whether death rates in optimally treated HIV are higher than the general population. The objective was to compare mortality rates in well controlled HIV-infected adults in the SMART and ESPRIT clinical trials with the general population. Non-IDUs aged 20-70 years from the continuous ART control arms of ESPRIT and SMART were included if the person had both low HIV plasma viral loads (≤400 copies/ml SMART, ≤500 copies/ml ESPRIT) and high CD4(+) T-cell counts (≥350 cells/μl) at any time in the past 6 months. Standardized mortality ratios (SMRs) were calculated by comparing death rates with the Human Mortality Database. Three thousand, two hundred and eighty individuals [665 (20%) women], median age 43 years, contributed 12,357 person-years of follow-up. Sixty-two deaths occurred during follow up. Commonest cause of death was cardiovascular disease (CVD) or sudden death (19, 31%), followed by non-AIDS malignancy (12, 19%). Only two deaths (3%) were AIDS-related. Mortality rate was increased compared with the general population with a CD4(+) cell count between 350 and 499 cells/μl [SMR 1.77, 95% confidence interval (CI) 1.17-2.55]. No evidence for increased mortality was seen with CD4(+) cell counts greater than 500 cells/μl (SMR 1.00, 95% CI 0.69-1.40). In HIV-infected individuals on ART, with a recent undetectable viral load, who maintained or had recovery of CD4(+) cell counts to at least 500 cells/μl, we identified no evidence for a raised risk of death compared with the general population.

  19. Development and characterization of a cell line from Pacific herring, Clupea harengus pallasi, sensitive to both naphthalene cytotoxicity and infection by viral hemorrhagic septicemia virus.

    PubMed

    Ganassin, R C; Sanders, S M; Kennedy, C J; Joyce, E M; Bols, N C

    1999-01-01

    A cell line, PHL, has been successfully established from newly hatched herring larvae. The cells are maintained in growth medium consisting of Leibovitz's L-15 supplemented with 15% fetal bovine serum (FBS), and have been cryopreserved and maintain viability after thawing. These cells retain a diploid karotype after 65 population doublings. PHL are susceptible to infection by the North American strain of viral hemorrhagic septicemia (VHS) virus, and are sensitive to the cytotoxic effects of naphthalene, a common environmental contaminant. Naphthalene is a component of crude and refined oil, and may be found in the marine environment following acute events such as oil spills. In addition, chronic sources of naphthalene contamination include offshore drilling and petroleum contamination from areas such as docks and marinas that have creosote-treated docks and pilings and also receive constant small inputs of petroleum products. This cell line should be useful for investigations of the toxicity of naphthalene and other petroleum components to juvenile herring. In addition, studies of the VHS virus will be facilitated by the availability of a susceptible cell line from an alternative species.

  20. CHARACTERISTICS OF IMMUNOLOGICAL MEMORY IN MICE

    PubMed Central

    Black, S. J.; Inchley, C. J.

    1974-01-01

    The kinetics of the generation of primed IgM and IgG antibody-forming cell precursors, and of helper T-cell populations, were analyzed in mice whose primary responses to high and low doses of SRBC were arrested at intervals by the immunosuppressive agents cyclophosphamide monohydrate and specific antibody. The extent to which immunological memory was established in these animals before blockade of the primary response was assessed by the hemolytic plaque assay following challenge 12 wk after priming. The presence of IgG B-memory cells and T-memory cells in suppressed mice was further investigated by the transfer into these animals of syngeneic SRBC-stimulated thymocytes or anti-θ-treated spleen cells. It was found that the progenitors of secondary IgM-synthesizing cells were primed almost immediately after injection of antigen, and that early blockade of the primary response resulted in a raised IgM response after challenge. On the other hand, priming for a secondary IgG response took at least 4 days, and was dose-dependent, although helper T populations for a secondary IgG response appeared 3 days after antigen injection. It appeared that both IgM and IgG memory cells may be considered as Y cells in terms of the X-Y-Z scheme of lymphocyte activation, but that the two populations are generated at different times after exposure to antigen. The size of either Y-cell population at any given time is dependent upon the amount of antigen available to provoke differentiation to antibody-forming Z cells, and the IgM Y-cell population in particular is likely to be depleted during the course of a normal 1° response. When IgM Y cells were maintained for long periods as a result of immunosuppression, their secondary antibody response was independent of the primed T cells necessary for a secondary IgG response. PMID:4602981

  1. Factors influencing the abundance of the side population in a human myeloma cell line.

    PubMed

    Mo, Sui-Lin; Li, Jia; Loh, Yen S; Brown, Ross D; Smith, Adrian L; Chen, Yuling; Joshua, Douglas; Roufogalis, Basil D; Li, George Q; Fan, Kei; Ng, Michelle C H; Sze, Daniel Man-Yuen

    2011-01-01

    Side population (SP) refers to a group of cells, which is capable to efflux Hoechst 33342, a DNA-binding dye. SP cells exist both in normal and tumor tissues. Although SP abundance has been used as an indicator for disease prognostic and drug screening in many research projects, few studies have systematically examined the factors influencing SP analysis. In this study we aim to develop a more thorough understanding of the multiple factors involved in SP analysis including Hoechst 33342 staining and cell culture. RPMI-8226, a high SP percentage (SP%) human myeloma cell line was employed here. The results showed that SP% was subject to staining conditions including: viable cell proportion, dye concentration, staining cell density, incubation duration, staining volume, and mix interval. In addition, SP% was highest in day one after passage, while dropped steadily over time. This study shows that both staining conditions and culture duration can significantly affect SP%. In this case, any conclusions based on SP% should be interpreted cautiously. The relation between culture duration and SP% suggests that the incidence of SP cells may be related to cell proliferation and cell cycle phase. Maintaining these technical variables consistently is essential in SP research.

  2. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells

    PubMed Central

    Odorizzi, Pamela M.; Pauken, Kristen E.; Paley, Michael A.; Sharpe, Arlene

    2015-01-01

    Programmed Death-1 (PD-1) has received considerable attention as a key regulator of CD8+ T cell exhaustion during chronic infection and cancer because blockade of this pathway partially reverses T cell dysfunction. Although the PD-1 pathway is critical in regulating established “exhausted” CD8+ T cells (TEX cells), it is unclear whether PD-1 directly causes T cell exhaustion. We show that PD-1 is not required for the induction of exhaustion in mice with chronic lymphocytic choriomeningitis virus (LCMV) infection. In fact, some aspects of exhaustion are more severe with genetic deletion of PD-1 from the onset of infection. Increased proliferation between days 8 and 14 postinfection is associated with subsequent decreased CD8+ T cell survival and disruption of a critical proliferative hierarchy necessary to maintain exhausted populations long term. Ultimately, the absence of PD-1 leads to the accumulation of more cytotoxic, but terminally differentiated, CD8+ TEX cells. These results demonstrate that CD8+ T cell exhaustion can occur in the absence of PD-1. They also highlight a novel role for PD-1 in preserving TEX cell populations from overstimulation, excessive proliferation, and terminal differentiation. PMID:26034050

  3. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells

    PubMed Central

    Hess, David A.; Wirthlin, Louisa; Craft, Timothy P.; Herrbrich, Phillip E.; Hohm, Sarah A.; Lahey, Ryan; Eades, William C.; Creer, Michael H.; Nolta, Jan A.

    2006-01-01

    The development of novel cell-based therapies requires understanding of distinct human hematopoietic stem and progenitor cell populations. We recently isolated reconstituting hematopoietic stem cells (HSCs) by lineage depletion and purification based on high aldehyde dehydrogenase activity (ALDHhiLin- cells). Here, we further dissected the ALDHhi-Lin- population by selection for CD133, a surface molecule expressed on progenitors from hematopoietic, endothelial, and neural lineages. ALDHhiCD133+Lin- cells were primarily CD34+, but also included CD34-CD38-CD133+ cells, a phenotype previously associated with repopulating function. Both ALDHhiCD133-Lin- and ALDHhiCD133+Lin- cells demonstrated distinct clonogenic progenitor function in vitro, whereas only the ALDHhiCD133+Lin- population seeded the murine bone marrow 48 hours after transplantation. Significant human cell repopulation was observed only in NOD/SCID and NOD/SCID β2M-null mice that received transplants of ALDHhiCD133+Lin- cells. Limiting dilution analysis demonstrated a 10-fold increase in the frequency of NOD/SCID repopulating cells compared with CD133+Lin- cells, suggesting that high ALDH activity further purified cells with repopulating function. Transplanted ALDHhiCD133+Lin- cells also maintained primitive hematopoietic phenotypes (CD34+CD38-) and demonstrated enhanced repopulating function in recipients of serial, secondary transplants. Cell selection based on ALDH activity and CD133 expression provides a novel purification of HSCs with long-term repopulating function and may be considered an alternative to CD34 cell selection for stem cell therapies. PMID:16269619

  4. Reliable and versatile immortal muscle cell models from healthy and myotonic dystrophy type 1 primary human myoblasts.

    PubMed

    Pantic, Boris; Borgia, Doriana; Giunco, Silvia; Malena, Adriana; Kiyono, Tohru; Salvatori, Sergio; De Rossi, Anita; Giardina, Emiliano; Sangiuolo, Federica; Pegoraro, Elena; Vergani, Lodovica; Botta, Annalisa

    2016-03-01

    Primary human skeletal muscle cells (hSkMCs) are invaluable tools for deciphering the basic molecular mechanisms of muscle-related biological processes and pathological alterations. Nevertheless, their use is quite restricted due to poor availability, short life span and variable purity of the cells during in vitro culture. Here, we evaluate a recently published method of hSkMCs immortalization, relying on ectopic expression of cyclin D1 (CCND1), cyclin-dependent kinase 4 (CDK4) and telomerase (TERT) in myoblasts from healthy donors (n=3) and myotonic dystrophy type 1 (DM1) patients (n=2). The efficacy to maintain the myogenic and non-transformed phenotype, as well as the main pathogenetic hallmarks of DM1, has been assessed. Combined expression of the three genes i) maintained the CD56(NCAM)-positive myoblast population and differentiation potential; ii) preserved the non-transformed phenotype and iii) maintained the CTG repeat length, amount of nuclear foci and aberrant alternative splicing in immortal muscle cells. Moreover, immortal hSkMCs displayed attractive additional features such as structural maturation of sarcomeres, persistence of Pax7-positive cells during differentiation and complete disappearance of nuclear foci following (CAG)7 antisense oligonucleotide (ASO) treatment. Overall, the CCND1, CDK4 and TERT immortalization yields versatile, reliable and extremely useful human muscle cell models to investigate the basic molecular features of human muscle cell biology, to elucidate the molecular pathogenetic mechanisms and to test new therapeutic approaches for DM1 in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. In vitro propagation of male germline stem cells from piglets.

    PubMed

    Zheng, Yi; Tian, Xiue; Zhang, Yaqing; Qin, Jinzhou; An, Junhui; Zeng, Wenxian

    2013-07-01

    To study the effects of serum and growth factors on propagation of porcine male germline stem cells (MGSCs) in vitro and develop a culture system for these stem cells. Fresh testicular cells from neonatal piglets were obtained by mechanical dissociation and collagenase-trypsin digestion. After differential plating, non-adhering cells were cultured in media supplemented with different concentrations of serum (0, 1 %, 2 %, 5 %, 10 %). After 10 days of primary culture, the cells were maintained in media supplemented with different concentrations of growth factors (basic fibroblast growth factor and epidermal growth factor at 1, 5, 10 ng/ml). The number of MGSC-derived colonies with different sizes was determined in each treatment to assess the effects of serum concentrations and growth factors. The number of MGSC-derived colonies was significantly higher in the presence of 1 % rather than 10 % fetal bovine serum (FBS). Basic fibroblast growth factor (bFGF) at 1, 5 ng/ml and epidermal growth factor (EGF) at 5, 10 ng/ml significantly promoted colony formation. Immunocytochemistry, reverse transcriptase-polymerase chain reaction (RT-PCR) and xenotransplantation assays demonstrated the presence of functional stem cells in cultured cell population. In vitro propagation of porcine MGSCs could be maintained in the presence of 1 % FBS and supplementation of growth factors for 1 month.

  6. Developing Laryngeal Muscle of Xenopus laevis as a Model System: Androgen-Driven Myogenesis Controls Fiber Type Transformation

    PubMed Central

    Nasipak, Brian; Kelley, Darcy B.

    2014-01-01

    The developmental programs that contribute to myogenic stem cell proliferation and muscle fiber differentiation control fiber numbers and twitch type. In this study, we describe the use of an experimental model system—androgen-regulated laryngeal muscle of juvenile clawed frogs, Xenopus laevis—to examine the contribution of proliferation by specific populations of myogenic stem cells to expression of the larynx-specific myosin heavy chain isoform, LM. Androgen treatment of juveniles (Stage PM0) resulted in up-regulation of an early (Myf-5) and a late (myogenin) myogenic regulatory factor; the time course of LM up-regulation tracked that of myogenin. Myogenic stem cells stimulated to proliferate by androgen include a population that expresses Pax-7, a marker for the satellite cell myogenic stem cell population. Since androgen can switch muscle fiber types from fast to slow even in denervated larynges, we developed an ex vivo culture system to explore the relation between proliferation and LM expression. Cultured whole larynges maintain sensitivity to androgen, increasing in size and LM expression. Blockade of cell proliferation with cis-platin prevents the switch from slow to fast twitch muscle fibers as assayed by ATPase activity. Blockade of cell proliferation in vivo also resulted in inhibition of LM expression. Thus, both in vivo and ex vivo, inhibition of myogenic stem cell proliferation blocks androgen-induced LM expression and fiber type switching in juveniles. PMID:21954146

  7. Characterization of a human anti-tumoral NK cell population expanded after BCG treatment of leukocytes

    PubMed Central

    García-Cuesta, Eva M.; Esteso, Gloria; Ashiru, Omodele; López-Cobo, Sheila; Álvarez-Maestro, Mario; Linares, Ana; Ho, Mei M.; Martínez-Piñeiro, Luis; T. Reyburn, Hugh; Valés-Gómez, Mar

    2017-01-01

    ABSTRACT Immunotherapy, via intra-vesical instillations of BCG, is the therapy of choice for patients with high-risk non-muscle invasive bladder cancer. The subsequent recruitment of lymphocytes and myeloid cells, as well as the release of cytokines and chemokines, is believed to induce a local immune response that eliminates these tumors, but the detailed mechanisms of action of this therapy are not well understood. Here, we have studied the phenotype and function of the responding lymphocyte populations as well as the spectrum of cytokines and chemokines produced in an in vitro model of human peripheral blood mononuclear cells (PBMCs) co-cultured with BCG. Natural killer (NK) cell activation was a prominent feature of this immune response and we have studied the expansion of this lymphocyte population in detail. We show that, after BCG stimulation, CD56dim NK cells proliferate, upregulate CD56, but maintain the expression of CD16 and the ability to mediate ADCC. CD56bright NK cells also contribute to this expansion by increasing CD16 and KIR expression. These unconventional CD56bright cells efficiently degranulated against bladder cancer cells and the expansion of this population required the release of soluble factors by other immune cells in the context of BCG. Consistent with these in vitro data, a small, but significant increase in the intensity of CD16 expression was noted in peripheral blood CD56bright cells from bladder cancer patients undergoing BCG therapy, that was not observed in patients treated with mitomycin-C instillations. These observations suggest that activation of NK cells may be an important component of the anti-tumoral immune response triggered by BCG therapy in bladder cancer. PMID:28507799

  8. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin

    NASA Technical Reports Server (NTRS)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.

    1998-01-01

    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 microM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  9. The Effect of Predators on Cholera Biofilms: If it Lyses, We Can Smash It

    NASA Astrophysics Data System (ADS)

    Kalziqi, Arben; Bernardy, Eryn; Thomas, Jacob; Ratcliff, Will; Hammer, Brian; Yunker, Peter

    Many microbes form biofilms--dense clumps of cells and proteins--on surfaces. Biofilms are complex communities that facilitate the study of biological competition (e.g., two types of microbes may compete to form a biofilm in the same location) and interesting physics (e.g., the source of a biofilm's rigidity). Vibrio cholerae can produce biofilms which have a network-like structure--however, cholera can be genetically engineered to kill other cholera with different genotypes, which leaves behind a structureless ``slime'' rather than such a biofilm. Through mechanical creep testing of both predator-prey and non-predator populations, we found that the predator-prey population responds viscously and decreases in height with repeated compression, whereas the non-predator population responds elastically and maintains its original height. The current work suggests that cell lysis after killing disrupts biofilm formation, preventing microbial colonies from forming rigid networks.

  10. Helminth Infection and Commensal Microbiota Drive Early IL-10 Production in the Skin by CD4+ T Cells That Are Functionally Suppressive

    PubMed Central

    Bourke, Claire D.; Mountford, Adrian P.

    2015-01-01

    The skin provides an important first line of defence and immunological barrier to invasive pathogens, but immune responses must also be regulated to maintain barrier function and ensure tolerance of skin surface commensal organisms. In schistosomiasis-endemic regions, populations can experience repeated percutaneous exposure to schistosome larvae, however little is known about how repeated exposure to pathogens affects immune regulation in the skin. Here, using a murine model of repeated infection with Schistosoma mansoni larvae, we show that the skin infection site becomes rich in regulatory IL-10, whilst in its absence, inflammation, neutrophil recruitment, and local lymphocyte proliferation is increased. Whilst CD4+ T cells are the primary cellular source of regulatory IL-10, they expressed none of the markers conventionally associated with T regulatory (Treg) cells (i.e. FoxP3, Helios, Nrp1, CD223, or CD49b). Nevertheless, these IL-10+ CD4+ T cells in the skin from repeatedly infected mice are functionally suppressive as they reduced proliferation of responsive CD4+ T cells from the skin draining lymph node. Moreover, the skin of infected Rag-/- mice had impaired IL-10 production and increased neutrophil recruitment. Finally, we show that the mechanism behind IL-10 production by CD4+ T cells in the skin is due to a combination of an initial (day 1) response specific to skin commensal bacteria, and then over the following days schistosome-specific CD4+ T cell responses, which together contribute towards limiting inflammation and tissue damage following schistosome infection. We propose CD4+ T cells in the skin that do not express markers of conventional T regulatory cell populations have a significant role in immune regulation after repeated pathogen exposure and speculate that these cells may also help to maintain skin barrier function in the context of repeated percutaneous insult by other skin pathogens. PMID:25974019

  11. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    PubMed

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  12. Adenoviral vaccine induction of CD8+ T cell memory inflation: Impact of co-infection and infection order.

    PubMed

    Lee, Lian N; Bolinger, Beatrice; Banki, Zoltan; de Lara, Catherine; Highton, Andrew J; Colston, Julia M; Hutchings, Claire; Klenerman, Paul

    2017-12-01

    The efficacies of many new T cell vaccines rely on generating large populations of long-lived pathogen-specific effector memory CD8 T cells. However, it is now increasingly recognized that prior infection history impacts on the host immune response. Additionally, the order in which these infections are acquired could have a major effect. Exploiting the ability to generate large sustained effector memory (i.e. inflationary) T cell populations from murine cytomegalovirus (MCMV) and human Adenovirus-subtype (AdHu5) 5-beta-galactosidase (Ad-lacZ) vector, the impact of new infections on pre-existing memory and the capacity of the host's memory compartment to accommodate multiple inflationary populations from unrelated pathogens was investigated in a murine model. Simultaneous and sequential infections, first with MCMV followed by Ad-lacZ, generated inflationary populations towards both viruses with similar kinetics and magnitude to mono-infected groups. However, in Ad-lacZ immune mice, subsequent acute MCMV infection led to a rapid decline of the pre-existing Ad-LacZ-specific inflating population, associated with bystander activation of Fas-dependent apoptotic pathways. However, responses were maintained long-term and boosting with Ad-lacZ led to rapid re-expansion of the inflating population. These data indicate firstly that multiple specificities of inflating memory cells can be acquired at different times and stably co-exist. Some acute infections may also deplete pre-existing memory populations, thus revealing the importance of the order of infection acquisition. Importantly, immunization with an AdHu5 vector did not alter the size of the pre-existing memory. These phenomena are relevant to the development of adenoviral vectors as novel vaccination strategies for diverse infections and cancers. (241 words).

  13. Adenoviral vaccine induction of CD8+ T cell memory inflation: Impact of co-infection and infection order

    PubMed Central

    Bolinger, Beatrice; de Lara, Catherine; Hutchings, Claire

    2017-01-01

    The efficacies of many new T cell vaccines rely on generating large populations of long-lived pathogen-specific effector memory CD8 T cells. However, it is now increasingly recognized that prior infection history impacts on the host immune response. Additionally, the order in which these infections are acquired could have a major effect. Exploiting the ability to generate large sustained effector memory (i.e. inflationary) T cell populations from murine cytomegalovirus (MCMV) and human Adenovirus-subtype (AdHu5) 5-beta-galactosidase (Ad-lacZ) vector, the impact of new infections on pre-existing memory and the capacity of the host’s memory compartment to accommodate multiple inflationary populations from unrelated pathogens was investigated in a murine model. Simultaneous and sequential infections, first with MCMV followed by Ad-lacZ, generated inflationary populations towards both viruses with similar kinetics and magnitude to mono-infected groups. However, in Ad-lacZ immune mice, subsequent acute MCMV infection led to a rapid decline of the pre-existing Ad-LacZ-specific inflating population, associated with bystander activation of Fas-dependent apoptotic pathways. However, responses were maintained long-term and boosting with Ad-lacZ led to rapid re-expansion of the inflating population. These data indicate firstly that multiple specificities of inflating memory cells can be acquired at different times and stably co-exist. Some acute infections may also deplete pre-existing memory populations, thus revealing the importance of the order of infection acquisition. Importantly, immunization with an AdHu5 vector did not alter the size of the pre-existing memory. These phenomena are relevant to the development of adenoviral vectors as novel vaccination strategies for diverse infections and cancers. (241 words) PMID:29281733

  14. Modeling heterogeneity in the pluripotent state: A promising strategy for improving the efficiency and fidelity of stem cell differentiation

    PubMed Central

    Espinosa Angarica, Vladimir

    2016-01-01

    Pluripotency can be considered a functional characteristic of pluripotent stem cells (PSCs) populations and their niches, rather than a property of individual cells. In this view, individual cells within the population independently adopt a variety of different expression states, maintained by different signaling, transcriptional, and epigenetics regulatory networks. In this review, we propose that generation of integrative network models from single cell data will be essential for getting a better understanding of the regulation of self‐renewal and differentiation. In particular, we suggest that the identification of network stability determinants in these integrative models will provide important insights into the mechanisms mediating the transduction of signals from the niche, and how these signals can trigger differentiation. In this regard, the differential use of these stability determinants in subpopulation‐specific regulatory networks would mediate differentiation into different cell fates. We suggest that this approach could offer a promising avenue for the development of novel strategies for increasing the efficiency and fidelity of differentiation, which could have a strong impact on regenerative medicine. PMID:27321053

  15. Induction of regulatory T cells: A role for probiotics and prebiotics to suppress autoimmunity.

    PubMed

    Dwivedi, Mitesh; Kumar, Prasant; Laddha, Naresh C; Kemp, E Helen

    2016-04-01

    Regulatory T cells (Tregs) are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. Given the crucial role of Tregs in maintaining immune homeostasis, it is probably not surprising that many microbial species and their metabolites have the potential to induce Tregs. There is now great interest in the therapeutic potential of probiotics and prebiotics based strategies for a range of autoimmune disorders. This review will summarise recent findings concerning the role of probiotics and prebiotics in induction of Tregs to ameliorate the autoimmune conditions. In addition, the article is focused to explain the different mechanisms of Treg induction and function by these probiotics and prebiotics, based on the available studies till date. The article further proposes that induction of Tregs by probiotics and prebiotics could lead to the development of new therapeutic approach towards curbing the autoimmune response and as an alternative to detrimental immunosuppressive drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies

    PubMed Central

    Ju, Cynthia; Tacke, Frank

    2016-01-01

    Macrophages represent a major cell type of innate immunity and have emerged as a critical player and therapeutic target in many chronic inflammatory diseases. Hepatic macrophages consist of Kupffer cells, which are originated from the fetal yolk-sack, and infiltrated bone marrow-derived monocytes/macrophages. Hepatic macrophages play a central role in maintaining homeostasis of the liver and in the pathogenesis of liver injury, making them an attractive therapeutic target for liver diseases. However, the various populations of hepatic macrophages display different phenotypes and exert distinct functions. Thus, more research is required to better understand these cells to guide the development of macrophage-based therapeutic interventions. This review article will summarize the current knowledge on the origins and composition of hepatic macrophages, their functions in maintaining hepatic homeostasis, and their involvement in both promoting and resolving liver inflammation, injury, and fibrosis. Finally, the current strategies being developed to target hepatic macrophages for the treatment of liver diseases will be reviewed. PMID:26908374

  17. Adult Rat Bones Maintain Distinct Regionalized Expression of Markers Associated with Their Development

    PubMed Central

    Rawlinson, Simon C. F.; McKay, Ian J.; Ghuman, Mandeep; Wellmann, Claudia; Ryan, Paul; Prajaneh, Saengsome; Zaman, Gul; Hughes, Francis J.; Kingsmill, Virginia J.

    2009-01-01

    The incidence of limb bone fracture and subsequent morbidity and mortality due to excessive bone loss is increasing in the progressively ageing populations of both men and women. In contrast to bone loss in the weight-bearing limb, bone mass in the protective skull vault is maintained. One explanation for this could be anatomically diverse bone matrix characteristics generated by heterogeneous osteoblast populations. We have tested the hypothesis that adult bones demonstrate site-specific characteristics, and report differences at the organ, cell and transcriptome levels. Limb bones contain greater amounts of polysulphated glycosaminoglycan stained with Alcian Blue and have significantly higher osteocyte densities than skull bone. Site-specific patterns persist in cultured adult bone-derived cells both phenotypically (proliferation rate, response to estrogen and cell volumes), and at the level of specific gene expression (collagen triple helix repeat containing 1, reelin and ras-like and estrogen-regulated growth inhibitor). Based on genome-wide mRNA expression and cluster analysis, we demonstrate that bones and cultured adult bone-derived cells segregate according to site of derivation. We also find the differential expression of genes associated with embryological development (Skull: Zic, Dlx, Irx, Twist1 and Cart1; Limb: Hox, Shox2, and Tbx genes) in both adult bones and isolated adult bone-derived cells. Together, these site-specific differences support the view that, analogous to different muscle types (cardiac, smooth and skeletal), skull and limb bones represent separate classes of bone. We assign these differences, not to mode of primary ossification, but to the embryological cell lineage; the basis and implications of this division are discussed. PMID:20027296

  18. Drug scheduling of cancer chemotherapy based on natural actor-critic approach.

    PubMed

    Ahn, Inkyung; Park, Jooyoung

    2011-11-01

    Recently, reinforcement learning methods have drawn significant interests in the area of artificial intelligence, and have been successfully applied to various decision-making problems. In this paper, we study the applicability of the NAC (natural actor-critic) approach, a state-of-the-art reinforcement learning method, to the drug scheduling of cancer chemotherapy for an ODE (ordinary differential equation)-based tumor growth model. ODE-based cancer dynamics modeling is an active research area, and many different mathematical models have been proposed. Among these, we use the model proposed by de Pillis and Radunskaya (2003), which considers the growth of tumor cells and their interaction with normal cells and immune cells. The NAC approach is applied to this ODE model with the goal of minimizing the tumor cell population and the drug amount while maintaining the adequate population levels of normal cells and immune cells. In the framework of the NAC approach, the drug dose is regarded as the control input, and the reward signal is defined as a function of the control input and the cell populations of tumor cells, normal cells, and immune cells. According to the control policy found by the NAC approach, effective drug scheduling in cancer chemotherapy for the considered scenarios has turned out to be close to the strategy of continuing drug injection from the beginning until an appropriate time. Also, simulation results showed that the NAC approach can yield better performance than conventional pulsed chemotherapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. CELL POPULATION KINETICS OF EXCISED ROOTS OF PISUM SATIVUM

    PubMed Central

    Van't Hof, Jack

    1965-01-01

    The cell population kinetics of excised, cultured pea roots was studied with the use of tritiated thymidine and colchicine to determine (1) the influence of excision, (2) the influence of sucrose concentration, (3) the average mitotic cycle duration, and (4) the duration of mitosis and the G 1, S, and G 2 periods of interphase.1 The results indicate that the process of excision causes a drop in the frequency of mitotic figures when performed either at the beginning of the culture period or after 100 hours in culture. This initial decrease in frequency of cell division is independent of sucrose concentration, but the subsequent rise in frequency of division, after 12 hours in culture, is dependent upon sucrose concentration. Two per cent sucrose maintains the shortest mitotic cycle duration. The use of colchicine indicated an average cycle duration of 20 hours, whereas the use of tritiated thymidine produced an average cycle duration of 17 hours. PMID:5857253

  20. Defective quorum sensing of acute lymphoblastic leukemic cells: evidence of collective behavior of leukemic populations as semi-autonomous aberrant ecosystems

    PubMed Central

    Patel, Sapan J; Dao, Su; Darie, Costel C; Clarkson, Bayard D

    2016-01-01

    Quorum sensing (QS) is a generic term used to describe cell-cell communication and collective decision making by bacterial and social insects to regulate the expression of specific genes in controlling cell density and other properties of the populations in response to nutrient supply or changes in the environment. QS mechanisms also have a role in higher organisms in maintaining homeostasis, regulation of the immune system and collective behavior of cancer cell populations. In the present study, we used a p190BCR-ABL driven pre-B acute lymphoblastic leukemia (ALL3) cell line derived from the pleural fluid of a terminally ill patient with ALL to test the QS hypothesis in leukemia. ALL3 cells don’t grow at low density (LD) in liquid media but grow progressively faster at increasingly high cell densities (HD) in contrast to other established leukemic cell lines that grow well at very low starting cell densities. The ALL3 cells at LD are poised to grow but shortly die without additional stimulation. Supernates of ALL3 cells (HDSN) and some other primary cells grown at HD stimulate the growth of the LD ALL3 cells without which they won’t survive. To get further insight into the activation processes we performed microarray analysis of the LD ALL3 cells after stimulation with ALL3 HDSN at days 1, 3, and 6. This screen identified several candidate genes, and we linked them to signaling networks and their functions. We observed that genes involved in lipid, cholesterol, fatty acid metabolism, and B cell activation are most up- or down-regulated upon stimulation of the LD ALL3 cells using HDSN. We also discuss other pathways that are differentially expressed upon stimulation of the LD ALL3 cells. Our findings suggest that the Ph+ ALL population achieves dominance by functioning as a collective aberrant ecosystem subject to defective quorum-sensing regulatory mechanisms. PMID:27429840

  1. Long Term Maintenance of Polysaccharide-specific Antibodies by IgM Secreting Cells1

    PubMed Central

    Foote, Jeremy B.; Mahmoud, Tamer I.; Vale, Andre M.; Kearney, John F.

    2011-01-01

    Many bacteria-associated polysaccharides induce long-lived antibody responses that protect against pathogenic microorganisms. The maintenance of polysaccharide-specific antibody titers may be due to long-lived plasma cells or ongoing antigen-driven B cell activation due to polysaccharide persistence. BALB/c and VHJ558.3 transgenic (TG) mice respond to α 1→3-dextran (DEX) by generating a peak anti-DEX response at 7 days, followed by maintenance of serum antibody levels for up to 150 days. Analysis of the cellular response to DEX identified a population of short-lived, cyclophosphamide sensitive DEX-specific plasmablasts in the spleen, and a quiescent, cyclophosphamide resistant DEX-specific antibody-secreting population in the bone marrow. BrdU pulse-chase experiments demonstrated the longevity of the DEX-specific antibody-secreting population in the bone marrow. Splenic DEX-specific plasmablasts were located in the red pulp with persisting DEX-associated CD11c+ dendritic cells 90 days after immunization, whereas DEX was not detected in the bone marrow after 28 days. Selective depletion of short-lived DEX-specific plasmablasts and memory B1b B cells using cyclophosphamide and anti-CD20 treatment had a minimal impact on the maintenance of serum anti-DEX antibodies. Collectively, these findings demonstrate that the maintenance of serum polysaccharide-specific antibodies is the result of continuous antigen-driven formation of short-lived plasmablasts in the spleen and a quiescent population of antibody-secreting cells maintained in the bone marrow for a long duration. PMID:22116821

  2. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    PubMed

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications. © 2013 Wiley Periodicals, Inc.

  3. Optimal Achievable Encoding for Brain Machine Interface

    DTIC Science & Technology

    2017-12-22

    dictionary-based encoding approach to translate a visual image into sequential patterns of electrical stimulation in real time , in a manner that...including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...networks, and by applying linear decoding to complete recorded populations of retinal ganglion cells for the first time . Third, we developed a greedy

  4. Reinterpreting recent thymic emigrant function: defective or adaptive?

    PubMed

    Cunningham, Cody A; Helm, Eric Y; Fink, Pamela J

    2018-04-01

    Recent thymic emigrants (RTEs) are those peripheral T cells that have most recently completed thymic development and egress. Over the past decade, significant advances have been made in understanding the cell-extrinsic and cell-intrinsic requirements for RTE maturation to mature naïve (MN) T cells and in detailing the functional differences that characterize these two T cell populations. Much of this work has suggested that RTEs are hypo-functional versions of more mature T cells. However, recent evidence has indicated that rather than being defective T cells, RTEs are exquisitely adapted to their cellular niche. In this review, we argue that RTEs are not flawed mature T cells but are adapted to fill an underpopulated T cell compartment, while maintaining self tolerance and possessing the capacity to mount robust immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Consumption, supply and transport: self-organization without direct communication

    NASA Technical Reports Server (NTRS)

    Kessler, J. O.

    1996-01-01

    Swimming bacteria of the species Bacillus subtilis require and consume oxygen. In static liquid cultures the cells' swimming behaviour leads them to accumulate up oxygen concentration gradients generated by consumption and supply. Since the density of bacterial cells exceeds that of the fluid in which they live, fluid regions where cells have accumulated are denser than depleted regions. These density variations cause convection. The fluid motion is dynamically maintained by the swimming of the cells toward regions of attraction: the air-fluid interface and the fluctuating advecting attractors, gradients of oxygen concentration that are embedded in the convecting fluid. Because of the fluid dynamical conservation laws, these complex physical and biological factors generate patterns ordered over distances > 10000 bacterial cell diameters. The convection enhances long-range transport and mixing of oxygen, cells and extracellular products by orders of magnitude. Thus, through the interplay of physical and biological factors, a population of undifferentiated selfish cells creates functional dynamic patterns. Populations of bacteria that have organised themselves into regularly patterned regions of vigorous convection and varying cell concentration interact with their environment as if they were one purposeful, coherent multicellular individual. The mathematical and experimental ingredients of these remarkable phenomena are presented here.

  6. Aggregate formation and suspension culture of human pluripotent stem cells and differentiated progeny.

    PubMed

    Hookway, Tracy A; Butts, Jessica C; Lee, Emily; Tang, Hengli; McDevitt, Todd C

    2016-05-15

    Culture of human pluripotent stem cells (hPSC) as in vitro multicellular aggregates has been increasingly used as a method to model early embryonic development. Three-dimensional assemblies of hPSCs facilitate interactions between cells and their microenvironment to promote morphogenesis, analogous to the multicellular organization that accompanies embryogenesis. In this paper, we describe a method for reproducibly generating and maintaining populations of homogeneous three-dimensional hPSC aggregates using forced aggregation and rotary orbital suspension culture. We propose solutions to several challenges associated with the consistent formation and extended culture of cell spheroids generated from hPSCs and their differentiated progeny. Further, we provide examples to demonstrate how aggregation can be used as a tool to select specific subpopulations of cells to create homotypic spheroids, or as a means to introduce multiple cell types to create heterotypic tissue constructs. Finally, we demonstrate that the aggregation and rotary suspension method can be used to support culture and maintenance of hPSC-derived cell populations representing each of the three germ layers, underscoring the utility of this platform for culturing many different cell types. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Design and characterization of hybrid peptide sol-gel materials for the solid state induction of neuronal differentiation

    NASA Astrophysics Data System (ADS)

    Jedlicka, Sabrina S.

    2007-12-01

    Cell-based therapeutics are a rapidly growing area of research, with considerable promise in the treatment of neurological diseases. One of the primary limitations to neuronal cell-based devices is the necessity to maintain cells in an immature or undifferentiated state in culture prior to transplantation. In many cases, the undifferentiated cell does not express the desired characteristics for implantation. Biologically functional nanomaterials provide the ability to manipulate the direct extracellular environment surrounding cells; influencing their fate and differentiation path. The ability to engineer the interface between the cells and culture materials provides a repeatable, stable means of directing cells down a specific growth path determined by endogenous signaling pathways. This materials approach to cellular engineering can limit the need for added exogenous growth factors, "feeder" layers, or animal sera, in addition to creating a homogenous cell population for transplantation. In this work, hybrid peptide ormosil materials were developed; designed to mimic the developing mammalian brain during corticogenesis. These materials have been developed to enhance the GABAergic phenotype of P19 embryonic carcinoma cells and immature immortalized neurons. The ability to develop a homogenous, directed cell population has implications in stem cell research, regenerative medicine, cell-based devices and biosensing technology.

  8. DNA Damage: A Sensible Mediator of the Differentiation Decision in Hematopoietic Stem Cells and in Leukemia

    PubMed Central

    Weiss, Cary N.; Ito, Keisuke

    2015-01-01

    In the adult, the source of functionally diverse, mature blood cells are hematopoietic stem cells, a rare population of quiescent cells that reside in the bone marrow niche. Like stem cells in other tissues, hematopoietic stem cells are defined by their ability to self-renew, in order to maintain the stem cell population for the lifetime of the organism, and to differentiate, in order to give rise to the multiple lineages of the hematopoietic system. In recent years, increasing evidence has suggested a role for the accumulation of reactive oxygen species and DNA damage in the decision for hematopoietic stem cells to exit quiescence and to differentiate. In this review, we will examine recent work supporting the idea that detection of cell stressors, such as oxidative and genetic damage, is an important mediator of cell fate decisions in hematopoietic stem cells. We will explore the benefits of such a system in avoiding the development and progression of malignancies, and in avoiding tissue exhaustion and failure. Additionally, we will discuss new work that examines the accumulation of DNA damage and replication stress in aging hematopoietic stem cells and causes us to rethink ideas of genoprotection in the bone marrow niche. PMID:25789504

  9. Liver-resident NK cells and their potential functions.

    PubMed

    Peng, Hui; Sun, Rui

    2017-09-18

    Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.

  10. Characterization and differentiation of human embryonic stem cells.

    PubMed

    Carpenter, M K; Rosler, E; Rao, M S

    2003-01-01

    Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.

  11. Clinical methods of cryopreservation for donor lymphocyte infusions vary in their ability to preserve functional T-cell subpopulations.

    PubMed

    Worsham, D Nicole; Reems, Jo-Anna; Szczepiorkowski, Zbigniew M; McKenna, David H; Leemhuis, Thomas; Mathew, Aby J; Cancelas, Jose A

    2017-06-01

    Cryopreserved donor lymphocyte infusion (DLI) products are manufactured and administered to treat relapse after allogeneic hematopoietic stem cell transplantation. Reported clinical responses to DLIs vary broadly, even within the same group of patients. While there is an implicit recognition of the fact that different manufacturing protocols may have specific effects on different cell types, cryopreservation protocols are frequently derived from our experience in the cryopreservation of stem cell products and do not account for the heterogeneous functional nature of DLI T-cell populations. Here, we report the results of a prospective, multicenter trial on the effect of four different cryopreservation solutions that were used to freeze DLIs compared to control DLIs that were refrigerated overnight. Cryopreserved postthawed and refrigerated specimens were analyzed side by side for their T-cell subpopulation content and viability, as well as T-cell proliferation, cytokine secretion, and cytotoxic activities. This study indicates that "homemade" 10% dimethyl sulfoxide (DMSO) results in reduced viability of different CD4+ T-cell populations, including T-helper, T-cytotoxic, and T-regulatory populations, and a decrease in their proliferative and cytotoxic response to immunologically relevant stimuli, while the use of solutions containing 5% DMSO with intracellular-like cryoprotectant stabilizers maintains T-cell function at levels similar to refrigerated control samples. This study has important implications in determining the best cryoprotectant solution for specific clinical applications in allogeneic immunotherapy. © 2017 AABB.

  12. Increases in the amounts of Vibrio spp. in oysters upon addition of exogenous bacteria.

    PubMed

    Froelich, Brett; Oliver, James

    2013-09-01

    The bacterial pathogen Vibrio vulnificus is found naturally in brackish coastal waters but can be greatly concentrated by filter-feeding organisms such as shellfish. Numerous experiments in which exogenous V. vulnificus cells are added to oysters in an attempt to measure uptake and depuration have been performed. In nearly all cases, results have shown that laboratory-grown bacteria are rapidly taken up by the oysters but ultimately eliminated, while naturally present Vibrio populations in oysters are resistant to depuration. In this study, oysters harvested during winter months, with low culturable Vibrio concentrations, were incubated in aquaria supplemented with strains of V. vulnificus that were either genotypically or phenotypically distinct from the background bacteria. These exogenous cells were eliminated from the oysters, as previously seen, but other vibrios already inhabiting the oysters responded to the V. vulnificus inoculum by rapidly increasing in number and maintaining a large stable population. The presence of such an oyster-adapted Vibrio population would be expected to prevent colonization by exogenous V. vulnificus cells, thus explaining the rapid depuration of these added bacteria.

  13. EFFECTS OF PLATING DENSITY AND CULTURE TIME ON BONE MARROW STROMAL CELL CHARACTERISTICS

    PubMed Central

    Neuhuber, Birgit; Swanger, Sharon A.; Howard, Linda; Mackay, Alastair; Fischer, Itzhak

    2008-01-01

    Objective Bone marrow stromal cells (MSC) are multipotent adult stem cells that have emerged as promising candidates for cell therapy in disorders including cardiac infarction, stroke and spinal cord injury. While harvesting methods used by different laboratories are relatively standard, MSC culturing protocols vary widely. This study is aimed at evaluating the effects of initial plating density and total time in culture on proliferation, cell morphology, and differentiation potential of heterogeneous MSC cultures and more homogeneous cloned subpopulations. Methods Rat MSC were plated at 20, 200 and 2000 cells/cm2 and grown to 50% confluency. The numbers of population doublings and doubling times were determined within and across multiple passages. Changes in cell morphology and differentiation potential to adipogenic, chondrogenic, and osteogenic lineages were evaluated and compared among early, intermediate and late passages, as well as between heterogeneous and cloned MSC populations. Results We found optimal cell growth at a plating density of 200 cells/cm2. Cultures derived from all plating densities developed increased proportions of flat cells over time. Assays for chondrogenesis, osteogenesis and adipogenesis showed that heterogeneous MSC plated at all densities sustained the potential for all three mesenchymal phenotypes through at least passage 5; the flat subpopulation lost adipogenic and chondrogenic potential. Conclusion Our findings suggest that the initial plating density is not critical for maintaining a well-defined, multipotent MSC population. Time in culture, however, affects cell characteristics, suggesting that cell expansion should be limited, especially until the specific characteristics of different MSC subpopulations are better understood. PMID:18495329

  14. Role of the epithelial cell rests of Malassez in the development, maintenance and regeneration of periodontal ligament tissues.

    PubMed

    Xiong, Jimin; Gronthos, Stan; Bartold, P Mark

    2013-10-01

    Periodontitis is a highly prevalent inflammatory disease that results in damage to the tooth-supporting tissues, potentially leading to tooth loss. Periodontal tissue regeneration is a complex process that involves the collaboration of two hard tissues (cementum and alveolar bone) and two soft tissues (gingiva and periodontal ligament). To date, no periodontal-regenerative procedures provide predictable clinical outcomes. To understand the rational basis of regenerative procedures, a better understanding of the events associated with the formation of periodontal components will help to establish reliable strategies for clinical practice. An important aspect of this is the role of the Hertwig's epithelial root sheath in periodontal development and that of its descendants, the epithelial cell rests of Malassez, in the maintenance of the periodontium. An important structure during tooth root development, the Hertwig's epithelial root sheath is not only a barrier between the dental follicle and dental papilla cells but is also involved in determining the shape, size and number of roots and in the development of dentin and cementum, and may act as a source of mesenchymal progenitor cells for cementoblasts. In adulthood, the epithelial cell rests of Malassez are the only odontogenic epithelial population in the periodontal ligament. Although there is no general agreement on the functions of the epithelial cell rests of Malassez, accumulating evidence suggests that the putative roles of the epithelial cell rests of Malassez in adult periodontal ligament include maintaining periodontal ligament homeostasis to prevent ankylosis and maintain periodontal ligament space, to prevent root resorption, to serve as a target during periodontal ligament innervation and to contribute to cementum repair. Recently, ovine epithelial cell rests of Malassez cells have been shown to harbor clonogenic epithelial stem-cell populations that demonstrate similar properties to mesenchymal stromal/stem cells, both functionally and phenotypically. Therefore, the epithelial cell rests of Malassez, rather than being 'cell rests', as indicated by their name, are an important source of stem cells that might play a pivotal role in periodontal regeneration. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Deterministic versus stochastic model of reprogramming: new evidence from cellular barcoding technique

    PubMed Central

    Yunusova, Anastasia M.; Fishman, Veniamin S.; Vasiliev, Gennady V.

    2017-01-01

    Factor-mediated reprogramming of somatic cells towards pluripotency is a low-efficiency process during which only small subsets of cells are successfully reprogrammed. Previous analyses of the determinants of the reprogramming potential are based on average measurements across a large population of cells or on monitoring a relatively small number of single cells with live imaging. Here, we applied lentiviral genetic barcoding, a powerful tool enabling the identification of familiar relationships in thousands of cells. High-throughput sequencing of barcodes from successfully reprogrammed cells revealed a significant number of barcodes from related cells. We developed a computer model, according to which a probability of synchronous reprogramming of sister cells equals 10–30%. We conclude that the reprogramming success is pre-established in some particular cells and, being a heritable trait, can be maintained through cell division. Thus, reprogramming progresses in a deterministic manner, at least at the level of cell lineages. PMID:28446707

  16. Bonobos maintain immune-system diversity with three functional types of MHC-B1

    PubMed Central

    Wroblewski, Emily E.; Guethlein, Lisbeth A.; Norman, Paul J.; Li, Yingying; Shaw, Christiana M.; Han, Alex S.; Ndjango, Jean-Bosco N.; Ahuka-Mundeke, Steve; Georgiev, Alexander V.; Peeters, Martine; Hahn, Beatrice H.; Parham, Peter

    2017-01-01

    Fast-evolving MHC class I polymorphism serves to diversify NK cell and CD8 T cell responses in individuals, families, and populations. As only chimpanzee and bonobo have strict orthologs of all HLA class I, their study gives unique perspective on the human condition. We defined polymorphism of Papa-B, the bonobo ortholog of HLA-B, for six wild bonobo populations. Sequences for Papa-B exon 2 and 3 were determined from the genomic DNA in 255 fecal samples, minimally representing 110 individuals. Twenty-two Papa-B alleles were defined, each encoding a different Papa-B protein. No Papa-B is identical to any chimpanzee Patr-B, human HLA-B, or gorilla Gogo-B. Phylogenetic analysis identified a clade of MHC-B, defined by residues 45–74 of the α1 domain, which is broadly conserved among bonobo, chimpanzee, and gorilla. Bonobo populations have 3–14 Papa-B allotypes. Three Papa-B are in all populations, and they are each of a different functional type: allotypes having the Bw4 epitope recognized by killer cell immunoglobulin-like receptors (KIR) of NK cells, allotypes having the C1 epitope also recognized by KIR, and allotypes having neither epitope. For population ML these three Papa-B are the only Papa-B allotypes. Although small in number, their sequence divergence is such that the nucleotide diversity (mean p-distance) of Papa-B in ML is greater than in the other populations, and also greater than expected for random combinations of three Papa-B. Overall, Papa-B has substantially less diversity than Patr-B in chimpanzee subspecies and HLA-B in indigenous human populations, consistent with bonobo having experienced narrower population bottlenecks. PMID:28348269

  17. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix.

    PubMed

    Williams, B Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-07-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells.

  18. Intermolecular Interactions of Homologs of Germ Plasm Components in Mammalian Germ Cells

    PubMed Central

    Fox, Mark S.; Clark, Amander T.; El Majdoubi, Mohammed; Vigne, Jean-Louis; Urano, Jun; Hostetler, Chris E.; Griswold, Michael D.; Weiner, Richard I.; Pera, Renee A. Reijo

    2007-01-01

    In some species such as flies, worms, frogs, and fish the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically-distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration, that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells. PMID:16996493

  19. Preclinical Corrective Gene Transfer in Xeroderma Pigmentosum Human Skin Stem Cells

    PubMed Central

    Warrick, Emilie; Garcia, Marta; Chagnoleau, Corinne; Chevallier, Odile; Bergoglio, Valérie; Sartori, Daniela; Mavilio, Fulvio; Angulo, Jaime F; Avril, Marie-Françoise; Sarasin, Alain; Larcher, Fernando; Del Rio, Marcela; Bernerd, Françoise; Magnaldo, Thierry

    2012-01-01

    Xeroderma pigmentosum (XP) is a devastating disease associated with dramatic skin cancer proneness. XP cells are deficient in nucleotide excision repair (NER) of bulky DNA adducts including ultraviolet (UV)-induced mutagenic lesions. Approaches of corrective gene transfer in NER-deficient keratinocyte stem cells hold great hope for the long-term treatment of XP patients. To face this challenge, we developed a retrovirus-based strategy to safely transduce the wild-type XPC gene into clonogenic human primary XP-C keratinocytes. De novo expression of XPC was maintained in both mass population and derived independent candidate stem cells (holoclones) after more than 130 population doublings (PD) in culture upon serial propagation (>1040 cells). Analyses of retrovirus integration sequences in isolated keratinocyte stem cells suggested the absence of adverse effects such as oncogenic activation or clonal expansion. Furthermore, corrected XP-C keratinocytes exhibited full NER capacity as well as normal features of epidermal differentiation in both organotypic skin cultures and in a preclinical murine model of human skin regeneration in vivo. The achievement of a long-term genetic correction of XP-C epidermal stem cells constitutes the first preclinical model of ex vivo gene therapy for XP-C patients. PMID:22068429

  20. Establishment and cryopreservation of a giant panda skeletal muscle-derived cell line.

    PubMed

    Yu, Fang-Jian; Zeng, Chang-Jun; Zhang, Yan; Wang, Cheng-Dong; Xiong, Tie-Yi; Fang, Sheng-Guo; Zhang, He-Min

    2015-06-01

    The giant panda Ailuropoda melanoleuca is an endangered species and is a symbol for wildlife conservation. Although efforts have been made to protect this rare and endangered species through breeding and conservative biology, the long-term preservation of giant panda genome resources (gametes, tissues, organs, genomic libraries, etc.) is still a practical option. In this study, the giant panda skeletal muscle-derived cell line was successfully established via primary explants culture and cryopreservation techniques. The population doubling time of giant panda skeletal cells was approximately 33.8 h, and this population maintained a high cell viability before and after cryopreservation (95.6% and 90.7%, respectively). The two skeletal muscle-specific genes SMYD1 and MYF6 were expressed and detected by RT-PCR in the giant panda skeletal muscle-derived cell line. Karyotyping analysis revealed that the frequencies of giant panda skeletal muscle cells showing a chromosome number of 2n=42 ranged from 90.6∼94.2%. Thus, the giant panda skeletal muscle-derived cell line provides a vital resource and material platform for further studies and is likely to be useful for the protection of this rare and endangered species.

  1. Characterization of the Inflammatory Response in Dystrophic Muscle Using Flow Cytometry.

    PubMed

    Kastenschmidt, Jenna M; Avetyan, Ileen; Villalta, S A

    2018-01-01

    Although mutations of the dystrophin gene are the causative defect in Duchenne muscular dystrophy (DMD) patients, secondary disease processes such as inflammation contribute greatly to the pathogenesis of DMD. Genetic and histological studies have shown that distinct facets of the immune system promote muscle degeneration or regeneration during muscular dystrophy through mechanisms that are only beginning to be defined. Although histological methods have allowed the enumeration and localization of immune cells within dystrophic muscle, they are limited in their ability to assess the full spectrum of phenotypic states of an immune cell population and its functional characteristics. This chapter highlights flow cytometry methods for the isolation and functional study of immune cell populations from muscle of the mdx mouse model of DMD. We include a detailed description of preparing single-cell suspensions of dystrophic muscle that maintain the integrity of cell-surface markers used to identify macrophages, eosinophils, group 2 innate lymphoid cells, and regulatory T cells. This method complements the battery of histological assays that are currently used to study the role of inflammation in muscular dystrophy, and provides a platform capable of being integrated with multiple downstream methodologies for the mechanistic study of immunity in muscle degenerative diseases.

  2. Dclk1+ small intestinal epithelial tuft cells display the hallmarks of quiescence and self-renewal

    PubMed Central

    Chandrakesan, Parthasarathy; May, Randal; Qu, Dongfeng; Weygant, Nathaniel; Taylor, Vivian E.; Li, James D.; Ali, Naushad; Sureban, Sripathi M.; Qante, Michael; Wang, Timothy C.; Bronze, Michael S.; Houchen, Courtney W.

    2015-01-01

    To date, no discrete genetic signature has been defined for isolated Dclk1+ tuft cells within the small intestine. Furthermore, recent reports on the functional significance of Dclk1+ cells in the small intestine have been inconsistent. These cells have been proposed to be fully differentiated cells, reserve stem cells, and tumor stem cells. In order to elucidate the potential function of Dclk1+ cells, we FACS-sorted Dclk1+ cells from mouse small intestinal epithelium using transgenic mice expressing YFP under the control of the Dclk1 promoter (Dclk1-CreER;Rosa26-YFP). Analysis of sorted YFP+ cells demonstrated marked enrichment (~6000 fold) for Dclk1 mRNA compared with YFP− cells. Dclk1+ population display ~6 fold enrichment for the putative quiescent stem cell marker Bmi1. We observed significantly greater expression of pluripotency genes, pro-survival genes, and quiescence markers in the Dclk1+ population. A significant increase in self-renewal capability (14-fold) was observed in in vitro isolated Dclk1+ cells. The unique genetic report presented in this manuscript suggests that Dclk1+ cells may maintain quiescence, pluripotency, and metabolic activity for survival/longevity. Functionally, these reserve characteristics manifest in vitro, with Dclk1+ cells exhibiting greater ability to self-renew. These findings indicate that quiescent stem-like functionality is a feature of Dclk1-expressing tuft cells. PMID:26362399

  3. The ultrastructure of rat palatal mucosa maintained in organ culture.

    PubMed Central

    Hill, M W

    1978-01-01

    Palatal mucosa from neonatal rats was examined by electron microscopy after maintenance in a chemically defined medium in organ culture for periods up to 24 days. Throughout the culture period there was little overall change in the explants. Apart from limited disturbances of the basal lamina complex early in the culture period, and the presence of occasional degenerating keratinocytes after 18 days in vitro, the epithelium displayed an ultrastructure comparable with that at the time of explantation. The connective tissue showed greater changes, but despite considerable cell death a viable cell population apparently capable of both phagocytosis and synthesis of extracellular material was maintained. It is concluded that this organ culture system is a valid model for experimental investigations into the behaviour of oral mucosa. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:744746

  4. Neural dynamics for landmark orientation and angular path integration

    PubMed Central

    Seelig, Johannes D.; Jayaraman, Vivek

    2015-01-01

    Summary Many animals navigate using a combination of visual landmarks and path integration. In mammalian brains, head direction cells integrate these two streams of information by representing an animal's heading relative to landmarks, yet maintaining their directional tuning in darkness based on self-motion cues. Here we use two-photon calcium imaging in head-fixed flies walking on a ball in a virtual reality arena to demonstrate that landmark-based orientation and angular path integration are combined in the population responses of neurons whose dendrites tile the ellipsoid body — a toroidal structure in the center of the fly brain. The population encodes the fly's azimuth relative to its environment, tracking visual landmarks when available and relying on self-motion cues in darkness. When both visual and self-motion cues are absent, a representation of the animal's orientation is maintained in this network through persistent activity — a potential substrate for short-term memory. Several features of the population dynamics of these neurons and their circular anatomical arrangement are suggestive of ring attractors — network structures proposed to support the function of navigational brain circuits. PMID:25971509

  5. TFAP2C governs the luminal epithelial phenotype in mammary development and carcinogenesis.

    PubMed

    Cyr, A R; Kulak, M V; Park, J M; Bogachek, M V; Spanheimer, P M; Woodfield, G W; White-Baer, L S; O'Malley, Y Q; Sugg, S L; Olivier, A K; Zhang, W; Domann, F E; Weigel, R J

    2015-01-22

    Molecular subtypes of breast cancer are characterized by distinct patterns of gene expression that are predictive of outcome and response to therapy. The luminal breast cancer subtypes are defined by the expression of estrogen receptor-alpha (ERα)-associated genes, many of which are directly responsive to the transcription factor activator protein 2C (TFAP2C). TFAP2C participates in a gene regulatory network controlling cell growth and differentiation during ectodermal development and regulating ESR1/ERα and other luminal cell-associated genes in breast cancer. TFAP2C has been established as a prognostic factor in human breast cancer, however, its role in the establishment and maintenance of the luminal cell phenotype during carcinogenesis and mammary gland development have remained elusive. Herein, we demonstrate a critical role for TFAP2C in maintaining the luminal phenotype in human breast cancer and in influencing the luminal cell phenotype during normal mammary development. Knockdown of TFAP2C in luminal breast carcinoma cells induced epithelial-mesenchymal transition with morphological and phenotypic changes characterized by a loss of luminal-associated gene expression and a concomitant gain of basal-associated gene expression. Conditional knockout of the mouse homolog of TFAP2C, Tcfap2c, in mouse mammary epithelium driven by MMTV-Cre promoted aberrant growth of the mammary tree leading to a reduction in the CD24(hi)/CD49f(mid) luminal cell population and concomitant gain of the CD24(mid)/CD49f(hi) basal cell population at maturity. Our results establish TFAP2C as a key transcriptional regulator for maintaining the luminal phenotype in human breast carcinoma. Furthermore, Tcfap2c influences development of the luminal cell type during mammary development. The data suggest that TFAP2C has an important role in regulated luminal-specific genes and may be a viable therapeutic target in breast cancer.

  6. Morphological Differentiation Towards Neuronal Phenotype of SH-SY5Y Neuroblastoma Cells by Estradiol, Retinoic Acid and Cholesterol.

    PubMed

    Teppola, Heidi; Sarkanen, Jertta-Riina; Jalonen, Tuula O; Linne, Marja-Leena

    2016-04-01

    Human SH-SY5Y neuroblastoma cells maintain their potential for differentiation and regression in culture conditions. The induction of differentiation could serve as a strategy to inhibit cell proliferation and tumor growth. Previous studies have shown that differentiation of SH-SY5Y cells can be induced by all-trans-retinoic-acid (RA) and cholesterol (CHOL). However, signaling pathways that lead to terminal differentiation of SH-SY5Y cells are still largely unknown. The goal of this study was to examine in the RA and CHOL treated SH-SY5Y cells the additive impacts of estradiol (E2) and brain-derived neurotrophic factor (BDNF) on cell morphology, cell population growth, synaptic vesicle recycling and presence of neurofilaments. The above features indicate a higher level of neuronal differentiation. Our data show that treatment for 10 days in vitro (DIV) with RA alone or when combined with E2 (RE) or CHOL (RC), but not when combined with BDNF (RB), significantly (p < 0.01) inhibited the cell population growth. Synaptic vesicle recycling, induced by high-K(+) depolarization, was significantly increased in all treatments where RA was included (RE, RC, RB, RCB), and when all agents were added together (RCBE). Specifically, our results show for the first time that E2 treatment can alone increase synaptic vesicle recycling in SH-SY5Y cells. This work contributes to the understanding of the ways to improve suppression of neuroblastoma cells' population growth by inducing maturation and differentiation.

  7. A novel quantitative model of cell cycle progression based on cyclin-dependent kinases activity and population balances.

    PubMed

    Pisu, Massimo; Concas, Alessandro; Cao, Giacomo

    2015-04-01

    Cell cycle regulates proliferative cell capacity under normal or pathologic conditions, and in general it governs all in vivo/in vitro cell growth and proliferation processes. Mathematical simulation by means of reliable and predictive models represents an important tool to interpret experiment results, to facilitate the definition of the optimal operating conditions for in vitro cultivation, or to predict the effect of a specific drug in normal/pathologic mammalian cells. Along these lines, a novel model of cell cycle progression is proposed in this work. Specifically, it is based on a population balance (PB) approach that allows one to quantitatively describe cell cycle progression through the different phases experienced by each cell of the entire population during its own life. The transition between two consecutive cell cycle phases is simulated by taking advantage of the biochemical kinetic model developed by Gérard and Goldbeter (2009) which involves cyclin-dependent kinases (CDKs) whose regulation is achieved through a variety of mechanisms that include association with cyclins and protein inhibitors, phosphorylation-dephosphorylation, and cyclin synthesis or degradation. This biochemical model properly describes the entire cell cycle of mammalian cells by maintaining a sufficient level of detail useful to identify check point for transition and to estimate phase duration required by PB. Specific examples are discussed to illustrate the ability of the proposed model to simulate the effect of drugs for in vitro trials of interest in oncology, regenerative medicine and tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Persistence of Only a Minute Viable Population in Chlorotic Microcystis aeruginosa PCC 7806 Cultures Obtained by Nutrient Limitation.

    PubMed

    Meireles, Diogo de Abreu; Schripsema, Jan; Arnholdt, Andrea Cristina Vetö; Dagnino, Denise

    2015-01-01

    Cultures from the cyanobacterial strain Microcystis aeruginosa PCC 7806 submitted to nutrient limitation become chlorotic. When returned to nutrient rich conditions these cultures regain their green colour. The aim of this study was to verify whether the cells in these cultures could be considered resting stages allowing the survival of periods of nutrient starvation as has been reported for Synechococcus PCC 7942. The experiments with Microcystis were carried out in parallel with Synechococcus cultures to rule out the possibility that any results obtained with Microcystis were due to our particular experimental conditions. The results of the experiments with Synechococcus PCC 7942 cultures were comparable to the reported in the literature. For Microcystis PCC 7806 a different response was observed. Analysis of chlorotic Microcystis cultures by flow cytometry showed that the phenotype of the cells in the population was not homogenous: the amount of nucleic acids was about the same in all cells but only around one percent of the population emitted red autofluorescence indicating the presence of chlorophyll. Monitoring of the reversion of chlorosis by flow cytometry showed that the re-greening was most likely the result of the division of the small population of red autofluorescent cells originally present in the chlorotic cultures. This assumption was confirmed by analysing the integrity of the DNA and the membrane permeability of the cells of chlorotic cultures. Most of the DNA of these cultures was degraded and only the autofluorescent population of the chlorotic cultures showed membrane integrity. Thus, contrary to what has been reported for other cyanobacterial genera, most of the cells in chlorotic Microcystis cultures are not resting stages but dead. It is interesting to note that the red autofluorescent cells of green and chlorotic cultures obtained in double strength ASM-1 medium differ with respect to metabolism: levels of emission of red autofluorescence are higher in the cells of green cultures and the ability to convert fluorescein diacetate of these cells are heterogeneous when compared to the autofluorescent cells of chlorotic cultures. Thus, the small population of the red autofluorescent cells of chlorotic cultures are in a differentiated metabolic state that allow them to persist in conditions in which most of the population loses viability; persistent cells can be detected in chlorotic cultures maintained for more than a year.

  9. Persistence of Only a Minute Viable Population in Chlorotic Microcystis aeruginosa PCC 7806 Cultures Obtained by Nutrient Limitation

    PubMed Central

    de Abreu Meireles, Diogo; Schripsema, Jan; Vetö Arnholdt, Andrea Cristina; Dagnino, Denise

    2015-01-01

    Cultures from the cyanobacterial strain Microcystis aeruginosa PCC 7806 submitted to nutrient limitation become chlorotic. When returned to nutrient rich conditions these cultures regain their green colour. The aim of this study was to verify whether the cells in these cultures could be considered resting stages allowing the survival of periods of nutrient starvation as has been reported for Synechococcus PCC 7942. The experiments with Microcystis were carried out in parallel with Synechococcus cultures to rule out the possibility that any results obtained with Microcystis were due to our particular experimental conditions. The results of the experiments with Synechococcus PCC 7942 cultures were comparable to the reported in the literature. For Microcystis PCC 7806 a different response was observed. Analysis of chlorotic Microcystis cultures by flow cytometry showed that the phenotype of the cells in the population was not homogenous: the amount of nucleic acids was about the same in all cells but only around one percent of the population emitted red autofluorescence indicating the presence of chlorophyll. Monitoring of the reversion of chlorosis by flow cytometry showed that the re-greening was most likely the result of the division of the small population of red autofluorescent cells originally present in the chlorotic cultures. This assumption was confirmed by analysing the integrity of the DNA and the membrane permeability of the cells of chlorotic cultures. Most of the DNA of these cultures was degraded and only the autofluorescent population of the chlorotic cultures showed membrane integrity. Thus, contrary to what has been reported for other cyanobacterial genera, most of the cells in chlorotic Microcystis cultures are not resting stages but dead. It is interesting to note that the red autofluorescent cells of green and chlorotic cultures obtained in double strength ASM-1 medium differ with respect to metabolism: levels of emission of red autofluorescence are higher in the cells of green cultures and the ability to convert fluorescein diacetate of these cells are heterogeneous when compared to the autofluorescent cells of chlorotic cultures. Thus, the small population of the red autofluorescent cells of chlorotic cultures are in a differentiated metabolic state that allow them to persist in conditions in which most of the population loses viability; persistent cells can be detected in chlorotic cultures maintained for more than a year. PMID:26181753

  10. Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species.

    PubMed

    Mizuno, T; Suzuki, N; Makino, H; Furui, T; Morii, E; Aoki, H; Kunisada, T; Yano, M; Kuji, S; Hirashima, Y; Arakawa, A; Nishio, S; Ushijima, K; Ito, K; Itani, Y; Morishige, K

    2015-05-01

    In ovarian cancer cases, recurrence after chemotherapy is frequently observed, suggesting the involvement of ovarian cancer stem-like cells (CSCs). The chemoresistance of ovarian clear cell carcinomas is particularly strong in comparison to other epithelial ovarian cancer subtypes. We investigated the relationship between a CSC marker, aldehyde dehydrogenase 1 (ALDH1), and clinical prognosis using ovarian clear cell carcinoma tissue samples. Furthermore, we investigated the antioxidant mechanism by which CSCs maintain a lower reactive oxygen species (ROS) level, which provides protection from chemotherapeutic agents. Immunohistochemical staining was performed to examine the CSC markers (CD133, CD44, ALDH1) using ovarian clear cell carcinoma tissue samples (n=81). Clear cell carcinoma cell lines (KOC-7C, OVTOKO) are separated into the ALDH-high and ALDH-low populations by ALDEFLUOR assay and fluorescence-activated cell sorting (FACS). We compared the intracellular ROS level, mRNA level of the antioxidant enzymes and Nrf2 expression of the two populations. High ALDH1 expression levels are related to advanced stage in clear cell carcinoma cases. ALDH1 expression significantly reduced progression free survival. Other markers are not related to clinical stage and prognosis. ALDH-high cells contained a lower ROS level than ALDH-low cells. Antioxidant enzymes were upregulated in ALDH-high cells. ALDH-high cells showed increased expression of Nrf2, a key transcriptional factor of the antioxidant system. ALDH-positive CSCs might have increased Nrf2-induced antioxidant scavengers, which lower ROS level relevant to chemoresistance in ovarian clear cell carcinoma. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Biochemistry of epidermal stem cells.

    PubMed

    Eckert, Richard L; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A; Vemuri, Mohan C; Boucher, Shayne E; Bickenbach, Jackie R; Kerr, Candace

    2013-02-01

    The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Differential requirement of PKC-θ in the development and function of Natural Regulatory T cells

    PubMed Central

    Gupta, Sonal; Manicassamy, Santhakumar; Vasu, Chenthamarakshan; Kumar, Anvita; Shang, Weirong; Sun, Zuoming

    2008-01-01

    CD4+CD25+ natural Treg cells, which are developed in the thymus, migrate to the periphery to actively maintain self-tolerance. Similar to conventional T cells, TCR signals are critical for the development and activation of Treg cell inhibitory function. While PKC-θ-mediated TCR signals are required for the activation of peripheral naïve T cells, they are dispensable for their thymic development. Here, we show that mice deficient in PKC-θ had a greatly reduced number of CD4+Foxp3+ Treg cells, which was independent of PKC-θ-regulated survival, as transgenic Bcl-xL could not restore the Treg cell population in PKC-θ−/− mice. Active and WT PKC-θ markedly stimulated, whereas inactive PKC-θ and dominant negative NFAT inhibited Foxp3 promoter activity. In addition, mice-deficient in calcineurin Aβ had a decreased Treg cell population, similar to that observed in PKC-θ deficient mice. It is likely that PKC-θ promoted the development of Treg cells by enhancing Foxp3 expression via activation of the calcineurin/NFAT pathway. Finally, Treg cells deficient in PKC-θ were as potent as WT Treg cells in inhibiting T cell activation, indicating that PKC-θ was not required for Treg cell-mediated inhibitory function. Our data highlight the contrasting roles PKC-θ plays in conventional T cell and natural Treg cell function. PMID:18842300

  13. Induction of tolerance towards TNP entails down-regulation of an autoimmune attack.

    PubMed Central

    Zöller, M; Andrighetto, G

    1988-01-01

    In order to follow the process of induction and maintainance of tolerance, BALB/c mice were tolerized by free hapten, and effector and regulatory cell interactions were analysed by limiting-dilution (LD) cultures. Injection of trinitrobenzenesulphonic acid (TNBS) resulted, predominantly, in the activation and expansion of self-reactive cytotoxic T cells (CTL), which were observed transiently at frequencies comparable to allo-specific CTL. In addition, self-reactive helper T cells (Th) were activated and expanded in tolerized mice. TNP-specific reactivity was difficult to evaluate, since cytotoxic activity against haptenized self followed the pattern of self-reactivity throughout the test period. But in LD cultures determining proliferation, two populations of Th responding to TNP-self were observed, while only one Th population could be detected in response to self. Expansion/activation of Th and CTL precursors (CTLp) was followed by activation of suppressor T cells (Ts). The suppressor population could be divided into two subpopulations, one interfering with Th, the second interacting directly with CTL (veto cells). The results indicate that during the induction of tolerance, animals pass through an autoimmune attack, with expansion and activation of self-reactive clones (CTL, Th). The final status of non-responsiveness towards TNP is not due to the deletion of effector or regulatory cells, but results from the establishment of a steady state of dominance of self-reactive and TNP-self-reactive suppression. PMID:2965095

  14. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease

    PubMed Central

    Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D. Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness. PMID:28187190

  15. Widespread GLI expression but limited canonical hedgehog signaling restricted to the ductular reaction in human chronic liver disease.

    PubMed

    Grzelak, Candice Alexandra; Sigglekow, Nicholas David; Tirnitz-Parker, Janina Elke Eleonore; Hamson, Elizabeth Jane; Warren, Alessandra; Maneck, Bharvi; Chen, Jinbiao; Patkunanathan, Bramilla; Boland, Jade; Cheng, Robert; Shackel, Nicholas Adam; Seth, Devanshi; Bowen, David Geoffrey; Martelotto, Luciano Gastón; Watkins, D Neil; McCaughan, Geoffrey William

    2017-01-01

    Canonical Hedgehog (Hh) signaling in vertebrate cells occurs following Smoothened activation/translocation into the primary cilia (Pc), followed by a GLI transcriptional response. Nonetheless, GLI activation can occur independently of the canonical Hh pathway. Using a murine model of liver injury, we previously identified the importance of canonical Hh signaling within the Pc+ liver progenitor cell (LPC) population and noted that SMO-independent, GLI-mediated signals were important in multiple Pc-ve GLI2+ intrahepatic populations. This study extends these observations to human liver tissue, and analyses the effect of GLI inhibition on LPC viability/gene expression. Human donor and cirrhotic liver tissue specimens were evaluated for SHH, GLI2 and Pc expression using immunofluorescence and qRT-PCR. Changes to viability and gene expression in LPCs in vitro were assessed following GLI inhibition. Identification of Pc (as a marker of canonical Hh signaling) in human cirrhosis was predominantly confined to the ductular reaction and LPCs. In contrast, GLI2 was expressed in multiple cell populations including Pc-ve endothelium, hepatocytes, and leukocytes. HSCs/myofibroblasts (>99%) expressed GLI2, with only 1.92% displaying Pc. In vitro GLI signals maintained proliferation/viability within LPCs and GLI inhibition affected the expression of genes related to stemness, hepatocyte/biliary differentiation and Hh/Wnt signaling. At least two mechanisms of GLI signaling (Pc/SMO-dependent and Pc/SMO-independent) mediate chronic liver disease pathogenesis. This may have significant ramifications for the choice of Hh inhibitor (anti-SMO or anti-GLI) suitable for clinical trials. We also postulate GLI delivers a pro-survival signal to LPCs whilst maintaining stemness.

  16. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    PubMed Central

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  17. Self-organized centripetal movement of corneal epithelium in the absence of external cues

    NASA Astrophysics Data System (ADS)

    Lobo, Erwin P.; Delic, Naomi C.; Richardson, Alex; Raviraj, Vanisri; Halliday, Gary M.; di Girolamo, Nick; Myerscough, Mary R.; Lyons, J. Guy

    2016-08-01

    Maintaining the structure of the cornea is essential for high-quality vision. In adult mammals, corneal epithelial cells emanate from stem cells in the limbus, driven by an unknown mechanism towards the centre of the cornea as cohesive clonal groups. Here we use complementary mathematical and biological models to show that corneal epithelial cells can self-organize into a cohesive, centripetal growth pattern in the absence of external physiological cues. Three conditions are required: a circumferential location of stem cells, a limited number of cell divisions and mobility in response to population pressure. We have used these complementary models to provide explanations for the increased rate of centripetal migration caused by wounding and the potential for stem cell leakage to account for stable transplants derived from central corneal tissue, despite the predominantly limbal location of stem cells.

  18. Graves' disease: a host defense mechanism gone awry.

    PubMed

    Kohn, L D; Napolitano, G; Singer, D S; Molteni, M; Scorza, R; Shimojo, N; Kohno, Y; Mozes, E; Nakazato, M; Ulianich, L; Chung, H K; Matoba, H; Saunier, B; Suzuki, K; Schuppert, F; Saji, M

    2000-01-01

    In this report we summarize evidence to support a model for the development of Graves' disease. The model suggests that Graves' disease is initiated by an insult to the thyrocyte in an individual with a normal immune system. The insult, infectious or otherwise, causes double strand DNA or RNA to enter the cytoplasm of the cell. This causes abnormal expression of major histocompatibility (MHC) class I as a dominant feature, but also aberrant expression of MHC class II, as well as changes in genes or gene products needed for the thyrocyte to become an antigen presenting cell (APC). These include increased expression of proteasome processing proteins (LMP2), transporters of antigen peptides (TAP), invariant chain (Ii), HLA-DM, and the co-stimulatory molecule, B7, as well as STAT and NF-kappaB activation. A critical factor in these changes is the loss of normal negative regulation of MHC class I, class II, and thyrotropin receptor (TSHR) gene expression, which is necessary to maintain self-tolerance during the normal changes in gene expression involved in hormonally-increased growth and function of the cell. Self-tolerance to the TSHR is maintained in normals because there is a population of CD8- cells which normally suppresses a population of CD4+ cells that can interact with the TSHR if thyrocytes become APCs. This is a host self-defense mechanism that we hypothesize leads to autoimmune disease in persons, for example, with a specific viral infection, a genetic predisposition, or even, possibly, a TSHR polymorphism. The model is suggested to be important to explain the development of other autoimmune diseases including systemic lupus or diabetes.

  19. LIF supports primitive endoderm expansion during pre-implantation development.

    PubMed

    Morgani, Sophie M; Brickman, Joshua M

    2015-10-15

    Embryonic stem cells (ESCs) are pluripotent cell lines that can be maintained indefinitely in an early developmental state. ESC culture conditions almost always require the cytokine LIF to maintain self-renewal. As ESCs are not homogeneous but contain multiple populations reminiscent of the blastocyst, identifying the target cells of LIF is necessary to understand the propagation of pluripotency. We recently found that LIF acts under self-renewing conditions to stimulate the fraction of ESCs that express extraembryonic markers, but has little impact on pluripotent gene expression. Here, we report that LIF has two distinct roles: it blocks early epiblast (Epi) differentiation, and it supports the expansion of primitive endoderm (PrE)-primed ESCs and PrE in vivo. We find that activation of JAK/STAT signalling downstream of LIF occurs initially throughout the pre-implantation embryo, but later marks the PrE. Moreover, the addition of LIF to cultured embryos increases the GATA6(+) PrE population, whereas inhibition of JAK/STAT signalling reduces both NANOG(+) epiblast and GATA6(+) PrE. The reduction of the NANOG(+) Epi might be explained by its precocious differentiation to later Epi derivatives, whereas the increase in PrE is mediated both by an increase in proliferation and inhibition of PrE apoptosis that is normally triggered in embryos with an excess of GATA6(+) cells. Thus, it appears that the relative size of the PrE is determined by the number of LIF-producing cells in the embryo. This suggests a mechanism by which the embryo adjusts the relative ratio of the primary lineages in response to experimental manipulation. © 2015. Published by The Company of Biologists Ltd.

  20. Prevalence of problematic cell phone use in an adult population in Spain as assessed by the Mobile Phone Problem Use Scale (MPPUS).

    PubMed

    de-Sola, José; Talledo, Hernán; Rodríguez de Fonseca, Fernando; Rubio, Gabriel

    2017-01-01

    Problematic cell phone use has alarmingly increased in industrialized countries in the past 10 years. For many perpetrators, it can turn into a behavioural addiction, although this is not a recognized medical condition. Although there are many tools for evaluating this use, one of the most widely used tools is the Mobile Phone Problematic Use Scale (MPPUS), which we test on a representative sample of the population in Spain to obtain an estimate of the prevalence of problematic cell phone use in our midst. The age range consists of 16-65 years, with 1,126 surveys conducted. In this population, we verify that the reliability and internal consistency of the MPPUS (α = 0.939) are maintained. Additionally, the construct validity, considering the derived factors (Abuse and Dependence, Craving and Loss of Control, and Dependence on the Social Environment) are aligned with other research and with diverse external criteria of addiction. We establish four categories of users (Casual, Regular, At Risk, and Problematic) and obtain a prevalence of 15.4% among At Risk Users and 5.1% among Problematic Users. This finding implies a total of 20.5% of Users with Problems. A binary logistic regression analysis shows that age, gender, level of education, and daily cell phone use predict problematic cell phone use. The results, based on multiple criteria, show that such problematic use shares features of recognized addictions, affecting large segments of the population and not only adolescents.

  1. Cellular Mechanisms of Somatic Stem Cell Aging

    PubMed Central

    Jung, Yunjoon

    2014-01-01

    Tissue homeostasis and regenerative capacity rely on rare populations of somatic stem cells endowed with the potential to self-renew and differentiate. During aging, many tissues show a decline in regenerative potential coupled with a loss of stem cell function. Cells including somatic stem cells have evolved a series of checks and balances to sense and repair cellular damage to maximize tissue function. However, during aging the mechanisms that protect normal cell function begin to fail. In this review, we will discuss how common cellular mechanisms that maintain tissue fidelity and organismal lifespan impact somatic stem cell function. We will highlight context-dependent changes and commonalities that define aging, by focusing on three age-sensitive stem cell compartments: blood, neural, and muscle. Understanding the interaction between extrinsic regulators and intrinsic effectors that operate within different stem cell compartments is likely to have important implications for identifying strategies to improve health span and treat age-related degenerative diseases. PMID:24439814

  2. Increasing RpoS expression causes cell death in Borrelia burgdorferi.

    PubMed

    Chen, Linxu; Xu, Qilong; Tu, Jiagang; Ge, Yihe; Liu, Jun; Liang, Fang Ting

    2013-01-01

    RpoS, one of the two alternative σ factors in Borrelia burgdorferi, is tightly controlled by multiple regulators and, in turn, determines expression of many critical virulence factors. Here we show that increasing RpoS expression causes cell death. The immediate effect of increasing RpoS expression was to promote bacterial division and as a consequence result in a rapid increase in cell number before causing bacterial death. No DNA fragmentation or degradation was observed during this induced cell death. Cryo-electron microscopy showed induced cells first formed blebs, which were eventually released from dying cells. Apparently blebbing initiated cell disintegration leading to cell death. These findings led us to hypothesize that increasing RpoS expression triggers intracellular programs and/or pathways that cause spirochete death. The potential biological significance of induced cell death may help B. burgdorferi regulate its population to maintain its life cycle in nature.

  3. Biochemistry of epidermal stem cells☆

    PubMed Central

    Eckert, Richard L.; Adhikary, Gautam; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan C.; Boucher, Shayne E.; Bickenbach, Jackie R.; Kerr, Candace

    2014-01-01

    Background The epidermis is an important protective barrier that is essential for maintenance of life. Maintaining this barrier requires continuous cell proliferation and differentiation. Moreover, these processes must be balanced to produce a normal epidermis. The stem cells of the epidermis reside in specific locations in the basal epidermis, hair follicle and sebaceous glands and these cells are responsible for replenishment of this tissue. Scope of review A great deal of effort has gone into identifying protein epitopes that mark stem cells, in identifying stem cell niche locations, and in understanding how stem cell populations are related. We discuss these studies as they apply to understanding normal epidermal homeostasis and skin cancer. Major conclusions An assortment of stem cell markers have been identified that permit assignment of stem cells to specific regions of the epidermis, and progress has been made in understanding the role of these cells in normal epidermal homeostasis and in conditions of tissue stress. A key finding is the multiple stem cell populations exist in epidermis that give rise to different structures, and that multiple stem cell types may contribute to repair in damaged epidermis. General significance Understanding epidermal stem cell biology is likely to lead to important therapies for treating skin diseases and cancer, and will also contribute to our understanding of stem cells in other systems. This article is part of a Special Issue entitled Biochemistry of Stem Cells. PMID:22820019

  4. Migration of Drosophila intestinal stem cells across organ boundaries

    PubMed Central

    Takashima, Shigeo; Paul, Manash; Aghajanian, Patrick; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    All components of the Drosophila intestinal tract, including the endodermal midgut and ectodermal hindgut/Malpighian tubules, maintain populations of dividing stem cells. In the midgut and hindgut, these stem cells originate from within larger populations of intestinal progenitors that proliferate during the larval stage and form the adult intestine during metamorphosis. The origin of stem cells found in the excretory Malpighian tubules (‘renal stem cells’) has not been established. In this paper, we investigate the migration patterns of intestinal progenitors that take place during metamorphosis. Our data demonstrate that a subset of adult midgut progenitors (AMPs) move posteriorly to form the adult ureters and, consecutively, the renal stem cells. Inhibiting cell migration by AMP-directed expression of a dominant-negative form of Rac1 protein results in the absence of stem cells in the Malpighian tubules. As the majority of the hindgut progenitor cells migrate posteriorly and differentiate into hindgut enterocytes, a group of the progenitor cells, unexpectedly, invades anteriorly into the midgut territory. Consequently, these progenitor cells differentiate into midgut enterocytes. The midgut determinant GATAe is required for the differentiation of midgut enterocytes derived from hindgut progenitors. Wingless signaling acts to balance the proportion of hindgut progenitors that differentiate as midgut versus hindgut enterocytes. Our findings indicate that a stable boundary between midgut and hindgut/Malpighian tubules is not established during early embryonic development; instead, pluripotent progenitor populations cross in between these organs in both directions, and are able to adopt the fate of the organ in which they come to reside. PMID:23571215

  5. Characterization of the Population of the Sulfur-Oxidizing Symbiont of Codakia orbicularis (Bivalvia, Lucinidae) by Single-Cell Analyses▿ †

    PubMed Central

    Caro, Audrey; Gros, Olivier; Got, Patrice; De Wit, Rutger; Troussellier, Marc

    2007-01-01

    We investigated the characteristics of the sulfur-oxidizing symbiont hosted in the gills of Codakia orbicularis, a bivalve living in shallow marine tropical environments. Special attention was paid to describing the heterogeneity of the population by using single-cell approaches including flow cytometry (FCM) and different microscopic techniques and by analyzing a cell size fractionation experiment. Up to seven different subpopulations were distinguished by FCM based on nucleic acid content and light side scattering of the cells. The cell size analysis of symbionts showed that the symbiotic population was very heterogeneous in size, i.e., ranging from 0.5 to 5 μm in length, with variable amounts of intracellular sulfur. The side-scatter signal analyzed by FCM, which is often taken as a proxy of cell size, was greatly influenced by the sulfur content of the symbionts. FCM revealed an important heterogeneity in the relative nucleic acid content among the subclasses. The larger cells contained exceptionally high levels of nucleic acids, suggesting that these cells contained multiple copies of their genome, i.e., ranging from one copy for the smaller cells to more than four copies for the larger cells. The proportion of respiring symbionts (5-cyano-2,3-ditolyl-terazolium chloride positive) in the bacteriocytes of Codakia revealed that around 80% of the symbionts hosted by Codakia maintain respiratory activity throughout the year. These data allowed us to gain insight into the functioning of the symbionts within the host and to propose some hypotheses on how the growth of the symbionts is controlled by the host. PMID:17259363

  6. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells.

    PubMed

    Milush, Jeffrey M; Mir, Kiran D; Sundaravaradan, Vasudha; Gordon, Shari N; Engram, Jessica; Cano, Christopher A; Reeves, Jacqueline D; Anton, Elizabeth; O'Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S; Brenchley, Jason M; Else, James G; Silvestri, Guido; Sodora, Donald L

    2011-03-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4(+) T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3(+)CD4(-)CD8(-) T cells (double-negative T cells) partially compensates for CD4(+) T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4(+) T cells to SIV-negative animals resulted in rapid loss of CD4(+) T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4(+) T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4(+) T cell-like helper functions upon SIV-induced CD4(+) T cell depletion in this species.

  7. The Role of Integrin α6 (CD49f) in Stem Cells: More than a Conserved Biomarker.

    PubMed

    Krebsbach, Paul H; Villa-Diaz, Luis G

    2017-08-01

    Stem cells have the capacity for self-renewal and differentiation into specialized cells that form and repopulated all tissues and organs, from conception to adult life. Depending on their capacity for differentiation, stem cells are classified as totipotent (ie, zygote), pluripotent (ie, embryonic stem cells), multipotent (ie, neuronal stem cells, hematopoietic stem cells, epithelial stem cells, etc.), and unipotent (ie, spermatogonial stem cells). Adult or tissue-specific stem cells reside in specific niches located in, or nearby, their organ or tissue of origin. There, they have microenvironmental support to remain quiescent, to proliferate as undifferentiated cells (self-renewal), and to differentiate into progenitors or terminally differentiated cells that migrate from the niche to perform specialized functions. The presence of proteins at the cell surface is often used to identify, classify, and isolate stem cells. Among the diverse groups of cell surface proteins used for these purposes, integrin α6, also known as CD49f, may be the only biomarker commonly found in more than 30 different populations of stem cells, including some cancer stem cells. This broad expression among stem cell populations indicates that integrin α6 may play an important and conserved role in stem cell biology, which is reaffirmed by recent demonstrations of its role maintaining self-renewal of pluripotent stem cells and breast and glioblastoma cancer stem cells. Therefore, this review intends to highlight and synthesize new findings on the importance of integrin α6 in stem cell biology.

  8. The lymphoid cell network in the skin.

    PubMed

    Tikoo, Shweta; Jain, Rohit; Kurz, Angela Rm; Weninger, Wolfgang

    2018-05-01

    Cutaneous immunity represents a crucial component of the mammalian immune response. The presence of a large array of commensal microorganisms along with a myriad of environmental stresses necessitates constant immuno-surveillance of the tissue. To achieve a perfect balance between immune-tolerance and immune-activation, the skin harbors strategically localized immune cell populations that modulate these responses. To maintain homeostasis, innate and adaptive immune cells assimilate microenvironmental cues and coordinate cellular and molecular functions in a spatiotemporal manner. The role of lymphoid cells in cutaneous immunity is gaining much appreciation due to their important roles in regulating skin health and pathology. In this review, we aim to highlight the recent advances in the field of cutaneous lymphoid biology. © 2018 Australasian Society for Immunology Inc.

  9. Genetic evidence that Nkx2.2 acts primarily downstream of Neurog3 in pancreatic endocrine lineage development

    PubMed Central

    Churchill, Angela J; Gutiérrez, Giselle Dominguez; Singer, Ruth A; Lorberbaum, David S; Fischer, Kevin A; Sussel, Lori

    2017-01-01

    Many pancreatic transcription factors that are essential for islet cell differentiation have been well characterized; however, because they are often expressed in several different cell populations, their functional hierarchy remains unclear. To parse out the spatiotemporal regulation of islet cell differentiation, we used a Neurog3-Cre allele to ablate Nkx2.2, one of the earliest and most broadly expressed islet transcription factors, specifically in the Neurog3+ endocrine progenitor lineage (Nkx2.2△endo). Remarkably, many essential components of the β cell transcriptional network that were down-regulated in the Nkx2.2KO mice, were maintained in the Nkx2.2△endo mice - yet the Nkx2.2△endo mice displayed defective β cell differentiation and recapitulated the Nkx2.2KO phenotype. This suggests that Nkx2.2 is not only required in the early pancreatic progenitors, but has additional essential activities within the endocrine progenitor population. Consistently, we demonstrate Nkx2.2 functions as an integral component of a modular regulatory program to correctly specify pancreatic islet cell fates. DOI: http://dx.doi.org/10.7554/eLife.20010.001 PMID:28071588

  10. Role of Non-Myocyte Gap Junctions and Connexin Hemichannels in Cardiovascular Health and Disease: Novel Therapeutic Targets?

    PubMed

    Johnson, Robert D; Camelliti, Patrizia

    2018-03-15

    The heart is a complex organ composed of multiple cell types, including cardiomyocytes and different non-myocyte populations, all working closely together to determine the hearts properties and maintain normal cardiac function. Connexins are abundantly expressed proteins that form plasma membrane hemichannels and gap junctions between cells. Gap junctions are intracellular channels that allow for communication between cells, and in the heart they play a crucial role in cardiac conduction by coupling adjacent cardiomyocytes. Connexins are expressed in both cardiomyocytes and non-myocytes, including cardiac fibroblasts, endothelial cells, and macrophages. Non-myocytes are the largest population of cells in the heart, and therefore it is important to consider what roles connexins, hemichannels, and gap junctions play in these cell types. The aim of this review is to provide insight into connexin-based signalling in non-myocytes during health and disease, and highlight how targeting these proteins could lead to the development of novel therapies. We conclude that connexins in non-myocytes contribute to arrhythmias and adverse ventricular remodelling following myocardial infarction, and are associated with the initiation and development of atherosclerosis. Therefore, therapeutic interventions targeting these connexins represent an exciting new research avenue with great potential.

  11. Chronic Dry Eye Disease is Principally Mediated by Effector Memory Th17 Cells

    PubMed Central

    Chen, Yihe; Chauhan, Sunil K.; Lee, Hyun Soo; Saban, Daniel R.; Dana, Reza

    2013-01-01

    Recent experimental and clinical data suggest that there is a link between dry eye disease (DED) and T cell-mediated immunity. However, whether these immune responses are a consequence or cause of ocular surface inflammation remains to be determined. Thus far, only models of acute DED have been used to derive experimental data. This is in contrast to clinical DED which usually presents as a chronic disease. In the present study, using a murine model of chronic DED, it was established that the chronic phase of the disease is accompanied by Th17 responses at the ocular surface, and that a significant memory T cell population can be recovered from chronic DED. This memory response is predominantly mediated by Th17 cells. Moreover, adoptive transfer of this memory T cell population was shown to induce more severe and rapidly progressing DED than did the adoptive transfer of its effector or naïve counterparts. Not only do these results clearly demonstrate that effector memory Th17 cells are primarily responsible for maintaining the chronic and relapsing course of DED, but they also highlight a potentially novel therapeutic strategy for targeting memory immune responses in patients with DED. PMID:23571503

  12. Circulating endothelial and progenitor cells: Evidence from acute and long-term exercise effects

    PubMed Central

    Koutroumpi, Matina; Dimopoulos, Stavros; Psarra, Katherini; Kyprianou, Theodoros; Nanas, Serafim

    2012-01-01

    Circulating bone-marrow-derived cells, named endothelial progenitor cells (EPCs), are capable of maintaining, generating, and replacing terminally differentiated cells within their own specific tissue as a consequence of physiological cell turnover or tissue damage due to injury. Endothelium maintenance and restoration of normal endothelial cell function is guaranteed by a complex physiological procedure in which EPCs play a significant role. Decreased number of peripheral blood EPCs has been associated with endothelial dysfunction and high cardiovascular risk. In this review, we initially report current knowledge with regard to the role of EPCs in healthy subjects and the clinical value of EPCs in different disease populations such as arterial hypertension, obstructive sleep-apnea syndrome, obesity, diabetes mellitus, peripheral arterial disease, coronary artery disease, pulmonary hypertension, and heart failure. Recent studies have introduced the novel concept that physical activity, either performed as a single exercise session or performed as part of an exercise training program, results in a significant increase of circulating EPCs. In the second part of this review we provide preliminary evidence from recent studies investigating the effects of acute and long-term exercise in healthy subjects and athletes as well as in disease populations. PMID:23272272

  13. Virus-Specific Immune Memory at Peripheral Sites of Herpes Simplex Virus Type 2 (HSV-2) Infection in Guinea Pigs

    PubMed Central

    Xia, Jingya; Veselenak, Ronald L.; Gorder, Summer R.; Bourne, Nigel; Milligan, Gregg N.

    2014-01-01

    Despite its importance in modulating HSV-2 pathogenesis, the nature of tissue-resident immune memory to HSV-2 is not completely understood. We used genital HSV-2 infection of guinea pigs to assess the type and location of HSV-specific memory cells at peripheral sites of HSV-2 infection. HSV-specific antibody-secreting cells were readily detected in the spleen, bone marrow, vagina/cervix, lumbosacral sensory ganglia, and spinal cord of previously-infected animals. Memory B cells were detected primarily in the spleen and to a lesser extent in bone marrow but not in the genital tract or neural tissues suggesting that the HSV-specific antibody-secreting cells present at peripheral sites of HSV-2 infection represented persisting populations of plasma cells. The antibody produced by these cells isolated from neural tissues of infected animals was functionally relevant and included antibodies specific for HSV-2 glycoproteins and HSV-2 neutralizing antibodies. A vigorous IFN-γ-secreting T cell response developed in the spleen as well as the sites of HSV-2 infection in the genital tract, lumbosacral ganglia and spinal cord following acute HSV-2 infection. Additionally, populations of HSV-specific tissue-resident memory T cells were maintained at these sites and were readily detected up to 150 days post HSV-2 infection. Unlike the persisting plasma cells, HSV-specific memory T cells were also detected in uterine tissue and cervicothoracic region of the spinal cord and at low levels in the cervicothoracic ganglia. Both HSV-specific CD4+ and CD8+ resident memory cell subsets were maintained long-term in the genital tract and sensory ganglia/spinal cord following HSV-2 infection. Together these data demonstrate the long-term maintenance of both humoral and cellular arms of the adaptive immune response at the sites of HSV-2 latency and virus shedding and highlight the utility of the guinea pig infection model to investigate tissue-resident memory in the setting of HSV-2 latency and spontaneous reactivation. PMID:25485971

  14. Lack of clinical AIDS in SIV-infected sooty mangabeys with significant CD4+ T cell loss is associated with double-negative T cells

    PubMed Central

    Milush, Jeffrey M.; Mir, Kiran D.; Sundaravaradan, Vasudha; Gordon, Shari N.; Engram, Jessica; Cano, Christopher A.; Reeves, Jacqueline D.; Anton, Elizabeth; O’Neill, Eduardo; Butler, Eboneé; Hancock, Kathy; Cole, Kelly S.; Brenchley, Jason M.; Else, James G.; Silvestri, Guido; Sodora, Donald L.

    2011-01-01

    SIV infection of natural host species such as sooty mangabeys results in high viral replication without clinical signs of simian AIDS. Studying such infections is useful for identifying immunologic parameters that lead to AIDS in HIV-infected patients. Here we have demonstrated that acute, SIV-induced CD4+ T cell depletion in sooty mangabeys does not result in immune dysfunction and progression to simian AIDS and that a population of CD3+CD4–CD8– T cells (double-negative T cells) partially compensates for CD4+ T cell function in these animals. Passaging plasma from an SIV-infected sooty mangabey with very few CD4+ T cells to SIV-negative animals resulted in rapid loss of CD4+ T cells. Nonetheless, all sooty mangabeys generated SIV-specific antibody and T cell responses and maintained normal levels of plasma lipopolysaccharide. Moreover, all CD4-low sooty mangabeys elicited a de novo immune response following influenza vaccination. Such preserved immune responses as well as the low levels of immune activation observed in these animals were associated with the presence of double-negative T cells capable of producing Th1, Th2, and Th17 cytokines. These studies indicate that SIV-infected sooty mangabeys do not appear to rely entirely on CD4+ T cells to maintain immunity and identify double-negative T cells as a potential subset of cells capable of performing CD4+ T cell–like helper functions upon SIV-induced CD4+ T cell depletion in this species. PMID:21317533

  15. Agonism of Wnt/β-catenin signaling promotes mesenchymal stem cell (MSC) expansion

    PubMed Central

    Hoffman, Michael D.; Benoit, Danielle S.W.

    2014-01-01

    Promoting mesenchymal stem cell (MSC) proliferation has numerous applications in stem cell therapies, particularly in the area of regenerative medicine. In order for cell-based regenerative approaches to be realized, MSC proliferation must be achieved in a controlled manner without compromising stem cell differentiation capacities. Here we demonstrate that 6-bromoindirubin-3’-oxime (BIO) increases MSC β-catenin activity 106-fold and stem cell-associated gene expression ~33-fold respectively over untreated controls. Subsequently, BIO treatment increases MSC populations 1.8-fold in typical 2D culture conditions, as well as 1.3-fold when encapsulated within hydrogels compared to untreated cells. Furthermore, we demonstrate that BIO treatment does not reduce MSC multipotency, where MSCs maintain their ability to differentiate into osteoblasts, chondrocytes, and adipocytes using standard conditions. Taken together, our results demonstrate BIOs potential utility as a proliferative agent for cell transplantation and tissue regeneration. PMID:23554411

  16. Bone Marrow Stem Cells in Clinical Application: Harnessing Paracrine Roles and Niche Mechanisms

    NASA Astrophysics Data System (ADS)

    Backly, Rania M. El; Cancedda, Ranieri

    The being of any individual throughout life is a dynamic process relying on the capacity to retain processes of self-renewal and differentiation, both of which are hallmarks of stem cells. Although limited in the adult human organism, regeneration and repair do take place in virtue of the presence of adult stem cells. In the bone marrow, two major populations of stem cells govern the dynamic equilibrium of both hemopoiesis and skeletal homeostasis; the hematopoietic and the mesenchymal stem cells. Recent cell based clinical trials utilizing bone marrow-derived stem cells as therapeutic agents have revealed promising results, while others have failed to display as such. It is therefore imperative to strive to understand the mechanisms by which these cells function in vivo, how their properties can be maintained ex-vivo, and to explore further their recently highlighted immunomodulatory and trophic effects.

  17. Clinical potentials of human pluripotent stem cells in lung diseases

    PubMed Central

    2014-01-01

    Lung possesses very limited regenerative capacity. Failure to maintain homeostasis of lung epithelial cell populations has been implicated in the development of many life-threatening pulmonary diseases leading to substantial morbidity and mortality worldwide, and currently there is no known cure for these end-stage pulmonary diseases. Embryonic stem cells (ESCs) and somatic cell-derived induced pluripotent stem cells (iPSCs) possess unlimited self-renewal capacity and great potential to differentiate to various cell types of three embryonic germ layers (ectodermal, mesodermal, and endodermal). Therapeutic use of human ESC/iPSC-derived lung progenitor cells for regeneration of injured or diseased lungs will have an enormous clinical impact. This article provides an overview of recent advances in research on pluripotent stem cells in lung tissue regeneration and discusses technical challenges that must be overcome for their clinical applications in the future. PMID:24995122

  18. The planar cell polarity protein VANGL2 coordinates remodeling of the extracellular matrix

    PubMed Central

    Williams, B. Blairanne; Mundell, Nathan; Dunlap, Julie; Jessen, Jason

    2012-01-01

    Understanding how planar cell polarity (PCP) is established, maintained, and coordinated in migrating cell populations is an important area of research with implications for both embryonic morphogenesis and tumor cell invasion. We recently reported that the PCP protein Vang-like 2 (VANGL2) regulates the endocytosis and cell surface level of membrane type-1 matrix metalloproteinase (MMP14 or MT1-MMP). Here, we further discuss these findings in terms of extracellular matrix (ECM) remodeling, cell migration, and zebrafish gastrulation. We also demonstrate that VANGL2 function impacts the focal degradation of ECM by human cancer cells including the formation or stability of invadopodia. Together, our findings implicate MMP14 as a downstream effector of VANGL2 signaling and suggest a model whereby the regulation of pericellular proteolysis is a fundamental aspect of PCP in migrating cells. PMID:23060953

  19. Equine Mesenchymal Stromal Cells Retain a Pericyte-Like Phenotype

    PubMed Central

    Sheldrake, Tara A.; Dawson, Lucy; Menghini, Timothy; Rink, Burgunde Elisabeth; Amilon, Karin; Khan, Nusrat; Péault, Bruno; Donadeu, Francesc Xavier

    2017-01-01

    Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs. PMID:28376684

  20. Equine Mesenchymal Stromal Cells Retain a Pericyte-Like Phenotype.

    PubMed

    Esteves, Cristina L; Sheldrake, Tara A; Dawson, Lucy; Menghini, Timothy; Rink, Burgunde Elisabeth; Amilon, Karin; Khan, Nusrat; Péault, Bruno; Donadeu, Francesc Xavier

    2017-07-01

    Mesenchymal stem/stromal cells (MSCs) have been used in human and equine regenerative medicine, and interest in exploiting their potential has increased dramatically over the years. Despite significant effort to characterize equine MSCs, the actual origin of these cells and how much of their native phenotype is maintained in culture have not been determined. In this study, we investigated the relationship between MSCs, derived from adipose tissue (AT) and bone marrow (BM), and pericytes in the horse. Both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD90, and CD73) markers were detected in equine AT and colocalized around blood vessels. Importantly, as assessed by flow cytometry, both pericyte (CD146, NG2, and αSMA) and MSC (CD29, CD44, CD90, and CD105) markers were present in a majority (≥90%) of cells in cultures of AT-MSCs and BM-MSCs; however, levels of pericyte markers were variable within each of those populations. Moreover, the expression of pericyte markers was maintained for at least eight passages in both AT-MSCs and BM-MSCs. Hematopoietic (CD45) and endothelial (CD144) markers were also detected at low levels in MSCs by quantitative polymerase chain reaction (qPCR). Finally, in coculture experiments, AT-MSCs closely associated with networks produced by endothelial cells, resembling the natural perivascular location of pericytes in vivo. Our results indicate that equine MSCs originate from perivascular cells and moreover maintain a pericyte-like phenotype in culture. Therefore, we suggest that, in addition to classical MSC markers, pericyte markers such as CD146 could be used when assessing and characterizing equine MSCs.

  1. Central nervous system demyelinating disease protection by the human commensal Bacteroides fragilis depends on polysaccharide A expression.

    PubMed

    Ochoa-Repáraz, Javier; Mielcarz, Daniel W; Ditrio, Lauren E; Burroughs, Ashley R; Begum-Haque, Sakhina; Dasgupta, Suryasarathi; Kasper, Dennis L; Kasper, Lloyd H

    2010-10-01

    The importance of gut commensal bacteria in maintaining immune homeostasis is increasingly understood. We recently described that alteration of the gut microflora can affect a population of Foxp3(+)T(reg) cells that regulate demyelination in experimental autoimmune encephalomyelitis (EAE), the experimental model of human multiple sclerosis. We now extend our previous observations on the role of commensal bacteria in CNS demyelination, and we demonstrate that Bacteroides fragilis producing a bacterial capsular polysaccharide Ag can protect against EAE. Recolonization with wild type B. fragilis maintained resistance to EAE, whereas reconstitution with polysaccharide A-deficient B. fragilis restored EAE susceptibility. Enhanced numbers of Foxp3(+)T(reg) cells in the cervical lymph nodes were observed after intestinal recolonization with either strain of B. fragilis. Ex vivo, CD4(+)T cells obtained from mice reconstituted with wild type B. fragilis had significantly enhanced rates of conversion into IL-10-producing Foxp3(+)T(reg) cells and offered greater protection against disease. Our results suggest an important role for commensal bacterial Ags, in particular B. fragilis expressing polysaccharide A, in protecting against CNS demyelination in EAE and perhaps human multiple sclerosis.

  2. Regulatory T cells in the control of host-microorganism interactions (*).

    PubMed

    Belkaid, Yasmine; Tarbell, Kristin

    2009-01-01

    Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.

  3. Hydration dynamics promote bacterial coexistence on rough surfaces

    PubMed Central

    Wang, Gang; Or, Dani

    2013-01-01

    Identification of mechanisms that promote and maintain the immense microbial diversity found in soil is a central challenge for contemporary microbial ecology. Quantitative tools for systematic integration of complex biophysical and trophic processes at spatial scales, relevant for individual cell interactions, are essential for making progress. We report a modeling study of competing bacterial populations cohabiting soil surfaces subjected to highly dynamic hydration conditions. The model explicitly tracks growth, motion and life histories of individual bacterial cells on surfaces spanning dynamic aqueous networks that shape heterogeneous nutrient fields. The range of hydration conditions that confer physical advantages for rapidly growing species and support competitive exclusion is surprisingly narrow. The rapid fragmentation of soil aqueous phase under most natural conditions suppresses bacterial growth and cell dispersion, thereby balancing conditions experienced by competing populations with diverse physiological traits. In addition, hydration fluctuations intensify localized interactions that promote coexistence through disproportional effects within densely populated regions during dry periods. Consequently, bacterial population dynamics is affected well beyond responses predicted from equivalent and uniform hydration conditions. New insights on hydration dynamics could be considered in future designs of soil bioremediation activities, affect longevity of dry food products, and advance basic understanding of bacterial diversity dynamics and its role in global biogeochemical cycles. PMID:23051694

  4. Viral Impacts on Total Abundance and Clonal Composition of the Harmful Bloom-Forming Phytoplankton Heterosigma akashiwo

    PubMed Central

    Tarutani, Kenji; Nagasaki, Keizo; Yamaguchi, Mineo

    2000-01-01

    Recent observations that viruses are very abundant and biologically active components in marine ecosystems suggest that they probably influence various biogeochemical and ecological processes. In this study, the population dynamics of the harmful bloom-forming phytoplankton Heterosigma akashiwo (Raphidophyceae) and the infectious H. akashiwo viruses (HaV) were monitored in Hiroshima Bay, Japan, from May to July 1998. Concurrently, a number of H. akashiwo and HaV clones were isolated, and their virus susceptibilities and host ranges were determined through laboratory cross-reactivity tests. A sudden decrease in cell density of H. akashiwo was accompanied by a drastic increase in the abundance of HaV, suggesting that viruses contributed greatly to the disintegration of the H. akashiwo bloom as mortality agents. Despite the large quantity of infectious HaV, however, a significant proportion of H. akashiwo cells survived after the bloom disintegration. The viral susceptibility of H. akashiwo isolates demonstrated that the majority of these surviving cells were resistant to most of the HaV clones, whereas resistant cells were a minor component during the bloom period. Moreover, these resistant cells were displaced by susceptible cells, presumably due to viral infection. These results demonstrated that the properties of dominant cells within the H. akashiwo population change during the period when a bloom is terminated by viral infection, suggesting that viruses also play an important role in determining the clonal composition and maintaining the clonal diversity of H. akashiwo populations. Therefore, our data indicate that viral infection influences the total abundance and the clonal composition of one host algal species, suggesting that viruses are an important component in quantitatively and qualitatively controlling phytoplankton populations in natural marine environments. PMID:11055943

  5. Adult neural stem cell cycling in vivo requires thyroid hormone and its alpha receptor.

    PubMed

    Lemkine, G F; Raj, A; Alfama, G; Turque, N; Hassani, Z; Alegria-Prévot, O; Samarut, J; Levi, G; Demeneix, B A

    2005-05-01

    Thyroid hormones (TH) are essential for brain development. However, information on if and how this key endocrine factor affects adult neurogenesis is fragmentary. We thus investigated the effects of TH on proliferation and apoptosis of stem cells in the subventricular zone (SVZ), as well as on migration of transgene-tagged neuroblasts out of the stem cell niche. Hypothyroidism significantly reduced all three of these processes, inhibiting generation of new cells. To determine the mechanisms relaying TH action in the SVZ, we analyzed which receptor was implicated and whether the effects were played out directly at the level of the stem cell population. The alpha TH receptor (TRalpha), but not TRbeta, was found to be expressed in nestin positive progenitor cells of the SVZ. Further, use of TRalpha mutant mice showed TRalpha to be required to maintain full proliferative activity. Finally, a direct TH transcriptional effect, not mediated through other cell populations, was revealed by targeted gene transfer to stem cells in vivo. Indeed, TH directly modulated transcription from the c-myc promoter reporter construct containing a functional TH response element containing TRE but not from a mutated TRE sequence. We conclude that liganded-TRalpha is critical for neurogenesis in the adult mammalian brain.

  6. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    PubMed Central

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  7. wnt3a but not wnt11 supports self-renewal of embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singla, Dinender K.; Schneider, David J.; LeWinter, Martin M.

    2006-06-30

    wnt proteins (wnts) promote both differentiation of midbrain dopaminergic cells and self-renewal of haematopoietic stem cells. Mouse embryonic stem (ES) cells can be maintained and self-renew on mouse feeder cell layers or in media containing leukemia inhibitory factor (LIF). However, the effects of wnts on ES cells self-renewal and differentiation are not clearly understood. In the present study, we found that conditioned medium prepared from L cells expressing wnt3a can replace feeder cell layers and medium containing LIF in maintaining ES cells in the proliferation without differentiation (self-renewal) state. By contrast, conditioned medium from NIH3T3 cells expressing wnt11 did not.more » Alkaline phosphatase staining and compact colony formation were used as criteria of cells being in the undifferentiated state. ES cells maintained in medium conditioned by Wnt3a expressing cells underwent freezing and thawing while maintaining properties seen with LIF maintained ES cells. Purified wnt3a did not maintain self-renewal of ES cells for prolonged intervals. Thus, other factors in the medium conditioned by wnt3a expressing cells may have contributed to maintenance of ES cells in a self-renewal state. Pluripotency of ES cells was determined with the use of embryoid bodies in vitro. PD98059, a MEK specific inhibitor, promoted the growth of undifferentiated ES cells maintained in conditioned medium from wnt3a expressing cells. By contrast, the P38 MAPK inhibitor SB230580 did not, suggesting a role for the MEK pathway in self-renewal and differentiation of ES cells maintained in the wnt3a cell conditioned medium. Thus, our results show that conditioned medium from wnt3a but not wnt11 expressing cells can maintain ES cells in self-renewal and in a pluripotent state.« less

  8. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate.

    PubMed

    Keil, Kimberly P; Vezina, Chad M

    2015-01-01

    Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.

  9. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate

    PubMed Central

    Keil, Kimberly P; Vezina, Chad M

    2015-01-01

    Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal–epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia. PMID:26077429

  10. Human skeletal muscle-derived stem cells retain stem cell properties after expansion in myosphere culture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Yan; Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guang Zhou; Li, Yuan

    2011-04-15

    Human skeletal muscle contains an accessible adult stem-cell compartment in which differentiated myofibers are maintained and replaced by a self-renewing stem cell pool. Previously, studies using mouse models have established a critical role for resident stem cells in skeletal muscle, but little is known about this paradigm in human muscle. Here, we report the reproducible isolation of a population of cells from human skeletal muscle that is able to proliferate for extended periods of time as floating clusters of rounded cells, termed 'myospheres' or myosphere-derived progenitor cells (MDPCs). The phenotypic characteristics and functional properties of these cells were determined usingmore » reverse transcription-polymerase chain reaction (RT-PCR), flow cytometry and immunocytochemistry. Our results showed that these cells are clonogenic, express skeletal progenitor cell markers Pax7, ALDH1, Myod, and Desmin and the stem cell markers Nanog, Sox2, and Oct3/4 significantly elevated over controls. They could be maintained proliferatively active in vitro for more than 20 weeks and passaged at least 18 times, despite an average donor-age of 63 years. Individual clones (4.2%) derived from single cells were successfully expanded showing clonogenic potential and sustained proliferation of a subpopulation in the myospheres. Myosphere-derived cells were capable of spontaneous differentiation into myotubes in differentiation media and into other mesodermal cell lineages in induction media. We demonstrate here that direct culture and expansion of stem cells from human skeletal muscle is straightforward and reproducible with the appropriate technique. These cells may provide a viable resource of adult stem cells for future therapies of disease affecting skeletal muscle or mesenchymal lineage derived cell types.« less

  11. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development.

    PubMed

    ten Berge, Derk; Brugmann, Samantha A; Helms, Jill A; Nusse, Roel

    2008-10-01

    A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.

  12. Gremlin 1 Identifies a Skeletal Stem Cell with Bone, Cartilage, and Reticular Stromal Potential

    PubMed Central

    Worthley, Daniel L.; Churchill, Michael; Compton, Jocelyn T.; Tailor, Yagnesh; Rao, Meenakshi; Si, Yiling; Levin, Daniel; Schwartz, Matthew G.; Uygur, Aysu; Hayakawa, Yoku; Gross, Stefanie; Renz, Bernhard W.; Setlik, Wanda; Martinez, Ashley N.; Chen, Xiaowei; Nizami, Saqib; Lee, Heon Goo; Kang, H. Paco; Caldwell, Jon-Michael; Asfaha, Samuel; Westphalen, C. Benedikt; Graham, Trevor; Jin, Guangchun; Nagar, Karan; Wang, Hongshan; Kheirbek, Mazen A.; Kolhe, Alka; Carpenter, Jared; Glaire, Mark; Nair, Abhinav; Renders, Simon; Manieri, Nicholas; Muthupalani, Sureshkumar; Fox, James G.; Reichert, Maximilian; Giraud, Andrew S.; Schwabe, Robert F.; Pradere, Jean-Phillipe; Walton, Katherine; Prakash, Ajay; Gumucio, Deborah; Rustgi, Anil K.; Stappenbeck, Thaddeus S.; Friedman, Richard A.; Gershon, Michael D.; Sims, Peter; Grikscheit, Tracy; Lee, Francis Y.; Karsenty, Gerard; Mukherjee, Siddhartha; Wang, Timothy C.

    2014-01-01

    The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs). PMID:25594183

  13. 3D printed lattices as an activation and expansion platform for T cell therapy.

    PubMed

    Delalat, Bahman; Harding, Frances; Gundsambuu, Batjargal; De-Juan-Pardo, Elena M; Wunner, Felix M; Wille, Marie-Luise; Jasieniak, Marek; Malatesta, Kristen A L; Griesser, Hans J; Simula, Antonio; Hutmacher, Dietmar W; Voelcker, Nicolas H; Barry, Simon C

    2017-09-01

    One of the most significant hurdles to the affordable, accessible delivery of cell therapy is the cost and difficulty of expanding cells to clinically relevant numbers. Immunotherapy to prevent autoimmune disease, tolerate organ transplants or target cancer critically relies on the expansion of specialized T cell populations. We have designed 3D-printed cell culture lattices with highly organized micron-scale architectures, functionalized via plasma polymerization to bind monoclonal antibodies that trigger cell proliferation. This 3D technology platform facilitate the expansion of therapeutic human T cell subsets, including regulatory, effector, and cytotoxic T cells while maintaining the correct phenotype. Lentiviral gene delivery to T cells is enhanced in the presence of the lattices. Incorporation of the lattice format into existing cell culture vessels such as the G-Rex system is feasible. This cell expansion platform is user-friendly and expedites cell recovery and scale-up, making it ideal for translating T cell therapies from bench to bedside. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Cardiac Stem Cell Hybrids Enhance Myocardial Repair

    PubMed Central

    Quijada, Pearl; Salunga, Hazel T.; Hariharan, Nirmala; Cubillo, Jonathan D.; El-Sayed, Farid G.; Moshref, Maryam; Bala, Kristin M.; Emathinger, Jacqueline M.; La Torre, Andrea De; Ormachea, Lucia; Alvarez, Roberto; Gude, Natalie A.; Sussman, Mark A.

    2015-01-01

    Rationale Dual cell transplantation of cardiac progenitor cells (CPCs) and mesenchymal stem cells (MSCs) after infarction improves myocardial repair and performance in large animal models relative to delivery of either cell population. Objective To demonstrate that CardioChimeras (CCs) formed by fusion between CPCs and MSCs have enhanced reparative potential in a mouse model of myocardial infarction relative to individual stem cells or combined cell delivery. Methods and Results Two distinct and clonally derived CCs, CC1 and CC2 were utilized for this study. CCs improved left ventricular anterior wall thickness (AWT) at 4 weeks post injury, but only CC1 treatment preserved AWT at 18 weeks. Ejection fraction was enhanced at 6 weeks in CCs, and functional improvements were maintained in CCs and CPC + MSC groups at 18 weeks. Infarct size was decreased in CCs, whereas CPC + MSC and CPC parent groups remained unchanged at 12 weeks. CCs exhibited increased persistence, engraftment, and expression of early commitment markers within the border zone relative to combinatorial and individual cell population-injected groups. CCs increased capillary density and preserved cardiomyocyte size in the infarcted regions suggesting CCs role in protective paracrine secretion. Conclusions CCs merge the application of distinct cells into a single entity for cellular therapeutic intervention in the progression of heart failure. CCs are a novel cell therapy that improves upon combinatorial cell approaches to support myocardial regeneration. PMID:26228030

  15. Global Expression Profiling of Globose Basal Cells and Neurogenic Progression Within the Olfactory Epithelium

    PubMed Central

    Krolewski, Richard C.; Packard, Adam; Schwob, James E.

    2013-01-01

    Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion. PMID:22847514

  16. Preservation and Reproduction of Microminipigs by Cloning Technology.

    PubMed

    Enya, Satoko; Kawarasaki, Tatsuo; Otake, Masayoshi; Kangawa, Akihisa; Uenishi, Hirohide; Mikawa, Satoshi; Nishimura, Takashi; Kuwahawa, Yasushi; Shibata, Masatoshi

    Microminipigs have been maintained in small populations of closed colonies, involving risks of inbreeding depression and genetic drift. In order to avoid these risks, we assessed the applicability of cloning technology. Male and female clones were produced from a stock of cryopreserved somatic cells, obtaining offspring by means of natural mating. Phenotypic and genotypic characteristics of original microminipigs, clones and their offspring were analyzed and recorded. Clones presented characteristics similar to those of the cell-stock data. Although the body weight of clones tended to be heavier than that of the cell-stock data, body weights of their offspring were similar to those of previous reports. Thus, cloned microminipigs have the potential to be a valuable genetic resource for reproduction and breeding. Our proposed methodology might be useful to provide a large number of animals with adequate quality from a limited population with sufficient genetic diversity. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Lentiviral vector-mediated genetic modification of human neural progenitor cells for ex vivo gene therapy.

    PubMed

    Capowski, Elizabeth E; Schneider, Bernard L; Ebert, Allison D; Seehus, Corey R; Szulc, Jolanta; Zufferey, Romain; Aebischer, Patrick; Svendsen, Clive N

    2007-07-30

    Human neural progenitor cells (hNPC) hold great potential as an ex vivo system for delivery of therapeutic proteins to the central nervous system. When cultured as aggregates, termed neurospheres, hNPC are capable of significant in vitro expansion. In the current study, we present a robust method for lentiviral vector-mediated gene delivery into hNPC that maintains the differentiation and proliferative properties of neurosphere cultures while minimizing the amount of viral vector used and controlling the number of insertion sites per population. This method results in long-term, stable expression even after differentiation of the hNPC to neurons and astrocytes and allows for generation of equivalent transgenic populations of hNPC. In addition, the in vitro analysis presented predicts the behavior of transgenic lines in vivo when transplanted into a rodent model of Parkinson's disease. The methods presented provide a powerful tool for assessing the impact of factors such as promoter systems or different transgenes on the therapeutic utility of these cells.

  18. Stem/progenitor cells in pituitary organ homeostasis and tumourigenesis

    PubMed Central

    Manshaei, Saba

    2018-01-01

    Evidence for the presence of pituitary gland stem cells has been provided over the last decade using a combination of approaches including in vitro clonogenicity assays, flow cytometric side population analysis, immunohistochemical analysis and genetic approaches. These cells have been demonstrated to be able to self-renew and undergo multipotent differentiation to give rise to all hormonal lineages of the anterior pituitary. Furthermore, evidence exists for their contribution to regeneration of the organ and plastic responses to changing physiological demand. Recently, stem-like cells have been isolated from pituitary neoplasms raising the possibility that a cytological hierarchy exists, in keeping with the cancer stem cell paradigm. In this manuscript, we review the evidence for the existence of pituitary stem cells, their role in maintaining organ homeostasis and the regulation of their differentiation. Furthermore, we explore the emerging concept of stem cells in pituitary tumours and their potential roles in these diseases. PMID:28855316

  19. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  20. CD4 expression on EL4 cells as an epiphenomenon of retroviral transduction and selection.

    PubMed

    Logan, Grant J; Spinoulas, Afroditi; Alexander, Stephen I; Smythe, Jason A; Alexander, Ian E

    2004-04-01

    The EL4 murine tumour cell line, isolated from a chemically induced lymphoma over 50 years ago, has been extensively exploited in immunological research. The conclusions drawn from many of these studies have been based on the presumption that EL4 cells maintain a stable phenotype during experimental manipulation. To the contrary, we have observed 100-fold greater expression of cell surface CD4 (CD4(high)) on a subpopulation of EL4 cells following retroviral transduction and G418 selection when compared with unmodified populations. Although the mechanism responsible for this effect remains to be elucidated, the unexpected expression of CD4, a molecule that functions as both a coreceptor with the T-cell receptor and ligand for the pro-inflammatory cytokine IL-16, has the potential to influence experimental outcomes. Upregulation of CD4 should be excluded when EL4 cells are utilized in experiments requiring a consistent immuno-phenotype.

  1. Engineering tissues, organs and cells.

    PubMed

    Atala, Anthony

    2007-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs; however, there is a severe shortage of donor organs that is worsening yearly, given the ageing population. In the field of regenerative medicine and tissue engineering, scientists apply the principles of cell transplantation, materials science and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy, including the use of amniotic and placental fetal stem cells. This review covers recent advances that have occurred in regenerative medicine and describes applications of these technologies using chemical compounds that may offer novel therapies for patients with end-stage organ failure. 2007 John Wiley & Sons, Ltd

  2. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  3. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.

    PubMed

    Sun, M; He, C; Cong, Y; Liu, Z

    2015-09-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.

  4. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    PubMed

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal parts of injured nerves repair, Schwann cells gradually lose regeneration-supporting features and eventually die. Identification of signals that sustain repair cells is therefore an important goal. We have found that in mice the transcription factor STAT3 protects these cells from death and contributes to maintaining the molecular and morphological repair phenotype that promotes axonal regeneration. Defining the molecular mechanisms that maintain repair Schwann cells is an essential step toward developing therapeutic strategies that improve nerve regeneration and functional recovery. Copyright © 2017 Benito, Davis et al.

  5. Satellite Cells and the Muscle Stem Cell Niche

    PubMed Central

    Yin, Hang; Price, Feodor

    2013-01-01

    Adult skeletal muscle in mammals is a stable tissue under normal circumstances but has remarkable ability to repair after injury. Skeletal muscle regeneration is a highly orchestrated process involving the activation of various cellular and molecular responses. As skeletal muscle stem cells, satellite cells play an indispensible role in this process. The self-renewing proliferation of satellite cells not only maintains the stem cell population but also provides numerous myogenic cells, which proliferate, differentiate, fuse, and lead to new myofiber formation and reconstitution of a functional contractile apparatus. The complex behavior of satellite cells during skeletal muscle regeneration is tightly regulated through the dynamic interplay between intrinsic factors within satellite cells and extrinsic factors constituting the muscle stem cell niche/microenvironment. For the last half century, the advance of molecular biology, cell biology, and genetics has greatly improved our understanding of skeletal muscle biology. Here, we review some recent advances, with focuses on functions of satellite cells and their niche during the process of skeletal muscle regeneration. PMID:23303905

  6. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance

    PubMed Central

    Liu, H-X; Ermilov, A; Grachtchouk, M; Li, L; Gumucio, DL; Dlugosz, AA; Mistretta, CM

    2014-01-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions. PMID:23916850

  7. Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance.

    PubMed

    Liu, Hong Xiang; Ermilov, Alexandre; Grachtchouk, Marina; Li, Libo; Gumucio, Deborah L; Dlugosz, Andrzej A; Mistretta, Charalotte M

    2013-10-01

    The adult fungiform taste papilla is a complex of specialized cell types residing in the stratified squamous tongue epithelium. This unique sensory organ includes taste buds, papilla epithelium and lateral walls that extend into underlying connective tissue to surround a core of lamina propria cells. Fungiform papillae must contain long-lived, sustaining or stem cells and short-lived, maintaining or transit amplifying cells that support the papilla and specialized taste buds. Shh signaling has established roles in supporting fungiform induction, development and patterning. However, for a full understanding of how Shh transduced signals act in tongue, papilla and taste bud formation and maintenance, it is necessary to know where and when the Shh ligand and pathway components are positioned. We used immunostaining, in situ hybridization and mouse reporter strains for Shh, Ptch1, Gli1 and Gli2-expression and proliferation markers to identify cells that participate in hedgehog signaling. Whereas there is a progressive restriction in location of Shh ligand-expressing cells, from placode and apical papilla cells to taste bud cells only, a surrounding population of Ptch1 and Gli1 responding cells is maintained in signaling centers throughout papilla and taste bud development and differentiation. The Shh signaling targets are in regions of active cell proliferation. Using genetic-inducible lineage tracing for Gli1-expression, we found that Shh-responding cells contribute not only to maintenance of filiform and fungiform papillae, but also to taste buds. A requirement for normal Shh signaling in fungiform papilla, taste bud and filiform papilla maintenance was shown by Gli2 constitutive activation. We identified proliferation niches where Shh signaling is active and suggest that epithelial and mesenchymal compartments harbor potential stem and/or progenitor cell zones. In all, we report a set of hedgehog signaling centers that regulate development and maintenance of taste organs, the fungiform papilla and taste bud, and surrounding lingual cells. Shh signaling has roles in forming and maintaining fungiform papillae and taste buds, most likely via stage-specific autocrine and/or paracrine mechanisms, and by engaging epithelial/mesenchymal interactions. © 2013 Elsevier Inc. All rights reserved.

  8. Solving Navigational Uncertainty Using Grid Cells on Robots

    PubMed Central

    Milford, Michael J.; Wiles, Janet; Wyeth, Gordon F.

    2010-01-01

    To successfully navigate their habitats, many mammals use a combination of two mechanisms, path integration and calibration using landmarks, which together enable them to estimate their location and orientation, or pose. In large natural environments, both these mechanisms are characterized by uncertainty: the path integration process is subject to the accumulation of error, while landmark calibration is limited by perceptual ambiguity. It remains unclear how animals form coherent spatial representations in the presence of such uncertainty. Navigation research using robots has determined that uncertainty can be effectively addressed by maintaining multiple probabilistic estimates of a robot's pose. Here we show how conjunctive grid cells in dorsocaudal medial entorhinal cortex (dMEC) may maintain multiple estimates of pose using a brain-based robot navigation system known as RatSLAM. Based both on rodent spatially-responsive cells and functional engineering principles, the cells at the core of the RatSLAM computational model have similar characteristics to rodent grid cells, which we demonstrate by replicating the seminal Moser experiments. We apply the RatSLAM model to a new experimental paradigm designed to examine the responses of a robot or animal in the presence of perceptual ambiguity. Our computational approach enables us to observe short-term population coding of multiple location hypotheses, a phenomenon which would not be easily observable in rodent recordings. We present behavioral and neural evidence demonstrating that the conjunctive grid cells maintain and propagate multiple estimates of pose, enabling the correct pose estimate to be resolved over time even without uniquely identifying cues. While recent research has focused on the grid-like firing characteristics, accuracy and representational capacity of grid cells, our results identify a possible critical and unique role for conjunctive grid cells in filtering sensory uncertainty. We anticipate our study to be a starting point for animal experiments that test navigation in perceptually ambiguous environments. PMID:21085643

  9. Innate lymphoid cells: the new kids on the block.

    PubMed

    Withers, David R; Mackley, Emma C; Jones, Nick D

    2015-08-01

    The purpose of this article is to review recent advances in our understanding of innate lymphoid cell function and to speculate on how these cells may become activated and influence the immune response to allogeneic tissues and cells following transplantation. Innate lymphoid cells encompass several novel cell types whose wide-ranging roles in the immune system are only now being uncovered. Through cytokine production, cross-talk with both haematopoietic and nonhaematopoietic populations and antigen presentation to T cells, these cells have been shown to be key regulators in maintaining tissue integrity, as well as initiating and then sustaining immune responses. It is now clear that innate lymphoid cells markedly contribute to immune responses and tissue repair in a number of disease contexts. Although experimental and clinical data on the behaviour of these cells following transplantation are scant, it is highly likely that innate lymphoid cells will perform similar functions in the alloimmune response following transplantation and therefore may be potential therapeutic targets for manipulation to prevent allograft rejection.

  10. Stem cell function during plant vascular development

    PubMed Central

    Miyashima, Shunsuke; Sebastian, Jose; Lee, Ji-Young; Helariutta, Yka

    2013-01-01

    The plant vascular system, composed of xylem and phloem, evolved to connect plant organs and transport various molecules between them. During the post-embryonic growth, these conductive tissues constitutively form from cells that are derived from a lateral meristem, commonly called procambium and cambium. Procambium/cambium contains pluripotent stem cells and provides a microenvironment that maintains the stem cell population. Because vascular plants continue to form new tissues and organs throughout their life cycle, the formation and maintenance of stem cells are crucial for plant growth and development. In this decade, there has been considerable progress in understanding the molecular control of the organization and maintenance of stem cells in vascular plants. Noticeable advance has been made in elucidating the role of transcription factors and major plant hormones in stem cell maintenance and vascular tissue differentiation. These studies suggest the shared regulatory mechanisms among various types of plant stem cell pools. In this review, we focus on two aspects of stem cell function in the vascular cambium, cell proliferation and cell differentiation. PMID:23169537

  11. Comparative Analysis of Telomerase Activity in CD117⁺ CD34⁺ Cardiac Telocytes with Bone Mesenchymal Stem Cells, Cardiac Fibroblasts and Cardiomyocytes.

    PubMed

    Li, Yuan-Yuan; Lu, Shan-Shan; Xu, Ting; Zhang, Hong-Qi; Li, Hua

    2015-07-20

    This study characterized the cardiac telocyte (TC) population both in vivo and in vitro, and investigated its telomerase activity related to mitosis. Using transmission electron microscopy and a phase contrast microscope, the typical morphological features of cardiac TCs were observed; by targeting the cell surface proteins CD117 and CD34, CD117 + CD34 + cardiac TCs were sorted via flow cytometry and validated by immunofluorescence based on the primary cell culture. Then the optimized basal nutrient medium for selected population was examined with the cell counting kit 8. Under this conditioned medium, the process of cell division was captured, and the telomerase activity of CD117 + CD34 + cardiac TCs was detected in comparison with bone mesenchymal stem cells (BMSCs), cardiac fibroblasts (CFBs), cardiomyocytes (CMs). Cardiac TCs projected characteristic telopodes with thin segments (podomers) in alternation with dilation (podoms). In addition, 64% of the primary cultured cardiac TCs were composed of CD117 + CD34 + cardiac TCs; which was verified by immunofluorescence. In a live cell imaging system, CD117 + CD34 + cardiac TCs were observed to enter into cell division in a short time, followed by an significant invagination forming across the middle of the cell body. Using a real-time quantitative telomeric-repeat amplification assay, the telomerase concentration in CD117 + CD34 + cardiac TCs was obviously lower than in BMSCs and CFBs, and significantly higher than in CMs. Cardiac TCs represent a unique cell population and CD117 + CD34 + cardiac TCs have relative low telomerase activity that differs from BMSCs, CFBs and CMs and thus they might play an important role in maintaining cardiac homeostasis.

  12. CDC20 maintains tumor initiating cells

    PubMed Central

    Xie, Qi; Wu, Qiulian; Mack, Stephen C.; Yang, Kailin; Kim, Leo; Hubert, Christopher G.; Flavahan, William A.; Chu, Chengwei; Bao, Shideng; Rich, Jeremy N.

    2015-01-01

    Glioblastoma is the most prevalent and lethal primary intrinsic brain tumor. Glioblastoma displays hierarchical arrangement with a population of self-renewing and tumorigenic glioma tumor initiating cells (TICs), or cancer stem cells. While non-neoplastic neural stem cells are generally quiescent, glioblastoma TICs are often proliferative with mitotic control offering a potential point of fragility. Here, we interrogate the role of cell-division cycle protein 20 (CDC20), an essential activator of anaphase-promoting complex (APC) E3 ubiquitination ligase, in the maintenance of TICs. By chromatin analysis and immunoblotting, CDC20 was preferentially expressed in TICs relative to matched non-TICs. Targeting CDC20 expression by RNA interference attenuated TIC proliferation, self-renewal and in vivo tumor growth. CDC20 disruption mediated its effects through induction of apoptosis and inhibition of cell cycle progression. CDC20 maintains TICs through degradation of p21CIP1/WAF1, a critical negative regulator of TICs. Inhibiting CDC20 stabilized p21CIP1/WAF1, resulting in repression of several genes critical to tumor growth and survival, including CDC25C, c-Myc and Survivin. Transcriptional control of CDC20 is mediated by FOXM1, a central transcription factor in TICs. These results suggest CDC20 is a critical regulator of TIC proliferation and survival, linking two key TIC nodes – FOXM1 and p21CIP1/WAF1 — elucidating a potential point for therapeutic intervention. PMID:25938542

  13. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792

  14. Prevalence of problematic cell phone use in an adult population in Spain as assessed by the Mobile Phone Problem Use Scale (MPPUS)

    PubMed Central

    de-Sola, José; Talledo, Hernán; Rubio, Gabriel

    2017-01-01

    Problematic cell phone use has alarmingly increased in industrialized countries in the past 10 years. For many perpetrators, it can turn into a behavioural addiction, although this is not a recognized medical condition. Although there are many tools for evaluating this use, one of the most widely used tools is the Mobile Phone Problematic Use Scale (MPPUS), which we test on a representative sample of the population in Spain to obtain an estimate of the prevalence of problematic cell phone use in our midst. The age range consists of 16–65 years, with 1,126 surveys conducted. In this population, we verify that the reliability and internal consistency of the MPPUS (α = 0.939) are maintained. Additionally, the construct validity, considering the derived factors (Abuse and Dependence, Craving and Loss of Control, and Dependence on the Social Environment) are aligned with other research and with diverse external criteria of addiction. We establish four categories of users (Casual, Regular, At Risk, and Problematic) and obtain a prevalence of 15.4% among At Risk Users and 5.1% among Problematic Users. This finding implies a total of 20.5% of Users with Problems. A binary logistic regression analysis shows that age, gender, level of education, and daily cell phone use predict problematic cell phone use. The results, based on multiple criteria, show that such problematic use shares features of recognized addictions, affecting large segments of the population and not only adolescents. PMID:28771626

  15. Modeling the Treatment of Glioblastoma Multiforme and Cancer Stem Cells with Ordinary Differential Equations.

    PubMed

    Abernathy, Kristen; Burke, Jeremy

    2016-01-01

    Despite improvements in cancer therapy and treatments, tumor recurrence is a common event in cancer patients. One explanation of recurrence is that cancer therapy focuses on treatment of tumor cells and does not eradicate cancer stem cells (CSCs). CSCs are postulated to behave similar to normal stem cells in that their role is to maintain homeostasis. That is, when the population of tumor cells is reduced or depleted by treatment, CSCs will repopulate the tumor, causing recurrence. In this paper, we study the application of the CSC Hypothesis to the treatment of glioblastoma multiforme by immunotherapy. We extend the work of Kogan et al. (2008) to incorporate the dynamics of CSCs, prove the existence of a recurrence state, and provide an analysis of possible cancerous states and their dependence on treatment levels.

  16. A role for RNA post-transcriptional regulation in satellite cell activation

    PubMed Central

    2012-01-01

    Background Satellite cells are resident skeletal muscle stem cells responsible for muscle maintenance and repair. In resting muscle, satellite cells are maintained in a quiescent state. Satellite cell activation induces the myogenic commitment factor, MyoD, and cell cycle entry to facilitate transition to a population of proliferating myoblasts that eventually exit the cycle and regenerate muscle tissue. The molecular mechanism involved in the transition of a quiescent satellite cell to a transit-amplifying myoblast is poorly understood. Methods Satellite cells isolated by FACS from uninjured skeletal muscle and 12 h post-muscle injury from wild type and Syndecan-4 null mice were probed using Affymetrix 430v2 gene chips and analyzed by Spotfiretm and Ingenuity Pathway analysis to identify gene expression changes and networks associated with satellite cell activation, respectively. Additional analyses of target genes identify miRNAs exhibiting dynamic changes in expression during satellite cell activation. The function of the miRNAs was assessed using miRIDIAN hairpin inhibitors. Results An unbiased gene expression screen identified over 4,000 genes differentially expressed in satellite cells in vivo within 12 h following muscle damage and more than 50% of these decrease dramatically. RNA binding proteins and genes involved in post-transcriptional regulation were significantly over-represented whereas splicing factors were preferentially downregulated and mRNA stability genes preferentially upregulated. Furthermore, six computationally identified miRNAs demonstrated novel expression through muscle regeneration and in satellite cells. Three of the six miRNAs were found to regulate satellite cell fate. Conclusions The quiescent satellite cell is actively maintained in a state poised to activate in response to external signals. Satellite cell activation appears to be regulated by post-transcriptional gene regulation. PMID:23046558

  17. Cell-derived microparticles: new targets in the therapeutic management of disease.

    PubMed

    Roseblade, Ariane; Luk, Frederick; Rawling, Tristan; Ung, Alison; Grau, Georges E R; Bebawy, Mary

    2013-01-01

    Intercellular communication is essential to maintain vital physiological activities and to regulate the organism's phenotype. There are a number of ways in which cells communicate with one another. This can occur via autocrine signaling, endocrine signaling or by the transfer of molecular mediators across gap junctions. More recently communication via microvesicular shedding has gained important recognition as a significant pathway by which cells can coordinate the spread and dominance of selective traits within a population. Through this communication apparatus, cells can now acquire and secure a survival advantage, particularly in the context of malignant disease. This review aims to highlight some of the functions and implications of microparticles in physiology of various disease states, and present a novel therapeutic strategy through the regulation of microparticle production.

  18. Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells

    PubMed Central

    Gigoni, Arianna; Costa, Delfina; Gaetani, Massimiliano; Tasso, Roberta; Villa, Federico; Florio, Tullio; Pagano, Aldo

    2016-01-01

    ABSTRACT 21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possibility to enhance proliferation and dedifferentiation of cells of interest, by 21A down-regulation, using a mixture of chemically modified Anti-21A RNAs. Our results confirmed the validity of this approach that allows the amplification of specific cell populations, in a controlled manner and without inducing permanent effects. In addition to induce cell proliferation, the procedure did not decrease the tissue regeneration potential of progenitor cells in two different cell systems. PMID:27494068

  19. Down-regulation of 21A Alu RNA as a tool to boost proliferation maintaining the tissue regeneration potential of progenitor cells.

    PubMed

    Gigoni, Arianna; Costa, Delfina; Gaetani, Massimiliano; Tasso, Roberta; Villa, Federico; Florio, Tullio; Pagano, Aldo

    2016-09-16

    21A is an Alu non-coding (nc) RNA transcribed by RNA polymerase (pol) III. While investigating the biological role of 21A ncRNA we documented an inverse correlation between its expression level and the rate of cell proliferation. The downregulation of this ncRNA not only caused a boost in cell proliferation, but was also associated to a transient cell dedifferentiation, suggesting a possible involvement of this RNA in cell dedifferentiation/reprogramming. In this study, we explored the possibility to enhance proliferation and dedifferentiation of cells of interest, by 21A down-regulation, using a mixture of chemically modified Anti-21A RNAs. Our results confirmed the validity of this approach that allows the amplification of specific cell populations, in a controlled manner and without inducing permanent effects. In addition to induce cell proliferation, the procedure did not decrease the tissue regeneration potential of progenitor cells in two different cell systems.

  20. MtDNA depleted PC3 cells exhibit Warburg effect and cancer stem cell features

    PubMed Central

    Li, Xiaoran; Zhong, Yali; Lu, Jie; Axcrona, Karol; Eide, Lars; Syljuåsen, Randi G.; Peng, Qian; Wang, Junbai; Zhang, Hongquan; Goscinski, Mariusz Adam; Kvalheim, Gunnar; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Reducing mtDNA content was considered as a critical step in the metabolism restructuring for cell stemness restoration and further neoplastic development. However, the connections between mtDNA depletion and metabolism reprograming-based cancer cell stemness in prostate cancers are still lack of studies. Here, we demonstrated that human CRPC cell line PC3 tolerated high concentration of the mtDNA replication inhibitor ethidium bromide (EtBr) and the mtDNA depletion triggered a universal metabolic remodeling process. Failure in completing that process caused lethal consequences. The mtDNA depleted (MtDP) PC3 cells could be steadily maintained in the special medium in slow cycling status. The MtDP PC3 cells contained immature mitochondria and exhibited Warburg effect. Furthermore, the MtDP PC3 cells were resistant to therapeutic treatments and contained greater cancer stem cell-like subpopulations: CD44+, ABCG2+, side-population and ALDHbright. In conclusion, these results highlight the association of mtDNA content, mitochondrial function and cancer cell stemness features. PMID:27248169

  1. Dipeptide species regulate p38MAPK–Smad3 signalling to maintain chronic myelogenous leukaemia stem cells

    PubMed Central

    Naka, Kazuhito; Jomen, Yoshie; Ishihara, Kaori; Kim, Junil; Ishimoto, Takahiro; Bae, Eun-Jin; Mohney, Robert P.; Stirdivant, Steven M.; Oshima, Hiroko; Oshima, Masanobu; Kim, Dong-Wook; Nakauchi, Hiromitsu; Takihara, Yoshihiro; Kato, Yukio; Ooshima, Akira; Kim, Seong-Jin

    2015-01-01

    Understanding the specific survival of the rare chronic myelogenous leukaemia (CML) stem cell population could provide a target for therapeutics aimed at eradicating these cells. However, little is known about how survival signalling is regulated in CML stem cells. In this study, we survey global metabolic differences between murine normal haematopoietic stem cells (HSCs) and CML stem cells using metabolomics techniques. Strikingly, we show that CML stem cells accumulate significantly higher levels of certain dipeptide species than normal HSCs. Once internalized, these dipeptide species activate amino-acid signalling via a pathway involving p38MAPK and the stemness transcription factor Smad3, which promotes CML stem cell maintenance. Importantly, pharmacological inhibition of dipeptide uptake inhibits CML stem cell activity in vivo. Our results demonstrate that dipeptide species support CML stem cell maintenance by activating p38MAPK–Smad3 signalling in vivo, and thus point towards a potential therapeutic target for CML treatment. PMID:26289811

  2. Optimality in the Development of Intestinal Crypts

    PubMed Central

    Itzkovitz, Shalev; Blat, Irene C.; Jacks, Tyler; Clevers, Hans; van Oudenaarden, Alexander

    2012-01-01

    SUMMARY Intestinal crypts in mammals are comprised of long-lived stem cells and shorter-lived progenies. These two populations are maintained in specific proportions during adult life. Here, we investigate the design principles governing the dynamics of these proportions during crypt morphogenesis. Using optimal control theory, we show that a proliferation strategy known as a “bang-bang” control minimizes the time to obtain a mature crypt. This strategy consists of a surge of symmetric stem cell divisions, establishing the entire stem cell pool first, followed by a sharp transition to strictly asymmetric stem cell divisions, producing nonstem cells with a delay. We validate these predictions using lineage tracing and single-molecule fluorescence in situ hybridization of intestinal crypts in infant mice, uncovering small crypts that are entirely composed of Lgr5-labeled stem cells, which become a minority as crypts continue to grow. Our approach can be used to uncover similar design principles in other developmental systems. PMID:22304925

  3. Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy

    PubMed Central

    Hipp, Jason; Atala, Anthony

    2004-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure. PMID:15588286

  4. Abundant and equipotent founder cells establish and maintain acute lymphoblastic leukaemia.

    PubMed

    Elder, A; Bomken, S; Wilson, I; Blair, H J; Cockell, S; Ponthan, F; Dormon, K; Pal, D; Heidenreich, O; Vormoor, J

    2017-12-01

    High frequencies of blasts in primary acute lymphoblastic leukaemia (ALL) samples have the potential to induce leukaemia and to engraft mice. However, it is unclear how individual ALL cells each contribute to drive leukaemic development in a bulk transplant and the extent to which these blasts vary functionally. We used cellular barcoding as a fate mapping tool to track primograft ALL blasts in vivo. Our results show that high numbers of ALL founder cells contribute at similar frequencies to leukaemic propagation over serial transplants, without any clear evidence of clonal succession. These founder cells also exhibit equal capacity to home and engraft to different organs, although stochastic processes may alter the composition in restrictive niches. Our findings enhance the stochastic stem cell model of ALL by demonstrating equal functional abilities of singular ALL blasts and show that successful treatment strategies must eradicate the entire leukaemic cell population.

  5. Tissue engineering, stem cells, cloning, and parthenogenesis: new paradigms for therapy.

    PubMed

    Hipp, Jason; Atala, Anthony

    2004-12-08

    : BACKGROUND: Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs which is worsening yearly due to the aging population. Scientists in the field of tissue engineering apply the principles of cell transplantation, materials science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Both therapeutic cloning (nucleus from a donor cell is transferred into an enucleated oocyte), and parthenogenesis (oocyte is activated and stimulated to divide), permit extraction of pluripotent embryonic stem cells, and offer a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. The present article reviews recent progress in tissue engineering and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.

  6. Thermodynamic perspectives on genetic instructions, the laws of biology, diseased states and human population control

    PubMed Central

    Saier, M. H.

    2014-01-01

    This article examines in a broad perspective entropy and some examples of its relationship to evolution, genetic instructions and how we view diseases. Many knowledge gaps abound, hence our understanding is still fragmented and incomplete. Living organisms are programmed by functional genetic instructions (FGI), through cellular communication pathways, to grow and reproduce by maintaining a variety of hemistable, ordered structures (low entropy). Living organisms are far from equilibrium with their surrounding environmental systems, which tends towards increasing disorder (increasing entropy). Organisms must free themselves from high entropy (high disorder) to maintain their cellular structures for a period of time sufficient enough to allow reproduction and the resultant offspring to reach reproductive ages. This time interval varies for different species. Bacteria, for example need no sexual parents; dividing cells are nearly identical to the previous generation of cells, and can begin a new cell cycle without delay under appropriate conditions. By contrast, human infants require years of care before they can reproduce. Living organisms maintain order in spite of their changing surrounding environment, that decreases order according to the second law of thermodynamics. These events actually work together since living organisms create ordered biological structures by increasing local entropy. From a disease perspective, viruses and other disease agents interrupt the normal functioning of cells. The pressure for survival may result in mechanisms that allow organisms to resist attacks by viruses, other pathogens, destructive chemicals and physical agents such as radiation. However, when the attack is successful, the organism can be damaged until the cell, tissue, organ or entire organism is no longer functional and entropy increases. PMID:21262480

  7. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Pei; Li, Li; Qi, Hui

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas thatmore » expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.« less

  8. Perceptions of young adults with sickle cell disease concerning their disease experience.

    PubMed

    Matthie, Nadine; Hamilton, Jill; Wells, Diana; Jenerette, Coretta

    2016-06-01

    To describe the perceptions of young adults with sickle cell disease concerning their disease experience. Sickle cell disease is a lifelong, genetic condition with both acute and chronic painful exacerbations. Little is known of the experiences of young adults with sickle cell disease. This study used a qualitative, descriptive design with semi-structured, life review interviews. Between August 2010-September 2012, purposive sampling was used to recruit participants with a known sickle cell disease diagnosis who were ages 18-35 years, were being seen in an outpatient sickle cell clinic and were English speaking. Participants provided demographic information and responded to two interviews. A content analysis was then used to interpret participants' narratives of their experiences of living with sickle cell disease. A sample of 29 young adults with sickle cell disease consisted of 79·3% females, 35·6% employed full-time or part-time, 71·6% single/never married and 57·8% with sickle cell anaemia. Their mean age was 25·8 with 13·2 years of education. Four major interview themes were identified: (1) struggles to maintain or achieve good quality of life or life satisfactions; (2) strategies to maintain self-care; (3) interruptions to family, work and social roles; and (4) difficulties accessing needed health care. Young adults face many challenges while living with sickle cell disease. With a better understanding of their disease experience and how it influences their quality of life, researchers can begin tailoring appropriate interventions to improve health outcomes in this vulnerable, minority population. © 2015 John Wiley & Sons Ltd.

  9. Oxygen effects on senescence in chondrocytes and mesenchymal stem cells: consequences for tissue engineering.

    PubMed

    Moussavi-Harami, Farid; Duwayri, Yazan; Martin, James A; Moussavi-Harami, Farshid; Buckwalter, Joseph A

    2004-01-01

    Primary isolates of chondrocytes and mesenchymal stem cells are often insufficient for cell-based autologous grafting procedures, necessitating in vitro expansion of cell populations. However, the potential for expansion is limited by cellular senescence, a form of irreversible cell cycle arrest regulated by intrinsic and extrinsic factors. Intrinsic mechanisms common to most somatic cells enforce senescence at the so-called "Hayflick limit" of 60 population doublings. Termed "replicative senescence", this mechanism prevents cellular immortalization and suppresses oncogenesis. Although it is possible to overcome the Hayflick limit by genetically modifying cells, such manipulations are regarded as prohibitively dangerous in the context of tissue engineering. On the other hand, senescence associated with extrinsic factors, often called "stress-induced" senescence, can be avoided simply by modifying culture conditions. Because stress-induced senescence is "premature" in the sense that it can halt growth well before the Hayflick limit is reached, growth potential can be significantly enhanced by minimizing culture related stress. Standard culture techniques were originally developed to optimize the growth of fibroblasts but these conditions are inherently stressful to many other cell types. In particular, the 21% oxygen levels used in standard incubators, though well tolerated by fibroblasts, appear to induce oxidative stress in other cells. We reasoned that chondrocytes and MSCs, which are adapted to relatively low oxygen levels in vivo, might be sensitive to this form of stress. To test this hypothesis we compared the growth of MSC and chondrocyte strains in 21% and 5% oxygen. We found that incubation in 21% oxygen significantly attenuated growth and was associated with increased oxidant production. These findings indicated that sub-optimal standard culture conditions sharply limited the expansion of MSC and chondrocyte populations and suggest that cultures for grafting purposes should be maintained in a low-oxygen environment.

  10. Oxygen Effects on Senescence in Chondrocytes and Mesenchymal Stem Cells: Consequences for Tissue Engineering

    PubMed Central

    Moussavi-Harami, Farid; Duwayri, Yazan; Martin, James A; Moussavi-Harami, Farshid; Buckwalter, Joseph A

    2004-01-01

    Primary isolates of chondrocytes and mesenchymal stem cells are often insufficient for cell-based autologous grafting procedures, necessitating in vitro expansion of cell populations. However, the potential for expansion is limited by cellular senescence, a form of irreversible cell cycle arrest regulated by intrinsic and extrinsic factors. Intrinsic mechanisms common to most somatic cells enforce senescence at the so-called "Hayflick limit" of 60 population doublings. Termed "replicative senescence", this mechanism prevents cellular immortalization and suppresses oncogenesis. Although it is possible to overcome the Hayflick limit by genetically modifying cells, such manipulations are regarded as prohibitively dangerous in the context of tissue engineering. On the other hand, senescence associated with extrinsic factors, often called "stress-induced" senescence, can be avoided simply by modifying culture conditions. Because stress-induced senescence is "premature" in the sense that it can halt growth well before the Hayflick limit is reached, growth potential can be significantly enhanced by minimizing culture related stress. Standard culture techniques were originally developed to optimize the growth of fibroblasts but these conditions are inherently stressful to many other cell types. In particular, the 21% oxygen levels used in standard incubators, though well tolerated by fibroblasts, appear to induce oxidative stress in other cells. We reasoned that chondrocytes and MSCs, which are adapted to relatively low oxygen levels in vivo, might be sensitive to this form of stress. To test this hypothesis we compared the growth of MSC and chondrocyte strains in 21% and 5% oxygen. We found that incubation in 21% oxygen significantly attenuated growth and was associated with increased oxidant production. These findings indicated that sub-optimal standard culture conditions sharply limited the expansion of MSC and chondrocyte populations and suggest that cultures for grafting purposes should be maintained in a low-oxygen environment. PMID:15296200

  11. NF-κB Participates in the Stem Cell Phenotype of Ovarian Cancer Cells.

    PubMed

    Gonzalez-Torres, Carolina; Gaytan-Cervantes, Javier; Vazquez-Santillan, Karla; Mandujano-Tinoco, Edna Ayerim; Ceballos-Cancino, Gisela; Garcia-Venzor, Alfredo; Zampedri, Cecilia; Sanchez-Maldonado, Paulina; Mojica-Espinosa, Raul; Jimenez-Hernandez, Luis Enrique; Maldonado, Vilma

    2017-05-01

    NF-κB is a transcription factor involved in cancer stem cells maintenance of many tumors. Little is known about the specific stem-associated upstream regulators of this pathway in ovarian cancer. The Aim of the study was to analyze the role of the canonical and non-canonical NF-κB pathways in stem cells of ovarian cancer cell lines. Stem cells were isolated using sorting cytometry. Western blot and RT-PCR were used to quantify protein and messenger RNA levels. Loss and gain of function assays were performed using siRNAs and dominant-negative proteins, respectively. NF-κB binding activity was measured with a reporter gene assay. The stem phenotype was estimated with clonogenic assays using soft agar, colony formation, ovospheres formation and in vivo tumorigenicity assays. The CD44+ subpopulation of SKOV3 ovarian cancer cell line presented higher mRNA levels of key stemness genes, an increased tumorigenic capacity and higher expression of the RelA, RelB and IKKα. When the canonical pathway was inhibited by means of a dominant-negative version of IkBα, the stem cell population was reduced, as shown by a reduced CD44+ subpopulation, a decrease in the expression of the stemness genes and a reduction of the stem phenotype. In addition, IKKα, the main upstream non-canonical kinase, was highly expressed in the CSC population. Accordingly, when IKKα was inhibited using shRNAs, the expression of the stemness genes was reduced. This report is the first to show the importance of several elements of both NF-κB pathway in maintaining the ovarian cancer stem cell population. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  12. Size of the population of CD4+ natural killer T cells in the liver is maintained without supply by the thymus during adult life

    PubMed Central

    Kameyama, Hitoshi; Kawamura, Toshihiko; Naito, Tetsuya; Bannai, Makoto; Shimamura, Kazuhiko; Hatakeyama, Katsuyoshi; Abo, Toru

    2001-01-01

    Given that there are few natural killer T (NKT) cells in the liver of athymic nude mice and in neonatally thymectomized mice, it is still controversial whether all NKT cells existing in the liver are supplied by the thymus or if some such cells develop in the liver. To determine whether or not NKT cells are consistently supplied from the thymus during adult life, thymectomy was conducted in mice at the age of 8 weeks. Interestingly, the proportion and number of CD4+ NKT cells increased or remained unchanged in the liver after adult thymectomy and this phenomenon continued for up to 6 months after thymectomy. The administration of α-galactosylceramide induced severe cytopenia (due to apoptosis) of CD4+ NKT cells in the liver on day 1, but subsequent expansion of these NKT cells occurred in thymectomized mice similar to the case in normal mice. However, in thymectomized mice given lethal irradiation (9·5 Gy) and subsequent bone marrow transfer, the population of CD4+ NKT cells no longer expanded in the liver, although that of CD8+ NKT cells did. These results suggest that thymic CD4+ NKT cells, or their progenitors, may migrate to the liver at a neonatal stage but are not supplied from the thymus in the adult stage under usual conditions. CD8+ NKT cells can be generated in the liver. PMID:11683952

  13. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy

    PubMed Central

    Wang, S-C; Li, Y-H; Piao, H-L; Hong, X-W; Zhang, D; Xu, Y-Y; Tao, Y; Wang, Y; Yuan, M-M; Li, D-J; Du, M-R

    2015-01-01

    CD8+ T cells are critical in the balance between fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that Tim-3+PD-1+CD8+ T cells from decidua greatly outnumbered those from peripheral blood during human early pregnancy. Co-culture of trophoblasts with CD8+ T cells upregulated PD-1+ and/or Tim-3+ immune cells. Furthermore, the population of CD8+ T cells co-expressing PD-1 and Tim-3 was enriched within the intermediate memory subset in decidua. This population exhibited high proliferative activity and Th2-type cytokine producing capacity. Blockade of Tim-3 and PD-1 resulted in decreased in vitro proliferation and Th2-type cytokine production while increased trophoblast killing and IFN-γ producing capacities of CD8+ T cells. Pregnant CBA/J females challenged with Tim-3 and/or PD-1 blocking antibodies were more susceptible to fetal loss, which was associated with CD8+ T-cell dysfunction. Importantly, the number and function of Tim-3+PD-1+CD8+ T cells in decidua were significantly impaired in miscarriage. These findings underline the important roles of Tim-3 and PD-1 pathways in regulating decidual CD8+ T-cell function and maintaining normal pregnancy. PMID:25950468

  14. Immunotherapy expands and maintains the function of high affinity tumor infiltrating CD8 T cells in situ

    PubMed Central

    Moran, Amy E.; Polesso, Fanny; Weinberg, Andrew D.

    2016-01-01

    Cancer cells harbor high affinity tumor-associated antigens capable of eliciting potent anti-tumor T cell responses yet detecting these polyclonal T cells is challenging. Therefore, surrogate markers of T cell activation such as CD69, CD44, and PD-1 have been used. We report here that in mice, expression of activation markers including PD-1 is insufficient in the tumor microenvironment to identify tumor-antigen specific T cells. Using the Nur77GFP T cell affinity reporter mouse, we highlight that PD-1 expression can be induced independent of TCR ligation within the tumor. Given this, we characterized the utility of the Nur77GFP model system in elucidating mechanisms of action of immunotherapies independent of PD-1 expression. Co-expression of Nur77GFP and OX40 identifies a polyclonal population of high affinity tumor-associated antigen-specific CD8+ T cells, which produce more IFNγ in situ than OX40 negative and doubles in quantity with anti-OX40 and anti-CTLA4 mAb therapy but not with anti-PD-1 or PD-L1. Moreover, expansion of these high affinity CD8 T cells prolongs survival of tumor bearing animals. Upon chronic stimulation in tumors and after adoptive cell therapy, CD8 TCR signaling and Nur77GFP induction is impaired and tumors progress. However, this can be reversed and overall survival significantly enhanced after adoptive cell therapy with agonist OX40 immunotherapy. Therefore, we propose that OX40 agonist immunotherapy can maintain functional TCR signaling of chronically stimulated tumor resident CD8 T cells thereby increasing the frequency of cytolytic, high affinity, tumor-associated antigen-specific cells. PMID:27503208

  15. Growth and differentiation of human lens epithelial cells in vitro on matrix

    NASA Technical Reports Server (NTRS)

    Blakely, E. A.; Bjornstad, K. A.; Chang, P. Y.; McNamara, M. P.; Chang, E.; Aragon, G.; Lin, S. P.; Lui, G.; Polansky, J. R.

    2000-01-01

    PURPOSE: To characterize the growth and maturation of nonimmortalized human lens epithelial (HLE) cells grown in vitro. METHODS: HLE cells, established from 18-week prenatal lenses, were maintained on bovine corneal endothelial (BCE) extracellular matrix (ECM) in medium supplemented with basic fibroblast growth factor (FGF-2). The identity, growth, and differentiation of the cultures were characterized by karyotyping, cell morphology, and growth kinetics studies, reverse transcription-polymerase chain reaction (RT-PCR), immunofluorescence, and Western blot analysis. RESULTS: HLE cells had a male, human diploid (2N = 46) karyotype. The population-doubling time of exponentially growing cells was 24 hours. After 15 days in culture, cell morphology changed, and lentoid formation was evident. Reverse transcription-polymerase chain reaction (RT-PCR) indicated expression of alphaA- and betaB2-crystallin, fibroblast growth factor receptor 1 (FGFR1), and major intrinsic protein (MIP26) in exponential growth. Western analyses of protein extracts show positive expression of three immunologically distinct classes of crystallin proteins (alphaA-, alphaB-, and betaB2-crystallin) with time in culture. By Western blot analysis, expression of p57(KIP2), a known marker of terminally differentiated fiber cells, was detectable in exponential cultures, and levels increased after confluence. MIP26 and gamma-crystallin protein expression was detected in confluent cultures, by using immunofluorescence, but not in exponentially growing cells. CONCLUSIONS: HLE cells can be maintained for up to 4 months on ECM derived from BCE cells in medium containing FGF-2. With time in culture, the cells demonstrate morphologic characteristics of, and express protein markers for, lens fiber cell differentiation. This in vitro model will be useful for investigations of radiation-induced cataractogenesis and other studies of lens toxicity.

  16. Cell cloning-on-the-spot by using an attachable silicone cylinder.

    PubMed

    Park, Hong Bum; Son, Wonseok; Chae, Dong Han; Lee, Jisu; Kim, Il-Woung; Yang, Woomi; Sung, Jae Kyu; Lim, Kyu; Lee, Jun Hee; Kim, Kyung-Hee; Park, Jong-Il

    2016-06-10

    Cell cloning is a laboratory routine to isolate and keep particular properties of cultured cells. Transfected or other genetically modified cells can be selected by the traditional microbiological cloning. In addition, common laboratory cell lines are prone to genotypic drift during their continual culture, so that supplementary cloning steps are often required to maintain correct lineage phenotypes. Here, we designed a silicone-made attachable cloning cylinder, which facilitated an easy and bona fide cloning of interested cells. This silicone cylinder was easy to make, showed competent stickiness to laboratory plastics including culture dishes, and hence enabled secure isolation and culture for days of selected single cells, especially, on the spots of preceding cell-plating dishes under microscopic examination of visible cellular phenotypes. We tested the silicone cylinder in the monoclonal subcloning from a heterogeneous population of a breast cancer cell line, MDA-MB-231, and readily established independent MDA-MB-231 subclones showing different sublineage phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions

    PubMed Central

    Werner, Benjamin; Beier, Fabian; Hummel, Sebastian; Balabanov, Stefan; Lassay, Lisa; Orlikowsky, Thorsten; Dingli, David; Brümmendorf, Tim H; Traulsen, Arne

    2015-01-01

    We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system throughout life. In particular, we analyze the shape of telomere length distributions underlying stem cell behavior within individuals. Our mathematical model shows that these distributions contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell proliferations. Our predictions are tested against measured telomere length distributions in humans across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 356 healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing stem cell pool during childhood and adolescence and an approximately maintained stem cell population in adults. Furthermore, our method is able to detect individual differences from a single tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell related diseases. DOI: http://dx.doi.org/10.7554/eLife.08687.001 PMID:26468615

  18. Circadian Timing in the Lung; A Specific Role for Bronchiolar Epithelial Cells

    PubMed Central

    Gibbs, J. E.; Beesley, S.; Plumb, J.; Singh, D.; Farrow, S.; Ray, D. W.; Loudon, A. S. I.

    2015-01-01

    In addition to the core circadian oscillator, located within the suprachiasmatic nucleus, numerous peripheral tissues possess self-sustaining circadian timers. In vivo these are entrained and temporally synchronized by signals conveyed from the core oscillator. In the present study, we examine circadian timing in the lung, determine the cellular localization of core clock proteins in both mouse and human lung tissue, and establish the effects of glucocorticoids (widely used in the treatment of asthma) on the pulmonary clock. Using organotypic lung slices prepared from transgenic mPER2::Luc mice, luciferase levels, which report PER2 expression, were measured over a number of days. We demonstrate a robust circadian rhythm in the mouse lung that is responsive to glucocorticoids. Immunohistochemical techniques were used to localize specific expression of core clock proteins, and the glucocorticoid receptor, to the epithelial cells lining the bronchioles in both mouse and human lung. In the mouse, these were established to be Clara cells. Murine Clara cells retained circadian rhythmicity when grown as a pure population in culture. Furthermore, selective ablation of Clara cells resulted in the loss of circadian rhythm in lung slices, demonstrating the importance of this cell type in maintaining overall pulmonary circadian rhythmicity. In summary, we demonstrate that Clara cells are critical for maintaining coherent circadian oscillations in lung tissue. Their coexpression of the glucocorticoid receptor and core clock components establishes them as a likely interface between humoral suprachiasmatic nucleus output and circadian lung physiology. PMID:18787022

  19. Long-term Culture and Cloning of Primary Human Bronchial Basal Cells that Maintain Multipotent Differentiation Capacity and CFTR Channel Function.

    PubMed

    Peters-Hall, Jennifer Ruth; Coquelin, Melissa L; Torres, Michael J; LaRanger, Ryan; Alabi, Busola Ruth; Sho, Sei; Calva-Moreno, Jose Francisco; Thomas, Philip J; Shay, Jerry William

    2018-05-03

    While primary cystic fibrosis (CF) and non-CF human bronchial epithelial basal cells (HBECs) accurately represent in vivo phenotypes, one barrier to their wider use has been a limited ability to clone and expand cells in sufficient numbers to produce rare genotypes using genome editing tools. Recently, conditional reprogramming of cells (CRC) with a ROCK inhibitor and culture on an irradiated fibroblast feeder layer resulted in extension of the lifespan of HBECs, but differentiation capacity and CF transmembrane conductance regulator (CFTR) function decreased as a function of passage. This report details modifications to the standard HBEC CRC protocol (Mod CRC), including the use of bronchial epithelial growth medium instead of F-medium and 2% oxygen instead of 21% oxygen, that extend HBEC lifespan while preserving multipotent differentiation capacity and CFTR function. Critically, Mod CRC conditions support clonal growth of primary HBECs from a single cell and the resulting clonal HBEC population maintains multipotent differentiation capacity, including CFTR function, permitting gene editing of these cells. As a proof of concept, CRISPR/Cas9 genome editing and cloning was used to introduce insertions/deletions in CFTR exon 11. Mod CRC conditions overcome many barriers to the expanded use of HBECs for basic research and drug screens. Importantly, Mod CRC conditions support the creation of isogenic cell lines in which CFTR is mutant or wild-type in the same genetic background with no history of CF to enable determination of the primary defects of mutant CFTR.

  20. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE PAGES

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.; ...

    2017-02-28

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  1. High- and Low-mobility Populations of HP1 in Heterochromatin of Mammalian CellsD⃞

    PubMed Central

    Schmiedeberg, Lars; Weisshart, Klaus; Diekmann, Stephan; Meyer zu Hoerste, Gabriele; Hemmerich, Peter

    2004-01-01

    Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein with functions in euchromatin and heterochromatin. Here we investigated the diffusional behaviors of HP1 isoforms in mammalian cells. Using fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) we found that in interphase cells most HP1 molecules (50–80%) are highly mobile (recovery halftime: t1/2 ≈ 0.9 s; diffusion coefficient: D ≈ 0.6–0.7 μm2 s-1). Twenty to 40% of HP1 molecules appear to be incorporated into stable, slow-moving oligomeric complexes (t1/2 ≈ 10 s), and constitutive heterochromatin of all mammalian cell types analyzed contain 5–7% of very slow HP1 molecules. The amount of very slow HP1 molecules correlated with the chromatin condensation state, mounting to more than 44% in condensed chromatin of transcriptionally silent cells. During mitosis 8–14% of GFP-HP1α, but not the other isoforms, are very slow within pericentromeric heterochromatin, indicating an isoform-specific function of HP1α in heterochromatin of mitotic chromosomes. These data suggest that mobile as well as very slow populations of HP1 may function in concert to maintain a stable conformation of constitutive heterochromatin throughout the cell cycle. PMID:15064352

  2. Lesion complexity drives age related cancer susceptibility in human mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sridharan, Deepa M.; Enerio, Shiena; Stampfer, Martha M.

    Exposures to various DNA damaging agents can deregulate a wide array of critical mechanisms that maintain genome integrity. It is unclear how these processes are impacted by one's age at the time of exposure and the complexity of the DNA lesion. To clarify this, we employed radiation as a tool to generate simple and complex lesions in normal primary human mammary epithelial cells derived from women of various ages. We hypothesized that genomic instability in the progeny of older cells exposed to complex damages will be exacerbated by age-associated deterioration in function and accentuate age-related cancer predisposition. Centrosome aberrations andmore » changes in stem cell numbers were examined to assess cancer susceptibility. Our data show that the frequency of centrosome aberrations proportionately increases with age following complex damage causing exposures. However, a dose-dependent increase in stem cell numbers was independent of both age and the nature of the insult. Phospho-protein signatures provide mechanistic clues to signaling networks implicated in these effects. Together these studies suggest that complex damage can threaten the genome stability of the stem cell population in older people. Propagation of this instability is subject to influence by the microenvironment and will ultimately define cancer risk in the older population.« less

  3. [Characterization of stem cells derived from the neonatal auditory sensory epithelium].

    PubMed

    Diensthuber, M; Heller, S

    2010-11-01

    In contrast to regenerating hair cell-bearing organs of nonmammalian vertebrates the adult mammalian organ of Corti appears to have lost its ability to maintain stem cells. The result is a lack of regenerative ability and irreversible hearing loss following auditory hair cell death. Unexpectedly, the neonatal auditory sensory epithelium has recently been shown to harbor cells with stem cell features. The origin of these cells within the cochlea's sensory epithelium is unknown. We applied a modified neurosphere assay to identify stem cells within distinct subregions of the neonatal mouse auditory sensory epithelium. Sphere cells were characterized by multiple markers and morphologic techniques. Our data reveal that both the greater and the lesser epithelial ridge contribute to the sphere-forming stem cell population derived from the auditory sensory epithelium. These self-renewing sphere cells express a variety of markers for neural and otic progenitor cells and mature inner ear cell types. Stem cells can be isolated from specific regions of the auditory sensory epithelium. The distinct features of these cells imply a potential application in the development of a cell replacement therapy to regenerate the damaged sensory epithelium.

  4. The neuroregenerative capacity of olfactory stem cells is not limitless: implications for aging.

    PubMed

    Child, Kevin M; Herrick, Daniel B; Schwob, James E; Holbrook, Eric H; Jang, Woochan

    2018-06-22

    The olfactory epithelium (OE) of vertebrates is a highly regenerative neuroepithelium, maintained under normal condition by a population of stem and progenitor cells - globose basal cells (GBCs) that also contribute to epithelial reconstitution after injury. However, aging of the OE often leads to neurogenic exhaustion - the disappearance of both GBCs and olfactory sensory neurons (OSNs). Aneuronal tissue may remain as olfactory, with an uninterrupted sheet of apically arrayed microvillar-capped sustentacular cell, or may undergo respiratory metaplasia. We have generated a transgenic mouse model for neurogenic exhaustion using OMP-driven Tet-off regulation of the A subunit of Diphtheria toxin such that the death of mature OSNs is accelerated. As early as 2 months of age the epithelium of transgenic mice, regardless of sex, recapitulates what is seen in the aged OE of humans and rodents. Areas of the epithelium completely lack neurons and GBCs, while the horizontal basal cells, a reserve stem cell population, show no evidence of activation. Surprisingly, other areas that were olfactory undergo respiratory metaplasia. The impact of accelerated neuronal death and reduced innervation on the olfactory bulb (OB) is also examined. Constant neuronal turnover leaves glomeruli shrunken and impacts the dopaminergic interneurons in the periglomerular layer. Moreover, the acceleration of OSN death can be reversed in those areas where some GBCs persist. However, the projection onto the OB recovers incompletely and the reinnervated glomeruli are markedly altered. Thus, the capacity for OE regeneration is tempered when GBCs disappear. SIGNIFICANCE STATEMENT A large percentage of humans lose or suffer a significant decline in olfactory function as they age. Consequently, quality of life suffers, and safety and nutritional status are put at risk. With age, the OE apparently becomes incapable of fully maintaining the neuronal population of the epithelium despite its well-known capacity for recovering from most forms of injury when younger which may contribute to age-related olfactory loss. Efforts to identify the mechanism by which olfactory neurogenesis becomes exhausted with age require a powerful model for accelerating age-related tissue pathology. The current OMP-tTA ; TetO-DTA transgenic mouse model, in which olfactory neurons die when they reach maturity and accelerated death can be aborted to assess the capacity for structural recovery, satisfies that need. Copyright © 2018 the authors.

  5. Phenotypic variations in chondrocyte subpopulations and their response to in vitro culture and external stimuli.

    PubMed

    Coates, Emily E; Fisher, John P

    2010-11-01

    Articular cartilage defects have limited capacity to self-repair, and cost society up to 60 billion dollars annually in both medical treatments and loss of working days. Recent developments in cartilage tissue engineering have resulted in many new products coming to market or entering clinical trials. However, there is a distinct lack of treatments which aim to recreate the complex zonal organization of articular cartilage. Cartilage tissue withstands repetitive strains throughout an individual's lifetime and provides frictionless movement between joints. The structure and composition of its intricately organized extracellular matrix varies with tissue depth to provide optimal resistance to loading, ensure ease of movement, and integrate with the subchondral bone. Each tissue zone is specially designed to resist the load it experiences, and maximize the tissue properties needed for its location. It is unlikely that a homogenous solution to tissue repair will be able to optimally restore the function of such a heterogeneous tissue. For zonal engineering of articular cartilage to become practical, maintenance of phenotypically stable zonal cell populations must be achieved. The chondrocyte phenotype varies considerably by zone, and it is the activity of these cells that help achieve the structural organization of the tissue. This review provides an examination of literature which has studied variations in cellular phenotype between cartilage zones. By doing so, we have identified critical differences between cell populations and highlighted areas of research which show potential in the field. Current research has made the morphological and metabolic variations between these cell populations clear, but an ideal way of maintaining these differences in vitro culture is yet to be established. Combinations of delivered growth factors, mechanical loading, and layered three-dimensional culture systems all show potential for achieving this goal. Furthermore, differentiation of progenitor cell populations into chondrocyte subpopulations may also hold promise for achieving large numbers of zonal chondrocytes. Success of the field lies in establishing methods of retaining phenotypically stable cell populations for in vitro culture.

  6. Multistage carcinogenesis in cell culture.

    PubMed

    Rubin, H

    2001-01-01

    Rodent fibroblasts explanted from embryos to culture undergo a period of declining growth rate in serial passages leading to crisis, followed by the appearance of variants which can multiply indefinitely. If the "immortal" cell line was established by low density passage, i.e., 3T3 cells, it has a low saturation density and is non-tumorigenic. If it was established by high density passage, it has a high saturation density and is tumorigenic. The establishment of cells goes through successive stages, including increased capacity to multiply in low serum concentration, growth to high saturation density, growth in suspension, assisted tumour formation in susceptible hosts and unassisted tumour formation. Chromosome aberrations and aneuploidy occur long before the capacity to produce tumours appears. Contrary to conventional belief, human fibroblast populations also undergo a continuous loss of capacity to multiply from the time of explantation, with only the longest surviving clone reaching the Hayflick limit. Neoplastic transformation of rodent cells is strongly favoured by maintaining them in a quiescent state at confluence for prolonged periods, which results in genetic damage to the cells. It also produces a large variety of chromosomal aberrations in human cells and extends their replicative lifespan. Individual clones are more susceptible to spontaneous transformation than their heterogeneous parental cultures. The implications of these results for tumour development in vivo are that oncogenic genetic changes may be common under stressful conditions which restrict replication, and that such changes are maximized when a rogue clone reaches a critical size that reduces stabilizing interactions with neighbouring clones. An alternative explanation, described in the Addendum, which we retrospectively favor is that the easily transformed clones are a minority in the uncloned parental population. The reason they transform before the parental population is that when they are expanded, they have more transformable cells available under the selective condition of confluence than the uncloned parental population from which they are derived.

  7. Macrophage heterogeneity in tissues: phenotypic diversity and functions

    PubMed Central

    Gordon, Siamon; Plüddemann, Annette; Martinez Estrada, Fernando

    2014-01-01

    During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation. PMID:25319326

  8. [Population characteristics of mucous tissue basocytes in the Mongolian gerbil's jejunum following the 12-day orbital flight onboard space platform "Foton-M3"].

    PubMed

    Atyakshin, D A; Bykov, E G

    2013-01-01

    Optical (light) microscopy and histochemical techniques were used for the first-ever studies of the population characteristics of tissue basocytes in the jejunum mucous membrane in three groups of gerbils Meriones unguiculatus: flown over 12 days aboard space platform Foton-M3, subjected to spaceflight factors simulation (SFS) in dedicated system Kontur-L (2) and maintained in standard vivarium conditions (control). Space flight was shown to induce quantitative and qualitative changes in the population of jejunum mucus labrocytes. Reduction of the basocytes population, alterations in age composition and ratio of the morphofunctional cell types in microgravity were indicative of cytoplasmic aggregation intensity, paths of biosynthesis products release into the intersticium, and their tinctorial properties. Also, heparin maturation and liberalization into the extracellular space in support of the jejunum mucus adaptive functions progressed with greater intensity. SFS did not affect size of the basocytes population significantly although it did cause qualitative rearrangements in the population structure.

  9. Human neural crest cells display molecular and phenotypic hallmarks of stem cells

    PubMed Central

    Thomas, Sophie; Thomas, Marie; Wincker, Patrick; Babarit, Candice; Xu, Puting; Speer, Marcy C.; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Etchevers, Heather C.

    2008-01-01

    The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells. PMID:18689800

  10. [Bottled Zbruch naftusia mineral water--a new immunocorrective for regions ecologically at crisis].

    PubMed

    Raksha-Sliusareva, O A

    1997-01-01

    Effects were studied of bottled mineral water "Zbruch Naftusia" on the blood and immunity condition of hypothetically healthy population of the Donetsk region living under environmental hazard conditions and having disorders in the area of the immune system. The studies made showed that prescription of the above drug preparation for use by conditionally healthy population of the Donetsk region, just those very contingents maintaining long-time occupational contact with liquidators of aftermath of the Chernobyl breakdown, is associated with immunocorrection at the level of content of the immunocompetent cell populations and subpopulations, with their function restored against the background of alleviating of the syndrome of endogenous intoxication that had developed because of them being resident under health hazard conditions in an ecocrisis-ridden region.

  11. Cell Growth Characteristics, Differentiation Frequency, and Immunophenotype of Adult Ear Mesenchymal Stem Cells

    PubMed Central

    Staszkiewicz, Jaroslaw; Frazier, Trivia P.; Rowan, Brian G.; Bunnell, Bruce A.; Chiu, Ernest S.; Gimble, Jeffrey M.

    2010-01-01

    Ear mesenchymal stem cells (EMSCs) represent a readily accessible population of stem-like cells that are adherent, clonogenic, and have the ability to self-renew. Previously, we have demonstrated that they can be induced to differentiate into adipocyte, osteocyte, chondrocyte, and myocyte lineages. The purpose of the current study was to characterize the growth kinetics of the cells and to determine their ability to form colonies of fibroblasts, adipocytes, osteocytes, and chondrocytes. In addition, the immunophenotypes of freshly isolated and culture-expanded cells were evaluated. From 1 g of tissue, we were able to isolate an average of 7.8 × 106 cells exhibiting a cell cycle length of ∼2–3 days. Colony-forming unit (CFU) assays indicated high proliferation potential, and confirmed previously observed multipotentiality of the cells. Fluorescence-activated cell sorting (FACS) showed that EMSCs were negative for hematopoietic markers (CD4, CD45), proving that they did not derive from circulating hematopoietic cells. The FACS analyses also showed high expression of stem cell antigen-1 (Sca-1) with only a minor population of cells expressing CD117, thus identifying Sca-1 as the more robust stem cell biomarker. Additionally, flow cytometry data revealed that the expression patterns of hematopoietic, stromal, and stem cell markers were maintained in the passaged EMSCs, consistent with the persistence of an undifferentiated state. This study indicates that EMSCs provide an alternative model for in vitro analyses of adult mesenchymal stem cells (MSCs). Further studies will be necessary to determine their utility for tissue engineering and regenerative medical applications. PMID:19400629

  12. A multiplex culture system for the long‐term growth of fission yeast cells

    PubMed Central

    Callens, Céline; Coelho, Nelson C.; Miller, Aaron W.; Sananes, Maria Rosa Domingo; Dunham, Maitreya J.; Denoual, Matthieu

    2017-01-01

    Abstract Maintenance of long‐term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin‐encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo‐pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long‐term experiments using this model organism. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:28426144

  13. Epithelial-to-mesenchymal transition leads to loss of EpCAM and different physical properties in circulating tumor cells from metastatic breast cancer.

    PubMed

    Hyun, Kyung-A; Koo, Gi-Bang; Han, Hyunju; Sohn, Joohyuk; Choi, Wonshik; Kim, Seung-Il; Jung, Hyo-Il; Kim, You-Sun

    2016-04-26

    The dissemination of circulating tumor cells (CTCs) requires the Epithelial-to-Mesenchymal transition (EMT), in which cells lose their epithelial characteristics and acquire more mesenchymal-like phenotypes. Current isolation of CTCs relies on affinity-based approaches reliant on the expression of Epithelial Cell Adhesion Molecule (EpCAM). Here we show EMT-induced breast cancer cells maintained in prolonged mammosphere culture conditions possess increased EMT markers and cancer stem cell markers, as well as reduced cell mass and size by quantitative phase microscopy; however, EpCAM expression is dramatically decreased in these cells. Moreover, CTCs isolated from breast cancer patients using a label-free microfluidic flow fractionation device had differing expression patterns of EpCAM, indicating that affinity approaches reliant on EpCAM expression may underestimate CTC number and potentially miss critical subpopulations. Further characterization of CTCs, including low-EpCAM populations, using this technology may improve detection techniques and cancer diagnosis, ultimately improving cancer treatment.

  14. Tissue engineering and regenerative medicine: concepts for clinical application.

    PubMed

    Atala, Anthony

    2004-01-01

    Patients suffering from diseased and injured organs may be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly given the aging population. Scientists in the field of regenerative medicine and tissue engineering apply the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy. This paper reviews recent advances that have occurred in regenerative medicine and describes applications of these new technologies that may offer novel therapies for patients with end-stage organ failure.

  15. Morphological and molecular comparisons between tibialis anterior muscle and levator veli palatini muscle: A preliminary study on their augmentation potential.

    PubMed

    Cheng, Xu; Song, Lei; Lan, Min; Shi, Bing; Li, Jingtao

    2018-01-01

    Tibialis anterior (TA) muscle and other somite-derived limb muscles remain the prototype in skeletal muscle study. The majority of head muscles, however, develop from branchial arches and maintain a number of heterogeneities in comparison with their limb counterparts. Levator veli palatini (LVP) muscle is a deep-located head muscle responsible for breathing, swallowing and speech, and is central to cleft palate surgery, yet lacks morphological and molecular investigation. In the present study, multiscale in vivo analyses were performed to compare TA and LVP muscle in terms of their myofiber composition, in-situ stem cell population and augmentation potential. TA muscle was identified to be primarily composed of type 2B myofibers while LVP muscle primarily consisted of type 2A and 2X myofibers. In addition, LVP muscle maintained a higher percentage of centrally-nucleated myofibers and a greater population of satellite cells. Notably, TA and LVP muscle responded to exogenous Wnt7a stimulus in different ways. Three weeks after Wnt7a administration, TA muscle exhibited an increase in myofiber number and a decrease in myofiber size, while LVP muscle demonstrated no significant changes in myofiber number or myofiber size. These results suggested that LVP muscle exhibits obvious differences in comparison with TA muscle. Therefore, knowledge acquired from TA muscle studies requires further testing before being applied to LVP muscle.

  16. Regulation of mitochondrial function and cellular energy metabolism by protein kinase C-λ/ι: a novel mode of balancing pluripotency.

    PubMed

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H; Paul, Soumen

    2014-11-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis are key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing versus differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization, and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-hypoxia-inducible factor 1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. © 2014 AlphaMed Press.

  17. Up-regulation of lymphocyte antigen 6 complex expression in side-population cells derived from a human trophoblast cell line HTR-8/SVneo.

    PubMed

    Inagaki, Tetsunori; Kusunoki, Soshi; Tabu, Kouichi; Okabe, Hitomi; Yamada, Izumi; Taga, Tetsuya; Matsumoto, Akemi; Makino, Shintaro; Takeda, Satoru; Kato, Kiyoko

    2016-01-01

    The continual proliferation and differentiation of trophoblasts are critical for the maintenance of pregnancy. It is well known that the tissue stem cells are associated with the development of tissues and pathologies. It has been demonstrated that side-population (SP) cells identified by fluorescence-activated cell sorting (FACS) are enriched with stem cells. The SP cells in HTR-8/SVneo cells derived from human primary trophoblast cells were isolated by FACS. HTR-8/SVneo-SP cell cultures generated both SP and non-SP (NSP) subpopulations. In contrast, NSP cell cultures produced NSP cells and failed to produce SP cells. These SP cells showed self-renewal capability by serial colony-forming assay. Microarray expression analysis using a set of HTR-8/SVneo-SP and -NSP cells revealed that SP cells overexpressed several stemness genes including caudal type homeobox2 (CDX2) and bone morphogenic proteins (BMPs), and lymphocyte antigen 6 complex locus D (LY6D) gene was the most highly up-regulated in HTR-8/SVneo-SP cells. LY6D gene reduced its expression in the course of a 7-day cultivation in differentiation medium. SP cells tended to reduce its fraction by treatment of LY6D siRNA indicating that LY6D had potential to maintain cell proliferation of HTR-8/SVneo-SP cells. On ontology analysis, epithelial-mesenchymal transition (EMT) pathway was involved in the up-regulated genes on microarray analysis. HTR-SVneo-SP cells showed enhanced migration. This is the first report that LY6D was important for the maintenance of HTR-8/SVneo-SP cells. EMT was associated with the phenotype of these SP cells.

  18. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal

    PubMed Central

    Ito, Kyoko; Ito, Keisuke

    2016-01-01

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical. PMID:27482603

  19. Normal and cancer mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR Axis

    PubMed Central

    Celià-Terrassa, Toni; Liu, Daniel; Choudhury, Abrar; Hang, Xiang; Wei, Yong; Zamalloa, Jose; Alfaro-Aco, Raymundo; Chakrabarti, Rumela; Jiang, Yi-Zhou; Koh, Bong Ihn; Smith, Heath; DeCoste, Christina; Li, Jun-Jing; Shao, Zhi-Ming; Kang, Yibin

    2017-01-01

    Tumor-initiating cells (TICs), or cancer stem cells (CSC), possess stem cell-like properties observed in normal adult tissue stem cells. Normal and cancerous stem cells may therefore share regulatory mechanisms for maintaining self-renewing capacity and resisting differentiation elicited by cell-intrinsic or microenvironmental cues. Here, we show that miR-199a promotes stem cell properties in mammary stem cells (MaSCs) and breast CSCs by directly repressing nuclear receptor corepressor LCOR, which primes interferon (IFN) responses. Elevated miR-199a expression in stem cell-enriched populations protects normal and malignant stem-like cells from differentiation and senescence induced by IFNs that are produced by epithelial and immune cells in the mammary gland. Importantly, the miR-199a-LCOR-IFN axis is activated in poorly differentiated ER− breast tumors, functionally promotes tumor initiation and metastasis, and is associated with poor clinical outcome. Our study therefore reveals a common mechanism shared by normal and malignant stem cells to protect them from suppressive immune cytokine signaling. PMID:28530657

  20. Metabolism and the Control of Cell Fate Decisions and Stem Cell Renewal.

    PubMed

    Ito, Kyoko; Ito, Keisuke

    2016-10-06

    Although the stem cells of various tissues remain in the quiescent state to maintain their undifferentiated state, they also undergo cell divisions as required, and if necessary, even a single stem cell is able to provide for lifelong tissue homeostasis. Stem cell populations are precisely controlled by the balance between their symmetric and asymmetric divisions, with their division patterns determined by whether the daughter cells involved retain their self-renewal capacities. Recent studies have reported that metabolic pathways and the distribution of mitochondria are regulators of the division balance of stem cells and that metabolic defects can shift division balance toward symmetric commitment, which leads to stem cell exhaustion. It has also been observed that in asymmetric division, old mitochondria, which are central metabolic organelles, are segregated to the daughter cell fated to cell differentiation, whereas in symmetric division, young and old mitochondria are equally distributed between both daughter cells. Thus, metabolism and mitochondrial biology play important roles in stem cell fate decisions. As these decisions directly affect tissue homeostasis, understanding their regulatory mechanisms in the context of cellular metabolism is critical.

  1. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells.

    PubMed

    McLean, Will J; Yin, Xiaolei; Lu, Lin; Lenz, Danielle R; McLean, Dalton; Langer, Robert; Karp, Jeffrey M; Edge, Albert S B

    2017-02-21

    Death of cochlear hair cells, which do not regenerate, is a cause of hearing loss in a high percentage of the population. Currently, no approach exists to obtain large numbers of cochlear hair cells. Here, using a small-molecule approach, we show significant expansion (>2,000-fold) of cochlear supporting cells expressing and maintaining Lgr5, an epithelial stem cell marker, in response to stimulation of Wnt signaling by a GSK3β inhibitor and transcriptional activation by a histone deacetylase inhibitor. The Lgr5-expressing cells differentiate into hair cells in high yield. From a single mouse cochlea, we obtained over 11,500 hair cells, compared to less than 200 in the absence of induction. The newly generated hair cells have bundles and molecular machinery for transduction, synapse formation, and specialized hair cell activity. Targeting supporting cells capable of proliferation and cochlear hair cell replacement could lead to the discovery of hearing loss treatments. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. How the tooth got its stripes: patterning via strain-cued motility

    PubMed Central

    Cox, Brian N.

    2013-01-01

    We hypothesize that a population of migrating cells can form patterns when changes in local strains owing to relative cell motions induce changes in cell motility. That the mechanism originates in competing rates of motion distinguishes it from mechanisms involving strain energy gradients, e.g. those generated by surface energy effects or eigenstrains among cells, and diffusion–reaction mechanisms involving chemical signalling factors. The theory is tested by its ability to reproduce the morphological characteristics of enamel in the mouse incisor. Dental enamel is formed during amelogenesis by a population of ameloblasts that move about laterally within an expanding curved sheet, subject to continuously evolving spatial and temporal gradients in strain. Discrete-cell simulations of this process compute the changing strain environment of all cells and predict cell trajectories by invoking simple rules for the motion of an individual cell in response to its strain environment. The rules balance a tendency for cells to enhance relative sliding motion against a tendency to maintain uniform cell–cell separation. The simulations account for observed waviness in the enamel microstructure, the speed and shape of the ‘commencement front’ that separates domains of migrating secretory-stage ameloblasts from those that are not yet migrating, the initiation and sustainment of layered, fracture-resistant decussation patterns (cross-plied microstructure) and the transition from decussating inner enamel to non-decussating outer enamel. All these characteristics can be correctly predicted with the use of a single scalar adjustable parameter. PMID:23614945

  3. Extra-virgin olive oil contains a metabolo-epigenetic inhibitor of cancer stem cells

    PubMed Central

    Corominas-Faja, Bruna; Cuyàs, Elisabet; Lozano-Sánchez, Jesús; Cufí, Sílvia; Verdura, Sara; Fernández-Arroyo, Salvador; Borrás-Linares, Isabel; Martin-Castillo, Begoña; Martin, Ángel G; Lupu, Ruth; Nonell-Canals, Alfons; Micol, Vicente; Joven, Jorge; Segura-Carretero, Antonio; Menendez, Javier A

    2018-01-01

    Abstract Targeting tumor-initiating, drug-resistant populations of cancer stem cells (CSC) with phytochemicals is a novel paradigm for cancer prevention and treatment. We herein employed a phenotypic drug discovery approach coupled to mechanism-of-action profiling and target deconvolution to identify phenolic components of extra virgin olive oil (EVOO) capable of suppressing the functional traits of CSC in breast cancer (BC). In vitro screening revealed that the secoiridoid decarboxymethyl oleuropein aglycone (DOA) could selectively target subpopulations of epithelial-like, aldehyde dehydrogenase (ALDH)-positive and mesenchymal-like, CD44+CD24−/low CSC. DOA could potently block the formation of multicellular tumorspheres generated from single-founder stem-like cells in a panel of genetically diverse BC models. Pretreatment of BC populations with noncytotoxic doses of DOA dramatically reduced subsequent tumor-forming capacity in vivo. Mice orthotopically injected with CSC-enriched BC-cell populations pretreated with DOA remained tumor-free for several months. Phenotype microarray-based screening pointed to a synergistic interaction of DOA with the mTOR inhibitor rapamycin and the DNA methyltransferase (DNMT) inhibitor 5-azacytidine. In silico computational studies indicated that DOA binds and inhibits the ATP-binding kinase domain site of mTOR and the S-adenosyl-l-methionine (SAM) cofactor-binding pocket of DNMTs. FRET-based Z-LYTE™ and AlphaScreen-based in vitro assays confirmed the ability of DOA to function as an ATP-competitive mTOR inhibitor and to block the SAM-dependent methylation activity of DNMTs. Our systematic in vitro, in vivo and in silico approaches establish the phenol-conjugated oleoside DOA as a dual mTOR/DNMT inhibitor naturally occurring in EVOO that functionally suppresses CSC-like states responsible for maintaining tumor-initiating cell properties within BC populations. PMID:29452350

  4. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution

    PubMed Central

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J.; Miller, Daniel S. J.; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R.; Rodriguez-Justo, Manuel; McDonald, Stuart A. C.; Wright, Nicholas A.; Graham, Trevor A.

    2013-01-01

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO−) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis. PMID:23766371

  5. Lineage tracing reveals multipotent stem cells maintain human adenomas and the pattern of clonal expansion in tumor evolution.

    PubMed

    Humphries, Adam; Cereser, Biancastella; Gay, Laura J; Miller, Daniel S J; Das, Bibek; Gutteridge, Alice; Elia, George; Nye, Emma; Jeffery, Rosemary; Poulsom, Richard; Novelli, Marco R; Rodriguez-Justo, Manuel; McDonald, Stuart A C; Wright, Nicholas A; Graham, Trevor A

    2013-07-02

    The genetic and morphological development of colorectal cancer is a paradigm for tumorigenesis. However, the dynamics of clonal evolution underpinning carcinogenesis remain poorly understood. Here we identify multipotential stem cells within human colorectal adenomas and use methylation patterns of nonexpressed genes to characterize clonal evolution. Numerous individual crypts from six colonic adenomas and a hyperplastic polyp were microdissected and characterized for genetic lesions. Clones deficient in cytochrome c oxidase (CCO(-)) were identified by histochemical staining followed by mtDNA sequencing. Topographical maps of clone locations were constructed using a combination of these data. Multilineage differentiation within clones was demonstrated by immunofluorescence. Methylation patterns of adenomatous crypts were determined by clonal bisulphite sequencing; methylation pattern diversity was compared with a mathematical model to infer to clonal dynamics. Individual adenomatous crypts were clonal for mtDNA mutations and contained both mucin-secreting and neuroendocrine cells, demonstrating that the crypt contained a multipotent stem cell. The intracrypt methylation pattern was consistent with the crypts containing multiple competing stem cells. Adenomas were epigenetically diverse populations, suggesting that they were relatively mitotically old populations. Intratumor clones typically showed less diversity in methylation pattern than the tumor as a whole. Mathematical modeling suggested that recent clonal sweeps encompassing the whole adenoma had not occurred. Adenomatous crypts within human tumors contain actively dividing stem cells. Adenomas appeared to be relatively mitotically old populations, pocketed with occasional newly generated subclones that were the result of recent rapid clonal expansion. Relative stasis and occasional rapid subclone growth may characterize colorectal tumorigenesis.

  6. CXCR6 identifies a putative population of retained human lung T cells characterised by co-expression of activation markers.

    PubMed

    Morgan, Angela J; Guillen, Cristina; Symon, Fiona A; Birring, Surinder S; Campbell, James J; Wardlaw, Andrew J

    2008-01-01

    Expressions of activation markers have been described on the surface of T cells in the blood and the lung in both health and disease. We have studied the distribution of activation markers on human lung T cells and have found that only certain populations exist. Importantly, the presence or absence of some markers appears to predict those of others, in particular cells which express CD103 also express CD49a and CD69, whereas cells which do not express CD69 also do not express CD49a or CD103. In view of the paucity of activation marker expression in the peripheral blood, we have hypothesised that these CD69+, CD49a+, and CD103+ (triple positive) cells are retained in the lung, possess effector function (IFNgamma secretion) and express particular chemokine receptors which allow them to be maintained in this environment. We have found that the ability of the triple negative cells to secrete IFNgamma is significantly less than the triple positive cells, suggesting that the expression of activation markers can highlight a highly specialised effector cell. We have studied the expression of 14 chemokine receptors and have found that the most striking difference between the triple negative cells and the triple positive cells is the expression of CXCR6 with 12.8+/-9.8% of triple negative cells expressing CXCR6 compared to 89.5+/-5.5% of triple positive cells. We propose therefore that CXCR6 may play an important role in the retention of T cells within the lung.

  7. A population study of killer viruses reveals different evolutionary histories of two closely related Saccharomyces sensu stricto yeasts.

    PubMed

    Chang, Shang-Lin; Leu, Jun-Yi; Chang, Tien-Hsien

    2015-08-01

    Microbes have evolved ways of interference competition to gain advantage over their ecological competitors. The use of secreted killer toxins by yeast cells through acquiring double-stranded RNA viruses is one such prominent example. Although the killer behaviour has been well studied in laboratory yeast strains, our knowledge regarding how killer viruses are spread and maintained in nature and how yeast cells co-evolve with viruses remains limited. We investigated these issues using a panel of 81 yeast populations belonging to three Saccharomyces sensu stricto species isolated from diverse ecological niches and geographic locations. We found that killer strains are rare among all three species. In contrast, killer toxin resistance is widespread in Saccharomyces paradoxus populations, but not in Saccharomyces cerevisiae or Saccharomyces eubayanus populations. Genetic analyses revealed that toxin resistance in S. paradoxus is often caused by dominant alleles that have independently evolved in different populations. Molecular typing identified one M28 and two types of M1 killer viruses in those killer strains. We further showed that killer viruses of the same type could lead to distinct killer phenotypes under different host backgrounds, suggesting co-evolution between the viruses and hosts in different populations. Taken together, our data suggest that killer viruses vary in their evolutionary histories even within closely related yeast species. © 2015 John Wiley & Sons Ltd.

  8. The Role of Proteasome Inhibitor MG132 in 2,4-Dinitrofluorobenzene-Induced Atopic Dermatitis in NC/Nga Mice.

    PubMed

    Ohkusu-Tsukada, Kozo; Ito, Daiki; Takahashi, Kimimasa

    2018-01-01

    Although immunosuppressants for therapy of atopic dermatitis (AD) are still being sought, proteasome inhibitors are also potential candidates for the treatment of AD. Proteasome inhibitors exert various effects by blocking proteasomal degradation and help regulate processes such as apoptosis induction via caspase-9, cell cycle progression via cyclins, NF-κB inactivation via IκB, and downregulation of antigen cross-presentation. The cells targeted by proteasome inhibitors are therefore activated cells undergoing proliferation or differentiation, and antigen-presenting cells carrying out protein degradation. This study investigated the therapeutic effects and side effects of a proteasome inhibitor, MG132, on the treatment of AD. AD-like disease in NC/Nga mice housed under specific pathogen-free conditions was induced by repeated application of 2,4-dinitrofluorobenzene (DNFB). Disease progression was evaluated by inflammation score, histopathology, and serum IgE level, and the effects of systemic MG132 administration were investigated. The percentages and absolute numbers for each population of Th1, Th2, and Th17 cells in the axillary lymph nodes were analyzed by flow cytometry. DNFB application increased the expression of a unique major histocompatibility complex class I mutant molecule D/Ldm7 in dendritic cells (DCs), and increased Th1 and Th17 cells in NC/Nga mice. In vivo MG132 administration to NC/Nga mice with DNFB-induced dermatitis reduced Th17 cells but maintained the level of Th1 cells, resulting in the alleviation of dermatitis lesions by decreasing both serum IgE hyperproduction and mast cell migration. To understand the mechanisms maintaining Th1 cell levels following in vivo MG132-administration, we focused on the role of proteasomes regulating D/Ldm7 expression. Interestingly, 20S proteasome activity was higher in NC/Nga DCs than in BALB/c DCs. In vitro MG132 administration partially increased D/Ldm7 expression in a dose-dependent manner during DC maturation, and induced IFN-γ production from autoreactive CD8+ T cells but not from CD4+ T cells following coculturing with D/Ldm7-upregulated DCs. Although MG132 administration temporarily alleviated AD pathogenesis in NC/Nga mice, prolonged MG132 treatment may result in immunopathogenesis leading to chronic AD due to its side effect of maintaining Th1 levels via autoreactive CD8+ T cells. © 2018 S. Karger AG, Basel.

  9. Template DNA-strand co-segregation and asymmetric cell division in skeletal muscle stem cells.

    PubMed

    Shinin, Vasily; Gayraud-Morel, Barbara; Tajbakhsh, Shahragim

    2009-01-01

    Stem cells are present in all tissues and organs, and are crucial for normal regulated growth. How the pool size of stem cells and their progeny is regulated to establish the tissue prenatally, then maintain it throughout life, is a key question in biology and medicine. The ability to precisely locate stem and progenitors requires defining lineage progression from stem to differentiated cells, assessing the mode of cell expansion and self-renewal and identifying markers to assess the different cell states within the lineage. We have shown that during lineage progression from a quiescent adult muscle satellite cell to a differentiated myofibre, both symmetric and asymmetric divisions take place. Furthermore, we provide evidence that a sub-population of label retaining satellite cells co-segregate template DNA strands to one daughter cell. These findings provide a means of identifying presumed stem and progenitor cells within the lineage. In addition, asymmetric segregation of template DNA and the cytoplasmic protein Numb provides a landmark to define cell behaviour as self-renewal and differentiation decisions are being executed.

  10. Merkel cells are long-lived cells whose production is stimulated by skin injury✰

    PubMed Central

    Wright, Margaret C.; Logan, Gregory J.; Bolock, Alexa M.; Kubicki, Adam C.; Hemphill, Julie A.; Sanders, Timothy A.; Maricich, Stephen M.

    2017-01-01

    Mechanosensitive Merkel cells are thought to have finite lifespans, but controversy surrounds the frequency of their replacement and which precursor cells maintain the population. We found by embryonic EdU administration that Merkel cells undergo terminal cell division in late embryogenesis and survive long into adulthood. We also found that new Merkel cells are produced infrequently during normal skin homeostasis and that their numbers do not change during natural or induced hair cycles. In contrast, live imaging and EdU experiments showed that mild mechanical injury produced by skin shaving dramatically increases Merkel cell production. We confirmed with genetic cell ablation and fate-mapping experiments that new touch dome Merkel cells in adult mice arise from touch dome keratinocytes. Together, these independent lines of evidence show that Merkel cells in adult mice are long-lived, are replaced rarely during normal adult skin homeostasis, and that their production can be induced by repeated shaving. These results have profound implications for understanding sensory neurobiology and human diseases such as Merkel cell carcinoma. PMID:27998808

  11. Merkel cells are long-lived cells whose production is stimulated by skin injury.

    PubMed

    Wright, Margaret C; Logan, Gregory J; Bolock, Alexa M; Kubicki, Adam C; Hemphill, Julie A; Sanders, Timothy A; Maricich, Stephen M

    2017-02-01

    Mechanosensitive Merkel cells are thought to have finite lifespans, but controversy surrounds the frequency of their replacement and which precursor cells maintain the population. We found by embryonic EdU administration that Merkel cells undergo terminal cell division in late embryogenesis and survive long into adulthood. We also found that new Merkel cells are produced infrequently during normal skin homeostasis and that their numbers do not change during natural or induced hair cycles. In contrast, live imaging and EdU experiments showed that mild mechanical injury produced by skin shaving dramatically increases Merkel cell production. We confirmed with genetic cell ablation and fate-mapping experiments that new touch dome Merkel cells in adult mice arise from touch dome keratinocytes. Together, these independent lines of evidence show that Merkel cells in adult mice are long-lived, are replaced rarely during normal adult skin homeostasis, and that their production can be induced by repeated shaving. These results have profound implications for understanding sensory neurobiology and human diseases such as Merkel cell carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Molecular Features of Neural Stem Cells Enable their Enrichment Using Pharmacological Inhibitors of Survival-Promoting Kinases

    PubMed Central

    Brazel, Christine Y.; Alaythan, Abdulaziz A.; Felling, Ryan J.; Calderon, Frances; Levison, Steven W.

    2013-01-01

    Isolating a pure population of neural stem cells (NSCs) has been difficult since no exclusive surface markers have been identified for panning or FACS purification. Moreover, additional refinements for maintaining NSCs in culture are required, since NSCs generate a variety of neural precursors (NPs) as they proliferate. Here, we demonstrate that postnatal rat NPs express low levels of pro-apoptotic molecules and resist PI3K and ERK1/2 inhibition as compared to late oligodendrocyte progenitors. Furthermore, maintaining SVZ precursors in LY294002 and PD98059, inhibitors of PI3K and ERK1/2 signaling, eliminated lineage-restricted precursors as revealed by enrichment for Nestin+/SOX-2+ cells. The cells that survived formed neurospheres and 89% of these neurospheres were tripotential, generating neurons, astrocytes and oligodendrocytes. Without this enrichment step, less than 50% of the NPs were Nestin+/SOX-2+ and 42% of the neurospheres were tripotential. Additionally, neurospheres enriched using this procedure produced 3-times more secondary neurospheres, supporting the conclusion that this procedure enriches for NSCs. A number of genes that enhance survival were more highly expressed in neurospheres compared to late oligodendrocyte progenitors. Altogether, these studies demonstrate that primitive neural precursors can be enriched using a relatively simple and inexpensive means that will facilitate cell replacement strategies using stem cells as well as other studies whose goal is to reveal the fundamental properties of primitive neural precursors. PMID:24032666

  13. The actions of volatile anaesthetics on synaptic transmission in the dentate gyrus.

    PubMed Central

    Richards, C D; White, A E

    1975-01-01

    1. The action of four volatile anaesthetics on the evoked synaptic potentials of in vitro preparations of the hippocampus were examined. 2. All four anaesthetics (ether, halothane, methoxyflurane and trichloroethylene) depressed the synaptic transmission between the perforant path and the granule cells at concentrations lower than those required to maintain anaesthesia in intact animals. 3. The population excitatory post-synaptic potential (e.p.s.p.) and massed discharge of the cortical cells (population spike) were depressed at concentrations of the anaesthetics lower than those required to depress the compound action potential of the perforant path nerve fibres. None of the anaesthetics studied increased the threshold depolarization required for granule cell discharge. Furthermore, frequency potentiation of the evoked cortical e.p.s.p.s was not impaired by any of the anaesthetics studied. 4. It is concluded that all four anaesthetics depress synaptic transmission in the dentate gyrus either by reducing the amount of transmitter released from each nerve terminal in response to an afferent volley, or by decreasing the sensitivity of the post-synaptic membrane to released transmitted or by both effects together. PMID:1202196

  14. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment

    PubMed Central

    Greim, Helmut; Kaden, Debra A.; Larson, Richard A.; Palermo, Christine M.; Rice, Jerry M.; Ross, David; Snyder, Robert

    2014-01-01

    Hematopoietic stem cells (HSCs) are a unique population of somatic stem cells that can both self-renew for long-term reconstitution of HSCs and differentiate into hematopoietic progenitor cells, which in turn give rise, in a hierarchical manner, to the entire myeloid and lymphoid lineages. The differentiation and maturation of these lineages occurs in the bone marrow niche, a microenvironment that regulates self-renewal, survival, differentiation, and proliferation, with interactions among signaling pathways in the HSCs and the niche required to establish and maintain homeostasis. The accumulation of genetic mutations and cytogenetic abnormalities within cells of the partially differentiated myeloid lineage, particularly as a result of exposure to benzene or cytotoxic anticancer drugs, can give rise to malignancies like acute myeloid leukemia and myelodysplastic syndrome. Better understanding of the mechanisms driving these malignancies and susceptibility factors, both within hematopoietic progenitor cells and cells within the bone marrow niche, may lead to the development of strategies for prevention of occupational and cancer therapy–induced disease. PMID:24495159

  15. Tissue engineering, stem cells and cloning: current concepts and changing trends.

    PubMed

    Atala, Anthony

    2005-07-01

    Organ damage or loss can occur from congenital disorders, cancer, trauma, infection, inflammation, iatrogenic injuries or other conditions and often necessitates reconstruction or replacement. Replacement may take the form of organ transplant. At present, there is a severe shortage of donor organs that is worsening with the aging of the population. Tissue engineering follows the principles of cell transplantation, materials science and engineering towards the development of biological substitutes that can restore and maintain normal tissue function. Therapeutic cloning involves the introduction of a nucleus from a donor cell into an enucleated oocyte to generate embryonic stem cell lines whose genetic material is identical to that of its source. These autologous stem cells have the potential to become almost any type of cell in the adult body, and thus would be useful in tissue and organ replacement applications. This paper reviews recent advances in stem cell research and regenerative medicine, and describes the clinical applications of these technologies as novel therapies for tissue or organ loss.

  16. Maintaining molten salt electrolyte concentration in aluminum-producing electrolytic cell

    DOEpatents

    Barnett, Robert J.; Mezner, Michael B.; Bradford, Donald R

    2005-01-04

    A method of maintaining molten salt concentration in a low temperature electrolytic cell used for production of aluminum from alumina dissolved in a molten salt electrolyte contained in a cell free of frozen crust wherein volatile material is vented from the cell and contacted and captured on alumina being added to the cell. The captured volatile material is returned with alumina to cell to maintain the concentration of the molten salt.

  17. Adherent culture conditions enrich the side population obtained from the cochlear modiolus-derived stem/progenitor cells.

    PubMed

    Chao, Ting-Ting; Wang, Chih-Hung; Chen, Hsin-Chien; Shih, Cheng-Ping; Sytwu, Huey-Kang; Huang, Kun-Lun; Chen, Shao-Yuan

    2013-05-01

    Previously, our group reported that sphere-forming cells derived from the organ of Corti represent the stem/progenitor cells (SPCs) of the cochlea due to their properties of self-renewal and multipotency. However, long-term propagation of sphere-forming cells under suspension culture conditions may fail to maintain the characteristic stemness of these cells. Therefore, this study investigated whether an adherent culture system would be beneficial in terms of preserving more stem-like cells for long-term manipulations in vitro. Isolated modiolus-derived SPCs were placed on poly-d-lysine-coated petri dishes to form the so-called "adherent" culture system. Modiolus SPCs cultured under adherent conditions exhibited a significantly increased percentage of cells with the side population (SP) phenotype (18.6%) compared with cells cultured under conventional suspension culture conditions (0.8%). Even after repeated passages, modiolus SPCs cultured under adherent culture conditions preserved more SP phenotype cells. In comparison with the non-SP phenotype cells, the sorted SP cells exhibited more stem-like but less differentiated properties, with an upregulated expression of the ATP-binding cassette subfamily G member 2 (ABCG2), Nestin, Sox2, and Nanog proteins. Furthermore, Retinoic acid (RA) treatment confirmed the expression of the multipotent differentiation markers in the SP cells, including TUJ1, pancytokeratin, glial fibrillary acidic protein (GFAP), and p27(Kip1). Employment of an adherent culture system, instead of a suspension culture system, resulted in the enrichment of the SP cells from SPCs while retaining their stemness and multipotency. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.

    PubMed

    Pespeni, M H; Chan, F; Menge, B A; Palumbi, S R

    2013-11-01

    Little is known about the potential for rapid evolution in natural populations in response to the high rate of contemporary climatic change. Organisms that have evolved in environments that experience high variability across space and time are of particular interest as they may harbor genetic variation that can facilitate evolutionary response to changing conditions. Here we review what is known about genetic capacity for adaptation in the purple sea urchin, Strongylocentrotus purpuratus, a species that has evolved in the upwelling ecosystem of the Northeast Pacific Ocean. We also present new results testing for adaptation to local pH conditions in six populations from Oregon to southern California. We integrate data on 19,493 genetic polymorphisms with data on local pH conditions. We find correlations between allele frequency and rank average time spent at pH <7.8 in 318 single-nucleotide polymorphisms in 275 genes. Two of the genes most correlated with local pH are a protein associated with the cytoskeleton and a proton pump, with functional roles in maintenance of cell volume and with internal regulation of pH, respectively. Across all loci tested, high correlations with local pH were concentrated in genes related to transport of ions, biomineralization, lipid metabolism, and cell-cell adhesion, functional pathways important for maintaining homeostasis at low pH. We identify a set of seven genes as top candidates for rapid evolutionary response to acidification of the ocean. In these genes, the putative low-pH-adapted allele, based on allele frequencies in natural populations, rapidly increases in frequency in purple sea urchin larvae raised at low pH. We also found that populations from localities with high pH show a greater change in allele frequency toward putative low-pH-adapted alleles under experimental acidification, compared with low-pH populations, suggesting that both natural and artificial selection favor the same alleles for response to low pH. These results illustrate that purple sea urchins may be adapted to local pH and suggest that this species may possess the genetic capacity for rapid evolution in response to acidification. This adaptive capacity likely comes from standing genetic variation maintained in nature by balancing selection across the spatial and temporal environmental mosaic that characterizes the California Current Ecosystem.

  19. Interleukin-10 Is Produced by a Specific Subset of Taste Receptor Cells and Critical for Maintaining Structural Integrity of Mouse Taste Buds

    PubMed Central

    Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan

    2014-01-01

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system. PMID:24523558

  20. Interleukin-10 is produced by a specific subset of taste receptor cells and critical for maintaining structural integrity of mouse taste buds.

    PubMed

    Feng, Pu; Chai, Jinghua; Zhou, Minliang; Simon, Nirvine; Huang, Liquan; Wang, Hong

    2014-02-12

    Although inflammatory responses are a critical component in defense against pathogens, too much inflammation is harmful. Mechanisms have evolved to regulate inflammation, including modulation by the anti-inflammatory cytokine interleukin-10 (IL-10). Previously we have shown that taste buds express various molecules involved in innate immune responses, including the proinflammatory cytokine tumor necrosis factor (TNF). Here, using a reporter mouse strain, we show that taste cells also express the anti-inflammatory cytokine IL-10. Remarkably, IL-10 is produced by only a specific subset of taste cells, which are different from the TNF-producing cells in mouse circumvallate and foliate taste buds: IL-10 expression was found exclusively in the G-protein gustducin-expressing bitter receptor cells, while TNF was found in sweet and umami receptor cells as reported previously. In contrast, IL-10R1, the ligand-binding subunit of the IL-10 receptor, is predominantly expressed by TNF-producing cells, suggesting a novel cellular hierarchy for regulating TNF production and effects in taste buds. In response to inflammatory challenges, taste cells can increase IL-10 expression both in vivo and in vitro. These findings suggest that taste buds use separate populations of taste receptor cells that coincide with sweet/umami and bitter taste reception to modulate local inflammatory responses, a phenomenon that has not been previously reported. Furthermore, IL-10 deficiency in mice leads to significant reductions in the number and size of taste buds, as well as in the number of taste receptor cells per taste bud, suggesting that IL-10 plays critical roles in maintaining structural integrity of the peripheral gustatory system.

  1. Dysmegakaryocytopoiesis and maintaining platelet count in patients with plasma cell neoplasm.

    PubMed

    Mair, Yasmin; Zheng, Yan; Cai, Donghong

    2013-05-01

    Dysmegakaryocytopoiesis in patients with the plasma cell neoplasm (PCN) is rarely discussed in the literature. The puzzling phenomenon, which PCN patients maintaining normal platelet count even when the marrow is mostly replaced by plasma cells, is hardly explored. This study was aimed to determine the frequency of dysmegakaryocytopoiesis in PCN and the relationships between bone marrow (BM) plasma cell percentage, plasma cell immunomarkers, the severity of dysmegakaryocytopoiesis, and peripheral blood platelet count in PCN. We randomly selected 16 cases of PCN, among which 4 were with monoclonal gammopathy of undetermined significance and 12 were with plasma cell myeloma. OUR STUDY SHOWED THAT: (1) Dysmegakaryocytopoiesis was present in all the selected cases of PCN and its severity was not correlated with the percentage of the plasma cells in BM; (2) almost all patients maintained normal platelet count even when BM was mostly replaced by plasma cells; (3) immunomarkers of the neoplastic plasma cells were not associated with dysmegakaryocytopoiesis or maintaining of platelet count. The possible mechanisms behind dysmegakaryocytopoiesis and maintaining of platelet count were also discussed. Despite the universal presence of dysmegakaryocytopoiesis in PCN, the platelet count is maintained at normal range.

  2. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275

  3. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.

    PubMed

    Mukherjee, Subhas; Brat, Daniel J

    2017-01-01

    Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.

  4. Complex interactions in EML cell stimulation by stem cell factor and IL-3.

    PubMed

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M

    2011-03-22

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34- cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone.

  5. Complex interactions in EML cell stimulation by stem cell factor and IL-3

    PubMed Central

    Ye, Zhi-jia; Gulcicek, Erol; Stone, Kathryn; Lam, Tukiet; Schulz, Vincent; Weissman, Sherman M.

    2011-01-01

    Erythroid myeloid lymphoid (EML) cells are an established multipotent hematopoietic precursor cell line that can be maintained in medium including stem cell factor (SCF). EML cultures contain a heterogeneous mixture of cells, including a lineage-negative, CD34+ subset of cells that propagate rapidly in SCF and can clonally regenerate the mixed population. A second major subset of EML cells consists of lineage-negative. CD34− cells that can be propagated in IL-3 but grow slowly, if at all, in SCF, although they express the SCF receptor (c-kit). The response of these cells to IL-3 is stimulated synergistically by SCF, and we present evidence that both the synergy and the inhibition of c-kit responses may be mediated by direct interaction with IL-3 receptor. Further, the relative level of tyrosine phosphorylation of various substrates by either cytokine alone differs from that produced by the combination of the two cytokines, suggesting that cell signaling by the combination of the two cytokines differs from that produced by either alone. PMID:21383156

  6. Muscle Stem Cells Undergo Extensive Clonal Drift during Tissue Growth via Meox1-Mediated Induction of G2 Cell-Cycle Arrest.

    PubMed

    Nguyen, Phong Dang; Gurevich, David Baruch; Sonntag, Carmen; Hersey, Lucy; Alaei, Sara; Nim, Hieu Tri; Siegel, Ashley; Hall, Thomas Edward; Rossello, Fernando Jaime; Boyd, Sarah Elizabeth; Polo, Jose Maria; Currie, Peter David

    2017-07-06

    Organ growth requires a careful balance between stem cell self-renewal and lineage commitment to ensure proper tissue expansion. The cellular and molecular mechanisms that mediate this balance are unresolved in most organs, including skeletal muscle. Here we identify a long-lived stem cell pool that mediates growth of the zebrafish myotome. This population exhibits extensive clonal drift, shifting from random deployment of stem cells during development to reliance on a small number of dominant clones to fuel the vast majority of muscle growth. This clonal drift requires Meox1, a homeobox protein that directly inhibits the cell-cycle checkpoint gene ccnb1. Meox1 initiates G 2 cell-cycle arrest within muscle stem cells, and disrupting this G 2 arrest causes premature lineage commitment and the resulting defects in muscle growth. These findings reveal that distinct regulatory mechanisms orchestrate stem cell dynamics during organ growth, beyond the G 0 /G 1 cell-cycle inhibition traditionally associated with maintaining tissue-resident stem cells. Copyright © 2017. Published by Elsevier Inc.

  7. Characterization of Multiple Cytokine Combinations and TGF-β on Differentiation and Functions of Myeloid-Derived Suppressor Cells

    PubMed Central

    Lee, Cho-Rong; Lee, Wongeun; Cho, Steve K.; Park, Sung-Gyoo

    2018-01-01

    Myeloid-derived suppressor cells (MDSCs) regulate T cell immunity, and this population is a new therapeutic target for immune regulation. A previous study showed that transforming growth factor-β (TGF-β) is involved in controlling MDSC differentiation and immunoregulatory function in vivo. However, the direct effect of TGF-β on MDSCs with various cytokines has not previously been tested. Thus, we examined the effect of various cytokine combinations with TGF-β on MDSCs derived from bone marrow cells. The data show that different cytokine combinations affect the differentiation and immunosuppressive functions of MDSCs in different ways. In the presence of TGF-β, interleukin-6 (IL-6) was the most potent enhancer of MDSC function, whereas granulocyte colony-stimulating factors (G-CSF) was the most potent in the absence of TGF-β. In addition, IL-4 maintained MDSCs in an immature state with an increased expression of arginase 1 (Arg1). However, regardless of the cytokine combinations, TGF-β increased expansion of the monocytic MDSC (Mo-MDSC) population, expression of immunosuppressive molecules by MDSCs, and the ability of MDSCs to suppress CD4+ T cell proliferation. Thus, although different cytokine combinations affected the MDSCs in different ways, TGF-β directly affects monocytic-MDSCs (Mo-MDSCs) expansion and MDSCs functions. PMID:29543758

  8. Differential Expression of NK Receptors CD94 and NKG2A by T Cells in Rheumatoid Arthritis Patients in Remission Compared to Active Disease

    PubMed Central

    Walsh, Ceara E.; Ryan, Elizabeth J.; O’Farrelly, Cliona; Golden-Mason, Lucy; FitzGerald, Oliver; Veale, Douglas J.; Bresnihan, Barry; Fearon, Ursula

    2011-01-01

    Objective TNF inhibitors (TNFi) have revolutionised the treatment of rheumatoid arthritis (RA). Natural killer (NK) cells and Natural Killer Cell Receptor+ T (NKT) cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs). Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal. Methods Patients with RA were recruited for this study, (i) RA patients in clinical remission following a minimum of one year of TNFi therapy (n = −15); (2) Active RA patients, not currently or ever receiving TNFi (n = 18); and healthy control volunteers (n = 15). Patients in remission were divided into two groups: those who were maintained on TNFi and those who withdrew from TNFi and maintained on DMARDS. All patients underwent full clinical assessment. Peripheral blood mononuclear cells were isolated and NKR (CD94, NKG2A, CD161, CD69, CD57, CD158a, CD158b) expression on T-(CD3+CD56−), NK-(CD3−CD56+) and NKT-(CD3+CD56+) cells was determined by flow cytometry. Results Following TNFi withdrawal, percentages and numbers of circulating T cells, NK cells or NKT cell populations were unchanged in patients in remission versus active RA or HCs. Expression of the NKRs CD161, CD57, CD94 and NKG2A was significantly increased on CD3+CD56-T cells from patients in remission compared to active RA (p<0.05). CD3+CD56-T cell expression of CD94 and NKG2A was significantly increased in patients who remained in remission compared with patients whose disease flared (p<0.05), with no differences observed for CD161 and CD57. CD3+CD56− cell expression of NKG2A was inversely related to DAS28 (r = −0.612, p<0.005). Conclusion High CD94/NKG2A expression by T cells was demonstrated in remission patients following TNFi therapy compared to active RA, while low CD94/NKG2A were associated with disease flare following withdrawal of therapy. PMID:22102879

  9. Differential expression of NK receptors CD94 and NKG2A by T cells in rheumatoid arthritis patients in remission compared to active disease.

    PubMed

    Walsh, Ceara E; Ryan, Elizabeth J; O'Farrelly, Cliona; Golden-Mason, Lucy; FitzGerald, Oliver; Veale, Douglas J; Bresnihan, Barry; Fearon, Ursula

    2011-01-01

    TNF inhibitors (TNFi) have revolutionised the treatment of rheumatoid arthritis (RA). Natural killer (NK) cells and Natural Killer Cell Receptor+ T (NKT) cells comprise important effector lymphocytes whose activity is tightly regulated through surface NK receptors (NKRs). Dysregulation of NKRs in patients with autoimmune diseases has been shown, however little is known regarding NKRs expression in patients with TNFi-induced remission and in those who maintain remission vs disease flare following TNFi withdrawal. Patients with RA were recruited for this study, (i) RA patients in clinical remission following a minimum of one year of TNFi therapy (n = -15); (2) Active RA patients, not currently or ever receiving TNFi (n = 18); and healthy control volunteers (n = 15). Patients in remission were divided into two groups: those who were maintained on TNFi and those who withdrew from TNFi and maintained on DMARDS. All patients underwent full clinical assessment. Peripheral blood mononuclear cells were isolated and NKR (CD94, NKG2A, CD161, CD69, CD57, CD158a, CD158b) expression on T-(CD3+CD56-), NK-(CD3-CD56+) and NKT-(CD3+CD56+) cells was determined by flow cytometry. Following TNFi withdrawal, percentages and numbers of circulating T cells, NK cells or NKT cell populations were unchanged in patients in remission versus active RA or HCs. Expression of the NKRs CD161, CD57, CD94 and NKG2A was significantly increased on CD3+CD56-T cells from patients in remission compared to active RA (p<0.05). CD3+CD56-T cell expression of CD94 and NKG2A was significantly increased in patients who remained in remission compared with patients whose disease flared (p<0.05), with no differences observed for CD161 and CD57. CD3+CD56- cell expression of NKG2A was inversely related to DAS28 (r = -0.612, p<0.005). High CD94/NKG2A expression by T cells was demonstrated in remission patients following TNFi therapy compared to active RA, while low CD94/NKG2A were associated with disease flare following withdrawal of therapy.

  10. A dendritic cell-stromal axis maintains immune responses in lymph nodes

    PubMed Central

    Kumar, Varsha; Dasoveanu, Dragos C.; Chyou, Susan; Tzeng, Te-Chen; Rozo, Cristina; Liang, Yong; Stohl, William; Fu, Yang-Xin; Ruddle, Nancy; Lu, Theresa T.

    2015-01-01

    Summary Within secondary lymphoid tissues, stromal reticular cells support lymphocyte function, and targeting reticular cells is a potential strategy for controlling pathogenic lymphocytes in disease. However, the mechanisms that regulate reticular cell function are not well understood. Here we found that during an immune response in lymph nodes, dendritic cells (DCs) maintain reticular cell survival in multiple compartments. DC-derived lymphotoxin beta receptor (LTβR) ligands were critical mediators, and LTβR signaling on reticular cells mediated cell survival by modulating podoplanin (PDPN). PDPN modulated integrin-mediated cell adhesion, which maintained cell survival. This DC-stromal axis maintained lymphocyte survival and the ongoing immune response. Our findings provide insight into the functions of DCs, LTβR, and PDPN and delineate a DC-stromal axis that can potentially be targeted in autoimmune or lymphoproliferative diseases. PMID:25902483

  11. Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools.

    PubMed

    Díez, José M; Bauman, Ewa; Gajardo, Rodrigo; Jorquera, Juan I

    2015-03-13

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity. SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation. SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons. The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.

  12. Using barcoded Zika virus to assess virus population structure in vitro and in Aedes aegypti mosquitoes.

    PubMed

    Weger-Lucarelli, James; Garcia, Selene M; Rückert, Claudia; Byas, Alex; O'Connor, Shelby L; Aliota, Matthew T; Friedrich, Thomas C; O'Connor, David H; Ebel, Gregory D

    2018-06-20

    Arboviruses such as Zika virus (ZIKV, Flaviviridae; Flavivirus) must replicate in both mammalian and insect hosts possessing strong immune defenses. Accordingly, transmission between and replication within hosts involves genetic bottlenecks, during which viral population size and genetic diversity may be significantly reduced. To help quantify these bottlenecks and their effects, we constructed 4 "barcoded" ZIKV populations that theoretically contain thousands of barcodes each. After identifying the most diverse barcoded virus, we passaged this virus 3 times in 2 mammalian and mosquito cell lines and characterized the population using deep sequencing of the barcoded region of the genome. C6/36 maintain higher barcode diversity, even after 3 passages, than Vero. Additionally, field-caught mosquitoes exposed to the virus to assess bottlenecks in a natural host. A progressive reduction in barcode diversity occurred throughout systemic infection of these mosquitoes. Differences in bottlenecks during systemic spread were observed between different populations of Aedes aegypti. Copyright © 2018. Published by Elsevier Inc.

  13. Real-Time Quantitative PCR Measurement of Ileal Lactobacillus salivarius Populations from Broiler Chickens To Determine the Influence of Farming Practices▿ †

    PubMed Central

    Harrow, Sally A.; Ravindran, Velmurugu; Butler, Ruth C.; Marshall, John W.; Tannock, Gerald W.

    2007-01-01

    A real-time quantitative PCR assay targeting a 16S-23S intergenic spacer region sequence was devised to measure the sizes of populations of Lactobacillus salivarius present in ileal digesta collected from broiler chickens. This species has been associated with deconjugation of bile salts in the small bowel and reduced broiler productivity. The assay was tested as a means of monitoring the sizes of L. salivarius populations from broilers fed diets with different compositions, maintained at different stocking densities, or given the antimicrobial drugs bacitracin and monensin in the feed. Stocking densities did not influence the numbers of L. salivarius cells in the ileum. A diet containing meat and bone meal reduced the size of the L. salivarius population relative to that of chickens given the control diet, as did administration of bacitracin and monensin in the feed. These changes in the target bacterial population were associated with improved broiler weight gain. PMID:17890342

  14. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective

    PubMed Central

    Sonnaert, Maarten; Luyten, Frank P.; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion. PMID:26313143

  15. Bioreactor-Based Online Recovery of Human Progenitor Cells with Uncompromised Regenerative Potential: A Bone Tissue Engineering Perspective.

    PubMed

    Sonnaert, Maarten; Luyten, Frank P; Schrooten, Jan; Papantoniou, Ioannis

    2015-01-01

    The use of a 3D perfusion culture environment for stem cell expansion has been shown to be beneficial for maintenance of the original cell functionality but due to several system inherent characteristics such as the presence of extracellular matrix, the continued development and implementation of 3D perfusion bioreactor technologies is hampered. Therefore, this study developed a methodology for harvesting a progenitor cell population from a 3D open porous culture surface after expansion in a perfusion bioreactor and performed a functional characterization of the expanded cells. An initial screening showed collagenase to be the most interesting reagent to release the cells from the 3D culture surface as it resulted in high yields without compromising cell viability. Subsequently a Design of Experiment approach was used to obtain optimized 3D harvest conditions by assessing the interplay of flow rate, collagenase concentration and incubation time on the harvest efficiency, viability and single cell fraction. Cells that were recovered with the optimized harvest protocol, by perfusing a 880 U/ml collagenase solution for 7 hours at a flow rate of 4 ml/min, were thereafter functionally analyzed for their characteristics as expanded progenitor cell population. As both the in vitro tri-lineage differentiation capacity and the in vivo bone forming potential were maintained after 3D perfusion bioreactor expansion we concluded that the developed seeding, culture and harvest processes did not significantly compromise the viability and potency of the cells and can contribute to the future development of integrated bioprocesses for stem cell expansion.

  16. A multi-generation Schmakeria poplesia culturing system for use in ecotoxicological study

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Zhu, Liyan; Qiu, Xuchun; Qi, Benjin; Zhang, Tianwen

    2009-03-01

    Crustacean zooplankton form the keystone link between primary producers and fish stocks in marine and estuary ecosystems. We have established a multi-generation cultivation system for zooplankton with which future experiments on the biological effects of pollutants in marine and estuary environments can be better performed. A population of calanoid copepod, Schmakeria poplesia, was collected in December 2003 and maintained in a static system through all stages (eggs to adults). The population exhibited an average developmental time of 13.6 d in conditions corresponding to the natural environment (water temperature 20°C, salinity 15). A series of experiments were performed to examine copepod egg production and hatching success as functions of food type and feeding concentration. Results in our study showed that Isochrysis galbana was more favored for the reproduction of copepods than Phaeodactylum tricornutum, and 10×104cells mL-1 was the most practical algae concentration. We have demonstrated that the Schmakeria poplesia population can be maintained in the laboratory through multiple generations. In addition, methods to control egg production through changes in food concentration have been established, making it feasible to control the start date of exposure experiments or the timing of the collection of offspring to initiate a new generation.

  17. Elucidating the identity and behavior of spermatogenic stem cells in the mouse testis.

    PubMed

    Yoshida, Shosei

    2012-09-01

    Spermatogenesis in mice and other mammalians is supported by a robust stem cell system. Stem cells maintain themselves and continue to produce progeny that will differentiate into sperm over a long period. The pioneering studies conducted from the 1950s to the 1970s, which were based largely on extensive morphological analyses, have established the fundamentals of mammalian spermatogenesis and its stem cells. The prevailing so-called A(single) (A(s)) model, which was originally established in 1971, proposes that singly isolated A(s) spermatogonia are in fact the stem cells. In 1994, the first functional stem cell assay was established based on the formation of repopulating colonies after transplantation in germ cell-depleted host testes, which substantially accelerated the understanding of spermatogenic stem cells. However, because testicular tissues are dissociated into single-cell suspension before transplantation, it was impossible to evaluate the A(s) and other classical models solely by this technique. From 2007 onwards, functional assessment of stem cells without destroying the tissue architecture has become feasible by means of pulse-labeling and live-imaging strategies. Results obtained from these experiments have been challenging the classical thought of stem cells, in which stem cells are a limited number of specialized cells undergoing asymmetric division to produce one self-renewing and one differentiating daughter cells. In contrast, the emerging data suggest that an extended and heterogeneous population of cells exhibiting different degrees of self-renewing and differentiating probabilities forms a reversible, flexible, and stochastic stem cell system as a population. These features may lead to establishment of a more universal principle on stem cells that is shared by other systems.

  18. Epithelial Cell Rests of Malassez Contain Unique Stem Cell Populations Capable of Undergoing Epithelial–Mesenchymal Transition

    PubMed Central

    Xiong, Jimin; Mrozik, Krzysztof; Gronthos, Stan

    2012-01-01

    The epithelial cell rests of Malassez (ERM) are odontogenic epithelial cells located within the periodontal ligament matrix. While their function is unknown, they may support tissue homeostasis and maintain periodontal ligament space or even contribute to periodontal regeneration. We investigated the notion that ERM contain a subpopulation of stem cells that could undergo epithelial–mesenchymal transition and differentiate into mesenchymal stem-like cells with multilineage potential. For this purpose, ERM collected from ovine incisors were subjected to different inductive conditions in vitro, previously developed for the characterization of bone marrow mesenchymal stromal/stem cells (BMSC). We found that ex vivo-expanded ERM expressed both epithelial (cytokeratin-8, E-cadherin, and epithelial membrane protein-1) and BMSC markers (CD44, CD29, and heat shock protein-90β). Integrin α6/CD49f could be used for the enrichment of clonogenic cell clusters [colony-forming units-epithelial cells (CFU-Epi)]. Integrin α6/CD49f-positive-selected epithelial cells demonstrated over 50- and 7-fold greater CFU-Epi than integrin α6/CD49f-negative cells and unfractionated cells, respectively. Importantly, ERM demonstrated stem cell-like properties in their differentiation capacity to form bone, fat, cartilage, and neural cells in vitro. When transplanted into immunocompromised mice, ERM generated bone, cementum-like and Sharpey's fiber-like structures. Additionally, gene expression studies showed that osteogenic induction of ERM triggered an epithelial–mesenchymal transition. In conclusion, ERM are unusual cells that display the morphological and phenotypic characteristics of ectoderm-derived epithelial cells; however, they also have the capacity to differentiate into a mesenchymal phenotype and thus represent a unique stem cell population within the periodontal ligament. PMID:22122577

  19. Beating Cheaters at Their Own Game

    NASA Astrophysics Data System (ADS)

    Rauch, Joseph; Kondev, Jane; Sanchez, Alvaro

    2014-03-01

    Public goods games occur over many different scales in nature, from microbial biofilms to the human commons. On each scale stable populations of cooperators (members who invest into producing some good shared by the entire population) and cheaters (members who make no investment yet still share the common goods) has been observed. This observation raises interesting questions, like how do cooperators maintain their presence in a game that seems to heavily favor cheaters, and what strategies for cooperation could populations employ to increase their success? We propose a model of a public goods game with two different player populations, S and D, which employ two different strategies: the D population always cheats and the S population makes a stochastic decision whether to cooperate or not. We find that stochastic cooperation improves the success of the S population over the competing D population, but at a price. As the probability of cheating by the S players increases they outcompete the D players but the total population becomes more ecologically unstable (i.e., the likelihood of its extinction grows). We investigate this trade off between evolutionary success and ecological stability and propose experiments using populations of yeast cells to test our predictions.

  20. Direct Reprogramming of Mouse Fibroblasts into Functional Skeletal Muscle Progenitors.

    PubMed

    Bar-Nur, Ori; Gerli, Mattia F M; Di Stefano, Bruno; Almada, Albert E; Galvin, Amy; Coffey, Amy; Huebner, Aaron J; Feige, Peter; Verheul, Cassandra; Cheung, Priscilla; Payzin-Dogru, Duygu; Paisant, Sylvain; Anselmo, Anthony; Sadreyev, Ruslan I; Ott, Harald C; Tajbakhsh, Shahragim; Rudnicki, Michael A; Wagers, Amy J; Hochedlinger, Konrad

    2018-05-08

    Skeletal muscle harbors quiescent stem cells termed satellite cells and proliferative progenitors termed myoblasts, which play pivotal roles during muscle regeneration. However, current technology does not allow permanent capture of these cell populations in vitro. Here, we show that ectopic expression of the myogenic transcription factor MyoD, combined with exposure to small molecules, reprograms mouse fibroblasts into expandable induced myogenic progenitor cells (iMPCs). iMPCs express key skeletal muscle stem and progenitor cell markers including Pax7 and Myf5 and give rise to dystrophin-expressing myofibers upon transplantation in vivo. Notably, a subset of transplanted iMPCs maintain Pax7 expression and sustain serial regenerative responses. Similar to satellite cells, iMPCs originate from Pax7 + cells and require Pax7 itself for maintenance. Finally, we show that myogenic progenitor cell lines can be established from muscle tissue following small-molecule exposure alone. This study thus reports on a robust approach to derive expandable myogenic stem/progenitor-like cells from multiple cell types. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. A primary cell model of HIV-1 latency that uses activation through the T cell receptor and return to quiescence to establish latent infection

    PubMed Central

    Kim, Michelle; Hosmane, Nina N.; Bullen, C. Korin; Capoferri, Adam; Yang, Hung-Chih; Siliciano, Janet D.; Siliciano, Robert F.

    2015-01-01

    A mechanistic understanding of HIV-1 latency depends upon a model system that recapitulates the in vivo condition of latently infected, resting CD4+ T lymphocytes. Latency appears to be established after activated CD4+ T cells, the principal targets of HIV-1 infection, become productively infected and survive long enough to return to a resting memory state in which viral expression is inhibited by changes in the cellular environment. This protocol describes an ex vivo primary cell system that is generated under conditions that reflect the in vivo establishment of latency. Creation of these latency model cells takes 12 weeks and, once established, the cells can be maintained and used for several months. The resulting cell population contains both uninfected and latently infected cells. This primary cell model can be used to perform drug screens, study CTL responses to HIV-1, compare viral alleles, or to expand the ex vivo lifespan of cells from HIV-1 infected individuals for extended study. PMID:25375990

  2. Temporal fluxomics reveals oscillations in TCA cycle flux throughout the mammalian cell cycle.

    PubMed

    Ahn, Eunyong; Kumar, Praveen; Mukha, Dzmitry; Tzur, Amit; Shlomi, Tomer

    2017-11-06

    Cellular metabolic demands change throughout the cell cycle. Nevertheless, a characterization of how metabolic fluxes adapt to the changing demands throughout the cell cycle is lacking. Here, we developed a temporal-fluxomics approach to derive a comprehensive and quantitative view of alterations in metabolic fluxes throughout the mammalian cell cycle. This is achieved by combining pulse-chase LC-MS-based isotope tracing in synchronized cell populations with computational deconvolution and metabolic flux modeling. We find that TCA cycle fluxes are rewired as cells progress through the cell cycle with complementary oscillations of glucose versus glutamine-derived fluxes: Oxidation of glucose-derived flux peaks in late G1 phase, while oxidative and reductive glutamine metabolism dominates S phase. These complementary flux oscillations maintain a constant production rate of reducing equivalents and oxidative phosphorylation flux throughout the cell cycle. The shift from glucose to glutamine oxidation in S phase plays an important role in cell cycle progression and cell proliferation. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  3. Neuronal Progenitor Maintenance Requires Lactate Metabolism and PEPCK-M-Directed Cataplerosis.

    PubMed

    Álvarez, Zaida; Hyroššová, Petra; Perales, José Carlos; Alcántara, Soledad

    2016-03-01

    This study investigated the metabolic requirements for neuronal progenitor maintenance in vitro and in vivo by examining the metabolic adaptations that support neuronal progenitors and neural stem cells (NSCs) in their undifferentiated state. We demonstrate that neuronal progenitors are strictly dependent on lactate metabolism, while glucose induces their neuronal differentiation. Lactate signaling is not by itself capable of maintaining the progenitor phenotype. The consequences of lactate metabolism include increased mitochondrial and oxidative metabolism, with a strict reliance on cataplerosis through the mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) pathway to support anabolic functions, such as the production of extracellular matrix. In vivo, lactate maintains/induces populations of postnatal neuronal progenitors/NSCs in a PEPCK-M-dependent manner. Taken together, our data demonstrate that, lactate alone or together with other physical/biochemical cues maintain NSCs/progenitors with a metabolic signature that is classically found in tissues with high anabolic capacity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  4. In vitro evolution of allergy vaccine candidates, with maintained structure, but reduced B cell and T cell activation capacity.

    PubMed

    Nilsson, Ola B; Adedoyin, Justus; Rhyner, Claudio; Neimert-Andersson, Theresa; Grundström, Jeanette; Berndt, Kurt D; Crameri, Reto; Grönlund, Hans

    2011-01-01

    Allergy and asthma to cat (Felis domesticus) affects about 10% of the population in affluent countries. Immediate allergic symptoms are primarily mediated via IgE antibodies binding to B cell epitopes, whereas late phase inflammatory reactions are mediated via activated T cell recognition of allergen-specific T cell epitopes. Allergen-specific immunotherapy relieves symptoms and is the only treatment inducing a long-lasting protection by induction of protective immune responses. The aim of this study was to produce an allergy vaccine designed with the combined features of attenuated T cell activation, reduced anaphylactic properties, retained molecular integrity and induction of efficient IgE blocking IgG antibodies for safer and efficacious treatment of patients with allergy and asthma to cat. The template gene coding for rFel d 1 was used to introduce random mutations, which was subsequently expressed in large phage libraries. Despite accumulated mutations by up to 7 rounds of iterative error-prone PCR and biopanning, surface topology and structure was essentially maintained using IgE-antibodies from cat allergic patients for phage enrichment. Four candidates were isolated, displaying similar or lower IgE binding, reduced anaphylactic activity as measured by their capacity to induce basophil degranulation and, importantly, a significantly lower T cell reactivity in lymphoproliferative assays compared to the original rFel d 1. In addition, all mutants showed ability to induce blocking antibodies in immunized mice.The approach presented here provides a straightforward procedure to generate a novel type of allergy vaccines for safer and efficacious treatment of allergic patients.

  5. The establishment of reproducible, complex communities of oral bacteria in the chemostat using defined inocula.

    PubMed

    McKee, A S; McDermid, A S; Ellwood, D C; Marsh, P D

    1985-09-01

    Nine commonly isolated oral bacterial populations were inoculated into a glucose-limited and a glucose-excess (amino acid-limited) chemostat maintained at a constant pH 7.0 and a mean community generation time of 13.9 h. The bacterial populations were Streptococcus mutans ATCC 2-27351, Strep. sanguis NCTC 7865, Strep. mitior EF 186, Actinomyces viscosus WVU 627, Lactobacillus casei AC 413, Neisseria sp. A1078, Veillonella alkalescens ATCC 17745, Bacteroides intermedius T 588 and Fusobacterium nucleatum NCTC 10593. All nine populations became established in the glucose-limited chemostat although Strep. sanguis and Neisseria sp. were present only after a second and third inoculation, respectively. In contrast, even following repeated inoculations, Strep. mutans, B. intermedius and Neisseria sp. could not be maintained under glucose-excess conditions. A more extensive pattern of fermentation products and amino acid catabolism occurred under glucose-limited growth; this simultaneous utilization of mixed substrates also contributed to the higher yields (Y molar glucose) and greater species diversity of these communities. Microscopic and biochemical evidence suggested that cell-to-cell interactions and food chains were occurring among community members. To compare the reproductibility of this system, communities were established on three occasions under glucose-limitation and twice under glucose-excess conditions. The bacterial composition of the steady-state communities and their metabolic behaviour were similar when grown under identical conditions but varied in a consistent manner according to the nutrient responsible for limiting growth. Although a direct simulation of the oral cavity was not attempted, the results show that the chemostat could be used as an environmentally-related model to grow complex but reproducible communities of oral bacteria for long periods from a defined inoculum.

  6. Ribosomal trafficking is reduced in Schwann cells following induction of myelination.

    PubMed

    Love, James M; Shah, Sameer B

    2015-01-01

    Local synthesis of proteins within the Schwann cell periphery is extremely important for efficient process extension and myelination, when cells undergo dramatic changes in polarity and geometry. Still, it is unclear how ribosomal distributions are developed and maintained within Schwann cell projections to sustain local translation. In this multi-disciplinary study, we expressed a plasmid encoding a fluorescently labeled ribosomal subunit (L4-GFP) in cultured primary rat Schwann cells. This enabled the generation of high-resolution, quantitative data on ribosomal distributions and trafficking dynamics within Schwann cells during early stages of myelination, induced by ascorbic acid treatment. Ribosomes were distributed throughout Schwann cell projections, with ~2-3 bright clusters along each projection. Clusters emerged within 1 day of culture and were maintained throughout early stages of myelination. Three days after induction of myelination, net ribosomal movement remained anterograde (directed away from the Schwann cell body), but ribosomal velocity decreased to about half the levels of the untreated group. Statistical and modeling analysis provided additional insight into key factors underlying ribosomal trafficking. Multiple regression analysis indicated that net transport at early time points was dependent on anterograde velocity, but shifted to dependence on anterograde duration at later time points. A simple, data-driven rate kinetics model suggested that the observed decrease in net ribosomal movement was primarily dictated by an increased conversion of anterograde particles to stationary particles, rather than changes in other directional parameters. These results reveal the strength of a combined experimental and theoretical approach in examining protein localization and transport, and provide evidence of an early establishment of ribosomal populations within Schwann cell projections with a reduction in trafficking following initiation of myelination.

  7. Resistance to age-dependent thymic atrophy in long-lived mice that are deficient in pregnancy-associated plasma protein A

    PubMed Central

    Vallejo, Abbe N.; Michel, Joshua J.; Bale, Laurie K.; Lemster, Bonnie H.; Borghesi, Lisa; Conover, Cheryl A.

    2009-01-01

    Pregnancy-associated plasma protein A (PAPPA) is a metalloproteinase that controls the tissue availability of insulin-like growth factor (IGF). Homozygous deletion of PAPPA in mice leads to lifespan extension. Since immune function is an important determinant of individual fitness, we examined the natural immune ecology of PAPPA−/− mice and their wild-type littermates reared under specific pathogen-free condition with aging. Whereas wild-type mice exhibit classic age-dependent thymic atrophy, 18-month-old PAPPA−/− mice maintain discrete thymic cortex and medulla densely populated by CD4+CD8+ thymocytes that are capable of differentiating into single-positive CD4 and CD8 T cells. Old PAPPA−/− mice have high levels of T cell receptor excision circles, and have bone marrows enriched for subsets of thymus-seeding progenitors. PAPPA−/− mice have an overall larger pool of naive T cells, and also exhibit an age-dependent accumulation of CD44+CD43+ memory T cells similar to wild-type mice. However, CD43+ T cell subsets of old PAPPA−/− mice have significantly lower prevalence of 1B11 and S7, glycosylation isoforms known to inhibit T cell activation with normal aging. In bioassays of cell activation, splenic T cells of old PAPPA−/− mice have high levels of activation antigens and cytokine production, and also elicit Ig production by autologous B cells at levels equivalent to young wild-type mice. These data suggest an IGF-immune axis of healthy longevity. Controlling the availability of IGF in the thymus by targeted manipulation of PAPPA could be a way to maintain immune homeostasis during postnatal development and aging. PMID:19549878

  8. Low- and high-LET radiation drives clonal expansion of lung progenitor cells in vivo

    PubMed Central

    Farin, Alicia M.; Manzo, Nicholas D.; Kirsch, David G.; Stripp, Barry R.

    2015-01-01

    Abundant populations of epithelial progenitor cells maintain the epithelium along the proximal-to-distal axis of the airway. Exposure of lung tissue to ionizing radiation leads to tissue remodeling and potential cancer initiation or progression. However, little is known about the effects of ionizing radiation on airway epithelial progenitor cells. We hypothesized that ionizing radiation exposure will alter the behavior of airway epithelial progenitor cells in a radiation dose- and quality-dependent manner. To address this hypothesis, we cultured primary airway epithelial cells isolated from mice exposed to various doses of 320 kVp X-ray or 600 MeV/nucleon 56Fe ions in a 3D epithelial-fibroblast co-culture system. Colony-forming efficiency of the airway epithelial progenitor cells was assessed at culture day 14. In vivo clonogenic and proliferative potentials of airway epithelial progenitor cells were measured after exposure to ionizing radiation by lineage tracing and IdU incorporation. Exposure to both X-rays and 56Fe resulted in a dose dependent decrease in the ability of epithelial progenitors to form colonies in vitro. In vivo evidence for increased clonogenic expansion of epithelial progenitors was observed after exposure to both X-rays and 56Fe. Interestingly, we found no significant increase in the epithelial proliferative index, indicating that ionizing radiation does not promote increased turnover of the airway epithelium. Therefore, we propose a model in which radiation induces a dose-dependent decrease in the pool of available progenitor cells, leaving fewer progenitors able to maintain the airway long-term. This work provides novel insights into the effects of ionizing radiation exposure on airway epithelial progenitor cell behavior. PMID:25564721

  9. Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".

    PubMed

    Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P

    1990-01-01

    Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Multicellularity makes somatic differentiation evolutionarily stable

    PubMed Central

    Wahl, Mary E.; Murray, Andrew W.

    2016-01-01

    Many multicellular organisms produce two cell lineages: germ cells, whose descendants produce the next generation, and somatic cells, which support, protect, and disperse the germ cells. This germ-soma demarcation has evolved independently in dozens of multicellular taxa but is absent in unicellular species. A common explanation holds that in these organisms, inefficient intercellular nutrient exchange compels the fitness cost of producing nonreproductive somatic cells to outweigh any potential benefits. We propose instead that the absence of unicellular, soma-producing populations reflects their susceptibility to invasion by nondifferentiating mutants that ultimately eradicate the soma-producing lineage. We argue that multicellularity can prevent the victory of such mutants by giving germ cells preferential access to the benefits conferred by somatic cells. The absence of natural unicellular, soma-producing species previously prevented these hypotheses from being directly tested in vivo: to overcome this obstacle, we engineered strains of the budding yeast Saccharomyces cerevisiae that differ only in the presence or absence of multicellularity and somatic differentiation, permitting direct comparisons between organisms with different lifestyles. Our strains implement the essential features of irreversible conversion from germ line to soma, reproductive division of labor, and clonal multicellularity while maintaining sufficient generality to permit broad extension of our conclusions. Our somatic cells can provide fitness benefits that exceed the reproductive costs of their production, even in unicellular strains. We find that nondifferentiating mutants overtake unicellular populations but are outcompeted by multicellular, soma-producing strains, suggesting that multicellularity confers evolutionary stability to somatic differentiation. PMID:27402737

  11. Exonuclease 1 is a critical mediator of survival during DNA double strand break repair in nonquiescent hematopoietic stem and progenitor cells.

    PubMed

    Desai, Amar; Qing, Yulan; Gerson, Stanton L

    2014-02-01

    Hematopoietic stem cell (HSC) populations require DNA repair pathways to maintain their long-term survival and reconstitution capabilities, but mediators of these processes are still being elucidated. Exonuclease 1 (Exo1) participates in homologous recombination (HR) and Exo1 loss results in impaired 5' HR end resection. We use cultured Exo1(mut) fibroblasts and bone marrow to demonstrate that loss of Exo1 function results in defective HR in cycling cells. Conversely, in Exo1(mut) mice HR is not required for maintenance of quiescent HSCs at steady state, confirming the steady state HSC reliance on nonhomologous end joining (NHEJ). Exo1(mut) mice sustained serial repopulation, displayed no defect in competitive repopulation or niche occupancy, and exhibited no increased sensitivity to whole body ionizing radiation. However, when Exo1(mut) HSCs were pushed into cell cycle in vivo with 5-fluorouracil or poly IC, the hematopoietic population became hypersensitive to IR, resulting in HSC defects and animal death. We propose Exo1-mediated HR is dispensable for stem cell function in quiescent HSC, whereas it is essential to HSC response to DNA damage processing after cell cycle entry, and its loss is not compensated by intact NHEJ. In HSCs, the maintenance of stem cell function after DNA damage is dependent on the DNA repair capacity, segregated by active versus quiescent points in cell cycle. © AlphaMed Press.

  12. Persistent viral infections and immune aging.

    PubMed

    Brunner, Stefan; Herndler-Brandstetter, Dietmar; Weinberger, Birgit; Grubeck-Loebenstein, Beatrix

    2011-07-01

    Immunosenescence comprises a set of dynamic changes occurring to both, the innate as well as the adaptive immune system that accompany human aging and result in complex manifestations of still poorly defined deficiencies in the elderly population. One of the most prominent alterations during aging is the continuous involution of the thymus gland which is almost complete by the age of 50. Consequently, the output of naïve T cells is greatly diminished in elderly individuals which puts pressure on homeostatic forces to maintain a steady T cell pool for most of adulthood. In a great proportion of the human population, this fragile balance is challenged by persistent viral infections, especially Cytomegalovirus (CMV), that oblige certain T cell clones to monoclonally expand repeatedly over a lifetime which then occupy space within the T cell pool. Eventually, these inflated memory T cell clones become exhausted and their extensive accumulation accelerates the age-dependent decline of the diversity of the T cell pool. As a consequence, infectious diseases are more frequent and severe in elderly persons and immunological protection following vaccination is reduced. This review therefore aims to shed light on how various types of persistent viral infections, especially CMV, influence the aging of the immune system and highlight potential measures to prevent the age-related decline in immune function. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Single-cell RNA sequencing reveals metallothionein heterogeneity during hESC differentiation to definitive endoderm.

    PubMed

    Lu, Junjie; Baccei, Anna; Lummertz da Rocha, Edroaldo; Guillermier, Christelle; McManus, Sean; Finney, Lydia A; Zhang, Cheng; Steinhauser, Matthew L; Li, Hu; Lerou, Paul H

    2018-04-01

    Differentiation of human pluripotent stem cells towards definitive endoderm (DE) is the critical first step for generating cells comprising organs such as the gut, liver, pancreas and lung. This in-vitro differentiation process generates a heterogeneous population with a proportion of cells failing to differentiate properly and maintaining expression of pluripotency factors such as Oct4. RNA sequencing of single cells collected at four time points during a 4-day DE differentiation identified high expression of metallothionein genes in the residual Oct4-positive cells that failed to differentiate to DE. Using X-ray fluorescence microscopy and multi-isotope mass spectrometry, we discovered that high intracellular zinc level corresponds with persistent Oct4 expression and failure to differentiate. This study improves our understanding of the cellular heterogeneity during in-vitro directed differentiation and provides a valuable resource to improve DE differentiation efficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  14. ΔNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signaling

    PubMed Central

    Chakrabarti, Rumela; Wei, Yong; Hwang, Julie; Hang, Xiang; Blanco, Mario Andres; Choudhury, Abrar; Tiede, Benjamin; Romano, Rose-Anne; DeCoste, Christina; Mercatali, Laura; Ibrahim, Toni; Amadori, Dino; Kannan, Nagarajan; Eaves, Connie J; Sinha, Satrajit; Kang, Yibin

    2014-01-01

    Emerging evidence suggests that cancer is populated and maintained by tumor initiating cells (TICs) with stem-like properties similar to that of adult tissue stem cells. Despite recent advances, the molecular regulatory mechanisms that may be shared between normal and malignant stem cells remain poorly understood. Here we show that the ΔNp63 isoform of the Trp63 transcription factor promotes normal mammary stem cell (MaSC) activity by increasing the expression of the Wnt receptor Fzd7, thereby enhancing Wnt signaling. Importantly, Fzd7-dependent enhancement of Wnt signaling by ΔNp63 also governs tumor initiating activity of the basal subtype of breast cancer. These findings establish ΔNp63 as a key regulator of stem cells in both normal and malignant mammary tissues and provide direct evidence that breast cancer TICs and normal MaSCs share common regulatory mechanisms. PMID:25241036

  15. Gastrointestinal stem cells in health and disease: from flies to humans

    PubMed Central

    Li, Hongjie; Jasper, Heinrich

    2016-01-01

    ABSTRACT The gastrointestinal tract of complex metazoans is highly compartmentalized. It is lined by a series of specialized epithelia that are regenerated by specific populations of stem cells. To maintain tissue homeostasis, the proliferative activity of stem and/or progenitor cells has to be carefully controlled and coordinated with regionally distinct programs of differentiation. Metaplasias and dysplasias, precancerous lesions that commonly occur in the human gastrointestinal tract, are often associated with the aberrant proliferation and differentiation of stem and/or progenitor cells. The increasingly sophisticated characterization of stem cells in the gastrointestinal tract of mammals and of the fruit fly Drosophila has provided important new insights into these processes and into the mechanisms that drive epithelial dysfunction. In this Review, we discuss recent advances in our understanding of the establishment, maintenance and regulation of diverse intestinal stem cell lineages in the gastrointestinal tract of Drosophila and mice. We also discuss the field's current understanding of the pathogenesis of epithelial dysfunctions. PMID:27112333

  16. Fusogenic micropeptide Myomixer is essential for satellite cell fusion and muscle regeneration.

    PubMed

    Bi, Pengpeng; McAnally, John R; Shelton, John M; Sánchez-Ortiz, Efrain; Bassel-Duby, Rhonda; Olson, Eric N

    2018-04-10

    Regeneration of skeletal muscle in response to injury occurs through fusion of a population of stem cells, known as satellite cells, with injured myofibers. Myomixer, a muscle-specific membrane micropeptide, cooperates with the transmembrane protein Myomaker to regulate embryonic myoblast fusion and muscle formation. To investigate the role of Myomixer in muscle regeneration, we used CRISPR/Cas9-mediated genome editing to generate conditional knockout Myomixer alleles in mice. We show that genetic deletion of Myomixer in satellite cells using a tamoxifen-regulated Cre recombinase transgene under control of the Pax7 promoter abolishes satellite cell fusion and prevents muscle regeneration, resulting in severe muscle degeneration after injury. Satellite cells devoid of Myomixer maintain expression of Myomaker, demonstrating that Myomaker alone is insufficient to drive myoblast fusion. These findings, together with prior studies demonstrating the essentiality of Myomaker for muscle regeneration, highlight the obligatory partnership of Myomixer and Myomaker for myofiber formation throughout embryogenesis and adulthood.

  17. Intermittent IL-7 Signaling Essential for T cell Homeostasis | Center for Cancer Research

    Cancer.gov

    In order for the immune system to mount an appropriate response to foreign antigens throughout a person’s life, the body must maintain a sufficient population of circulating mature, naïve T cells, a process known as T cell homeostasis. Previous studies revealed that this process depends upon signaling from the cytokine interleukin-7 (IL-7) as well as from the T cell antigen receptor (TCR). Intriguingly, signals from each pathway affect the other and lead to their alternating activation: IL-7 binding to its receptor leads to increasing expression of the TCR co-receptor CD8; sufficient CD8 expression allows TCRs to signal when bound to self-ligands, blocking IL-7 signaling; suppressed IL-7 signals lead to down-regulation of CD8 and ligand disengagement, which allows T cells to again respond to IL-7. Alfred Singer, M.D., and his colleagues in CCR’s Experimental Immunology Branch set out to understand how this intricate pathway promotes T cell survival.

  18. Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9.

    PubMed

    Iwamura, T; Katsuki, T; Ide, K

    1987-01-01

    A new tumor cell line (SUIT-2) derived from a metastatic liver tumor of human pancreatic carcinoma has been established in tissue culture and in nude mice, and maintained for over five years. In tissue culture, the cells grew in a monolayered sheet with a population doubling time of about 38.2 hr, and floated or piled up to form small buds above the monolayered surface in relatively confluent cultures. Chromosome counts ranged from 34 to 176 with a modal number of 45. Subcutaneous injection of cultured cells into nude mice resulted in tumor formation, histopathologically closely resembling the original neoplasm which had been classified as moderately differentiated tubular adenocarcinoma. Electron microscopic observation of the neoplastic cells revealed a characteristic pancreatic ductal epithelium. SUIT-2 cell line produces and releases at least two tumor markers, carcinoembryonic antigen and carbohydrate antigen 19-9, propagates even in serum-free medium, and metastasizes to the regional lymph nodes in nude mice xenografts.

  19. FGFR signaling regulates resistance of head and neck cancer stem cells to cisplatin.

    PubMed

    McDermott, Sarah C; Rodriguez-Ramirez, Christie; McDermott, Sean P; Wicha, Max S; Nör, Jacques E

    2018-05-18

    Patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC) have poor prognosis with less than 1-year median survival. Platinum-based chemotherapy remains the first-line treatment for HNSCC. The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. A small population of CSC exists within HNSCC that are relatively resistant to chemotherapy and clinically predicted to contribute to tumor recurrence. These head and neck CSCs (HNCSC) are identified by high cell-surface expression of CD44 and high intracellular activity of aldehyde dehydrogenase (ALDH) and termed ALDH high CD44 high . Here, we performed microarray analysis in two HNSCC cell lines (UM-SCC-1, UM-SCC-22B) to investigate molecular pathways active in untreated and cisplatin-resistant ALDH high CD44 high cells. Gene set enrichment analysis and iPathway analysis identified signaling pathways with major implications to the pathobiology of cancer (e.g. TNFα, IFN, IL6/STAT, NF-κB) that are enriched in cisplatin-resistant ALDH high CD44 high cells, when compared to control cells. FGF2 was also enriched in cisplatin-resistant ALDH high CD44 high , which was confirmed by ELISA analysis. Inhibition of FGF signaling using BGJ398, a pan-FGF receptor (FGFR) small-molecule inhibitor, decreased ALDH high CD44 high alone in UM-SCC-1 and preferentially targeted cisplatin-resistant ALDH high CD44 high cells in UM-SCC-22B. These findings suggest that FGFR signaling might play an important role in the resistance of head and neck CSC to cisplatin. Collectively, this work suggests that some head and neck cancer patients might benefit from the combination of cisplatin and a FGFR inhibitor.

  20. Innate lymphoid cells and natural killer T cells in the gastrointestinal tract immune system.

    PubMed

    Montalvillo, Enrique; Garrote, José Antonio; Bernardo, David; Arranz, Eduardo

    2014-05-01

    The gastrointestinal tract is equipped with a highly specialized intrinsic immune system. However, the intestine is exposed to a high antigenic burden that requires a fast, nonspecific response -so-called innate immunity- to maintain homeostasis and protect the body from incoming pathogens. In the last decade multiple studies helped to unravel the particular developmental requirements and specific functions of the cells that play a role in innate immunity. In this review we shall focus on innate lymphoid cells, a newly discovered, heterogeneous set of cells that derive from an Id2-dependent lymphoid progenitor cell population. These cells have been categorized on the basis of the pattern of cytokines that they secrete, and the transcription factors that regulate their development and functions. Innate lymphoid cells play a role in the early response to pathogens, the anatomical contention of the commensal flora, and the maintenance of epithelial integrity.Amongst the various innate lymphoid cells we shall lay emphasis on a subpopulation with several peculiarities, namely that of natural killer T cells, a subset of T lymphocytes that express both T-cell and NK-cell receptors. The most numerous fraction of the NKT population are the so-called invariant NKT or iNKT cells. These iNKT cells have an invariant TCR and recognize the glycolipidic structures presented by the CD1d molecule, a homolog of class-I MHC molecules. Following activation they rapidly acquire cytotoxic activity and secrete both Th1 and Th2 cytokines, including IL-17. While their specific role is not yet established, iNKT cells take part in a great variety of intestinal immune responses ranging from oral tolerance to involvement in a number of gastrointestinal conditions.

  1. Entorhinal cortex receptive fields are modulated by spatial attention, even without movement

    PubMed Central

    König, Peter; König, Seth; Buffalo, Elizabeth A

    2018-01-01

    Grid cells in the entorhinal cortex allow for the precise decoding of position in space. Along with potentially playing an important role in navigation, grid cells have recently been hypothesized to make a general contribution to mental operations. A prerequisite for this hypothesis is that grid cell activity does not critically depend on physical movement. Here, we show that movement of covert attention, without any physical movement, also elicits spatial receptive fields with a triangular tiling of space. In monkeys trained to maintain central fixation while covertly attending to a stimulus moving in the periphery we identified a significant population (20/141, 14% neurons at a FDR <5%) of entorhinal cells with spatially structured receptive fields. This contrasts with recordings obtained in the hippocampus, where grid-like representations were not observed. Our results provide evidence that neurons in macaque entorhinal cortex do not rely on physical movement. PMID:29537964

  2. The EGFR signaling pathway controls gut progenitor differentiation during planarian regeneration and homeostasis.

    PubMed

    Barberán, Sara; Fraguas, Susanna; Cebrià, Francesc

    2016-06-15

    The planarian Schmidtea mediterranea maintains and regenerates all its adult tissues through the proliferation and differentiation of a single population of pluripotent adult stem cells (ASCs) called neoblasts. Despite recent advances, the mechanisms regulating ASC differentiation into mature cell types are poorly understood. Here, we show that silencing of the planarian EGF receptor egfr-1 by RNA interference (RNAi) impairs gut progenitor differentiation into mature cells, compromising gut regeneration and maintenance. We identify a new putative EGF ligand, nrg-1, the silencing of which phenocopies the defects observed in egfr-1(RNAi) animals. These findings indicate that egfr-1 and nrg-1 promote gut progenitor differentiation, and are thus essential for normal cell turnover and regeneration in the planarian gut. Our study demonstrates that the EGFR signaling pathway is an important regulator of ASC differentiation in planarians. © 2016. Published by The Company of Biologists Ltd.

  3. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis

    PubMed Central

    Seidel, Kerstin; Marangoni, Pauline; Tang, Cynthia; Houshmand, Bahar; Du, Wen; Maas, Richard L; Murray, Steven; Oldham, Michael C; Klein, Ophir D

    2017-01-01

    Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity. DOI: http://dx.doi.org/10.7554/eLife.24712.001 PMID:28475038

  4. In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM).

    PubMed

    Ishiwata, Isamu; Ishiwata, Chieko; Ishiwata, Emiko; Sato, Yoshiro; Kiguchi, Kazushige; Tachibana, Toshiaki; Ishikawa, Hiroshi

    2004-12-01

    We placed on culture the 13 cases of meningiomas, succeeded in making a primary culture of 10 cases and maintained 5 cases in vitro over considerable period of time (over three month), and one cell line derived from a malignant meningioma were established. In the early period of the primary culture, meningioma cells were spindle- or round-shaped cells. In the case of psammomatous type, the cultured cells were characterized as forming psammoma bodies. A cell line designated "HKBMM" was established from a human malignant meningioma occurred from frontal lobe. This line grew well without interruption for 5 years and was subcultivated over 120 times. The cells were spindle and fibrous in shape, and neoplastic and pleomorphic features, and multilayering without contact inhibition. The cells proliferated rapidly, and the population doubling time was about 29 hours. The chromosome number showed a wide distribution of aneuploidy. The mode was in the diploid range. The culture cells were easily transplanted into the subcutis of nude mice and produced the tumor resembling the original tumor.

  5. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons

    PubMed Central

    Yanez, Andy A.; Harrell, Telvin; Sriranganathan, Heather J.; Ives, Angela M.; Bertke, Andrea S.

    2017-01-01

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons. PMID:28178213

  6. Neurotrophic Factors NGF, GDNF and NTN Selectively Modulate HSV1 and HSV2 Lytic Infection and Reactivation in Primary Adult Sensory and Autonomic Neurons.

    PubMed

    Yanez, Andy A; Harrell, Telvin; Sriranganathan, Heather J; Ives, Angela M; Bertke, Andrea S

    2017-02-07

    Herpes simplex viruses (HSV1 and HSV2) establish latency in peripheral ganglia after ocular or genital infection, and can reactivate to produce different patterns and frequencies of recurrent disease. Previous studies showed that nerve growth factor (NGF) maintains HSV1 latency in embryonic sympathetic and sensory neurons. However, adult sensory neurons are no longer dependent on NGF for survival, some populations cease expression of NGF receptors postnatally, and the viruses preferentially establish latency in different populations of sensory neurons responsive to other neurotrophic factors (NTFs). Thus, NGF may not maintain latency in adult sensory neurons. To identify NTFs important for maintaining HSV1 and HSV2 latency in adult neurons, we investigated acute and latently-infected primary adult sensory trigeminal (TG) and sympathetic superior cervical ganglia (SCG) after NTF removal. NGF and glial cell line-derived neurotrophic factor (GDNF) deprivation induced HSV1 reactivation in adult sympathetic neurons. In adult sensory neurons, however, neurturin (NTN) and GDNF deprivation induced HSV1 and HSV2 reactivation, respectively, while NGF deprivation had no effects. Furthermore, HSV1 and HSV2 preferentially reactivated from neurons expressing GFRα2 and GFRα1, the high affinity receptors for NTN and GDNF, respectively. Thus, NTN and GDNF play a critical role in selective maintenance of HSV1 and HSV2 latency in primary adult sensory neurons.

  7. A multiplex culture system for the long-term growth of fission yeast cells.

    PubMed

    Callens, Céline; Coelho, Nelson C; Miller, Aaron W; Sananes, Maria Rosa Domingo; Dunham, Maitreya J; Denoual, Matthieu; Coudreuse, Damien

    2017-08-01

    Maintenance of long-term cultures of yeast cells is central to a broad range of investigations, from metabolic studies to laboratory evolution assays. However, repeated dilutions of batch cultures lead to variations in medium composition, with implications for cell physiology. In Saccharomyces cerevisiae, powerful miniaturized chemostat setups, or ministat arrays, have been shown to allow for constant dilution of multiple independent cultures. Here we set out to adapt these arrays for continuous culture of a morphologically and physiologically distinct yeast, the fission yeast Schizosaccharomyces pombe, with the goal of maintaining constant population density over time. First, we demonstrated that the original ministats are incompatible with growing fission yeast for more than a few generations, prompting us to modify different aspects of the system design. Next, we identified critical parameters for sustaining unbiased vegetative growth in these conditions. This requires deletion of the gsf2 flocculin-encoding gene, along with addition of galactose to the medium and lowering of the culture temperature. Importantly, we improved the flexibility of the ministats by developing a piezo-pump module for the independent regulation of the dilution rate of each culture. This made it possible to easily grow strains that have different generation times in the same assay. Our system therefore allows for maintaining multiple fission yeast cultures in exponential growth, adapting the dilution of each culture over time to keep constant population density for hundreds of generations. These multiplex culture systems open the door to a new range of long-term experiments using this model organism. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd. © 2017 The Authors. Yeast published by John Wiley & Sons, Ltd.

  8. PDGF-responsive progenitors persist in the subventricular zone across the lifespan

    PubMed Central

    Moore, Lisamarie; Bain, Jennifer M.; Loh, Ji Meng; Levison, Steven W.

    2013-01-01

    The SVZ (subventricular zone) contains neural stem cells and progenitors of various potentialities. Although initially parsed into A, B, and C cells, this germinal zone is comprised of a significantly more diverse population of cells. Here, we characterized a subset of postnatal PRPs (PDGF-AA-responsive precursors) that express functional PDGFα and β receptors from birth to adulthood. When grown in PDGF-AA, dissociated neonatal rat SVZ cells divided to produce non-adherent clusters of progeny. Unlike the self-renewing EGF/FGF-2-responsive precursors that produce neurospheres, these PRPs failed to self-renew after three passages; therefore, we refer to the colonies they produce as spheroids. Upon differentiation these spheroids could produce neurons, type 1 astrocytes and oligodendrocytes. When maintained in medium supplemented with BMP-4 they also produced type 2 astrocytes. Using lineage tracing methods, it became evident that there were multiple types of PRPs, including a subset that could produce neurons, oligodendrocytes, and type 1 and type 2 astrocytes; thus some of these PRPs represent a unique population of precursors that are quatropotential. Spheroids also could be generated from the newborn neocortex and they had the same potentiality as those from the SVZ. By contrast, the adult neocortex produced less than 20% of the numbers of spheroids than the adult SVZ and spheroids from the adult neocortex only differentiated into glial cells. Interestingly, SVZ spheroid producing capacity diminished only slightly from birth to adulthood. Altogether these data demonstrate that there are PRPs that persist in the SVZ that includes a unique population of quatropotential PRPs. PMID:24367913

  9. Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells

    PubMed Central

    Chernoff, Ellen A. G.; Sato, Kazuna; Salfity, Hai V. N.; Sarria, Deborah A.; Belecky-Adams, Teri

    2018-01-01

    The differentiated state of spinal cord ependymal cells in regeneration-competent amphibians varies between a constitutively active state in what is essentially a developing organism, the tadpole of the frog Xenopus laevis, and a quiescent, activatable state in a slowly growing adult salamander Ambystoma mexicanum, the Axolotl. Ependymal cells are epithelial in intact spinal cord of all vertebrates. After transection, body region ependymal epithelium in both Xenopus and the Axolotl disorganizes for regenerative outgrowth (gap replacement). Injury-reactive ependymal cells serve as a stem/progenitor cell population in regeneration and reconstruct the central canal. Expression patterns of mRNA and protein for the stem/progenitor cell-maintenance Notch signaling pathway mRNA-binding protein Musashi (msi) change with life stage and regeneration competence. Msi-1 is missing (immunohistochemistry), or at very low levels (polymerase chain reaction, PCR), in both intact regeneration-competent adult Axolotl cord and intact non-regeneration-competent Xenopus tadpole (Nieuwkoop and Faber stage 62+, NF 62+). The critical correlation for successful regeneration is msi-1 expression/upregulation after injury in the ependymal outgrowth and stump-region ependymal cells. msi-1 and msi-2 isoforms were cloned for the Axolotl as well as previously unknown isoforms of Xenopus msi-2. Intact Xenopus spinal cord ependymal cells show a loss of msi-1 expression between regeneration-competent (NF 50–53) and non-regenerating stages (NF 62+) and in post-metamorphosis froglets, while msi-2 displays a lower molecular weight isoform in non-regenerating cord. In the Axolotl, embryos and juveniles maintain Msi-1 expression in the intact cord. In the adult Axolotl, Msi-1 is absent, but upregulates after injury. Msi-2 levels are more variable among Axolotl life stages: rising between late tailbud embryos and juveniles and decreasing in adult cord. Cultures of regeneration-competent Xenopus tadpole cord and injury-responsive adult Axolotl cord ependymal cells showed an identical growth factor response. Epidermal growth factor (EGF) maintains mesenchymal outgrowth in vitro, the cells are proliferative and maintain msi-1 expression. Non-regeneration competent Xenopus ependymal cells, NF 62+, failed to attach or grow well in EGF+ medium. Ependymal Msi-1 expression in vivo and in vitro is a strong indicator of regeneration competence in the amphibian spinal cord. PMID:29535610

  10. Revealing New Mouse Epicardial Cell Markers through Transcriptomics

    PubMed Central

    Bochmann, Lars; Sarathchandra, Padmini; Mori, Federica; Lara-Pezzi, Enrique; Lazzaro, Domenico; Rosenthal, Nadia

    2010-01-01

    Background The epicardium has key functions during myocardial development, by contributing to the formation of coronary endothelial and smooth muscle cells, cardiac fibroblasts, and potentially cardiomyocytes. The epicardium plays a morphogenetic role by emitting signals to promote and maintain cardiomyocyte proliferation. In a regenerative context, the adult epicardium might comprise a progenitor cell population that can be induced to contribute to cardiac repair. Although some genes involved in epicardial function have been identified, a detailed molecular profile of epicardial gene expression has not been available. Methodology Using laser capture microscopy, we isolated the epicardial layer from the adult murine heart before or after cardiac infarction in wildtype mice and mice expressing a transgenic IGF-1 propeptide (mIGF-1) that enhances cardiac repair, and analyzed the transcription profile using DNA microarrays. Principal Findings Expression of epithelial genes such as basonuclin, dermokine, and glycoprotein M6A are highly enriched in the epicardial layer, which maintains expression of selected embryonic genes involved in epicardial development in mIGF-1 transgenic hearts. After myocardial infarct, a subset of differentially expressed genes are down-regulated in the epicardium representing an epicardium-specific signature that responds to injury. Conclusion This study presents the description of the murine epicardial transcriptome obtained from snap frozen tissues, providing essential information for further analysis of this important cardiac cell layer. PMID:20596535

  11. Synoviocyte Derived-Extracellular Matrix Enhances Human Articular Chondrocyte Proliferation and Maintains Re-Differentiation Capacity at Both Low and Atmospheric Oxygen Tensions

    PubMed Central

    Kean, Thomas J.; Dennis, James E.

    2015-01-01

    Background Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential. Methods Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically. Results Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions. Conclusions Synoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage. PMID:26075742

  12. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud

    PubMed Central

    Norrie, Jacqueline L.; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C.; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T.; Galli, Antonella; Ji, Hongkai

    2016-01-01

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4. Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. PMID:27827819

  13. PRMT5 is essential for the maintenance of chondrogenic progenitor cells in the limb bud.

    PubMed

    Norrie, Jacqueline L; Li, Qiang; Co, Swanie; Huang, Bau-Lin; Ding, Ding; Uy, Jann C; Ji, Zhicheng; Mackem, Susan; Bedford, Mark T; Galli, Antonella; Ji, Hongkai; Vokes, Steven A

    2016-12-15

    During embryonic development, undifferentiated progenitor cells balance the generation of additional progenitor cells with differentiation. Within the developing limb, cartilage cells differentiate from mesodermal progenitors in an ordered process that results in the specification of the correct number of appropriately sized skeletal elements. The internal pathways by which these cells maintain an undifferentiated state while preserving their capacity to differentiate is unknown. Here, we report that the arginine methyltransferase PRMT5 has a crucial role in maintaining progenitor cells. Mouse embryonic buds lacking PRMT5 have severely truncated bones with wispy digits lacking joints. This novel phenotype is caused by widespread cell death that includes mesodermal progenitor cells that have begun to precociously differentiate into cartilage cells. We propose that PRMT5 maintains progenitor cells through its regulation of Bmp4 Intriguingly, adult and embryonic stem cells also require PRMT5 for maintaining pluripotency, suggesting that similar mechanisms might regulate lineage-restricted progenitor cells during organogenesis. © 2016. Published by The Company of Biologists Ltd.

  14. Differential dynamics of spatial attention, position, and color coding within the parietofrontal network.

    PubMed

    Astrand, Elaine; Ibos, Guilhem; Duhamel, Jean-René; Ben Hamed, Suliann

    2015-02-18

    Despite an ever growing knowledge on how parietal and prefrontal neurons encode low-level spatial and color information or higher-level information, such as spatial attention, an understanding of how these cortical regions process neuronal information at the population level is still missing. A simple assumption would be that the function and temporal response profiles of these neuronal populations match that of its constituting individual cells. However, several recent studies suggest that this is not necessarily the case and that the single-cell approach overlooks dynamic changes in how information is distributed over the neuronal population. Here, we use a time-resolved population pattern analysis to explore how spatial position, spatial attention and color information are differentially encoded and maintained in the macaque monkey prefrontal (frontal eye fields) and parietal cortex (lateral intraparietal area). Overall, our work brings about three novel observations. First, we show that parietal and prefrontal populations operate in two distinct population regimens for the encoding of sensory and cognitive information: a stationary mode and a dynamic mode. Second, we show that the temporal dynamics of a heterogeneous neuronal population brings about complementary information to that of its functional subpopulations. Thus, both need to be investigated in parallel. Last, we show that identifying the neuronal configuration in which a neuronal population encodes given information can serve to reveal this same information in a different context. All together, this work challenges common views on neural coding in the parietofrontal network. Copyright © 2015 the authors 0270-6474/15/353174-16$15.00/0.

  15. Myeloblastic Cell Lines Mimic Some but Not All Aspects of Human Cytomegalovirus Experimental Latency Defined in Primary CD34+ Cell Populations

    PubMed Central

    Albright, Emily R.

    2013-01-01

    Human cytomegalovirus (HCMV) is a significant human pathogen that achieves lifelong persistence by establishing latent infections in undifferentiated cells of the myeloid lineage, such as CD34+ hematopoietic progenitor cells. When latency is established, viral lytic gene expression is silenced in part by a cellular intrinsic defense consisting of Daxx and histone deacetylases (HDACs) because pp71, the tegument transactivator that travels to the nucleus and inactivates this defense at the start of a lytic infection in differentiated cells, remains in the cytoplasm. Because the current in vitro and ex vivo latency models have physiological and practical limitations, we evaluated two CD34+ myeloblastic cell lines, KG-1 and Kasumi-3, for their ability to establish, maintain, and reactivate HCMV experimental latent infections. Tegument protein pp71 was cytoplasmic, and immediate-early (IE) genes were silenced as in primary CD34+ cells. However, in contrast to what occurs in primary CD34+ cells ex vivo or in NT2 and THP-1 in vitro model systems, viral IE gene expression from the laboratory-adapted AD169 genome was not induced in the presence of HDAC inhibitors in either KG-1 or Kasumi-3 cells. Furthermore, while the clinical strain FIX was able to reactivate from Kasumi-3 cells, AD169 was not, and neither strain reactivated from KG-1 cells. Thus, KG-1 and Kasumi-3 experimental latent infections differ in important parameters from those in primary CD34+ cell populations. Aspects of latency illuminated through the use of these myeloblastoid cell lines should not be considered independently but integrated with results obtained in primary cell systems when paradigms for HCMV latency are proposed. PMID:23824798

  16. Recovery of CD45(-)/Lin(-)/SSEA-4(+) very small embryonic-like stem cells by cord blood bank standard operating procedures.

    PubMed

    Chang, Yu-Jen; Tien, Kuei-Erh; Wen, Cheng-Hao; Hsieh, Tzu-Bou; Hwang, Shiaw-Min

    2014-04-01

    Very small embryonic-like (VSEL) stem cells are a rare cell population present in bone marrow, cord blood and other tissues that displays a distinct small cell size and the ability to give rise to cells of the three germ layers. VSEL stem cells were reported to be discarded in the red blood cell fraction by Ficoll-Paque density gradient centrifugation during the processing of bone marrow and cord blood specimens. However, most cord blood banks do not include density gradient centrifugation in their procedures while red blood cells are removed by Hespan sedimentation following the Cord Blood Transplantation Study cord blood bank standard operating procedures (COBLT SOP). To clarify the retention of VSEL stem cells, we investigated the recovery of VSEL stem cells following COBLT SOP guidelines. The recovery of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells of umbilical cord blood was examined by flow cytometry before and after COBLT SOP processing, and relative expression of pluripotent genes was analyzed by quantitative polymerase chain reaction. CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells were mostly recovered in the final products following COBLT SOP guidelines. The expression of pluripotent genes could be maintained at >80% in products after hetastarch (Hespan; B. Braun Medical Inc., Irvine, CA, USA) processing. The rare sub-population of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells survived after Hespan sedimentation. This finding suggests that umbilical cord blood units cryopreserved by COBLT SOP in cord blood banks should retain most VSEL stem cells present in the un-processed specimens. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. Characterization of Canine Adipose-Derived Mesenchymal Stromal/Stem Cells in Serum-Free Medium.

    PubMed

    Liu, Zhuoming; Screven, Rudell; Boxer, Lynne; Myers, Michael J; Devireddy, Lax R

    2018-06-20

    In this article, we report on the development of a defined serum-free medium capable of supporting the culture expansion of mesenchymal stromal/stem cells (MSCs) from canine adipose tissue (canine Ad-MSCs). The potential benefits of serum-free media can only be utilized if cells cultured in serum-free media maintain the same functional characteristics as cells cultured in serum-containing media. Therefore, we analyze the characteristics of canine Ad-MSCs cultured in this serum-free medium or in serum-containing medium through evaluation of growth kinetics, clonogenic capacity, senescence, and differentiation capacity. Both, serum-containing medium and our serum-free medium, supported efficient growth and colony formation of canine Ad-MSCs. In addition, canine Ad-MSCs cultured in both media demonstrated similar viability after freeze/thaw, similar cell surface marker expression, and were capable of trilineage differentiation. While canine Ad-MSCs cultured in both media were generally similar, under the conditions of our study, canine Ad-MSCs cultured in serum-free medium demonstrated a shorter lag phase and higher colony-forming capacity, accelerated population doubling, maintained multipotentiality at higher passage numbers, and underwent senescence at higher passage numbers compared to canine Ad-MSCs cultured in conventional serum-containing medium. These results suggest that canine Ad-MSCs cultured in serum-free medium retain the basic characteristics associated with canine Ad-MSCs cultured in serum-containing medium, although some differences in growth kinetics were observed.

  18. Promise and problems in relating cellular senescence in vitro to aging in vivo.

    PubMed

    Rubin, Harry

    2002-01-01

    According to the 'Hayflick limit', human fetal fibroblasts have a uniform, limited replicative lifespan of about 50 population doublings in cell culture. This concept was extrapolated to diverse cells in the body. It seemed to decrease with the age of the cell donor and, as a form of cell senescence, was thought to underlie the aging process. More discriminating analysis, however, showed that the fibroblasts decayed in a stochastic manner from the time of their explantation, at a rate that increased with the number of population doublings in culture. There was no consistent relation to the age of the donor. Despite the contradictory evidence, the original version of the Hayflick limit retained its general acceptance. Cell senescence was attributed to the absence of telomerase in the fibroblasts, which resulted in shortening of telomeres at each division until they fell below a critical length needed for further division. However, it is well established that stem cells in renewing tissues undergo many more than 50 divisions in a lifetime, without apparent senescence. Contrary to early findings of no telomerase in most tissues, their stem cells retain telomerase and presumably telomere length despite many divisions in vivo. Massive accumulation of lipofuscin granules occurs under stress in long term crowded cultures, but the granules dissipate on subculture or neoplastic transformation. The overall results indicate a critical disjunction between cell senescence in vitro and aging in vivo. By contrast, cell culture has been useful in showing a need for telomere capping in maintaining cell stability and viability. It may also provide information about the biochemical mechanism of lipofuscin production.

  19. Vancomycin pre-treatment impairs tissue healing in experimental colitis: Importance of innate lymphoid cells.

    PubMed

    Zhao, Di; Cai, Chenwen; Zheng, Qing; Jin, Shuang; Song, Dongjuan; Shen, Jun; Ran, Zhihua

    2017-01-29

    The interplay between luminal microbes and innate immunity during colonic epithelial repair has been well noted. At the same time, antibiotic has widely been used during flare-ups of ulcerative colitis. The possible effects of luminal microbiota disruption caused by antibiotics usage on epithelial repairing have been scarcely discussed. Innate lymphoid cells (ILCs) embedded in the lamina propria can be modulated by gut microbes, resulting in altered colonic IL-22/pSTAT3 levels, which is considered a prominent molecular axis in tissue repairing after epithelium damage. This study aimed to investigate whether antibiotics could interfere with ILCs-dependent tissue repair. Dextran sodium sulfate (DSS)-induced colitis was established in mice pre-treated with reagent of different antibiotic spectrum. Both morphological and molecular markers of tissue repair after DSS cessation were detected. ILCs population and function status were also recorded. Further attention was paid to the response of dendritic cells after antibiotics treatment, which were claimed to regulate colonic ILC3s in an IL-23 dependent way. Using of vancomycin resulted in delayed tissue repairing after experimental colitis. Both colonic IL-22/pSTAT3 axis and ILC3 population were found decreased in this situation. Vancomycin treatment diminished the upstream IL-23 and producer dendritic cell population. The reduced dendritic cell number may due to inadequate chemokines and colony-stimulating factors supply. Presence of vancomycin-sensitive microbiota is required for the maturation of ILC3-activating dendritic cells hence maintain the sufficient IL-22/pSTAT3 level in the colon during tissue healing. Manipulation of colonic microbiota may help achieve colonic mucosal healing post inflammation and injury. Copyright © 2016. Published by Elsevier Inc.

  20. CD8 down-regulation and functional impairment of SIV-specific cytotoxic T lymphocytes in lymphoid and mucosal tissues during SIV infection.

    PubMed

    Xu, Huanbin; Wang, Xiaolei; Lackner, Andrew A; Veazey, Ronald S

    2013-06-01

    Functional impairment of virus-specific T cells is a hallmark of HIV/SIV infection, but the underlying mechanisms of this dysfunction are not well understood. To address this, we simultaneously analyzed the expression and intensity of CD8 and inhibitory PD-1 on CTL in blood and lymphoid tissues in SIV-infected rhesus macaques. The intensity (mean channel fluorescence) of CD8 expression was transiently down-regulated in early SIV infection (10-14 dpi), despite an increase in CD8(+) T cell proliferation. In chronic infection, CD8 expression was maintained at low levels on CD8(+) T cells in all tissues. Interestingly, Gag-specific CTLs were clearly divided into CD8high- and CD8low-expressing populations in SIV-infected macaques, and CD8low Gag-specific cells increased with disease progression, especially in lymphoid tissues when compared with peripheral blood or in Gag-vaccinated controls. Moreover, the CD8low CTL population secreted lower levels of cytokines upon SIV antigen stimulation and exhibited lower proliferative capacity during infection compared with the CD8high CTL population. Meanwhile, intensity of PD-1 expression on Gag-specific CTL in chronic infection was significantly higher than in acute SIV infection, although the frequencies of PD-1+ Gag-specific cells were similar in acute and chronic stages. In summary, down-regulation of CD8 expression and higher expression of PD-1 on SIV-specific CTLs could coordinately attenuate SIV-specific CTL responses and their ability to recognize virus-infected target cells, especially in lymphoid tissues, resulting in failure to contain viremia, and continued persistence and replication of HIV in lymphoid tissue reservoirs.

  1. Highly efficient methods to obtain homogeneous dorsal neural progenitor cells from human and mouse embryonic stem cells and induced pluripotent stem cells.

    PubMed

    Zhang, Meixiang; Ngo, Justine; Pirozzi, Filomena; Sun, Ying-Pu; Wynshaw-Boris, Anthony

    2018-03-15

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been widely used to generate cellular models harboring specific disease-related genotypes. Of particular importance are ESC and iPSC applications capable of producing dorsal telencephalic neural progenitor cells (NPCs) that are representative of the cerebral cortex and overcome the challenges of maintaining a homogeneous population of cortical progenitors over several passages in vitro. While previous studies were able to derive NPCs from pluripotent cell types, the fraction of dorsal NPCs in this population is small and decreases over several passages. Here, we present three protocols that are highly efficient in differentiating mouse and human ESCs, as well as human iPSCs, into a homogeneous and stable population of dorsal NPCs. These protocols will be useful for modeling cerebral cortical neurological and neurodegenerative disorders in both mouse and human as well as for high-throughput drug screening for therapeutic development. We optimized three different strategies for generating dorsal telencephalic NPCs from mouse and human pluripotent cell types through single or double inhibition of bone morphogenetic protein (BMP) and/or SMAD pathways. Mouse and human pluripotent cells were aggregated to form embryoid bodies in suspension and were treated with dorsomorphin alone (BMP inhibition) or combined with SB431542 (double BMP/SMAD inhibition) during neural induction. Neural rosettes were then selected from plated embryoid bodies to purify the population of dorsal NPCs. We tested the expression of key dorsal NPC markers as well as nonectodermal markers to confirm the efficiency of our three methods in comparison to published and commercial protocols. Single and double inhibition of BMP and/or SMAD during neural induction led to the efficient differentiation of dorsal NPCs, based on the high percentage of PAX6-positive cells and the NPC gene expression profile. There were no statistically significant differences in the variation of PAX6 and SOX1-positive NPCs between the two human pluripotent cell-derived methods; therefore, both methods are suitable for producing stable dorsal NPCs. When further differentiated into mature neurons, NPCs gave rise to a population of almost exclusively forebrain cortical neurons, confirming the dorsal fate commitment of the progenitors. The methods described in this study show improvements over previously published studies and are highly efficient at differentiating human and mouse pluripotent cell types into dorsal PAX6-positive NPCs and eventually into forebrain cortical neurons.

  2. Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell.

    PubMed

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2016-09-01

    The combination of the anaerobic digestion (AD) process with a microbial electrolysis cell (MEC) coupled to an ammonia stripping unit as a post-treatment was assessed both in series operation, to improve the quality of the effluent, and in loop configuration recirculating the effluent, to increase the AD robustness. The MEC allowed maintaining the chemical oxygen demand removal of the whole system of 46±5% despite the AD destabilization after doubling the organic and nitrogen loads, while recovering 40±3% of ammonia. The AD-MEC system, in loop configuration, helped to recover the AD (55% increase in methane productivity) and attained a more stable and robust operation. The microbial population assessment revealed an enhancement of AD methanogenic archaea numbers and a shift in eubacterial population. The AD-MEC combined system is a promising strategy for stabilizing AD against organic and nitrogen overloads, while improving the quality of the effluent and recovering nutrients for their reutilization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Cell populations can use aneuploidy to survive telomerase insufficiency

    PubMed Central

    Millet, Caroline; Ausiannikava, Darya; Le Bihan, Thierry; Granneman, Sander; Makovets, Svetlana

    2015-01-01

    Telomerase maintains ends of eukaryotic chromosomes, telomeres. Telomerase loss results in replicative senescence and a switch to recombination-dependent telomere maintenance. Telomerase insufficiency in humans leads to telomere syndromes associated with premature ageing and cancer predisposition. Here we use yeast to show that the survival of telomerase insufficiency differs from the survival of telomerase loss and occurs through aneuploidy. In yeast grown at elevated temperatures, telomerase activity becomes limiting: haploid cell populations senesce and generate aneuploid survivors—near diploids monosomic for chromosome VIII. This aneuploidy results in increased levels of the telomerase components TLC1, Est1 and Est3, and is accompanied by decreased abundance of ribosomal proteins. We propose that aneuploidy suppresses telomerase insufficiency through redistribution of cellular resources away from ribosome synthesis towards production of telomerase components and other non-ribosomal proteins. The aneuploidy-induced re-balance of the proteome via modulation of ribosome biogenesis may be a general adaptive response to overcome functional insufficiencies. PMID:26489519

  4. Potassium: friend or foe?

    PubMed

    Rodan, Aylin R

    2017-07-01

    The kidney plays an essential role in maintaining homeostasis of ion concentrations in the blood. Because the concentration gradient of potassium across the cell membrane is a key determinant of the membrane potential of cells, even small deviations in serum potassium level from the normal setpoint can lead to severe muscle dysfunction, resulting in respiratory failure and cardiac arrest. Less severe hypo- and hyperkalemia are also associated with morbidity and mortality across various patient populations. In addition, deficiencies in potassium intake have been associated with hypertension and adverse cardiovascular and renal outcomes, likely due in part to the interrelated handling of sodium and potassium by the kidney. Here, data on the beneficial effects of potassium on blood pressure and cardiovascular and renal outcomes will be reviewed, along with the physiological basis for these effects. In some patient populations, however, potassium excess is deleterious. Risk factors for the development of hyperkalemia will be reviewed, as well as the risks and benefits of existing and emerging therapies for hyperkalemia.

  5. Erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) blocks differentiation and maintains the expression of pluripotency markers in human embryonic stem cells.

    PubMed

    Burton, Peter; Adams, David R; Abraham, Achamma; Allcock, Robert W; Jiang, Zhong; McCahill, Angela; Gilmour, Jane; McAbney, John; Kaupisch, Alexandra; Kane, Nicole M; Baillie, George S; Baker, Andrew H; Milligan, Graeme; Houslay, Miles D; Mountford, Joanne C

    2010-12-15

    hESCs (human embryonic stem cells) have enormous potential for use in pharmaceutical development and therapeutics; however, to realize this potential, there is a requirement for simple and reproducible cell culture methods that provide adequate numbers of cells of suitable quality. We have discovered a novel way of blocking the spontaneous differentiation of hESCs in the absence of exogenous cytokines by supplementing feeder-free conditions with EHNA [erythro-9-(2-hydroxy-3-nonyl)adenine], an established inhibitor of ADA (adenosine deaminase) and cyclic nucleotide PDE2 (phosphodiesterase 2). hESCs maintained in feeder-free conditions with EHNA for more than ten passages showed no reduction in hESC-associated markers including NANOG, POU5F1 (POU domain class 5 transcription factor 1, also known as Oct-4) and SSEA4 (stage-specific embryonic antigen 4) compared with cells maintained in feeder-free conditions containing bFGF (basic fibroblast growth factor). Spontaneous differentiation was reversibly suppressed by the addition of EHNA, but, upon removing EHNA, hESC populations underwent efficient spontaneous, multi-lineage and directed differentiation. EHNA also acts as a strong blocker of directed neuronal differentiation. Chemically distinct inhibitors of ADA and PDE2 lacked the capacity of EHNA to suppress hESC differentiation, suggesting that the effect is not driven by inhibition of either ADA or PDE2. Preliminary structure-activity relationship analysis found the differentiation-blocking properties of EHNA to reside in a pharmacophore comprising a close adenine mimetic with an extended hydrophobic substituent in the 8- or 9-position. We conclude that EHNA and simple 9-alkyladenines can block directed neuronal and spontaneous differentiation in the absence of exogenous cytokine addition, and may provide a useful replacement for bFGF in large-scale or cGMP-compliant processes.

  6. Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent.

    PubMed

    Bellomo, D; Lander, A; Harragan, I; Brown, N A

    1996-04-01

    During gastrulation, the node of the mammalian embryo appears to be an organising centre, homologous to Hensen's node in the chick and the dorsal lip of the amphibian blastopore. In addition, the node serves as a precursor population for the head process, notochord and foregut endoderm. We have studied node architecture and cell morphology by electron microscopy, and cell proliferation using bromodeoxyuridine incorporation and mitotic counts. The dorsal (ectodermal) and ventral (endodermal) components of the node are two distinct populations, separated by a basement membrane. The ventral node, contiguous with the head process, is characterised by a relatively low proliferation rate, with only approximately 10% of cells incorporating BrdU over 4 hr, compared to > 95% in surrounding mesodermal and ectodermal tissues. This is the case from the beginning of node formation, at the no-allantoic-bud stage, until the 7 somite stage, and is not compatible with the idea that the ventral node is a stem cell population. The dorsal node is highly proliferative, its rate of division being indistinguishable from the neurectoderm, with which it is contiguous. In the ventral node, two regions can be recognised: cells in the "pit" are columnar and all monociliated; around them lies a "crown" of cells arranged radially in a horseshoe shape and less often ciliated. Node derivatives share common features with the ventral node; the head process and the notochord are relatively quiescent; and some head process cells are also monociliated. Node and head process monocilia are immotile and appear to be associated with non-proliferation. We suggest that the ventral node contains all the properties of the organiser, while the dorsal node is indistinct from the surrounding epiblast. The cranial end of the foregut pouch, the thyroid diverticulum, and the promyocardium of early somite stage embryos are also areas of low cell division. All the described regions of relative quiescence are sites of expression of members of the TGF beta family, which may be involved in maintaining non-proliferation.

  7. Comparative costs of programmes to conserve chicken genetic variation based on maintaining living populations or storing cryopreserved material

    USDA-ARS?s Scientific Manuscript database

    Consolidations in the poultry breeding industry and academic poultry departments have resulted in the loss of avian populations. The cost of maintaining living populations is high, but ex-situ alternatives are now available. Semen can be cryopreserved and lines can be recovered by backcrossing, or...

  8. The effects of cryopreservation on the expression of canine regulatory T-cell markers.

    PubMed

    Tarpataki, Noemi; Wawrzyniak, Marcin; Akdis, Cezmi A; Rückert, Beate; Meli, Marina L; Fischer, Nina M; Favrot, Claude; Rostaher, Ana

    2017-08-01

    Regulatory T (Treg) cells have been described as key regulators in various immunological processes and are of growing interest in veterinary allergy. Cryopreservation of immune cells is performed routinely in human basic science research and in clinical studies. As such, it allows batch testing of collected samples at a single time point, resulting in a significant reduction in sample variability. Data which describe the effects of cryopreservation on Treg cell frequency and functionality in the canine species are important to inform future research. The purpose of this study was to establish a robust freeze/thaw procedure and flow cytometric staining protocol for canine Treg cells, and to compare the frequencies of different canine Treg cell phenotypes before and after cryopreservation. Nine privately owned dogs. Peripheral blood mononuclear cells were isolated and Treg cells stained and analysed by flow cytometry, before and after three months of cryopreservation. The recovery percentages and the corresponding correlations (fresh versus cryopreserved) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations were calculated. A high recovery rate of 97.2 (r = 0.94, P < 0.0001), 93.9 (r = 0.77, P < 0.01) and 101.7% (r = 0.99, P < 0.0001) for CD4 + CD25 + , CD4 + FOXP3 + and CD4 + CD25 + FOXP3 + cell populations, respectively, was observed. This study demonstrates an optimized protocol for freezing, thawing and quantifying canine Treg cells. These results indicate that cryopreservation does not substantially affect the expression of surface and intracellular markers of canine Treg cells; however, additional studies will be necessary to assess whether functionality of the cells is also maintained. © 2017 ESVD and ACVD.

  9. CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity.

    PubMed

    Jellusova, Julia; Wellmann, Ute; Amann, Kerstin; Winkler, Thomas H; Nitschke, Lars

    2010-04-01

    CD22 and Siglec-G are inhibitory coreceptors for BCR-mediated signaling. Although CD22-deficient mice show increased calcium signaling in their conventional B2 cells and a quite normal B cell maturation, Siglec-G-deficient mice have increased calcium mobilization just in B1 cells and show a large expansion of the B1 cell population. Neither CD22-deficient, nor Siglec-G-deficient mice on a pure C57BL/6 or BALB/c background, respectively, develop autoimmunity. Using Siglec-G x CD22 double-deficient mice, we addressed whether Siglec-G and CD22 have redundant functions. Siglec-G x CD22 double-deficient mice show elevated calcium responses in both B1 cells and B2 cells, increased serum IgM levels and an enlarged population of B1 cells. The enlargement of B1 cell numbers is even higher than in Siglecg(-/-) mice. This expansion seems to happen at the expense of B2 cells, which are reduced in absolute cell numbers, but show an activated phenotype. Furthermore, Siglec-G x CD22 double-deficient mice show a diminished immune response to both thymus-dependent and thymus-independent type II Ags. In contrast, B cells from Siglec-G x CD22 double-deficient mice exhibit a hyperproliferative response to stimulation with several TLR ligands. Aged Siglec-G x CD22 double-deficient mice spontaneously develop anti-DNA and antinuclear autoantibodies. These resulted in a moderate form of immune complex glomerulonephritis. These results show that Siglec-G and CD22 have partly compensatory functions and together are crucial in maintaining the B cell tolerance.

  10. Generation of a human airway epithelium derived basal cell line with multipotent differentiation capacity

    PubMed Central

    2013-01-01

    Background As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype. Methods To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed. Results We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process. Conclusion Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents. PMID:24298994

  11. Stem cells and corneal epithelial maintenance – insights from the mouse and other animal models

    PubMed Central

    Mort, Richard L.; Douvaras, Panagiotis; Morley, Steven D.; Dorà, Natalie; Hill, Robert E.; Collinson, J. Martin; West, John D.

    2012-01-01

    Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is coordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium. PMID:22918816

  12. Cancer stem cell-targeted therapeutics and delivery strategies.

    PubMed

    Ahmad, Gulzar; Amiji, Mansoor M

    2017-08-01

    Cancer initiating or stem cells (CSCs) are a small population of cells in the tumor mass, which have been reported to be present in different types of cancers. CSCs usually reside within the tumor and are responsible for reoccurrence of cancer. The imprecise, inaccessible nature and increased efflux of conventional therapeutic drugs make these cells resistant to drugs. We discuss the specific markers for identification of these cells, role of CSCs in chemotherapy resistance and use of different therapeutic means to target them, including elucidation of specific cell markers, exploitation of different signaling pathways and use of nanotechnology. Area covered: This review covers cancer stem cell signaling which are used by these cells to maintain their quiescence, stemness and resistant phenotype, distinct cell surface markers, contribution of these cells in drug resistance, inevitability to cure cancer and use of nanotechnology to overcome this hurdle. Expert opinion: Cancer stem cells are the main culprit of our failure to cure cancer. In order to cure cancer along with other cells types in cancer, cancer stem cells need to be targeted in the tumor bed. Nanotechnology solutions can facilitate clinical translation of the therapeutics along with other emerging technologies to cure cancer.

  13. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection.

    PubMed

    Frost, S D; McLean, A R

    1994-03-01

    To investigate the roles of mutation, competition and population dynamics in the emergence of drug resistant mutants during zidovudine therapy. A mathematical model of the population dynamics of the viral quasispecies during zidovudine therapy was investigated. The model was used to simulate changes in the numbers of uninfected and infected cells and the composition of the viral quasispecies in the years following initiation of therapy. Resulting scenarios in asymptomatic and AIDS patients were compared. The model was also used to investigate the efficacy of a treatment regimen involving alternating zidovudine and dideoxyinosine therapy. The behaviour of the model can be divided into three stages. Before therapy, mutation maintains a small pool of resistant mutants, outcompeted to very low levels by sensitive strains. When therapy begins there is a dramatic fall in the total viral load and resistant strains suddenly have the competitive advantage. Thus, it is resistant strains that infect the rising number of uninfected CD4+ cells. During this second stage the rapid effects of population dynamics swamp any effects of mutation between strains. When the populations of infected and uninfected cells approach their treatment equilibrium levels, mutation again becomes important in the slow generation of highly resistant strains. The short-term reduction in viral replication at the initiation of therapy generates a pool of uninfected cells which cause the eventual increase in viral burden. This increase is associated with (but not caused by) a rise in frequency of resistant strains which are at a competitive advantage in the presence of the drug. When therapy is ceased, reversion of resistance is slow as resistant strains are nearly as fit as sensitive strains in the absence of drug.

  14. Development of a cellularly degradable PEG hydrogel to promote articular cartilage extracellular matrix deposition.

    PubMed

    Sridhar, Balaji V; Brock, John L; Silver, Jason S; Leight, Jennifer L; Randolph, Mark A; Anseth, Kristi S

    2015-04-02

    Healing articular cartilage remains a significant clinical challenge because of its limited self-healing capacity. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with scaffolds that capture aspects of native tissue and promote cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold does not match the rate of production by cells leading to generally low extracellular matrix outputs. Here, a poly (ethylene glycol) (PEG) norbornene hydrogel is functionalized with thiolated transforming growth factor (TGF-β1) and cross-linked by an MMP-degradable peptide. Chondrocytes are co-encapsulated with a smaller population of mesenchymal stem cells, with the goal of stimulating matrix production and increasing bulk mechanical properties of the scaffold. The co-encapsulated cells cleave the MMP-degradable target sequence more readily than either cell population alone. Relative to non-degradable gels, cellularly degraded materials show significantly increased glycosaminoglycan and collagen deposition over just 14 d of culture, while maintaining high levels of viability and producing a more widely-distributed matrix. These results indicate the potential of an enzymatically degradable, peptide-functionalized PEG hydrogel to locally influence and promote cartilage matrix production over a short period. Scaffolds that permit cell-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Eosinophils are required to suppress Th2 responses in Peyer's patches during intestinal infection by nematodes.

    PubMed

    Strandmark, J; Steinfelder, S; Berek, C; Kühl, A A; Rausch, S; Hartmann, S

    2017-05-01

    Infections with enteric nematodes result in systemic type 2 helper T (Th2) responses, expansion of immunoglobulin (Ig)G1 antibodies, and eosinophilia. Eosinophils have a supportive role in mucosal Th2 induction during airway hyperreactivity. Whether eosinophils affect the local T-cell and antibody response in the gut-associated lymphoid tissue during enteric infections is unknown. We infected eosinophil-deficient ΔdblGATA-1 mice with the Th2-inducing small intestinal nematode Heligmosomoides polygyrus and found that parasite fecundity was decreased in the absence of eosinophils. A lack of eosinophils resulted in significantly augmented expression of GATA-3 and IL-4 by CD4 + T cells during acute infection, a finding strictly limited to Peyer's patches (PP). The increase in IL-4-producing cells in ΔdblGATA-1 mice was particularly evident within the CXCR5 + PD-1 + T-follicular helper cell population and was associated with a switch of germinal centre B cells to IgG1 production and elevated serum IgG1 levels. In contrast, infected wild-type mice had a modest IgG1 response in the PP, whereas successfully maintaining a population of IgA + germinal center B cells. Our results suggest a novel role for eosinophils during intestinal infection whereby they restrict IL-4 responses by follicular T helper cells and IgG1 class switching in the PP to ensure maintenance of local IgA production.

  16. Heterogeneous Dental Follicle Cells and the Regeneration of Complex Periodontal Tissues

    PubMed Central

    Guo, Weihua; Chen, Lei; Gong, Kun; Ding, Bofu

    2012-01-01

    Dental follicle cells (DFCs) are a heterogeneous population that exhibit a variety of phenotypes. However, it remains unclear whether DFCs can maintain stem cell characteristics, or mediate tissue-regeneration to form single or complex tissues in the periodontium, after long-term culturing. Therefore, DFCs were isolated from human impacted molars (HIM-DFCs), passaged >30 times, and then evaluated for their heterogeneity and multipotential differentiation. Morphology, proliferation, epitope profile, and mineralization characteristics of clones derived from single HIM-DFCs in vitro were also assayed. HIM-DFCs (passage #30) were found to be positive for the heterogeneous markers, Notch-1, stro-1, alkaline phosphomonoesterase (ALP), type I collagen (COL-I), type III collagen (COL-III), and osteocalcine. Moreover, passage #30 of the HDF1, 2, and 3 subclone classes identified in this study were found to express high levels of the mesenchymal stem cells markers, CD146 and Stro1. HDF3 subclones were also associated with the strongest ALP staining detected, and strongly expressed osteoblast and cementoblast markers, including COL-I, COL-III, bone sialoprotein (BSP), and Runx2. In contrast, HDF1 subclone analyzed strongly expressed COL-I and COL-III, yet weakly expressed BSP and Runx2. The HDF2 subclone was associated with the strongest proliferative capacity. To evaluate differentiation characteristics in vivo, these various cell populations were combined with ceramic bovine bone and implanted into subcutaneous pockets of nude mice. The 30th passage of subclone HDF1 and 3 were observed to contribute to fiber collagens and the mineralized matrix present, respectively, whereas HDF2 subclones were found to have a minimal role in these formations. The formation of a cementum-periodontal ligament (PDL) complex was observed 6 weeks after HIM-DFCs (passage #30) were implanted in vivo, thus suggesting that these cells maintain stem cell characteristics. Therefore, subclone HDF1-3 may be related to the differentiation of fibroblasts in the PDL, undifferentiated cells, and osteoblasts and cementoblasts, respectively. Overall, this study is the first to amplify HIM-DFCs and associated subclones with the goal of reconstructing complex or single periodontium. Moreover, our results demonstrate the potential for this treatment approach to address periodontal defects that result from periodontitis, or for the regeneration of teeth. PMID:21919800

  17. Heterogeneous dental follicle cells and the regeneration of complex periodontal tissues.

    PubMed

    Guo, Weihua; Chen, Lei; Gong, Kun; Ding, Bofu; Duan, Yinzhong; Jin, Yan

    2012-03-01

    Dental follicle cells (DFCs) are a heterogeneous population that exhibit a variety of phenotypes. However, it remains unclear whether DFCs can maintain stem cell characteristics, or mediate tissue-regeneration to form single or complex tissues in the periodontium, after long-term culturing. Therefore, DFCs were isolated from human impacted molars (HIM-DFCs), passaged >30 times, and then evaluated for their heterogeneity and multipotential differentiation. Morphology, proliferation, epitope profile, and mineralization characteristics of clones derived from single HIM-DFCs in vitro were also assayed. HIM-DFCs (passage #30) were found to be positive for the heterogeneous markers, Notch-1, stro-1, alkaline phosphomonoesterase (ALP), type I collagen (COL-I), type III collagen (COL-III), and osteocalcine. Moreover, passage #30 of the HDF1, 2, and 3 subclone classes identified in this study were found to express high levels of the mesenchymal stem cells markers, CD146 and Stro1. HDF3 subclones were also associated with the strongest ALP staining detected, and strongly expressed osteoblast and cementoblast markers, including COL-I, COL-III, bone sialoprotein (BSP), and Runx2. In contrast, HDF1 subclone analyzed strongly expressed COL-I and COL-III, yet weakly expressed BSP and Runx2. The HDF2 subclone was associated with the strongest proliferative capacity. To evaluate differentiation characteristics in vivo, these various cell populations were combined with ceramic bovine bone and implanted into subcutaneous pockets of nude mice. The 30th passage of subclone HDF1 and 3 were observed to contribute to fiber collagens and the mineralized matrix present, respectively, whereas HDF2 subclones were found to have a minimal role in these formations. The formation of a cementum-periodontal ligament (PDL) complex was observed 6 weeks after HIM-DFCs (passage #30) were implanted in vivo, thus suggesting that these cells maintain stem cell characteristics. Therefore, subclone HDF1-3 may be related to the differentiation of fibroblasts in the PDL, undifferentiated cells, and osteoblasts and cementoblasts, respectively. Overall, this study is the first to amplify HIM-DFCs and associated subclones with the goal of reconstructing complex or single periodontium. Moreover, our results demonstrate the potential for this treatment approach to address periodontal defects that result from periodontitis, or for the regeneration of teeth.

  18. Umbilical Cord Blood Transplantation Supported by Third Party Donor Cells: Rationale, Results and Applications

    PubMed Central

    van Besien, Koen; Liu, Hongtao; Jain, Nitin; Stock, Wendy; Artz, Andrew

    2012-01-01

    Low incidence of GVHD provides the major rational for pursuing UCB stem cell transplant (UCB SCT). Considerable evidence also suggests a lower rate of recurrence after UCB SCT than after transplantation from adult donors. Recent advances in understanding of the human fetal immune development provide a rational underpinning for these clinical outcomes. The fetal immune system is geared toward maintaining tolerance to foreign antigens, particularly to the maternal antigens to which it is exposed throughout gestation. To this purpose it is dominated by a unique population of peripheral T regulatory cells which actively maintain tolerance. This and other features of the UCB lymphoid system explains the low incidence of GVHD and superior outcomes of UCB SCT with NIMA (non-inherited maternal antigens)-matched grafts. At the same time, highly sensitized maternal microchimeric cells are frequently detected in UCB and likely contribute to superior GVL effects and low rates of disease recurrence in IPA (inherited paternal antigen) matched UCB recipients. But historically erratic and slow hematopoietic recovery after UCB SCT leads to increased early morbidity and mortality, excessive hospitalization and costs. This has held up the widespread utilization of UCB SCT in adults. Here we summarize recent data on UCB SCT with an emphasis on studies of co-infusion of adult CD34 selected hematopoietic stem cells with UCB SCT. This procedure, through transient engraftment of adult hematopoietic stem cells largely overcomes the problem of delayed engraftment. We also briefly discuss unresolved issues and possible future applications of this technology. PMID:23142329

  19. Applying laser speckle images to skin science: skin lesion differentiation by polarization

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.

    2011-09-01

    Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.

  20. Applying laser speckle images to skin science: skin lesion differentiation by polarization

    NASA Astrophysics Data System (ADS)

    Lee, Tim K.; Tchvialeva, Lioudmila; Dhadwal, Gurbir; Sotoodian, Bahman; Kalai, Sunil; Zeng, Haishan; Lui, Harvey; McLean, David I.

    2012-01-01

    Skin cancer is a worldwide health problem. It is the most common cancer in the countries with a large white population; furthermore, the incidence of malignant melanoma, the most dangerous form of skin cancer, has been increasing steadily over the last three decades. There is an urgent need to develop in-vivo, noninvasive diagnostic tools for the disease. This paper attempts to response to the challenge by introducing a simple and fast method based on polarization and laser speckle. The degree of maintaining polarization estimates the fraction of linearly maintaining polarization in the backscattered speckle field. Clinical experiments of 214 skin lesions including malignant melanomas, squamous cell carcinomas, basal cell carcinomas, nevi, and seborrheic keratoses demonstrated that such a parameter can potentially diagnose different skin lesion types. ROC analyses showed that malignant melanoma and seborrheic keratosis could be differentiated by both the blue and red lasers with the area under the curve (AUC) = 0.8 and 0.7, respectively. Also malignant melanoma and squamous cell carcinoma could be separated by the blue laser (AUC = 0.9), while nevus and seborrheic keratosis could be identified using the red laser (AUC = 0.7). These experiments demonstrated that polarization could be a potential in-vivo diagnostic indicator for skin diseases.

  1. Emerging Functions of Regulatory T Cells in Tissue Homeostasis

    PubMed Central

    Sharma, Amit; Rudra, Dipayan

    2018-01-01

    CD4+Foxp3+ regulatory T-cells (Tregs) are a unique subset of helper T-cells, which regulate immune response and establish peripheral tolerance. Tregs not only maintain the tone and tenor of an immune response by dominant tolerance but, in recent years, have also been identified as key players in resolving tissue inflammation and as mediators of tissue healing. Apart from being diverse in their origin (thymic and peripheral) and location (lymphoid and tissue resident), Tregs are also phenotypically heterogeneous as per the orientation of ongoing immune response. In this review, we discuss the recent advances in the field of Treg biology in general, and non-lymphoid and tissue-resident Tregs in particular. We elaborate upon well-known visceral adipose tissue, colon, skin, and tumor-infiltrating Tregs and newly identified tissue Treg populations as in lungs, skeletal muscle, placenta, and other tissues. Our attempt is to differentiate Tregs based on distinctive properties of their location, origin, ligand specificity, chemotaxis, and specific suppressive mechanisms. Despite ever expanding roles in maintaining systemic homeostasis, Tregs are employed by large varieties of tumors to dampen antitumor immunity. Thus, a comprehensive understanding of Treg biology in the context of inflammation can be instrumental in effectively managing tissue transplantation, autoimmunity, and antitumor immune responses. PMID:29887862

  2. Fenton-treated functionalized diamond nanoparticles as gene delivery system.

    PubMed

    Martín, Roberto; Alvaro, Mercedes; Herance, José Raúl; García, Hermenegildo

    2010-01-26

    When raw diamond nanoparticles (Dnp, 7 nm average particle size) obtained from detonation are submitted to harsh Fenton-treatment, the resulting material becomes free of amorphous soot matter and the process maintains the crystallinity, reduces the particle size (4 nm average particle size), increases the surface OH population, and increases water solubility. All these changes are beneficial for subsequent Dnp covalent functionalization and for the ability of Dnp to cross cell membranes. Fenton-treated Dnps have been functionalized with thionine and the resulting sample has been observed in HeLa cell nuclei. A triethylammonium-functionalized Dnp pairs electrostatically with a plasmid having the green fluorescent protein gene and acts as gene delivery system permitting the plasmid to cross HeLa cell membrane, something that does not occur for the plasmid alone without assistance of polycationic Dnp.

  3. Effects of red, far-red and blue light in maintaining growth in latitudinal populations of Norway spruce (Picea abies).

    PubMed

    Mølmann, Jørgen Alexander; Junttila, Olavi; Johnsen, Oystein; Olsen, Jorunn Elisabeth

    2006-02-01

    Seedlings of trees with a free growth pattern cease growth when night-lengths become shorter than a critical value, and this critical night-length (CNL) decreases with increasing latitude of origin. In northern populations, the light quality also appears to play an important role and a clinal variation in requirement for far-red (FR) light has been documented. In this study we dissected the light quality requirements for maintaining growth in different latitudinal populations of Norway spruce (Picea abies (L.) H. Karst.) using light emitting diodes for red (R), FR and blue (B) light, as 12 h day extension to provide 24 h photoperiod. At equal spectral photon flux, FR light was more effective than R light in maintaining growth, and the requirement of both R and FR increased with northern latitude of origin. One-to-one mixtures of R and FR light were more effective in maintaining growth than either FR or R light alone, indicating a possible interaction between R and FR light maintaining growth. Using the blue light as day extension could not prevent growth cessation in any of the populations, but delayed the bud set slightly in all populations. Our results suggest that phytochrome(s) are the primary photoreceptors in high irradiance responses maintaining growth in Norway spruce seedlings.

  4. Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes.

    PubMed

    Troell, Karin; Hallström, Björn; Divne, Anna-Maria; Alsmark, Cecilia; Arrighi, Romanico; Huss, Mikael; Beser, Jessica; Bertilsson, Stefan

    2016-06-23

    Infectious disease involving multiple genetically distinct populations of pathogens is frequently concurrent, but difficult to detect or describe with current routine methodology. Cryptosporidium sp. is a widespread gastrointestinal protozoan of global significance in both animals and humans. It cannot be easily maintained in culture and infections of multiple strains have been reported. To explore the potential use of single cell genomics methodology for revealing genome-level variation in clinical samples from Cryptosporidium-infected hosts, we sorted individual oocysts for subsequent genome amplification and full-genome sequencing. Cells were identified with fluorescent antibodies with an 80 % success rate for the entire single cell genomics workflow, demonstrating that the methodology can be applied directly to purified fecal samples. Ten amplified genomes from sorted single cells were selected for genome sequencing and compared both to the original population and a reference genome in order to evaluate the accuracy and performance of the method. Single cell genome coverage was on average 81 % even with a moderate sequencing effort and by combining the 10 single cell genomes, the full genome was accounted for. By a comparison to the original sample, biological variation could be distinguished and separated from noise introduced in the amplification. As a proof of principle, we have demonstrated the power of applying single cell genomics to dissect infectious disease caused by closely related parasite species or subtypes. The workflow can easily be expanded and adapted to target other protozoans, and potential applications include mapping genome-encoded traits, virulence, pathogenicity, host specificity and resistance at the level of cells as truly meaningful biological units.

  5. Autonomous magnetic labelling of functional mesenchymal stem cells for improved traceability and spatial control in cell therapy applications.

    PubMed

    Harrison, Richard; Markides, Hareklea; Morris, Robert H; Richards, Paula; El Haj, Alicia J; Sottile, Virginie

    2017-08-01

    Mesenchymal stem cells (MSCs) represent a valuable resource for regenerative medicine treatments for orthopaedic repair and beyond. Following developments in isolation, expansion and differentiation protocols, efforts to promote clinical translation of emerging cellular strategies now seek to improve cell delivery and targeting. This study shows efficient live MSC labelling using silica-coated magnetic particles (MPs), which enables 3D tracking and guidance of stem cells. A procedure developed for the efficient and unassisted particle uptake was shown to support MSC viability and integrity, while surface marker expression and MSC differentiation capability were also maintained. In vitro, MSCs showed a progressive decrease in labelling over increasing culture time, which appeared to be linked to the dilution effect of cell division, rather than to particle release, and did not lead to detectable secondary particle uptake. Labelled MSC populations demonstrated magnetic responsiveness in vitro through directed migration in culture and, when seeded onto a scaffold, supporting MP-based approaches to cell targeting. The potential of these silica-coated MPs for MRI cell tracking of MSC populations was validated in 2D and in a cartilage repair model following cell delivery. These results highlight silica-coated magnetic particles as a simple, safe and effective resource to enhance MSC targeting for therapeutic applications and improve patient outcomes. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.

  6. Convection and the seeding of the North Atlantic bloom

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric A.

    Observations of vertical velocities in deep wintertime mixed layers using neutrally buoyant floats show that the convectively driven vertical velocities, roughly 1000 m per day, greatly exceed the sinking velocities of phytoplankton, 10 m or less per day. These velocities mix plankton effectively and uniformly across the convective layer and are therefore capable of returning those that have sunk to depth back into the euphotic zone. This mechanism cycles cells through the surface layer during the winter and provides a seed population for the spring bloom. A simple model of this mechanism applied to immortal phytoplankton in the subpolar Labrador Sea predicts that the seed population in early spring will be a few percent of the fall concentration if the plankton sink more slowly than the mean rate at which the surface well-mixed layer grows over the winter. Plankton that sink faster than this will mostly sink into the abyss with only a minute fraction remaining by spring. The shallower mixed layers of mid-latitudes are predicted to be much less effective at maintaining a seed population over the winter, limiting the ability of rapidly sinking cells to survive the winter.

  7. [The characters and specific features of new human embryonic stem cells lines].

    PubMed

    Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G

    2009-01-01

    Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.

  8. Perlecan expression influences the keratin 15‐positive cell population fate in the epidermis of aging skin

    PubMed Central

    Dos Santos, Morgan; Michopoulou, Anna; André‐Frei, Valérie; Boulesteix, Sophie; Guicher, Christine; Dayan, Guila; Whitelock, John; Damour, Odile; Rousselle, Patricia

    2016-01-01

    The epidermis is continuously renewed by stem cell proliferation and differentiation. Basal keratinocytes append the dermal‐epidermal junction, a cell surface‐associated, extracellular matrix that provides structural support and influences their behaviour. It consists of laminins, type IV collagen, nidogens, and perlecan, which are necessary for tissue organization and structural integrity. Perlecan is a heparan sulfate proteoglycan known to be involved in keratinocyte survival and differentiation. Aging affects the dermal epidermal junction resulting in decreased contact with keratinocytes, thus impacting epidermal renewal and homeostasis. We found that perlecan expression decreased during chronological skin aging. Our in vitro studies revealed reduced perlecan transcript levels in aged keratinocytes. The production of in vitro skin models revealed that aged keratinocytes formed a thin and poorly organized epidermis. Supplementing these models with purified perlecan reversed the phenomenon allowing restoration of a well‐differentiated multi‐layered epithelium. Perlecan down‐regulation in cultured keratinocytes caused depletion of the cell population that expressed keratin 15. This phenomenon depended on the perlecan heparan sulphate moieties, which suggested the involvement of a growth factor. Finally, we found defects in keratin 15 expression in the epidermis of aging skin. This study highlighted a new role for perlecan in maintaining the self‐renewal capacity of basal keratinocytes. PMID:26996820

  9. Proximal Versus Distal Splenic Artery Embolisation for Blunt Splenic Trauma: What is the Impact on Splenic Immune Function?

    PubMed

    Foley, P T; Kavnoudias, H; Cameron, P U; Czarnecki, C; Paul, E; Lyon, S M

    2015-10-01

    To compare the impact of proximal or distal splenic artery embolisation versus that of splenectomy on splenic immune function as measured by IgM memory B cell levels. Patients with splenic trauma who were treated by splenic artery embolisation (SAE) were enrolled. After 6 months splenic volume was assessed by CT, and IgM memory B cells in peripheral blood were measured and compared to a local normal reference population and to a post-splenectomy population. Of the 71 patients who underwent embolisation, 38 underwent proximal embolisation, 11 underwent distal embolisation, 22 patients were excluded, 1 had both proximal and distal embolisation, 5 did not survive and 16 did not return for evaluation. There was a significant difference between splenectomy and proximal or distal embolisation and a trend towards greater preservation of IgM memory B cell number in those with distal embolisation-a difference that could not be attributed to differences in age, grade of injury or residual splenic volume. IgM memory B cell levels are significantly higher in those treated with SAE compared to splenectomy. Our data provide evidence that splenic embolisation should reduce immunological complications of spleen trauma and suggest that distal embolisation may maintain better function.

  10. Proximal Versus Distal Splenic Artery Embolisation for Blunt Splenic Trauma: What is the Impact on Splenic Immune Function?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, P. T., E-mail: pfoley@doctors.org.uk; Kavnoudias, H., E-mail: h.kavnoudias@alfred.org.au; Cameron, P. U., E-mail: paul.cameron@unimelb.edu.au

    PurposeTo compare the impact of proximal or distal splenic artery embolisation versus that of splenectomy on splenic immune function as measured by IgM memory B cell levels.Materials and MethodsPatients with splenic trauma who were treated by splenic artery embolisation (SAE) were enrolled. After 6 months splenic volume was assessed by CT, and IgM memory B cells in peripheral blood were measured and compared to a local normal reference population and to a post-splenectomy population.ResultsOf the 71 patients who underwent embolisation, 38 underwent proximal embolisation, 11 underwent distal embolisation, 22 patients were excluded, 1 had both proximal and distal embolisation, 5 didmore » not survive and 16 did not return for evaluation. There was a significant difference between splenectomy and proximal or distal embolisation and a trend towards greater preservation of IgM memory B cell number in those with distal embolisation—a difference that could not be attributed to differences in age, grade of injury or residual splenic volume.ConclusionIgM memory B cell levels are significantly higher in those treated with SAE compared to splenectomy. Our data provide evidence that splenic embolisation should reduce immunological complications of spleen trauma and suggest that distal embolisation may maintain better function.« less

  11. γδ T cells in homeostasis and host defence of epithelial barrier tissues

    PubMed Central

    Nielsen, Morten M.; Witherden, Deborah A.; Havran, Wendy L.

    2018-01-01

    Epithelial surfaces line the body and provide a critical interface between the body and the external environment which is essential to maintaining the symbiotic relationship between the host and the microbiome. Tissue-resident epithelial γδ T cells represent a major T cell population in epithelia and are ideally positioned to perform barrier surveillance and aid in tissue homeostasis and repair. In this review we focus on the intraepithelial γδ compartment in the two largest epithelial tissues in the body, namely the epidermis and intestine, and provide a comprehensive overview of the crucial contributions of intraepithelial γδ cells at these sites to tissue integrity and repair, host homeostasis and host protection in the context of the symbiotic relationship with the microbiome and during pathogen clearance. Finally, we address epithelia-specific butyrophilin-like molecules and touch upon their emerging role in selectively shaping and regulating epidermal and intestinal γδ T cell repertoires. PMID:28920588

  12. AMPK/FIS1-Mediated Mitophagy Is Required for Self-Renewal of Human AML Stem Cells.

    PubMed

    Pei, Shanshan; Minhajuddin, Mohammad; Adane, Biniam; Khan, Nabilah; Stevens, Brett M; Mack, Stephen C; Lai, Sisi; Rich, Jeremy N; Inguva, Anagha; Shannon, Kevin M; Kim, Hyunmin; Tan, Aik-Choon; Myers, Jason R; Ashton, John M; Neff, Tobias; Pollyea, Daniel A; Smith, Clayton A; Jordan, Craig T

    2018-06-06

    Leukemia stem cells (LSCs) are thought to drive the genesis of acute myeloid leukemia (AML) as well as relapse following chemotherapy. Because of their unique biology, developing effective methods to eradicate LSCs has been a significant challenge. In the present study, we demonstrate that intrinsic overexpression of the mitochondrial dynamics regulator FIS1 mediates mitophagy activity that is essential for primitive AML cells. Depletion of FIS1 attenuates mitophagy and leads to inactivation of GSK3, myeloid differentiation, cell cycle arrest, and a profound loss of LSC self-renewal potential. Further, we report that the central metabolic stress regulator AMPK is also intrinsically activated in LSC populations and is upstream of FIS1. Inhibition of AMPK signaling recapitulates the biological effect of FIS1 loss. These data suggest a model in which LSCs co-opt AMPK/FIS1-mediated mitophagy as a means to maintain stem cell properties that may be otherwise compromised by the stresses induced by oncogenic transformation. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Comparison of human optimized bacterial luciferase, firefly luciferase, and green fluorescent protein for continuous imaging of cell culture and animal models

    NASA Astrophysics Data System (ADS)

    Close, Dan M.; Hahn, Ruth E.; Patterson, Stacey S.; Baek, Seung J.; Ripp, Steven A.; Sayler, Gary S.

    2011-04-01

    Bioluminescent and fluorescent reporter systems have enabled the rapid and continued growth of the optical imaging field over the last two decades. Of particular interest has been noninvasive signal detection from mammalian tissues under both cell culture and whole animal settings. Here we report on the advantages and limitations of imaging using a recently introduced bacterial luciferase (lux) reporter system engineered for increased bioluminescent expression in the mammalian cellular environment. Comparison with the bioluminescent firefly luciferase (Luc) system and green fluorescent protein system under cell culture conditions demonstrated a reduced average radiance, but maintained a more constant level of bioluminescent output without the need for substrate addition or exogenous excitation to elicit the production of signal. Comparison with the Luc system following subcutaneous and intraperitoneal injection into nude mice hosts demonstrated the ability to obtain similar detection patterns with in vitro experiments at cell population sizes above 2.5 × 104 cells but at the cost of increasing overall image integration time.

  14. Rolling Circle Amplification of Complete Nematode Mitochondrial Genomes

    PubMed Central

    Tang, Sha; Hyman, Bradley C.

    2005-01-01

    To enable investigation of nematode mitochondrial DNA evolution, methodology has been developed to amplify intact nematode mitochondrial genomes in preparative yields using a rolling circle replication strategy. Successful reactions were generated from whole cell template DNA prepared by alkaline lysis of the rhabditid nematode Caenorhabditis elegans and a mermithid nematode, Thaumamermis cosgrovei. These taxa, representing the two major nematode classes Chromodorea and Enoplea, maintain mitochondrial genomes of 13.8 kb and 20.0 kb, respectively. Efficient amplifications were conducted on template DNA isolated from individual or pooled nematodes that were alive or stored at -80°C. Unexpectedly, these experiments revealed that multiple T. cosgrovei mitochondrial DNA haplotypes are maintained in our local population. Rolling circle amplification products can be used as templates for standard PCR reactions with specific primers that target mitochondrial genes or for direct DNA sequencing. PMID:19262866

  15. [Collective immunity against poliomyelitis among the population of several regions of Russia].

    PubMed

    Seybil, V B; Malyshkina, L P; Ageeva, O T; Kosolapova, E I; Mnozhina, E G; Groshenkova, E V; Krivtsov, N V; Gurianova, N I; Daltsaeva, M K; Fomina, N S

    2015-01-01

    The goal of this work was to estimate the collective immunity against poliomyelitis among the population of 8 regions and republics of Russia. The rates of the collective immunity against poliomyelitis allow the polio vaccination quality to be estimated and the population protection rate to be simultaneously demonstrated. A total of 8 regions (2138 people) were tested. The antibodies to the polioviruses of 1-3 types were determined against the vaccine Sabin strains in the neutralization test in the RD cell line. As a result, we found that vaccination against poliomyelitis in all observed regions was maintained at the required high level. Thus, the number of people with antibodies to the polio in most regions and age groups approximates or reaches 100%, while GMT is also high. This work demonstrated the necessity of the continuation of vaccination against poliomyelitis and control over collective immunity.

  16. IL-21 Therapy Controls Immune Activation and Maintains Antiviral CD8+ T Cell Responses in Acute Simian Immunodeficiency Virus Infection.

    PubMed

    Méndez-Lagares, Gema; Lu, Ding; Merriam, David; Baker, Christopher A; Villinger, François; Van Rompay, Koen K A; McCune, Joseph M; Hartigan-O'Connor, Dennis J

    2017-11-01

    Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replicate during acute infection in lymphocytes of the gastrointestinal tract, before disseminating systemically. Localized replication and associated loss of gut-resident CD4 + T cells occur regardless of the portal of entry of the virus (e.g., intravenous vs. rectal). Thus, HIV and SIV are tropic for gut tissue, and their pathogenesis requires the special environment of the intestine. T helper 17 (Th17) cells are important contributors to microbial defense in the gut that are vulnerable to HIV infection and whose loss is associated with translocation of microbial products to the systemic circulation, leading to chronic immune activation and disease progression. Interleukin (IL)-21 promotes differentiation and survival of Th17 cells and stimulates CD8 + T cell function. By promoting Th17 cell survival, IL-21 could limit bacterial translocation and immune activation in the setting of acute or rebounding HIV/SIV disease. In this study, we tested the effect of recombinant IL-21-IgFc treatment, given at the time of infection, on SIV mac251 infection. We found that rIL-21-IgFc decreases immune activation and maintains effective antiviral responses by CD8 + T cells in blood, but this maintenance is not associated with lower viral loads. rIL-21-IgFc treatment also did not generally support Th17 cell populations, but Th17 cells remained strongly and independently associated with control of plasma viremia. For example, the single animal exhibiting greatest control over viremia in our study also manifested the highest levels of IL-21 in plasma, Th17 cell maintenance in blood, and Th17 cells in intestinal tissue. These findings provide rationale for further exploration of IL-21 treatment as a support for host CD8 + T cell responses in HIV cure strategies.

  17. Attention Effects on Neural Population Representations for Shape and Location Are Stronger in the Ventral than Dorsal Stream

    PubMed Central

    2018-01-01

    Abstract We examined how attention causes neural population representations of shape and location to change in ventral stream (AIT) and dorsal stream (LIP). Monkeys performed two identical delayed-match-to-sample (DMTS) tasks, attending either to shape or location. In AIT, shapes were more discriminable when directing attention to shape rather than location, measured by an increase in mean distance between population response vectors. In LIP, attending to location rather than shape did not increase the discriminability of different stimulus locations. Even when factoring out the change in mean vector response distance, multidimensional scaling (MDS) still showed a significant task difference in AIT, but not LIP, indicating that beyond increasing discriminability, attention also causes a nonlinear warping of representation space in AIT. Despite single-cell attentional modulations in both areas, our data show that attentional modulations of population representations are weaker in LIP, likely due to a need to maintain veridical representations for visuomotor control. PMID:29876521

  18. Spiral Ganglion Stem Cells Can Be Propagated and Differentiated Into Neurons and Glia

    PubMed Central

    Zecha, Veronika; Wagenblast, Jens; Arnhold, Stefan; Edge, Albert S. B.; Stöver, Timo

    2014-01-01

    Abstract The spiral ganglion is an essential functional component of the peripheral auditory system. Most types of hearing loss are associated with spiral ganglion cell degeneration which is irreversible due to the inner ear's lack of regenerative capacity. Recent studies revealed the existence of stem cells in the postnatal spiral ganglion, which gives rise to the hope that these cells might be useful for regenerative inner ear therapies. Here, we provide an in-depth analysis of sphere-forming stem cells isolated from the spiral ganglion of postnatal mice. We show that spiral ganglion spheres have characteristics similar to neurospheres isolated from the brain. Importantly, spiral ganglion sphere cells maintain their major stem cell characteristics after repeated propagation, which enables the culture of spheres for an extended period of time. In this work, we also demonstrate that differentiated sphere-derived cell populations not only adopt the immunophenotype of mature spiral ganglion cells but also develop distinct ultrastructural features of neurons and glial cells. Thus, our work provides further evidence that self-renewing spiral ganglion stem cells might serve as a promising source for the regeneration of lost auditory neurons. PMID:24940560

  19. In vivo selection of human embryonic stem cell-derived cells expressing methotrexate-resistant dihydrofolate reductase

    PubMed Central

    Gori, Jennifer L.; Tian, Xinghui; Swanson, Debra; Gunther, Roland; Shultz, Leonard D.; McIvor, R. Scott; Kaufman, Dan S.

    2009-01-01

    SUMMARY Human embryonic stem cells (hESCs) provide a novel source of hematopoietic and other cell populations suitable for gene therapy applications. Preclinical studies to evaluate engraftment of hESC-derived hematopoietic cells transplanted into immunodeficient mice demonstrate only limited repopulation. Expression of a drug resistance gene, such as Tyr22-dihydrofolate reductase (Tyr22-DHFR), coupled to methotrexate (MTX) chemotherapy has the potential to selectively increase engraftment of gene-modified hESC-derived cells in mouse xenografts. Here, we describe the generation of Tyr22-DHFR – GFP expressing hESCs that maintain pluripotency, produce teratomas and can differentiate into MTXr-hemato-endothelial cells. We demonstrate that MTX administered to nonobese diabetic/severe combined immunodeficient/IL-2Rγcnull (NSG) mice after injection of Tyr22-DHFR-derived cells significantly increases human CD34+ and CD45+ cell engraftment in the bone marrow (BM) and peripheral blood of transplanted MTX-treated mice. These results demonstrate that MTX treatment supports selective, long-term engraftment of Tyr22-DHFR-cells in vivo, and provides a novel approach for combined human cell and gene therapy. PMID:19829316

  20. Adaptive therapy.

    PubMed

    Gatenby, Robert A; Silva, Ariosto S; Gillies, Robert J; Frieden, B Roy

    2009-06-01

    A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.

  1. Designing a stochastic genetic switch by coupling chaos and bistability.

    PubMed

    Zhao, Xiang; Ouyang, Qi; Wang, Hongli

    2015-11-01

    In stem cell differentiation, a pluripotent stem cell becomes progressively specialized and generates specific cell types through a series of epigenetic processes. How cells can precisely determine their fate in a fluctuating environment is a currently unsolved problem. In this paper, we suggest an abstract gene regulatory network to describe mathematically the differentiation phenomenon featuring stochasticity, divergent cell fates, and robustness. The network consists of three functional motifs: an upstream chaotic motif, a buffering motif of incoherent feed forward loop capable of generating a pulse, and a downstream motif which is bistable. The dynamic behavior is typically a transient chaos with fractal basin boundaries. The trajectories take transiently chaotic journeys before divergently settling down to the bistable states. The ratio of the probability that the high state is achieved to the probability that the low state is reached can maintain a constant in a population of cells with varied molecular fluctuations. The ratio can be turned up or down when proper parameters are adjusted. The model suggests a possible mechanism for the robustness against fluctuations that is prominently featured in pluripotent cell differentiations and developmental phenomena.

  2. Calcium Signaling in Taste Cells

    PubMed Central

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  3. Myeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathways.

    PubMed

    Haverkamp, Jessica M; Smith, Amber M; Weinlich, Ricardo; Dillon, Christopher P; Qualls, Joseph E; Neale, Geoffrey; Koss, Brian; Kim, Young; Bronte, Vincenzo; Herold, Marco J; Green, Douglas R; Opferman, Joseph T; Murray, Peter J

    2014-12-18

    Nonresolving inflammation expands a heterogeneous population of myeloid suppressor cells capable of inhibiting T cell function. This heterogeneity has confounded the functional dissection of individual myeloid subpopulations and presents an obstacle for antitumor immunity and immunotherapy. Using genetic manipulation of cell death pathways, we found the monocytic suppressor-cell subset, but not the granulocytic subset, requires continuous c-FLIP expression to prevent caspase-8-dependent, RIPK3-independent cell death. Development of the granulocyte subset requires MCL-1-mediated control of the intrinsic mitochondrial death pathway. Monocytic suppressors tolerate the absence of MCL-1 provided cytokines increase expression of the MCL-1-related protein A1. Monocytic suppressors mediate T cell suppression, whereas their granulocytic counterparts lack suppressive function. The loss of the granulocytic subset via conditional MCL-1 deletion did not alter tumor incidence implicating the monocytic compartment as the functionally immunosuppressive subset in vivo. Thus, death pathway modulation defines the development, survival, and function of myeloid suppressor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. IL-17 in psoriasis: Implications for therapy and cardiovascular co-morbidities

    PubMed Central

    Golden, Jackelyn B.; McCormick, Thomas S.; Ward, Nicole L.

    2013-01-01

    Psoriasis is a prevalent, chronic inflammatory disease of the skin mediated by cross-talk occurring between epidermal keratinocytes, dermal vascular cells and immunocytes, including activated antigen presenting cells (APCs), monocytes/macrophages, and Th1 and Th17 cells. Increased proliferation of keratinocytes and endothelial cells in conjunction with immune cell infiltration leads to the distinct epidermal and vascular hyperplasia that is characteristic of lesional psoriatic skin. Interaction of activated T cells with monocytes/macrophages occurs via the Th17/IL-23 axis and is crucial for maintaining the chronic inflammation. Recent epidemiological evidence has demonstrated that psoriasis patients have an increased risk of developing and dying of cardiovascular disease. Similar pathology between psoriasis and cardiovascular disease, including involvement of key immunologic cell populations together with release of common inflammatory mediators such as IL-17A suggest a mechanistic link between the two diseases. This review will focus on concepts critical to psoriasis pathogenesis, systemic manifestations of psoriasis, the role of IL-17 in psoriasis and cardiovascular disease and the potential role for IL-17 in mediating cardiovascular co-morbidities in psoriasis patients. PMID:23562549

  5. Teaming Up for Trouble: Cancer Cells, Transforming Growth Factor-β1 Signaling and the Epigenetic Corruption of Stromal Naïve Fibroblasts.

    PubMed

    Lamprecht, Sergio; Sigal-Batikoff, Ina; Shany, Shraga; Abu-Freha, Naim; Ling, Eduard; Delinasios, George J; Moyal-Atias, Keren; Delinasios, John G; Fich, Alexander

    2018-02-27

    It is well recognized that cancer cells subvert the phenotype of stromal naïve fibroblasts and instruct the neighboring cells to sustain their growth agenda. The mechanisms underpinning the switch of fibroblasts to cancer-associated fibroblasts (CAFs) are the focus of intense investigation. One of the most significant hallmarks of the biological identity of CAFs is that their tumor-promoting phenotype is stably maintained during in vitro and ex vivo propagation without the continual interaction with the adjacent cancer cells. In this review, we discuss robust evidence showing that the master cytokine Transforming Growth Factor-β1 (TGFβ-1) is a prime mover in reshaping, via epigenetic switches, the phenotype of stromal fibroblasts to a durable state. We also examine, in detail, the pervasive involvement of TGFβ-1 signaling from both cancer cells and CAFs in fostering cancer development, taking colorectal cancer (CRC) as a paradigm of human neoplasia. Finally, we review the stroma-centric anticancer therapeutic approach focused on CAFs-the most abundant cell population of the tumor microenvironment (TME)-as target cells.

  6. Current Progresses of Single Cell DNA Sequencing in Breast Cancer Research.

    PubMed

    Liu, Jianlin; Adhav, Ragini; Xu, Xiaoling

    2017-01-01

    Breast cancers display striking genetic and phenotypic diversities. To date, several hypotheses are raised to explain and understand the heterogeneity, including theories for cancer stem cell (CSC) and clonal evolution. According to the CSC theory, the most tumorigenic cells, while maintaining themselves through symmetric division, divide asymmetrically to generate non-CSCs with less tumorigenic and metastatic potential, although they can also dedifferentiate back to CSCs. Clonal evolution theory recapitulates that a tumor initially arises from a single cell, which then undergoes clonal expansion to a population of cancer cells. During tumorigenesis and evolution process, cancer cells undergo different degrees of genetic instability and consequently obtain varied genetic aberrations. Yet the heterogeneity in breast cancers is very complex, poorly understood and subjected to further investigation. In recent years, single cell sequencing (SCS) technology developed rapidly, providing a powerful new way to better understand the heterogeneity, which may lay foundations to some new strategies for breast cancer therapies. In this review, we will summarize development of SCS technologies and recent advances of SCS in breast cancer.

  7. Differential sensitivity to cadmium of immunomarkers measured in hemocyte subpopulations of zebra mussel Dreissena polymorpha.

    PubMed

    Evariste, Lauris; Rioult, Damien; Brousseau, Pauline; Geffard, Alain; David, Elise; Auffret, Michel; Fournier, Michel; Betoulle, Stéphane

    2017-03-01

    Increasing discharge of industrial wastes into the environment results in pollution transfer towards hydrosystems. These activities release heavy metals such as cadmium, known as persistent pollutant that is accumulated by molluscs and exercise immunotoxicological effects. Among molluscs, the zebra mussel, Dreissena polymorpha constitutes a suitable support for freshwater ecotoxicological studies. In molluscs, homeostasis maintain is ensured in part by hemocytes that are composed of several cell populations involved in multiple physiological processes such as cell-mediated immune response or metal metabolism. Thus, hemocytes constitute a target of concern to study adverse effects of heavy metals. The objectives of this work were to determine whether immune-related endpoints assessed were of different sensitivity to cadmium and whether hemocyte functionalities were differentially affected depending on hemocyte subpopulation considered. Hemocytes were exposed ex vivo to concentrations of cadmium ranging from 10 -6 M to 10 -3 M for 21h prior flow cytometric analysis of cellular markers. Measured parameters (viability, phagocytosis, oxidative activity, lysosomal content) decreased in a dose-dependent manner with sensitivity differences depending on endpoint and cell type considered. Our results indicated that phagocytosis related endpoints were the most sensitive studied mechanisms to cadmium compared to other markers with EC 50 of 3.71±0.53×10 -4 M for phagocytic activity and 2.79±0.19×10 -4 M considering mean number of beads per phagocytic cell. Lysosomal content of granulocytes was less affected compared to other cell types, indicating lower sensitivity to cadmium. This suggests that granulocyte population is greatly involved in metal metabolism. Mitochondrial activity was reduced only in blast-like hemocytes that are considered to be cell precursors. Impairment of these cell functionalities may potentially compromise functions ensured by differentiated cells. We concluded that analysis of hemocyte activities should be performed at sub-population scale for more accurate results in ecotoxicological studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Electrochemical and impedance characterization of Microbial Fuel Cells based on 2D and 3D anodic electrodes working with seawater microorganisms under continuous operation.

    PubMed

    Hidalgo, D; Sacco, A; Hernández, S; Tommasi, T

    2015-11-01

    A mixed microbial population naturally presents in seawater was used as active anodic biofilm of two Microbial Fuel Cells (MFCs), employing either a 2D commercial carbon felt or 3D carbon-coated Berl saddles as anode electrodes, with the aim to compare their electrochemical behavior under continuous operation. After an initial increase of the maximum power density, the felt-based cell reduced its performance at 5 months (from 7 to 4 μW cm(-2)), while the saddle-based MFC exceeds 9 μW cm(-2) (after 2 months) and maintained such performance for all the tests. Electrochemical impedance spectroscopy was used to identify the MFCs controlling losses and indicates that the mass-transport limitations at the biofilm-electrolyte interface have the main contribution (>95%) to their internal resistance. The activation resistance was one order of magnitude lower with the Berl saddles than with carbon felt, suggesting an enhanced charge-transfer in the high surface-area 3D electrode, due to an increase in bacteria population growth. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Drosophila haematopoiesis.

    PubMed

    Crozatier, Michèle; Meister, Marie

    2007-05-01

    Like in vertebrates, Drosophila haematopoiesis occurs in two waves. It gives rise to three types of haemocytes: plasmatocytes (phagocytosis), crystal cells (melanization) and lamellocytes (encapsulation of parasites). A first population of haemocytes, specified during embryogenesis, gives rise to an invariant number of plasmatocytes and crystal cells. A second population of haemocytes is specified during larval development in a specialized haematopoietic organ, the lymph gland. All three types of haemocytes can be specified in this organ, but lamellocytes only differentiate in response to parasitism. Thus, larval in contrast to embryonic haematopoiesis can be modulated by physiological constraints. Molecular cascades controlling embryonic haematopoiesis are relatively well established and require transactivators such as GATA, FOG and Runx factors, which are also co-opted in mammalian haematopoiesis. Mechanisms involved during larval haematopoiesis are less well understood although a number of chromatin remodelling factors and signalling pathways (JAK/STAT, Toll, Hedgehog, Notch) are required. In healthy larvae a pool of progenitors is maintained within the lymph gland, under the control of a signalling centre which expresses Collier, Serrate, Antennapedia and Hedgehog, and controls haemocyte homeostasis. Its key role in haemocyte homeostasis is reminiscent of interactions described in vertebrates between haematopoietic stem cells and their microenvironment (niche).

  10. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Astrophysics Data System (ADS)

    Ryan, Shannon; Christiansen, Eric

    2009-06-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional ˜30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  11. Development and Evaluation of the Next Generation of Meteoroid and Orbital Debris Shields

    NASA Technical Reports Server (NTRS)

    Christiansen, E.; Lear, D.; Ryan, S.

    2009-01-01

    Recent events such as the Chinese anti-satellite missile test in January 2007 and the collision between a Russian Cosmos satellite and US Iridium satellite in February 2009 are responsible for a rapid increase in the population of orbital debris in Low Earth Orbit (LEO). Without active debris removal strategies the debris population in key orbits will continue to increase, requiring enhanced shielding capabilities to maintain allowable penetration risks. One of the more promising developments in recent years for meteoroid and orbital debris shielding (MMOD) is the application of open cell foams. Although shielding onboard the International Space Station is the most capable ever flown, the most proficient configuration (stuffed Whipple shield) requires an additional 30% of the shielding mass for non-ballistic requirements (e.g. stiffeners, fasteners, etc.). Open cell foam structures provide similar mechanical performance to more traditional structural components such as honeycomb sandwich panels, as well as improved projectile fragmentation and melting as a result of repeated shocking by foam ligaments. In this paper, the preliminary results of an extensive hypervelocity impact test program on next generation MMOD shielding configurations incorporating open-cell metallic foams are reported.

  12. Unique and Common Features of Innate-Like Human Vδ2+ γδT Cells and Mucosal-Associated Invariant T Cells.

    PubMed

    Provine, Nicholas M; Binder, Benedikt; FitzPatrick, Michael E B; Schuch, Anita; Garner, Lucy C; Williamson, Kate D; van Wilgenburg, Bonnie; Thimme, Robert; Klenerman, Paul; Hofmann, Maike

    2018-01-01

    Mucosal-associated invariant T (MAIT) cells are innate-like T cells abundant in humans that can be activated in a TCR-independent manner by inflammatory and antiviral cytokines. In humans, the capacity for TCR-independent activation is functionally linked to a transcriptional program that can be identified by the expression of the C-type lectin receptor, CD161. In addition to MAIT cells, it has been demonstrated that a subset of γδT cells expresses CD161 and can be activated by TCR-independent cytokine stimulation. In this study, we sought to clarify the nature of cytokine-responsive human γδT cells. We could link CD161 expression on Vδ2 + versus Vδ1 + γδT cells to the observation that Vδ2 + γδT cells, but not Vδ1 + γδT cells, robustly produced IFN-γ upon stimulation with a variety of cytokine combinations. Interestingly, both CD161 + and CD161 - Vδ2 + γδT cells responded to these stimuli, with increased functionality within the CD161 + subset. This innate-like responsiveness corresponded to high expression of PLZF and IL-18Rα, analogous to MAIT cells. Vδ2 + γδT cells in human duodenum and liver maintained a CD161 + IL-18Rα + phenotype and produced IFN-γ in response to IL-12 and IL-18 stimulation. In contrast to MAIT cells, we could not detect IL-17A production but observed higher steady-state expression of Granzyme B by Vδ2 + γδT cells. Finally, we investigated the frequency and functionality of γδT cells in the context of chronic hepatitis C virus infection, as MAIT cells are reduced in frequency in this disease. By contrast, Vδ2 + γδT cells were maintained in frequency and displayed unimpaired IFN-γ production in response to cytokine stimulation. In sum, human Vδ2 + γδT cells are a functionally distinct population of cytokine-responsive innate-like T cells that is abundant in blood and tissues with similarities to human MAIT cells.

  13. Loss of the Liver X Receptors Disrupts the Balance of Hematopoietic Populations, With Detrimental Effects on Endothelial Progenitor Cells.

    PubMed

    Rasheed, Adil; Tsai, Ricky; Cummins, Carolyn L

    2018-05-08

    The liver X receptors (LXRs; α/β) are nuclear receptors known to regulate cholesterol homeostasis and the production of select hematopoietic populations. The objective of this study was to determine the importance of LXRs and a high-fat high-cholesterol diet on global hematopoiesis, with special emphasis on endothelial progenitor cells (EPCs), a vasoreparative cell type that is derived from bone marrow hematopoietic stem cells. Wild-type and LXR double-knockout ( Lxr αβ -/- ) mice were fed a Western diet (WD) to increase plasma cholesterol levels. In WD-fed Lxr αβ -/- mice, flow cytometry and complete blood cell counts revealed that hematopoietic stem cells, a myeloid progenitor, and mature circulating myeloid cells were increased; EPC numbers were significantly decreased. Hematopoietic stem cells from WD-fed Lxr αβ -/- mice showed increased cholesterol content, along with increased myeloid colony formation compared with chow-fed mice. In contrast, EPCs from WD-fed Lxr αβ -/- mice also demonstrated increased cellular cholesterol content that was associated with greater expression of the endothelial lineage markers Cd144 and Vegfr2 , suggesting accelerated differentiation of the EPCs. Treatment of human umbilical vein endothelial cells with conditioned medium collected from these EPCs increased THP-1 monocyte adhesion. Increased monocyte adhesion to conditioned medium-treated endothelial cells was recapitulated with conditioned medium from Lxr αβ -/- EPCs treated with cholesterol ex vivo, suggesting cholesterol is the main component of the WD inducing EPC dysfunction. LXRs are crucial for maintaining the balance of hematopoietic cells in a hypercholesterolemic environment and for mitigating the negative effects of cholesterol on EPC differentiation/secretome changes that promote monocyte-endothelial adhesion. © 2018 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  14. The frequency of Th17 cells in the small intestine exhibits a day-night variation dependent on circadian clock activity.

    PubMed

    Thu Le, Ha Pham; Nakamura, Yuki; Oh-Oka, Kyoko; Ishimaru, Kayoko; Nakajima, Shotaro; Nakao, Atsuhito

    2017-08-19

    Interleukin-17-producing CD4 + T helper (Th17) cells are a key immune lineage that protects against bacterial and fungal infections at mucosal surfaces. At steady state, Th17 cells are abundant in the small intestinal mucosa of mice. There are several mechanisms for regulating the population of Th17 cells in the small intestine, reflecting the importance of maintaining their numbers in the correct balance. Here we demonstrate the existence of a time-of-day-dependent variation in the frequency of Th17 cells in the lamina propria of the small intestine in wild-type mice, which was not observed in mice with a loss-of-function mutation of the core circadian gene Clock or in mice housed under aberrant light/dark conditions. Consistent with this, expression of CCL20, a chemokine that regulates homeostatic trafficking of Th17 cells to the small intestine, exhibited circadian rhythms in the small intestine of wild-type, but not Clock-mutated, mice. In support of these observations, the magnitude of ovalbumin (OVA)-specific antibody and T-cell responses in mice sensitized with OVA plus cholera toxin, a mucosal Th17 cell-dependent adjuvant, was correlated with daily variations in the proportion of Th17 cells in the small intestine. These results suggest that the proportion of Th17 cells in the small intestine exhibits a day-night variation in association with CCL20 expression, which depends on circadian clock activity. The findings provide novel insight into the regulation of the Th17 cell population in the small intestine at steady state, which may have translational potential for mucosal vaccination strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Dependence of corneal stem/progenitor cells on ocular surface innervation.

    PubMed

    Ueno, Hiroki; Ferrari, Giulio; Hattori, Takaaki; Saban, Daniel R; Katikireddy, Kishore R; Chauhan, Sunil K; Dana, Reza

    2012-02-21

    Neurotrophic keratopathy (NK) is a corneal degeneration associated with corneal nerve dysfunction. It can cause corneal epithelial defects, stromal thinning, and perforation. However, it is not clear if and to which extent epithelial stem cells are affected in NK. The purpose of this study was to identify the relationship between corneolimbal epithelial progenitor/stem cells and sensory nerves using a denervated mouse model of NK. NK was induced in mice by electrocoagulation of the ophthalmic branch of the trigeminal nerve. The absence of corneal nerves was confirmed with β-III tubulin immunostaining and blink reflex test after 7 days. ATP-binding cassette subfamily G member 2 (ABCG2), p63, and hairy enhancer of split 1 (Hes1) were chosen as corneolimbal stem/progenitor cell markers and assessed in denervated mice versus controls by immunofluorescent microscopy and real-time PCR. In addition, corneolimbal stem/progenitor cells were detected as side population cells using flow cytometry, and colony-forming efficiency assay was performed to assess their function. ABCG2, p63, and Hes1 immunostaining were significantly decreased in denervated eyes after 7 days. Similarly, the expression levels of ABCG2, p63, K15, Hes1, and N-cadherin transcripts were also significantly decreased in denervated eyes. Stem/progenitor cells measured as side population from NK mice were decreased by approximately 75% compared with normals. In addition, the authors found a significant (P = 0.038) reduction in colony-forming efficiency of stem/progenitor cells harvested from denervated eyes. Corneolimbal stem/progenitor cells are significantly reduced after depletion of sensory nerves. The data suggest a critical role of innervation in maintaining stem cells and/or the stem cell niche.

  16. Dependence of Corneal Stem/Progenitor Cells on Ocular Surface Innervation

    PubMed Central

    Ueno, Hiroki; Ferrari, Giulio; Hattori, Takaaki; Saban, Daniel R.; Katikireddy, Kishore R.; Chauhan, Sunil K.

    2012-01-01

    Purpose. Neurotrophic keratopathy (NK) is a corneal degeneration associated with corneal nerve dysfunction. It can cause corneal epithelial defects, stromal thinning, and perforation. However, it is not clear if and to which extent epithelial stem cells are affected in NK. The purpose of this study was to identify the relationship between corneolimbal epithelial progenitor/stem cells and sensory nerves using a denervated mouse model of NK. Methods. NK was induced in mice by electrocoagulation of the ophthalmic branch of the trigeminal nerve. The absence of corneal nerves was confirmed with β-III tubulin immunostaining and blink reflex test after 7 days. ATP-binding cassette subfamily G member 2 (ABCG2), p63, and hairy enhancer of split 1 (Hes1) were chosen as corneolimbal stem/progenitor cell markers and assessed in denervated mice versus controls by immunofluorescent microscopy and real-time PCR. In addition, corneolimbal stem/progenitor cells were detected as side population cells using flow cytometry, and colony-forming efficiency assay was performed to assess their function. Results. ABCG2, p63, and Hes1 immunostaining were significantly decreased in denervated eyes after 7 days. Similarly, the expression levels of ABCG2, p63, K15, Hes1, and N-cadherin transcripts were also significantly decreased in denervated eyes. Stem/progenitor cells measured as side population from NK mice were decreased by approximately 75% compared with normals. In addition, the authors found a significant (P = 0.038) reduction in colony-forming efficiency of stem/progenitor cells harvested from denervated eyes. Conclusions. Corneolimbal stem/progenitor cells are significantly reduced after depletion of sensory nerves. The data suggest a critical role of innervation in maintaining stem cells and/or the stem cell niche. PMID:22232434

  17. Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry.

    PubMed

    Jan, Taha A; Chai, Renjie; Sayyid, Zahra N; Cheng, Alan G

    2011-12-23

    Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.

  18. Glioblastoma: new therapeutic strategies to address cellular and genomic complexity

    PubMed Central

    Cai, Xue; Sughrue, Michael E.

    2018-01-01

    Glioblastoma (GBM) is the most invasive and devastating primary brain tumor with a median overall survival rate about 18 months with aggressive multimodality therapy. Its unique characteristics of heterogeneity, invasion, clonal populations maintaining stem cell-like cells and recurrence, have limited responses to a variety of therapeutic approaches, and have made GBM the most difficult brain cancer to treat. A great effort and progress has been made to reveal promising molecular mechanisms to target therapeutically. Especially with the emerging of new technologies, the mechanisms underlying the pathology of GBM are becoming more clear. The purpose of this review is to summarize the current knowledge of molecular mechanisms of GBM and highlight the novel strategies and concepts for the treatment of GBM. PMID:29507709

  19. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    PubMed

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  20. Isolation and Phenotyping of Intestinal Macrophages.

    PubMed

    Petit, Vanessa

    2018-01-01

    Macrophages are one of the most abundant leucocytes in the intestinal mucosa where they are essential for maintaining homeostasis. However they are also implicated in the pathogenesis of disorders such as inflammatory bowel disease (IBD), offering potential targets for novel therapies.Tissue macrophages are a heterogeneous population of immune cells that fulfill tissue-specific and niche-specific functions. These unique phenotypes likely reflect the heterogeneity of tissue macrophage origins and influence the tissue environment in which they reside. Here we describe how we can characterize and isolate the colonic macrophages.

  1. Asymmetric segregation of template DNA strands in basal-like human breast cancer cell lines

    PubMed Central

    2013-01-01

    Background and methods Stem or progenitor cells from healthy tissues have the capacity to co-segregate their template DNA strands during mitosis. Here, we set out to test whether breast cancer cell lines also possess the ability to asymmetrically segregate their template DNA strands via non-random chromosome co-segregation, and whether this ability correlates with certain properties attributed to breast cancer stem cells (CSCs). We quantified the frequency of asymmetric segregation of template DNA strands in 12 human breast cancer cell lines, and correlated the frequency to molecular subtype, CD44+/CD24-/lo phenotype, and invasion/migration ability. We tested if co-culture with human mesenchymal stem cells, which are known to increase self-renewal, can alter the frequency of asymmetric segregation of template DNA in breast cancer. Results We found a positive correlation between asymmetric segregation of template DNA and the breast cancer basal-like and claudin-low subtypes. There was an inverse correlation between asymmetric segregation of template DNA and Her2 expression. Breast cancer samples with evidence of asymmetric segregation of template DNA had significantly increased invasion and borderline significantly increased migration abilities. Samples with high CD44+/CD24-/lo surface expression were more likely to harbor a consistent population of cells that asymmetrically segregated its template DNA; however, symmetric self-renewal was enriched in the CD44+/CD24-/lo population. Co-culturing breast cancer cells with human mesenchymal stem cells expanded the breast CSC pool and decreased the frequency of asymmetric segregation of template DNA. Conclusions Breast cancer cells within the basal-like subtype can asymmetrically segregate their template DNA strands through non-random chromosome segregation. The frequency of asymmetric segregation of template DNA can be modulated by external factors that influence expansion or self-renewal of CSC populations. Future studies to uncover the underlying mechanisms driving asymmetric segregation of template DNA and dictating cell fate at the time of cell division may explain how CSCs are maintained in tumors. PMID:24238140

  2. Single-cell-based breeding: Rational strategy for the establishment of cell lines from a single cell with the most favorable properties.

    PubMed

    Yoshimoto, Nobuo; Kuroda, Shun'ichi

    2014-04-01

    For efficient biomolecule production (e.g., antibodies, recombinant proteins), mammalian cells with high expression rates should be selected from cell libraries, propagated while maintaining a homogenous expression rate, and subsequently stabilized at their high expression rate. Clusters of isogenic cells (i.e., colonies) have been used for these processes. However, cellular heterogeneity makes it difficult to obtain cell lines with the highest expression rates by using single-colony-based breeding. Furthermore, even among the single cells in an isogenic cell population, the desired cell properties fluctuate stochastically during long-term culture. Therefore, although the molecular mechanisms underlying stochastic fluctuation are poorly understood, it is necessary to establish excellent cell lines in order to breed single cells to have higher expression, higher stability, and higher homogeneity while suppressing stochastic fluctuation (i.e., single-cell-based breeding). In this review, we describe various methods for manipulating single cells and facilitating single-cell analysis in order to better understand stochastic fluctuation. We demonstrated that single-cell-based breeding is practical and promising by using a high-throughput automated system to analyze and manipulate single cells. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Culture conditions defining glioblastoma cells behavior: what is the impact for novel discoveries?

    PubMed

    Ledur, Pítia Flores; Onzi, Giovana Ravizzoni; Zong, Hui; Lenz, Guido

    2017-09-15

    In cancer research, the use of established cell lines has gradually been replaced by primary cell cultures due to their better representation of in vivo cancer cell behaviors. However, a major challenge with primary culture involves the finding of growth conditions that minimize alterations in the biological state of the cells. To ensure reproducibility and translational potentials for research findings, culture conditions need to be chosen so that the cell population in culture best mimics tumor cells in vivo . Glioblastoma (GBM) is one of the most aggressive and heterogeneous tumor types and the GBM research field would certainly benefit from culture conditions that could maintain the original plethora of phenotype of the cells. Here, we review culture media and supplementation options for GBM cultures, the rationale behind their use, and how much those choices affect drug-screening outcomes. We provide an overview of 120 papers that use primary GBM cultures and discuss the current predominant conditions. We also show important primary research data indicating that "mis-cultured" glioma cells can acquire unnatural drug sensitivity, which would have devastating effects for clinical translations. Finally, we propose the concurrent test of four culture conditions to minimize the loss of cell coverage in culture.

  4. Formation of resting cells by non-spore-forming microorganisms as a strategy of long-term survival in the environment

    NASA Astrophysics Data System (ADS)

    Mulyukin, Andrei L.; Soina, Vera S.; Demkina, Elena V.; Kozlova, Alla N.; Suzina, Natalia E.; Dmitriev, Vladimir V.; Duda, Vitalii I.; El'-Registan, Galina I.

    2003-01-01

    Non-spore-forming bacteria of the genera Micrococcus and Arthrobacter, including the isolates from permafrost sediments, were found to be able to form cystlike cells under special conditions. Cystlike cells maintained the viability during long-term storage (for up to several years), had undetectable respiratory activity and the elevated resistance to heating and other unfavorable conditions, possessed the specific fine structure and morphology, and were formed in the life cycles of the microorganism. These properties allow cystlike cells to be attributed to a new type of resting microbial forms. Furthermore, the distinctive feature of resting cystlike cells was their low P/S ratios and high Ca/K ratios in comparison to vegetative cells as shown by X-ray microanalysis. The experimentally obtained bacterial cystlike cells with thickened and laminated cell walls and altered texture of the cytoplasm were similar to the cells abundant in native microbial populations isolated from permafrost sediments and ancient soils of the Kolyma lowland (Siberia, Russia). Due to the inherent elevated resistance to adverse conditions and maintenance of viability for prolonged periods, resting cystlike cells are likely to ensure long-term survival of non-spore-forming bacteria in cold environments.

  5. Aqueous Extract of Agaricus blazei Murrill Prevents Age-Related Changes in the Myenteric Plexus of the Jejunum in Rats

    PubMed Central

    de Santi-Rampazzo, Ana Paula; Schoffen, João Paulo Ferreira; Cirilo, Carla Possani; Zapater, Mariana Cristina Vicente Umada; Vicentini, Fernando Augusto; Soares, Andréia Assunção; Peralta, Rosane Marina; Bracht, Adelar; Buttow, Nilza Cristina; Natali, Maria Raquel Marçal

    2015-01-01

    This study evaluated the effects of the supplementation with aqueous extract of Agaricus blazei Murrill (ABM) on biometric and blood parameters and quantitative morphology of the myenteric plexus and jejunal wall in aging Wistar rats. The animals were euthanized at 7 (C7), 12 (C12 and CA12), and 23 months of age (C23 and CA23). The CA12 and CA23 groups received a daily dose of ABM extract (26 mg/animal) via gavage, beginning at 7 months of age. A reduction in food intake was observed with aging, with increases in the Lee index, retroperitoneal fat, intestinal length, and levels of total cholesterol and total proteins. Aging led to a reduction of the total wall thickness, mucosa tunic, villus height, crypt depth, and number of goblet cells. In the myenteric plexus, aging quantitatively decreased the population of HuC/D+ neuronal and S100+ glial cells, with maintenance of the nNOS+ nitrergic subpopulation and increase in the cell body area of these populations. Supplementation with the ABM extract preserved the myenteric plexus in old animals, in which no differences were detected in the density and cell body profile of neurons and glial cells in the CA12 and CA23 groups, compared with C7 group. The supplementation with the aqueous extract of ABM efficiently maintained myenteric plexus homeostasis, which positively influenced the physiology and prevented the death of the neurons and glial cells. PMID:25960748

  6. Induction of Viable but Nonculturable Salmonella in Exponentially Grown Cells by Exposure to a Low-Humidity Environment and Their Resuscitation by Catalase.

    PubMed

    Morishige, Yuta; Koike, Atsushi; Tamura-Ueyama, Ai; Amano, Fumio

    2017-02-01

    Salmonella is a major cause of foodborne disease that sometimes occurs in massive outbreaks around the world. This pathogen is tolerant of low-humidity conditions. We previously described a method for induction of viable but nonculturable (VBNC) Salmonella enterica serovar Enteritidis by treatment with hydrogen peroxide (H 2 O 2 ) and subsequent resuscitation with 0.3 mM sodium pyruvate. Here, we report a new method for the induction of the VBNC state in Salmonella Enteritidis cells, one involving dehydration. Exposure of Salmonella Enteritidis cells to dehydration stress under poor nutritional conditions (0.9% [wt/vol] NaCl) and 10 to 20% relative humidity at room temperature decreased the presence of culturable population to 0.0067%, but respiratory and glucose uptake active populations were maintained at 0.46 and 1.12%, respectively, meaning that approximately 1% may have entered the VBNC state. Furthermore, these VBNC cells could be resuscitated to acquire culturability by incubation with catalase in M9 minimal medium without glucose in a manner dependent on the dose of catalase but not sodium pyruvate. These results suggest that a low-humidity environment could cause Salmonella Enteritidis cells to enter the VBNC state and the cells could then be resuscitated for growth by treatment with catalase, suggesting a potential risk of Salmonella Enteritidis to survive in low water activity foods in the VBNC state and to start regrowth for foodborne illness.

  7. Impacts of nutrients and related environmental factors on distribution and size structure of Noctiluca scintillans populations of the eutrophic Tha Chin estuary, Thailand.

    PubMed

    Chuenniyom, Wansiri; Meksumpun, Charumas; Meksumpun, Shettapong

    2012-01-01

    This study aimed to analyze the impacts of nutrients and related aquatic factors on changes in the Noctiluca population of the Tha Chin estuary, a nutrient-rich estuary located in the inner Gulf of Thailand. Field surveys were carried out at 30 stations during November 2009 to August 2010. The results indicated high levels of dissolved inorganic nitrogen (DIN; 13.89-46.99 μmol/L) and PO(4)(3-)-P (0.20-3.05 μmol/L) where the Noctiluca red tide occurred, particularly during the high-loading period. Dense populations were usually found in the outer part of the estuary with comparatively high salinity (25-29 psu). The highest Noctiluca density was 72,333 cells L(-1) and the cell diameters ranged between 360 and 460 μm. Proportions of small-sized cells (P(s); less than 300 μm) varied over time. In this study, P(s) showed a positive correlation with levels of PO(4)(3-)-P, while the total population density was significantly affected by levels of NH(4)(+)-N and DIN (p < 0.05). Overall, PO(4)(3-)-P influenced the development of the Noctiluca red tide, with the limitation of PO(4)(3-)-P levels to below 1 μmol/L suggested for controlling Noctiluca red tide outbreaks at their origin. To support environmental conservation and maintain sustainable production in the estuary, the levels of PO(4)(3-)-P should be considered for the further effective development of water quality standards in estuarine zones.

  8. Tumour resistance to cisplatin: a modelling approach

    NASA Astrophysics Data System (ADS)

    Marcu, L.; Bezak, E.; Olver, I.; van Doorn, T.

    2005-01-01

    Although chemotherapy has revolutionized the treatment of haematological tumours, in many common solid tumours the success has been limited. Some of the reasons for the limitations are: the timing of drug delivery, resistance to the drug, repopulation between cycles of chemotherapy and the lack of complete understanding of the pharmacokinetics and pharmacodynamics of a specific agent. Cisplatin is among the most effective cytotoxic agents used in head and neck cancer treatments. When modelling cisplatin as a single agent, the properties of cisplatin only have to be taken into account, reducing the number of assumptions that are considered in the generalized chemotherapy models. The aim of the present paper is to model the biological effect of cisplatin and to simulate the consequence of cisplatin resistance on tumour control. The 'treated' tumour is a squamous cell carcinoma of the head and neck, previously grown by computer-based Monte Carlo techniques. The model maintained the biological constitution of a tumour through the generation of stem cells, proliferating cells and non-proliferating cells. Cell kinetic parameters (mean cell cycle time, cell loss factor, thymidine labelling index) were also consistent with the literature. A sensitivity study on the contribution of various mechanisms leading to drug resistance is undertaken. To quantify the extent of drug resistance, the cisplatin resistance factor (CRF) is defined as the ratio between the number of surviving cells of the resistant population and the number of surviving cells of the sensitive population, determined after the same treatment time. It is shown that there is a supra-linear dependence of CRF on the percentage of cisplatin-DNA adducts formed, and a sigmoid-like dependence between CRF and the percentage of cells killed in resistant tumours. Drug resistance is shown to be a cumulative process which eventually can overcome tumour regression leading to treatment failure.

  9. Selection from parasites favours immunogenetic diversity but not divergence among locally adapted host populations.

    PubMed

    Tobler, M; Plath, M; Riesch, R; Schlupp, I; Grasse, A; Munimanda, G K; Setzer, C; Penn, D J; Moodley, Y

    2014-05-01

    The unprecedented polymorphism in the major histocompatibility complex (MHC) genes is thought to be maintained by balancing selection from parasites. However, do parasites also drive divergence at MHC loci between host populations, or do the effects of balancing selection maintain similarities among populations? We examined MHC variation in populations of the livebearing fish Poecilia mexicana and characterized their parasite communities. Poecilia mexicana populations in the Cueva del Azufre system are locally adapted to darkness and the presence of toxic hydrogen sulphide, representing highly divergent ecotypes or incipient species. Parasite communities differed significantly across populations, and populations with higher parasite loads had higher levels of diversity at class II MHC genes. However, despite different parasite communities, marked divergence in adaptive traits and in neutral genetic markers, we found MHC alleles to be remarkably similar among host populations. Our findings indicate that balancing selection from parasites maintains immunogenetic diversity of hosts, but this process does not promote MHC divergence in this system. On the contrary, we suggest that balancing selection on immunogenetic loci may outweigh divergent selection causing divergence, thereby hindering host divergence and speciation. Our findings support the hypothesis that balancing selection maintains MHC similarities among lineages during and after speciation (trans-species evolution). © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  10. Parallel altitudinal clines reveal trends in adaptive evolution of genome size in Zea mays

    PubMed Central

    Berg, Jeremy J.; Birchler, James A.; Grote, Mark N.; Lorant, Anne; Quezada, Juvenal

    2018-01-01

    While the vast majority of genome size variation in plants is due to differences in repetitive sequence, we know little about how selection acts on repeat content in natural populations. Here we investigate parallel changes in intraspecific genome size and repeat content of domesticated maize (Zea mays) landraces and their wild relative teosinte across altitudinal gradients in Mesoamerica and South America. We combine genotyping, low coverage whole-genome sequence data, and flow cytometry to test for evidence of selection on genome size and individual repeat abundance. We find that population structure alone cannot explain the observed variation, implying that clinal patterns of genome size are maintained by natural selection. Our modeling additionally provides evidence of selection on individual heterochromatic knob repeats, likely due to their large individual contribution to genome size. To better understand the phenotypes driving selection on genome size, we conducted a growth chamber experiment using a population of highland teosinte exhibiting extensive variation in genome size. We find weak support for a positive correlation between genome size and cell size, but stronger support for a negative correlation between genome size and the rate of cell production. Reanalyzing published data of cell counts in maize shoot apical meristems, we then identify a negative correlation between cell production rate and flowering time. Together, our data suggest a model in which variation in genome size is driven by natural selection on flowering time across altitudinal clines, connecting intraspecific variation in repetitive sequence to important differences in adaptive phenotypes. PMID:29746459

  11. Virus genome dynamics under different propagation pressures: reconstruction of whole genome haplotypes of West Nile viruses from NGS data.

    PubMed

    Kortenhoeven, Cornell; Joubert, Fourie; Bastos, Armanda D S; Abolnik, Celia

    2015-02-22

    Extensive focus is placed on the comparative analyses of consensus genotypes in the study of West Nile virus (WNV) emergence. Few studies account for genetic change in the underlying WNV quasispecies population variants. These variants are not discernable in the consensus genome at the time of emergence, and the maintenance of mutation-selection equilibria of population variants is greatly underestimated. The emergence of lineage 1 WNV strains has been studied extensively, but recent epidemics caused by lineage 2 WNV strains in Hungary, Austria, Greece and Italy emphasizes the increasing importance of this lineage to public health. In this study we explored the quasispecies dynamics of minority variants that contribute to cell-tropism and host determination, i.e. the ability to infect different cell types or cells from different species from Next Generation Sequencing (NGS) data of a historic lineage 2 WNV strain. Minority variants contributing to host cell membrane association persist in the viral population without contributing to the genetic change in the consensus genome. Minority variants are shown to maintain a stable mutation-selection equilibrium under positive selection, particularly in the capsid gene region. This study is the first to infer positive selection and the persistence of WNV haplotype variants that contribute to viral fitness without accompanying genetic change in the consensus genotype, documented solely from NGS sequence data. The approach used in this study streamlines the experimental design seeking viral minority variants accurately from NGS data whilst minimizing the influence of associated sequence error.

  12. Culture-Independent Investigation of the Microbiome Associated with the Nematode Acrobeloides maximus

    PubMed Central

    Baquiran, Jean-Paul; Thater, Brian; Sedky, Sammy; De Ley, Paul; Crowley, David; Orwin, Paul M.

    2013-01-01

    Background Symbioses between metazoans and microbes are widespread and vital to many ecosystems. Recent work with several nematode species has suggested that strong associations with microbial symbionts may also be common among members of this phylu. In this work we explore possible symbiosis between bacteria and the free living soil bacteriovorous nematode Acrobeloides maximus. Methodology We used a soil microcosm approach to expose A. maximus populations grown monoxenically on RFP labeled Escherichia coli in a soil slurry. Worms were recovered by density gradient separation and examined using both culture-independent and isolation methods. A 16S rRNA gene survey of the worm-associated bacteria was compared to the soil and to a similar analysis using Caenorhabditis elegans N2. Recovered A. maximus populations were maintained on cholesterol agar and sampled to examine the population dynamics of the microbiome. Results A consistent core microbiome was extracted from A. maximus that differed from those in the bulk soil or the C. elegans associated set. Three genera, Ochrobactrum, Pedobacter, and Chitinophaga, were identified at high levels only in the A. maximus populations, which were less diverse than the assemblage associated with C. elegans. Putative symbiont populations were maintained for at least 4 months post inoculation, although the levels decreased as the culture aged. Fluorescence in situ hybridization (FISH) using probes specific for Ochrobactrum and Pedobacter stained bacterial cells in formaldehyde fixed nematode guts. Conclusions Three microorganisms were repeatedly observed in association with Acrobeloides maximus when recovered from soil microcosms. We isolated several Ochrobactrum sp. and Pedobacter sp., and demonstrated that they inhabit the nematode gut by FISH. Although their role in A. maximus is not resolved, we propose possible mutualistic roles for these bacteria in protection of the host against pathogens and facilitating enzymatic digestion of other ingested bacteria. PMID:23894287

  13. Short-term, serum-free, static culture of cord blood-derived CD34+ cells: effects of FLT3-L and MIP-1alpha on in vitro expansion of hematopoietic progenitor cells.

    PubMed

    Capmany, G; Querol, S; Cancelas, J A; García, J

    1999-08-01

    The use of ex vivo expanded cells has been suggested as a possible means to accelerate the speed of engraftment in cord blood (CB) transplantation. The aim of this study was to fix the optimal condition for the generation of committed progenitors without affecting the stem cell compartment. Analysis of the effects of FLT3-L and MIP-1alpha when combined with SCF, IL-3 and IL-6, in short-term (6 days), serum-free expansion cultures of CB-selected CD34+ cells. An important expansion was obtained that ranged between 8-15 times for CFU-GM, 21-51 times for the BFU-E/CFU-Mix population and 11 to 30 times for CD34+ cells assessed by flow cytometry. From the combinations tested, those in which FLT3-L was present had a significant increase in the expansion of committed progenitors, while the presence of MIP-1alpha had a detrimental effect on the generation of more differentiated cells. However, stem cell candidates assessed by week 5 CAFC assay could be maintained in culture when both MIP-1a and FLT3-L were present (up to 91% recovery). This culture system was also able to expand megakaryocytic precursors as determined by the co-expression of CD34 and CD61 antigens (45-70 times), in spite of the use of cytokines non-specific for the megakaryocytic lineage. The results obtained point to the combination of SCF, IL-3, IL-6, FLT3-L and MIP-1alpha as the best suited for a pre-clinical short-term serum-free static ex vivo expansion protocol of CB CD34+ cells, since it can generate large numbers of committed progenitor cells as well as maintaining week 5 CAFC.

  14. A comparative assessment of cartilage and joint fat pad as a potential source of cells for autologous therapy development in knee osteoarthritis.

    PubMed

    English, A; Jones, E A; Corscadden, D; Henshaw, K; Chapman, T; Emery, P; McGonagle, D

    2007-11-01

    The utility of autologous chondrocytes for cartilage repair strategies in older subjects with osteoarthritis (OA) may be limited by both age-related and disease-associated decline in chondrogenesis. The aim of this work was to assess OA Hoffa's fat pad as an alternative source of autologous chondroprogenitor cells and to compare it with OA chondrocytes derived from different areas of cartilage. Cartilage and fat pad tissue digests were obtained from 26 subjects with knee OA and compared with normal bone marrow (BM) mesenchymal stem cells (MSCs) with respect to their in vitro colony-forming potential, growth kinetics, multipotentiality and clonogenicity. Flow cytometry was used to investigate their MSC marker phenotype. Expanded cultures derived from eroded areas of cartilage were slightly more chondrogenic than those derived from macroscopically normal cartilage or chondro-osteophytes; however, all cartilage-derived cultures failed to maintain their chondrogenic potency following extended expansion. In contrast, OA fat pads contained highly clonogenic and multipotential cells with stable chondrogenic potency in vitro, even after 16 population doublings. Standard colony-forming assays failed to reflect the observed functional differences between the studied tissues whereas flow cytometry revealed higher levels of a putative MSC marker low-affinity growth factor receptor (LNGFR) on culture expanded fat pad-derived, but not cartilage-derived, MSCs. In contrast to OA cartilage from three different sites, OA Hoffa's fat pad contains clonogenic cells that meet the criteria for MSCs and produce multipotential cultures that maintain their chondrogenesis long term. These findings have broad implications for future strategies aimed at cartilage repair in OA.

  15. High polymorphism in MHC-DRB genes in golden snub-nosed monkeys reveals balancing selection in small, isolated populations.

    PubMed

    Zhang, Pei; Huang, Kang; Zhang, Bingyi; Dunn, Derek W; Chen, Dan; Li, Fan; Qi, Xiaoguang; Guo, Songtao; Li, Baoguo

    2018-03-13

    Maintaining variation in immune genes, such as those of the major histocompatibility complex (MHC), is important for individuals in small, isolated populations to resist pathogens and parasites. The golden snub-nosed monkey (Rhinopithecus roxellana), an endangered primate endemic to China, has experienced a rapid reduction in numbers and severe population fragmentation over recent years. For this study, we measured the DRB diversity among 122 monkeys from three populations in the Qinling Mountains, and estimated the relative importance of different agents of selection in maintaining variation of DRB genes. We identified a total of 19 DRB sequences, in which five alleles were novel. We found high DRB variation in R. roxellana and three branches of evidence suggesting that balancing selection has contributed to maintaining MHC polymorphism over the long term in this species: i) different patterns of both genetic diversity and population differentiation were detected at MHC and neutral markers; ii) an excess of non-synonymous substitutions compared to synonymous substitutions at antigen binding sites, and maximum-likelihood-based random-site models, showed significant positive selection; and iii) phylogenetic analyses revealed a pattern of trans-species evolution for DRB genes. High levels of DRB diversity in these R. roxellana populations may reflect strong selection pressure in this species. Patterns of genetic diversity and population differentiation, positive selection, as well as trans-species evolution, suggest that pathogen-mediated balancing selection has contributed to maintaining MHC polymorphism in R. roxellana over the long term. This study furthers our understanding of the role pathogen-mediated balancing selection has in maintaining variation in MHC genes in small and fragmented populations of free-ranging vertebrates.

  16. Lycopersicon esculentum lectin is a marker of transient amplifying cells in in vitro cultures of isolated limbal stem cells.

    PubMed

    Vergallo, C; Fonseca, T; Pizzi, G; Dini, L

    2010-08-01

    The maintenance of a healthy corneal epithelium under both normal and wound healing conditions is achieved by a population of stem cells (SCs) located in the basal epithelium at the corneoscleral limbus. In the light of the development of strategies for reconstruction of the ocular surface in patients with limbal stem cell deficiency, a major challenge in corneal SCs biology remains the ability to identify stem cells in situ and in vitro. To date, not so much markers exist for the identification of different phenotypes. CESCs (corneal epithelial stem cells) isolated from limbal biopsies were maintained in primary culture for 14 days and stained with Hoechst and a panel of FITC-conjugated lectins. All lectins, with the exception of Lycopersicon esculentum, labelled CESCs irrespective of the degree of differentiation. Lycopersicon esculentum, that binds N-acetylglucosamine oligomers, labelled intensely only the surface of TACs (single corneal epithelial stem cells better than colonial cells). These results suggest that Lycopersicon esculentum lectin is a useful and easy-to-use marker for the in vitro identification of TACs (transient amplifying cells) in cultures of isolated CESCs. Copyright 2010. Published by Elsevier Ltd.

  17. Zic-Proteins Are Repressors of Dopaminergic Forebrain Fate in Mice and C. elegans.

    PubMed

    Tiveron, Marie-Catherine; Beclin, Christophe; Murgan, Sabrina; Wild, Stefan; Angelova, Alexandra; Marc, Julie; Coré, Nathalie; de Chevigny, Antoine; Herrera, Eloisa; Bosio, Andreas; Bertrand, Vincent; Cremer, Harold

    2017-11-01

    In the postnatal forebrain regionalized neural stem cells along the ventricular walls produce olfactory bulb (OB) interneurons with varying neurotransmitter phenotypes and positions. To understand the molecular basis of this region-specific variability we analyzed gene expression in the postnatal dorsal and lateral lineages in mice of both sexes from stem cells to neurons. We show that both lineages maintain transcription factor signatures of their embryonic site of origin, the pallium and subpallium. However, additional factors, including Zic1 and Zic2, are postnatally expressed in the dorsal stem cell compartment and maintained in the lineage that generates calretinin-positive GABAergic neurons for the OB. Functionally, we show that Zic1 and Zic2 induce the generation of calretinin-positive neurons while suppressing dopaminergic fate in the postnatal dorsal lineage. We investigated the evolutionary conservation of the dopaminergic repressor function of Zic proteins and show that it is already present in C. elegans SIGNIFICANCE STATEMENT The vertebrate brain generates thousands of different neuron types. In this work we investigate the molecular mechanisms underlying this variability. Using a genomics approach we identify the transcription factor signatures of defined neural stem cells and neuron populations. Based thereon we show that two related transcription factors, Zic1 and Zic2, are essential to control the balance between two defined neuron types in the postnatal brain. We show that this mechanism is conserved in evolutionary very distant species. Copyright © 2017 the authors 0270-6474/17/3710611-13$15.00/0.

  18. Effects of mineral trioxide aggregate, BiodentineTM and calcium hydroxide on viability, proliferation, migration and differentiation of stem cells from human exfoliated deciduous teeth.

    PubMed

    Araújo, Leandro Borges; Cosme-Silva, Leopoldo; Fernandes, Ana Paula; Oliveira, Thais Marchini de; Cavalcanti, Bruno das Neves; Gomes Filho, João Eduardo; Sakai, Vivien Thiemy

    2018-02-01

    The aim of the study was to evaluate the effects of the capping materials mineral trioxide aggregate (MTA), calcium hydroxide (CH) and BiodentineTM (BD) on stem cells from human exfoliated deciduous teeth (SHED) in vitro. SHED were cultured for 1 - 7 days in medium conditioned by incubation with MTA, BD or CH (1 mg/mL), and tested for viability (MTT assay) and proliferation (SRB assay). Also, the migration of serum-starved SHED towards conditioned media was assayed in companion plates, with 8 μm-pore-sized membranes, for 24 h. Gene expression of dentin matrix protein-1 (DMP-1) was evaluated by reverse-transcription polymerase chain reaction. Regular culture medium with 10% FBS (without conditioning) and culture medium supplemented with 20% FBS were used as controls. MTA, CH and BD conditioned media maintained cell viability and allowed continuous SHED proliferation, with CH conditioned medium causing the highest positive effect on proliferation at the end of the treatment period (compared with BD and MTA) (p<0.05). In contrast, we observed increased SHED migration towards BD and MTA conditioned media (compared with CH) (p<0.05). A greater amount of DMP-1 gene was expressed in MTA group compared with the other groups from day 7 up to day 21. Our results show that the three capping materials are biocompatible, maintain viability and stimulate proliferation, migration and differentiation in a key dental stem cell population.

  19. Lack of TRPM5-Expressing Microvillous Cells in Mouse Main Olfactory Epithelium Leads to Impaired Odor-Evoked Responses and Olfactory-Guided Behavior in a Challenging Chemical Environment

    PubMed Central

    Lemons, Kayla; Aoudé, Imad; Ogura, Tatsuya; Mbonu, Kenechukwu; Matsumoto, Ichiro; Arakawa, Hiroyuki

    2017-01-01

    The mammalian main olfactory epithelium (MOE) modifies its activities in response to changes in the chemical environment. This process is essential for maintaining the functions of the olfactory system and the upper airway. However, mechanisms involved in this functional maintenance, especially those occurring via paracrine regulatory pathways within the multicellular MOE, are poorly understood. Previously, a population of non-neuronal, transient receptor potential M5-expressing microvillous cells (TRPM5-MCs) was identified in the MOE, and the initial characterization of these cells showed that they are cholinergic and responsive to various xenobiotics including odorants at high concentrations. Here, we investigated the role of TRPM5-MCs in maintaining olfactory function using transcription factor Skn-1a knockout (Skn-1a-/-) mice, which lack TRPM5-MCs in the MOE. Under our standard housing conditions, Skn-1a-/- mice do not differ significantly from control mice in odor-evoked electro-olfactogram (EOG) responses and olfactory-guided behaviors, including finding buried food and preference reactions to socially and sexually relevant odors. However, after a 2-wk exposure to high-concentration odor chemicals and chitin powder, Skn-1a-/- mice exhibited a significant reduction in their odor and pheromone-evoked EOG responses. Consequently, their olfactory-guided behaviors were impaired compared with vehicle-exposed Skn-1a-/- mice. Conversely, the chemical exposure did not induce significant changes in the EOG responses and olfactory behaviors of control mice. Therefore, our physiological and behavioral results indicate that TRPM5-MCs play a protective role in maintaining the olfactory function of the MOE. PMID:28612045

  20. Hedgehog restricts its expression domain in the Drosophila wing

    PubMed Central

    Bejarano, Fernando; Pérez, Lidia; Apidianakis, Yiorgos; Delidakis, Christos; Milán, Marco

    2007-01-01

    The stable subdivision of Drosophila limbs into anterior and posterior compartments is a consequence of asymmetrical signalling by Hedgehog (Hh), from the posterior to anterior cells. The activity of the homeodomain protein Engrailed in posterior cells helps to generate this asymmetry by inducing the expression of Hh in the posterior compartment and, at the same time, repressing the expression of the essential downstream component Cubitus interruptus (Ci). Therefore, only anterior cells that receive the Hh signal across the compartment boundary will respond by stabilizing Ci. Here, we describe a new molecular mechanism that helps to maintain the Hh-expressing and Hh-responding cells in different non-overlapping cell populations. Master of thickveins (mtv)—a target of Hh activity encoding a nuclear zinc-finger protein—is required to repress hh expression in anterior cells. Mtv exerts this action in a protein complex with Groucho (Gro)—the founding member of a superfamily of transcriptional corepressors that are conserved throughout eukaryotes. Therefore, Hh restricts its own expression domain in the Drosophila wing through the activity of Mtv and Gro. PMID:17571073

Top