Sample records for cell processes final

  1. Microchemical Systems for Fuel Processing and Conversion to Electrical Power

    DTIC Science & Technology

    2007-03-15

    Processing and Conversion to Electrical Power - Final Report 2 Table of Contents Table of Contents... Processing and Conversion to Electrical Power - Final Report 3 8.7 Development of Large Free-Standing Electrolyte-supported Micro Fuel Cell Membranes...84 MURI Microchemical Systems for Fuel Processing and

  2. Process development for automated solar cell and module production. Task 4: Automated array assembly

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1981-01-01

    Progress in the development of automated solar cell and module production is reported. The unimate robot is programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. The mechanical construction of the automated lamination station and final assembly station phases are completed and the first operational testing is underway. The final controlling program is written and optimized. The glass reinforced concrete (GRC) panels to be used for testing and deliverables are in production. Test routines are grouped together and defined to produce the final control program.

  3. [Participation of final products of lipid peroxidation in the anticancer mechanism of ionizing radiation and radiomimetic cytostatics].

    PubMed

    Przybyszewski, W M

    2001-01-01

    This review reports the evidence for the participation of final products of lipid peroxidation in the anticancer mechanism of ionising radiation and radiomimetic cytostatics. Processes of lipid peroxidation occur endogenously in response to oxidative stress and great diversity of reactive metabolites is formed. However, direct observation of radical reaction in pathophysiology of cells, tissues and organs is limited technically. Most investigations focused on the indirect assessment of their final products, aldehydes. The peroxidative breakdown of polyunsaturated fatty acids is believed to be involved in the regulation of cell division, and antitumor effect through biochemical and genetic processes.

  4. An update on methods for cryopreservation and thawing of hemopoietic stem cells.

    PubMed

    Lecchi, Lucilla; Giovanelli, Silvia; Gagliardi, Barbara; Pezzali, Ilaria; Ratti, Ilaria; Marconi, Maurizio

    2016-06-01

    The aim of this article is to review a number of variables that may affect the cryopreservation of minimally manipulated products containing allogeneic or autologous hemopoietic progenitor cells (HPC) used for transplantation, with particular reference to processing, type and addition of cryoprotectant, cell concentration, volume, freezing procedure, cooling rate, storage, thawing, and quality management. After defining final product's requirements in compliance with norms, laws and regulations, it is crucial to define the critical control points of the process. New approaches of processing were developed in the last few years such as automatic devices for volume reduction and high cell concentration in the frozen product. DMSO at 10% final concentration is still the most used cryoprotectant for HPC cryopreservation. Although controlled rate freezing is the recommended method for HPC cryopreservation, alternative methods may be used. Last generation vapor storage vessels ensure temperature stability better than older tanks. Their use may reduce risks of cross-contamination. Finally we review advantages and disadvantages of thawing procedures that may be carried out in the laboratory or at the patient's bedside. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Process development for automated solar cell and module production. Task 4: Automated array assembly

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1981-01-01

    The Unimate robot was programmed for the final 35 cell pattern to be used in the fabrication of the deliverable modules. Mechanical construction of the Automated Lamination Station and Final Assembly Station were completed on schedule. All final wiring and interconnect cables were also completed and the first operational testing began. The final controlling program was written. A local fabricator was contracted to produce the glass reinforced concrete panels to be used for testing and deliverables. A video tape showing all three stations in operation was produced.

  6. The final cut: cell polarity meets cytokinesis at the bud neck in S. cerevisiae.

    PubMed

    Juanes, Maria Angeles; Piatti, Simonetta

    2016-08-01

    Cell division is a fundamental but complex process that gives rise to two daughter cells. It includes an ordered set of events, altogether called "the cell cycle", that culminate with cytokinesis, the final stage of mitosis leading to the physical separation of the two daughter cells. Symmetric cell division equally partitions cellular components between the two daughter cells, which are therefore identical to one another and often share the same fate. In many cases, however, cell division is asymmetrical and generates two daughter cells that differ in specific protein inheritance, cell size, or developmental potential. The budding yeast Saccharomyces cerevisiae has proven to be an excellent system to investigate the molecular mechanisms governing asymmetric cell division and cytokinesis. Budding yeast is highly polarized during the cell cycle and divides asymmetrically, producing two cells with distinct sizes and fates. Many components of the machinery establishing cell polarization during budding are relocalized to the division site (i.e., the bud neck) for cytokinesis. In this review we recapitulate how budding yeast cells undergo polarized processes at the bud neck for cell division.

  7. Plasmid fermentation process for DNA immunization applications.

    PubMed

    Carnes, Aaron E; Williams, James A

    2014-01-01

    Plasmid DNA for immunization applications must be of the highest purity and quality. The ability of downstream purification to efficiently produce a pure final product is directly influenced by the performance of the upstream fermentation process. While several clinical manufacturing facilities already have validated fermentation processes in place to manufacture plasmid DNA for use in humans, a simple and inexpensive laboratory-scale fermentation process can be valuable for in-house production of plasmid DNA for use in animal efficacy studies. This chapter describes a simple fed-batch fermentation process for producing bacterial cell paste enriched with high-quality plasmid DNA. A constant feeding strategy results in a medium cell density culture with continuously increasing plasmid amplification towards the end of the process. Cell banking and seed culture preparation protocols, which can dramatically influence final product yield and quality, are also described. These protocols are suitable for production of research-grade plasmid DNA at the 100 mg-to-1.5 g scale from a typical 10 L laboratory benchtop fermentor.

  8. Development of hyper osmotic resistant CHO host cells for enhanced antibody production.

    PubMed

    Kamachi, Yasuharu; Omasa, Takeshi

    2018-04-01

    Cell culture platform processes are generally employed to shorten the duration of new product development. A fed-batch process with continuous feeding is a conventional platform process for monoclonal antibody production using Chinese hamster ovary (CHO) cells. To establish a simplified platform process, the feeding method can be changed from continuous feed to bolus feed. However, this change induces a rapid increase of osmolality by the bolus addition of nutrients. The increased osmolality suppresses cell culture growth, and the final product concentration is decreased. In this study, osmotic resistant CHO host cells were developed to attain a high product concentration. To establish hyper osmotic resistant CHO host cells, CHO-S host cells were passaged long-term in a hyper osmotic basal medium. There were marked differences in cell growth of the original and established host cells under iso- (328 mOsm/kg) or hyper-osmolality (over 450 mOsm/kg) conditions. Cell growth of the original CHO host cells was markedly decreased by the induction of osmotic stress, whereas cell growth of the hyper osmotic resistant CHO host cells was not affected. The maximum viable cell concentration of hyper osmotic resistant CHO host cells was 132% of CHO-S host cells after the induction of osmotic stress. Moreover, the hyper osmotic resistant characteristic of established CHO host cells was maintained even after seven passages in iso-osmolality basal medium. The use of hyper osmotic resistance CHO host cells to create a monoclonal antibody production cell line might be a new approach to increase final antibody concentrations with a fed-batch process. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Programmed cell death acts at different stages of Drosophila neurodevelopment to shape the central nervous system

    PubMed Central

    Desplan, Claude

    2016-01-01

    Nervous system development is a process that integrates cell proliferation, differentiation and programmed cell death (PCD). PCD is an evolutionary conserved mechanism and a fundamental developmental process by which the final cell number in a nervous system is established. In vertebrates and invertebrates, PCD can be determined intrinsically by cell lineage and age, as well as extrinsically by nutritional, metabolic and hormonal states. Drosophila has been an instrumental model for understanding how this mechanism is regulated. We review the role of PCD in Drosophila central nervous system development from neural progenitors to neurons, its molecular mechanism and function, how it is regulated and implemented, and how it ultimately shapes the fly central nervous system from the embryo to the adult. Finally, we discuss ideas that emerge while integrating this information. PMID:27404003

  10. Regulating positioning and orientation of mitotic spindles via cell size and shape

    NASA Astrophysics Data System (ADS)

    Li, Jingchen; Jiang, Hongyuan

    2018-01-01

    Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.

  11. Tumorigenicity assessment of human cell-processed therapeutic products.

    PubMed

    Yasuda, Satoshi; Sato, Yoji

    2015-09-01

    Human pluripotent stem cells (hPSCs) are expected to be sources of various cell types used for cell therapy, although hPSCs are intrinsically tumorigenic and form teratomas in immunodeficient animals after transplant. Despite the urgent need, no detailed guideline for the assessment of tumorigenicity of human cell-processed therapeutic products (hCTPs) has been issued. Here we describe our consideration on tumorigenicity and related tests of hCTPs. The purposes of those tests for hPSC-based products are classified into three categories: 1) quality control of raw materials; 2) quality control of intermediate/final products; and 3) safety assessment of final products. Appropriate types of tests need to be selected, taking the purpose(s) into consideration. In contrast, human somatic (and somatic stem) cells are believed to have little tumorigenicity. Therefore, GMP-compliant quality control is essential to avoid contamination of somatic cell-derived products with tumorigenic cells. Compared with in vivo tumorigenicity tests, in vitro cell proliferation assays may be more useful and reasonable for detecting immortalized cells that have a growth advantage in somatic cell-based products. The results obtained from tumorigenicity and related tests for hCTPs should meet the criteria for decisions on product development, manufacturing processes, and clinical applications. Copyright © 2015.

  12. Process for selection of oxygen-tolerant algal mutants that produce H{sub 2}

    DOEpatents

    Ghirardi, M.L.; Seibert, M.

    1999-02-16

    A process for selection of oxygen-tolerant, H{sub 2}-producing algal mutant cells comprises: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautotrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas and (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light; (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H{sub 2}-producing mutants. 5 figs.

  13. Process for selection of Oxygen-tolerant algal mutants that produce H.sub.2

    DOEpatents

    Ghirardi, Maria L.; Seibert, Michael

    1999-01-01

    A process for selection of oxygen-tolerant, H.sub.2 -producing algal mutant cells comprising: (a) growing algal cells photoautotrophically under fluorescent light to mid log phase; (b) inducing algal cells grown photoautrophically under fluorescent light to mid log phase in step (a) anaerobically by (1) resuspending the cells in a buffer solution and making said suspension anaerobic with an inert gas; (2) incubating the suspension in the absence of light at ambient temperature; (c) treating the cells from step (b) with metronidazole, sodium azide, and added oxygen to controlled concentrations in the presence of white light. (d) washing off metronidazole and sodium azide to obtain final cell suspension; (e) plating said final cell suspension on a minimal medium and incubating in light at a temperature sufficient to enable colonies to appear; (f) counting the number of colonies to determine the percent of mutant survivors; and (g) testing survivors to identify oxygen-tolerant H.sub.2 -producing mutants.

  14. Development of a robust, versatile, and scalable inoculum train for the production of a DNA vaccine.

    PubMed

    Okonkowski, J; Kizer-Bentley, L; Listner, K; Robinson, D; Chartrain, M

    2005-01-01

    For many microbial fermentation processes, the inoculum train can have a substantial impact on process performance in terms of productivity, profitability, and process control. In general, it is understood that a well-characterized and flexible inoculum train is essential for future scale-up and implementation of the process in a pilot plant or manufacturing setting. A fermentation process utilizing E. coli DH5 for the production of plasmid DNA carrying the HIV gag gene for use as a vaccine is currently under development in our laboratory. As part of the development effort, we evaluated inoculum train schemes that incorporate one, two, or three stages. In addition, we investigated the effect of inoculum viable-cell concentrations, either thawed or actively growing, over a wide range (from 2.5 x 10(4) to 1.0 x 10(8) viable cells/mL or approximately 0.001% to 4% of final working volume). The various inoculum trains were evaluated in terms of final plasmid yield, process time, reproducibility, robustness, and feasibility at large scale. The results of these studies show that final plasmid yield remained in the desired range, despite the number of stages or inoculation viable-cell concentrations comprising the inoculum train. On the basis of these observations and because it established a large database, the first part of these investigations supports an exceptional flexibility in the design of scalable inoculum trains for this DNA vaccine process. This work also highlighted that a slightly higher level of process reproducibility, as measured by the time for the culture to reach mid-exponential growth, was observed when using actively growing versus frozen cells. It also demonstrated the existence of a viable-cell concentration threshold for the one-stage process, since we observed that inoculation of the production stage with very low amounts of viable cells from a frozen source could lead to increased process sensitivity to external factors such as variation in the quality of the raw materials used in the medium formulation. However, our analysis indicates that, despite this slight disadvantage, a one-stage inoculum train was a viable option in many situations, especially if the inoculation viable-cell concentration was kept above 4.8 x 10(6) viable cells/mL. Because it leads to a reduction in process steps and eliminates some capital investments (i.e., inoculum fermenter), when feasible a one-stage process configuration will positively impact process economics.

  15. Achieving 15% Tandem Polymer Solar Cells

    DTIC Science & Technology

    2015-06-23

    solar cell structures – both polymer only and hybrid tandem cells to constantly pushing the envelope of solution processed solar cell ...performance – 11.6% polymer tandem cell , 7% transparent tandem polymer cell , and over 10% PCE hybrid tandem solar cells were achieved. In addition, AFOSR’s...final support also enabled us to explore novel hybrid perovskite solar cells in depth. For example, single junction cell efficiency

  16. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE PAGES

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut; ...

    2014-12-02

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  17. Leading-process actomyosin coordinates organelle positioning and adhesion receptor dynamics in radially migrating cerebellar granule neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trivedi, Niraj; Ramahi, Joseph S.; Karakaya, Mahmut

    During brain development, neurons migrate from germinal zones to their final positions to assemble neural circuits. A unique saltatory cadence involving cyclical organelle movement (e.g., centrosome motility) and leading-process actomyosin enrichment prior to nucleokinesis organizes neuronal migration. While functional evidence suggests that leading-process actomyosin is essential for centrosome motility, the role of the actin-enriched leading process in globally organizing organelle transport or traction forces remains unexplored. Our results show that myosin ii motors and F-actin dynamics are required for Golgi apparatus positioning before nucleokinesis in cerebellar granule neurons (CGNs) migrating along glial fibers. Moreover, we show that primary cilia aremore » motile organelles, localized to the leading-process F-actin-rich domain and immobilized by pharmacological inhibition of myosin ii and F-actin dynamics. Finally, leading process adhesion dynamics are dependent on myosin ii and F-actin. In conclusion, we propose that actomyosin coordinates the overall polarity of migrating CGNs by controlling asymmetric organelle positioning and cell-cell contacts as these cells move along their glial guides.« less

  18. A Novel Technique for Performing PID Susceptibility Screening during the Solar Cell Fabrication Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jaewon; Dahal, Som; Dauksher, Bill

    2016-11-21

    Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.

  19. Interpreting Chromosome Aberration Spectra

    NASA Technical Reports Server (NTRS)

    Levy, Dan; Reeder, Christopher; Loucas, Bradford; Hlatky, Lynn; Chen, Allen; Cornforth, Michael; Sachs, Rainer

    2007-01-01

    Ionizing radiation can damage cells by breaking both strands of DNA in multiple locations, essentially cutting chromosomes into pieces. The cell has enzymatic mechanisms to repair such breaks; however, these mechanisms are imperfect and, in an exchange process, may produce a large-scale rearrangement of the genome, called a chromosome aberration. Chromosome aberrations are important in killing cells, during carcinogenesis, in characterizing repair/misrepair pathways, in retrospective radiation biodosimetry, and in a number of other ways. DNA staining techniques such as mFISH ( multicolor fluorescent in situ hybridization) provide a means for analyzing aberration spectra by examining observed final patterns. Unfortunately, an mFISH observed final pattern often does not uniquely determine the underlying exchange process. Further, resolution limitations in the painting protocol sometimes lead to apparently incomplete final patterns. We here describe an algorithm for systematically finding exchange processes consistent with any observed final pattern. This algorithm uses aberration multigraphs, a mathematical formalism that links the various aspects of aberration formation. By applying a measure to the space of consistent multigraphs, we will show how to generate model-specific distributions of aberration processes from mFISH experimental data. The approach is implemented by software freely available over the internet. As a sample application, we apply these algorithms to an aberration data set, obtaining a distribution of exchange cycle sizes, which serves to measure aberration complexity. Estimating complexity, in turn, helps indicate how damaging the aberrations are and may facilitate identification of radiation type in retrospective biodosimetry.

  20. A quantitative risk assessment of exposure to adventitious agents in a cell culture-derived subunit influenza vaccine.

    PubMed

    Gregersen, Jens-Peter

    2008-06-19

    A risk-assessment model has demonstrated the ability of a new cell culture-based vaccine manufacturing process to reduce the level of any adventitious agent to a million-fold below infectious levels. The cell culture-derived subunit influenza vaccine (OPTAFLU), Novartis Vaccines and Diagnostics) is produced using Madin-Darby canine kidney (MDCK) cells to propagate seasonal viral strains, as an alternative to embryonated chicken-eggs. As only a limited range of mammalian viruses can grow in MDCK cells, similar to embryonated eggs, MDCK cells can act as an effective filter for a wide range of adventitious agents that might be introduced during vaccine production. However, the introduction of an alternative cell substrate (for example, MDCK cells) into a vaccine manufacturing process requires thorough investigations to assess the potential for adventitious agent risk in the final product, in the unlikely event that contamination should occur. The risk assessment takes into account the entire manufacturing process, from initial influenza virus isolation, through to blending of the trivalent subunit vaccine and worst-case residual titres for the final vaccine formulation have been calculated for >20 viruses or virus families. Maximum residual titres for all viruses tested were in the range of 10(-6) to 10(-16) infectious units per vaccine dose. Thus, the new cell culture-based vaccine manufacturing process can reduce any adventitious agent to a level that is unable to cause infection.

  1. Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B.

    PubMed

    Molina, Gustavo; Bution, Murillo L; Bicas, Juliano L; Dolder, Mary Anne Heidi; Pastore, Gláucia M

    2015-05-01

    This study compared the bioconversion process of S-(-)-limonene into limonene-1,2-diol with the already established biotransformation of R-(+)-limonene into α-terpineol using the same biocatalyst in both processes, Fusarium oxysporum 152B. The bioconversion of the S-(-)-isomer was tested on cell permeabilisation under anaerobic conditions and using a biphasic system. When submitted to permeabilisation trials, this biocatalyst has shown a relatively high resistance; still, no production of limonene-1,2-diol and a loss of activity of the biocatalyst were observed after intense cell treatment, indicating a complete loss of cell viability. Furthermore, the results showed that this process can be characterised as an aerobic system that was catalysed by limonene-1,2-epoxide hydrolase, had an intracellular nature and was cofactor-dependent because the final product was not detected by an anaerobic process. Finally, this is the first report to characterise the bioconversion of R-(+)- and S-(-)-limonene by cellular detoxification using ultra-structural analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cell design and manufacturing changes during the past decade

    NASA Technical Reports Server (NTRS)

    Baer, D. A.

    1978-01-01

    Eight of the most important changes that occurred in the GE 12 AH cell over the past ten years, which are currently being used are evaluated, and a systematic approach to compare their relative merits is presented. Typical positive thickness, typical negative thickness, positive loading, negative loading, final KOH quantity, and precharge as adjustment are shown for the control cell, and the following variables: Teflon treatment; silver treatment; light loading; no PQ treatment; polypropylene separator; the A.K. 1968 plate design no PQ, old elec process, no decarb process and the A.K. 1968 plate design, no PQ, present aerospace processes. The acceptance test cell voltage and cell pressure performance and capacity test results are included.

  3. Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro.

    PubMed

    Kalish, R S; Wood, J A; LaPorte, A

    1994-05-01

    The antigen processing requirements for urushiol, the immunogen of poison ivy (Toxicodendron radicans), were tested by presentation of urushiol to cultured human urushiol-responsive T cells. Urushiol was added to antigen-presenting cells (APC) either before or after fixation with paraformaldehyde. Three distinct routes of antigen processing were detected. CD8+ and CD4+ T cells, which were dependent upon processing, proliferated if urushiol was added to APC before fixation, but did not proliferate when urushiol was added to APC after fixation. Processing of urushiol for presentation to CD8+ T cells was inhibited by azide, monensin, and brefeldin A. This suggests that urushiol was processed by the endogenous pathway. In contrast, presentation of urushiol to CD4+ T cells was inhibited by monensin but not by brefeldin A. This was compatible with antigen processing by the endosomal (exogenous) pathway. Finally, certain CD8+ T cells recognized urushiol in the absence of processing. These cells proliferated in response to APC incubated with urushiol after fixation. Classification of contact allergens by antigen processing pathway may predict the relative roles of CD4+ and CD8+ cells in the immunopathogensis of allergic contact dermatitis.

  4. Processing of urushiol (poison ivy) hapten by both endogenous and exogenous pathways for presentation to T cells in vitro.

    PubMed Central

    Kalish, R S; Wood, J A; LaPorte, A

    1994-01-01

    The antigen processing requirements for urushiol, the immunogen of poison ivy (Toxicodendron radicans), were tested by presentation of urushiol to cultured human urushiol-responsive T cells. Urushiol was added to antigen-presenting cells (APC) either before or after fixation with paraformaldehyde. Three distinct routes of antigen processing were detected. CD8+ and CD4+ T cells, which were dependent upon processing, proliferated if urushiol was added to APC before fixation, but did not proliferate when urushiol was added to APC after fixation. Processing of urushiol for presentation to CD8+ T cells was inhibited by azide, monensin, and brefeldin A. This suggests that urushiol was processed by the endogenous pathway. In contrast, presentation of urushiol to CD4+ T cells was inhibited by monensin but not by brefeldin A. This was compatible with antigen processing by the endosomal (exogenous) pathway. Finally, certain CD8+ T cells recognized urushiol in the absence of processing. These cells proliferated in response to APC incubated with urushiol after fixation. Classification of contact allergens by antigen processing pathway may predict the relative roles of CD4+ and CD8+ cells in the immunopathogensis of allergic contact dermatitis. Images PMID:7910172

  5. Bioreactor expansion of human mesenchymal stem cells according to GMP requirements.

    PubMed

    Elseberg, Christiane L; Salzig, Denise; Czermak, Peter

    2015-01-01

    In cell therapy, the use of autologous and allogenic human mesenchymal stem cells is rising. Accordingly, the supply of cells for clinical applications in highest quality is required. As hMSCs are considered as an advanced therapy medicinal products (ATMP), they underlie the requirements of GMP and PAT according to the authorities (FDA and EMA). The production process of these cells must therefore be documented according to GMP, which is usually performed via a GMP protocol based on standard operating procedures. This chapter provides an example of such a GMP protocol for hMSC, here a genetically modified allogenic cell line, based on a production process in a microcarrier-based stirred tank reactor including process monitoring according to PAT and final product quality assurance.

  6. Media fill for validation of a good manufacturing practice-compliant cell production process.

    PubMed

    Serra, Marta; Roseti, Livia; Bassi, Alessandra

    2015-01-01

    According to the European Regulation EC 1394/2007, the clinical use of Advanced Therapy Medicinal Products, such as Human Bone Marrow Mesenchymal Stem Cells expanded for the regeneration of bone tissue or Chondrocytes for Autologous Implantation, requires the development of a process in compliance with the Good Manufacturing Practices. The Media Fill test, consisting of a simulation of the expansion process by using a microbial growth medium instead of the cells, is considered one of the most effective ways to validate a cell production process. Such simulation, in fact, allows to identify any weakness in production that can lead to microbiological contamination of the final cell product as well as qualifying operators. Here, we report the critical aspects concerning the design of a Media Fill test to be used as a tool for the further validation of the sterility of a cell-based Good Manufacturing Practice-compliant production process.

  7. Processing umami and other tastes in mammalian taste buds.

    PubMed

    Roper, Stephen D; Chaudhari, Nirupa

    2009-07-01

    Neuroscientists are now coming to appreciate that a significant degree of information processing occurs in the peripheral sensory organs of taste prior to signals propagating to the brain. Gustatory stimulation causes taste bud cells to secrete neurotransmitters that act on adjacent taste bud cells (paracrine transmitters) as well as on primary sensory afferent fibers (neurocrine transmitters). Paracrine transmission, representing cell-cell communication within the taste bud, has the potential to shape the final signal output that taste buds transmit to the brain. The following paragraphs summarize current thinking about how taste signals generally, and umami taste in particular, are processed in taste buds.

  8. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products

    PubMed Central

    Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike

    2016-01-01

    Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135

  9. Quality cell therapy manufacturing by design.

    PubMed

    Lipsitz, Yonatan Y; Timmins, Nicholas E; Zandstra, Peter W

    2016-04-01

    Transplantation of live cells as therapeutic agents is poised to offer new treatment options for a wide range of acute and chronic diseases. However, the biological complexity of cells has hampered the translation of laboratory-scale experiments into industrial processes for reliable, cost-effective manufacturing of cell-based therapies. We argue here that a solution to this challenge is to design cell manufacturing processes according to quality-by-design (QbD) principles. QbD integrates scientific knowledge and risk analysis into manufacturing process development and is already being adopted by the biopharmaceutical industry. Many opportunities to incorporate QbD into cell therapy manufacturing exist, although further technology development is required for full implementation. Linking measurable molecular and cellular characteristics of a cell population to final product quality through QbD is a crucial step in realizing the potential for cell therapies to transform healthcare.

  10. Current status and challenges for automotive battery production technologies

    NASA Astrophysics Data System (ADS)

    Kwade, Arno; Haselrieder, Wolfgang; Leithoff, Ruben; Modlinger, Armin; Dietrich, Franz; Droeder, Klaus

    2018-04-01

    Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented.

  11. The price of independence: cell separation in fission yeast.

    PubMed

    Martín-García, Rebeca; Santos, Beatriz

    2016-04-01

    The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.

  12. Post-thymic maturation: young T cells assert their individuality.

    PubMed

    Fink, Pamela J; Hendricks, Deborah W

    2011-07-22

    T cell maturation was once thought to occur entirely within the thymus. Now, evidence is mounting that the youngest peripheral T cells in both mice and humans comprise a distinct population from their more mature, yet still naive, counterparts. These cells, termed recent thymic emigrants (RTEs), undergo a process of post-thymic maturation that can be monitored at the levels of cell phenotype and immune function. Understanding this final maturation step in the process of generating useful and safe T cells is of clinical relevance, given that RTEs are over-represented in neonates and in adults recovering from lymphopenia. Post-thymic maturation may function to ensure T cell fitness and self tolerance.

  13. Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process.

    PubMed

    Bastos, Rita; Coelho, Elisabete; Coimbra, Manuel A

    2015-06-25

    The cell wall polysaccharides of brewers spent yeast Saccharomyces pastorianus (BSY) and the inoculum yeast (IY) were studied in order to understand the changes induced by the brewing process. The hot water and alkali extractions performed solubilized mainly mannoproteins, more branched for BSY than those of IY. Also, (31)P solid state NMR showed that the BSY mannoproteins were 3 times more phosphorylated. By electron microscopy it was observed that the final residues of alkali sequential extraction until 4M KOH preserved the yeast three-dimensional structure. The final residues, composed mainly by glucans (92%), showed that the BSY, when compared with IY, contained higher amount of (1→4)-linked Glc (43% for BSY and 16% for IY) and lower (1→3)-linked Glc (17% for BSY and 42% for IY). The enzymatic treatment of final residue showed that both BSY and IY had (α1→4)-linked Glc and (β1→4)-linked Glc, in a 2:1 ratio, showing that S. pastorianus increases their cellulose-like linkages with the brewing process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Content addressable memory project

    NASA Technical Reports Server (NTRS)

    Hall, Josh; Levy, Saul; Smith, D.; Wei, S.; Miyake, K.; Murdocca, M.

    1991-01-01

    The progress on the Rutgers CAM (Content Addressable Memory) Project is described. The overall design of the system is completed at the architectural level and described. The machine is composed of two kinds of cells: (1) the CAM cells which include both memory and processor, and support local processing within each cell; and (2) the tree cells, which have smaller instruction set, and provide global processing over the CAM cells. A parameterized design of the basic CAM cell is completed. Progress was made on the final specification of the CPS. The machine architecture was driven by the design of algorithms whose requirements are reflected in the resulted instruction set(s). A few of these algorithms are described.

  15. Membrane oxidation in cell delivery and cell killing applications

    PubMed Central

    Wang, Ting-Yi; Libardo, M. Daben J.; Angeles-Boza, Alfredo M.; Pellois, Jean-Philippe

    2018-01-01

    Cell delivery or cell killing processes often involve the crossing or disruption of cellular membranes. We review how, by modifying the composition and properties of membranes, membrane oxidation can be exploited to enhance the delivery of macromolecular cargos into live human cells. We also describe how membrane oxidation can be utilized to achieve efficient killing of bacteria by antimicrobial peptides. Finally, we present recent evidence highlighting how membrane oxidation is intimately engaged in natural biological processes such as antigen delivery in dendritic cells and in the killing of bacteria by human macrophages. Overall, the insights that have been recently gained in this area should facilitate the development of more effective delivery technologies and antimicrobial therapeutic approaches. PMID:28355059

  16. Investigation of the performance of fermentation processes using a mathematical model including effects of metabolic bottleneck and toxic product on cells.

    PubMed

    Sriyudthsak, Kansuporn; Shiraishi, Fumihide

    2010-11-01

    A number of recent research studies have focused on theoretical and experimental investigation of a bottleneck in a metabolic reaction network. However, there is no study on how the bottleneck affects the performance of a fermentation process when a product is highly toxic and remarkably influences the growth and death of cells. The present work therefore studies the effect of bottleneck on product concentrations under different product toxicity conditions. A generalized bottleneck model in a fed-batch fermentation is constructed including both the bottleneck and the product influences on cell growth and death. The simulation result reveals that when the toxic product strongly influences the cell growth and death, the final product concentration is hardly changed even if the bottleneck is removed, whereas it is markedly changed by the degree of product toxicity. The performance of an ethanol fermentation process is also discussed as a case example to validate this result. In conclusion, when the product is highly toxic, one cannot expect a significant increase in the final product concentration even if removing the bottleneck; rather, it may be more effective to somehow protect the cells so that they can continuously produce the product. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  18. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  19. Bioreactor concepts for cell culture-based viral vaccine production.

    PubMed

    Gallo-Ramírez, Lilí Esmeralda; Nikolay, Alexander; Genzel, Yvonne; Reichl, Udo

    2015-01-01

    Vaccine manufacturing processes are designed to meet present and upcoming challenges associated with a growing vaccine market and to include multi-use facilities offering a broad portfolio and faster reaction times in case of pandemics and emerging diseases. The final products, from whole viruses to recombinant viral proteins, are very diverse, making standard process strategies hardly universally applicable. Numerous factors such as cell substrate, virus strain or expression system, medium, cultivation system, cultivation method, and scale need consideration. Reviewing options for efficient and economical production of human vaccines, this paper discusses basic factors relevant for viral antigen production in mammalian cells, avian cells and insect cells. In addition, bioreactor concepts, including static systems, single-use systems, stirred tanks and packed-beds are addressed. On this basis, methods towards process intensification, in particular operational strategies, the use of perfusion systems for high product yields, and steps to establish continuous processes are introduced.

  20. Targeting the Immune System’s Natural Response to Cell Death to Improve Therapeutic Response in Breast Cancers

    DTIC Science & Technology

    2015-07-01

    epithelial cells (MECs) are cleared from the mammary gland through efferocytosis, a process by which macrophages and other phagocytes recognize, bind to...chronic inflammatory lung disease. Chest. 2006;129(6):1673–1682. 48. deCathelineau AM, Henson PM. The final step in programmed cell death: phagocytes ...carry apoptotic cells to the grave. Essays Biochem. 2003;39:105–117. 49. Erwig LP, Henson PM. Clearance of apop- totic cells by phagocytes . Cell Death

  1. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells.

    PubMed

    Armstrong, Christine A; Tomita, Kazunori

    2017-03-01

    Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments. © 2017 The Authors.

  2. Inhibiting Mitophagy as a Novel Mechanism to Kill Prostate Cancer Cells

    DTIC Science & Technology

    2014-10-01

    cells. Key mediators of the mitophagic process, specifically Parkin , dynamin- related protein-1 (Drp1), fission-1 (Fis1), and cyclophilin-D (CypD...production and was protective against chemotherapeutic-induced cell death. In contrast, Fis1 and Parkin knockdown was sufficient to sensitize LNCaP...targeting of Fis1 and Parkin may have therapeutic value as they both sensitized prostate cancer cells to the necrotic effects of doxorubicin. Finally

  3. RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells

    PubMed Central

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté

    2017-01-01

    ABSTRACT Homeostatic replacement of epithelial cells from basal precursors is a multistep process involving progenitor cell specification, radial intercalation and, finally, apical surface emergence. Recent data demonstrate that actin-based pushing under the control of the formin protein Fmn1 drives apical emergence in nascent multiciliated epithelial cells (MCCs), but little else is known about this actin network or the control of Fmn1. Here, we explore the role of the small GTPase RhoA in MCC apical emergence. Disruption of RhoA function reduced the rate of apical surface expansion and decreased the final size of the apical domain. Analysis of cell shapes suggests that RhoA alters the balance of forces exerted on the MCC apical surface. Finally, quantitative time-lapse imaging and fluorescence recovery after photobleaching studies argue that RhoA works in concert with Fmn1 to control assembly of the specialized apical actin network in MCCs. These data provide new molecular insights into epithelial apical surface assembly and could also shed light on mechanisms of apical lumen formation. PMID:28089989

  4. RhoA regulates actin network dynamics during apical surface emergence in multiciliated epithelial cells.

    PubMed

    Sedzinski, Jakub; Hannezo, Edouard; Tu, Fan; Biro, Maté; Wallingford, John B

    2017-01-15

    Homeostatic replacement of epithelial cells from basal precursors is a multistep process involving progenitor cell specification, radial intercalation and, finally, apical surface emergence. Recent data demonstrate that actin-based pushing under the control of the formin protein Fmn1 drives apical emergence in nascent multiciliated epithelial cells (MCCs), but little else is known about this actin network or the control of Fmn1. Here, we explore the role of the small GTPase RhoA in MCC apical emergence. Disruption of RhoA function reduced the rate of apical surface expansion and decreased the final size of the apical domain. Analysis of cell shapes suggests that RhoA alters the balance of forces exerted on the MCC apical surface. Finally, quantitative time-lapse imaging and fluorescence recovery after photobleaching studies argue that RhoA works in concert with Fmn1 to control assembly of the specialized apical actin network in MCCs. These data provide new molecular insights into epithelial apical surface assembly and could also shed light on mechanisms of apical lumen formation. © 2017. Published by The Company of Biologists Ltd.

  5. Regulatory mechanism of protein metabolic pathway during the differentiation process of chicken male germ cell.

    PubMed

    Li, Dong; Zuo, Qisheng; Lian, Chao; Zhang, Lei; Shi, Qingqing; Zhang, Zhentao; Wang, Yingjie; Ahmed, Mahmoud F; Tang, Beibei; Xiao, Tianrong; Zhang, Yani; Li, Bichun

    2015-08-01

    We explored the regulatory mechanism of protein metabolism during the differentiation process of chicken male germ cells and provide a basis for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro. We sequenced the transcriptome of embryonic stem cells, primordial germ cells, and spermatogonial stem cells with RNA sequencing (RNA-Seq), bioinformatics analysis methods, and detection of the key genes by quantitative reverse transcription PCR (qRT-PCR). Finally, we found 16 amino acid metabolic pathways enriched in the biological metabolism during the differentiation process of embryonic stem cells to primordial germ cells and 15 amino acid metabolic pathways enriched in the differentiation stage of primordial germ cells to spermatogonial stem cells. We found three pathways, arginine-proline metabolic pathway, tyrosine metabolic pathway, and tryptophan metabolic pathway, significantly enriched in the whole differentiation process of embryonic stem cells to spermatogonial stem cells. Moreover, for these three pathways, we screened key genes such as NOS2, ADC, FAH, and IDO. qRT-PCR results showed that the expression trend of these genes were the same to RNA-Seq. Our findings showed that the three pathways and these key genes play an important role in the differentiation process of embryonic stem cells to male germ cells. These results provide basic information for improving the induction system of embryonic stem cell differentiation to male germ cells in vitro.

  6. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model.

    PubMed

    Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L

    2013-03-13

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.

  7. Processing Solvent Dependent Morphology of Diketopyrrolopyrrole (DPP) based Low Band Gap Polymer and PCBM Blends

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Russell, Thomas

    2013-03-01

    Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.

  8. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor.

    PubMed

    Rafiq, Qasim A; Hanga, Mariana P; Heathman, Thomas R J; Coopman, Karen; Nienow, Alvin W; Williams, David J; Hewitt, Christopher J

    2017-10-01

    Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high-throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum-based medium was applied to a serum-free process in the ambr15, resulting in >250% increase in yield compared to the serum-based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, N JS . The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06-0.54%, respectively. The combination of both serum-free and automated processing improved the reproducibility more than 10-fold compared to the serum-based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum-free medium, control, and automation improves both process yield and consistency. Biotechnol. Bioeng. 2017;114: 2253-2266. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Process development of human multipotent stromal cell microcarrier culture using an automated high‐throughput microbioreactor

    PubMed Central

    Hanga, Mariana P.; Heathman, Thomas R. J.; Coopman, Karen; Nienow, Alvin W.; Williams, David J.; Hewitt, Christopher J.

    2017-01-01

    ABSTRACT Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high‐throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum‐based medium was applied to a serum‐free process in the ambr15, resulting in >250% increase in yield compared to the serum‐based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, NJS. The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06–0.54%, respectively. The combination of both serum‐free and automated processing improved the reproducibility more than 10‐fold compared to the serum‐based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum‐free medium, control, and automation improves both process yield and consistency. Biotechnol. Bioeng. 2017;114: 2253–2266. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. PMID:28627713

  10. Microfluidic Sample Preparation for Diagnostic Cytopathology

    PubMed Central

    Mach, Albert J.; Adeyiga, Oladunni B.; Di Carlo, Dino

    2014-01-01

    The cellular components of body fluids are routinely analyzed to identify disease and treatment approaches. While significant focus has been placed on developing cell analysis technologies, tools to automate the preparation of cellular specimens have been more limited, especially for body fluids beyond blood. Preparation steps include separating, concentrating, and exposing cells to reagents. Sample preparation continues to be routinely performed off-chip by technicians, preventing cell-based point-of-care diagnostics, increasing the cost of tests, and reducing the consistency of the final analysis following multiple manually-performed steps. Here, we review the assortment of biofluids for which suspended cells are analyzed, along with their characteristics and diagnostic value. We present an overview of the conventional sample preparation processes for cytological diagnosis. We finally discuss the challenges and opportunities in developing microfluidic devices for the purpose of automating or miniaturizing these processes, with particular emphases on preparing large or small volume samples, working with samples of high cellularity, automating multi-step processes, and obtaining high purity subpopulations of cells. We hope to convey the importance of and help identify new research directions addressing the vast biological and clinical applications in preparing and analyzing the array of available biological fluids. Successfully addressing the challenges described in this review can lead to inexpensive systems to improve diagnostic accuracy while simultaneously reducing overall systemic healthcare costs. PMID:23380972

  11. CRADA No. BNL-C-97-10 between BNL and Cotton, Inc. Final abstract and final report [Final Report of Research carried out under DOE CRADA No. BNL-C-97-10 - "Prediction of Yield in Cotton"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The objectives of this work were to determine if the numbér of fiber cell initials varied genetically and to compare the number of initials with that of mature fibers obtained at harvest time. The method used to count the number of fiber cell initials is direct, simple, quick and done while the plant is growing. In contrast, the currently used commercial process is indirect and needs large amount mature fibers gathered at harvest time. However, all current work on cotton yield is based on fiber numbers obtained by the indirect commercial process. Consequently, it was necessary to compare results obtainedmore » from the two methods using the same plants as the source of material. The results show that the number of fiber initials per ovule differed significantly (P>0.05) for seven cultivars in 1995 and 1996. AIso, a 1997 study shows the number of fiber initials varied by 15% over boll positions and environments, with rankings among cultivars generally consistent across boll positions and sampling times. Finally, although there were differences among cultivars for initial fiber cell number, all cultivars had nearly the same number of mature lint fibers per seed. This last finding is significant. It indicates that the rate of fiber cell initiation varies among cultivars; the lower the rate, the greater the difference between the number of initials and the number of mature fiber cells. If the rate of fiber initiation is relatively high, the number of initials and mature fibers differs by about 11%; if it is low, the difference is as high as 31%. Cotton breeders may be able to use genetic differences for the number of fiber initials and/or the rate of fiber cell initiation in crop improvement programs.« less

  12. The Case for Absolute Ligand Discrimination: Modeling Information Processing and Decision by Immune T Cells

    NASA Astrophysics Data System (ADS)

    François, Paul; Altan-Bonnet, Grégoire

    2016-03-01

    Some cells have to take decision based on the quality of surroundings ligands, almost irrespective of their quantity, a problem we name "absolute discrimination". An example of absolute discrimination is recognition of not-self by immune T Cells. We show how the problem of absolute discrimination can be solved by a process called "adaptive sorting". We review several implementations of adaptive sorting, as well as its generic properties such as antagonism. We show how kinetic proofreading with negative feedback implement an approximate version of adaptive sorting in the immune context. Finally, we revisit the decision problem at the cell population level, showing how phenotypic variability and feedbacks between population and single cells are crucial for proper decision.

  13. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest.

    PubMed

    Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn

    2014-01-01

    For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.

  14. Host cell proteins in biotechnology-derived products: A risk assessment framework.

    PubMed

    de Zafra, Christina L Zuch; Quarmby, Valerie; Francissen, Kathleen; Vanderlaan, Martin; Zhu-Shimoni, Judith

    2015-11-01

    To manufacture biotechnology products, mammalian or bacterial cells are engineered for the production of recombinant therapeutic human proteins including monoclonal antibodies. Host cells synthesize an entire repertoire of proteins which are essential for their own function and survival. Biotechnology manufacturing processes are designed to produce recombinant therapeutics with a very high degree of purity. While there is typically a low residual level of host cell protein in the final drug product, under some circumstances a host cell protein(s) may copurify with the therapeutic protein and, if it is not detected and removed, it may become an unintended component of the final product. The purpose of this article is to enumerate and discuss factors to be considered in an assessment of risk of residual host cell protein(s) detected and identified in the drug product. The consideration of these factors and their relative ranking will lead to an overall risk assessment that informs decision-making around how to control the levels of host cell proteins. © 2015 Wiley Periodicals, Inc.

  15. Development, upscaling and validation of the purification process for human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII produced in a human cell-line.

    PubMed

    Winge, Stefan; Yderland, Louise; Kannicht, Christoph; Hermans, Pim; Adema, Simon; Schmidt, Torben; Gilljam, Gustav; Linhult, Martin; Tiemeyer, Maya; Belyanskaya, Larisa; Walter, Olaf

    2015-11-01

    Human-cl rhFVIII (Nuwiq®), a new generation recombinant factor VIII (rFVIII), is the first rFVIII produced in a human cell-line approved by the European Medicines Agency. To describe the development, upscaling and process validation for industrial-scale human-cl rhFVIII purification. The purification process involves one centrifugation, two filtration, five chromatography columns and two dedicated pathogen clearance steps (solvent/detergent treatment and 20 nm nanofiltration). The key purification step uses an affinity resin (VIIISelect) with high specificity for FVIII, removing essentially all host-cell proteins with >80% product recovery. The production-scale multi-step purification process efficiently removes process- and product-related impurities and results in a high-purity rhFVIII product, with an overall yield of ∼50%. Specific activity of the final product was >9000 IU/mg, and the ratio between active FVIII and total FVIII protein present was >0.9. The entire production process is free of animal-derived products. Leaching of potential harmful compounds from chromatography resins and all pathogens tested were below the limit of quantification in the final product. Human-cl rhFVIII can be produced at 500 L bioreactor scale, maintaining high purity and recoveries. The innovative purification process ensures a high-purity and high-quality human-cl rhFVIII product with a high pathogen safety margin. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Planarian yorkie/YAP functions to integrate adult stem cell proliferation, organ homeostasis and maintenance of axial patterning.

    PubMed

    Lin, Alexander Y T; Pearson, Bret J

    2014-03-01

    During adult homeostasis and regeneration, the freshwater planarian must accomplish a constant balance between cell proliferation and cell death, while also maintaining proper tissue and organ size and patterning. How these ordered processes are precisely modulated remains relatively unknown. Here we show that planarians use the downstream effector of the Hippo signaling cascade, yorkie (yki; YAP in vertebrates) to control a diverse set of pleiotropic processes in organ homeostasis, stem cell regulation, regeneration and axial patterning. We show that yki functions to maintain the homeostasis of the planarian excretory (protonephridial) system and to limit stem cell proliferation, but does not affect the differentiation process or cell death. Finally, we show that Yki acts synergistically with WNT/β-catenin signaling to repress head determination by limiting the expression domains of posterior WNT genes and that of the WNT-inhibitor notum. Together, our data show that yki is a key gene in planarians that integrates stem cell proliferation control, organ homeostasis, and the spatial patterning of tissues.

  17. Continuous Change in Membrane and Membrane-Skeleton Organization During Development From Proerythroblast to Senescent Red Blood Cell

    PubMed Central

    Minetti, Giampaolo; Achilli, Cesare; Perotti, Cesare; Ciana, Annarita

    2018-01-01

    Within the context of erythropoiesis and the possibility of producing artificial red blood cells (RBCs) in vitro, a most critical step is the final differentiation of enucleated erythroblasts, or reticulocytes, to a fully mature biconcave discocyte, the RBC. Reviewed here is the current knowledge about this fundamental maturational process. By combining literature data with our own experimental evidence we propose that the early phase in the maturation of reticulocytes to RBCs is driven by a membrane raft-based mechanism for the sorting of disposable membrane proteins, mostly the no longer needed transferrin receptor (TfR), to the multivesicular endosome (MVE) as cargo of intraluminal vesicles that are subsequently exocytosed as exosomes, consistently with the seminal and original observation of Johnstone and collaborators of more than 30 years ago (Pan BT, Johnstone RM. Cell. 1983;33:967-978). According to a strikingly selective sorting process, the TfR becomes cargo destined to exocytosis while other molecules, including the most abundant RBC transmembrane protein, band 3, are completely retained in the cell membrane. It is also proposed that while this process could be operating in the early maturational steps in the bone marrow, additional mechanism(s) must be at play for the final removal of the excess reticulocyte membrane that is observed to occur in the circulation. This processing will most likely require the intervention of the spleen, whose function is also necessary for the continuous remodeling of the RBC membrane all along this cell's circulatory life. PMID:29632498

  18. Developing global regression models for metabolite concentration prediction regardless of cell line.

    PubMed

    André, Silvère; Lagresle, Sylvain; Da Sliva, Anthony; Heimendinger, Pierre; Hannas, Zahia; Calvosa, Éric; Duponchel, Ludovic

    2017-11-01

    Following the Process Analytical Technology (PAT) of the Food and Drug Administration (FDA), drug manufacturers are encouraged to develop innovative techniques in order to monitor and understand their processes in a better way. Within this framework, it has been demonstrated that Raman spectroscopy coupled with chemometric tools allow to predict critical parameters of mammalian cell cultures in-line and in real time. However, the development of robust and predictive regression models clearly requires many batches in order to take into account inter-batch variability and enhance models accuracy. Nevertheless, this heavy procedure has to be repeated for every new line of cell culture involving many resources. This is why we propose in this paper to develop global regression models taking into account different cell lines. Such models are finally transferred to any culture of the cells involved. This article first demonstrates the feasibility of developing regression models, not only for mammalian cell lines (CHO and HeLa cell cultures), but also for insect cell lines (Sf9 cell cultures). Then global regression models are generated, based on CHO cells, HeLa cells, and Sf9 cells. Finally, these models are evaluated considering a fourth cell line(HEK cells). In addition to suitable predictions of glucose and lactate concentration of HEK cell cultures, we expose that by adding a single HEK-cell culture to the calibration set, the predictive ability of the regression models are substantially increased. In this way, we demonstrate that using global models, it is not necessary to consider many cultures of a new cell line in order to obtain accurate models. Biotechnol. Bioeng. 2017;114: 2550-2559. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Crystallization Pathways in Biomineralization

    NASA Astrophysics Data System (ADS)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  20. Detection and measurement of the intracellular calcium variation in follicular cells.

    PubMed

    Herrera-Navarro, Ana M; Terol-Villalobos, Iván R; Jiménez-Hernández, Hugo; Peregrina-Barreto, Hayde; Gonzalez-Barboza, José-Joel

    2014-01-01

    This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i) the detection of the cell's nuclei and (ii) the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca(2+). Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal.

  1. Detection and Measurement of the Intracellular Calcium Variation in Follicular Cells

    PubMed Central

    Herrera-Navarro, Ana M.; Terol-Villalobos, Iván R.; Jiménez-Hernández, Hugo; Peregrina-Barreto, Hayde; Gonzalez-Barboza, José-Joel

    2014-01-01

    This work presents a new method for measuring the variation of intracellular calcium in follicular cells. The proposal consists in two stages: (i) the detection of the cell's nuclei and (ii) the analysis of the fluorescence variations. The first stage is performed via watershed modified transformation, where the process of labeling is controlled. The detection process uses the contours of the cells as descriptors, where they are enhanced with a morphological filter that homogenizes the luminance variation of the image. In the second stage, the fluorescence variations are modeled as an exponential decreasing function, where the fluorescence variations are highly correlated with the changes of intracellular free Ca2+. Additionally, it is introduced a new morphological called medium reconstruction process, which helps to enhance the data for the modeling process. This filter exploits the undermodeling and overmodeling properties of reconstruction operators, such that it preserves the structure of the original signal. Finally, an experimental process shows evidence of the capabilities of the proposal. PMID:25342958

  2. Nano-Aramid Fiber Reinforced Polyurethane Foam

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.; Frances, Arnold

    2008-01-01

    Closed cell polyurethane and, particularly, polyisocyanurate foams are a large family of flexible and rigid products the result of a reactive two part process wherein a urethane based polyol is combined with a foaming or "blowing" agent to create a cellular solid at room temperature. The ratio of reactive components, the constituency of the base materials, temperature, humidity, molding, pouring, spraying and many other processing techniques vary greatly. However, there is no known process for incorporating reinforcing fibers small enough to be integrally dispersed within the cell walls resulting in superior final products. The key differentiating aspect from the current state of art resides in the many processing technologies to be fully developed from the novel concept of milled nano pulp aramid fibers and their enabling entanglement capability fully enclosed within the cell walls of these closed cell urethane foams. The authors present the results of research and development of reinforced foam processing, equipment development, strength characteristics and the evolution of its many applications.

  3. Curcumin in Cell Death Processes: A Challenge for CAM of Age-Related Pathologies

    PubMed Central

    Salvioli, S.; Sikora, E.; Cooper, E. L.

    2007-01-01

    Curcumin, the yellow pigment from the rhizoma of Curcuma longa, is a widely studied phytochemical which has a variety of biological activities: anti-inflammatory and anti-oxidative. In this review we discuss the biological mechanisms and possible clinical effects of curcumin treatment on cancer therapy, and neurodegenerative diseases such as Alzheimer's Disease, with particular attention to the cell death processes induced by curcumin. Since oxidative stress and inflammation are major determinants of the aging process, we also argue that curcumin can have a more general effect that slows down the rate of aging. Finally, the effects of curcumin can be described as xenohormetic, since it activates a sort of stress response in mammalian cells. PMID:17549234

  4. Concise Review: Process Development Considerations for Cell Therapy

    PubMed Central

    Brieva, Thomas; Raviv, Lior; Rowley, Jon; Niss, Knut; Brandwein, Harvey; Oh, Steve; Karnieli, Ohad

    2015-01-01

    The development of robust and well-characterized methods of production of cell therapies has become increasingly important as therapies advance through clinical trials toward approval. A successful cell therapy will be a consistent, safe, and effective cell product, regardless of the cell type or application. Process development strategies can be developed to gain efficiency while maintaining or improving safety and quality profiles. This review presents an introduction to the process development challenges of cell therapies and describes some of the tools available to address production issues. This article will provide a summary of what should be considered to efficiently advance a cellular therapy from the research stage through clinical trials and finally toward commercialization. The identification of the basic questions that affect process development is summarized in the target product profile, and considerations for process optimization are discussed. The goal is to identify potential manufacturing concerns early in the process so they may be addressed effectively and thus increase the probability that a therapy will be successful. Significance The present study contributes to the field of cell therapy by providing a resource for those transitioning a potential therapy from the research stage to clinical and commercial applications. It provides the necessary steps that, when followed, can result in successful therapies from both a clinical and commercial perspective. PMID:26315572

  5. Extending the knowledge in histochemistry and cell biology.

    PubMed

    Heupel, Wolfgang-Moritz; Drenckhahn, Detlev

    2010-01-01

    Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.

  6. Natural history of hepatic metastases from colorectal cancer--pathobiological pathways with clinical significance.

    PubMed

    Paschos, Konstantinos A; Majeed, Ali W; Bird, Nigel C

    2014-04-14

    Colorectal cancer hepatic metastases represent the final stage of a multi-step biological process. This process starts with a series of mutations in colonic epithelial cells, continues with their detachment from the large intestine, dissemination through the blood and/or lymphatic circulation, attachment to the hepatic sinusoids and interactions with the sinusoidal cells, such as sinusoidal endothelial cells, Kupffer cells, stellate cells and pit cells. The metastatic sequence terminates with colorectal cancer cell invasion, adaptation and colonisation of the hepatic parenchyma. All these events, termed the colorectal cancer invasion-metastasis cascade, include multiple molecular pathways, intercellular interactions and expression of a plethora of chemokines and growth factors, and adhesion molecules, such as the selectins, the integrins or the cadherins, as well as enzymes including matrix metalloproteinases. This review aims to present recent advances that provide insights into these cell-biological events and emphasizes those that may be amenable to therapeutic targeting.

  7. Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm(2).

    PubMed

    Werner, Jérémie; Weng, Ching-Hsun; Walter, Arnaud; Fesquet, Luc; Seif, Johannes Peter; De Wolf, Stefaan; Niesen, Bjoern; Ballif, Christophe

    2016-01-07

    Monolithic perovskite/crystalline silicon tandem solar cells hold great promise for further performance improvement of well-established silicon photovoltaics; however, monolithic tandem integration is challenging, evidenced by the modest performances and small-area devices reported so far. Here we present first a low-temperature process for semitransparent perovskite solar cells, yielding efficiencies of up to 14.5%. Then, we implement this process to fabricate monolithic perovskite/silicon heterojunction tandem solar cells yielding efficiencies of up to 21.2 and 19.2% for cell areas of 0.17 and 1.22 cm(2), respectively. Both efficiencies are well above those of the involved subcells. These single-junction perovskite and tandem solar cells are hysteresis-free and demonstrate steady performance under maximum power point tracking for several minutes. Finally, we present the effects of varying the intermediate recombination layer and hole transport layer thicknesses on tandem cell photocurrent generation, experimentally and by transfer matrix simulations.

  8. Effects of space flight and mixing on bacterial growth in low volume cultures

    NASA Technical Reports Server (NTRS)

    Kacena, M. A.; Manfredi, B.; Todd, P.

    1999-01-01

    Previous investigations have shown that liquid suspension bacterial cultures grow to higher cell concentrations in spaceflight than on Earth. None of these studies included ground-control experiments designed to evaluate the fluid effects potentially responsible for the reported increases. Therefore, the emphasis of this research was to both confirm differences in final cell concentration between 1g and microgravity cultures, and to examine the effects of mixing as a partial explanation for this difference. Flight experiments were performed in the Fluid Processing Apparatus (FPA), aboard Space Shuttle Missions STS-63 and STS-69, with simultaneous 1g static and agitated controls. Additional static 1g, agitated, and clino-rotated controls were performed in 9-ml culture tubes. This research revealed that both E. coli and B. subtilis samples cultured in space flight grew to higher final cell densities (120-345% increase) than simultaneous static 1g controls. The final cell concentration of E. coli cells cultured under agitation was 43% higher than in static 1g cultures and was 102% higher with clino-rotation. However, for B. subtilis cultures grown while being agitated on a shaker or clino-rotated, the final cell concentrations were nearly identical to those of the simultaneous static 1g controls. Therefore, these data suggest that the unique fluid quiescence in the microgravity environment (lack of sedimentation, creating unique transfer of nutrients and waste products), was responsible for the enhanced bacterial proliferation reported in this and other studies.

  9. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting

    PubMed Central

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-01-01

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495

  10. Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.

    PubMed

    Mun, Jiwon; Ju, Jaehyung; Thurman, James

    2016-05-14

    One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.

  11. Die another way – non-apoptotic mechanisms of cell death

    PubMed Central

    Tait, Stephen W. G.; Ichim, Gabriel; Green, Douglas R.

    2014-01-01

    ABSTRACT Regulated, programmed cell death is crucial for all multicellular organisms. Cell death is essential in many processes, including tissue sculpting during embryogenesis, development of the immune system and destruction of damaged cells. The best-studied form of programmed cell death is apoptosis, a process that requires activation of caspase proteases. Recently it has been appreciated that various non-apoptotic forms of cell death also exist, such as necroptosis and pyroptosis. These non-apoptotic cell death modalities can be either triggered independently of apoptosis or are engaged should apoptosis fail to execute. In this Commentary, we discuss several regulated non-apoptotic forms of cell death including necroptosis, autophagic cell death, pyroptosis and caspase-independent cell death. We outline what we know about their mechanism, potential roles in vivo and define outstanding questions. Finally, we review data arguing that the means by which a cell dies actually matters, focusing our discussion on inflammatory aspects of cell death. PMID:24833670

  12. Systematic variation in mRNA 3′-processing signals during mouse spermatogenesis

    PubMed Central

    Liu, Donglin; Brockman, J. Michael; Dass, Brinda; Hutchins, Lucie N.; Singh, Priyam; McCarrey, John R.; MacDonald, Clinton C.; Graber, Joel H.

    2007-01-01

    Gene expression and processing during mouse male germ cell maturation (spermatogenesis) is highly specialized. Previous reports have suggested that there is a high incidence of alternative 3′-processing in male germ cell mRNAs, including reduced usage of the canonical polyadenylation signal, AAUAAA. We used EST libraries generated from mouse testicular cells to identify 3′-processing sites used at various stages of spermatogenesis (spermatogonia, spermatocytes and round spermatids) and testicular somatic Sertoli cells. We assessed differences in 3′-processing characteristics in the testicular samples, compared to control sets of widely used 3′-processing sites. Using a new method for comparison of degenerate regulatory elements between sequence samples, we identified significant changes in the use of putative 3′-processing regulatory sequence elements in all spermatogenic cell types. In addition, we observed a trend towards truncated 3′-untranslated regions (3′-UTRs), with the most significant differences apparent in round spermatids. In contrast, Sertoli cells displayed a much smaller trend towards 3′-UTR truncation and no significant difference in 3′-processing regulatory sequences. Finally, we identified a number of genes encoding mRNAs that were specifically subject to alternative 3′-processing during meiosis and postmeiotic development. Our results highlight developmental differences in polyadenylation site choice and in the elements that likely control them during spermatogenesis. PMID:17158511

  13. Dynamics of Cancer Cell near Collagen Fiber Chain

    NASA Astrophysics Data System (ADS)

    Kim, Jihan; Sun, Bo

    Cell migration is an integrated process that is important in life. Migration is essential for embryonic development as well as homeostatic processes such as wound healing and immune responses. When cell migrates through connective extracellular matrix (ECM), it applies cellular traction force to ECM and senses the rigidity of their local environment. We used human breast cancer cell (MDA-MB-231) which is highly invasive and applies strong traction force to ECM. As cancer cell applies traction force to type I collage-based ECM, it deforms collagen fibers near the surface. Patterns of deforming collagen fibers are significantly different with pairs of cancer cells compared to a single cancer cell. While a pair of cancer cells within 60 um creates aligned collagen fiber chains between them permanently, a single cancer cell does not form any fiber chains. In this experiment we measured a cellular response and an interaction between a pair of cells through the chain. Finally, we analyzed correlation of directions between cancer cell migration and the collagen chain alignment.

  14. Dynamic visualization the whole process of cytotoxic T lymphocytes killing the B16 tumor cells in vitro

    NASA Astrophysics Data System (ADS)

    Qi, Shuhong; Zhang, Zhihong

    2016-03-01

    Cytotoxic T lymphocytes (CTLs) played a key role in the immune system to destroy the tumor cells. Although some mechanisms of CTLs killing the tumor cells are revealed already, the dynamic information of CTLs interaction with tumor cells are still not known very clearly. Here we used confocal microscopy to visualize the whole process of CTLs killing the tumor cells in vitro. The imaging data showed that CTLs destroyed the target tumor cells rapidly and efficiently. Several CTLs surrounded one or some tumor cells and the average time for CTLs destroying one tumor cell is just a few minutes in vitro. The study displayed the temporal events of CTLs interacting with tumor cells at the beginning and finally killing them and directly presented the efficient tumor cell cytotoxicity of the CTLs. The results helped us to deeply understand the mechanism of the CTLs destroying the tumor cells and to develop the cancer immunotherapy.

  15. Anti-apoptotic BCL-2 family proteins in acute neural injury

    PubMed Central

    Anilkumar, Ujval; Prehn, Jochen H. M.

    2014-01-01

    Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca2+ homeostasis independent of their classical role in cell death signaling. PMID:25324720

  16. Anti-apoptotic BCL-2 family proteins in acute neural injury.

    PubMed

    Anilkumar, Ujval; Prehn, Jochen H M

    2014-01-01

    Cells under stress activate cell survival and cell death signaling pathways. Cell death signaling frequently converges on mitochondria, a process that is controlled by the activities of pro- and anti-apoptotic B-cell lymphoma 2 (BCL-2) proteins. In this review, we summarize current knowledge on the control of neuronal survival, development and injury by anti-apoptotic BCL-2 family proteins. We discuss overlapping and differential effects of the individual family members BCL-2, BCL-extra long (BCL-XL), myeloid cell leukemia 1 (MCL-1), and BCL2-like 2 (BCL-W) in the control of survival during development and pathophysiological processes such as trophic factor withdrawal, ischemic injury, excitotoxicity, oxidative stress and energy stress. Finally we discuss recent evidence that several anti-apoptotic BCL-2 proteins influence mitochondrial bioenergetics and control neuronal Ca(2+) homeostasis independent of their classical role in cell death signaling.

  17. Study on the Fabrication of Paint-Type Si Quantum Dot-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Seo, Hyunwoong; Son, Min-Kyu; Kim, Hee-Je; Wang, Yuting; Uchida, Giichiro; Kamataki, Kunihiro; Itagaki, Naho; Koga, Kazunori; Shiratani, Masaharu

    2013-10-01

    Quantum dots (QDs) have attracted much attention with their quantum characteristics in the research field of photochemical solar cells. Si QD was introduced as one of alternatives to conventional QD materials. However, their large particles could not penetrate inside TiO2 layer. Therefore, this work proposed the paint-type Si QD-sensitized solar cell. Its heat durability was suitable for the fabrication of paint-type solar cell. Si QDs were fabricated by multihollow discharge plasma chemical vapor deposition and characterized. The paste type, sintering temperature, and Si ratio were controlled and analyzed for better performance. Finally, its performance was enhanced by ZnS surface modification and the whole process was much simplified without sensitizing process.

  18. Development of a large area space solar cell assembly

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1982-01-01

    The development of a large area high efficiency solar cell assembly is described. The assembly consists of an ion implanted silicon solar cell and glass cover. The important attributes of fabrication are the use of a back surface field which is compatible with a back surface reflector, and integration of coverglass application and cell fabrications. Cell development experiments concerned optimization of ion implantation processing of 2 ohm-cm boron-doped silicon. Process parameters were selected based on these experiments and cells with area of 34.3 sq cm wre fabricated. The average AMO efficiency of the twenty-five best cells was 13.9% and the best bell had an efficiency of 14.4%. An important innovation in cell encapsulation was also developed. In this technique, the coverglass is applied before the cell is sawed to final size. The coverglass and cell are then sawed as a unit. In this way, the cost of the coverglass is reduced, since the tolerance on glass size is relaxed, and costly coverglass/cell alignment procedures are eliminated. Adhesive investigated were EVA, FEP-Teflon sheet and DC 93-500. Details of processing and results are reported.

  19. Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly

    NASA Technical Reports Server (NTRS)

    Hagerty, J. J.

    1981-01-01

    The Automated Lamination Station is mechanically complete and is currently undergoing final wiring. The high current driver and isolator boards have been completed and installed, and the main interface board is under construction. The automated vacuum chamber has had a minor redesign to increase stiffness and improve the cover open/close mechanism. Design of the Final Assembly Station has been completed and construction is underway.

  20. Investigation of Test Methods, Material Properties, and Processes for Solar Cell Encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.; Baum, B.

    1979-01-01

    The reformulation of a commercial grade of ethylene/vinyl acetate copolymer for use as a pottant in solar cell module manufacture was investigated. Potentially successful formulations were prepared by compounding the raw polymer with antioxidants, ultraviolet absorbers and crosslinking agents to yield stabilized and curable compositions. The resulting elastomer was found to offer low cost (approximately $0.80/lb.), low temperature processability, high transparency (91% transmission), and low modulus. Cured specimens of the final formulation endured 4000 hours of fluorescent sunlamp radiation without change which indicates excellent stability.

  1. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.

    PubMed

    Prochazka, Radek; Blaha, Milan

    2015-01-01

    In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.

  2. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    PubMed

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. © 2016 American Society of Plant Biologists. All rights reserved.

  3. Process development for a recombinant Chinese hamster ovary (CHO) cell line utilizing a metal induced and amplified metallothionein expression system.

    PubMed

    Huang, Edwin P; Marquis, Christopher P; Gray, Peter P

    2004-11-20

    The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 microM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 10(7) cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (c) 2004 Wiley Periodicals, Inc

  4. Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics

    PubMed Central

    Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui

    2016-01-01

    Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548

  5. A myogenic precursor cell that could contribute to regeneration in zebrafish and its similarity to the satellite cell.

    PubMed

    Siegel, Ashley L; Gurevich, David B; Currie, Peter D

    2013-09-01

    The cellular basis for mammalian muscle regeneration has been an area of intense investigation over recent decades. The consensus is that a specialized self-renewing stem cell, termed the satellite cell, plays a major role during the process of regeneration in amniotes. How broadly this mechanism is deployed within the vertebrate phylogeny remains an open question. A lack of information on the role of cells analogous to the satellite cell in other vertebrate systems is even more unexpected given the fact that satellite cells were first designated in frogs. An intriguing aspect of this debate is that a number of amphibia and many fish species exhibit epimorphic regenerative processes in specific tissues, whereby regeneration occurs by the dedifferentiation of the damaged tissue, without deploying specialized stem cell populations analogous to satellite cells. Hence, it is feasible that a cellular process completely distinct from that deployed during mammalian muscle regeneration could operate in species capable of epimorphic regeneration. In this minireview, we examine the evidence for the broad phylogenetic distribution of satellite cells. We conclude that, in the vertebrates examined so far, epimorphosis does not appear to be deployed during muscle regeneration, and that analogous cells expressing similar marker genes to satellite cells appear to be deployed during the regenerative process. However, the functional definition of these cells as self-renewing muscle stem cells remains a final hurdle to the definition of the satellite cell as a generic vertebrate cell type. © 2013 FEBS.

  6. [Development of a cell phone addiction scale for korean adolescents].

    PubMed

    Koo, Hyun Young

    2009-12-01

    This study was done to develop a cell phone addiction scale for Korean adolescents. The process included construction of a conceptual framework, generation of initial items, verification of content validity, selection of secondary items, preliminary study, and extraction of final items. The participants were 577 adolescents in two middle schools and three high schools. Item analysis, factor analysis, criterion related validity, and internal consistency were used to analyze the data. Twenty items were selected for the final scale, and categorized into 3 factors explaining 55.45% of total variance. The factors were labeled as withdrawal/tolerance (7 items), life dysfunction (6 items), and compulsion/persistence (7 items). The scores for the scale were significantly correlated with self-control, impulsiveness, and cell phone use. Cronbach's alpha coefficient for the 20 items was .92. Scale scores identified students as cell phone addicted, heavy users, or average users. The above findings indicate that the cell phone addiction scale has good validity and reliability when used with Korean adolescents.

  7. VE-cadherin cleavage by ovarian cancer microparticles induces β-catenin phosphorylation in endothelial cells

    PubMed Central

    Thawadi, Hamda Al; Abu-Kaoud, Nadine; Farsi, Haleema Al; Hoarau-Véchot, Jessica; Rafii, Shahin; Rafii, Arash; Pasquier, Jennifer

    2016-01-01

    Microparticles (MPs) are increasingly recognized as important mediators of cell-cell communication in tumour growth and metastasis by facilitating angiogenesis-related processes. While the effects of the MPs on recipient cells are usually well described in the literature, the leading process remains unclear. Here we isolated MPs from ovarian cancer cells and investigated their effect on endothelial cells. First, we demonstrated that ovarian cancer MPs trigger β-catenin activation in endothelial cells, inducing the upregulation of Wnt/β-catenin target genes and an increase of angiogenic properties. We showed that this MPs mediated activation of β-catenin in ECs was Wnt/Frizzled independent; but dependent on VE-cadherin localization disruption, αVβ3 integrin activation and MMP activity. Finally, we revealed that Rac1 and AKT were responsible for β-catenin phosphorylation and translocation to the nucleus. Overall, our results indicate that MPs released from cancer cells could play a major role in neo-angiogenesis through activation of beta catenin pathway in endothelial cells. PMID:26700621

  8. Rational Autologous Cell Sources For Therapy of Heart Failure - Vehicles and Targets For Gene and RNA Therapies.

    PubMed

    Lampinen, Milla; Vento, Antti; Laurikka, Jari; Nystedt, Johanna; Mervaala, Eero; Harjula, Ari; Kankuri, Esko

    2016-01-01

    This review focuses on the possibilities for intraoperative processing and isolation of autologous cells, particularly atrial appendage-derived cells (AADCs) and cellular micrografts, and their straightforward use in cell transplantation for heart failure therapy. We review the potential of autologous tissues to serve as sources for cell therapy and consider especially those tissues that are used in surgery but from which the excess is currently discarded as surgical waste. We compare the inculture expanded cells to the freshly isolated ones in terms of evidence-based cost-efficacy and their usability as gene- and RNA therapy vehicles. We also review how financial and authority-based decisions and restrictions sculpt the landscape for patients to participate in academic-based trials. Finally, we provide an insight example into AADCs isolation and processing for epicardial therapy during coronary artery bypass surgery.

  9. Rift Valley fever virus infection induces activation of the NLRP3 inflammasome.

    PubMed

    Ermler, Megan E; Traylor, Zachary; Patel, Krupen; Schattgen, Stefan A; Vanaja, Sivapriya K; Fitzgerald, Katherine A; Hise, Amy G

    2014-01-20

    Inflammasome activation is gaining recognition as an important mechanism for protection during viral infection. Here, we investigate whether Rift Valley fever virus, a negative-strand RNA virus, can induce inflammasome responses and IL-1β processing in immune cells. We have determined that RVFV induces NLRP3 inflammasome activation in murine dendritic cells, and that this process is dependent upon ASC and caspase-1. Furthermore, absence of the cellular RNA helicase adaptor protein MAVS/IPS-1 significantly reduces extracellular IL-1β during infection. Finally, direct imaging using confocal microscopy shows that the MAVS protein co-localizes with NLRP3 in the cytoplasm of RVFV infected cells. © 2013 Published by Elsevier Inc.

  10. Efficiency Analysis and Mechanism Insight of that Whole-Cell Biocatalytic Production of Melibiose from Raffinose with Saccharomyces cerevisiae.

    PubMed

    Zhou, Yingbiao; Zhu, Yueming; Dai, Longhai; Men, Yan; Wu, Jinhai; Zhang, Juankun; Sun, Yuanxia

    2017-01-01

    Melibiose is widely used as a functional carbohydrate. Whole-cell biocatalytic production of melibiose from raffinose could reduce its cost. However, characteristics of strains for whole-cell biocatalysis and mechanism of such process are unclear. We compared three different Saccharomyces cerevisiae strains (liquor, wine, and baker's yeasts) in terms of concentration variations of substrate (raffinose), target product (melibiose), and by-products (fructose and galactose) in whole-cell biocatalysis process. Distinct difference was observed in whole-cell catalytic efficiency among three strains. Furthermore, activities of key enzymes (invertase, α-galactosidase, and fructose transporter) involved in process and expression levels of their coding genes (suc2, mel1, and fsy1) were investigated. Conservation of key genes in S. cerevisiae strains was also evaluated. Results show that whole-cell catalytic efficiency of S. cerevisiae in the raffinose substrate was closely related to activity of key enzymes and expression of their coding genes. Finally, we summarized characteristics of producing strain that offered advantages, as well as contributions of key genes to excellent strains. Furthermore, we presented a dynamic mechanism model to achieve some mechanism insight for this whole-cell biocatalytic process. This pioneering study should contribute to improvement of whole-cell biocatalytic production of melibiose from raffinose.

  11. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models

    PubMed Central

    Jiang, Ting-Xin; Widelitz, Randall B.; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2015-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions (de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically co-localize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to swarming robot navigation, reaching intelligent automata and representing a self-re-configurable type of control rather than a follow-the-instruction type of control. PMID:15272377

  12. Investigation of the In-Situ Oxidation of Methanol in Fuel Cells.

    DTIC Science & Technology

    1981-09-01

    ability of the catalyst to tolerate carbon monoxide. Finally, a performance curve was obtained for the anodic oxidation of methanol : CH3OH ... CH3OH + H20 •» C02 + 3H2 In present methanol -air fuel cell power plants , the steam reforming process is usually carried out in a unit which is...KCY YIO"(CS (Continue on reverse ride it neeessnry and identity ay block number) Fuel Cell Platinum Catalysts Methanol Direct Oxidation Internal

  13. Self-organized, near-critical behavior during aggregation in Dictyostelium discoideum

    NASA Astrophysics Data System (ADS)

    de Palo, Giovanna; Yi, Darvin; Gregor, Thomas; Endres, Robert

    During starvation, the social amoeba Dictyostelium discoideum aggregates artfully via pattern formation into a multicellular slug and finally spores. The aggregation process is mediated by the secretion and sensing of cyclic adenosine monophosphate, leading to the synchronized movement of cells. The whole process is a remarkable example of collective behavior, spontaneously emerging from single-cell chemotaxis. Despite this phenomenon being broadly studied, a precise characterization of the transition from single cells to multicellularity has been elusive. Here, using fluorescence imaging data of thousands of cells, we investigate the role of cell shape in aggregation, demonstrating remarkable transitions in cell behavior. To better understand their functional role, we analyze cell-cell correlations and provide evidence for self-organization at the onset of aggregation (as opposed to leader cells), with features of criticality in this finite system. To capture the mechanism of self-organization, we extend a detailed single-cell model of D.discoideum chemotaxis by adding cell-cell communication. We then use these results to extract a minimal set of rules leading to aggregation in the population model. If universal, similar rules may explain other types of collective cell behavior.

  14. Regulatory challenges in manufacturing of pancreatic islets.

    PubMed

    Linetsky, E; Ricordi, C

    2008-03-01

    At the present time, transplantation of pancreatic islet cells is considered an experimental therapy for a selected cohort of patients with type 1 diabetes, and is conducted under an Investigational New Drug (IND) application. Encouraging results of the Edmonton Protocol published in the year 2000 sparked a renewed interest in clinical transplantation of allogeneic islets, triggering a large number of IND applications for phase I clinical trials. Promising results reported by a number of centers since then prompted the Food and Drug Administration (FDA) to consider the possibility of licensing allogeneic islets as a therapeutic treatment for patients with type 1 diabetes. However, prior to licensure, issues such as safety, purity, efficacy, and potency of the islet product must be addressed. This is complicated by the intricate nature of pancreatic islets and limited characterization prior to transplantation. In this context, control of the manufacturing process plays a critical role in the definition of the final product. Despite significant progress made in standardization of the donor organ preservation methods, reagents used, and characterization assays performed to qualify an islet cell product, control of the isolation process remains a challenge. Within the scope of the FDA regulations, islet cells meet the definition of a biologic product, somatic cell therapy, and a drug. In addition, AABB standards that address cellular therapy products apply to manufacturing facilities accredited by this organization. Control of the source material, isolation process, and final product are critical issues that must be addressed in the context of FDA and other relevant regulations applicable to islet cell products.

  15. Altered synthesis and processing of oligosaccharides of vesicular stomatitis virus glycoprotein in different lectin-resistant Chinese hamster ovary cell lines.

    PubMed

    Hunt, L A

    1980-08-01

    To determine the particular intracellular steps in the glycosylation of the vesicular stomatitis virus (VSV) glycoprotein that were altered in several lectin-resistant CHO cell lines, VSV-infected parental and mutant cells were pulse-labeled for 30 and 120 min with [3H]mannose and [3H]glucosamine. Cell-associated viral glycopeptides were analyzed by gel filtration combined with specific glycosidase digestions and compared with the corresponding mature virion oligosaccharides. The intracellular glycosylation of the VSV glycoprotein in a mutant cell line resistant to phytohemagglutinin was identical to that in the normal cells except for a complete block in processing at a specific step in the final trimming of the oligomannosyl core from five to three mannoses. The results demonstrated that a double-mutant cell line selected from the phytohemagglutinin-resistant cells for resistance to concanavalin A had an additional defect in one of the earliest stages of glycosylation, resulting in smaller precursor oligosaccharides linked to protein.

  16. Altered synthesis and processing of oligosaccharides of vesicular stomatitis virus glycoprotein in different lectin-resistant Chinese hamster ovary cell lines.

    PubMed Central

    Hunt, L A

    1980-01-01

    To determine the particular intracellular steps in the glycosylation of the vesicular stomatitis virus (VSV) glycoprotein that were altered in several lectin-resistant CHO cell lines, VSV-infected parental and mutant cells were pulse-labeled for 30 and 120 min with [3H]mannose and [3H]glucosamine. Cell-associated viral glycopeptides were analyzed by gel filtration combined with specific glycosidase digestions and compared with the corresponding mature virion oligosaccharides. The intracellular glycosylation of the VSV glycoprotein in a mutant cell line resistant to phytohemagglutinin was identical to that in the normal cells except for a complete block in processing at a specific step in the final trimming of the oligomannosyl core from five to three mannoses. The results demonstrated that a double-mutant cell line selected from the phytohemagglutinin-resistant cells for resistance to concanavalin A had an additional defect in one of the earliest stages of glycosylation, resulting in smaller precursor oligosaccharides linked to protein. Images PMID:6255177

  17. The analysis method of the DRAM cell pattern hotspot

    NASA Astrophysics Data System (ADS)

    Lee, Kyusun; Lee, Kweonjae; Chang, Jinman; Kim, Taeheon; Han, Daehan; Hong, Aeran; Kim, Yonghyeon; Kang, Jinyoung; Choi, Bumjin; Lee, Joosung; Lee, Jooyoung; Hong, Hyeongsun; Lee, Kyupil; Jin, Gyoyoung

    2015-03-01

    It is increasingly difficult to determine degree of completion of the patterning and the distribution at the DRAM Cell Patterns. When we research DRAM Device Cell Pattern, there are three big problems currently, it is as follows. First, due to etch loading, it is difficult to predict the potential defect. Second, due to under layer topology, it is impossible to demonstrate the influence of the hotspot. Finally, it is extremely difficult to predict final ACI pattern by the photo simulation, because current patterning process is double patterning technology which means photo pattern is completely different from final etch pattern. Therefore, if the hotspot occurs in wafer, it is very difficult to find it. CD-SEM is the most common pattern measurement tool in semiconductor fabrication site. CD-SEM is used to accurately measure small region of wafer pattern primarily. Therefore, there is no possibility of finding places where unpredictable defect occurs. Even though, "Current Defect detector" can measure a wide area, every chip has same pattern issue, the detector cannot detect critical hotspots. Because defect detecting algorithm of bright field machine is based on image processing, if same problems occur on compared and comparing chip, the machine cannot identify it. Moreover this instrument is not distinguished the difference of distribution about 1nm~3nm. So, "Defect detector" is difficult to handle the data for potential weak point far lower than target CD. In order to solve those problems, another method is needed. In this paper, we introduce the analysis method of the DRAM Cell Pattern Hotspot.

  18. Robustness of the Process of Nucleoid Exclusion of Protein Aggregates in Escherichia coli

    PubMed Central

    Neeli-Venkata, Ramakanth; Martikainen, Antti; Gupta, Abhishekh; Gonçalves, Nadia; Fonseca, Jose

    2016-01-01

    ABSTRACT Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. Combined with cell divisions, this generates heterogeneous aggregate distributions in subsequent cell generations. We studied the robustness of this process with differing medium richness and antibiotics stress, which affect nucleoid size, using multimodal, time-lapse microscopy of live cells expressing both a fluorescently tagged chaperone (IbpA), which identifies in vivo the location of aggregates, and HupA-mCherry, a fluorescent variant of a nucleoid-associated protein. We find that the relative sizes of the nucleoid's major and minor axes change widely, in a positively correlated fashion, with medium richness and antibiotic stress. The aggregate's distribution along the major cell axis also changes between conditions and in agreement with the nucleoid exclusion phenomenon. Consequently, the fraction of aggregates at the midcell region prior to cell division differs between conditions, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, from the location of the peak of anisotropy in the aggregate displacement distribution, the nucleoid relative size, and the spatiotemporal aggregate distribution, we find that the exclusion of detectable aggregates from midcell is most pronounced in cells with mid-sized nucleoids, which are most common under optimal conditions. We conclude that the aggregate management mechanisms of E. coli are significantly robust but are not immune to stresses due to the tangible effect that these have on nucleoid size. IMPORTANCE Escherichia coli segregates protein aggregates to the poles by nucleoid exclusion. From live single-cell microscopy studies of the robustness of this process to various stresses known to affect nucleoid size, we find that nucleoid size and aggregate preferential locations change concordantly between conditions. Also, the degree of influence of the nucleoid on aggregate positioning differs between conditions, causing aggregate numbers at midcell to differ in cell division events, which will affect the degree of asymmetries in the partitioning of aggregates between cells of future generations. Finally, we find that aggregate segregation to the cell poles is most pronounced in cells with mid-sized nucleoids. We conclude that the energy-free process of the midcell exclusion of aggregates partially loses effectiveness under stressful conditions. PMID:26728194

  19. Plant cell shape: modulators and measurements

    PubMed Central

    Ivakov, Alexander; Persson, Staffan

    2013-01-01

    Plant cell shape, seen as an integrative output, is of considerable interest in various fields, such as cell wall research, cytoskeleton dynamics and biomechanics. In this review we summarize the current state of knowledge on cell shape formation in plants focusing on shape of simple cylindrical cells, as well as in complex multipolar cells such as leaf pavement cells and trichomes. We summarize established concepts as well as recent additions to the understanding of how cells construct cell walls of a given shape and the underlying processes. These processes include cell wall synthesis, activity of the actin and microtubule cytoskeletons, in particular their regulation by microtubule associated proteins, actin-related proteins, GTP'ases and their effectors, as well as the recently-elucidated roles of plant hormone signaling and vesicular membrane trafficking. We discuss some of the challenges in cell shape research with a particular emphasis on quantitative imaging and statistical analysis of shape in 2D and 3D, as well as novel developments in this area. Finally, we review recent examples of the use of novel imaging techniques and how they have contributed to our understanding of cell shape formation. PMID:24312104

  20. Silicon photonics for neuromorphic information processing

    NASA Astrophysics Data System (ADS)

    Bienstman, Peter; Dambre, Joni; Katumba, Andrew; Freiberger, Matthias; Laporte, Floris; Lugnan, Alessio

    2018-02-01

    We present our latest results on silicon photonics neuromorphic information processing based a.o. on techniques like reservoir computing. We will discuss aspects like scalability, novel architectures for enhanced power efficiency, as well as all-optical readout. Additionally, we will touch upon new machine learning techniques to operate these integrated readouts. Finally, we will show how these systems can be used for high-speed low-power information processing for applications like recognition of biological cells.

  1. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process.

    PubMed

    Park, Jeong Hun; Jung, Jin Woo; Kang, Hyun-Wook; Cho, Dong-Woo

    2014-06-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes.

  2. Evaluation of testicular toxicity and sperm morphology in rats treated with methyl methanesulphonate (MMS).

    PubMed

    Kuriyama, Kazuya; Kitamura, Tsuyoshi; Yokoi, Ryohei; Hayashi, Morimichi; Kobayashi, Kazuo; Kuroda, Junji; Tsujii, Hirotada

    2005-10-01

    Methyl methanesulphonate (MMS), a potent alkylating agent and testicular toxicant, was orally administered to rats for 5 days at 40 mg/kg. During the recovery period of up to 5 weeks, males were evaluated for testicular toxicity and sperm morphology. The 5-week recovery period were designated as follows: Day 1 (the day after final treatment); Week 1, Week 2, Week 3, Week 4 and Week 5 (1, 2, 3, 4 and 5 weeks after final treatment). Morphologically abnormal sperm increased beginning in Week 3, peaked in Week 4 and declined slightly in Week 5. Histopathological examinations indicated retention of step 19 spermatids at stage IX from Day 1 through Week 3. Quantitative evaluation of spermatogenic cells indicated a decrease in the number of late pachytene spermatocytes and early spermatids on Day 1. TUNEL examination showed a significantly high frequency of apoptosis in the meiosis cells in Week 1. In the present study, genetic damage induced by treatment with MMS affected spermatogenesis and a wide variety of spermatogenic cells in the testis. Apoptosis in the course of meiosis seemed to be involved in the elimination process of genetically insulted germ cells, and this process seems to play an important role in eliminating and/or decreasing the germ cells with retention of spermatids and the potential to express morphologically abnormal spermatozoa.

  3. Approximately 800-nm-Thick Pinhole-Free Perovskite Films via Facile Solvent Retarding Process for Efficient Planar Solar Cells.

    PubMed

    Yuan, Zhongcheng; Yang, Yingguo; Wu, Zhongwei; Bai, Sai; Xu, Weidong; Song, Tao; Gao, Xingyu; Gao, Feng; Sun, Baoquan

    2016-12-21

    Device performance of organometal halide perovskite solar cells significantly depends on the quality and thickness of perovskite absorber films. However, conventional deposition methods often generate pinholes within ∼300 nm-thick perovskite films, which are detrimental to the large area device manufacture. Here we demonstrated a simple solvent retarding process to deposit uniform pinhole free perovskite films with thicknesses up to ∼800 nm. Solvent evaporation during the retarding process facilitated the components separation in the mixed halide perovskite precursors, and hence the final films exhibited pinhole free morphology and large grain sizes. In addition, the increased precursor concentration after solvent-retarding process led to thick perovskite films. Based on the uniform and thick perovskite films prepared by this convenient process, a champion device efficiency up to 16.8% was achieved. We believe that this simple deposition procedure for high quality perovskite films around micrometer thickness has a great potential in the application of large area perovskite solar cells and other optoelectronic devices.

  4. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Alan Tin-Lun, E-mail: alan_lam@bti.a-star.edu.sg; Chen, Allen Kuan-Liang; Ting, Sherwin Qi-Peng

    Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles ofmore » such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described. - Highlights: • Expansion of hPSC on microcarriers. • Differentiation of hPSC on microcarriers. • Parameters that can affect the expansion and differentiation of hPSC on microcarriers. • Integration of expansion and differentiation of hPSC on microcarriers in one unit operation.« less

  5. Pericytes of the neurovascular unit: Key functions and signaling pathways

    PubMed Central

    Sweeney, Melanie D.; Ayyadurai, Shiva; Zlokovic, Berislav V.

    2017-01-01

    Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles, and post-capillary venules. The central nervous system (CNS) pericytes are uniquely positioned within the neurovascular unit between endothelial cells, astrocytes, and neurons. They integrate, coordinate, and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation, and stem cell activity. Here, we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes, and neurons that control neurovascular functions. We also review the role of pericytes in different CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366

  6. NFIB-mediated repression of the epigenetic factor Ezh2 regulates cortical development.

    PubMed

    Piper, Michael; Barry, Guy; Harvey, Tracey J; McLeay, Robert; Smith, Aaron G; Harris, Lachlan; Mason, Sharon; Stringer, Brett W; Day, Bryan W; Wray, Naomi R; Gronostajski, Richard M; Bailey, Timothy L; Boyd, Andrew W; Richards, Linda J

    2014-02-19

    Epigenetic mechanisms are essential in regulating neural progenitor cell self-renewal, with the chromatin-modifying protein Enhancer of zeste homolog 2 (EZH2) emerging as a central player in promoting progenitor cell self-renewal during cortical development. Despite this, how Ezh2 is itself regulated remains unclear. Here, we demonstrate that the transcription factor nuclear factor IB (NFIB) plays a key role in this process. Nfib(-/-) mice exhibit an increased number of proliferative ventricular zone cells that express progenitor cell markers and upregulation of EZH2 expression within the neocortex and hippocampus. NFIB binds to the Ezh2 promoter and overexpression of NFIB represses Ezh2 transcription. Finally, key downstream targets of EZH2-mediated epigenetic repression are misregulated in Nfib(-/-) mice. Collectively, these results suggest that the downregulation of Ezh2 transcription by NFIB is an important component of the process of neural progenitor cell differentiation during cortical development.

  7. Linear Look-Ahead in Conjunctive Cells: An Entorhinal Mechanism for Vector-Based Navigation

    PubMed Central

    Kubie, John L.; Fenton, André A.

    2012-01-01

    The crisp organization of the “firing bumps” of entorhinal grid cells and conjunctive cells leads to the notion that the entorhinal cortex may compute linear navigation routes. Specifically, we propose a process, termed “linear look-ahead,” by which a stationary animal could compute a series of locations in the direction it is facing. We speculate that this computation could be achieved through learned patterns of connection strengths among entorhinal neurons. This paper has three sections. First, we describe the minimal grid cell properties that will be built into our network. Specifically, the network relies on “rigid modules” of neurons, where all members have identical grid scale and orientation, but differ in spatial phase. Additionally, these neurons must be densely interconnected with synapses that are modifiable early in the animal’s life. Second, we investigate whether plasticity during short bouts of locomotion could induce patterns of connections amongst grid cells or conjunctive cells. Finally, we run a simulation to test whether the learned connection patterns can exhibit linear look-ahead. Our results are straightforward. A simulated 30-min walk produces weak strengthening of synapses between grid cells that do not support linear look-ahead. Similar training in a conjunctive cell module produces a small subset of very strong connections between cells. These strong pairs have three properties: the pre- and post-synaptic cells have similar heading direction. The cell pairs have neighboring grid bumps. Finally, the spatial offset of firing bumps of the cell pair is in the direction of the common heading preference. Such a module can produce strong and accurate linear look-ahead starting in any location and extending in any direction. We speculate that this process may: (1) compute linear paths to goals; (2) update grid cell firing during navigation; and (3) stabilize the rigid modules of grid cells and conjunctive cells. PMID:22557948

  8. Fusomorphogenesis: cell fusion in organ formation.

    PubMed

    Shemer, G; Podbilewicz, B

    2000-05-01

    Cell fusion is a universal process that occurs during fertilization and in the formation of organs such as muscles, placenta, and bones. Very little is known about the molecular and cellular mechanisms of cell fusion during pattern formation. Here we review the dynamic anatomy of all cell fusions during embryonic and postembryonic development in an organism. Nearly all the cell fates and cell lineages are invariant in the nematode C. elegans and one third of the cells that are born fuse to form 44 syncytia in a reproducible and stereotyped way. To explain the function of cell fusion in organ formation we propose the fusomorphogenetic model as a simple cellular mechanism to efficiently redistribute membranes using a combination of cell fusion and polarized membrane recycling during morphogenesis. Thus, regulated intercellular and intracellular membrane fusion processes may drive elongation of the embryo as well as postembryonic organ formation in C. elegans. Finally, we use the fusomorphogenetic hypothesis to explain the role of cell fusion in the formation of organs like muscles, bones, and placenta in mammals and other species and to speculate on how the intracellular machinery that drive fusomorphogenesis may have evolved.

  9. Bus electrode having same thermal expansion coefficient as crystalline silicon solar cell

    NASA Astrophysics Data System (ADS)

    Kato, T.; Morita, H.; Nakano, H.; Washida, H.; Onoe, A.; Inomata, K.; Mori, F.; Sugai, S.

    1982-01-01

    It is well known that the bus electrode plays a main role in series resistance of solar cells. Bus electrodes composed of bare leads, were investigated for which thermal expansion coefficients are less than those of the cell and which are coated with highly conducting metals. These leads exhibited the lower expansion coefficient than expected by empirical law, and the origins of these phenomena were explained. Work hardening effect on the expansion coefficient was then measured. Solar cell fabrication with these leads and rigid solders rationalized assembly processing. Cell characteristics proved to be excellent compared with conventional ones. Finally, lead costs were compared for various materials.

  10. Automated Cell-Cutting for Cell Cloning

    NASA Astrophysics Data System (ADS)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  11. Robustness testing in pharmaceutical freeze-drying: inter-relation of process conditions and product quality attributes studied for a vaccine formulation.

    PubMed

    Schneid, Stefan C; Stärtzel, Peter M; Lettner, Patrick; Gieseler, Henning

    2011-01-01

    The recent US Food and Drug Administration (FDA) legislation has introduced the evaluation of the Design Space of critical process parameters in manufacturing processes. In freeze-drying, a "formulation" is expected to be robust when minor deviations of the product temperature do not negatively affect the final product quality attributes. To evaluate "formulation" robustness by investigating the effect of elevated product temperature on product quality using a bacterial vaccine solution. The vaccine solution was characterized by freeze-dry microscopy to determine the critical formulation temperature. A conservative cycle was developed using the SMART™ mode of a Lyostar II freeze dryer. Product temperature was elevated to imitate intermediate and aggressive cycle conditions. The final product was analyzed using X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), Karl Fischer, and modulated differential scanning calorimetry (MDSC), and the life cell count (LCC) during accelerated stability testing. The cakes processed at intermediate and aggressive conditions displayed larger pores with microcollapse of walls and stronger loss in LCC than the conservatively processed product, especially during stability testing. For all process conditions, a loss of the majority of cells was observed during storage. For freeze-drying of life bacterial vaccine solutions, the product temperature profile during primary drying appeared to be inter-related to product quality attributes.

  12. Differences in irradiation susceptibility and turnover between mucosal and connective tissue-type mast cells of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuzumi, T.; Waki, N.; Kanakura, Y.

    Although precursors of mast cells are derived from the bone marrow, phenotypes of mast cells are influenced by the tissues in which final differentiation occurs. Connective tissue-type mast cells (CTMC) and mucosal mast cells (MMC) are different in morphological, biochemical, immunological, and functional criteria. The purpose of the present study was to obtain information about the differentiation process of MMC. First, we compared changes in irradiation susceptibility in mice during the differentiation process of CTMC and MMC. The decrease in irradiation susceptibility was remarkable in the CTMC differentiation process, but it was moderate in that of MMC. Some morphologically identifiablemore » CTMC in the peritoneal cavity had proliferative potential and were highly radioresistant, whereas such a radioresistant population of MMC was not detectable in the gastric mucosa. Second, we estimated the turnover of CTMC and MMC by determining the proportion of mast cells that were labeled with continuously administered bromodeoxyuridine. The turnover of MMC was significantly faster than that of CTMC. The absence of the radioresistant mast cell population in the gastric mucosa appeared to be related to the short life span of MMC.« less

  13. Synergy between Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the Bioleaching Process of Copper

    PubMed Central

    Zheng, Xuecheng; Li, Dongwei

    2016-01-01

    This study investigates the synergy of Rhizobium phaseoli and Acidithiobacillus ferrooxidans in the bioleaching process of copper. The results showed that additional R. phaseoli could increase leaching rate and cell number of A. ferrooxidans. When the initial cell number ratio between A. ferrooxidans and R. phaseoli was 2 : 1, A. ferrooxidans attained the highest final cell number of approximately 2 × 108 cells/mL and the highest copper leaching rate of 29%, which is 7% higher than that in the group with A. ferrooxidans only. R. phaseoli may use metabolized polysaccharides from A. ferrooxidans, and organic acids could chelate or precipitate harmful heavy metals to reduce their damage on A. ferrooxidans and promote its growth. Organic acids could also damage the mineral lattice to increase the leaching effect. PMID:26942203

  14. Use of Animation in Teaching Cell Biology

    PubMed Central

    2004-01-01

    To address the different learning styles of students, and because students can access animation from off-campus computers, the use of digital animation in teaching cell biology has become increasingly popular. Sample processes from cell biology that are more clearly presented in animation than in static illustrations are identified. The value of animation is evaluated on whether the process being taught involves motion, cellular location, or sequential order of numerous events. Computer programs for developing animation and animations associated with cell biology textbooks are reviewed, and links to specific examples of animation are given. Finally, future teaching tools for all fields of biology will increasingly benefit from an expansion of animation to the use of simulation. One purpose of this review is to encourage the widespread use of animations in biology teaching by discussing the nature of digital animation. PMID:15526065

  15. Application of Vacancy Injection Gettering to Improve Efficiency of Solar Cells Produced by Millinet Solar: Cooperative Research and Development Final Report, CRADA Number CRD-10-417

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sopori, B.

    2012-07-01

    NREL will apply vacancy injection gettering (VIG) to Millinet solar cells and evaluate the performance improvement produced by this process step. The VIG will be done in conjunction with the formation of a back, Al-alloyed, contact. Millinet Solar will provide NREL with cells having AR coating on the front side and screen-printed Al on the backside, which will be processed in the NREL's optical furnace to perform simultaneous VIG and back contact alloying with deep BSF. These cells will be sent back to Millinet solar for a screen-printed front/side contact mask, followed by a second firing at NREL. Detailed analysesmore » will be performed to determine improvements due to BSF and VIG.« less

  16. Distinguishing between stochasticity and determinism: Examples from cell cycle duration variability.

    PubMed

    Pearl Mizrahi, Sivan; Sandler, Oded; Lande-Diner, Laura; Balaban, Nathalie Q; Simon, Itamar

    2016-01-01

    We describe a recent approach for distinguishing between stochastic and deterministic sources of variability, focusing on the mammalian cell cycle. Variability between cells is often attributed to stochastic noise, although it may be generated by deterministic components. Interestingly, lineage information can be used to distinguish between variability and determinism. Analysis of correlations within a lineage of the mammalian cell cycle duration revealed its deterministic nature. Here, we discuss the sources of such variability and the possibility that the underlying deterministic process is due to the circadian clock. Finally, we discuss the "kicked cell cycle" model and its implication on the study of the cell cycle in healthy and cancerous tissues. © 2015 WILEY Periodicals, Inc.

  17. Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli.

    PubMed

    Khalilzadeh, Rasoul; Mohammadian-Mosaabadi, Jafar; Bahrami, Ali; Nazak-Tabbar, Ahmad; Nasiri-Khalili, Mohammad Ali; Amouheidari, Alireza

    2008-12-01

    The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF at 48 g dry cell wt l(-1) during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as approximately 64 g dry cell wt l(-1), 223 mg hG-CSF g(-1) dry cell wt and 775 mg hG-CSF l(-1) h(-1), respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose. Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show valuable decrease in activity in purified form.

  18. Ultrafast Electron Dynamics in Solar Energy Conversion.

    PubMed

    Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy

    2017-08-23

    Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.

  19. Ionophore-A23187-induced cellular cytotoxicity: a cell fragment mediated process.

    PubMed Central

    Nash, G S; Niedt, G W; MacDermott, R P

    1980-01-01

    Calcium ionophore A23187 was found to induce human white blood cells to kill human red blood cells. Optimal conditions for ionophore-induced cellular cytotoxicity (IICC) included an 18 h time period, an incubation temperature of 25 degrees, a 25:1 or 50:1 killer:target cell ratio,and a final ionophore concentration of 2 . 5 microgram/ml. WBC or granulocytes which were either frozen and thawed three times or sonicated were capable of mediating IICC. As intact cells, granulocytes (67 . 2% cytotoxicity), monocytes (34 . 8%), B cells (22 . 0%) and Null cells (19 . 3%) were effector cells but T cells (7 . 4%) were not. After fragmenting these cells, all cell types including T cells were able to mediate IICC. When cell lines (K562, Chang, and NCTC) were used as effectors, none would mediate IICC when intact. After freezing and thawing, Chang and NCTC would not mediate IICC, whereas K562 cells did. These studies may be indicative of a calcium-dependent, membrane-localized mechanism in cellular cytotoxic processes, and may provide a useful indicator system for isolation of the enzyme systems involved in cellular cytotoxicity. PMID:6773881

  20. Use of HCI to screen for developmental neurotoxicity

    EPA Science Inventory

    The development of the nervous system is a prolonged process. It starts with the generation of neuroepithelial cells during embryogenesis and is not complete until the final stages of synaptic remodeling in the young adult. The outcome is a functionally connected neural network t...

  1. A combination of HPLC and automated data analysis for monitoring the efficiency of high-pressure homogenization.

    PubMed

    Eggenreich, Britta; Rajamanickam, Vignesh; Wurm, David Johannes; Fricke, Jens; Herwig, Christoph; Spadiut, Oliver

    2017-08-01

    Cell disruption is a key unit operation to make valuable, intracellular target products accessible for further downstream unit operations. Independent of the applied cell disruption method, each cell disruption process must be evaluated with respect to disruption efficiency and potential product loss. Current state-of-the-art methods, like measuring the total amount of released protein and plating-out assays, are usually time-delayed and involve manual intervention making them error-prone. An automated method to monitor cell disruption efficiency at-line is not available to date. In the current study we implemented a methodology, which we had originally developed to monitor E. coli cell integrity during bioreactor cultivations, to automatically monitor and evaluate cell disruption of a recombinant E. coli strain by high-pressure homogenization. We compared our tool with a library of state-of-the-art methods, analyzed the effect of freezing the biomass before high-pressure homogenization and finally investigated this unit operation in more detail by a multivariate approach. A combination of HPLC and automated data analysis describes a valuable, novel tool to monitor and evaluate cell disruption processes. Our methodology, which can be used both in upstream (USP) and downstream processing (DSP), describes a valuable tool to evaluate cell disruption processes as it can be implemented at-line, gives results within minutes after sampling and does not need manual intervention.

  2. Segmentation of Pollen Tube Growth Videos Using Dynamic Bi-Modal Fusion and Seam Carving.

    PubMed

    Tambo, Asongu L; Bhanu, Bir

    2016-05-01

    The growth of pollen tubes is of significant interest in plant cell biology, as it provides an understanding of internal cell dynamics that affect observable structural characteristics such as cell diameter, length, and growth rate. However, these parameters can only be measured in experimental videos if the complete shape of the cell is known. The challenge is to accurately obtain the cell boundary in noisy video images. Usually, these measurements are performed by a scientist who manually draws regions-of-interest on the images displayed on a computer screen. In this paper, a new automated technique is presented for boundary detection by fusing fluorescence and brightfield images, and a new efficient method of obtaining the final cell boundary through the process of Seam Carving is proposed. This approach takes advantage of the nature of the fusion process and also the shape of the pollen tube to efficiently search for the optimal cell boundary. In video segmentation, the first two frames are used to initialize the segmentation process by creating a search space based on a parametric model of the cell shape. Updates to the search space are performed based on the location of past segmentations and a prediction of the next segmentation.Experimental results show comparable accuracy to a previous method, but significant decrease in processing time. This has the potential for real time applications in pollen tube microscopy.

  3. Role of the immune system in regeneration and its dynamic interplay with adult stem cells.

    PubMed

    Abnave, Prasad; Ghigo, Eric

    2018-04-09

    The immune system plays an indispensable role in the process of tissue regeneration following damage as well as during homeostasis. Inflammation and immune cell recruitment are signs of early onset injury. At the wound site, immune cells not only help to clear debris but also secrete numerous signalling molecules that induce appropriate cell proliferation and differentiation programmes essential for successful regeneration. However, the immune system does not always perform a complementary role in regeneration and several reports have suggested that increased inflammation can inhibit the regeneration process. Successful regeneration requires a balanced immune cell response, with the recruitment of accurately polarised immune cells in an appropriate quantity. The regulatory interactions of the immune system with regeneration are not unidirectional. Stem cells, as key players in regeneration, can also modulate the immune system in several ways to facilitate regeneration. In this review, we will focus on recent research demonstrating the key role of immune system in the regeneration process as well as the immunomodulatory effects of stem cells. Finally, we propose that research investigating the interplay between the immune system and stem cells within highly regenerating animals can benefit the identification of the key interactions and molecules required for successful regeneration. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Experience of microbiological screening of human hepatocytes for clinical transplantation.

    PubMed

    Lehec, Sharon C; Hughes, Robin D; Mitry, Ragai R; Graver, Michelle A; Verma, Anita; Wade, Jim J; Dhawan, Anil

    2009-01-01

    Hepatocyte transplantation is being used in patients with liver-based metabolic disorders and acute liver failure. Hepatocytes are isolated from unused donor liver tissue under GMP conditions. Cells must be free of microbiological contamination to be safe for human use. The experience of microbiological screening during 72 hepatocyte isolation procedures at one center is reported. Samples were taken at different stages of the process and tested using a blood culture bottle system and Gram stain. Bacterial contamination was detected in 37.5% of the UW organ preservative solutions used to transport the liver tissue to the Cell Isolation Unit. After tissue processing the contamination was reduced to 7% overall in the final hepatocyte product, irrespective of the presence of initial contamination of the transport solution. The most common organisms recovered were coagulase-negative staphylococci, a skin commensal. A total of 41 preparations of fresh or cryopreserved hepatocytes were used for cell transplantation in children with liver-based metabolic disorders without any evidence of sepsis due to infusion of hepatocytes. In conclusion, the incidence of bacterial contamination of the final product was low, confirming the suitability of the organs used, hepatocyte isolation procedure, and the environmental conditions of the clean room.

  5. Growth Mechanism of Microbial Colonies

    NASA Astrophysics Data System (ADS)

    Zhu, Minhui; Martini, K. Michael; Kim, Neil H.; Sherer, Nicholas; Lee, Jia Gloria; Kuhlman, Thomas; Goldenfeld, Nigel

    Experiments on nutrient-limited E. coli colonies, growing on agar gel from single cells reveal a power-law distribution of sizes, both during the growth process and in the final stage when growth has ceased. We developed a Python simulation to study the growth mechanism of the bacterial population and thus understand the broad details of the experimental findings. The simulation takes into account nutrient uptake, metabolic function, growth and cell division. Bacteria are modeled in two dimensions as hard circle-capped cylinders with steric interactions and elastic stress dependent growth characteristics. Nutrient is able to diffuse within and between the colonies. The mechanism of microbial colony growth involves reproduction of cells within the colonies and the merging of different colonies. We report results on the dynamic scaling laws and final state size distribution, that capture in semi-quantitative detail the trends observed in experiment. Supported by NSF Grant 0822613.

  6. BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE

    PubMed Central

    Bray, D.

    1973-01-01

    The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915

  7. Large-scale production of human pluripotent stem cell derived cardiomyocytes.

    PubMed

    Kempf, Henning; Andree, Birgit; Zweigerdt, Robert

    2016-01-15

    Regenerative medicine, including preclinical studies in large animal models and tissue engineering approaches as well as innovative assays for drug discovery, will require the constant supply of hPSC-derived cardiomyocytes and other functional progenies. Respective cell production processes must be robust, economically viable and ultimately GMP-compliant. Recent research has enabled transition of lab scale protocols for hPSC expansion and cardiomyogenic differentiation towards more controlled processing in industry-compatible culture platforms. Here, advanced strategies for the cultivation and differentiation of hPSCs will be reviewed by focusing on stirred bioreactor-based techniques for process upscaling. We will discuss how cardiomyocyte mass production might benefit from recent findings such as cell expansion at the cardiovascular progenitor state. Finally, remaining challenges will be highlighted, specifically regarding three dimensional (3D) hPSC suspension culture and critical safety issues ahead of clinical translation. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Immunological aspects in chronic lymphocytic leukemia (CLL) development.

    PubMed

    García-Muñoz, Ricardo; Galiacho, Verónica Roldan; Llorente, Luis

    2012-07-01

    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens-including apoptotic bodies-in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells.

  9. In-situ Roll-to-Roll Printing of Highly Efficient Organic Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Zhenan; Toney, Michael; Clancy, Paulette

    2016-05-30

    This project focuses on developing a roll-to-roll printing setup for organic solar cells with the capability to follow the film formation in situ with small and wide angle X-ray scattering, and to improve the performance of printed organic solar cells. We demonstrated the use of the printing setup to capture important aspects of existing industrial printing methods, which ensures that the solar cell performance achieved in our printing experiments would be largely retained in an industrial fabrication process. We employed both known and newly synthesized polymers as the donor and acceptor materials, and we studied the morphological changes in realmore » time during the printing process by X-ray scattering. Our experimental efforts are also accompanied by theoretical modeling of both the fluid dynamic aspects of the printing process and the nucleation and crystallization kinetics during the film formation. The combined insight into the printing process gained from the research provides a detailed understanding of the factors governing the printed solar cell’s performance. Finally using the knowledge we gained, we demonstrated large area ( > 10 cm2) printed organic solar cells with more than 5 percent power conversion efficiency, which is best achieved performance for roll-to-roll printed organic solar cells.« less

  10. Extrusion of amyloid fibrils to the extracellular space in experimental mesangial AL-amyloidosis: transmission and scanning electron microscopy studies and correlation with renal biopsy observations.

    PubMed

    Teng, Jiamin; Turbat-Herrera, Elba A; Herrera, Guillermo A

    2014-04-01

    In vitro studies have provided much information regarding the process of glomerular AL-amyloidogenesis. Research efforts have been successful in deciphering how glomerulopathic light chains interact with mesangial cells. The sequential steps involved in the genesis of amyloid fibrils include interactions with surface caveolae in mesangial cells and internalization of the monoclonal light chains through a clathrin-mediated process followed by trafficking in the mesangial cells to the mature lysosomal compartment where fibrils are formed. This manuscript focuses on how mesangial cells, once amyloid has been formed, deliver the fibrils to the extracellular matrix. The delivery of amyloid fibrils to the outside of the cells is carried out by lysosomes, which abut the mesangial cell membranes and extrude their contents into the extracellular space. This final step responsible for the fibrils to be present predominantly in the extracellular space is well demonstrated with scanning electron microscopy.

  11. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer.

    PubMed

    Nurwidya, Fariz; Zaini, Jamal; Putra, Andika Chandra; Andarini, Sita; Hudoyo, Achmad; Syahruddin, Elisna; Yunus, Faisal

    2016-09-01

    Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.

  12. Epigenetic control of CD8+ T cell differentiation.

    PubMed

    Henning, Amanda N; Roychoudhuri, Rahul; Restifo, Nicholas P

    2018-05-01

    Upon stimulation, small numbers of naive CD8 + T cells proliferate and differentiate into a variety of memory and effector cell types. CD8 + T cells can persist for years and kill tumour cells and virally infected cells. The functional and phenotypic changes that occur during CD8 + T cell differentiation are well characterized, but the epigenetic states that underlie these changes are incompletely understood. Here, we review the epigenetic processes that direct CD8 + T cell differentiation and function. We focus on epigenetic modification of DNA and associated histones at genes and their regulatory elements. We also describe structural changes in chromatin organization that affect gene expression. Finally, we examine the translational potential of epigenetic interventions to improve CD8 + T cell function in individuals with chronic infections and cancer.

  13. Roles of epigenome in mammalian spermatogenesis.

    PubMed

    Song, Ning; Endo, Daisuke; Koji, Takehiko

    2014-04-01

    Mammalian spermatogenesis is a successive process consisting of spermatogonial proliferation, spermatocytic meiosis, and spermiogenesis, representing the maturation of haploid spermatids. During the process, 25-75 % of the expected sperm yield is thought to be lost through apoptosis. In addition, spermatogenesis is considered to be a process undergoing successive heterochromatinization, finally reaching a complete condensed form in the sperm head. Thus, cell proliferation, differentiation and death may be strictly regulated by epigenetic factors in this process. This review describes the current understanding of the role of epigenome in spermatogenesis, especially focusing on the following aspects; DNA methylation, modification of histones, and small RNA function. These epigenetic factors affect each other and play a central role in events essential for spermatogenesis, fertilization and embryogenesis, through the regulation of gene expression, transposon activities, meiotic sex chromosome inactivation, histone remodeling and genome imprinting. Finally, a brief discussion of future avenues of study is highlighted.

  14. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  15. Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage.

    PubMed

    Urbanska, Marta; Winzi, Maria; Neumann, Katrin; Abuhattum, Shada; Rosendahl, Philipp; Müller, Paul; Taubenberger, Anna; Anastassiadis, Konstantinos; Guck, Jochen

    2017-12-01

    Cellular reprogramming is a dedifferentiation process during which cells continuously undergo phenotypical remodeling. Although the genetic and biochemical details of this remodeling are fairly well understood, little is known about the change in cell mechanical properties during the process. In this study, we investigated changes in the mechanical phenotype of murine fetal neural progenitor cells (fNPCs) during reprogramming to induced pluripotent stem cells (iPSCs). We find that fNPCs become progressively stiffer en route to pluripotency, and that this stiffening is mirrored by iPSCs becoming more compliant during differentiation towards the neural lineage. Furthermore, we show that the mechanical phenotype of iPSCs is comparable with that of embryonic stem cells. These results suggest that mechanical properties of cells are inherent to their developmental stage. They also reveal that pluripotent cells can differentiate towards a more compliant phenotype, which challenges the view that pluripotent stem cells are less stiff than any cells more advanced developmentally. Finally, our study indicates that the cell mechanical phenotype might be utilized as an inherent biophysical marker of pluripotent stem cells. © 2017. Published by The Company of Biologists Ltd.

  16. Resveratrol Ameliorates the Maturation Process of β-Cell-Like Cells Obtained from an Optimized Differentiation Protocol of Human Embryonic Stem Cells

    PubMed Central

    Pezzolla, Daniela; López-Beas, Javier; Lachaud, Christian C.; Domínguez-Rodríguez, Alejandro; Smani, Tarik; Hmadcha, Abdelkrim; Soria, Bernat

    2015-01-01

    Human embryonic stem cells (hESCs) retain the extraordinary capacity to differentiate into different cell types of an adult organism, including pancreatic β-cells. For this particular lineage, although a lot of effort has been made in the last ten years to achieve an efficient and reproducible differentiation protocol, it was not until recently that this aim was roughly accomplished. Besides, several studies evidenced the impact of resveratrol (RSV) on insulin secretion, even though the mechanism by which this polyphenol potentiates glucose-stimulated insulin secretion (GSIS) is still not clear. The aim of this study was to optimize an efficient differentiation protocol that mimics in vivo pancreatic organogenesis and to investigate whether RSV may improve the final maturation step to obtain functional insulin-secreting cells. Our results indicate that treatment of hESCs (HS-181) with activin-A induced definitive endoderm differentiation as detected by the expression of SOX17 and FOXA2. Addition of retinoic acid (RA), Noggin and Cyclopamine promoted pancreatic differentiation as indicated by the expression of the early pancreatic progenitor markers ISL1, NGN3 and PDX1. Moreover, during maturation in suspension culture, differentiating cells assembled in islet-like clusters, which expressed specific endocrine markers such as PDX1, SST, GCG and INS. Similar results were confirmed with the human induced Pluripotent Stem Cell (hiPSC) line MSUH-001. Finally, differentiation protocols incorporating RSV treatment yielded numerous insulin-positive cells, induced significantly higher PDX1 expression and were able to transiently normalize glycaemia when transplanted in streptozotocin (STZ) induced diabetic mice thus promoting its survival. In conclusion, our strategy allows the efficient differentiation of hESCs into pancreatic endoderm capable of generating β-cell-like cells and demonstrates that RSV improves the maturation process. PMID:25774684

  17. Transcriptome dynamics along axolotl regenerative development are consistent with an extensive reduction in gene expression heterogeneity in dedifferentiated cells

    PubMed Central

    2017-01-01

    Although in recent years the study of gene expression variation in the absence of genetic or environmental cues or gene expression heterogeneity has intensified considerably, many basic and applied biological fields still remain unaware of how useful the study of gene expression heterogeneity patterns might be for the characterization of biological systems and/or processes. Largely based on the modulator effect chromatin compaction has for gene expression heterogeneity and the extensive changes in chromatin compaction known to occur for specialized cells that are naturally or artificially induced to revert to less specialized states or dedifferentiate, I recently hypothesized that processes that concur with cell dedifferentiation would show an extensive reduction in gene expression heterogeneity. The confirmation of the existence of such trend could be of wide interest because of the biomedical and biotechnological relevance of cell dedifferentiation-based processes, i.e., regenerative development, cancer, human induced pluripotent stem cells, or plant somatic embryogenesis. Here, I report the first empirical evidence consistent with the existence of an extensive reduction in gene expression heterogeneity for processes that concur with cell dedifferentiation by analyzing transcriptome dynamics along forearm regenerative development in Ambystoma mexicanum or axolotl. Also, I briefly discuss on the utility of the study of gene expression heterogeneity dynamics might have for the characterization of cell dedifferentiation-based processes, and the engineering of tools that afforded better monitoring and modulating such processes. Finally, I reflect on how a transitional reduction in gene expression heterogeneity for dedifferentiated cells can promote a long-term increase in phenotypic heterogeneity following cell dedifferentiation with potential adverse effects for biomedical and biotechnological applications. PMID:29134148

  18. Endothelium and Its Alterations in Cardiovascular Diseases: Life Style Intervention

    PubMed Central

    Paganelli, Corrado; Buffoli, Barbara; Rodella, Luigi Fabrizio; Rezzani, Rita

    2014-01-01

    The endothelium, which forms the inner cellular lining of blood vessels and lymphatics, is a highly metabolically active organ that is involved in many physiopathological processes, including the control of vasomotor tone, barrier function, leukocyte adhesion, and trafficking and inflammation. In this review, we summarized and described the following: (i) endothelial cell function in physiological conditions and (ii) endothelial cell activation and dysfunction in the main cardiovascular diseases (such as atherosclerosis, and hypertension) and to diabetes, cigarette smoking, and aging physiological process. Finally, we presented the currently available evidence that supports the beneficial effects of physical activity and various dietary compounds on endothelial functions. PMID:24719887

  19. Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.

    PubMed

    Francois, Jean Marie

    2016-01-01

    The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.

  20. Regenerative medicine in kidney disease: where we stand and where to go.

    PubMed

    Borges, Fernanda T; Schor, Nestor

    2017-07-22

    The kidney is a complex organ with more than 20 types of specialized cells that play an important role in maintaining the body's homeostasis. The epithelial tubular cell is formed during embryonic development and has little proliferative capacity under physiological conditions, but after acute injury the kidney does have regenerative capacity. However, after repetitive or severe lesions, it may undergo a maladaptation process that predisposes it to chronic kidney injury. Regenerative medicine includes various repair and regeneration techniques, and these have gained increasing attention in the scientific literature. In the future, not only will these techniques contribute to the repair and regeneration of the human kidney, but probably also to the construction of an entire organ. New mechanisms studied for kidney regeneration and repair include circulating stem cells as mesenchymal stromal/stem cells and their paracrine mechanisms of action; renal progenitor stem cells; the leading role of tubular epithelial cells in the tubular repair process; the study of zebrafish larvae to understand the process of nephron development, kidney scaffold and its repopulation; and, finally, the development of organoids. This review elucidates where we are in terms of current scientific knowledge regarding these mechanisms and the promises of future scientific perspectives.

  1. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.

    PubMed

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping

    2018-01-15

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  2. Regulation of radial glial survival by signals from the meninges

    PubMed Central

    Radakovits, Randor; Barros, Claudia S.; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich

    2009-01-01

    Summary Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here we show that RGC numbers and cortical size are reduced in mice lacking β1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that β1-deficient RGCs processes detach from the meningeal BM followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin α2 and α4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size. PMID:19535581

  3. Regulation of radial glial survival by signals from the meninges.

    PubMed

    Radakovits, Randor; Barros, Claudia S; Belvindrah, Richard; Patton, Bruce; Müller, Ulrich

    2009-06-17

    Radial glial cells (RGCs) in the developing cerebral cortex are progenitors for neurons and glia, and their processes serve as guideposts for migrating neurons. So far, it has remained unclear whether RGC processes also control the function of RGCs more directly. Here, we show that RGC numbers and cortical size are reduced in mice lacking beta1 integrins in RGCs. TUNEL stainings and time-lapse video recordings demonstrate that beta1-deficient RGCs processes detach from the meningeal basement membrane (BM) followed by apoptotic death of RGCs. Apoptosis is also induced by surgical removal of the meninges. Finally, mice lacking the BM components laminin alpha2 and alpha4 show defects in the attachment of RGC processes at the meninges, a reduction in cortical size, and enhanced apoptosis of RGC cells. Our findings demonstrate that attachment of RGC processes at the meninges is important for RGC survival and the control of cortical size.

  4. Learning cell biology as a team: a project-based approach to upper-division cell biology.

    PubMed

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular and molecular biology of the disease, and recent research focused on understanding the cellular mechanisms of the disease process. To support effective teamwork and to help students develop collaboration skills useful for their future careers, we provide training in working in small groups. A final poster presentation, held in a public forum, summarizes what students have learned throughout the quarter. Although student satisfaction with the course is similar to that of standard lecture-based classes, a project-based class offers unique benefits to both the student and the instructor.

  5. Anodic oxidation of textile wastewaters on boron-doped diamond electrodes.

    PubMed

    Abdessamad, NourElHouda; Akrout, Hanene; Bousselmi, Latifa

    2015-01-01

    The objective of this study is to investigate the potential application of the anodic oxidation (AO) on two electrolytic cells (monopolar (Cell 1) and bipolar (Cell 2)) containing boron-doped diamond electrodes on the treatment of real textile effluents to study the reuse possibility of treated wastewater in the textile industry process. AO is applied in the flocculation coagulation pretreatment of both upstream (BH) and downstream (BS) effluents. The chemical oxygen demand (COD) results show that the final COD removal obtained for the BH effluent in the case of Cell 1 and Cell 2 is 800 and 150 mg O₂L⁻¹ after 5 and 6 h of electrolysis, respectively. The treatments of the BS effluent allow for obtaining a final COD of 76 mg L⁻¹ for Cell 1 and a total mineralization for Cell 2. The obtained results demonstrate that the apparent mineralization kinetics of both effluents when using Cell 2 are about four times faster than the one obtained by Cell 1 and highlight the important contribution of the bipolar cell. Besides, the energy consumption values show that the treatment of the BH effluent by Cell 1 consumes 865 kWh kg COD⁻¹ against 411 kWh kg COD(-1) by Cell 2. Therefore, the use of Cell 2 decreases the energy cost by 2.1-6.65 times when compared to Cell 1 in the case of the BH and BS effluent treatment, respectively.

  6. Design Course for Micropower Generation Devices

    ERIC Educational Resources Information Center

    Mitsos, Alexander

    2009-01-01

    A project-based design course is developed for man-portable power generation via microfabricated fuel cell systems. Targeted audience are undergraduate chemical/process engineering students in their final year. The course covers 6 weeks, with three hours of lectures per week. Two alternative projects are developed, one focusing on selection of…

  7. 65ZN AND 59FE UPTAKE BY LOBSTER HEPATOPANCREATIC EPITHELIAL CELLS OCCUR BY ELECTROGENIC, PROTON-DEPENDENT TRANSPORT PROCESSES. (R823068)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Photovoltaic solar concentrator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting themore » photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.« less

  9. Recovery of CD45(-)/Lin(-)/SSEA-4(+) very small embryonic-like stem cells by cord blood bank standard operating procedures.

    PubMed

    Chang, Yu-Jen; Tien, Kuei-Erh; Wen, Cheng-Hao; Hsieh, Tzu-Bou; Hwang, Shiaw-Min

    2014-04-01

    Very small embryonic-like (VSEL) stem cells are a rare cell population present in bone marrow, cord blood and other tissues that displays a distinct small cell size and the ability to give rise to cells of the three germ layers. VSEL stem cells were reported to be discarded in the red blood cell fraction by Ficoll-Paque density gradient centrifugation during the processing of bone marrow and cord blood specimens. However, most cord blood banks do not include density gradient centrifugation in their procedures while red blood cells are removed by Hespan sedimentation following the Cord Blood Transplantation Study cord blood bank standard operating procedures (COBLT SOP). To clarify the retention of VSEL stem cells, we investigated the recovery of VSEL stem cells following COBLT SOP guidelines. The recovery of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells of umbilical cord blood was examined by flow cytometry before and after COBLT SOP processing, and relative expression of pluripotent genes was analyzed by quantitative polymerase chain reaction. CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells were mostly recovered in the final products following COBLT SOP guidelines. The expression of pluripotent genes could be maintained at >80% in products after hetastarch (Hespan; B. Braun Medical Inc., Irvine, CA, USA) processing. The rare sub-population of CD45(-)/Lin(-)/SSEA-4(+) VSEL stem cells survived after Hespan sedimentation. This finding suggests that umbilical cord blood units cryopreserved by COBLT SOP in cord blood banks should retain most VSEL stem cells present in the un-processed specimens. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. The Arabidopsis EIN2 restricts organ growth by retarding cell expansion

    PubMed Central

    Feng, Guanping; Liu, Gang; Xiao, Jianhua

    2015-01-01

    The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. ETHYLENE INSENSITVE 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion. PMID:26039475

  11. Th9 cells: differentiation and disease

    PubMed Central

    Kaplan, Mark H.

    2014-01-01

    Summary CD4+ T-helper cells regulate immunity and inflammation through the acquisition of potential to secrete specific cytokines. The acquisition of cytokine-secreting potential, in a process termed T-helper cell differentiation, is a response to multiple environmental signals including the cytokine milieu. The most recently defined subset of T-helper cells are termed Th9 and are identified by the potent production of interleukin-9 (IL-9). Given the pleiotropic functions of IL-9, Th9 cells might be involved in pathogen immunity and immune-mediated disease. In this review, I focus on recent developments in understanding the signals that promote Th9 differentiation, the transcription factors that regulate IL-9 expression, and finally the potential roles for Th9 cells in immunity in vivo. PMID:23405898

  12. Xylogenesis: Coniferous Trees of Temperate Forests Are Listening to the Climate Tale during the Growing Season But Only Remember the Last Words!1

    PubMed Central

    2016-01-01

    The complex inner mechanisms that create typical conifer tree-ring structure (i.e. the transition from large, thin-walled earlywood cells to narrow, thick-walled latewood cells) were recently unraveled. However, what physiological or environmental factors drive xylogenesis key processes remain unclear. Here, we aim to quantify the influence of seasonal variations in climatic factors on the spectacular changes in the kinetics of wood cell differentiation and in the resulting tree-ring structure. Wood formation was monitored in three sites over 3 years for three coniferous species (Norway spruce [Picea abies], Scots pine [Pinus sylvestris], and silver fir [Abies alba]). Cell differentiation rates and durations were calculated and related to tracheid final dimensions and corresponding climatic conditions. On the one hand, we found that the kinetics of cell enlargement and the final size of the tracheids were not explained by the seasonal changes in climatic factors. On the other hand, decreasing temperatures strongly constrained cell wall deposition rates during latewood formation. However, the influence of temperature was permanently written into tree-ring structure only for the very last latewood cells, when the collapse of the rate of wall deposition was no longer counterbalanced by the increase of its duration. Our results show that the formation of the typical conifer tree-ring structure, in normal climatic conditions, is only marginally driven by climate, suggesting strong developmental control of xylogenesis. The late breakage of the compensatory mechanism at work in the wall deposition process appears as a clue to understand the capacity of the maximum latewood density to record past temperature conditions. PMID:27208048

  13. Xylogenesis: Coniferous Trees of Temperate Forests Are Listening to the Climate Tale during the Growing Season But Only Remember the Last Words!

    PubMed

    Cuny, Henri E; Rathgeber, Cyrille B K

    2016-05-01

    The complex inner mechanisms that create typical conifer tree-ring structure (i.e. the transition from large, thin-walled earlywood cells to narrow, thick-walled latewood cells) were recently unraveled. However, what physiological or environmental factors drive xylogenesis key processes remain unclear. Here, we aim to quantify the influence of seasonal variations in climatic factors on the spectacular changes in the kinetics of wood cell differentiation and in the resulting tree-ring structure. Wood formation was monitored in three sites over 3 years for three coniferous species (Norway spruce [Picea abies], Scots pine [Pinus sylvestris], and silver fir [Abies alba]). Cell differentiation rates and durations were calculated and related to tracheid final dimensions and corresponding climatic conditions. On the one hand, we found that the kinetics of cell enlargement and the final size of the tracheids were not explained by the seasonal changes in climatic factors. On the other hand, decreasing temperatures strongly constrained cell wall deposition rates during latewood formation. However, the influence of temperature was permanently written into tree-ring structure only for the very last latewood cells, when the collapse of the rate of wall deposition was no longer counterbalanced by the increase of its duration. Our results show that the formation of the typical conifer tree-ring structure, in normal climatic conditions, is only marginally driven by climate, suggesting strong developmental control of xylogenesis. The late breakage of the compensatory mechanism at work in the wall deposition process appears as a clue to understand the capacity of the maximum latewood density to record past temperature conditions. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. A Look into the Cell: Honey Storage in Honey Bees, Apis mellifera.

    PubMed

    Eyer, Michael; Neumann, Peter; Dietemann, Vincent

    2016-01-01

    Honey bees, Apis species, obtain carbohydrates from nectar and honeydew. These resources are ripened into honey in wax cells that are capped for long-term storage. These stores are used to overcome dearth periods when foraging is not possible. Despite the economic and ecological importance of honey, little is known about the processes of its production by workers. Here, we monitored the usage of storage cells and the ripening process of honey in free-flying A. mellifera colonies. We provided the colonies with solutions of different sugar concentrations to reflect the natural influx of nectar with varying quality. Since the amount of carbohydrates in a solution affects its density, we used computer tomography to measure the sugar concentration of cell content over time. The data show the occurrence of two cohorts of cells with different provisioning and ripening dynamics. The relocation of the content of many cells before final storage was part of the ripening process, because sugar concentration of the content removed was lower than that of content deposited. The results confirm the mixing of solutions of different concentrations in cells and show that honey is an inhomogeneous matrix. The last stage of ripening occurred when cell capping had already started, indicating a race against water absorption. The storage and ripening processes as well as resource use were context dependent because their dynamics changed with sugar concentration of the food. Our results support hypotheses regarding honey production proposed in earlier studies and provide new insights into the mechanisms involved.

  15. Skeletal muscle regeneration and impact of aging and nutrition.

    PubMed

    Domingues-Faria, Carla; Vasson, Marie-Paule; Goncalves-Mendes, Nicolas; Boirie, Yves; Walrand, Stephane

    2016-03-01

    After skeletal muscle injury a regeneration process takes place to repair muscle. Skeletal muscle recovery is a highly coordinated process involving cross-talk between immune and muscle cells. It is well known that the physiological activities of both immune cells and muscle stem cells decline with advancing age, thereby blunting the capacity of skeletal muscle to regenerate. The age-related reduction in muscle repair efficiency contributes to the development of sarcopenia, one of the most important factors of disability in elderly people. Preserving muscle regeneration capacity may slow the development of this syndrome. In this context, nutrition has drawn much attention: studies have demonstrated that nutrients such as amino acids, n-3 polyunsaturated fatty acids, polyphenols and vitamin D can improve skeletal muscle regeneration by targeting key functions of immune cells, muscle cells or both. Here we review the process of skeletal muscle regeneration with a special focus on the cross-talk between immune and muscle cells. We address the effect of aging on immune and skeletal muscle cells involved in muscle regeneration. Finally, the mechanisms of nutrient action on muscle regeneration are described, showing that quality of nutrition may help to preserve the capacity for skeletal muscle regeneration with age. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Modifying an Insect Cell N-Glycan Processing Pathway Using CRISPR-Cas Technology.

    PubMed

    Mabashi-Asazuma, Hideaki; Kuo, Chu-Wei; Khoo, Kay-Hooi; Jarvis, Donald L

    2015-10-16

    Fused lobes (FDL) is an enzyme that simultaneously catalyzes a key trimming reaction and antagonizes elongation reactions in the insect N-glycan processing pathway. Accordingly, FDL function accounts, at least in part, for major differences in the N-glycosylation patterns of glycoproteins produced by insect and mammalian cells. In this study, we used the CRISPR-Cas9 system to edit the fdl gene in Drosophila melanogaster S2 cells. CRISPR-Cas9 editing produced a high frequency of site-specific nucleotide insertions and deletions, reduced the production of insect-type, paucimannosidic products (Man3GlcNAc2), and led to the production of partially elongated, mammalian-type complex N-glycans (GlcNAc2Man3GlcNAc2) in S2 cells. As CRISPR-Cas9 has not been widely used to analyze or modify protein glycosylation pathways or edit insect cell genes, these results underscore its broad utility as a tool for these purposes. Our results also confirm the key role of FDL at the major branch point distinguishing insect and mammalian N-glycan processing pathways. Finally, the new FDL-deficient S2 cell derivative produced in this study will enable future bottom-up glycoengineering efforts designed to isolate insect cell lines that can efficiently produce recombinant glycoproteins with chemically predefined oligosaccharide side-chain structures.

  17. Single-Cell Genomic Analysis in Plants

    PubMed Central

    Hu, Haifei; Scheben, Armin; Edwards, David

    2018-01-01

    Individual cells in an organism are variable, which strongly impacts cellular processes. Advances in sequencing technologies have enabled single-cell genomic analysis to become widespread, addressing shortcomings of analyses conducted on populations of bulk cells. While the field of single-cell plant genomics is in its infancy, there is great potential to gain insights into cell lineage and functional cell types to help understand complex cellular interactions in plants. In this review, we discuss current approaches for single-cell plant genomic analysis, with a focus on single-cell isolation, DNA amplification, next-generation sequencing, and bioinformatics analysis. We outline the technical challenges of analysing material from a single plant cell, and then examine applications of single-cell genomics and the integration of this approach with genome editing. Finally, we indicate future directions we expect in the rapidly developing field of plant single-cell genomic analysis. PMID:29361790

  18. Fermentanomics: Relating quality attributes of a monoclonal antibody to cell culture process variables and raw materials using multivariate data analysis.

    PubMed

    Rathore, Anurag S; Kumar Singh, Sumit; Pathak, Mili; Read, Erik K; Brorson, Kurt A; Agarabi, Cyrus D; Khan, Mansoor

    2015-01-01

    Fermentanomics is an emerging field of research and involves understanding the underlying controlled process variables and their effect on process yield and product quality. Although major advancements have occurred in process analytics over the past two decades, accurate real-time measurement of significant quality attributes for a biotech product during production culture is still not feasible. Researchers have used an amalgam of process models and analytical measurements for monitoring and process control during production. This article focuses on using multivariate data analysis as a tool for monitoring the internal bioreactor dynamics, the metabolic state of the cell, and interactions among them during culture. Quality attributes of the monoclonal antibody product that were monitored include glycosylation profile of the final product along with process attributes, such as viable cell density and level of antibody expression. These were related to process variables, raw materials components of the chemically defined hybridoma media, concentration of metabolites formed during the course of the culture, aeration-related parameters, and supplemented raw materials such as glucose, methionine, threonine, tryptophan, and tyrosine. This article demonstrates the utility of multivariate data analysis for correlating the product quality attributes (especially glycosylation) to process variables and raw materials (especially amino acid supplements in cell culture media). The proposed approach can be applied for process optimization to increase product expression, improve consistency of product quality, and target the desired quality attribute profile. © 2015 American Institute of Chemical Engineers.

  19. Large-scale production of diesel-like biofuels - process design as an inherent part of microorganism development.

    PubMed

    Cuellar, Maria C; Heijnen, Joseph J; van der Wielen, Luuk A M

    2013-06-01

    Industrial biotechnology is playing an important role in the transition to a bio-based economy. Currently, however, industrial implementation is still modest, despite the advances made in microorganism development. Given that the fuels and commodity chemicals sectors are characterized by tight economic margins, we propose to address overall process design and efficiency at the start of bioprocess development. While current microorganism development is targeted at product formation and product yield, addressing process design at the start of bioprocess development means that microorganism selection can also be extended to other critical targets for process technology and process scale implementation, such as enhancing cell separation or increasing cell robustness at operating conditions that favor the overall process. In this paper we follow this approach for the microbial production of diesel-like biofuels. We review current microbial routes with both oleaginous and engineered microorganisms. For the routes leading to extracellular production, we identify the process conditions for large scale operation. The process conditions identified are finally translated to microorganism development targets. We show that microorganism development should be directed at anaerobic production, increasing robustness at extreme process conditions and tailoring cell surface properties. All the same time, novel process configurations integrating fermentation and product recovery, cell reuse and low-cost technologies for product separation are mandatory. This review provides a state-of-the-art summary of the latest challenges in large-scale production of diesel-like biofuels. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Myxobacteria Fruiting Body Formation

    NASA Astrophysics Data System (ADS)

    Jiang, Yi

    2006-03-01

    Myxobacteria are social bacteria that swarm and glide on surfaces, and feed cooperatively. When starved, tens of thousands of cells change their movement pattern from outward spreading to inward concentration; they form aggregates that become fruiting bodies, inside which cells differentiate into nonmotile, environmentally resistant spores. Traditionally, cell aggregation has been considered to imply chemotaxis, a long-range cell interaction mediated by diffusing chemicals. However, myxobacteria aggregation is the consequence of direct cell-contact interactions. I will review our recent efforts in modeling the fruiting body formation of Myxobacteria, using lattice gas cellular automata models that are based on local cell-cell contact signaling. These models have reproduced the individual phases in Myxobacteria development such as the rippling, streaming, early aggregation and the final sporulation; the models can be unified to simulate the whole developmental process of Myxobacteria.

  1. Dynamic remodeling of membrane composition drives cell cycle through primary cilia excision

    PubMed Central

    Phua, Siew Cheng; Chiba, Shuhei; Suzuki, Masako; Su, Emily; Roberson, Elle C.; Pusapati, Ganesh V.; Setou, Mitsutoshi; Rohatgi, Rajat; Reiter, Jeremy F.; Ikegami, Koji; Inoue, Takanari

    2017-01-01

    The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate to distal cilia. This triggers otherwise forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. Whilst cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer. PMID:28086093

  2. Biochemical consequences of alginate encapsulation: a NMR study of insulin-secreting cells.

    PubMed

    Simpson, Nicholas E; Grant, Samuel C; Gustavsson, Lenita; Peltonen, Vilje-Mia; Blackband, Stephen J; Constantinidis, Ioannis

    2006-04-01

    In this study we explore the biochemical consequences of alginate encapsulation on betaTC3 cells. (13)C NMR spectroscopy and isotopomer analysis were used to investigate the effects of encapsulation on several enzymatic processes associated with the TCA cycle. Our data show statistically significant differences in various enzymatic fluxes related to the TCA cycle and insulin secretion between monolayer and alginate-encapsulated cultures. The principal cause for these effects was the process of trypsinization. Embedding the trypsinized cells in alginate beads did not have a compounded effect on the enzymatic fluxes of entrapped cells. However, an additional small but statistically significant decrease in insulin secretion was measured in encapsulated cells. Finally, differences in either enzymatic fluxes or glucose consumption as a function of bead diameter were not observed. However, differences in T(2), assessed by (1)H NMR microimaging, were observed as a function of bead diameter, suggesting that smaller beads became more organized with time in culture, while larger beads displayed a looser organization.

  3. Translating Research into Clinical Scale Manufacturing of Mesenchymal Stromal Cells

    PubMed Central

    Bieback, Karen; Kinzebach, Sven; Karagianni, Marianna

    2010-01-01

    It sounds simple to obtain sufficient numbers of cells derived from fetal or adult human tissues, isolate and/or expand the stem cells, and then transplant an appropriate number of these cells into the patient at the correct location. However, translating basic research into routine therapies is a complex multistep process which necessitates product regulation. The challenge relates to managing the expected therapeutic benefits with the potential risks and to balance the fast move to clinical trials with time-consuming cautious risk assessment. This paper will focus on the definition of mesenchymal stromal cells (MSCs), and challenges and achievements in the manufacturing process enabling their use in clinical studies. It will allude to different cellular sources, special capacities of MSCs, but also to current regulations, with a special focus on accessory material of human or animal origin, like media supplements. As cellular integrity and purity, formulation and lot release testing of the final product, validation of all procedures, and quality assurance are of utmost necessity, these topics will be addressed. PMID:21318154

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodford, William

    This document is the final technical report from 24M Technologies on the project titled: Low Cost, Structurally Advanced Novel Electrode and Cell Manufacturing. All of the program milestones and deliverables were completed during the performance of the award. Specific accomplishments are 1) 24M demonstrated the processability and electrochemical performance of semi-solid electrodes with active volume contents increased by 10% relative to the program baseline; 2) electrode-level metrics, quality, and yield were demonstrated at an 80 cm 2 electrode footprint; 3) these electrodes were integrated into cells with consistent capacities and impedances, including cells delivered to Argonne National Laboratory for independentmore » testing; 4) those processes were scaled to a large-format (> 260 cm 2) electrode footprint and quality and yield were demonstrated; 5) a high-volume manufacturing approach for large-format electrode fabrication was demonstrated; and 6) large-format cells (> 100 Ah capacity) were prototyped with consistent capacity and impedance, including cells which were delivered to Argonne National Laboratory for independent testing.« less

  5. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis

    PubMed Central

    1993-01-01

    We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207

  6. Physical break-down of the classical view on cancer cell invasion and metastasis.

    PubMed

    Mierke, Claudia T

    2013-03-01

    Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Aqueous-Processed Inorganic Thin-Film Solar Cells Based on CdSe(x)Te(1-x) Nanocrystals: The Impact of Composition on Photovoltaic Performance.

    PubMed

    Zeng, Qingsen; Chen, Zhaolai; Zhao, Yue; Du, Xiaohang; Liu, Fangyuan; Jin, Gan; Dong, Fengxia; Zhang, Hao; Yang, Bai

    2015-10-21

    Aqueous processed nanocrystal (NC) solar cells are attractive due to their environmental friendliness and cost effectiveness. Controlling the bandgap of absorbing layers is critical for achieving high efficiency for single and multijunction solar cells. Herein, we tune the bandgap of CdTe through the incorporation of Se via aqueous process. The photovoltaic performance of aqueous CdSexTe1-x NCs is systematically investigated, and the impacts of charge generation, transport, and injection on device performance for different compositions are deeply discussed. We discover that the performance degrades with the increasing Se content from CdTe to CdSe. This is mainly ascribed to the lower conduction band (CB) of CdSexTe1-x with higher Se content, which reduces the driving force for electron injection into TiO2. Finally, the performance is improved by mixing CdSexTe1-x NCs with conjugated polymer poly(p-phenylenevinylene) (PPV), and power conversion efficiency (PCE) of 3.35% is achieved based on ternary NCs. This work may provide some information to further optimize the aqueous-processed NC and hybrid solar cells.

  8. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    PubMed

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas.

  9. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase.

    PubMed

    Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji

    2018-04-12

    Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. [JACIE: from guidelines to clinical practice and continuous quality improvement, the Léon-Bérard cancer center experience].

    PubMed

    Donot, Pierre Emmanuel

    2009-01-01

    JACIE, a European certification program for stem cell transplantation, has now been recognized by the French Health Authorities. It can be considered as an evaluation of professional practice, an activity that can be promoted by health centres. The present article has two aims: firstly, it describes the structure of the certification standard based on the relative structure of each of its components; secondly, it reports on the experience acquired by the Léon-Bérard cancer centre (Lyon-France) during the certification of its own stem cell transplantation program. The JACIE manual written in English is divided into three parts corresponding to the three processes identified. Part B describes the clinical haematopoietic stem cell transplantation program. Part C is dedicated to the collection of haematopoietic stem cells from blood and marrow. Finally, part D applies to the cell therapy laboratory in charge of cell preservation and the preparation of grafts for re-infusion. After the application has been submitted to the JACIE board, a date is set for an inspection visit. The cell therapy laboratory at Léon-Bérard cancer centre has already participated to a certified transplantation project of the Edouard-Herriot Hospital (Lyon public hospitals) [parts C and D of the certification]. The executive board proposed that the clinical haematology unit of the cancer centre also applied for JACIE certification. A multidisciplinary work group-combining document writing skills and a real capacity to convince and motivate clinical staff was formed. Secondly, a comprehensive collection of existing documents was issued and the clinical pathway of the patients was formalized so that no step of the graft process would be omitted. A physician from another hospital also tested the evaluation process with the organisation of a mock visit. He confirmed that everything was in good way and provided recommendations to improve the program. This huge preparation provided invaluable learning opportunities to the participants. After the final visit by JACIE inspectors, the cancer centre received four-year certification. The challenge is now to maintain this momentum for the next certifications and to better take into account the ethical and juridical constraints of haematopoietic stem cell transplantation.

  11. Analysis for residual host cell proteins and DNA in process streams of a recombinant protein product expressed in Escherichia coli cells.

    PubMed

    Rathore, Anurag Singh; Sobacke, S E; Kocot, T J; Morgan, D R; Dufield, R L; Mozier, N M

    2003-08-21

    Analyses of crude samples from biotechnology processes are often required in order to demonstrate that residual host cell impurities are reduced or eliminated during purification. In later stages of development, as the processes are further developed and finalized, there is a tremendous volume of testing required to confirm the absence of residual host cell proteins (HCP) and DNA. Analytical tests for these components are very challenging since (1). they may be present at levels that span a million-fold range, requiring substantial dilutions; (2). are not a single component, often existing as fragments and a variety of structures; (3). require high sensitivity for final steps in process; and (4). are present in very complex matrices including other impurities, the product, buffers, salts and solvents. Due to the complex matrices and the variety of potential analytes, the methods of analysis are not truly quantitative for all species. Although these limitations are well known, the assays are still very much in demand since they are required for approval of new products. Methods for final products, described elsewhere, focus on approaches to achieve regulatory requirements. The study described herein will describe the technical rationale for measuring the clearance of HCP and DNA in the entire bioprocessing to purification from an Escherichia coli-derived expression system. Three analytical assays, namely, reversed-phase high-performance liquid chromatography (RP-HPLC), enzyme-linked immunosorbent assay (ELISA), and Threshold Total DNA Assay, were utilized to quantify the protein product, HCP and DNA, respectively. Product quantification is often required for yield estimation and is useful since DNA and HCP results are best expressed as a ratio to product for calculation of relative purification factors. The recombinant E. coli were grown to express the protein of interest as insoluble inclusion bodies (IB) within the cells. The IB were isolated by repeated homogenization and centrifugation and the inclusion body slurry (IBS) was solubilized with urea. After refolding the product, the solution was loaded on several commonly used ion exchangers (CM, SP, DEAE, and Q). Product was eluted in a salt gradient mode and fractions were collected and analyzed for product, HCP and DNA. The IBS used for this study contained about 15 mg/ml product, 38 mg/ml HCP and 1.1 mg/ml DNA. Thus, the relative amounts of HCP and DNA in the IBS was excessive, and about 10(3) times greater than typical (because the cells and IB were not processed with the normal number of washing steps during isolation). This was of interest since similar samples may be encountered when working with non-inclusion body systems, such as periplasmic expressions, or in cases where the upstream unit operations under-perform in IB cleaning. The study described herein describes the development of three robust methods that provide the essential process data needed. These findings are of general interest to other projects since applications of similar analytical technology may be used as a tool to develop processes, evaluate clearance of impurities, and produce a suitable product.

  12. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.

    2011-01-01

    Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328

  13. Cell lineage tracing in the developing enteric nervous system: superstars revealed by experiment and simulation

    PubMed Central

    Cheeseman, Bevan L.; Zhang, Dongcheng; Binder, Benjamin J.; Newgreen, Donald F.; Landman, Kerry A.

    2014-01-01

    Cell lineage tracing is a powerful tool for understanding how proliferation and differentiation of individual cells contribute to population behaviour. In the developing enteric nervous system (ENS), enteric neural crest (ENC) cells move and undergo massive population expansion by cell division within self-growing mesenchymal tissue. We show that single ENC cells labelled to follow clonality in the intestine reveal extraordinary and unpredictable variation in number and position of descendant cells, even though ENS development is highly predictable at the population level. We use an agent-based model to simulate ENC colonization and obtain agent lineage tracing data, which we analyse using econometric data analysis tools. In all realizations, a small proportion of identical initial agents accounts for a substantial proportion of the total final agent population. We term these individuals superstars. Their existence is consistent across individual realizations and is robust to changes in model parameters. This inequality of outcome is amplified at elevated proliferation rate. The experiments and model suggest that stochastic competition for resources is an important concept when understanding biological processes which feature high levels of cell proliferation. The results have implications for cell-fate processes in the ENS. PMID:24501272

  14. Toward precision manufacturing of immunogene T-cell therapies.

    PubMed

    Xu, Jun; Melenhorst, J Joseph; Fraietta, Joseph A

    2018-05-01

    Cancer can be effectively targeted using a patient's own T cells equipped with synthetic receptors, including chimeric antigen receptors (CARs) that redirect and reprogram these lymphocytes to mediate tumor rejection. Over the past two decades, several strategies to manufacture genetically engineered T cells have been proposed, with the goal of generating optimally functional cellular products for adoptive transfer. Based on this work, protocols for manufacturing clinical-grade CAR T cells have been established, but these complex methods have been used to treat only a few hundred individuals. As CAR T-cell therapy progresses into later-phase clinical trials and becomes an option for more patients, a major consideration for academic institutions and industry is developing robust manufacturing processes that will permit scaling-out production of immunogene T-cell therapies in a reproducible and efficient manner. In this review, we will discuss the steps involved in cell processing, the major obstacles surrounding T-cell manufacturing platforms and the approaches for improving cellular product potency. Finally, we will address the challenges of expanding CAR T-cell therapy to a global patient population. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  15. Cell Wall Composition, Biosynthesis and Remodeling during Pollen Tube Growth

    PubMed Central

    Mollet, Jean-Claude; Leroux, Christelle; Dardelle, Flavien; Lehner, Arnaud

    2013-01-01

    The pollen tube is a fast tip-growing cell carrying the two sperm cells to the ovule allowing the double fertilization process and seed setting. To succeed in this process, the spatial and temporal controls of pollen tube growth within the female organ are critical. It requires a massive cell wall deposition to promote fast pollen tube elongation and a tight control of the cell wall remodeling to modify the mechanical properties. In addition, during its journey, the pollen tube interacts with the pistil, which plays key roles in pollen tube nutrition, guidance and in the rejection of the self-incompatible pollen. This review focuses on our current knowledge in the biochemistry and localization of the main cell wall polymers including pectin, hemicellulose, cellulose and callose from several pollen tube species. Moreover, based on transcriptomic data and functional genomic studies, the possible enzymes involved in the cell wall remodeling during pollen tube growth and their impact on the cell wall mechanics are also described. Finally, mutant analyses have permitted to gain insight in the function of several genes involved in the pollen tube cell wall biosynthesis and their roles in pollen tube growth are further discussed. PMID:27137369

  16. Patterns of cell elongation in the determination of the final shape in galls of Baccharopelma dracunculifoliae (Psyllidae) on Baccharis dracunculifolia DC (Asteraceae).

    PubMed

    Magalhães, Thiago Alves; de Oliveira, Denis Coelho; Suzuki, Aline Yasko Marinho; Isaias, Rosy Mary dos Santos

    2014-07-01

    Cell redifferentiation, division, and elongation are recurrent processes, which occur during gall development, and are dependent on the cellulose microfibrils reorientation. We hypothesized that changes in the microfibrils orientation from non-galled tissues to galled ones occur and determine the final gall shape. This determination is caused by a new tissue zonation, its hyperplasia, and relative cell hypertrophy. The impact of the insect's activity on these patterns of cell development was herein tested in Baccharopelma dracunculifoliae-Baccharis dracunculifolia system. In this system, the microfibrils are oriented perpendicularly to the longest cell axis in elongated cells and randomly in isodiametric ones, either in non-galled or in galled tissues. The isodiametric cells of the abaxial epidermis in non-galled tissues divided and elongated periclinally, forming the outer gall epidermis. The anticlinally elongated cells of the abaxial palisade layer and the isodiametric cells of the spongy parenchyma originated the gall outer cortex with hypertrophied and periclinally elongated cells. The anticlinally elongated cells of the adaxial palisade layer originated the inner cortex with hypertrophied and periclinally elongated cells in young and mature galls and isodiametric cells in senescent galls. The isodiametric cells of the adaxial epidermis elongated periclinally in the inner gall epidermis. The current investigation demonstrates the role of cellulose microfibril reorientation for gall development. Once many factors other than this reorientation act on gall development, it should be interesting to check the possible relationship of the new cell elongation patterns with the pectic composition of the cell walls.

  17. Surface etching technologies for monocrystalline silicon wafer solar cells

    NASA Astrophysics Data System (ADS)

    Tang, Muzhi

    With more than 200 GW of accumulated installations in 2015, photovoltaics (PV) has become an important green energy harvesting method. The PV market is dominated by solar cells made from crystalline silicon wafers. The engineering of the wafer surfaces is critical to the solar cell cost reduction and performance enhancement. Therefore, this thesis focuses on the development of surface etching technologies for monocrystalline silicon wafer solar cells. It aims to develop a more efficient alkaline texturing method and more effective surface cleaning processes. Firstly, a rapid, isopropanol alcohol free texturing method is successfully demonstrated to shorten the process time and reduce the consumption of chemicals. This method utilizes the special chemical properties of triethylamine, which can form Si-N bonds with wafer surface atoms. Secondly, a room-temperature anisotropic emitter etch-back process is developed to improve the n+ emitter passivation. Using this method, 19.0% efficient screen-printed aluminium back surface field solar cells are developed that show an efficiency gain of 0.15% (absolute) compared with conventionally made solar cells. Finally, state-of-the-art silicon surface passivation results are achieved using hydrogen plasma etching as a dry alternative to the classical hydrofluoric acid wet-chemical process. The effective native oxide removal and the hydrogenation of the silicon surface are shown to be the reasons for the excellent level of surface passivation achieved with this novel method.

  18. Visualization and quantification of three-dimensional distribution of yeast in bread dough.

    PubMed

    Maeda, Tatsuro; DO, Gab-Soo; Sugiyama, Junichi; Araki, Tetsuya; Tsuta, Mizuki; Shiraga, Seizaburo; Ueda, Mitsuyoshi; Yamada, Masaharu; Takeya, Koji; Sagara, Yasuyuki

    2009-07-01

    A three-dimensional (3-D) bio-imaging technique was developed for visualizing and quantifying the 3-D distribution of yeast in frozen bread dough samples in accordance with the progress of the mixing process of the samples, applying cell-surface engineering to the surfaces of the yeast cells. The fluorescent yeast was recognized as bright spots at the wavelength of 520 nm. Frozen dough samples were sliced at intervals of 1 microm by an micro-slicer image processing system (MSIPS) equipped with a fluorescence microscope for acquiring cross-sectional images of the samples. A set of successive two-dimensional images was reconstructed to analyze the 3-D distribution of the yeast. The average shortest distance between centroids of enhanced green fluorescent protein (EGFP) yeasts was 10.7 microm at the pick-up stage, 9.7 microm at the clean-up stage, 9.0 microm at the final stage, and 10.2 microm at the over-mixing stage. The results indicated that the distribution of the yeast cells was the most uniform in the dough of white bread at the final stage, while the heterogeneous distribution at the over-mixing stage was possibly due to the destruction of the gluten network structure within the samples.

  19. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing

    PubMed Central

    Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian

    2018-01-01

    Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing. PMID:29556497

  20. Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing.

    PubMed

    Baradez, Marc-Olivier; Biziato, Daniela; Hassan, Enas; Marshall, Damian

    2018-01-01

    Cell therapies offer unquestionable promises for the treatment, and in some cases even the cure, of complex diseases. As we start to see more of these therapies gaining market authorization, attention is turning to the bioprocesses used for their manufacture, in particular the challenge of gaining higher levels of process control to help regulate cell behavior, manage process variability, and deliver product of a consistent quality. Many processes already incorporate the measurement of key markers such as nutrient consumption, metabolite production, and cell concentration, but these are often performed off-line and only at set time points in the process. Having the ability to monitor these markers in real-time using in-line sensors would offer significant advantages, allowing faster decision-making and a finer level of process control. In this study, we use Raman spectroscopy as an in-line optical sensor for bioprocess monitoring of an autologous T-cell immunotherapy model produced in a stirred tank bioreactor system. Using reference datasets generated on a standard bioanalyzer, we develop chemometric models from the Raman spectra for glucose, glutamine, lactate, and ammonia. These chemometric models can accurately monitor donor-specific increases in nutrient consumption and metabolite production as the primary T-cell transition from a recovery phase and begin proliferating. Using a univariate modeling approach, we then show how changes in peak intensity within the Raman spectra can be correlated with cell concentration and viability. These models, which act as surrogate markers, can be used to monitor cell behavior including cell proliferation rates, proliferative capacity, and transition of the cells to a quiescent phenotype. Finally, using the univariate models, we also demonstrate how Raman spectroscopy can be applied for real-time monitoring. The ability to measure these key parameters using an in-line Raman optical sensor makes it possible to have immediate feedback on process performance. This could help significantly improve cell therapy bioprocessing by allowing proactive decision-making based on real-time process data. Going forward, these types of in-line sensors also open up opportunities to improve bioprocesses further through concepts such as adaptive manufacturing.

  1. Evidence of K+ channel function in epithelial cell migration, proliferation, and repair

    PubMed Central

    Girault, Alban

    2013-01-01

    Efficient repair of epithelial tissue, which is frequently exposed to insults, is necessary to maintain its functional integrity. It is therefore necessary to better understand the biological and molecular determinants of tissue regeneration and to develop new strategies to promote epithelial repair. Interestingly, a growing body of evidence indicates that many members of the large and widely expressed family of K+ channels are involved in regulation of cell migration and proliferation, key processes of epithelial repair. First, we briefly summarize the complex mechanisms, including cell migration, proliferation, and differentiation, engaged after epithelial injury. We then present evidence implicating K+ channels in the regulation of these key repair processes. We also describe the mechanisms whereby K+ channels may control epithelial repair processes. In particular, changes in membrane potential, K+ concentration, cell volume, intracellular Ca2+, and signaling pathways following modulation of K+ channel activity, as well as physical interaction of K+ channels with the cytoskeleton or integrins are presented. Finally, we discuss the challenges to efficient, specific, and safe targeting of K+ channels for therapeutic applications to improve epithelial repair in vivo. PMID:24196531

  2. The cell on the edge of life and death: Crosstalk between autophagy and apoptosis.

    PubMed

    Kasprowska-Liśkiewicz, Daniela

    2017-09-21

    Recently, the crosstalk between autophagy and apoptosis has attracted broader attention. Basal autophagy serves to maintain cell homeostasis, while the upregulation of this process is an element of stress response that enables the cell to survive under adverse conditions. Autophagy may also determine the fate of the cell through its interactions with cell death pathways. The protein networks that control the initiation and the execution phase of these two processes are highly interconnected. Several scenarios for the crosstalk between autophagy and apoptosis exist. In most cases, the activation of autophagy represents an attempt of the cell to cope with stress, and protects the cell from apoptosis or delays its initiation. Generally, the simultaneous activation of pro-survival and pro-death pathways is prevented by the mutual inhibitory crosstalk between autophagy and apoptosis. But in some circumstances, autophagy or the proteins of the core autophagic machinery may promote cellular demise through excessive self-digestion (so-called "autophagic cell death") or by stimulating the activation of other cell death pathways. It is controversial whether cells actually die via autophagy, which is why the term "autophagic cell death" has been under intense debate lately. This review summarizes the recent findings on the multilevel crosstalk between autophagy and apoptosis in aspects of common regulators, mutual inhibition of these processes, the stimulation of apoptosis by autophagy or autophagic proteins and finally the role of autophagy as a death-execution mechanism.

  3. Microfluidic squeezing for intracellular antigen loading in polyclonal B-cells as cellular vaccines

    NASA Astrophysics Data System (ADS)

    Lee Szeto, Gregory; van Egeren, Debra; Worku, Hermoon; Sharei, Armon; Alejandro, Brian; Park, Clara; Frew, Kirubel; Brefo, Mavis; Mao, Shirley; Heimann, Megan; Langer, Robert; Jensen, Klavs; Irvine, Darrell J.

    2015-05-01

    B-cells are promising candidate autologous antigen-presenting cells (APCs) to prime antigen-specific T-cells both in vitro and in vivo. However to date, a significant barrier to utilizing B-cells as APCs is their low capacity for non-specific antigen uptake compared to “professional” APCs such as dendritic cells. Here we utilize a microfluidic device that employs many parallel channels to pass single cells through narrow constrictions in high throughput. This microscale “cell squeezing” process creates transient pores in the plasma membrane, enabling intracellular delivery of whole proteins from the surrounding medium into B-cells via mechano-poration. We demonstrate that both resting and activated B-cells process and present antigens delivered via mechano-poration exclusively to antigen-specific CD8+T-cells, and not CD4+T-cells. Squeezed B-cells primed and expanded large numbers of effector CD8+T-cells in vitro that produced effector cytokines critical to cytolytic function, including granzyme B and interferon-γ. Finally, antigen-loaded B-cells were also able to prime antigen-specific CD8+T-cells in vivo when adoptively transferred into mice. Altogether, these data demonstrate crucial proof-of-concept for mechano-poration as an enabling technology for B-cell antigen loading, priming of antigen-specific CD8+T-cells, and decoupling of antigen uptake from B-cell activation.

  4. A kinetic modeling of chondrocyte culture for manufacture of tissue-engineered cartilage.

    PubMed

    Kino-Oka, Masahiro; Maeda, Yoshikatsu; Yamamoto, Takeyuki; Sugawara, Katsura; Taya, Masahito

    2005-03-01

    For repairing articular cartilage defects, innovative techniques based on tissue engineering have been developed and are now entering into the practical stage of clinical application by means of grafting in vitro cultured products. A variety of natural and artificial materials available for scaffolds, which permit chondrocyte cells to aggregate, have been designed for their ability to promote cell growth and differentiation. From the viewpoint of the manufacturing process for tissue-engineered cartilage, the diverse nature of raw materials (seeding cells) and end products (cultured cartilage) oblige us to design a tailor-made process with less reproducibility, which is an obstacle to establishing a production doctrine based on bioengineering knowledge concerning growth kinetics and modeling as well as designs of bioreactors and culture operations for certification of high product quality. In this article, we review the recent advances in the manufacturing of tissue-engineered cartilage. After outlining the manufacturing processes for tissue-engineered cartilage in the first section, the second and third sections, respectively, describe the three-dimensional culture of chondrocytes with Aterocollagen gel and kinetic model consideration as a tool for evaluating this culture process. In the final section, culture strategy is discussed in terms of the combined processes of monolayer growth (ex vivo chondrocyte cell expansion) and three-dimensional growth (construction of cultured cartilage in the gel).

  5. Real-time simulation of the retina allowing visualization of each processing stage

    NASA Astrophysics Data System (ADS)

    Teeters, Jeffrey L.; Werblin, Frank S.

    1991-08-01

    The retina computes to let us see, but can we see the retina compute? Until now, the answer has been no, because the unconscious nature of the processing hides it from our view. Here the authors describe a method of seeing computations performed throughout the retina. This is achieved by using neurophysiological data to construct a model of the retina, and using a special-purpose image processing computer (PIPE) to implement the model in real time. Processing in the model is organized into stages corresponding to computations performed by each retinal cell type. The final stage is the transient (change detecting) ganglion cell. A CCD camera forms the input image, and the activity of a selected retinal cell type is the output which is displayed on a TV monitor. By changing the retina cell driving the monitor, the progressive transformations of the image by the retina can be observed. These simulations demonstrate the ubiquitous presence of temporal and spatial variations in the patterns of activity generated by the retina which are fed into the brain. The dynamical aspects make these patterns very different from those generated by the common DOG (Difference of Gaussian) model of receptive field. Because the retina is so successful in biological vision systems, the processing described here may be useful in machine vision.

  6. Advances in in-situ product recovery (ISPR) in whole cell biotechnology during the last decade.

    PubMed

    Van Hecke, Wouter; Kaur, Guneet; De Wever, Heleen

    2014-11-15

    The review presents the state-of-the-art in the applications of in-situ product recovery (ISPR) in whole-cell biotechnology over the last 10years. It summarizes various ISPR-integrated fermentation processes for the production of a wide spectrum of bio-based products. A critical assessment of the performance of various ISPR concepts with respect to the degree of product enrichment, improved productivity, reduced process flows and increased yields is provided. Requirements to allow a successful industrial implementation of ISPR are also discussed. Finally, supporting technologies such as online monitoring, mathematical modeling and use of recombinant microorganisms with ISPR are presented. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES

    PubMed Central

    Somogyi, Endre; Glazier, James A.

    2017-01-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment. PMID:29303160

  8. A MODELING AND SIMULATION LANGUAGE FOR BIOLOGICAL CELLS WITH COUPLED MECHANICAL AND CHEMICAL PROCESSES.

    PubMed

    Somogyi, Endre; Glazier, James A

    2017-04-01

    Biological cells are the prototypical example of active matter. Cells sense and respond to mechanical, chemical and electrical environmental stimuli with a range of behaviors, including dynamic changes in morphology and mechanical properties, chemical uptake and secretion, cell differentiation, proliferation, death, and migration. Modeling and simulation of such dynamic phenomena poses a number of computational challenges. A modeling language describing cellular dynamics must naturally represent complex intra and extra-cellular spatial structures and coupled mechanical, chemical and electrical processes. Domain experts will find a modeling language most useful when it is based on concepts, terms and principles native to the problem domain. A compiler must then be able to generate an executable model from this physically motivated description. Finally, an executable model must efficiently calculate the time evolution of such dynamic and inhomogeneous phenomena. We present a spatial hybrid systems modeling language, compiler and mesh-free Lagrangian based simulation engine which will enable domain experts to define models using natural, biologically motivated constructs and to simulate time evolution of coupled cellular, mechanical and chemical processes acting on a time varying number of cells and their environment.

  9. Microsystems for the Capture of Low-Abundance Cells

    NASA Astrophysics Data System (ADS)

    Dharmasiri, Udara; Witek, Małgorzata A.; Adams, Andre A.; Soper, Steven A.

    2010-07-01

    Efficient selection and enumeration of low-abundance biological cells are highly important in a variety of applications. For example, the clinical utility of circulating tumor cells (CTCs) in peripheral blood is recognized as a viable biomarker for the management of various cancers, in which the clinically relevant number of CTCs per 7.5 ml of blood is two to five. Although there are several methods for isolating rare cells from a variety of heterogeneous samples, such as immunomagnetic-assisted cell sorting and fluorescence-activated cell sorting, they are fraught with challenges. Microsystem-based technologies are providing new opportunities for selecting and isolating rare cells from complex, heterogeneous samples. Such approaches involve reductions in target-cell loss, process automation, and minimization of contamination issues. In this review, we introduce different application areas requiring rare cell analysis, conventional techniques for their selection, and finally microsystem approaches for low-abundance-cell isolation and enumeration.

  10. Enabling High-Energy, High-Voltage Lithium-Ion Cells: Standardization of Coin-Cell Assembly, Electrochemical Testing, and Evaluation of Full Cells

    DOE PAGES

    Long, Brandon R.; Rinaldo, Steven G.; Gallagher, Kevin G.; ...

    2016-11-09

    Coin-cells are often the test format of choice for laboratories engaged in battery research and development as they provide a convenient platform for rapid testing of new materials on a small scale. However, reliable, reproducible data via the coin-cell format is inherently difficult, particularly in the full-cell configuration. In addition, statistical evaluation to prove the consistency and reliability of such data is often neglected. Herein we report on several studies aimed at formalizing physical process parameters and coin-cell construction related to full cells. Statistical analysis and performance benchmarking approaches are advocated as a means to more confidently track changes inmore » cell performance. Finally, we show that trends in the electrochemical data obtained from coin-cells can be reliable and informative when standardized approaches are implemented in a consistent manner.« less

  11. Nonterrestrial material processing and manufacturing of large space systems

    NASA Technical Reports Server (NTRS)

    Von Tiesenhausen, G.

    1979-01-01

    Nonterrestrial processing of materials and manufacturing of large space system components from preprocessed lunar materials at a manufacturing site in space is described. Lunar materials mined and preprocessed at the lunar resource complex will be flown to the space manufacturing facility (SMF), where together with supplementary terrestrial materials, they will be final processed and fabricated into space communication systems, solar cell blankets, radio frequency generators, and electrical equipment. Satellite Power System (SPS) material requirements and lunar material availability and utilization are detailed, and the SMF processing, refining, fabricating facilities, material flow and manpower requirements are described.

  12. Alternative Architecture for Commercial Space Solar Power

    NASA Technical Reports Server (NTRS)

    Potter, Seth

    2000-01-01

    This presentation discuss the space solar power (SSP) concept. It takes us step by step through the process: the use of sunlight and solar cells to create power, the conversion of the sunlight into electricity, the conversion of electricity to microwaves, and finally the from microwaves back to electricity by the Rectennas on Earth.

  13. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    PubMed Central

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei

    2018-01-01

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research. PMID:29342950

  14. Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical carcinoma cells.

    PubMed

    Tran-Minh, Nhut; Dong, Tao; Su, Qianhua; Yang, Zhaochu; Jakobsen, Henrik; Karlsen, Frank

    2011-02-01

    Clogging failure is common for microfilters in living cells concentration; for instance, the CaSki Cell-lines (Epidermoid cervical carcinoma cells) utilizing the flat membrane structure. In order to avoid the clogging, counter-flow concentration units with turbine blade-like micropillar are proposed in microconcentrator design. Due to the unusual geometrical-profiles and extraordinary microfluidic performance, the cells blocking does not occur even at permeate entrances. A counter-flow microconcentrator was designed, with both processing layer and collecting layer arranged in terms of the fractal based honeycomb structure. The device was optimized by coupling Artificial Neuron Network (ANN) and Computational Fluid Dynamics (CFD). The excellent concentration ratio of a final microconcentrator was presented in numerical results.

  15. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    PubMed

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Process for producing ethanol from plant biomass using the fungus paecilomyces sp.

    DOEpatents

    Wu, Jung Fu

    1989-01-01

    A process for producing ethanol from plant biomass is disclosed. The process in cludes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces, which has the ability to ferment both cellobiose and xylose to ethanol, is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate.

  17. Process for producing ethanol from plant biomass using the fungus Paecilomyces sp

    DOEpatents

    Wu, J.F.

    1985-08-08

    A process for producing ethanol from plant biomass is disclosed. The process includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the fungus Paecilomyces which has the ability to ferment both cellobiose and xylose to ethanol is then selected and isolated. The substrate is inoculated with this fungus, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol. Finally, ethanol is recovered from the fermented substrate. 5 figs., 3 tabs.

  18. Design of optimum solid oxide membrane electrolysis cells for metals production

    DOE PAGES

    Guan, Xiaofei; Pal, Uday B.

    2015-12-24

    Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less

  19. Expression of chemokine CXCL12 and its receptor CXCR4 in folliculostellate (FS) cells of the rat anterior pituitary gland: the CXCL12/CXCR4 axis induces interconnection of FS cells.

    PubMed

    Horiguchi, Kotaro; Ilmiawati, Cimi; Fujiwara, Ken; Tsukada, Takehiro; Kikuchi, Motoshi; Yashiro, Takashi

    2012-04-01

    The anterior pituitary gland is composed of five types of hormone-producing cells plus folliculostellate (FS) cells, which do not produce classical anterior pituitary hormones. FS cells are interconnected by cytoplasmic processes and encircle hormone-producing cells or aggregate homophilically. Using living-cell imaging of primary culture, we recently reported that some FS cells precisely extend their cytoplasmic processes toward other FS cells and form interconnections with them. These phenomena suggest the presence of a chemoattractant factor that facilitates the interconnection. In this study, we attempted to discover the factor that induces interconnection of FS cells and succeeded in identifying chemokine (CXC)-L12 and its receptor CXCR4 as potential candidate molecules. CXCL12 is a chemokine of the CXC subfamily. It exerts its effects via CXCR4, a G protein-coupled receptor. The CXCL12/CXCR4 axis is a potent chemoattractant for many types of neural cells. First, we revealed that CXCL12 and CXCR4 are expressed by FS cells in rat anterior pituitary gland. Next, to clarify the function of the CXCL12/CXCR4 axis in FS cells, we observed living anterior pituitary cells in primary culture with specific CXCL12 inhibitor or CXCR4 antagonist and noted that extension of cytoplasmic processes and interconnection of FS cells were inhibited. Finally, we examined FS cell migration and invasion by using Matrigel matrix assays. CXCL12 treatment resulted in markedly increased FS cell migration and invasion. These data suggest that FS cells express chemokine CXCL12 and its receptor CXCR4 and that the CXCL12/CXCR4 axis evokes interconnection of FS cells.

  20. Automated processing of whole blood units: operational value and in vitro quality of final blood components

    PubMed Central

    Jurado, Marisa; Algora, Manuel; Garcia-Sanchez, Félix; Vico, Santiago; Rodriguez, Eva; Perez, Sonia; Barbolla, Luz

    2012-01-01

    Background The Community Transfusion Centre in Madrid currently processes whole blood using a conventional procedure (Compomat, Fresenius) followed by automated processing of buffy coats with the OrbiSac system (CaridianBCT). The Atreus 3C system (CaridianBCT) automates the production of red blood cells, plasma and an interim platelet unit from a whole blood unit. Interim platelet unit are pooled to produce a transfusable platelet unit. In this study the Atreus 3C system was evaluated and compared to the routine method with regards to product quality and operational value. Materials and methods Over a 5-week period 810 whole blood units were processed using the Atreus 3C system. The attributes of the automated process were compared to those of the routine method by assessing productivity, space, equipment and staffing requirements. The data obtained were evaluated in order to estimate the impact of implementing the Atreus 3C system in the routine setting of the blood centre. Yield and in vitro quality of the final blood components processed with the two systems were evaluated and compared. Results The Atreus 3C system enabled higher throughput while requiring less space and employee time by decreasing the amount of equipment and processing time per unit of whole blood processed. Whole blood units processed on the Atreus 3C system gave a higher platelet yield, a similar amount of red blood cells and a smaller volume of plasma. Discussion These results support the conclusion that the Atreus 3C system produces blood components meeting quality requirements while providing a high operational efficiency. Implementation of the Atreus 3C system could result in a large organisational improvement. PMID:22044958

  1. Automated processing of whole blood units: operational value and in vitro quality of final blood components.

    PubMed

    Jurado, Marisa; Algora, Manuel; Garcia-Sanchez, Félix; Vico, Santiago; Rodriguez, Eva; Perez, Sonia; Barbolla, Luz

    2012-01-01

    The Community Transfusion Centre in Madrid currently processes whole blood using a conventional procedure (Compomat, Fresenius) followed by automated processing of buffy coats with the OrbiSac system (CaridianBCT). The Atreus 3C system (CaridianBCT) automates the production of red blood cells, plasma and an interim platelet unit from a whole blood unit. Interim platelet unit are pooled to produce a transfusable platelet unit. In this study the Atreus 3C system was evaluated and compared to the routine method with regards to product quality and operational value. Over a 5-week period 810 whole blood units were processed using the Atreus 3C system. The attributes of the automated process were compared to those of the routine method by assessing productivity, space, equipment and staffing requirements. The data obtained were evaluated in order to estimate the impact of implementing the Atreus 3C system in the routine setting of the blood centre. Yield and in vitro quality of the final blood components processed with the two systems were evaluated and compared. The Atreus 3C system enabled higher throughput while requiring less space and employee time by decreasing the amount of equipment and processing time per unit of whole blood processed. Whole blood units processed on the Atreus 3C system gave a higher platelet yield, a similar amount of red blood cells and a smaller volume of plasma. These results support the conclusion that the Atreus 3C system produces blood components meeting quality requirements while providing a high operational efficiency. Implementation of the Atreus 3C system could result in a large organisational improvement.

  2. The cell proliferation antigen Ki-67 organises heterochromatin

    PubMed Central

    Sobecki, Michal; Mrouj, Karim; Camasses, Alain; Parisis, Nikolaos; Nicolas, Emilien; Llères, David; Gerbe, François; Prieto, Susana; Krasinska, Liliana; David, Alexandre; Eguren, Manuel; Birling, Marie-Christine; Urbach, Serge; Hem, Sonia; Déjardin, Jérôme; Malumbres, Marcos; Jay, Philippe; Dulic, Vjekoslav; Lafontaine, Denis LJ; Feil, Robert; Fisher, Daniel

    2016-01-01

    Antigen Ki-67 is a nuclear protein expressed in proliferating mammalian cells. It is widely used in cancer histopathology but its functions remain unclear. Here, we show that Ki-67 controls heterochromatin organisation. Altering Ki-67 expression levels did not significantly affect cell proliferation in vivo. Ki-67 mutant mice developed normally and cells lacking Ki-67 proliferated efficiently. Conversely, upregulation of Ki-67 expression in differentiated tissues did not prevent cell cycle arrest. Ki-67 interactors included proteins involved in nucleolar processes and chromatin regulators. Ki-67 depletion disrupted nucleologenesis but did not inhibit pre-rRNA processing. In contrast, it altered gene expression. Ki-67 silencing also had wide-ranging effects on chromatin organisation, disrupting heterochromatin compaction and long-range genomic interactions. Trimethylation of histone H3K9 and H4K20 was relocalised within the nucleus. Finally, overexpression of human or Xenopus Ki-67 induced ectopic heterochromatin formation. Altogether, our results suggest that Ki-67 expression in proliferating cells spatially organises heterochromatin, thereby controlling gene expression. DOI: http://dx.doi.org/10.7554/eLife.13722.001 PMID:26949251

  3. Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles as photosensitizers for photodynamic therapy against ovarian cancer (SKOV-3) cells.

    PubMed

    Tan, Guanghui; Li, Wenting; Cheng, Jianjun; Wang, Zhiqiang; Wei, Shuquan; Jin, Yingxue; Guo, Changhong; Qu, Fengyu

    2016-11-30

    Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles, Fe 3 O 4 @SiO 2 @APTES@PPa (FSAP), were designed as magnetically targeted photodynamic antineoplastic agents and prepared through continuous covalent chemical modification on the surface of Fe 3 O 4 nanoparticles. The properties of the intermediates and the final product were comprehensively characterized by transmission electron microscopy, powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometry, zeta potential measurement, ultraviolet-visible absorption spectroscopy, fluorescence emission spectroscopy, and thermogravimetric analysis. In this work, we demonstrated the in vitro photodynamic therapy (PDT) of FSAP against ovarian cancer (SKOV-3) cells, which indicated that FSAP could be taken up successfully and showed low dark toxicity without irradiation, but remarkable phototoxicity after irradiation. Meanwhile, FSAP had showed good biocompatibility and low dark toxicity against normal cells in the biological experiments on mouse normal fibroblast cell lines (L929 cells). In addition, in the photochemical process of FSAP mediated photodynamic therapy, the Type-II photo-oxygenation process (generated singlet oxygen) played an important role in the induction of cell damage.

  4. Development of a High Volume Capable Process to Manufacture High Performance Photovoltaic Cells: Cooperative Research and Development Final Report, CRADA Number CRD-08-322

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geisz, J. F.

    2012-11-01

    The intent of the work is for RFMD and NREL to cooperate in the development of a commercially viable and high volume capable process to manufacture high performance photovoltaic cells, based on inverted metamorphic (IMM) GaAs technology. The successful execution of the agreement will result in the production of a PV cell using technology that is capable of conversion efficiency at par with the market at the time of release (reference 2009: 37-38%), using RFMD's production facilities. The CRADA work has been divided into three phases: (1) a foundation phase where the teams will demonstrate the manufacturing of a basicmore » PV cell at RFMD's production facilities; (2) a technology demonstration phase where the teams will demonstrate the manufacturing of prototype PV cells using IMM technology at RFMD's production facilities, and; (3) a production readiness phase where the teams will demonstrate the capability to manufacture PV cells using IMM technology with high yields, high reliability, high reproducibility and low cost.« less

  5. Genome-wide screen identifies novel machineries required for both ciliogenesis and cell cycle arrest upon serum starvation

    PubMed Central

    Kim, Ji Hyun; Ki, Soo Mi; Joung, Je-Gun; Scott, Eric; Heynen-Genel, Susanne; Aza-Blanc, Pedro; Kwon, Chang Hyuk; Kim, Joon; Gleeson, Joseph G.; Lee, Ji Eun

    2016-01-01

    Biogenesis of the primary cilium, a cellular organelle mediating various signaling pathways, is generally coordinated with cell cycle exit/re-entry. Although the dynamic cell cycle-associated profile of the primary cilium has been largely accepted, the mechanism governing the link between ciliogenesis and cell cycle progression has been poorly understood. Using a human genome-wide RNAi screen, we identify genes encoding subunits of the spliceosome and proteasome as novel regulators of ciliogenesis. We demonstrate that 1) the mRNA processing-related hits are essential for RNA expression of molecules acting in cilia disassembly, such as AURKA and PLK1, and 2) the ubiquitin-proteasome systems (UPS)-involved hits are necessary for proteolysis of molecules acting in cilia assembly, such as IFT88 and CPAP. In particular, we show that these screen hit-associated mechanisms are crucial for both cilia assembly and cell cycle arrest in response to serum withdrawal. Finally, our data suggest that the mRNA processing mechanism may modulate the UPS-dependent decay of cilia assembly regulators to control ciliary resorption-coupled cell cycle re-entry. PMID:27033521

  6. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration.

    PubMed

    Martínez-Calderon, M; Manso-Silván, M; Rodríguez, A; Gómez-Aranzadi, M; García-Ruiz, J P; Olaizola, S M; Martín-Palma, R J

    2016-11-02

    The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials.

  7. Surface micro- and nano-texturing of stainless steel by femtosecond laser for the control of cell migration

    PubMed Central

    Martínez-Calderon, M.; Manso-Silván, M.; Rodríguez, A.; Gómez-Aranzadi, M.; García-Ruiz, J. P.; Olaizola, S. M.; Martín-Palma, R. J.

    2016-01-01

    The precise control over the interaction between cells and the surface of materials plays a crucial role in optimizing the integration of implanted biomaterials. In this regard, material surface with controlled topographic features at the micro- and nano-scales has been proved to affect the overall cell behavior and therefore the final osseointegration of implants. Within this context, femtosecond (fs) laser micro/nano machining technology was used in this work to modify the surface structure of stainless steel aiming at controlling cell adhesion and migration. The experimental results show that cells tend to attach and preferentially align to the laser-induced nanopatterns oriented in a specific direction. Accordingly, the laser-based fabrication method here described constitutes a simple, clean, and scalable technique which allows a precise control of the surface nano-patterning process and, subsequently, enables the control of cell adhesion, migration, and polarization. Moreover, since our surface-patterning approach does not involve any chemical treatments and is performed in a single step process, it could in principle be applied to most metallic materials. PMID:27805063

  8. Study on photoelectric parameter measurement method of high capacitance solar cell

    NASA Astrophysics Data System (ADS)

    Zhang, Junchao; Xiong, Limin; Meng, Haifeng; He, Yingwei; Cai, Chuan; Zhang, Bifeng; Li, Xiaohui; Wang, Changshi

    2018-01-01

    The high efficiency solar cells usually have high capacitance characteristic, so the measurement of their photoelectric performance usually requires long pulse width and long sweep time. The effects of irradiance non-uniformity, probe shielding and spectral mismatch on the IV curve measurement are analyzed experimentally. A compensation method for irradiance loss caused by probe shielding is proposed, and the accurate measurement of the irradiance intensity in the IV curve measurement process of solar cell is realized. Based on the characteristics that the open circuit voltage of solar cell is sensitive to the junction temperature, an accurate measurement method of the temperature of solar cell under continuous irradiation condition is proposed. Finally, a measurement method with the characteristic of high accuracy and wide application range for high capacitance solar cell is presented.

  9. The importance of ion fluxes for cancer proliferation and metastasis: A thermodynamic analysis.

    PubMed

    Lucia, Umberto; Deisboeck, Thomas S

    2018-05-14

    Following a thermodynamic approach, we develop a new theoretical analysis of ion transfer across cell membranes. Supported also by experimental data from the literature, we highlight that ion channels determine the typical features of cancer cells, i.e. independence from growth-regulatory signals, avoidance of apoptosis, indefinite proliferative potential, and the capability of inducing angiogenesis. Specifically, we analyse how ion transport, with particular regards to Ca 2+ fluxes, modulates cancer cell proliferation, and regulates cell cycle checkpoints. Finally, our analysis also suggests that in malignant tumours aerobic glycolysis is the more efficient metabolic process when taking the required solvent capacity into account. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Selfish cells in altruistic cell society - a theoretical oncology.

    PubMed

    Chigira, M

    1993-09-01

    In multicellular organisms, internal evolution of individual cells is strictly forbidden and 'evolutional' DNA replication should be performed only by the sexual reproduction system. Wholistic negative control system called 'homeostasis' serves all service to germ line cells. All somatic cells are altruistic to the germ line cells. However, in malignant tumors, it seems that individual cells replicate and behave 'selfishly' and evolve against the internal microenvironment. Tumor cells only express the occult selfishness which is programmed in normal cells a priori. This phenomenon is based on the failure of identical DNA replication, and results in 'autonomy' and 'anomie' of cellular society as shown in tumor cells. Genetic programs of normal cells connote this cellular autonomy and anomie introduced by the deletion of regulators on structure genes. It is rather paradoxical that the somatic cells get their freedom from wholistic negative regulation programmed internally. However, this is not a true paradox, since multicellular organisms have clearly been evolved from 'monads' in which cells proliferate without wholistic regulation. Somatic cells revolt against germ cell DNA, called 'selfish replicator' by Dawkins. It is an inevitable destiny that the 'selfishness' coded in genome should be revenged by itself. Selfish replicator in germ cell line should be revolted by its selfishness in the expansion of somatic cells, since they have an orthogenesis to get more selfishness in order to increase their genome. Tumor heterogeneity and progression can be fully explained by this self-contradictory process which produces heterogeneous gene copies different from the original clone in the tumor, although 'selfish' gene replication is the final target of being. Furthermore, we have to discard the concept of clonality of tumor cells since genetic instability is a fundamental feature of tumors. Finally, tumor cells and proto-oncogenes can be considered as the ultimate parasite to germ line cells.

  11. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice.

    PubMed

    Bernard-Valnet, Raphaël; Yshii, Lidia; Quériault, Clémence; Nguyen, Xuan-Hung; Arthaud, Sébastien; Rodrigues, Magda; Canivet, Astrid; Morel, Anne-Laure; Matthys, Arthur; Bauer, Jan; Pignolet, Béatrice; Dauvilliers, Yves; Peyron, Christelle; Liblau, Roland S

    2016-09-27

    Narcolepsy with cataplexy is a rare and severe sleep disorder caused by the destruction of orexinergic neurons in the lateral hypothalamus. The genetic and environmental factors associated with narcolepsy, together with serologic data, collectively point to an autoimmune origin. The current animal models of narcolepsy, based on either disruption of the orexinergic neurotransmission or neurons, do not allow study of the potential autoimmune etiology. Here, we sought to generate a mouse model that allows deciphering of the immune mechanisms leading to orexin(+) neuron loss and narcolepsy development. We generated mice expressing the hemagglutinin (HA) as a "neo-self-antigen" specifically in hypothalamic orexin(+) neurons (called Orex-HA), which were transferred with effector neo-self-antigen-specific T cells to assess whether an autoimmune process could be at play in narcolepsy. Given the tight association of narcolepsy with the human leukocyte antigen (HLA) HLA-DQB1*06:02 allele, we first tested the pathogenic contribution of CD4 Th1 cells. Although these T cells readily infiltrated the hypothalamus and triggered local inflammation, they did not elicit the loss of orexin(+) neurons or clinical manifestations of narcolepsy. In contrast, the transfer of cytotoxic CD8 T cells (CTLs) led to both T-cell infiltration and specific destruction of orexin(+) neurons. This phenotype was further aggravated upon repeated injections of CTLs. In situ, CTLs interacted directly with MHC class I-expressing orexin(+) neurons, resulting in cytolytic granule polarization toward neurons. Finally, drastic neuronal loss caused manifestations mimicking human narcolepsy, such as cataplexy and sleep attacks. This work demonstrates the potential role of CTLs as final effectors of the immunopathological process in narcolepsy.

  12. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice

    PubMed Central

    Bernard-Valnet, Raphaël; Yshii, Lidia; Quériault, Clémence; Nguyen, Xuan-Hung; Arthaud, Sébastien; Rodrigues, Magda; Canivet, Astrid; Morel, Anne-Laure; Matthys, Arthur; Bauer, Jan; Pignolet, Béatrice; Dauvilliers, Yves; Peyron, Christelle; Liblau, Roland S.

    2016-01-01

    Narcolepsy with cataplexy is a rare and severe sleep disorder caused by the destruction of orexinergic neurons in the lateral hypothalamus. The genetic and environmental factors associated with narcolepsy, together with serologic data, collectively point to an autoimmune origin. The current animal models of narcolepsy, based on either disruption of the orexinergic neurotransmission or neurons, do not allow study of the potential autoimmune etiology. Here, we sought to generate a mouse model that allows deciphering of the immune mechanisms leading to orexin+ neuron loss and narcolepsy development. We generated mice expressing the hemagglutinin (HA) as a “neo-self-antigen” specifically in hypothalamic orexin+ neurons (called Orex-HA), which were transferred with effector neo-self-antigen–specific T cells to assess whether an autoimmune process could be at play in narcolepsy. Given the tight association of narcolepsy with the human leukocyte antigen (HLA) HLA-DQB1*06:02 allele, we first tested the pathogenic contribution of CD4 Th1 cells. Although these T cells readily infiltrated the hypothalamus and triggered local inflammation, they did not elicit the loss of orexin+ neurons or clinical manifestations of narcolepsy. In contrast, the transfer of cytotoxic CD8 T cells (CTLs) led to both T-cell infiltration and specific destruction of orexin+ neurons. This phenotype was further aggravated upon repeated injections of CTLs. In situ, CTLs interacted directly with MHC class I-expressing orexin+ neurons, resulting in cytolytic granule polarization toward neurons. Finally, drastic neuronal loss caused manifestations mimicking human narcolepsy, such as cataplexy and sleep attacks. This work demonstrates the potential role of CTLs as final effectors of the immunopathological process in narcolepsy. PMID:27621438

  13. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varshney, Gaurav K.; Palmer, Ruth H.

    2006-12-29

    During embryonic development the midgut visceral muscle is formed by fusion of cells within the visceral mesoderm, a process initiated by the specification of a specialised cell type, the founder cell, within this tissue. Activation of the receptor tyrosine kinase Anaplastic lymphoma kinase (Alk) in the developing visceral muscle of Drosophila melanogaster initiates a signal transduction pathway required for muscle fusion. In this paper, we have investigated downstream components which are regulated by this novel signalling pathway. Here we show that Alk-mediated signal transduction drives the expression of the bHLH transcription factor Hand in vivo. Loss of Alk function resultsmore » in a complete lack of Hand expression in this tissue, whereas Alk gain of function results in an expansion of Hand expression. Finally, we have investigated the process of muscle fusion in the gut of Hand mutant animals and can find no obvious defects in this process, suggesting that Hand is not critical for visceral muscle fusion per se.« less

  14. Cell response to nanocrystallized metallic substrates obtained through severe plastic deformation.

    PubMed

    Bagherifard, Sara; Ghelichi, Ramin; Khademhosseini, Ali; Guagliano, Mario

    2014-06-11

    Cell-substrate interface is known to control the cell response and subsequent cell functions. Among the various biophysical signals, grain structure, which indicates the repeating arrangement of atoms in the material, has also proved to play a role of significant importance in mediating the cell activities. Moreover, refining the grain size through severe plastic deformation is known to provide the processed material with novel mechanical properties. The potential application of such advanced materials as biomedical implants has recently been evaluated by investigating the effect of different substrate grain sizes on a wide variety of cell activities. In this review, recent advances in biomedical applications of severe plastic deformation techniques are highlighted with special attention to the effect of the obtained nano/ultra-fine-grain size on cell-substrate interactions. Various severe plastic deformation techniques used for this purpose are discussed presenting a brief description of the mechanism for each process. The results obtained for each treatment on cell morphology, adhesion, proliferation, and differentiation, as well as the in vivo studies, are discussed. Finally, the advantages and challenges regarding the application of these techniques to produce multifunctional bio-implant materials are addressed.

  15. Defining process design space for monoclonal antibody cell culture.

    PubMed

    Abu-Absi, Susan Fugett; Yang, LiYing; Thompson, Patrick; Jiang, Canping; Kandula, Sunitha; Schilling, Bernhard; Shukla, Abhinav A

    2010-08-15

    The concept of design space has been taking root as a foundation of in-process control strategies for biopharmaceutical manufacturing processes. During mapping of the process design space, the multidimensional combination of operational variables is studied to quantify the impact on process performance in terms of productivity and product quality. An efficient methodology to map the design space for a monoclonal antibody cell culture process is described. A failure modes and effects analysis (FMEA) was used as the basis for the process characterization exercise. This was followed by an integrated study of the inoculum stage of the process which includes progressive shake flask and seed bioreactor steps. The operating conditions for the seed bioreactor were studied in an integrated fashion with the production bioreactor using a two stage design of experiments (DOE) methodology to enable optimization of operating conditions. A two level Resolution IV design was followed by a central composite design (CCD). These experiments enabled identification of the edge of failure and classification of the operational parameters as non-key, key or critical. In addition, the models generated from the data provide further insight into balancing productivity of the cell culture process with product quality considerations. Finally, process and product-related impurity clearance was evaluated by studies linking the upstream process with downstream purification. Production bioreactor parameters that directly influence antibody charge variants and glycosylation in CHO systems were identified.

  16. Optical Measurement of Cell Colonization Patterns on Individual Suspended Sediment Aggregates

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu Ha; Tang, Fiona H. M.; Maggi, Federico

    2017-10-01

    Microbial processes can make substantial differences to the way in which particles settle in aquatic environments. A novel method (OMCEC, optical measurement of cell colonization) is introduced to systematically map the biological spatial distribution over individual suspended sediment aggregates settling through a water column. OMCEC was used to investigate (1) whether a carbon source concentration has an impact on cell colonization, (2) how cells colonize minerals, and (3) if a correlation between colonization patterns and aggregate geometry exists. Incubations of Saccharomyces cerevisiae and stained montmorillonite at four sucrose concentrations were tested in a settling column equipped with a full-color microparticle image velocimetry system. The acquired high-resolution images were processed to map the cell distribution on aggregates based on emission spectra separation. The likelihood of cells colonizing minerals increased with increasing sucrose concentration. Colonization patterns were classified into (i) scattered, (ii) well touched, and (iii) poorly touched, with the second being predominant. Cell clusters in well-touched patterns were found to have lower capacity dimension than those in other patterns, while the capacity dimension of the corresponding aggregates was relatively high. A strong correlation of colonization patterns with aggregate biomass fraction and properties suggests dynamic colonization mechanisms from cell attachment to minerals, to joining of isolated cell clusters, and finally cell growth over the entire aggregate. This paper introduces a widely applicable method for analyses of microbial-affected sediment dynamics and highlights the microbial control on aggregate geometry, which can improve the prediction of large-scale morphodynamics processes.

  17. An Improved Incremental Learning Approach for KPI Prognosis of Dynamic Fuel Cell System.

    PubMed

    Yin, Shen; Xie, Xiaochen; Lam, James; Cheung, Kie Chung; Gao, Huijun

    2016-12-01

    The key performance indicator (KPI) has an important practical value with respect to the product quality and economic benefits for modern industry. To cope with the KPI prognosis issue under nonlinear conditions, this paper presents an improved incremental learning approach based on available process measurements. The proposed approach takes advantage of the algorithm overlapping of locally weighted projection regression (LWPR) and partial least squares (PLS), implementing the PLS-based prognosis in each locally linear model produced by the incremental learning process of LWPR. The global prognosis results including KPI prediction and process monitoring are obtained from the corresponding normalized weighted means of all the local models. The statistical indicators for prognosis are enhanced as well by the design of novel KPI-related and KPI-unrelated statistics with suitable control limits for non-Gaussian data. For application-oriented purpose, the process measurements from real datasets of a proton exchange membrane fuel cell system are employed to demonstrate the effectiveness of KPI prognosis. The proposed approach is finally extended to a long-term voltage prediction for potential reference of further fuel cell applications.

  18. Robust syntaxin-4 immunoreactivity in mammalian horizontal cell processes

    PubMed Central

    HIRANO, ARLENE A.; BRANDSTÄTTER, JOHANN HELMUT; VILA, ALEJANDRO; BRECHA, NICHOLAS C.

    2009-01-01

    Horizontal cells mediate inhibitory feed-forward and feedback communication in the outer retina; however, mechanisms that underlie transmitter release from mammalian horizontal cells are poorly understood. Toward determining whether the molecular machinery for exocytosis is present in horizontal cells, we investigated the localization of syntaxin-4, a SNARE protein involved in targeting vesicles to the plasma membrane, in mouse, rat, and rabbit retinae using immunocytochemistry. We report robust expression of syntaxin-4 in the outer plexiform layer of all three species. Syntaxin-4 occurred in processes and tips of horizontal cells, with regularly spaced, thicker sandwich-like structures along the processes. Double labeling with syntaxin-4 and calbindin antibodies, a horizontal cell marker, demonstrated syntaxin-4 localization to horizontal cell processes; whereas, double labeling with PKC antibodies, a rod bipolar cell (RBC) marker, showed a lack of co-localization, with syntaxin-4 immunolabeling occurring just distal to RBC dendritic tips. Syntaxin-4 immunolabeling occurred within VGLUT-1-immunoreactive photoreceptor terminals and underneath synaptic ribbons, labeled by CtBP2/RIBEYE antibodies, consistent with localization in invaginating horizontal cell tips at photoreceptor triad synapses. Vertical sections of retina immunostained for syntaxin-4 and peanut agglutinin (PNA) established that the prominent patches of syntaxin-4 immunoreactivity were adjacent to the base of cone pedicles. Horizontal sections through the OPL indicate a one-to-one co-localization of syntaxin-4 densities at likely all cone pedicles, with syntaxin-4 immunoreactivity interdigitating with PNA labeling. Pre-embedding immuno-electron microscopy confirmed the subcellular localization of syntaxin-4 labeling to lateral elements at both rod and cone triad synapses. Finally, co-localization with SNAP-25, a possible binding partner of syntaxin-4, indicated co-expression of these SNARE proteins in the same subcellular compartment of the horizontal cell. Taken together, the strong expression of these two SNARE proteins in the processes and endings of horizontal cells at rod and cone terminals suggests that horizontal cell axons and dendrites are likely sites of exocytotic activity. PMID:17640443

  19. Long Non-Coding RNAs: Key Regulators of Epithelial-Mesenchymal Transition, Tumour Drug Resistance and Cancer Stem Cells

    PubMed Central

    Heery, Richard; Finn, Stephen P.; Cuffe, Sinead; Gray, Steven G.

    2017-01-01

    Epithelial mesenchymal transition (EMT), the adoption by epithelial cells of a mesenchymal-like phenotype, is a process co-opted by carcinoma cells in order to initiate invasion and metastasis. In addition, it is becoming clear that is instrumental to both the development of drug resistance by tumour cells and in the generation and maintenance of cancer stem cells. EMT is thus a pivotal process during tumour progression and poses a major barrier to the successful treatment of cancer. Non-coding RNAs (ncRNA) often utilize epigenetic programs to regulate both gene expression and chromatin structure. One type of ncRNA, called long non-coding RNAs (lncRNAs), has become increasingly recognized as being both highly dysregulated in cancer and to play a variety of different roles in tumourigenesis. Indeed, over the last few years, lncRNAs have rapidly emerged as key regulators of EMT in cancer. In this review, we discuss the lncRNAs that have been associated with the EMT process in cancer and the variety of molecular mechanisms and signalling pathways through which they regulate EMT, and finally discuss how these EMT-regulating lncRNAs impact on both anti-cancer drug resistance and the cancer stem cell phenotype. PMID:28430163

  20. Rate dependence of cell-to-cell variations of lithium-ion cells.

    PubMed

    An, Fuqiang; Chen, Lufan; Huang, Jun; Zhang, Jianbo; Li, Ping

    2016-10-11

    Lithium-ion cells are commonly used in a multicell configuration in power devices and electric vehicles, making the cell-to-cell variation (CtCV) a key factor to consider in system design and management. Previous studies on CtCV have two major limitations: the number of cells is usually less than one hundred, and the cells are usually commercial cells already subjected to cell-screenings. In this article, we first make a statistical analysis on the CtCV of 5473 fresh cells from an automotive battery manufacturer before the cell-screening process. Secondly, 198 cells are randomly selected from these 5473 cells and the rate dependence of the CtCV is examined, focusing on the correlations of capacity versus weight and capacity versus resistance, corresponding to thermodynamic and kinetic factors, respectively. The rate dependence of these two correlations is explained from a phenomenological model. Finally, eight cells from the 198 cells are further characterized with electrochemical impedance spectroscopy method to elucidate the kinetic origins of the CtCV.

  1. Rate dependence of cell-to-cell variations of lithium-ion cells

    PubMed Central

    An, Fuqiang; Chen, Lufan; Huang, Jun; Zhang, Jianbo; Li, Ping

    2016-01-01

    Lithium-ion cells are commonly used in a multicell configuration in power devices and electric vehicles, making the cell-to-cell variation (CtCV) a key factor to consider in system design and management. Previous studies on CtCV have two major limitations: the number of cells is usually less than one hundred, and the cells are usually commercial cells already subjected to cell-screenings. In this article, we first make a statistical analysis on the CtCV of 5473 fresh cells from an automotive battery manufacturer before the cell-screening process. Secondly, 198 cells are randomly selected from these 5473 cells and the rate dependence of the CtCV is examined, focusing on the correlations of capacity versus weight and capacity versus resistance, corresponding to thermodynamic and kinetic factors, respectively. The rate dependence of these two correlations is explained from a phenomenological model. Finally, eight cells from the 198 cells are further characterized with electrochemical impedance spectroscopy method to elucidate the kinetic origins of the CtCV. PMID:27725767

  2. Monitoring Photosynthesis in Individual Cells of Synechocystis sp. PCC 6803 on a Picosecond Timescale

    PubMed Central

    Krumova, S.B.; Laptenok, S.P.; Borst, J.W.; Ughy, B.; Gombos, Z.; Ajlani, G.; van Amerongen, H.

    2010-01-01

    Picosecond fluorescence kinetics of wild-type (WT) and mutant cells of Synechocystis sp. PCC 6803, were studied at the ensemble level with a streak-camera and at the cell level using fluorescence-lifetime-imaging microscopy (FLIM). The FLIM measurements are in good agreement with the ensemble measurements, but they (can) unveil variations between and within cells. The BE mutant cells, devoid of photosystem II (PSII) and of the light-harvesting phycobilisomes, allowed the study of photosystem I (PSI) in vivo for the first time, and the observed 6-ps equilibration process and 25-ps trapping process are the same as found previously for isolated PSI. No major differences are detected between different cells. The PAL mutant cells, devoid of phycobilisomes, show four lifetimes: ∼20 ps (PSI and PSII), ∼80 ps, ∼440 ps, and 2.8 ns (all due to PSII), but not all cells are identical and variations in the kinetics are traced back to differences in the PSI/PSII ratio. Finally, FLIM measurements on WT cells reveal that in some cells or parts of cells, phycobilisomes are disconnected from PSI/PSII. It is argued that the FLIM setup used can become instrumental in unraveling photosynthetic regulation mechanisms in the future. PMID:20858447

  3. Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis.

    PubMed

    Yue, Haicen; Camley, Brian A; Rappel, Wouter-Jan

    2018-06-19

    Cell-cell communication plays an important role in collective cell migration. However, it remains unclear how cells in a group cooperatively process external signals to determine the group's direction of motion. Although the topology of signaling pathways is vitally important in single-cell chemotaxis, the signaling topology for collective chemotaxis has not been systematically studied. Here, we combine mathematical analysis and simulations to find minimal network topologies for multicellular signal processing in collective chemotaxis. We focus on border cell cluster chemotaxis in the Drosophila egg chamber, in which responses to several experimental perturbations of the signaling network are known. Our minimal signaling network includes only four elements: a chemoattractant, the protein Rac (indicating cell activation), cell protrusion, and a hypothesized global factor responsible for cell-cell interaction. Experimental data on cell protrusion statistics allows us to systematically narrow the number of possible topologies from more than 40,000,000 to only six minimal topologies with six interactions between the four elements. This analysis does not require a specific functional form of the interactions, and only qualitative features are needed; it is thus robust to many modeling choices. Simulations of a stochastic biochemical model of border cell chemotaxis show that the qualitative selection procedure accurately determines which topologies are consistent with the experiment. We fit our model for all six proposed topologies; each produces results that are consistent with all experimentally available data. Finally, we suggest experiments to further discriminate possible pathway topologies. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. The Hedgehog processing pathway is required for NSCLC growth and survival

    PubMed Central

    Rodriguez-Blanco, Jezabel; Schilling, Neal S.; Tokhunts, Robert; Giambelli, Camilla; Long, Jun; Liang Fei, Dennis; Singh, Samer; Black, Kendall E.; Wang, Zhiqiang; Galimberti, Fabrizio; Bejarano, Pablo A.; Elliot, Sharon; Glassberg, Marilyn K.; Nguyen, Dao M.; Lockwood, William W.; Lam, Wan L.; Dmitrovsky, Ethan; Capobianco, Anthony J.; Robbins, David J.

    2013-01-01

    Considerable interest has been generated from the results of recent clinical trials using SMOOTHENED (SMO) antagonists to inhibit the growth of HEDGEHOG (HH) signaling dependent tumors. This interest is tempered by the discovery of SMO mutations mediating resistance, underscoring the rationale for developing therapeutic strategies that interrupt HH signaling at levels distinct from those inhibiting SMO function. Here, we demonstrate that HH dependent non-small cell lung carcinoma (NSCLC) growth is sensitive to blockade of the HH pathway upstream of SMO, at the level of HH ligand processing. Individually, the use of different lentivirally delivered shRNA constructs targeting two functionally distinct HH-processing proteins, SKINNY HEDGEHOG (SKN) or DISPATCHED-1 (DISP-1), in NSCLC cell lines produced similar decreases in cell proliferation and increased cell death. Further, providing either an exogenous source of processed HH or a SMO agonist reverses these effects. The attenuation of HH processing, by knocking down either of these gene products, also abrogated tumor growth in mouse xenografts. Finally, we extended these findings to primary clinical specimens, showing that SKN is frequently over-expressed in NSCLC and that higher DISP-1 expression is associated with an unfavorable clinical outcome. Our results show a critical role for HH processing in HH-dependent tumors, identifies two potential druggable targets in the HH pathway, and suggest that similar therapeutic strategies could be explored to treat patients harboring HH ligand dependent cancers. PMID:22733134

  5. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    PubMed

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.

  6. Cell cycle control in acute myeloid leukemia

    PubMed Central

    Schnerch, Dominik; Yalcintepe, Jasmin; Schmidts, Andrea; Becker, Heiko; Follo, Marie; Engelhardt, Monika; Wäsch, Ralph

    2012-01-01

    Acute myeloid leukemia (AML) is the result of a multistep transforming process of hematopoietic precursor cells (HPCs) which enables them to proceed through limitless numbers of cell cycles and to become resistant to cell death. Increased proliferation renders these cells vulnerable to acquiring mutations and may favor leukemic transformation. Here, we review how deregulated cell cycle control contributes to increased proliferation in AML and favors genomic instability, a prerequisite to confer selective advantages to particular clones in order to adapt and independently proliferate in the presence of a changing microenvironment. We discuss the connection between differentiation and proliferation with regard to leukemogenesis and outline the impact of specific alterations on response to therapy. Finally, we present examples, how a better understanding of cell cycle regulation and deregulation has already led to new promising therapeutic strategies. PMID:22957304

  7. Listeria Monocytogenes: A Model Pathogen Continues to Refine Our Knowledge of the CD8 T Cell Response.

    PubMed

    Qiu, Zhijuan; Khairallah, Camille; Sheridan, Brian S

    2018-06-16

    Listeria monocytogenes ( Lm ) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design.

  8. Red colored IgG4 caused by vitamin B12 from cell culture media combined with disulfide reduction at harvest

    PubMed Central

    Derfus, Gayle E; Dizon-Maspat, Jemelle; Broddrick, Jared T; Velayo, Arleene C; Toschi, Josh D; Santuray, Rodell T; Hsu, Stephen K; Winter, Charles M; Krishnan, Rajesh; Amanullah, Ashraf

    2014-01-01

    While many antibody therapeutics are formulated at low concentration (~10–20 mg/mL) for intravenous administration, high concentration (> 100 mg/mL) formulations may be required for subcutaneous delivery in certain clinical indications. For such high concentration formulations, product color is more apparent due to the higher molecular density across a given path-length. Color is therefore a product quality attribute that must be well-understood and controlled, to demonstrate process consistency and enable clinical trial blinding. Upon concentration of an IgG4 product at the 2000 L manufacturing scale, variability in product color, ranging from yellow to red, was observed. A small-scale experimental model was developed to assess the effect of processing conditions (medium composition and harvest conditions) on final bulk drug substance (BDS) color. The model was used to demonstrate that, for two distinct IgG4 products, red coloration occurred only in the presence of disulfide reduction-mediated antibody dissociation. The red color-causing component was identified as vitamin B12, in the hydroxocobalamin form, and the extent of red color was correlated with the cobalt (vitamin B12) concentration in the final pools. The intensity of redness in the final BDS was modulated by changing the concentration of vitamin B12 in the cell culture media. PMID:24552690

  9. Segmentation of white blood cells and comparison of cell morphology by linear and naïve Bayes classifiers.

    PubMed

    Prinyakupt, Jaroonrut; Pluempitiwiriyawej, Charnchai

    2015-06-30

    Blood smear microscopic images are routinely investigated by haematologists to diagnose most blood diseases. However, the task is quite tedious and time consuming. An automatic detection and classification of white blood cells within such images can accelerate the process tremendously. In this paper we propose a system to locate white blood cells within microscopic blood smear images, segment them into nucleus and cytoplasm regions, extract suitable features and finally, classify them into five types: basophil, eosinophil, neutrophil, lymphocyte and monocyte. Two sets of blood smear images were used in this study's experiments. Dataset 1, collected from Rangsit University, were normal peripheral blood slides under light microscope with 100× magnification; 555 images with 601 white blood cells were captured by a Nikon DS-Fi2 high-definition color camera and saved in JPG format of size 960 × 1,280 pixels at 15 pixels per 1 μm resolution. In dataset 2, 477 cropped white blood cell images were downloaded from CellaVision.com. They are in JPG format of size 360 × 363 pixels. The resolution is estimated to be 10 pixels per 1 μm. The proposed system comprises a pre-processing step, nucleus segmentation, cell segmentation, feature extraction, feature selection and classification. The main concept of the segmentation algorithm employed uses white blood cell's morphological properties and the calibrated size of a real cell relative to image resolution. The segmentation process combined thresholding, morphological operation and ellipse curve fitting. Consequently, several features were extracted from the segmented nucleus and cytoplasm regions. Prominent features were then chosen by a greedy search algorithm called sequential forward selection. Finally, with a set of selected prominent features, both linear and naïve Bayes classifiers were applied for performance comparison. This system was tested on normal peripheral blood smear slide images from two datasets. Two sets of comparison were performed: segmentation and classification. The automatically segmented results were compared to the ones obtained manually by a haematologist. It was found that the proposed method is consistent and coherent in both datasets, with dice similarity of 98.9 and 91.6% for average segmented nucleus and cell regions, respectively. Furthermore, the overall correction rate in the classification phase is about 98 and 94% for linear and naïve Bayes models, respectively. The proposed system, based on normal white blood cell morphology and its characteristics, was applied to two different datasets. The results of the calibrated segmentation process on both datasets are fast, robust, efficient and coherent. Meanwhile, the classification of normal white blood cells into five types shows high sensitivity in both linear and naïve Bayes models, with slightly better results in the linear classifier.

  10. Mining manufacturing data for discovery of high productivity process characteristics.

    PubMed

    Charaniya, Salim; Le, Huong; Rangwala, Huzefa; Mills, Keri; Johnson, Kevin; Karypis, George; Hu, Wei-Shou

    2010-06-01

    Modern manufacturing facilities for bioproducts are highly automated with advanced process monitoring and data archiving systems. The time dynamics of hundreds of process parameters and outcome variables over a large number of production runs are archived in the data warehouse. This vast amount of data is a vital resource to comprehend the complex characteristics of bioprocesses and enhance production robustness. Cell culture process data from 108 'trains' comprising production as well as inoculum bioreactors from Genentech's manufacturing facility were investigated. Each run constitutes over one-hundred on-line and off-line temporal parameters. A kernel-based approach combined with a maximum margin-based support vector regression algorithm was used to integrate all the process parameters and develop predictive models for a key cell culture performance parameter. The model was also used to identify and rank process parameters according to their relevance in predicting process outcome. Evaluation of cell culture stage-specific models indicates that production performance can be reliably predicted days prior to harvest. Strong associations between several temporal parameters at various manufacturing stages and final process outcome were uncovered. This model-based data mining represents an important step forward in establishing a process data-driven knowledge discovery in bioprocesses. Implementation of this methodology on the manufacturing floor can facilitate a real-time decision making process and thereby improve the robustness of large scale bioprocesses. 2010 Elsevier B.V. All rights reserved.

  11. IGF-1R Regulates the Extracellular Level of Active MMP-2, Pathological Neovascularization, and Functionality in Retinas of OIR Mouse Model.

    PubMed

    Lorenc, Valeria E; Subirada Caldarone, Paula V; Paz, María C; Ferrer, Darío G; Luna, José D; Chiabrando, Gustavo A; Sánchez, María C

    2018-02-01

    In ischemic proliferative diseases such as retinopathies, persistent hypoxia leads to the release of numerous neovascular factors that participate in the formation of abnormal vessels and eventually cause blindness. The upregulation and activation of metalloproteinases (MMP-2 and MMP-9) represent a final common pathway in this process. Although many regulators of the neovascular process have been identified, the complete role of the insulin-like growth factor 1 (IGF-1) and its receptor (IGF-1R) appears to be significantly more complex. In this study, we used an oxygen-induced retinopathy (OIR) mouse model as well as an in vitro model of hypoxia to study the role of MMP-2 derived from Müller glial cells (MGCs) and its relation with the IGF-1/IGF-1R system. We demonstrated that MMP-2 protein expression increased in P17 OIR mice, which coincided with the active phase of the neovascular process. Also, glutamine synthetase (GS)-positive cells were also positive for MMP-2, whereas IGF-1R was expressed by GFAP-positive cells, indicating that both proteins were expressed in MGCs. In addition, in the OIR model a single intravitreal injection of the IGF-1R blocking antibody (αIR3) administered at P12 effectively prevented pathologic neovascularization, accelerated physiological revascularization, and improved retinal functionality at P17. Finally, in MGC supernatants, the blocking antibody abolished the IGF-1 effect on active MMP-2 under normoxic and hypoxic conditions without affecting the extracellular levels of pro-MMP-2. These results demonstrate, for the first time, that the IGF-1/IGF-1R system regulates active MMP-2 levels in MGCs, thus contributing to MEC remodeling during the retinal neovascular process.

  12. Building mechanism for a high open-circuit voltage in an all-solution-processed tandem polymer solar cell.

    PubMed

    Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee

    2012-08-14

    Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.

  13. The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance - two-compartment scale-down modelling and intracellular pH excursion.

    PubMed

    Brunner, Matthias; Braun, Philipp; Doppler, Philipp; Posch, Christoph; Behrens, Dirk; Herwig, Christoph; Fricke, Jens

    2017-07-01

    Due to high mixing times and base addition from top of the vessel, pH inhomogeneities are most likely to occur during large-scale mammalian processes. The goal of this study was to set-up a scale-down model of a 10-12 m 3 stirred tank bioreactor and to investigate the effect of pH perturbations on CHO cell physiology and process performance. Short-term changes in extracellular pH are hypothesized to affect intracellular pH and thus cell physiology. Therefore, batch fermentations, including pH shifts to 9.0 and 7.8, in regular one-compartment systems are conducted. The short-term adaption of the cells intracellular pH are showed an immediate increase due to elevated extracellular pH. With this basis of fundamental knowledge, a two-compartment system is established which is capable of simulating defined pH inhomogeneities. In contrast to state-of-the-art literature, the scale-down model is included parameters (e.g. volume of the inhomogeneous zone) as they might occur during large-scale processes. pH inhomogeneity studies in the two-compartment system are performed with simulation of temporary pH zones of pH 9.0. The specific growth rate especially during the exponential growth phase is strongly affected resulting in a decreased maximum viable cell density and final product titer. The gathered results indicate that even short-term exposure of cells to elevated pH values during large-scale processes can affect cell physiology and overall process performance. In particular, it could be shown for the first time that pH perturbations, which might occur during the early process phase, have to be considered in scale-down models of mammalian processes. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Improving titer while maintaining quality of final formulated drug substance via optimization of CHO cell culture conditions in low-iron chemically defined media.

    PubMed

    Xu, Jianlin; Rehmann, Matthew S; Xu, Xuankuo; Huang, Chao; Tian, Jun; Qian, Nan-Xin; Li, Zheng Jian

    2018-04-01

    During biopharmaceutical process development, it is important to improve titer to reduce drug manufacturing costs and to deliver comparable quality attributes of therapeutic proteins, which helps to ensure patient safety and efficacy. We previously reported that relative high-iron concentrations in media increased titer, but caused unacceptable coloration of a fusion protein during early-phase process development. Ultimately, the fusion protein with acceptable color was manufactured using low-iron media, but the titer decreased significantly in the low-iron process. Here, long-term passaging in low-iron media is shown to significantly improve titer while maintaining acceptable coloration during late-phase process development. However, the long-term passaging also caused a change in the protein charge variant profile by significantly increasing basic variants. Thus, we systematically studied the effect of media components, seed culture conditions, and downstream processing on productivity and quality attributes. We found that removing β-glycerol phosphate (BGP) from basal media reduced basic variants without affecting titer. Our goals for late-phase process development, improving titer and matching quality attributes to the early-phase process, were thus achieved by prolonging seed culture age and removing BGP. This process was also successfully scaled up in 500-L bioreactors. In addition, we demonstrated that higher concentrations of reactive oxygen species were present in the high-iron Chinese hamster ovary cell cultures compared to that in the low-iron cultures, suggesting a possible mechanism for the drug substance coloration caused by high-iron media. Finally, hypotheses for the mechanisms of titer improvement by both high-iron and long-term culture are discussed.

  15. Super-enhancer-mediated RNA processing revealed by integrative microRNA network analysis

    PubMed Central

    Suzuki, Hiroshi I.; Young, Richard A; Sharp, Phillip A

    2017-01-01

    Summary Super-enhancers are an emerging sub-class of regulatory regions controlling cell identity and disease genes. However, their biological function and impact on miRNA networks are unclear. Here we report that super-enhancers drive the biogenesis of master miRNAs crucial for cell identity by enhancing both transcription and Drosha/DGCR8-mediated primary miRNA (pri-miRNA) processing. Super-enhancers, together with broad H3K4me3 domains, shape a tissue-specific and evolutionarily conserved atlas of miRNA expression and function. CRISPR/Cas9 genomics revealed that super-enhancer constituents act cooperatively and facilitate Drosha/DGCR8 recruitment and pri-miRNA processing to boost cell-specific miRNA production. The BET-bromodomain inhibitor JQ1 preferentially inhibits super-enhancer-directed cotranscriptional pri-miRNA processing. Furthermore, super-enhancers are characterized by pervasive interaction with DGCR8/Drosha and DGCR8/Drosha-regulated mRNA stability control, suggesting unique RNA regulation at super-enhancers. Finally, super-enhancers mark multiple miRNAs associated with cancer hallmarks. This study presents principles underlying miRNA biology in health and disease and a unrecognized higher-order property of super-enhancers in RNA processing beyond transcription. PMID:28283057

  16. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.

    PubMed

    Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah

    2015-02-01

    Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  17. 9-cis-Retinoic Acid Promotes Cell Adhesion Through Integrin Dependent and Independent Mechanisms Across Immune Lineages

    PubMed Central

    Whelan, Jarrett T.; Chen, Jianming; Miller, Jabin; Morrow, Rebekah L.; Lingo, Joshuah D.; Merrell, Kaitlin; Shaikh, Saame Raza; Bridges, Lance C.

    2012-01-01

    Retinoids are essential in the proper establishment and maintenance of immunity. Although retinoids are implicated in immune related processes, their role in immune cell adhesion has not been well established. In this study, the effect of 9-cis-retinoic acid (9-cis-RA) on human hematopoietic cell adhesion was investigated. 9-cis-RA treatment specifically induced cell adhesion of the human immune cell lines HuT-78, NB4, RPMI 8866, and U937. Due to the prominent role of integrin receptors in mediating immune cell adhesion, we sought to evaluate if cell adhesion was integrin-dependent. By employing a variety of integrin antagonist including function-blocking antibodies and EDTA, we establish that 9-cis-RA prompts immune cell adhesion through established integrin receptors in addition to a novel integrin-independent process. The novel integrin-independent adhesion required the presence of retinoid and was attenuated by treatment with synthetic corticosteroids. Finally, we demonstrate that 9-cis-RA treatment of primary murine B-cells induces ex vivo adhesion that persists in the absence of integrin function. Our study is the first to demonstrate that 9-cis-retinoic acid influences immune cell adhesion through at least two functionally distinct mechanisms. PMID:22925918

  18. Loss of Xist RNA from the inactive X during B cell development is restored in a dynamic YY1-dependent two-step process in activated B cells

    PubMed Central

    Syrett, Camille M.; Sindhava, Vishal; Hodawadekar, Suchita; Myles, Arpita; Liang, Guanxiang; Zhang, Yue; Nandi, Satabdi; Cancro, Michael; Atchison, Michael

    2017-01-01

    X-chromosome inactivation (XCI) in female lymphocytes is uniquely regulated, as the inactive X (Xi) chromosome lacks localized Xist RNA and heterochromatin modifications. Epigenetic profiling reveals that Xist RNA is lost from the Xi at the pro-B cell stage and that additional heterochromatic modifications are gradually lost during B cell development. Activation of mature B cells restores Xist RNA and heterochromatin to the Xi in a dynamic two-step process that differs in timing and pattern, depending on the method of B cell stimulation. Finally, we find that DNA binding domain of YY1 is necessary for XCI in activated B cells, as ex-vivo YY1 deletion results in loss of Xi heterochromatin marks and up-regulation of X-linked genes. Ectopic expression of the YY1 zinc finger domain is sufficient to restore Xist RNA localization during B cell activation. Together, our results indicate that Xist RNA localization is critical for maintaining XCI in female lymphocytes, and that chromatin changes on the Xi during B cell development and the dynamic nature of YY1-dependent XCI maintenance in mature B cells predisposes X-linked immunity genes to reactivation. PMID:28991910

  19. Organization out of disorder: liquid-liquid phase separation in plants.

    PubMed

    Cuevas-Velazquez, Cesar L; Dinneny, José R

    2018-05-30

    Membraneless compartments are formed from the dynamic physical association of proteins and RNAs through liquid-liquid phase separation, and have recently emerged as an exciting new mechanism to explain the dynamic organization of biochemical processes in the cell. In this review, we provide an overview of the current knowledge of the process of phase separation in plants and other eukaryotes. We discuss specific examples of liquid-like membraneless compartments found in green plants, their composition, and the intriguing prevalence of proteins with intrinsically disordered domains. Finally, we speculate on the function of disordered proteins in regulating the formation of membraneless compartments and how their conformational flexibility may be important for molecular memory and for sensing perturbations in the physicochemical environment of the cell, particularly important processes in sessile organisms. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Final Scientific/Technical Report -- Single-Junction Organic Solar Cells with >15% Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkenburg, Daken; Weldeab, Asmerom; Fagnani, Dan

    Organic solar cells have the potential to offer low-cost solar energy conversion due to low material costs and compatibility with low-temperature and high throughput manufacturing processes. This project aims to further improve the efficiency of organic solar cells by applying a previously demonstrated molecular self-assembly approach to longer-wavelength light-absorbing organic materials. The team at the University of Florida designed and synthesized a series of low-bandgap organic semiconductors with functional hydrogen-bonding groups, studied their assembly characteristics and optoelectronic properties in solid-state thin film, and fabricated organic solar cells using solution processing. These new organic materials absorb light up 800 nm wavelength,more » and provide a maximum open-circuit voltage of 1.05 V in the resulted solar cells. The results further confirmed the effectiveness in this approach to guide the assembly of organic semiconductors in thin films to yield higher photovoltaic performance for solar energy conversion. Through this project, we have gained important understanding on designing, synthesizing, and processing organic semiconductors that contain appropriately functionalized groups to control the morphology of the organic photoactive layer in solar cells. Such fundamental knowledge could be used to further develop new functional organic materials to achieve higher photovoltaic performance, and contribute to the eventual commercialization of the organic solar cell technology.« less

  1. Mechanical Signaling for Bone Modeling and Remodeling

    PubMed Central

    Robling, Alexander G.; Turner, Charles H.

    2012-01-01

    Proper development of the skeleton in utero and during growth requires mechanical stimulation. Loading results in adaptive changes in bone that strengthen bone structure. Bone’s adaptive response is regulated by the ability of resident bone cells to perceive and translate mechanical energy into a cascade of structural and biochemical changes within the cells — a process known as mechanotransduction. Mechanotransduction pathways are among the most anabolic in bone, and consequently, there is great interest in elucidating how mechanical loading produces its observed effects, including increased bone formation, reduced bone loss, changes in bone cell differentiation and lifespan, among others. A molecular understanding of these processes is developing, and with it comes a profound new insight into the biology of bone. In this article, we review the nature of the physical stimulus to which bone cells mount an adaptive response, including the identity of the sensor cells, their attributes and physical environment, and putative mechanoreceptors they express. Particular attention is allotted to the focal adhesion and Wnt signaling, in light of their emerging role in bone mechanotransduction. The cellular mechanisms for increased bone loss during disuse, and reduced bone loss during loading are considered. Finally, we summarize the published data on bone cell accommodation, whereby bone cells stop responding to mechanical signaling events. Collectively, these data highlight the complex yet finely orchestrated process of mechanically regulated bone homeostasis. PMID:19817708

  2. Single-Molecule Imaging of RNA Splicing in Live Cells.

    PubMed

    Rino, José; Martin, Robert M; Carvalho, Célia; de Jesus, Ana C; Carmo-Fonseca, Maria

    2015-01-01

    Expression of genetic information in eukaryotes involves a series of interconnected processes that ultimately determine the quality and amount of proteins in the cell. Many individual steps in gene expression are kinetically coupled, but tools are lacking to determine how temporal relationships between chemical reactions contribute to the output of the final gene product. Here, we describe a strategy that permits direct measurements of intron dynamics in single pre-mRNA molecules in live cells. This approach reveals that splicing can occur much faster than previously proposed and opens new avenues for studying how kinetic mechanisms impact on RNA biogenesis. © 2015 Elsevier Inc. All rights reserved.

  3. The effect of macromolecular crowding on mobility of biomolecules, association kinetics and gene expression in living cells

    NASA Astrophysics Data System (ADS)

    Tabaka, Marcin; Kalwarczyk, Tomasz; Szymanski, Jedrzej; Hou, Sen; Hołyst, Robert

    2014-09-01

    We discuss a quantitative influence of macromolecular crowding on biological processes: motion, bimolecular reactions, and gene expression in prokaryotic and eukaryotic cells. We present scaling laws relating diffusion coefficient of an object moving in a cytoplasm of cells to a size of this object and degree of crowding. Such description leads to the notion of the length scale dependent viscosity characteristic for all living cells. We present an application of the length-scale dependent viscosity model to the description of motion in the cytoplasm of both eukaryotic and prokaryotic living cells. We compare the model with all recent data on diffusion of nanoscopic objects in HeLa, and E. coli cells. Additionally a description of the mobility of molecules in cell nucleus is presented. Finally we discuss the influence of crowding on the bimolecular association rates and gene expression in living cells.

  4. CD4+ T helper 2 cells – microbial triggers, differentiation requirements and effector functions

    PubMed Central

    Okoye, Isobel S; Wilson, Mark S

    2011-01-01

    Over the past 10 years we have made great strides in our understanding of T helper cell differentiation, expansion and effector functions. Within the context of T helper type 2 (Th2) cell development, novel innate-like cells with the capacity to secrete large amounts of interleukin-5 (IL-5), IL-13 and IL-9 as well as IL-4-producing and antigen-processing basophils have (re)-emerged onto the type 2 scene. To what extent these new players influence αβ+ CD4+ Th2 cell differentiation is discussed throughout this appraisal of the current literature. We highlight the unique features of Th2 cell development, highlighting the three necessary signals, T-cell receptor ligation, co-stimulation and cytokine receptor ligation. Finally, putting these into context, microbial and allergenic properties that trigger Th2 cell differentiation and how these influence Th2 effector function are discussed and questioned. PMID:22043920

  5. Unsolved mysteries: How does lipid peroxidation cause ferroptosis?

    PubMed Central

    Feng, Huizhong

    2018-01-01

    Ferroptosis is a cell death process driven by damage to cell membranes and linked to numerous human diseases. Ferroptosis is caused by loss of activity of the key enzyme that is tasked with repairing oxidative damage to cell membranes—glutathione peroxidase 4 (GPX4). GPX4 normally removes the dangerous products of iron-dependent lipid peroxidation, protecting cell membranes from this type of damage; when GPX4 fails, ferroptosis ensues. Ferroptosis is distinct from apoptosis, necroptosis, necrosis, and other modes of cell death. Several key mysteries regarding how cells die during ferroptosis remain unsolved. First, the drivers of lipid peroxidation are not yet clear. Second, the subcellular location of lethal lipid peroxides remains an outstanding question. Finally, how exactly lipid peroxidation leads to cell death is an unsolved mystery. Answers to these questions will provide insights into the mechanisms of ferroptotic cell death and associated human diseases, as well as new therapeutic strategies for such diseases. PMID:29795546

  6. Decreased miR-106a inhibits glioma cell glucose uptake and proliferation by targeting SLC2A3 in GBM.

    PubMed

    Dai, Dong-Wei; Lu, Qiong; Wang, Lai-Xing; Zhao, Wen-Yuan; Cao, Yi-Qun; Li, Ya-Nan; Han, Guo-Sheng; Liu, Jian-Min; Yue, Zhi-Jian

    2013-10-14

    MiR-106a is frequently down-regulated in various types of human cancer. However the underlying mechanism of miR-106a involved in glioma remains elusive. The association of miR-106a with glioma grade and patient survival was analyzed. The biological function and target of miR-106a were determined by bioinformatic analysis and cell experiments (Western blot, luciferase reporter, cell cycle, ntracellular ATP production and glucose uptake assay). Finally, rescue expression of its target SLC2A3 was used to test the role of SLC2A3 in miR-106a-mediated cell glycolysis and proliferation. Here we showed that miR-106a was a tumor suppressor miRNA was involved in GBM cell glucose uptake and proliferation. Decreased miR-106a in GBM tissues and conferred a poor survival of GBM patients. SLC2A3 was identified as a core target of miR-106a in GBM cells. Inhibition of SLC2A3 by miR-106a attenuated cell proliferation and inhibited glucose uptake. In addition, for each biological process we identified ontology-associated transcripts that significantly correlated with SLC2A3 expression. Finally, the expression of SLC2A3 largely abrogated miR-106a-mediated cell proliferation and glucose uptake in GBM cells. Taken together, miR-106a and SLC2A3 could be potential therapeutic approaches for GBM.

  7. Improvement in fermentation characteristics of degermed ground corn by lipid supplementation.

    PubMed

    Murthy, Ganti S; Singh, Vijay; Johnston, David B; Rausch, Kent D; Tumbleson, M E

    2006-08-01

    With rapid growth of fuel ethanol industry, and concomitant increase in distillers dried grains with solubles (DDGS), new corn fractionation technologies that reduce DDGS volume and produce higher value coproducts in dry grind ethanol process have been developed. One of the technologies, a dry degerm, defiber (3D) process (similar to conventional corn dry milling) was used to separate germ and pericarp fiber prior to the endosperm fraction fermentation. Recovery of germ and pericarp fiber in the 3D process results in removal of lipids from the fermentation medium. Biosynthesis of lipids, which is important for cell growth and viability, cannot proceed in strictly anaerobic fermentations. The effects of ten different lipid supplements on improving fermentation rates and ethanol yields were studied and compared to the conventional dry grind process. Endosperm fraction (from the 3D process) was mixed with water and liquefied by enzymatic hydrolysis and was fermented using simultaneous saccharification and fermentation. The highest ethanol concentration (13.7% v/v) was achieved with conventional dry grind process. Control treatment (endosperm fraction from 3D process without lipid supplementation) produced the lowest ethanol concentration (11.2% v/v). Three lipid treatments (fatty acid ester, alkylphenol, and ethoxylated sorbitan ester 1836) were most effective in improving final ethanol concentrations. Fatty acid ester treatment produced the highest final ethanol concentration (12.3% v/v) among all lipid supplementation treatments. Mean final ethanol concentrations of alkylphenol and ethoxylated sorbitan ester 1836 supplemented samples were 12.3 and 12.0% v/v, respectively.

  8. Live Imaging of Glial Cell Migration in the Drosophila Eye Imaginal Disc

    PubMed Central

    Cafferty, Patrick; Xie, Xiaojun; Browne, Kristen; Auld, Vanessa J.

    2009-01-01

    Glial cells of both vertebrate and invertebrate organisms must migrate to final target regions in order to ensheath and support associated neurons. While recent progress has been made to describe the live migration of glial cells in the developing pupal wing (1), studies of Drosophila glial cell migration have typically involved the examination of fixed tissue. Live microscopic analysis of motile cells offers the ability to examine cellular behavior throughout the migratory process, including determining the rate of and changes in direction of growth. Paired with use of genetic tools, live imaging can be used to determine more precise roles for specific genes in the process of development. Previous work by Silies et al. (2) has described the migration of glia originating from the optic stalk, a structure that connects the developing eye and brain, into the eye imaginal disc in fixed tissue. Here we outline a protocol for examining the live migration of glial cells into the Drosophila eye imaginal disc. We take advantage of a Drosophila line that expresses GFP in developing glia to follow glial cell progression in wild type and in mutant animals. PMID:19590493

  9. Regulatory landscape for cell therapy--EU view.

    PubMed

    McBlane, James W

    2015-09-01

    This article addresses regulation of cell therapies in the European Union (EU), covering cell sourcing and applications for clinical trials and marketing authorisation applications. Regulatory oversight of cell sourcing and review of applications for clinical trials with cell therapies are handled at national level, that is, separately with each country making its own decisions. For clinical trials, this can lead to different decisions in different countries for the same trial. A regulation is soon to come into force that will address this and introduce a more efficient clinical trial application process. However, at the marketing authorisation stage, the process is pan-national: the Committee for Human Medicinal Products (CHMP) is responsible for giving the final scientific opinion on all EU marketing authorisation applications for cell therapies: favourable scientific opinions are passed to the European Commission (EC) for further consultation and, if successful, grant of a marketing authorisation valid in all 28 EU countries. In its review of applications for marketing authorisations (MAAs) for cell therapies, the CHMP is obliged to consult the Committee for Advanced Therapies (CAT), who conduct detailed scientific assessments of these applications, with assessment by staff from national regulatory authorities and specialist advisors to the regulators. Copyright © 2015.

  10. Epimorphin acts extracellularly to promote cell sorting and aggregation during the condensation of vertebral cartilage.

    PubMed

    Oka, Yumiko; Sato, Yuki; Tsuda, Hokari; Hanaoka, Kazunori; Hirai, Yohei; Takahashi, Yoshiko

    2006-03-01

    Formation of vertebrae occurs via endochondral ossification, a process involving condensation of precartilaginous cells. Here, we provide the first molecular evidence of mechanism that underlies initiation of this process by showing that the extracellular factor, Epimorphin, plays a role during early steps in vertebral cartilage condensation. Epimorphin mRNA is predominantly localized in the vertebral primordium. When provided exogenously in ovo, it causes precocious differentiation of chondrocytes, resulting in the formation of supernumerary vertebral cartilage in chicken embryos. To further analyze its mode of action, we used an in vitro co-culture system in which labeled 10T1/2 or sclerotomal prechondrogenic cells were co-cultured with unlabeled Epimorphin-producing cells. In the presence of Epimorphin, the labeled cells formed tightly packed aggregates, and sclerotomal cells displayed augmented accumulation of NCAM and other early markers of chondrocyte differentiation. Finally, we found that the Epimorphin expression is initiated during vertebrogenesis by Sonic hedgehog from the notochord mediated by Sox 9. We present a model in which successive action of Epimorphin in recruiting and stacking sclerotomal cells leads to a sequential elongation of a vertebral primordium.

  11. Bioink properties before, during and after 3D bioprinting.

    PubMed

    Hölzl, Katja; Lin, Shengmao; Tytgat, Liesbeth; Van Vlierberghe, Sandra; Gu, Linxia; Ovsianikov, Aleksandr

    2016-09-23

    Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction.

  12. Intravital microscopy: a novel tool to study cell biology in living animals.

    PubMed

    Weigert, Roberto; Sramkova, Monika; Parente, Laura; Amornphimoltham, Panomwat; Masedunskas, Andrius

    2010-05-01

    Intravital microscopy encompasses various optical microscopy techniques aimed at visualizing biological processes in live animals. In the last decade, the development of non-linear optical microscopy resulted in an enormous increase of in vivo studies, which have addressed key biological questions in fields such as neurobiology, immunology and tumor biology. Recently, few studies have shown that subcellular processes can be imaged dynamically in the live animal at a resolution comparable to that achieved in cell cultures, providing new opportunities to study cell biology under physiological conditions. The overall aim of this review is to give the reader a general idea of the potential applications of intravital microscopy with a particular emphasis on subcellular imaging. An overview of some of the most exciting studies in this field will be presented using resolution as a main organizing criterion. Indeed, first we will focus on those studies in which organs were imaged at the tissue level, then on those focusing on single cells imaging, and finally on those imaging subcellular organelles and structures.

  13. rst Transcriptional Activity Influences kirre mRNA Concentration in the Drosophila Pupal Retina during the Final Steps of Ommatidial Patterning

    PubMed Central

    Machado, Maiaro Cabral Rosa; Octacilio-Silva, Shirlei; Costa, Mara Silvia A.; Ramos, Ricardo Guelerman P.

    2011-01-01

    Background Drosophila retinal architecture is laid down between 24–48 hours after puparium formation, when some of the still uncommitted interommatidial cells (IOCs) are recruited to become secondary and tertiary pigment cells while the remaining ones undergo apoptosis. This choice between survival and death requires the product of the roughest (rst) gene, an immunoglobulin superfamily transmembrane glycoprotein involved in a wide range of developmental processes. Both temporal misexpression of Rst and truncation of the protein intracytoplasmic domain, lead to severe defects in which IOCs either remain mostly undifferentiated and die late and erratically or, instead, differentiate into extra pigment cells. Intriguingly, mutants not expressing wild type protein often have normal or very mild rough eyes. Methodology/Principal Findings By using quantitative real time PCR to examine rst transcriptional dynamics in the pupal retina, both in wild type and mutant alleles we showed that tightly regulated temporal changes in rst transcriptional rate underlie its proper function during the final steps of eye patterning. Furthermore we demonstrated that the unexpected wild type eye phenotype of mutants with low or no rst expression correlates with an upregulation in the mRNA levels of the rst paralogue kin-of-irre (kirre), which seems able to substitute for rst function in this process, similarly to their role in myoblast fusion. This compensatory upregulation of kirre mRNA levels could be directly induced in wild type pupa upon RNAi-mediated silencing of rst, indicating that expression of both genes is also coordinately regulated in physiological conditions. Conclusions/Significance These findings suggest a general mechanism by which rst and kirre expression could be fine tuned to optimize their redundant roles during development and provide a clearer picture of how the specification of survival and apoptotic fates by differential cell adhesion during the final steps of retinal morphogenesis in insects are controlled at the transcriptional level. PMID:21857931

  14. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  15. Processing of Pseudomonas aeruginosa Exotoxin A Is Dispensable for Cell Intoxication▿

    PubMed Central

    Morlon-Guyot, Juliette; Méré, Jocelyn; Bonhoure, Anne; Beaumelle, Bruno

    2009-01-01

    Exotoxin A is a major virulence factor of Pseudomonas aeruginosa. This toxin binds to a specific receptor on animal cells, allowing endocytosis of the toxin. Once in endosomes, the exotoxin can be processed by furin to generate a C-terminal toxin fragment that lacks the receptor binding domain and is retrogradely transported to the endoplasmic reticulum for retrotranslocation to the cytosol through the Sec61 channel. The toxin then blocks protein synthesis by ADP ribosylation of elongation factor 2, thereby triggering cell death. A shorter intracellular route has also been described for this toxin. It involves direct translocation of the entire toxin from endosomes to the cytosol and therefore does not rely on furin-mediated cleavage. To examine the implications of endosomal translocation in the intoxication process, we investigated whether the toxin required furin-mediated processing in order to kill cells. We used three different approaches. We first fused to the N terminus of the toxin proteins with different unfolding abilities so that they inhibited or did not inhibit endosomal translocation of the chimera. We then assayed the amount of toxin fragments delivered to the cytosol during cell intoxication. Finally we used furin inhibitors and examined the fate and intracellular localization of the toxin and its receptor. The results showed that exotoxin cytotoxicity results largely from endosomal translocation of the entire toxin. We found that the C-terminal fragment was unstable in the cytosol. PMID:19380469

  16. Dose-Dependent Thresholds of 10-ns Electric Pulse Induced Plasma Membrane Disruption and Cytotoxicity in Multiple Cell Lines

    DTIC Science & Technology

    2011-01-01

    normalized to parallel controls. Flow Cytometry and Confocal Microscopy Upon exposure to 10-ns EP, aliquots of the cellular suspension were added to a tube...Survival data was processed and plotted using GrapherH software (Golden Software, Golden, Colorado). Flow cytometry results were processed in C6 software...Accuri Cytometers, Inc., Ann Arbor, MI) and FCSExpress software (DeNovo Software, Los Angeles, CA). Final analysis and presentation of flow cytometry

  17. Space Processing Applications Rocket project, SPAR 2

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Experiment objectives, design/operational concepts, and final results are summarized for six materials science experiments conducted during the second space processing applications rocket mission flown by NASA. The individual experiments discussed are: (1) solidification of Pb-Sb eutectic; (2) feasibility of producing closed-cell metal foams; (3) direct observation of dendrite remelting and macrosegregation in castings; (4) agglomeration in immiscible liquids; (5) casting dispersion - strengthened composites at zero gravity; and (6) solidification behavior of Al-In alloys under zero gravity conditions.

  18. Lights, camera, actin.

    PubMed

    Rubenstein, Peter A; Wen, Kuo-Kuang

    2005-10-01

    Actin participates in many important biological processes. Currently, intensive investigation is being carried out in a number of laboratories concerning the function of actin in these processes and the molecular basis of its functions. We present a glimpse into four of these areas: actin-like proteins in bacterial cells, actin in the eukaryotic nucleus, the conformational plasticity of the actin filament, and finally, Arp2/3-dependent regulation of actin filament branching and creation of new filament barbed ends. IUBMB Life, 57: 683-687, 2005.

  19. Cellular processes involved in human epidermal cells exposed to extremely low frequency electric fields.

    PubMed

    Collard, J-F; Hinsenkamp, M

    2015-05-01

    We observed on different tissues and organisms a biological response after exposure to pulsed low frequency and low amplitude electric or electromagnetic fields but the precise mechanism of cell response remains unknown. The aim of this publication is to understand, using bioinformatics, the biological relevance of processes involved in the modification of gene expression. The list of genes analyzed was obtained after microarray protocol realized on cultures of human epidermal explants growing on deepidermized human skin exposed to a pulsed low frequency electric field. The directed acyclic graph on a WebGestalt Gene Ontology module shows six categories under the biological process root: "biological regulation", "cellular process", "cell proliferation", "death", "metabolic process" and "response to stimulus". Enriched derived categories are coherent with the type of in vitro culture, the stimulation protocol or with the previous results showing a decrease of cell proliferation and an increase of differentiation. The Kegg module on WebGestalt has highlighted "cell cycle" and "p53 signaling pathway" as significantly involved. The Kegg website brings out interactions between FoxO, MAPK, JNK, p53, p38, PI3K/Akt, Wnt, mTor or NF-KappaB. Some genes expressed by the stimulation are known to have an exclusive function on these pathways. Analyses performed with Pathway Studio linked cell proliferation, cell differentiation, apoptosis, cell cycle, mitosis, cell death etc. with our microarrays results. Medline citation generated by the software and the fold change variation confirms a diminution of the proliferation, activation of the differentiation and a less well-defined role of apoptosis or wound healing. Wnt and DKK functional classes, DKK1, MACF1, ATF3, MME, TXNRD1, and BMP-2 genes proposed in previous publications after a manual analysis are also highlighted with other genes after Pathway Studio automatic procedure. Finally, an analysis conducted on a list of genes characterized by an accelerated regulation after extremely low frequency pulsed stimulation also confirms their role in the processes of cell proliferation and differentiation. Bioinformatics approach allows in-depth research, without the bias of pre-selection, on cellular processes involved in a huge gene list. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Application of the quality by design approach to the drug substance manufacturing process of an Fc fusion protein: towards a global multi-step design space.

    PubMed

    Eon-duval, Alex; Valax, Pascal; Solacroup, Thomas; Broly, Hervé; Gleixner, Ralf; Strat, Claire L E; Sutter, James

    2012-10-01

    The article describes how Quality by Design principles can be applied to the drug substance manufacturing process of an Fc fusion protein. First, the quality attributes of the product were evaluated for their potential impact on safety and efficacy using risk management tools. Similarly, process parameters that have a potential impact on critical quality attributes (CQAs) were also identified through a risk assessment. Critical process parameters were then evaluated for their impact on CQAs, individually and in interaction with each other, using multivariate design of experiment techniques during the process characterisation phase. The global multi-step Design Space, defining operational limits for the entire drug substance manufacturing process so as to ensure that the drug substance quality targets are met, was devised using predictive statistical models developed during the characterisation study. The validity of the global multi-step Design Space was then confirmed by performing the entire process, from cell bank thawing to final drug substance, at its limits during the robustness study: the quality of the final drug substance produced under different conditions was verified against predefined targets. An adaptive strategy was devised whereby the Design Space can be adjusted to the quality of the input material to ensure reliable drug substance quality. Finally, all the data obtained during the process described above, together with data generated during additional validation studies as well as manufacturing data, were used to define the control strategy for the drug substance manufacturing process using a risk assessment methodology. Copyright © 2012 Wiley-Liss, Inc.

  1. Diffusion welding of Cassegrainian concentrator cell stack assemblies. M.S. Thesis Final Report, Jun. 1983 - Sep. 1985

    NASA Technical Reports Server (NTRS)

    Gangl, K. J.

    1985-01-01

    Development of a procedure to join the components of the Cassegrainian concentrator photovoltaic cell stack assembly was studied. Diffusion welding was selected as the most promising process, and was concentrated on exclusively. All faying surfaces were coated with silver to promote welding. The first phase of the study consisted of developing the relationship between process parameters and joint strength using silver plated steel samples and an isostatic pressure system. In the second phase, mockups of the cell stack assembly were welded in a hot isostatic press. Excellent joint strength was achieved with parameters of 350 C and 10 ksi, but the delicate GaAs component could not survive the welding cycle without cracking. The tendency towards cracking was found to be affected by both temperature and pressure. Further work will be required in the future to solve this problem.

  2. [Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions].

    PubMed

    Zi, Lihan; Liu, Chenguang; Bai, Fengwu

    2014-02-01

    Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.

  3. Thermally Induced Structural Evolution and Performance of Mesoporous Block Copolymer-Directed Alumina Perovskite Solar Cells

    PubMed Central

    2015-01-01

    Structure control in solution-processed hybrid perovskites is crucial to design and fabricate highly efficient solar cells. Here, we utilize in situ grazing incidence wide-angle X-ray scattering and scanning electron microscopy to investigate the structural evolution and film morphologies of methylammonium lead tri-iodide/chloride (CH3NH3PbI3–xClx) in mesoporous block copolymer derived alumina superstructures during thermal annealing. We show the CH3NH3PbI3–xClx material evolution to be characterized by three distinct structures: a crystalline precursor structure not described previously, a 3D perovskite structure, and a mixture of compounds resulting from degradation. Finally, we demonstrate how understanding the processing parameters provides the foundation needed for optimal perovskite film morphology and coverage, leading to enhanced block copolymer-directed perovskite solar cell performance. PMID:24684494

  4. Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae).

    PubMed

    Papini, Alessio; Mosti, Stefano; Milocani, Eva; Tani, Gabriele; Di Falco, Pietro; Brighigna, Luigi

    2011-10-01

    The degeneration of three of four meiotic products is a very common process in the female gender of oogamous eukaryotes. In Tillandsia (and many other angiosperms), the surviving megaspore has a callose-free wall in chalazal position while the other three megaspores are completely embedded in callose. Therefore, nutrients and signals can reach more easily the functional megaspore from the nucellus through the chalazal pole with respect to the other megaspores. The abortion of three of four megaspores was already recognized as the result of a programmed cell death (PCD) process. We investigated the process to understand the modality of this specific type of PCD and its relationship to the asymmetric callose deposition around the tetrad. The decision on which of the four megaspores will be the supernumerary megaspores in angiosperms, and hence destined to undergo programmed cell death, appears to be linked to the callose layer deposition around the tetrad. During supernumerary megaspores degeneration, events leading to the deletion of the cells do not appear to belong to a single type of cell death. The first morphological signs are typical of autophagy, including the formation of autophagosomes. The TUNEL positivity and a change in morphology of mitochondria and chloroplasts indicate the passage to an apoptotic-like PCD phase, while the cellular remnants undergo a final process resembling at least partially (ER swelling) necrotic morphological syndromes, eventually leading to a mainly lipidic cell corpse still separated from the functional megaspore by a callose layer.

  5. Atomic Force Microscopy in Characterizing Cell Mechanics for Biomedical Applications: A Review.

    PubMed

    Li, Mi; Dang, Dan; Liu, Lianqing; Xi, Ning; Wang, Yuechao

    2017-09-01

    Cell mechanics is a novel label-free biomarker for indicating cell states and pathological changes. The advent of atomic force microscopy (AFM) provides a powerful tool for quantifying the mechanical properties of single living cells in aqueous conditions. The wide use of AFM in characterizing cell mechanics in the past two decades has yielded remarkable novel insights in understanding the development and progression of certain diseases, such as cancer, showing the huge potential of cell mechanics for practical applications in the field of biomedicine. In this paper, we reviewed the utilization of AFM to characterize cell mechanics. First, the principle and method of AFM single-cell mechanical analysis was presented, along with the mechanical responses of cells to representative external stimuli measured by AFM. Next, the unique changes of cell mechanics in two types of physiological processes (stem cell differentiation, cancer metastasis) revealed by AFM were summarized. After that, the molecular mechanisms guiding cell mechanics were analyzed. Finally the challenges and future directions were discussed.

  6. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations.

    PubMed

    Nguyen, Thao; Mège, René Marc

    2016-11-01

    Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Ceruloplasmin copper induces oxidant damage by a redox process utilizing cell-derived superoxide as reductant

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, C. K.; Fox, P. L.

    1998-01-01

    Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.

  8. Bioprocess development for the production of mouse-human chimeric anti-epidermal growth factor receptor vIII antibody C12 by suspension culture of recombinant Chinese hamster ovary cells.

    PubMed

    Hu, Suwen; Deng, Lei; Wang, Huamao; Zhuang, Yingping; Chu, Ju; Zhang, Siliang; Li, Zhonghai; Guo, Meijin

    2011-05-01

    The mouse-human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 is a promising candidate for the diagnosis of hepatocellular carcinoma (HCC). In this study, 3 processes were successfully developed to produce C12 by cultivation of recombinant Chinese hamster ovary (CHO-DG44) cells in serum-free medium. The effect of inoculum density was evaluated in batch cultures of shaker flasks to obtain the optimal inoculum density of 5 × 10(5) cells/mL. Then, the basic metabolic characteristics of CHO-C12 cells were studied in stirred bioreactor batch cultures. The results showed that the limiting concentrations of glucose and glutamine were 6 and 1 mM, respectively. The culture process consumed significant amounts of aspartate, glutamate, asparagine, serine, isoleucine, leucine, and lysine. Aspartate, glutamate, asparagine, and serine were particularly exhausted in the early growth stage, thus limiting cell growth and antibody synthesis. Based on these findings, fed-batch and perfusion processes in the bioreactor were successfully developed with a balanced amino acid feed strategy. Fed-batch and especially perfusion culture effectively maintained high cell viability to prolong the culture process. Furthermore, perfusion cultures maximized the efficiency of nutrient utilization; the mean yield coefficient of antibody to consumed glucose was 44.72 mg/g and the mean yield coefficient of glutamine to antibody was 721.40 mg/g. Finally, in small-scale bioreactor culture, the highest total amount of C12 antibody (1,854 mg) was realized in perfusion cultures. Therefore, perfusion culture appears to be the optimal process for small-scale production of C12 antibody by rCHO-C12 cells.

  9. Advances of lab-on-a-chip in isolation, detection and post-processing of circulating tumour cells.

    PubMed

    Yu, Ling; Ng, Shu Rui; Xu, Yang; Dong, Hua; Wang, Ying Jun; Li, Chang Ming

    2013-08-21

    Circulating tumour cells (CTCs) are shed by primary tumours and are found in the peripheral blood of patients with metastatic cancers. Recent studies have shown that the number of CTCs corresponds with disease severity and prognosis. Therefore, detection and further functional analysis of CTCs are important for biomedical science, early diagnosis of cancer metastasis and tracking treatment efficacy in cancer patients, especially in point-of-care applications. Over the last few years, there has been an increasing shift towards not only capturing and detecting these rare cells, but also ensuring their viability for post-processing, such as cell culture and genetic analysis. High throughput lab-on-a-chip (LOC) has been fuelled up to process and analyse heterogeneous real patient samples while gaining profound insights for cancer biology. In this review, we highlight how miniaturisation strategies together with nanotechnologies have been used to advance LOC for capturing, separating, enriching and detecting different CTCs efficiently, while meeting the challenges of cell viability, high throughput multiplex or single-cell detection and post-processing. We begin this survey with an introduction to CTC biology, followed by description of the use of various materials, microstructures and nanostructures for design of LOC to achieve miniaturisation, as well as how various CTC capture or separation strategies can enhance cell capture and enrichment efficiencies, purity and viability. The significant progress of various nanotechnologies-based detection techniques to achieve high sensitivities and low detection limits for viable CTCs and/or to enable CTC post-processing are presented and the fundamental insights are also discussed. Finally, the challenges and perspectives of the technologies are enumerated.

  10. Dynamic Single-Use Bioreactors Used in Modern Liter- and m(3)- Scale Biotechnological Processes: Engineering Characteristics and Scaling Up.

    PubMed

    Löffelholz, Christian; Kaiser, Stephan C; Kraume, Matthias; Eibl, Regine; Eibl, Dieter

    2014-01-01

    During the past 10 years, single-use bioreactors have been well accepted in modern biopharmaceutical production processes targeting high-value products. Up to now, such processes have mainly been small- or medium-scale mammalian cell culture-based seed inoculum, vaccine or antibody productions. However, recently first attempts have been made to modify existing single-use bioreactors for the cultivation of plant cells and tissue cultures, and microorganisms. This has even led to the development of new single-use bioreactor types. Moreover, due to safety issues it has become clear that single-use bioreactors are the "must have" for expanding human stem cells delivering cell therapeutics, the biopharmaceuticals of the next generation. So it comes as no surprise that numerous different dynamic single-use bioreactor types, which are suitable for a wide range of applications, already dominate the market today. Bioreactor working principles, main applications, and bioengineering data are presented in this review, based on a current overview of greater than milliliter-scale, commercially available, dynamic single-use bioreactors. The focus is on stirred versions, which are omnipresent in R&D and manufacturing, and in particular Sartorius Stedim's BIOSTAT family. Finally, we examine development trends for single-use bioreactors, after discussing proven approaches for fast scaling-up processes.

  11. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  12. Evaluation of the Removal of Indicator Bacteria from Domestic Sludge Processed by Autothermal Thermophilic Aerobic Digestion (ATAD)

    PubMed Central

    Piterina, Anna V.; Bartlett, John; Pembroke, Tony J.

    2010-01-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing. PMID:20948933

  13. Evaluation of the removal of indicator bacteria from domestic sludge processed by Autothermal Thermophilic Aerobic Digestion (ATAD).

    PubMed

    Piterina, Anna V; Bartlett, John; Pembroke, Tony J

    2010-09-01

    The degradation of sludge solids in an insulated reactor during Autothermal Thermophilic Aerobic Digestion (ATAD) processing results in auto-heating, thermal treatment and total solids reduction, however, the ability to eliminate pathogenic organisms has not been analysed under large scale process conditions. We evaluated the ATAD process over a period of one year in a two stage, full scale Irish ATAD plant established in Killarney and treating mixed primary and secondary sludge, by examining the sludge microbiologically at various stages during and following ATAD processing to determine its ability to eliminate indicator organisms. Salmonella spp. (pathogen) and fecal-coliform (indicator) densities were well below the limits used to validate class A biosolids in the final product. Enteric pathogens present at inlet were deactivated during the ATAD process and were not detected in the final product using both traditional microbial culture and molecular phylogenetic techniques. A high DNase activity was detected in the bulk sludge during the thermophilic digestion stage which may be responsible for the rapid turn over of DNA from lysed cells and the removal of mobile DNA. These results offer assurance for the safe use of ATAD sludge as a soil supplement following processing.

  14. The extraction of liquid, protein molecules and yeast cells from paper through surface acoustic wave atomization.

    PubMed

    Qi, Aisha; Yeo, Leslie; Friend, James; Ho, Jenny

    2010-02-21

    Paper has been proposed as an inexpensive and versatile carrier for microfluidics devices with abilities well beyond simple capillary action for pregnancy tests and the like. Unlike standard microfluidics devices, extracting a fluid from the paper is a challenge and a drawback to its broader use. Here, we extract fluid from narrow paper strips using surface acoustic wave (SAW) irradiation that subsequently atomizes the extracted fluid into a monodisperse aerosol for use in mass spectroscopy, medical diagnostics, and drug delivery applications. Two protein molecules, ovalbumin and bovine serum albumin (BSA), have been preserved in paper and then extracted using atomized mist through SAW excitation; protein electrophoresis shows there is less than 1% degradation of either protein molecule in this process. Finally, a solution of live yeast cells was infused into paper, which was subsequently dried for preservation then remoistened to extract the cells via SAW atomization, yielding live cells at the completion of the process. The successful preservation and extraction of fluids, proteins and yeast cells significantly expands the usefulness of paper in microfluidics.

  15. Genetic instability in budding and fission yeast—sources and mechanisms

    PubMed Central

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-01-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. PMID:26109598

  16. Genetic instability in budding and fission yeast-sources and mechanisms.

    PubMed

    Skoneczna, Adrianna; Kaniak, Aneta; Skoneczny, Marek

    2015-11-01

    Cells are constantly confronted with endogenous and exogenous factors that affect their genomes. Eons of evolution have allowed the cellular mechanisms responsible for preserving the genome to adjust for achieving contradictory objectives: to maintain the genome unchanged and to acquire mutations that allow adaptation to environmental changes. One evolutionary mechanism that has been refined for survival is genetic variation. In this review, we describe the mechanisms responsible for two biological processes: genome maintenance and mutation tolerance involved in generations of genetic variations in mitotic cells of both Saccharomyces cerevisiae and Schizosaccharomyces pombe. These processes encompass mechanisms that ensure the fidelity of replication, DNA lesion sensing and DNA damage response pathways, as well as mechanisms that ensure precision in chromosome segregation during cell division. We discuss various factors that may influence genome stability, such as cellular ploidy, the phase of the cell cycle, transcriptional activity of a particular region of DNA, the proficiency of DNA quality control systems, the metabolic stage of the cell and its respiratory potential, and finally potential exposure to endogenous or environmental stress. © FEMS 2015.

  17. Cell Biology of the Caenorhabditis elegans Nucleus

    PubMed Central

    Cohen-Fix, Orna; Askjaer, Peter

    2017-01-01

    Studies on the Caenorhabditis elegans nucleus have provided fascinating insight to the organization and activities of eukaryotic cells. Being the organelle that holds the genetic blueprint of the cell, the nucleus is critical for basically every aspect of cell biology. The stereotypical development of C. elegans from a one cell-stage embryo to a fertile hermaphrodite with 959 somatic nuclei has allowed the identification of mutants with specific alterations in gene expression programs, nuclear morphology, or nuclear positioning. Moreover, the early C. elegans embryo is an excellent model to dissect the mitotic processes of nuclear disassembly and reformation with high spatiotemporal resolution. We review here several features of the C. elegans nucleus, including its composition, structure, and dynamics. We also discuss the spatial organization of chromatin and regulation of gene expression and how this depends on tight control of nucleocytoplasmic transport. Finally, the extensive connections of the nucleus with the cytoskeleton and their implications during development are described. Most processes of the C. elegans nucleus are evolutionarily conserved, highlighting the relevance of this powerful and versatile model organism to human biology. PMID:28049702

  18. Space Processing Applications Rocket project, SPAR 1

    NASA Technical Reports Server (NTRS)

    Reeves, F. (Compiler); Chassay, R. (Compiler)

    1976-01-01

    The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment.

  19. Modeling of Protein Subcellular Localization in Bacteria

    NASA Astrophysics Data System (ADS)

    Xu, Xiaohua; Kulkarni, Rahul

    2006-03-01

    Specific subcellular localization of proteins is a vital component of important bacterial processes: e.g. the Min proteins which regulate cell division in E. coli and Spo0J-Soj system which is critical for sporulation in B. subtilis. We examine how the processes of diffusion and membrane attachment contribute to protein subcellular localization for the above systems. We use previous experimental results to suggest minimal models for these processes. For the minimal models, we derive analytic expressions which provide insight into the processes that determine protein subcellular localization. Finally, we present the results of numerical simulations for the systems studied and make connections to the observed experiemental phenomenology.

  20. Three Dimensional Forming Simulation of the Shielded Slot Plate for the MCFC Using a Ductile Fracture Criterion

    NASA Astrophysics Data System (ADS)

    Lee, C. H.; Yang, D. Y.; Lee, S. R.; Chang, I. G.; Lee, T. W.

    2011-08-01

    The shielded slot plate, which has a sheared corrugated trapezoidal pattern, is a component of the metallic bipolar plate for the molten carbonate fuel cell (MCFC). In order to increase the efficiency of the fuel cell, the unit cell of the shielded slot plate should have a relatively large upper area. Additionally, defects from the forming process should be minimized. In order to simulate the slitting process, whereby sheared corrugated patterns are formed, ductile fracture criteria based on the histories of stress and strain are employed. The user material subroutine VUMAT is employed for implementation of the material and ductile fracture criteria in the commercial FEM software ABAQUS. The variables of the ductile fracture criteria were determined by comparing the simulation results and the experimental results of the tension test and the shearing test. Parametric studies were conducted to determine the critical value of the ductile fracture criterion. Employing these ductile fracture criteria, the three dimensional forming process of the shielded slot plate was numerically simulated. The effects of the slitting process in the forming process of the shielded slot plate were analyzed through a FEM simulation and experimental studies. Finally, experiments involving microscopic and macroscopic observations were conducted to verify the numerical simulations of the 3-step forming process.

  1. Injury and destruction of Moraxella-Acinetobacter in the radappertization process. Final Report Apr 78-1 May 80

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxcy, R.B.; Rowley, D.B.

    1981-02-01

    Some highly radiation-resistant Moraxella-Acinetobacter (M-A) may survive the radappertization process for meat preservation, because these vegetative bacteria are more resistant than spores to radiation. They are, however, more susceptible than spores to other destructive factors. This work was to determine the effect of some environmental factors that influence the radappertization process. M-A, M. radiodurans, and B. cereus spores varied greatly in their response to changes in temperature of radiation and menstruum in which they were suspended. Available water was critical in response of vegetative cells to radiation. Salts at the level incorporated into meat for the radappertization process suppressed growthmore » of both injured and uninjured M-A. This effect was attributed to reduction in water activity of the menstruum. Freezing and thawing of M-A indicated some destruction and some injury. The injured cells recovered during subsequent incubation. Thus, specific food products and conditions of radappertization must be considered for setting processing parameters. When all the factors of injury, destruction, and suppression of microbial growth are considered in the radappertization process, it is apparent there is little likelihood any of the low number of naturally occurring M-A cells would survive.« less

  2. Patent prosecution strategies for stem cell related applications.

    PubMed

    Kumar, Rajeev; Yeh, Jenny J; Fernandez, Dennis; Hansen, Nels

    2007-09-01

    Stem cell research and the intellectual property derived from it, because of its potential to completely transform health care, demand an especially high level of consideration from business and patent prosecution perspectives. As with other revolutionary technologies, ordinary risks are amplified (e.g., litigation), and ordinarily irrelevant considerations may become important (e.g., heightened level of both domestic and foreign legislative risk). In the first part of this article, general strategies for patent prosecutors such as several prosecution considerations and methods for accelerating patent prosecution process are presented. In the second part, patent prosecution challenges of stem cell-related patents and possible solutions are discussed. In the final part, ethical and public policy issues particular to stem cell-related and other biotechnological inventions are summarized.

  3. An investigation into the preservation of microbial cell banks for α-amylase production during 5 l fed-batch Bacillus licheniformis fermentations.

    PubMed

    Hancocks, Nichola H; Thomas, Colin R; Stocks, Stuart M; Hewitt, Christopher J

    2010-10-01

    Fluorescent staining techniques were used for a systematic examination of methods used to cryopreserve microbial cell banks. The aim of cryopreservation here is to ensure subsequent reproducible fermentation performance rather than just post thaw viability. Bacillus licheniformis cell physiology post-thaw is dependent on the cryopreservant (either Tween 80, glycerol or dimethyl sulphoxide) and whilst this had a profound effect on the length of the lag phase, during subsequent 5 l fed-batch fermentations, it had little effect on maximum specific growth rate, final biomass concentration or α-amylase activity. Tween 80 not only protected the cells during freezing but also helped them recover post-thaw resulting in shorter process times.

  4. Finding the key - cell biology and science education.

    PubMed

    Miller, Kenneth R

    2010-12-01

    No international research community, cell biology included, can exist without an educational community to renew and replenish it. Unfortunately, cell biology researchers frequently regard their work as independent of the process of education and see little reason to reach out to science teachers. For cell biology to continue to prosper, I argue that researchers must support education in at least three ways. First, we must view education and research as part of a single scientific community. Second, we should take advantage of new technologies to connect the research laboratory to the classroom. Finally, we must take the initiative in defending the integrity of science teaching, particularly when education is under attack for political or religious reasons. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Endoreduplication and fruit growth in tomato: evidence in favour of the karyoplasmic ratio theory.

    PubMed

    Chevalier, Christian; Bourdon, Matthieu; Pirrello, Julien; Cheniclet, Catherine; Gévaudant, Frédéric; Frangne, Nathalie

    2014-06-01

    The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of great importance in plants. Endoreduplication is widespread in plants and supports the process of differentiation of cells and organs. Its functional role in plant cells is not fully understood, although it is commonly associated with ploidy-dependent cell expansion. During the development of tomato fruit, cells from the (fleshy) pericarp tissue become highly polyploid, reaching a DNA content barely encountered in other plant species (between 2C and 512C). Recent investigations using tomato fruit development as a model provided new data in favour of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication does act as a morphogenetic factor supporting cell growth during tomato fruit development. © The Author 2013. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Vaccine process technology.

    PubMed

    Josefsberg, Jessica O; Buckland, Barry

    2012-06-01

    The evolution of vaccines (e.g., live attenuated, recombinant) and vaccine production methods (e.g., in ovo, cell culture) are intimately tied to each other. As vaccine technology has advanced, the methods to produce the vaccine have advanced and new vaccine opportunities have been created. These technologies will continue to evolve as we strive for safer and more immunogenic vaccines and as our understanding of biology improves. The evolution of vaccine process technology has occurred in parallel to the remarkable growth in the development of therapeutic proteins as products; therefore, recent vaccine innovations can leverage the progress made in the broader biotechnology industry. Numerous important legacy vaccines are still in use today despite their traditional manufacturing processes, with further development focusing on improving stability (e.g., novel excipients) and updating formulation (e.g., combination vaccines) and delivery methods (e.g., skin patches). Modern vaccine development is currently exploiting a wide array of novel technologies to create safer and more efficacious vaccines including: viral vectors produced in animal cells, virus-like particles produced in yeast or insect cells, polysaccharide conjugation to carrier proteins, DNA plasmids produced in E. coli, and therapeutic cancer vaccines created by in vitro activation of patient leukocytes. Purification advances (e.g., membrane adsorption, precipitation) are increasing efficiency, while innovative analytical methods (e.g., microsphere-based multiplex assays, RNA microarrays) are improving process understanding. Novel adjuvants such as monophosphoryl lipid A, which acts on antigen presenting cell toll-like receptors, are expanding the previously conservative list of widely accepted vaccine adjuvants. As in other areas of biotechnology, process characterization by sophisticated analysis is critical not only to improve yields, but also to determine the final product quality. From a regulatory perspective, Quality by Design (QbD) and Process Analytical Technology (PAT) are important initiatives that can be applied effectively to many types of vaccine processes. Universal demand for vaccines requires that a manufacturer plan to supply tens and sometimes hundreds of millions of doses per year at low cost. To enable broader use, there is intense interest in improving temperature stability to allow for excursions from a rigid cold chain supply, especially at the point of vaccination. Finally, there is progress in novel routes of delivery to move away from the traditional intramuscular injection by syringe approach. Copyright © 2012 Wiley Periodicals, Inc.

  7. Real-time visualization of early metastasis events in Danio rerio

    NASA Astrophysics Data System (ADS)

    Tanner, Kandice

    Metastasis, the process by which cancer cells travel from a primary tumor to establish lesions in distant organs, is the cause of most cancer-related deaths. One critical process during metastasis is the transit of cells from a primary tumor and through the vasculature or lymphatic systems to a distant site prior to metastatic colonization. However, visualization of cellular behavior in the vasculature is difficult in most model systems, where final cell destination is not known beforehand. Here, we used bone- and brain-tropic subclones of MDA-MB-231 breast adenocarcinoma cells (231BO and 231BR, respectively) injected into the circulation of embryonic zebrafish as a model xenograft system of metastasis. The zebrafish vasculature contains vessels on the scale of human capillaries. Real-time intravital imaging revealed metastatic spread to be an inefficient process, with less than 20% of cells passing through a given organ remaining there following 14 h of imaging. Additionally, there was no significant difference in the organ-specific residence time or migration speed of single 231BO and 231BR cells in the organ vasculature. Instead, cell capture was dependent on vessel topography and the function of integrin β1. Interestingly, a fraction of cells extravasated from the vasculature and survived in a perivascular position in the head and caudal venous plexus for up to two weeks. In conclusion, use of the zebrafish vasculature as a model capillary bed has revealed critical steps in early metastasis that are difficult to capture in other systems.

  8. Targeted delivery of antigen processing inhibitors to antigen presenting cells via mannose receptors.

    PubMed

    Raiber, Eun-Ang; Tulone, Calogero; Zhang, Yanjing; Martinez-Pomares, Luisa; Steed, Emily; Sponaas, Anna M; Langhorne, Jean; Noursadeghi, Mahdad; Chain, Benjamin M; Tabor, Alethea B

    2010-05-21

    Improved chemical inhibitors are required to dissect the role of specific antigen processing enzymes and to complement genetic models. In this study we explore the in vitro and in vivo properties of a novel class of targeted inhibitor of aspartic proteinases, in which pepstatin is coupled to mannosylated albumin (MPC6), creating an inhibitor with improved solubility and the potential for selective cell tropism. Using these compounds, we have demonstrated that MPC6 is taken up via mannose receptor facilitated endocytosis, leading to a slow but continuous accumulation of inhibitor within large endocytic vesicles within dendritic cells and a parallel inhibition of intracellular aspartic proteinase activity. Inhibition of intracellular proteinase activity is associated with reduction in antigen processing activity, but this is epitope-specific, preferentially inhibiting processing of T cell epitopes buried within compact proteinase-resistant protein domains. Unexpectedly, we have also demonstrated, using quenched fluorescent substrates, that little or no cleavage of the disulfide linker takes place within dendritic cells. This does not appear to affect the activity of MPC6 as an inhibitor of cathepsins D and E in vitro and in vivo. Finally, we have shown that MPC6 selectively targets dendritic cells and macrophages in spleen in vivo. Preliminary results suggest that access to nonlymphoid tissues is very limited in the steady state but is strongly enhanced at local sites of inflammation. The strategy adopted for MPC6 synthesis may therefore represent a more general way to deliver chemical inhibitors to cells of the innate immune system, especially at sites of inflammation.

  9. The role of nanotechnology in single-cell detection: a review.

    PubMed

    Wang, Changling; Zhang, Yuxiang; Xia, Mingdian; Zhu, Xingxi; Qi, Shitao; Shen, Huaqiang; Liu, Tiebing; Tang, Liming

    2014-10-01

    Biological processes in single cells, such as signal transduction, DNA duplication, and protein synthesis and trafficking, occur in subcellular compartments at nanoscale level. Achieving high spatial-temporal resolution, high sensitivity, and high specificity in single-cell detection poses a great challenge. Nanotechnology, which has been widely applied in the fields of medicine, electronics, biomaterials, and energy production, has the potential to provide solutions for single-cell detection. Here we present a review of the use of nanotechnology in single-cell detection over the past two decades. First, we review the main areas of scientific interest, including morphology, ion concentration, DNA, RNA, protein, intracellular temperature, elements, and mechanical properties. Second, four categories of application of nanotechnology to single-cell detection are described: nanomanipulation, nanodevices, nanomaterials as labels, and nano Secondary ion mass spectrometry. Finally, the prospects and future trends in single-cell detection and analysis are discussed.

  10. Niobium superconducting rf cavity fabrication by electrohydraulic forming

    NASA Astrophysics Data System (ADS)

    Cantergiani, E.; Atieh, S.; Léaux, F.; Perez Fontenla, A. T.; Prunet, S.; Dufay-Chanat, L.; Koettig, T.; Bertinelli, F.; Capatina, O.; Favre, G.; Gerigk, F.; Jeanson, A. C.; Fuzeau, J.; Avrillaud, G.; Alleman, D.; Bonafe, J.; Marty, P.

    2016-11-01

    Superconducting rf (SRF) cavities are traditionally fabricated from superconducting material sheets or made of copper coated with superconducting material, followed by trim machining and electron-beam welding. An alternative technique to traditional shaping methods, such as deep-drawing and spinning, is electrohydraulic forming (EHF). In EHF, half-cells are obtained through ultrahigh-speed deformation of blank sheets, using shockwaves induced in water by a pulsed electrical discharge. With respect to traditional methods, such a highly dynamic process can yield interesting results in terms of effectiveness, repeatability, final shape precision, higher formability, and reduced springback. In this paper, the first results of EHF on high purity niobium are presented and discussed. The simulations performed in order to master the multiphysics phenomena of EHF and to adjust its process parameters are presented. The microstructures of niobium half-cells produced by EHF and by spinning have been compared in terms of damage created in the material during the forming operation. The damage was assessed through hardness measurements, residual resistivity ratio (RRR) measurements, and electron backscattered diffraction analyses. It was found that EHF does not worsen the damage of the material during forming and instead, some areas of the half-cell have shown lower damage compared to spinning. Moreover, EHF is particularly advantageous to reduce the forming time, preserve roughness, and to meet the final required shape accuracy.

  11. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.

    PubMed

    Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald

    2017-07-01

    In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g., bispecific antibodies), cytokines, or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development (CLD) yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent CLD campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during CLD in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial CLD especially with regard to DTE proteins. Biotechnol. Bioeng. 2017;114: 1495-1510. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Cells respond to distinct nanoparticle properties with multiple strategies as revealed by single-cell RNA-Seq

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.

    The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. In this paper, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantummore » dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Finally, together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.« less

  13. Cells respond to distinct nanoparticle properties with multiple strategies as revealed by single-cell RNA-Seq

    DOE PAGES

    Mitchell, Hugh D.; Markillie, Lye Meng; Chrisler, William B.; ...

    2016-10-27

    The impact of distinct nanoparticle (NP) properties on cellular response and ultimately human health is unclear. This gap is partially due to experimental difficulties in achieving uniform NP loads in the studied cells, creating heterogeneous populations with some cells “overloaded” while other cells are loaded with few or no NPs. Yet gene expression studies have been conducted in the population as a whole, identifying generic responses, while missing unique responses due to signal averaging across many cells, each carrying different loads. In this paper, we applied single-cell RNA-Seq to alveolar epithelial cells carrying defined loads of aminated or carboxylated quantummore » dots (QDs), showing higher or lower toxicity, respectively. Interestingly, cells carrying lower loads responded with multiple strategies, mostly with up-regulated processes, which were nonetheless coherent and unique to each QD type. In contrast, cells carrying higher loads responded more uniformly, with mostly down-regulated processes that were shared across QD types. Strategies unique to aminated QDs showed strong up-regulation of stress responses, coupled in some cases with regulation of cell cycle, protein synthesis, and organelle activities. In contrast, strategies unique to carboxylated QDs showed up-regulation of DNA repair and RNA activities and decreased regulation of cell division, coupled in some cases with up-regulation of stress responses and ATP-related functions. Finally, together, our studies suggest scenarios where higher NP loads lock cells into uniform responses, mostly shutdown of cellular processes, whereas lower loads allow for unique responses to each NP type that are more diversified proactive defenses or repairs of the NP insults.« less

  14. Investigating interactions between phospholipase B-Like 2 and antibodies during Protein A chromatography.

    PubMed

    Tran, Benjamin; Grosskopf, Vanessa; Wang, Xiangdan; Yang, Jihong; Walker, Don; Yu, Christopher; McDonald, Paul

    2016-03-18

    Purification processes for therapeutic antibodies typically exploit multiple and orthogonal chromatography steps in order to remove impurities, such as host-cell proteins. While the majority of host-cell proteins are cleared through purification processes, individual host-cell proteins such as Phospholipase B-like 2 (PLBL2) are more challenging to remove and can persist into the final purification pool even after multiple chromatography steps. With packed-bed chromatography runs using host-cell protein ELISAs and mass spectrometry analysis, we demonstrated that different therapeutic antibodies interact to varying degrees with host-cell proteins in general, and PLBL2 specifically. We then used a high-throughput Protein A chromatography method to further examine the interaction between our antibodies and PLBL2. Our results showed that the co-elution of PLBL2 during Protein A chromatography is highly dependent on the individual antibody and PLBL2 concentration in the chromatographic load. Process parameters such as antibody resin load density and pre-elution wash conditions also influence the levels of PLBL2 in the Protein A eluate. Furthermore, using surface plasmon resonance, we demonstrated that there is a preference for PLBL2 to interact with IgG4 subclass antibodies compared to IgG1 antibodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Electrodialytic 2-compartment cells for emerging organic contaminants removal from effluent.

    PubMed

    Ferreira, Ana Rita; Couto, Nazaré; Guedes, Paula; Pinto, Joana; Mateus, Eduardo P; Ribeiro, Alexandra B

    2018-04-27

    The present work discusses the efficiency of the electrodialytic (ED) process to remove emerging organic contaminants (EOCs) from effluent. The ED process was carried out in a cell of two-compartments (2 C-cell) with effluent in either the anode or cathode compartment, separated from the electrolyte compartment through an anion or a cation exchange membrane (AEM and CEM, respectively). As effluent destination might be soil irrigation, and having in mind the nutrient recycling, phosphorus was also monitored in the process. The ED removals showed to be dependent of EOCs characteristics and cell design. Removals were higher when using an AEM (60-72%) than a CEM (8-63%), except for caffeine when the effluent was placed in the cathode, that did not show any removal. When using an AEM with the effluent placed in the anode compartment, all the EOCs (including caffeine) were removed between 57-72%, mainly through electrodegradation phenomena. Regarding phosphorus, a polarity switch may be done to a 2 C-cell with a AEM, depending on the effluent final use. This technology is still in its first steps and, in both cases, further optimization of ED parameters is needed. Still, this technological innovation and cross-cutting research envisages the promotion of economic, social and environmental benefits. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Combining structure-based pharmacophore modeling, virtual screening, and in silico ADMET analysis to discover novel tetrahydro-quinoline based pyruvate kinase isozyme M2 activators with antitumor activity

    PubMed Central

    Chen, Can; Wang, Ting; Wu, Fengbo; Huang, Wei; He, Gu; Ouyang, Liang; Xiang, Mingli; Peng, Cheng; Jiang, Qinglin

    2014-01-01

    Compared with normal differentiated cells, cancer cells upregulate the expression of pyruvate kinase isozyme M2 (PKM2) to support glycolytic intermediates for anabolic processes, including the synthesis of nucleic acids, amino acids, and lipids. In this study, a combination of the structure-based pharmacophore modeling and a hybrid protocol of virtual screening methods comprised of pharmacophore model-based virtual screening, docking-based virtual screening, and in silico ADMET (absorption, distribution, metabolism, excretion and toxicity) analysis were used to retrieve novel PKM2 activators from commercially available chemical databases. Tetrahydroquinoline derivatives were identified as potential scaffolds of PKM2 activators. Thus, the hybrid virtual screening approach was applied to screen the focused tetrahydroquinoline derivatives embedded in the ZINC database. Six hit compounds were selected from the final hits and experimental studies were then performed. Compound 8 displayed a potent inhibitory effect on human lung cancer cells. Following treatment with Compound 8, cell viability, apoptosis, and reactive oxygen species (ROS) production were examined in A549 cells. Finally, we evaluated the effects of Compound 8 on mice xenograft tumor models in vivo. These results may provide important information for further research on novel PKM2 activators as antitumor agents. PMID:25214764

  17. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers

    PubMed Central

    Turek, Diane; Van Simaeys, Dimitri; Johnson, Judith; Ocsoy, Ismail; Tan, Weihong

    2014-01-01

    AIM To generate DNA-aptamers binding to Methicillin-resistant Staphylococcus aureus (MRSA). METHODS The Cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology was used to run the selection against MRSA bacteria and develop target-specific aptamers. MRSA bacteria were targeted while Enterococcus faecalis bacteria were used for counter selection during that process. Binding assays to determine the right aptamer candidates as well as binding assays on clinical samples were performed through flow cytometry and analyzed using the FlowJo software. The characterization of the aptamers was done by determination of their Kd values and determined by analysis of flow data at different aptamer concentration using SigmaPlot. Finally, the recognition of the complex Gold-nanoparticle-aptamer to the bacteria cells was observed using transmission electron microscopy (TEM). RESULTS During the cell-SELEX selection process, 17 rounds were necessary to generate enrichment of the pool. While the selection was run using fixed cells, it was shown that the binding of the pools with live cells was giving similar results. After sequencing and analysis of the two last pools, four sequences were identified to be aptamer candidates. The characterization of those aptamers showed that based on their Kd values, DTMRSA4 presented the best binding with a Kd value of 94.61 ± 18.82 nmol/L. A total of ten clinical samples of MRSA , S. aureus and Enterococcus faecalis were obtained to test those aptamers and determine their binding on a panel of samples. DTMRSA1 and DTMRSA3 showed the best results regarding their specificity to MRSA , DTMRSA1 being the most specific of all. Finally, those aptamers were coupled with gold-nanoparticle and their binding to MRSA cells was visualized through TEM showing that adduction of nanoparticles on the aptamers did not change their binding property. CONCLUSION A total of four aptamers that bind to MRSA were obtained with Kd values ranking from 94 to 200 nmol/L. PMID:25436184

  18. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers.

    PubMed

    Turek, Diane; Van Simaeys, Dimitri; Johnson, Judith; Ocsoy, Ismail; Tan, Weihong

    2013-01-01

    To generate DNA-aptamers binding to Methicillin-resistant Staphylococcus aureus (MRSA) . The Cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology was used to run the selection against MRSA bacteria and develop target-specific aptamers. MRSA bacteria were targeted while Enterococcus faecalis bacteria were used for counter selection during that process. Binding assays to determine the right aptamer candidates as well as binding assays on clinical samples were performed through flow cytometry and analyzed using the FlowJo software. The characterization of the aptamers was done by determination of their K d values and determined by analysis of flow data at different aptamer concentration using SigmaPlot. Finally, the recognition of the complex Gold-nanoparticle-aptamer to the bacteria cells was observed using transmission electron microscopy (TEM). During the cell-SELEX selection process, 17 rounds were necessary to generate enrichment of the pool. While the selection was run using fixed cells, it was shown that the binding of the pools with live cells was giving similar results. After sequencing and analysis of the two last pools, four sequences were identified to be aptamer candidates. The characterization of those aptamers showed that based on their K d values, DTMRSA4 presented the best binding with a K d value of 94.61 ± 18.82 nmol/L. A total of ten clinical samples of MRSA , S. aureus and Enterococcus faecalis were obtained to test those aptamers and determine their binding on a panel of samples. DTMRSA1 and DTMRSA3 showed the best results regarding their specificity to MRSA , DTMRSA1 being the most specific of all. Finally, those aptamers were coupled with gold-nanoparticle and their binding to MRSA cells was visualized through TEM showing that adduction of nanoparticles on the aptamers did not change their binding property. A total of four aptamers that bind to MRSA were obtained with K d values ranking from 94 to 200 nmol/L.

  19. MHC drives TCR repertoire shaping, but not maturation, in recent thymic emigrants1

    PubMed Central

    Houston, Evan G.; Fink, Pamela J.

    2009-01-01

    After developing in the thymus, recent thymic emigrants (RTEs) enter the lymphoid periphery and undergo a maturation process as they transition into the mature naïve (MN) T cell compartment. This maturation presumably shapes RTEs into a pool of T cells best fit to function robustly in the periphery without causing autoimmunity; however, the mechanism and consequences of this maturation process remain unknown. Using a transgenic mouse system that specifically labels RTEs, we tested the influence of MHC molecules, key drivers of intrathymic T cell selection and naive peripheral T cell homeostasis, in shaping the RTE pool in the lymphoid periphery. We found that the TCRs expressed by RTEs are skewed to longer CDR3 regions compared to those of MN T cells, suggesting that MHC does streamline the TCR repertoire of T cells as they transition from the RTE to the MN T cell stage. This conclusion is borne out in studies in which the representation of individual TCRs was followed as a function of time since thymic egress. Surprisingly, we found that MHC is dispensable for the phenotypic and functional maturation of RTEs. This is an author-produced version of a manuscript accepted for publication in The Journal of Immunology (The JI). The American Association of Immunologists, Inc. (AAI), publisher of The JI, holds the copyright to this manuscript. This version of the manuscript has not yet been copyedited or subjected to editorial proofreading by The JI; hence, it may differ from the final version published in The JI (online and in print). AAI (The JI) is not liable for errors or omissions in this author-produced version of the manuscript or in any version derived from it by the U.S. National Institutes of Health or any other third party. The final, citable version of record can be found at www.jimmunol.org PMID:19915060

  20. Biochemistry and Cell Wall Changes Associated with Noni (Morinda citrifolia L.) Fruit Ripening.

    PubMed

    Cárdenas-Coronel, Wendy G; Carrillo-López, Armando; Vélez de la Rocha, Rosabel; Labavitch, John M; Báez-Sañudo, Manuel A; Heredia, José B; Zazueta-Morales, José J; Vega-García, Misael O; Sañudo-Barajas, J Adriana

    2016-01-13

    Quality and compositional changes were determined in noni fruit harvested at five ripening stages, from dark-green to thaslucent-grayish. Fruit ripening was accompanied by acidity and soluble solids accumulation but pH diminution, whereas the softening profile presented three differential steps named early (no significant softening), intermediate (significant softening), and final (dramatic softening). At early step the extensive depolymerization of hydrosoluble pectins and the significantly increment of pectinase activities did not correlate with the slight reduction in firmness. The intermediate step showed an increment of pectinases and hemicellulases activities. The final step was accompanied by the most significant reduction in the yield of alcohol-insoluble solids as well as in the composition of uronic acids and neutral sugars; pectinases increased their activity and depolymerization of hemicellulosic fractions occurred. Noni ripening is a process conducted by the coordinated action of pectinases and hemicellulases that promote the differential dissasembly of cell wall polymers.

  1. IFN-γ regulates CD8+ memory T cell differentiation and survival in response to weak, but not strong, TCR signals.

    PubMed

    Stoycheva, Diana; Deiser, Katrin; Stärck, Lilian; Nishanth, Gopala; Schlüter, Dirk; Uckert, Wolfgang; Schüler, Thomas

    2015-01-15

    In response to primary Ag contact, naive mouse CD8(+) T cells undergo clonal expansion and differentiate into effector T cells. After pathogen clearance, most effector T cells die, and only a small number of memory T cell precursors (TMPs) survive to form a pool of long-lived memory T cells (TMs). Although high- and low-affinity CD8(+) T cell clones are recruited into the primary response, the TM pool consists mainly of high-affinity clones. It remains unclear whether the more efficient expansion of high-affinity clones and/or cell-intrinsic processes exclude low-affinity T cells from the TM pool. In this article, we show that the lack of IFN-γR signaling in CD8(+) T cells promotes TM formation in response to weak, but not strong, TCR agonists. The IFN-γ-sensitive accumulation of TMs correlates with reduced mammalian target of rapamycin activation and the accumulation of long-lived CD62L(hi)Bcl-2(hi)Eomes(hi) TMPs. Reconstitution of mammalian target of rapamycin or IFN-γR signaling is sufficient to block this process. Hence, our data suggest that IFN-γR signaling actively blocks the formation of TMPs responding to weak TCR agonists, thereby promoting the accumulation of high-affinity T cells finally dominating the TM pool. Copyright © 2015 by The American Association of Immunologists, Inc.

  2. Transcriptional analysis of Volvox photoreceptors suggests the existence of different cell-type specific light-signaling pathways.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2015-02-01

    Photosynthetic organisms, e.g., plants including green algae, use a sophisticated light-sensing system, composed of primary photoreceptors and additional downstream signaling components, to monitor changes in the ambient light environment towards adjust their growth and development. Although a variety of cellular processes, e.g., initiation of cleavage division and final cellular differentiation, have been shown to be light-regulated in the green alga Volvox carteri, little is known about the underlying light perception and signaling pathways. This multicellular alga possesses at least 12 photoreceptors, i.e., one phototropin (VcPhot), four cryptochromes (VcCRYa, VcCRYp, VcCRYd1, and VcCRYd2), and seven members of rhodopsin-like photoreceptors (VR1, VChR1, VChR2, VcHKR1, VcHKR2, VcHKR3, and VcHKR4), which display distinct light-dependent chemical processes based on their protein architectures and associated chromophores. Gene expression analyses could show that the transcript levels of some of the photoreceptor genes (e.g., VChR1 and VcHKR1) accumulate during division cleavages, while others (e.g., VcCRYa, VcCRYp, and VcPhot) accumulate during final cellular differentiation. However, the pattern of transcript accumulation changes when the alga switches to the sexual development. Eight photoreceptor genes, e.g., VcPhot, VcCRYp, and VcHKR1, are highly expressed in the somatic cells, while only the animal-type rhodopsin VR1 was found to be highly expressed in the reproductive cells/embryos during both asexual and sexual life cycles. Moreover, accumulation of VChR1 and VcCRYa transcripts is more sensitive to light and changes in response to more than one light quality. Obviously, different regulatory mechanisms underlying gene expression control transcript accumulation of photoreceptors not only during development, but also in a cell-type specific way and in response to various external signals such as light quality. The transcriptional patterns described in this study show that Volvox photoreceptors are mostly expressed in a cell-type specific manner. This gives reason to believe that cell-type specific light-signaling pathways allow differential regulation of cellular and developmental processes in response to the environmental light cues.

  3. Combined inhibition of autophagy and caspases fails to prevent developmental nurse cell death in the Drosophila melanogaster ovary.

    PubMed

    Peterson, Jeanne S; McCall, Kimberly

    2013-01-01

    During the final stages of Drosophila melanogaster oogenesis fifteen nurse cells, sister cells to the oocyte, degenerate as part of normal development. This process involves at least two cell death mechanisms, caspase-dependent cell death and autophagy, as indicated by apoptosis and autophagy markers. In addition, mutations affecting either caspases or autophagy partially reduce nurse cell removal, leaving behind end-stage egg chambers with persisting nurse cell nuclei. To determine whether apoptosis and autophagy work in parallel to degrade and remove these cells as is the case with salivary glands during pupariation, we generated mutants doubly affecting caspases and autophagy. We found no significant increase in either the number of late stage egg chambers containing persisting nuclei or in the number of persisting nuclei per egg chamber in the double mutants compared to single mutants. These findings suggest that there is another cell death mechanism functioning in the ovary to remove all nurse cell remnants from late stage egg chambers.

  4. Cancer cells remodel themselves and vasculature to overcome the endothelial barrier.

    PubMed

    Shenoy, Anitha K; Lu, Jianrong

    2016-10-01

    Metastasis refers to the spread of cancer cells from a primary tumor to distant organs mostly via the bloodstream. During the metastatic process, cancer cells invade blood vessels to enter circulation, and later exit the vasculature at a distant site. Endothelial cells that line blood vessels normally serve as a barrier to the movement of cells into or out of the blood. It is thus critical to understand how metastatic cancer cells overcome the endothelial barrier. Epithelial cancer cells acquire increased motility and invasiveness through epithelial-to-mesenchymal transition (EMT), which enables them to move toward vasculature. Cancer cells also express a variety of adhesion molecules that allow them to attach to vascular endothelium. Finally, cancer cells secrete or induce growth factors and cytokines to actively prompt vascular hyperpermeability that compromises endothelial barrier function and facilitates transmigration of cancer cells through the vascular wall. Elucidation of the mechanisms underlying metastatic dissemination may help develop new anti-metastasis therapeutics. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Vascular Endothelial Growth Factor–Mediated Islet Hypervascularization and Inflammation Contribute to Progressive Reduction of β-Cell Mass

    PubMed Central

    Agudo, Judith; Ayuso, Eduard; Jimenez, Veronica; Casellas, Alba; Mallol, Cristina; Salavert, Ariana; Tafuro, Sabrina; Obach, Mercè; Ruzo, Albert; Moya, Marta; Pujol, Anna; Bosch, Fatima

    2012-01-01

    Type 2 diabetes (T2D) results from insulin resistance and inadequate insulin secretion. Insulin resistance initially causes compensatory islet hyperplasia that progresses to islet disorganization and altered vascularization, inflammation, and, finally, decreased functional β-cell mass and hyperglycemia. The precise mechanism(s) underlying β-cell failure remain to be elucidated. In this study, we show that in insulin-resistant high-fat diet-fed mice, the enhanced islet vascularization and inflammation was parallel to an increased expression of vascular endothelial growth factor A (VEGF). To elucidate the role of VEGF in these processes, we have genetically engineered β-cells to overexpress VEGF (in transgenic mice or after adeno-associated viral vector-mediated gene transfer). We found that sustained increases in β-cell VEGF levels led to disorganized, hypervascularized, and fibrotic islets, progressive macrophage infiltration, and proinflammatory cytokine production, including tumor necrosis factor-α and interleukin-1β. This resulted in impaired insulin secretion, decreased β-cell mass, and hyperglycemia with age. These results indicate that sustained VEGF upregulation may participate in the initiation of a process leading to β-cell failure and further suggest that compensatory islet hyperplasia and hypervascularization may contribute to progressive inflammation and β-cell mass loss during T2D. PMID:22961079

  6. Germ cell cluster organization and oogenesis in the tardigrade Dactylobiotus parthenogeneticus Bertolani, 1982 (Eutardigrada, Murrayidae).

    PubMed

    Poprawa, Izabela; Hyra, Marta; Rost-Roszkowska, Magdalena Maria

    2015-07-01

    Germ cell cluster organization and the process of oogenesis in Dactylobiotus parthenogeneticus have been described using transmission electron microscopy and light microscopy. The reproductive system of D. parthenogeneticus is composed of a single, sac-like, meroistic ovary and a single oviduct that opens into the cloaca. Two zones can be distinguished in the ovary: a small germarium that is filled with oogonia and a vitellarium that is filled with germ cell clusters. The germ cell cluster, which has the form of a modified rosette, consists of eight cells that are interconnected by stable cytoplasmic bridges. The cell that has the highest number of stable cytoplasmic bridges (four bridges) finally develops into the oocyte, while the remaining cells become trophocytes. Vitellogenesis of a mixed type occurs in D. parthenogeneticus. One part of the yolk material is produced inside the oocyte (autosynthesis), while the second part is synthesized in the trophocytes and transported to the oocyte through the cytoplasmic bridges. The eggs are covered with two envelopes: a thin vitelline envelope and a three-layered chorion. The surface of the chorion forms small conical processes, the shape of which is characteristic for the species that was examined. In our paper, we present the first report on the rosette type of germ cell clusters in Parachela.

  7. Heparan sulfate/heparin oligosaccharides protect stromal cell-derived factor-1 (SDF-1)/CXCL12 against proteolysis induced by CD26/dipeptidyl peptidase IV.

    PubMed

    Sadir, Rabia; Imberty, Anne; Baleux, Françoise; Lortat-Jacob, Hugues

    2004-10-15

    Stromal cell-derived factor-1 (SDF-1) is a CXC chemokine that is constitutively expressed in most tissues and displayed on the cell surface in association with heparan sulfate (HS). Its numerous biological effects are mediated by a specific G protein-coupled receptor, CXCR4. A number of cells inactivate SDF-1 by specific processing of the N-terminal domain of the chemokine. In particular, CD26/dipeptidyl peptidase IV (DPP IV), a serine protease that co-distributes with CXCR4 at the cell surface, mediates the selective removal of the N-terminal dipeptide of SDF-1. We report here that heparin and HS specifically prevent the processing of SDF-1 by DPP IV expressed by Caco-2 cells. The level of processing increases with the level of differentiation of these cells, which correlates with an increase of DPP IV activity. A mutant SDF-1 that does not interact with HS is readily cleaved by DPP IV, a process that is not inhibited by HS, demonstrating that a productive interaction between HS and SDF-1 is required for the protection to take place. Moreover, we found that protection depends on the degree of polymerization of the HS sulfated S-domains. Finally a structural model of SDF-1, in complex with HS oligosaccharides of defined length, rationalizes the experimental data. The mechanisms by which HS regulates SDF-1 may thus include, in addition to its ability to locally concentrate the chemokine at the cell surface, a control of selective protease cleavage events that directly affect the chemokine activity.

  8. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.

    PubMed

    Nowak, Sascha; Winter, Martin

    2017-03-06

    Quantitative electrolyte extraction from lithium ion batteries (LIB) is of great interest for recycling processes. Following the generally valid EU legal guidelines for the recycling of batteries, 50 wt % of a LIB cell has to be recovered, which cannot be achieved without the electrolyte; hence, the electrolyte represents a target component for the recycling of LIBs. Additionally, fluoride or fluorinated compounds, as inevitably present in LIB electrolytes, can hamper or even damage recycling processes in industry and have to be removed from the solid LIB parts, as well. Finally, extraction is a necessary tool for LIB electrolyte aging analysis as well as for post-mortem investigations in general, because a qualitative overview can already be achieved after a few minutes of extraction for well-aged, apparently "dry" LIB cells, where the electrolyte is deeply penetrated or even gellified in the solid battery materials.

  9. Biomaterials-based 3D cell printing for next-generation therapeutics and diagnostics.

    PubMed

    Jang, Jinah; Park, Ju Young; Gao, Ge; Cho, Dong-Woo

    2018-02-01

    Building human tissues via 3D cell printing technology has received particular attention due to its process flexibility and versatility. This technology enables the recapitulation of unique features of human tissues and the all-in-one manufacturing process through the design of smart and advanced biomaterials and proper polymerization techniques. For the optimal engineering of tissues, a higher-order assembly of physiological components, including cells, biomaterials, and biomolecules, should meet the critical requirements for tissue morphogenesis and vascularization. The convergence of 3D cell printing with a microfluidic approach has led to a significant leap in the vascularization of engineering tissues. In addition, recent cutting-edge technology in stem cells and genetic engineering can potentially be adapted to the 3D tissue fabrication technique, and it has great potential to shift the paradigm of disease modeling and the study of unknown disease mechanisms required for precision medicine. This review gives an overview of recent developments in 3D cell printing and bioinks and provides technical requirements for engineering human tissues. Finally, we propose suggestions on the development of next-generation therapeutics and diagnostics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Monte Carlo simulations of safeguards neutron counter for oxide reduction process feed material

    NASA Astrophysics Data System (ADS)

    Seo, Hee; Lee, Chaehun; Oh, Jong-Myeong; An, Su Jung; Ahn, Seong-Kyu; Park, Se-Hwan; Ku, Jeong-Hoe

    2016-10-01

    One of the options for spent-fuel management in Korea is pyroprocessing whose main process flow is the head-end process followed by oxide reduction, electrorefining, and electrowining. In the present study, a well-type passive neutron coincidence counter, namely, the ACP (Advanced spent fuel Conditioning Process) safeguards neutron counter (ASNC), was redesigned for safeguards of a hot-cell facility related to the oxide reduction process. To this end, first, the isotopic composition, gamma/neutron emission yield and energy spectrum of the feed material ( i.e., the UO2 porous pellet) were calculated using the OrigenARP code. Then, the proper thickness of the gammaray shield was determined, both by irradiation testing at a standard dosimetry laboratory and by MCNP6 simulations using the parameters obtained from the OrigenARP calculation. Finally, the neutron coincidence counter's calibration curve for 100- to 1000-g porous pellets, in consideration of the process batch size, was determined through simulations. Based on these simulation results, the neutron counter currently is under construction. In the near future, it will be installed in a hot cell and tested with spent fuel materials.

  11. Dynamical analysis of yeast protein interaction network during the sake brewing process.

    PubMed

    Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N

    2011-12-01

    Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.

  12. Comparison between Palm Oil Derivative and Commercial Thermo-Plastic Binder System on the Properties of the Stainless Steel 316L Sintered Parts

    NASA Astrophysics Data System (ADS)

    Ibrahim, R.; Azmirruddin, M.; Wei, G. C.; Fong, L. K.; Abdullah, N. I.; Omar, K.; Muhamad, M.; Muhamad, S.

    2010-03-01

    Binder system is one of the most important criteria for the powder injection molding (PIM) process. Failure in the selection of the binder system will affect on the final properties of the sintered parts. The objectives of this studied is to develop a novel binder system based on the local natural resources and environmental friendly binder system from palm oil derivative which is easily available and cheap in our country of Malaysia. The novel binder that has been developed will be replaced the commercial thermo-plastic binder system or as an alternative binder system. The results show that the physical and mechanical properties of the final sintered parts fulfill the Metal Powder Industries Federation (MPIF) standard 35 for PIM parts. The biocompatibility test using cell osteosarcoma (MG63) and vero fibroblastic also shows that the cell was successfully growth on the sintered stainless steel 316L parts indicate that the novel binder was not toxic. Therefore, the novel binder system based on palm oil derivative that has been developed as a binder system fulfills the important criteria for the binder system in PIM process.

  13. Self-Functionalization Behind a Solution-Processed NiOx Film Used As Hole Transporting Layer for Efficient Perovskite Solar Cells.

    PubMed

    Ciro, John; Ramírez, Daniel; Mejía Escobar, Mario Alejandro; Montoya, Juan Felipe; Mesa, Santiago; Betancur, Rafael; Jaramillo, Franklin

    2017-04-12

    Fabrication of solution-processed perovskite solar cells (PSCs) requires the deposition of high quality films from precursor inks. Frequently, buffer layers of PSCs are formed from dispersions of metal oxide nanoparticles (NPs). Therefore, the development of trustable methods for the preparation of stable colloidal NPs dispersions is crucial. In this work, a novel approach to form very compact semiconducting buffer layers with suitable optoelectronic properties is presented through a self-functionalization process of the nanocrystalline particles by their own amorphous phase and without adding any other inorganic or organic functionalization component or surfactant. Such interconnecting amorphous phase composed by residual nitrate, hydroxide, and sodium ions, proved to be fundamental to reach stable colloidal dispersions and contribute to assemble the separate crystalline nickel oxide NPs in the final film, resulting in a very homogeneous and compact layer. A proposed mechanism behind the great stabilization of the nanoparticles is exposed. At the end, the self-functionalized nickel oxide layer exhibited high optoelectronic properties enabling perovskite p-i-n solar cells as efficient as 16.6% demonstrating the pertinence of the presented strategy to obtain high quality buffer layers processed in solution at room temperature.

  14. A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process

    PubMed Central

    An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2016-01-01

    New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery. PMID:27122192

  15. A Laminated Microfluidic Device for Comprehensive Preclinical Testing in the Drug ADME Process.

    PubMed

    An, Fan; Qu, Yueyang; Luo, Yong; Fang, Ning; Liu, Yang; Gao, Zhigang; Zhao, Weijie; Lin, Bingcheng

    2016-04-28

    New techniques are urgently needed to replace conventional long and costly pre-clinical testing in the new drug administration process. In this study, a laminated microfluidic device was fabricated to mimic the drug ADME response test in vivo. This proposed device was loaded and cultured with functional cells for drug response investigation and organ tissues that are involved in ADME testing. The drug was introduced from the top of the device and first absorbed by the Caco-2 cell layer, and then metabolized by the primary hepatocyte layer. It subsequently interacted with the MCF-7 cell layer, distributed in the lung, heart and fat tissues, and was finally eliminated through the dialysis membrane. Throughout this on-chip ADME process, the proposed device can be used as a reliable tool to simultaneously evaluate the drug anti-tumor activity, hepatotoxicity and pharmacokinetics. Furthermore, this device was proven to be able to reflect the hepatic metabolism of a drug, drug distribution in the target tissues, and the administration method of a drug. Furthermore, this microdevice is expected to reduce the number of drug candidates and accelerate the pre-clinical testing process subject to animal testing upon adaptation in new drug discovery.

  16. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds

    PubMed Central

    Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel

    2015-01-01

    The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects. PMID:25961060

  17. Immunomodulation and anti-inflammatory effects of garlic compounds.

    PubMed

    Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel

    2015-01-01

    The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.

  18. Dynamic cellular manufacturing system considering machine failure and workload balance

    NASA Astrophysics Data System (ADS)

    Rabbani, Masoud; Farrokhi-Asl, Hamed; Ravanbakhsh, Mohammad

    2018-02-01

    Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.

  19. Experimental infection of Leishmania (L.) chagasi in a cell line derived from Lutzomyia longipalpis (Diptera:Psychodidae).

    PubMed

    Bello, Felio J; Mejía, Astrid J; Corena, María del Pilar; Ayala, Martha; Sarmiento, Ladys; Zuñiga, Claudio; Palau, María T

    2005-10-01

    The present work describes the in vitro infection of a cell line Lulo, derived from Lutzomyia longipalpis embryonic tissue, by Leishmania chagasi promastigotes. This infection process is compared with a parallel one developed using the J774 cell line. The L. chagasi MH/CO/84/CI-044B strain was used for experimental infection in two cell lines. The cells were seeded on glass coverslips in 24-well plates to reach a final number of 2 x 10(5) cells/well. Parasites were added to the adhered Lulo and J774 cells in a 10:1 ratio and were incubated at 28 and 37 masculineC respectively. After 2, 4, 6, 8, and 10 days post-infection, the cells were extensively washed with PBS, fixed with methanol, and stained with Giemsa. The number of internalized parasites was determined by counting at least 400 cultured cells on each coverslip. The results showed continuous interaction between L. chagasi promastigotes with the cell lines. Some ultrastructural characteristics of the amastigote forms were observed using transmission electron microscopy. The highest percentage of infection in Lulo cells was registered on day 6 post-infection (29.6%) and on day 4 in the J774 cells (51%). This work shows similarities and differences in the L. chagasi experimental infection process in the two cell lines. However, Lulo cells emerge as a new model to study the life-cycle of this parasite.

  20. Lateral interactions in the outer retina

    PubMed Central

    Thoreson, Wallace B.; Mangel, Stuart C.

    2012-01-01

    Lateral interactions in the outer retina, particularly negative feedback from horizontal cells to cones and direct feed-forward input from horizontal cells to bipolar cells, play a number of important roles in early visual processing, such as generating center-surround receptive fields that enhance spatial discrimination. These circuits may also contribute to post-receptoral light adaptation and the generation of color opponency. In this review, we examine the contributions of horizontal cell feedback and feed-forward pathways to early visual processing. We begin by reviewing the properties of bipolar cell receptive fields, especially with respect to modulation of the bipolar receptive field surround by the ambient light level and to the contribution of horizontal cells to the surround. We then review evidence for and against three proposed mechanisms for negative feedback from horizontal cells to cones: 1) GABA release by horizontal cells, 2) ephaptic modulation of the cone pedicle membrane potential generated by currents flowing through hemigap junctions in horizontal cell dendrites, and 3) modulation of cone calcium currents (ICa) by changes in synaptic cleft proton levels. We also consider evidence for the presence of direct horizontal cell feed-forward input to bipolar cells and discuss a possible role for GABA at this synapse. We summarize proposed functions of horizontal cell feedback and feed-forward pathways. Finally, we examine the mechanisms and functions of two other forms of lateral interaction in the outer retina: negative feedback from horizontal cells to rods and positive feedback from horizontal cells to cones. PMID:22580106

  1. Pre-PDK block-level PPAC assessment of technology options for sub-7nm high-performance logic

    NASA Astrophysics Data System (ADS)

    Liebmann, L.; Northrop, G.; Facchini, M.; Riviere Cazaux, L.; Baum, Z.; Nakamoto, N.; Sun, K.; Chanemougame, D.; Han, G.; Gerousis, V.

    2018-03-01

    This paper describes a rigorous yet flexible standard cell place-and-route flow that is used to quantify block-level power, performance, and area trade-offs driven by two unique cell architectures and their associated design rule differences. The two architectures examined in this paper differ primarily in their use of different power-distribution-networks to achieve the desired circuit performance for high-performance logic designs. The paper shows the importance of incorporating block-level routability experiments in the early phases of design-technology co-optimization by reviewing a series of routing trials that explore different aspects of the technology definition. Since the electrical and physical parameters leading to critical process assumptions and design rules are unique to specific integration schemes and design objectives, it is understood that the goal of this work is not to promote one cell-architecture over another, but rather to convey the importance of exploring critical trade-offs long before the process details of the technology node are finalized to a point where a process design kit can be published.

  2. The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes.

    PubMed

    Castonguay, Jan; Orth, Joachim H C; Müller, Thomas; Sleman, Faten; Grimm, Christian; Wahl-Schott, Christian; Biel, Martin; Mallmann, Robert Theodor; Bildl, Wolfgang; Schulte, Uwe; Klugbauer, Norbert

    2017-08-30

    Two-pore channels (TPCs) are localized in endo-lysosomal compartments and assumed to play an important role for vesicular fusion and endosomal trafficking. Recently, it has been shown that both TPC1 and 2 were required for host cell entry and pathogenicity of Ebola viruses. Here, we investigate the cellular function of TPC1 using protein toxins as model substrates for distinct endosomal processing routes. Toxin uptake and activation through early endosomes but not processing through other compartments were reduced in TPC1 knockout cells. Detailed co-localization studies with subcellular markers confirmed predominant localization of TPC1 to early and recycling endosomes. Proteomic analysis of native TPC1 channels finally identified direct interaction with a distinct set of syntaxins involved in fusion of intracellular vesicles. Together, our results demonstrate a general role of TPC1 for uptake and processing of proteins in early and recycling endosomes, likely by providing high local Ca 2+ concentrations required for SNARE-mediated vesicle fusion.

  3. Ethanol fermentation characteristics of recycled water by Saccharomyces cerevisiae in an integrated ethanol-methane fermentation process.

    PubMed

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2016-11-01

    An process of integrated ethanol-methane fermentation with improved economics has been studied extensively in recent years, where the process water used for a subsequent fermentation of carbohydrate biomass is recycled. This paper presents a systematic study of the ethanol fermentation characteristics of recycled process water. Compared with tap water, fermentation time was shortened by 40% when mixed water was employed. However, while the maximal ethanol production rate increased from 1.07g/L/h to 2.01g/L/h, ethanol production was not enhanced. Cell number rose from 0.6×10(8) per mL in tap water to 1.6×10(8) per mL in mixed water but although biomass increased, cell morphology was not affected. Furthermore, the use of mixed water increased the glycerol yield but decreased that of acetic acid, and the final pH with mixed water was higher than when using tap water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination.

    PubMed

    Wu, Fuqing; Su, Ri-Qi; Lai, Ying-Cheng; Wang, Xiao

    2017-04-11

    The process of cell fate determination has been depicted intuitively as cells travelling and resting on a rugged landscape, which has been probed by various theoretical studies. However, few studies have experimentally demonstrated how underlying gene regulatory networks shape the landscape and hence orchestrate cellular decision-making in the presence of both signal and noise. Here we tested different topologies and verified a synthetic gene circuit with mutual inhibition and auto-activations to be quadrastable, which enables direct study of quadruple cell fate determination on an engineered landscape. We show that cells indeed gravitate towards local minima and signal inductions dictate cell fates through modulating the shape of the multistable landscape. Experiments, guided by model predictions, reveal that sequential inductions generate distinct cell fates by changing landscape in sequence and hence navigating cells to different final states. This work provides a synthetic biology framework to approach cell fate determination and suggests a landscape-based explanation of fixed induction sequences for targeted differentiation.

  5. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy.

    PubMed

    Lan, Xiaoyang; Jörg, David J; Cavalli, Florence M G; Richards, Laura M; Nguyen, Long V; Vanner, Robert J; Guilhamon, Paul; Lee, Lilian; Kushida, Michelle M; Pellacani, Davide; Park, Nicole I; Coutinho, Fiona J; Whetstone, Heather; Selvadurai, Hayden J; Che, Clare; Luu, Betty; Carles, Annaick; Moksa, Michelle; Rastegar, Naghmeh; Head, Renee; Dolma, Sonam; Prinos, Panagiotis; Cusimano, Michael D; Das, Sunit; Bernstein, Mark; Arrowsmith, Cheryl H; Mungall, Andrew J; Moore, Richard A; Ma, Yussanne; Gallo, Marco; Lupien, Mathieu; Pugh, Trevor J; Taylor, Michael D; Hirst, Martin; Eaves, Connie J; Simons, Benjamin D; Dirks, Peter B

    2017-09-14

    Human glioblastomas harbour a subpopulation of glioblastoma stem cells that drive tumorigenesis. However, the origin of intratumoural functional heterogeneity between glioblastoma cells remains poorly understood. Here we study the clonal evolution of barcoded glioblastoma cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of glioblastoma clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in glioblastoma stem cells. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, which in turn generates non-proliferative cells. We also identify rare 'outlier' clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant glioblastoma stem cells. Finally, we show that functionally distinct glioblastoma stem cells can be separately targeted using epigenetic compounds, suggesting new avenues for glioblastoma-targeted therapy.

  6. In-silico analysis on biofabricating vascular networks using kinetic Monte Carlo simulations.

    PubMed

    Sun, Yi; Yang, Xiaofeng; Wang, Qi

    2014-03-01

    We present a computational modeling approach to study the fusion of multicellular aggregate systems in a novel scaffold-less biofabrication process, known as 'bioprinting'. In this novel technology, live multicellular aggregates are used as fundamental building blocks to make tissues or organs (collectively known as the bio-constructs,) via the layer-by-layer deposition technique or other methods; the printed bio-constructs embedded in maturogens, consisting of nutrient-rich bio-compatible hydrogels, are then placed in bioreactors to undergo the cellular aggregate fusion process to form the desired functional bio-structures. Our approach reported here is an agent-based modeling method, which uses the kinetic Monte Carlo (KMC) algorithm to evolve the cellular system on a lattice. In this method, the cells and the hydrogel media, in which cells are embedded, are coarse-grained to material's points on a three-dimensional (3D) lattice, where the cell-cell and cell-medium interactions are quantified by adhesion and cohesion energies. In a multicellular aggregate system with a fixed number of cells and fixed amount of hydrogel media, where the effect of cell differentiation, proliferation and death are tactically neglected, the interaction energy is primarily dictated by the interfacial energy between cell and cell as well as between cell and medium particles on the lattice, respectively, based on the differential adhesion hypothesis. By using the transition state theory to track the time evolution of the multicellular system while minimizing the interfacial energy, KMC is shown to be an efficient time-dependent simulation tool to study the evolution of the multicellular aggregate system. In this study, numerical experiments are presented to simulate fusion and cell sorting during the biofabrication process of vascular networks, in which the bio-constructs are fabricated via engineering designs. The results predict the feasibility of fabricating the vascular structures via the bioprinting technology and demonstrate the morphological development process during cellular aggregate fusion in various engineering designed structures. The study also reveals that cell sorting will perhaps not significantly impact the final fabricated products, should the maturation process be well-controlled in bioprinting.

  7. Cell-to-cell communication in plants, animals, and fungi: a comparative review.

    PubMed

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  8. Pathophysiological insights in sickle cell disease.

    PubMed

    Odièvre, Marie-Hélène; Verger, Emmanuelle; Silva-Pinto, Ana Cristina; Elion, Jacques

    2011-10-01

    The first coherent pathophysiological scheme for sickle cell disease (SCD) emerged in the sixties-seventies based on an extremely detailed description of the molecular mechanism by which HbS in its deoxy-form polymerises and forms long fibres within the red blood cell that deform it and make it fragile. This scheme explains the haemolytic anaemia, and the mechanistic aspects of the vaso-occlusive crises (VOCs), but, even though it constitutes the basic mechanism of the disease, it does not account for the processes that actually trigger VOCs. This paper reviews recent data which imply: red blood cell dehydration, its abnormal adhesion properties to the endothelium, the participation of inflammatory phenomenon and of a global activation of all the cells present in the vessel, and finally, abnormalities of the vascular tone and of nitric oxide metabolism. These data altogether have shed a new light on the pathophysiology of the first molecular disease i.e. sickle cell disease.

  9. Generating gene knockout rats by homologous recombination in embryonic stem cells

    PubMed Central

    Tong, Chang; Huang, Guanyi; Ashton, Charles; Li, Ping; Ying, Qi-Long

    2013-01-01

    We describe here a detailed protocol for generating gene knockout rats by homologous recombination in embryonic stem (ES) cells. This protocol comprises the following procedures: derivation and expansion of rat ES cells, construction of gene-targeting vectors, generation of gene-targeted rat ES cells and, finally, production of gene-targeted rats. The major differences between this protocol and the classical mouse gene-targeting protocol include ES cell culture methods, drug selection scheme, colony picking and screening strategies. This ES cell–based gene-targeting technique allows sophisticated genetic modifications to be performed in the rat, as many laboratories have been doing in the mouse for the past two decades. Recently we used this protocol to generate Tp53 (also known as p53) gene knockout rats. The entire process requires ~1 year to complete, from derivation of ES cells to generation of knockout rats. PMID:21637202

  10. Cell-to-cell communication in plants, animals, and fungi: a comparative review

    NASA Astrophysics Data System (ADS)

    Bloemendal, Sandra; Kück, Ulrich

    2013-01-01

    Cell-to-cell communication is a prerequisite for differentiation and development in multicellular organisms. This communication has to be tightly regulated to ensure that cellular components such as organelles, macromolecules, hormones, or viruses leave the cell in a precisely organized way. During evolution, plants, animals, and fungi have developed similar ways of responding to this biological challenge. For example, in higher plants, plasmodesmata connect adjacent cells and allow communication to regulate differentiation and development. In animals, two main general structures that enable short- and long-range intercellular communication are known, namely gap junctions and tunneling nanotubes, respectively. Finally, filamentous fungi have also developed specialized structures called septal pores that allow intercellular communication via cytoplasmic flow. This review summarizes the underlying mechanisms for intercellular communication in these three eukaryotic groups and discusses its consequences for the regulation of differentiation and developmental processes.

  11. The re-emergence of sodium ion batteries: testing, processing, and manufacturability

    PubMed Central

    Roberts, Samuel; Kendrick, Emma

    2018-01-01

    With the re-emergence of sodium ion batteries (NIBs), we discuss the reasons for the recent interests in this technology and discuss the synergies between lithium ion battery (LIB) and NIB technologies and the potential for NIB as a “drop-in” technology for LIB manufacturing. The electrochemical testing of sodium materials in sodium metal anode arrangements is reviewed. The performance, stability, and polarization of the sodium in these test cells lead to alternative testing in three-electrode and alternative anode cell configurations. NIB manufacturability is also discussed, together with the impact that the material stability has upon the electrodes and coating. Finally, full-cell NIB technologies are reviewed, and literature proof-of-concept cells give an idea of some of the key differences in the testing protocols of these batteries. For more commercially relevant formats, safety, passive voltage control through cell balancing and cell formation aspects are discussed. PMID:29910609

  12. An Algorithm to Automate Yeast Segmentation and Tracking

    PubMed Central

    Doncic, Andreas; Eser, Umut; Atay, Oguzhan; Skotheim, Jan M.

    2013-01-01

    Our understanding of dynamic cellular processes has been greatly enhanced by rapid advances in quantitative fluorescence microscopy. Imaging single cells has emphasized the prevalence of phenomena that can be difficult to infer from population measurements, such as all-or-none cellular decisions, cell-to-cell variability, and oscillations. Examination of these phenomena requires segmenting and tracking individual cells over long periods of time. However, accurate segmentation and tracking of cells is difficult and is often the rate-limiting step in an experimental pipeline. Here, we present an algorithm that accomplishes fully automated segmentation and tracking of budding yeast cells within growing colonies. The algorithm incorporates prior information of yeast-specific traits, such as immobility and growth rate, to segment an image using a set of threshold values rather than one specific optimized threshold. Results from the entire set of thresholds are then used to perform a robust final segmentation. PMID:23520484

  13. From egg to gastrula: How the cell cycle is remodeled during the Drosophila mid-blastula transition

    PubMed Central

    Farrell, Jeffrey A.; O’Farrell, Patrick H.

    2015-01-01

    Many, if not most, embryos begin development with extremely short cell cycles that exhibit unusually rapid DNA replication and no gap phases. The commitment to the cell cycle in the early embryo appears to preclude many other cellular processes which only emerge as the cell cycle slows, at a major embryonic transition known as the mid-blastula transition (MBT) just prior to gastrulation. As reviewed here, genetic and molecular studies in Drosophila have identified changes that extend S phase and introduce a post-replicative gap phase, G2, to slow the cell cycle. While many mysteries remain about the upstream regulators of these changes, we review the core mechanisms of the change in cell cycle regulation and discuss advances in our understanding of how these might be timed and triggered. Finally, we consider how the elements of this program may be conserved or changed in other organisms. PMID:25195504

  14. The counting of native blood cells by digital microscopy

    NASA Astrophysics Data System (ADS)

    Torbin, S. O.; Doubrovski, V. A.; Zabenkov, I. V.; Tsareva, O. E.

    2017-03-01

    An algorithm for photographic images processing of blood samples in its native state was developed to determine the concentration of erythrocytes, leukocytes and platelets without individual separate preparation of cells' samples. Special "photo templates" were suggested to use in order to identify red blood cells. The effect of "highlighting" of leukocytes, which was found by authors, was used to increase the accuracy of this type of cells counting. Finally to raise the resolution of platelets from leukocytes the areas of their photo images were used, but not their sizes. It is shown that the accuracy of cells counting for native blood samples may be comparable with the accuracy of similar studies for smears. At the same time the proposed native blood analysis simplifies greatly the procedure of sample preparation in comparison to smear, permits to move from the detection of blood cells ratio to the determination of their concentrations in the sample.

  15. Quantifying Aggregation Dynamics during Myxococcus xanthus Development▿†

    PubMed Central

    Zhang, Haiyang; Angus, Stuart; Tran, Michael; Xie, Chunyan; Igoshin, Oleg A.; Welch, Roy D.

    2011-01-01

    Under starvation conditions, a swarm of Myxococcus xanthus cells will undergo development, a multicellular process culminating in the formation of many aggregates called fruiting bodies, each of which contains up to 100,000 spores. The mechanics of symmetry breaking and the self-organization of cells into fruiting bodies is an active area of research. Here we use microcinematography and automated image processing to quantify several transient features of developmental dynamics. An analysis of experimental data indicates that aggregation reaches its steady state in a highly nonmonotonic fashion. The number of aggregates rapidly peaks at a value 2- to 3-fold higher than the final value and then decreases before reaching a steady state. The time dependence of aggregate size is also nonmonotonic, but to a lesser extent: average aggregate size increases from the onset of aggregation to between 10 and 15 h and then gradually decreases thereafter. During this process, the distribution of aggregates transitions from a nearly random state early in development to a more ordered state later in development. A comparison of experimental results to a mathematical model based on the traffic jam hypothesis indicates that the model fails to reproduce these dynamic features of aggregation, even though it accurately describes its final outcome. The dynamic features of M. xanthus aggregation uncovered in this study impose severe constraints on its underlying mechanisms. PMID:21784940

  16. Effects of filler type and content on mechanical properties of photopolymerizable composites measured across two-dimensional combinatorial arrays.

    PubMed

    Lin-Gibson, Sheng; Sung, Lipiin; Forster, Aaron M; Hu, Haiqing; Cheng, Yajun; Lin, Nancy J

    2009-07-01

    Multicomponent formulations coupled with complex processing conditions govern the final properties of photopolymerizable dental composites. In this study, a single test substrate was fabricated to support multiple formulations with a gradient in degree of conversion (DC), allowing the evaluation of multiple processing conditions and formulations on one specimen. Mechanical properties and damage response were evaluated as a function of filler type/content and irradiation. DC, surface roughness, modulus, hardness, scratch deformation and cytotoxicity were quantified using techniques including near-infrared spectroscopy, laser confocal scanning microscopy, depth-sensing indentation, scratch testing and cell viability. Scratch parameters (depth, width, percent recovery) were correlated to composite modulus and hardness. Total filler content, nanofiller and irradiation time/intensity all affected the final properties, with the dominant factor for improved properties being a higher DC. This combinatorial platform accelerates the screening of dental composites through the direct comparison of properties and processing conditions across the same sample.

  17. Clarification of vaccines: An overview of filter based technology trends and best practices.

    PubMed

    Besnard, Lise; Fabre, Virginie; Fettig, Michael; Gousseinov, Elina; Kawakami, Yasuhiro; Laroudie, Nicolas; Scanlan, Claire; Pattnaik, Priyabrata

    2016-01-01

    Vaccines are derived from a variety of sources including tissue extracts, bacterial cells, virus particles, recombinant mammalian, yeast and insect cell produced proteins and nucleic acids. The most common method of vaccine production is based on an initial fermentation process followed by purification. Production of vaccines is a complex process involving many different steps and processes. Selection of the appropriate purification method is critical to achieving desired purity of the final product. Clarification of vaccines is a critical step that strongly impacts product recovery and subsequent downstream purification. There are several technologies that can be applied for vaccine clarification. Selection of a harvesting method and equipment depends on the type of cells, product being harvested, and properties of the process fluids. These techniques include membrane filtration (microfiltration, tangential-flow filtration), centrifugation, and depth filtration (normal flow filtration). Historically vaccine harvest clarification was usually achieved by centrifugation followed by depth filtration. Recently membrane based technologies have gained prominence in vaccine clarification. The increasing use of single-use technologies in upstream processes necessitated a shift in harvest strategies. This review offers a comprehensive view on different membrane based technologies and their application in vaccine clarification, outlines the challenges involved and presents the current state of best practices in the clarification of vaccines. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Bacterial subversion of host actin dynamics at the plasma membrane.

    PubMed

    Carabeo, Rey

    2011-10-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion. © 2011 Blackwell Publishing Ltd.

  19. Biological applications of phase-contrast electron microscopy.

    PubMed

    Nagayama, Kuniaki

    2014-01-01

    Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.

  20. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  1. Integrated cell and process engineering for improved transient production of a "difficult-to-express" fusion protein by CHO cells.

    PubMed

    Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C

    2015-12-01

    Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized process, showing that protein-specific cell/process engineering can provide a solution that exceeds the limits of genetic/functional diversity within heterogeneous host cell populations. . © 2015 Wiley Periodicals, Inc.

  2. Fabrication of VB2/Air Cells for Electrochemical Testing

    PubMed Central

    Stuart, Jessica; Lopez, Ruben; Lau, Jason; Li, Xuguang; Waje, Mahesh; Mullings, Matthew; Rhodes, Christopher; Licht, Stuart

    2013-01-01

    A technique to investigate the properties and performance of new multi-electron metal/air battery systems is proposed and presented. A method for synthesizing nanoscopic VB2 is presented as well as step-by-step procedure for applying a zirconium oxide coating to the VB2 particles for stabilization upon discharge. The process for disassembling existing zinc/air cells is shown, in addition construction of the new working electrode to replace the conventional zinc/air cell anode with a the nanoscopic VB2 anode. Finally, discharge of the completed VB2/air battery is reported. We show that using the zinc/air cell as a test bed is useful to provide a consistent configuration to study the performance of the high-energy high capacity nanoscopic VB2 anode. PMID:23962835

  3. [Mechanisms of signaling associated with reactive nitrogen and oxygen in apoptosis].

    PubMed

    Piłat, Justyna; Ługowski, Mateusz; Saczko, Jolanta; Choromańska, Anna; Chwiłkowska, Agnieszka; Banaś, Teresa; Kulbacka, Julita

    2016-05-01

    The knowledge of apoptotic mechanisms is essential in many biologic aspects related to both normal and neoplastic cells. Cell death by apoptosis is a very desirable way to eliminate unwanted cells: prevents release of the cellular content, which, in contrast to necrosis, provides no activation of inflammatory reactions. Apoptosis is a multistep process in where an extremely important role is played by caspases. Functions of caspases and their modifications are fundamental to understanding the signaling pathways responsible for regulation of apoptosis. These enzymes belong to a family of cysteine proteases that have the potential to destroy the enzymatic and structural proteins, and in the final stages of apoptosis, to lead to the disintegration of the cell. Apoptosis can be modulated by certain signaling pathway. © 2016 MEDPRESS.

  4. Development of a Three-Dimensional Bone-Like Construct in a Soft Self-Assembling Peptide Matrix

    PubMed Central

    Marí-Buyé, Núria; Luque, Tomás; Navajas, Daniel

    2013-01-01

    This work describes the development of a three-dimensional (3D) model of osteogenesis using mouse preosteoblastic MC3T3-E1 cells and a soft synthetic matrix made out of self-assembling peptide nanofibers. By adjusting the matrix stiffness to very low values (around 120 Pa), cells were found to migrate within the matrix, interact forming a cell–cell network, and create a contracted and stiffer structure. Interestingly, during this process, cells spontaneously upregulate the expression of bone-related proteins such as collagen type I, bone sialoprotein, and osteocalcin, indicating that the 3D environment enhances their osteogenic potential. However, unlike MC3T3-E1 cultures in 2D, the addition of dexamethasone is required to acquire a final mature phenotype characterized by features such as matrix mineralization. Moreover, a slight increase in the hydrogel stiffness (threefold) or the addition of a cell contractility inhibitor (Rho kinase inhibitor) abrogates cell elongation, migration, and 3D culture contraction. However, this mechanical inhibition does not seem to noticeably affect the osteogenic process, at least at early culture times. This 3D bone model intends to emphasize cell–cell interactions, which have a critical role during tissue formation, by using a compliant unrestricted synthetic matrix. PMID:23157379

  5. Preservation of Archaeal Surface Layer Structure During Mineralization

    NASA Astrophysics Data System (ADS)

    Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François

    2016-05-01

    Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.

  6. New method of metallization for silicon solar cells. Final report, December 1978-September 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macha, Milo

    1979-12-01

    Research on a new metallization process based on the Mo-Sn system is described. MoO/sub 3/ is used as the source of Mo, since its relatively low melting point and ease of reduction to metallic molybdenum. The tasks performed during this study include: (1) establishing the reduction cycle for MoO/sub 3/; (2) determining the reaction mechanism for MoO/sub 3/-Sn mixture; (3) establishing the ratio of MoO/sub 3/-Sn for the ink composition; (4) formulation of screenable ink; (5) evaluation of photovoltaic cells metallized with the ink; (6) comparison of the Mo-Sn metallization with nickel plated and silk screened silver contacts; (7) environmentalmore » test of metallized cells; (8) metallization of N/P cells with BSF and comparison with cells metallized with evaporated Ti-Ag contact; and (9) cost analysis of the process. The reaction mechanism study of MoO/sub 3/ and its mixture with Sn was conducted in an experimental station consisting of a graphite strip-heater and a Pyrex belljar under close control of temperature-atmosphere-time while allowing visual observations of the reactions. The metallization of the cells was done in a diffusion tube furnace. In order to obtain a low ohmic contact to the cell, the basic ink composition was modified with a small addition of titanium in the form of titanium resinate. The electrical characteristics of the cells were comparable with the existing metallization processes. The cost analysis was based on projected production output of one MegaWatt per year, using 2''diam. Silicon crystal wafers and the current material costs. In comparison with the standard processes using silver as the contacting metal, the saving obtained by the use of this new process is a direct result of the price difference between silver and molybdenum oxide with tin.« less

  7. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation (PECSS), Electron Reflector (ER) using Cd1-xMgxTe (CMT) structure and alternative device structures. The ARDS has been instrumental in the collaborative research with many institutions.

  8. Mesoporous silicon synthesis and applications in Li-ion batteries and solar hydrogen fuel cells

    DOEpatents

    Wang, Donghai; Dai, Fang; Yi, Ran; Zai, Jianto

    2017-05-23

    We provide a mesoporous silicon material (PSi) prepared via a template-free and HF-free process. The production process is facile and scalable, and it may be conducted under mild reaction conditions. The silicon may be produced directly by the reduction of a silicon-halogenide precursor (for example, SiCl.sub.4) with an alkaline alloy (for example, NaK alloy). The resulting Si-salt matrix is then annealed for the pore formation and crystallite growth. Final product is obtained by removal of the salt by-products with water.

  9. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.

    PubMed

    Yin, Wei; Pan, Lijia; Yang, Tingbin; Liang, Yongye

    2016-06-25

    Organic-inorganic hybrid perovskite solar cells are considered as one of the most promising next-generation solar cells due to their advantages of low-cost precursors, high power conversion efficiency (PCE) and easy of processing. In the past few years, the PCEs have climbed from a few to over 20% for perovskite solar cells. Recent developments demonstrate that perovskite exhibits ambipolar semiconducting characteristics, which allows for the construction of planar heterojunction (PHJ) perovskite solar cells. PHJ perovskite solar cells can avoid the use of high-temperature sintered mesoporous metal oxides, enabling simple processing and the fabrication of flexible and tandem perovskite solar cells. In planar heterojunction materials, hole/electron transport layers are introduced between a perovskite film and the anode/cathode. The hole and electron transporting layers are expected to enhance exciton separation, charge transportation and collection. Further, the supporting layer for the perovskite film not only plays an important role in energy-level alignment, but also affects perovskite film morphology, which have a great effect on device performance. In addition, interfacial layers also affect device stability. In this review, recent progress in interfacial engineering for PHJ perovskite solar cells will be reviewed, especially with the molecular interfacial materials. The supporting interfacial layers for the optimization of perovskite films will be systematically reviewed. Finally, the challenges remaining in perovskite solar cells research will be discussed.

  10. Multi-scale modeling of the CD8 immune response

    NASA Astrophysics Data System (ADS)

    Barbarroux, Loic; Michel, Philippe; Adimy, Mostafa; Crauste, Fabien

    2016-06-01

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  11. In-vivo cell tracking to quantify endothelial cell migration during zebrafish angiogenesis

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Rochon, Elizabeth R.; Roman, Beth L.

    2016-03-01

    The mechanism of endothelial cell migration as individual cells or collectively while remaining an integral component of a functional blood vessel has not been well characterized. In this study, our overarching goal is to define an image processing workflow to facilitate quantification of how endothelial cells within the first aortic arch and are proximal to the zebrafish heart behave in response to the onset of flow (i.e. onset of heart beating). Endothelial cell imaging was conducted at this developmental time-point i.e. ~24-28 hours post fertilization (hpf) when flow first begins, using 3D+time two-photon confocal microscopy of a live, wild-type, transgenic, zebrafish expressing green fluorescent protein (GFP) in endothelial cell nuclei. An image processing pipeline comprised of image signal enhancement, median filtering for speckle noise reduction, automated identification of the nuclei positions, extraction of the relative movement of nuclei between consecutive time instances, and finally tracking of nuclei, was designed for achieving the tracking of endothelial cell nuclei and the identification of their movement towards or away from the heart. Pilot results lead to a hypothesis that upon the onset of heart beat and blood flow, endothelial cells migrate collectively towards the heart (by 21.51+/-10.35 μm) in opposition to blood flow (i.e. subtending 142.170+/-21.170 with the flow direction).

  12. Exploiting the metabolism of PYC expressing HEK293 cells in fed-batch cultures.

    PubMed

    Vallée, Cédric; Durocher, Yves; Henry, Olivier

    2014-01-01

    The expression of recombinant yeast pyruvate carboxylase (PYC) in animal cell lines was shown in previous studies to reduce significantly the formation of waste metabolites, although it has translated into mixed results in terms of improved cellular growth and productivity. In this work, we demonstrate that the unique phenotype of PYC expressing cells can be exploited through the application of a dynamic fed-batch strategy and lead to significant process enhancements. Metabolically engineered HEK293 cells stably producing human recombinant IFNα2b and expressing the PYC enzyme were cultured in batch and fed-batch modes. Compared to parental cells, the maximum cell density in batch was increased 1.5-fold and the culture duration was extended by 2.5 days, but the product yield was only marginally increased. Further improvements were achieved by developing and implementing a dynamic fed-batch strategy using a concentrated feed solution. The feeding was based on an automatic control-loop to maintain a constant glucose concentration. This strategy led to a further 2-fold increase in maximum cell density (up to 10.7×10(6)cells/ml) and a final product titer of 160mg/l, representing nearly a 3-fold yield increase compared to the batch process with the parental cell clone. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Multi-scale modeling of the CD8 immune response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr; Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully; Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself inmore » case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.« less

  14. UP2 400 High Activity Oxide Legacy Waste Retrieval Project Scope and Progress-13048

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabeuf, Jean-Michel; Varet, Thierry

    The High Activity Oxide facility (HAO) reprocessed sheared and dissolved 4500 metric tons of light water reactor fuel the fuel of the emerging light water reactor spent fuel between 1976 and 1998. Over the period, approximately 2200 tons of process waste, composed primarily of sheared hulls, was produced and stored in a vast silo in the first place, and in canisters stored in pools in subsequent years. Upon shutdown of the facility, AREVA D and D Division in La Hague launched a thorough investigation and characterization of the silos and pools content, which then served as input data for themore » definition of a legacy waste retrieval and reconditioning program. Basic design was conducted between 2005 and 2007, and was followed by an optimization phase which lead to the definition of a final scenario and budget, 12% under the initial estimates. The scenario planned for the construction of a retrieval and reconditioning cell to be built on top of the storage silo. The retrieved waste would then be rinsed and sorted, so that hulls could subsequently be sent to La Hague high activity compacting facility, while resins and sludge would be cemented within the retrieval cell. Detailed design was conducted successfully from 2008 until 2011, while a thorough research and development program was conducted in order to qualify each stage of the retrieval and reconditioning process, and assist in the elaboration of the final waste package specification. This R and D program was defined and conducted as a response and mitigation of the major project risks identified during the basic design process. Procurement and site preparatory works were then launched in 2011. By the end of 2012, R and D is nearly completed, the retrieval and reconditioning process have been secured, the final waste package specification is being completed, the first equipment for the retrieval cell is being delivered on site, while preparation works are allowing to free up space above and around the silo, to allow for construction which is scheduled to being during the first semester of 2013. The elaboration of the final waste package is still undergoing and expected to be completed by then end of 2013, following some final elements of R and D required to demonstrate the full compatibility of the package with deep geological repository. The HAO legacy waste retrieval project is so far the largest such project entering operational phase on the site of La Hague. It is on schedule, under budget, and in conformity with the delivery requirements set by the French Safety Authority, as well as other stakeholders. This project paves the way for the successful completion of AREVA La Hague other legacy waste retrieval projects, which are currently being drafted or already in active R and D phase. (authors)« less

  15. Electron-Ion Dynamics with Time-Dependent Density Functional Theory: Towards Predictive Solar Cell Modeling: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitra, Neepa

    2016-07-14

    This project investigates the accuracy of currently-used functionals in time-dependent density functional theory, which is today routinely used to predict and design materials and computationally model processes in solar energy conversion. The rigorously-based electron-ion dynamics method developed here sheds light on traditional methods and overcomes challenges those methods have. The fundamental research undertaken here is important for building reliable and practical methods for materials discovery. The ultimate goal is to use these tools for the computational design of new materials for solar cell devices of high efficiency.

  16. Acousto-Optic Processing of 2-D Signals Using Temporal and Spatial Integration.

    DTIC Science & Technology

    1986-04-29

    given a, B is in the range Teo2 Bragg cell, with 30 MHz dB bandwidth at 2ោ or a2 <O<m if the images involved are real 820 nm (the laser wavelength...laboratory TeO2 devices with of additive interference, however, DR’ is reduced significantly. Let us up to 70 As delay. Finally, the CCD must have 512 + 64...and b(t) inte- grated over a finite interval T. . Flint glass acoustooptic cells driven at a center fre- - quency of 70 MHz were used in the

  17. Quantitative modeling of viable cell density, cell size, intracellular conductivity, and membrane capacitance in batch and fed-batch CHO processes using dielectric spectroscopy.

    PubMed

    Opel, Cary F; Li, Jincai; Amanullah, Ashraf

    2010-01-01

    Dielectric spectroscopy was used to analyze typical batch and fed-batch CHO cell culture processes. Three methods of analysis (linear modeling, Cole-Cole modeling, and partial least squares regression), were used to correlate the spectroscopic data with routine biomass measurements [viable packed cell volume, viable cell concentration (VCC), cell size, and oxygen uptake rate (OUR)]. All three models predicted offline biomass measurements accurately during the growth phase of the cultures. However, during the stationary and decline phases of the cultures, the models decreased in accuracy to varying degrees. Offline cell radius measurements were unsuccessfully used to correct for the deviations from the linear model, indicating that physiological changes affecting permittivity were occurring. The beta-dispersion was analyzed using the Cole-Cole distribution parameters Deltaepsilon (magnitude of the permittivity drop), f(c) (critical frequency), and alpha (Cole-Cole parameter). Furthermore, the dielectric parameters static internal conductivity (sigma(i)) and membrane capacitance per area (C(m)) were calculated for the cultures. Finally, the relationship between permittivity, OUR, and VCC was examined, demonstrating how the definition of viability is critical when analyzing biomass online. The results indicate that the common assumptions of constant size and dielectric properties used in dielectric analysis are not always valid during later phases of cell culture processes. The findings also demonstrate that dielectric spectroscopy, while not a substitute for VCC, is a complementary measurement of viable biomass, providing useful auxiliary information about the physiological state of a culture. (c) 2010 American Institute of Chemical Engineers

  18. Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds.

    PubMed

    Luthringer, B J C; Ali, F; Akaichi, H; Feyerabend, F; Ebel, T; Willumeit, R

    2013-10-01

    Despite its non-matching mechanical properties titanium remains the preferred metal implant material in orthopaedics. As a consequence in some cases stress shielding effect occurs, leading to implant loosening, osteopenia, and finally revision surgery. Porous metal scaffolds to allow easier specialised cells ingrowth with mechanical properties closer to the ones of bone can overcome this problem. This should improve healing processes, implant integration, and dynamic strength of implants retaining. Three Ti-6Al-4V materials were metal injection moulded and tailored porosities were effectively achieved. After microstructural and mechanical characterisation, two different primary cells of mesenchymal origin (human umbilical cord perivascular cells and human bone derived cells which revealed to be two pertinent models) as well as one cell line originated from primary osteogenic sarcoma, Saos-2, were bestowed to investigate cell-material interaction on genomic and proteome levels. Biological examinations disclosed that no material has negative impact on early adhesion, proliferation or cell viability. An efficient cell ingrowth into material with an average porosity of 25-50 μm was proved.

  19. Serum-free microcarrier based production of replication deficient Influenza vaccine candidate virus lacking NS1 using Vero cells

    PubMed Central

    2011-01-01

    Background Influenza virus is a major health concern that has huge impacts on the human society, and vaccination remains as one of the most effective ways to mitigate this disease. Comparing the two types of commercially available Influenza vaccine, the live attenuated virus vaccine is more cross-reactive and easier to administer than the traditional inactivated vaccines. One promising live attenuated Influenza vaccine that has completed Phase I clinical trial is deltaFLU, a deletion mutant lacking the viral Nonstructural Protein 1 (NS1) gene. As a consequence of this gene deletion, this mutant virus can only propagate effectively in cells with a deficient interferon-mediated antiviral response. To demonstrate the manufacturability of this vaccine candidate, a batch bioreactor production process using adherent Vero cells on microcarriers in commercially available animal-component free, serum-free media is described. Results Five commercially available animal-component free, serum-free media (SFM) were evaluated for growth of Vero cells in agitated Cytodex 1 spinner flask microcarrier cultures. EX-CELL Vero SFM achieved the highest cell concentration of 2.6 × 10^6 cells/ml, whereas other SFM achieved about 1.2 × 10^6 cells/ml. Time points for infection between the late exponential and stationary phases of cell growth had no significant effect in the final virus titres. A virus yield of 7.6 Log10 TCID50/ml was achieved using trypsin concentration of 10 μg/ml and MOI of 0.001. The Influenza vaccine production process was scaled up to a 3 liter controlled stirred tank bioreactor to achieve a cell density of 2.7 × 10^6 cells/ml and virus titre of 8.3 Log10 TCID50/ml. Finally, the bioreactor system was tested for the production of the corresponding wild type H1N1 Influenza virus, which is conventionally used in the production of inactivated vaccine. High virus titres of up to 10 Log10 TCID50/ml were achieved. Conclusions We describe for the first time the production of Influenza viruses using Vero cells in commercially available animal-component free, serum-free medium. This work can be used as a basis for efficient production of attenuated as well as wild type Influenza virus for research and vaccine production. PMID:21835017

  20. Placement-aware decomposition of a digital standard cells library for double patterning lithography

    NASA Astrophysics Data System (ADS)

    Wassal, Amr G.; Sharaf, Heba; Hammouda, Sherif

    2012-11-01

    To continue scaling the circuit features down, Double Patterning (DP) technology is needed in 22nm technologies and lower. DP requires decomposing the layout features into two masks for pitch relaxation, such that the spacing between any two features on each mask is greater than the minimum allowed mask spacing. The relaxed pitches of each mask are then processed on two separate exposure steps. In many cases, post-layout decomposition fails to decompose the layout into two masks due to the presence of conflicts. Post-layout decomposition of a standard cells block can result in native conflicts inside the cells (internal conflict), or native conflicts on the boundary between two cells (boundary conflict). Resolving native conflicts requires a redesign and/or multiple iterations for the placement and routing phases to get a clean decomposition. Therefore, DP compliance must be considered in earlier phases, before getting the final placed cell block. The main focus of this paper is generating a library of decomposed standard cells to be used in a DP-aware placer. This library should contain all possible decompositions for each standard cell, i.e., these decompositions consider all possible combinations of boundary conditions. However, the large number of combinations of boundary conditions for each standard cell will significantly increase the processing time and effort required to obtain all possible decompositions. Therefore, an efficient methodology is required to reduce this large number of combinations. In this paper, three different reduction methodologies are proposed to reduce the number of different combinations processed to get the decomposed library. Experimental results show a significant reduction in the number of combinations and decompositions needed for the library processing. To generate and verify the proposed flow and methodologies, a prototype for a placement-aware DP-ready cell-library is developed with an optimized number of cell views.

  1. Genome-wide expression profiling analysis to identify key genes in the anti-HIV mechanism of CD4+ and CD8+ T cells.

    PubMed

    Gao, Lijie; Wang, Yunqi; Li, Yi; Dong, Ya; Yang, Aimin; Zhang, Jie; Li, Fengying; Zhang, Rongqiang

    2018-07-01

    Comprehensive bioinformatics analyses were performed to explore the key biomarkers in response to HIV infection of CD4 + and CD8 + T cells. The numbers of CD4 + and CD8 + T cells of HIV infected individuals were analyzed and the GEO database (GSE6740) was screened for differentially expressed genes (DEGs) in HIV infected CD4 + and CD8 + T cells. Gene Ontology enrichment, KEGG pathway analyses, and protein-protein interaction (PPI) network were performed to identify the key pathway and core proteins in anti-HIV virus process of CD4 + and CD8 + T cells. Finally, we analyzed the expressions of key proteins in HIV-infected T cells (GSE6740 dataset) and peripheral blood mononuclear cells(PBMCs) (GSE511 dataset). 1) CD4 + T cells counts and ratio of CD4 + /CD8 + T cells decreased while CD8 + T cells counts increased in HIV positive individuals; 2) 517 DEGs were found in HIV infected CD4 + and CD8 + T cells at acute and chronic stage with the criterial of P-value <0.05 and fold change (FC) ≥2; 3) In acute HIV infection, type 1 interferon (IFN-1) pathway might played a critical role in response to HIV infection of T cells. The main biological processes of the DEGs were response to virus and defense response to virus. At chronic stage, ISG15 protein, in conjunction with IFN-1 pathway might play key roles in anti-HIV responses of CD4 + T cells; and 4) The expression of ISG15 increased in both T cells and PBMCs after HIV infection. Gene expression profile of CD4 + and CD8 + T cells changed significantly in HIV infection, in which ISG15 gene may play a central role in activating the natural antiviral process of immune cells. © 2018 Wiley Periodicals, Inc.

  2. Live Imaging Followed by Single Cell Tracking to Monitor Cell Biology and the Lineage Progression of Multiple Neural Populations.

    PubMed

    Gómez-Villafuertes, Rosa; Paniagua-Herranz, Lucía; Gascon, Sergio; de Agustín-Durán, David; Ferreras, María de la O; Gil-Redondo, Juan Carlos; Queipo, María José; Menendez-Mendez, Aida; Pérez-Sen, Ráquel; Delicado, Esmerilda G; Gualix, Javier; Costa, Marcos R; Schroeder, Timm; Miras-Portugal, María Teresa; Ortega, Felipe

    2017-12-16

    Understanding the mechanisms that control critical biological events of neural cell populations, such as proliferation, differentiation, or cell fate decisions, will be crucial to design therapeutic strategies for many diseases affecting the nervous system. Current methods to track cell populations rely on their final outcomes in still images and they generally fail to provide sufficient temporal resolution to identify behavioral features in single cells. Moreover, variations in cell death, behavioral heterogeneity within a cell population, dilution, spreading, or the low efficiency of the markers used to analyze cells are all important handicaps that will lead to incomplete or incorrect read-outs of the results. Conversely, performing live imaging and single cell tracking under appropriate conditions represents a powerful tool to monitor each of these events. Here, a time-lapse video-microscopy protocol, followed by post-processing, is described to track neural populations with single cell resolution, employing specific software. The methods described enable researchers to address essential questions regarding the cell biology and lineage progression of distinct neural populations.

  3. Peripheral Opioid Analgesia

    DTIC Science & Technology

    1999-07-16

    central nervous system by neurons called primary afferent nociceptors (PANs). These neurons have their cell bodies in the dorsal root ganglia (ORG... neurons , and in particular their role in the generation, propagation and modulation of noxious stimulation will be summarized. The final section of...and processing of each opioid peptide is discussed below. The human POMC gene is 7665 base pairs (bp) long which contains three exons and two

  4. Kinetic theory approach to modeling of cellular repair mechanisms under genome stress.

    PubMed

    Qi, Jinpeng; Ding, Yongsheng; Zhu, Ying; Wu, Yizhi

    2011-01-01

    Under acute perturbations from outer environment, a normal cell can trigger cellular self-defense mechanism in response to genome stress. To investigate the kinetics of cellular self-repair process at single cell level further, a model of DNA damage generating and repair is proposed under acute Ion Radiation (IR) by using mathematical framework of kinetic theory of active particles (KTAP). Firstly, we focus on illustrating the profile of Cellular Repair System (CRS) instituted by two sub-populations, each of which is made up of the active particles with different discrete states. Then, we implement the mathematical framework of cellular self-repair mechanism, and illustrate the dynamic processes of Double Strand Breaks (DSBs) and Repair Protein (RP) generating, DSB-protein complexes (DSBCs) synthesizing, and toxins accumulating. Finally, we roughly analyze the capability of cellular self-repair mechanism, cellular activity of transferring DNA damage, and genome stability, especially the different fates of a certain cell before and after the time thresholds of IR perturbations that a cell can tolerate maximally under different IR perturbation circumstances.

  5. Microfluidic Gut-liver chip for reproducing the first pass metabolism.

    PubMed

    Choe, Aerim; Ha, Sang Keun; Choi, Inwook; Choi, Nakwon; Sung, Jong Hwan

    2017-03-01

    After oral intake of drugs, drugs go through the first pass metabolism in the gut and the liver, which greatly affects the final outcome of the drugs' efficacy and side effects. The first pass metabolism is a complex process involving the gut and the liver tissue, with transport and reaction occurring simultaneously at various locations, which makes it difficult to be reproduced in vitro with conventional cell culture systems. In an effort to tackle this challenge, here we have developed a microfluidic gut-liver chip that can reproduce the dynamics of the first pass metabolism. The microfluidic chip consists of two separate layers for gut epithelial cells (Caco-2) and the liver cells (HepG2), and is designed so that drugs go through a sequential absorption in the gut chamber and metabolic reaction in the liver chamber. We fabricated the chip and showed that the two different cell lines can be successfully co-cultured on chip. When the two cells are cultured on chip, changes in the physiological function of Caco-2 and HepG2 cells were noted. The cytochrome P450 metabolic activity of both cells were significantly enhanced, and the absorptive property of Caco-2 cells on chip also changed in response to the presence of flow. Finally, first pass metabolism of a flavonoid, apigenin, was evaluated as a model compound, and co-culture of gut and liver cells on chip resulted in a metabolic profile that is closer to the reported profile than a monoculture of gut cells. This microfluidic gut-liver chip can potentially be a useful platform to study the complex first pass metabolism of drugs in vitro.

  6. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...

  7. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.

  8. Buttock augmentation: case studies of fat injection monitored by magnetic resonance imaging.

    PubMed

    Murillo, William L

    2004-11-01

    This article examines the injection of megavolumes of autologous fat cells as a means of buttock augmentation in 162 patients over a 7-year period. The author documents the use of magnetic resonance imaging in six patients to visualize the intramuscular location, integration, and duration of the injected fat. With the patient under epidural or general anesthesia, fat cells were harvested with a 5-mm blunt cannula and then stored in an empty sterile intravenous bag or bottle trap. Decantation was the only process used to separate the fat cells from the saline and serosanguineous components. Up to 1260 cc of fat cells were been injected into each buttock, the largest amount of fat grafting ever reported. Clinical assessment estimated a 20 percent loss of augmentation effect during the first 4 months. Patients were generally pleased with the final shape and volume of the buttock contour. In follow-up evaluation, magnetic resonance imaging supported the clinical indicators that the injection of large quantities of fat cells appears to be a safe and effective method for buttock enhancement. This process has inherent advantages; nevertheless, further research is required to clarify our understanding of the predictability and longevity of this technique.

  9. Influence of a static magnetic field on the slow freezing of human erythrocytes.

    PubMed

    Lin, Chun-Yen; Chang, Wei-Jen; Lee, Sheng-Yang; Feng, Sheng-Wei; Lin, Che-Tong; Fan, Kan-Shin; Huang, Haw-Ming

    2013-01-01

    The aim of this study was to test whether or not a strong static magnetic field (SMF) had a positive effect on the survival rate of frozen erythrocytes. Human erythrocytes were slow freezing at a rate of -1°C/min, to a final temperature of -20°C. During the freezing process, the cells were simultaneously exposed to an SMF with a magnetic induction of 0.2 or 0.4 T. After the cells were thawed, the survival rate, morphology, and function of the thawed erythrocytes were evaluated. Furthermore, tests of membrane fluidity were performed to assess the effect of the SMF on the cell membrane. The slow freezing process coupled with an SMF increased the survival rate of frozen erythrocytes, without any negative effect on the cell morphology or function. The increases in relative survival rates of frozen erythrocytes were 5.7% and 9.1% when the cells were frozen in 0.2 T and 0.4 T groups, respectively. In addition, the 0.4 T group significantly increased the membrane rigidity of the erythrocytes. Slow freezing coupled with a strong SMF produced positive effects on the survival rate of thawed erythrocytes, without changing their normal function.

  10. Two-Step Production of Phenylpyruvic Acid from L-Phenylalanine by Growing and Resting Cells of Engineered Escherichia coli: Process Optimization and Kinetics Modeling.

    PubMed

    Hou, Ying; Hossain, Gazi Sakir; Li, Jianghua; Shin, Hyun-Dong; Liu, Long; Du, Guocheng; Chen, Jian

    2016-01-01

    Phenylpyruvic acid (PPA) is widely used in the pharmaceutical, food, and chemical industries. Here, a two-step bioconversion process, involving growing and resting cells, was established to produce PPA from l-phenylalanine using the engineered Escherichia coli constructed previously. First, the biotransformation conditions for growing cells were optimized (l-phenylalanine concentration 20.0 g·L-1, temperature 35°C) and a two-stage temperature control strategy (keep 20°C for 12 h and increase the temperature to 35°C until the end of biotransformation) was performed. The biotransformation conditions for resting cells were then optimized in 3-L bioreactor and the optimized conditions were as follows: agitation speed 500 rpm, aeration rate 1.5 vvm, and l-phenylalanine concentration 30 g·L-1. The total maximal production (mass conversion rate) reached 29.8 ± 2.1 g·L-1 (99.3%) and 75.1 ± 2.5 g·L-1 (93.9%) in the flask and 3-L bioreactor, respectively. Finally, a kinetic model was established, and it was revealed that the substrate and product inhibition were the main limiting factors for resting cell biotransformation.

  11. Functionalization of calcium carbonate microparticles as a combined sensor and transport system for active agents in cells.

    PubMed

    Reibetanz, Uta; Chen, Min Hui Averil; Mutukumaraswamy, Shaillender; Liaw, Zi Yen; Oh, Bernice Hui Lin; Donath, Edwin; Neu, Björn

    2011-01-01

    In recent years colloidal particles and capsules, layer-by-layer (LbL) coated with biocompatible polyelectrolytes, have received much attention as drug-delivery systems. In this study an LbL-assembled, biopolymer-based multilayer system was established as a combined transporter and sensor for monitoring intracellular degradation and processing. CaCO(3) cores were functionalized with fluorescein isothiocyanatelabelled poly(allylamine hydrochloride) (FITC-PAH). This pH-sensitive fluorescent dye allows identifying the location of these LbL-coated particles in cell compartments of different pH, like the endo-lysosome and cytoplasm. The labelled core was then coated with consecutive layers of protamine (PRM) and dextran sulfate (DXS). Finally, plasmid DNA (pEGFP-C1) as a reporter agent for drug release in the cytoplasm was integrated into the biocompatible and degradable PRM/DXS multilayer. The system was tested regarding its long-term stability and interaction with HEK 293T/17 cells. These multifunctional microparticles allow the simultaneous investigation of particle localization and processing within cells, and should thus provide a valuable tool for studying and improving the controlled LbL-based release of active agents into cells. © Koninklijke Brill NV, Leiden, 2011

  12. Plant hormone cross-talk: the pivot of root growth.

    PubMed

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. A Framework for Modeling Competitive and Cooperative Computation in Retinal Processing

    NASA Astrophysics Data System (ADS)

    Moreno-Díaz, Roberto; de Blasio, Gabriel; Moreno-Díaz, Arminda

    2008-07-01

    The structure of the retina suggests that it should be treated (at least from the computational point of view), as a layered computer. Different retinal cells contribute to the coding of the signals down to ganglion cells. Also, because of the nature of the specialization of some ganglion cells, the structure suggests that all these specialization processes should take place at the inner plexiform layer and they should be of a local character, prior to a global integration and frequency-spike coding by the ganglion cells. The framework we propose consists of a layered computational structure, where outer layers provide essentially with band-pass space-time filtered signals which are progressively delayed, at least for their formal treatment. Specialization is supposed to take place at the inner plexiform layer by the action of spatio-temporal microkernels (acting very locally), and having a centerperiphery space-time structure. The resulting signals are then integrated by the ganglion cells through macrokernels structures. Practically all types of specialization found in different vertebrate retinas, as well as the quasilinear behavior in some higher vertebrates, can be modeled and simulated within this framework. Finally, possible feedback from central structures is considered. Though their relevance to retinal processing is not definitive, it is included here for the sake of completeness, since it is a formal requisite for recursiveness.

  14. Micro- and Nano-scale Technologies for Delivery into Adherent Cells

    PubMed Central

    Kang, Wonmo; McNaughton, Rebecca L.; Espinosa, Horacio D.

    2016-01-01

    Several recent micro- and nano-technologies have provided novel methods for biological studies of adherent cells because the small features of these new biotools provide unique capabilities for accessing cells without the need for suspension or lysis. These novel approaches have enabled gentle, yet effective delivery of molecules into specific adhered target cells, with unprecedented spatial resolution. Here we review recent progress in the development of these technologies with an emphasis on in vitro delivery into adherent cells utilizing mechanical penetration or electroporation. We discuss major advantages and limitations of these approaches and propose possible strategies for improvements. Finally, we discuss the impact of these technologies on biological research concerning cell-specific temporal studies, e.g., non-destructive sampling and analysis of intracellular molecules. Need For Techniques To Study Adherent Cells A mechanistic understanding of cell biology is often limited by both the complexity of the processes and limitations of commonly available research tools that lack temporal or spatial resolution. The lack of tools capable of providing cell-specific, non-destructive biomolecular delivery and analysis is a particular barrier for advancing fundamental discoveries of cell heterogeneity, single-cell behavior within a complex environment, and the mechanisms that govern disease states, responses to drugs or other stimuli, and differentiation of stem cells. To gain new mechanistic understanding, advances in methods for precise intracellular delivery and non-destructive biochemical analyses of non-secretory molecules (e.g., mRNA and proteins) are greatly needed so that individual cells can be experimentally controlled and repeatedly analyzed over time and/or within a particular location of the cell. For example, developing neurons must undergo a series of sequential changes in gene expression to achieve a mature phenotype; hence, understanding the process will require the ability to accurately monitor the sequence of intracellular events, within individual cells, in a non-destructive manner. In addition, neuronal maturation is influenced by interactions with surrounding cells and with extracellular matrix, so it is necessary to be able to simultaneously monitor events occurring in multiple cells that are interacting with each other and with the matrix. While the requirements are challenging, these experimental capabilities would provide unprecedented insight into the determinants of both the timing of cellular processes and their phenotype, the principles of cell heterogeneity, and the role of cell-cell communication in homogeneous cell populations and co-cultures. Because most cells adhere to a substrate or to other cells during their growth or differentiation [1], it is advantageous for new technologies to be capable of accessing adhered cells to avoid the need to disrupt cell processes by suspension and replating. Several technologies for studying adhered cells are currently being developed, and due to the need for individual cell access and non-destructive probing, micro- and nano-technologies are a natural choice because they interact with cells at the appropriate length scale, reduce the working volume of expensive reagents, require less time and space for replicates, allow for automation and integration of sequential analyses, enable portability, and reduce waste [2, 3]. Here we present an overview of recently developed micro- and nano-tools, with a focus on trends in intracellular delivery for in vitro studies of adhered cells, and highlight major advantages/disadvantages of these technologies with respect to features such as individual cell selectivity, spatial resolution, non-destructive cell analysis, and potential for high throughput or automation. Finally, we discuss the exciting promise for these technologies to cause a paradigm shift in biological research by providing methods to study cells over time at the individual cell level. PMID:27287927

  15. Automated cell tracking and analysis in phase-contrast videos (iTrack4U): development of Java software based on combined mean-shift processes.

    PubMed

    Cordelières, Fabrice P; Petit, Valérie; Kumasaka, Mayuko; Debeir, Olivier; Letort, Véronique; Gallagher, Stuart J; Larue, Lionel

    2013-01-01

    Cell migration is a key biological process with a role in both physiological and pathological conditions. Locomotion of cells during embryonic development is essential for their correct positioning in the organism; immune cells have to migrate and circulate in response to injury. Failure of cells to migrate or an inappropriate acquisition of migratory capacities can result in severe defects such as altered pigmentation, skull and limb abnormalities during development, and defective wound repair, immunosuppression or tumor dissemination. The ability to accurately analyze and quantify cell migration is important for our understanding of development, homeostasis and disease. In vitro cell tracking experiments, using primary or established cell cultures, are often used to study migration as cells can quickly and easily be genetically or chemically manipulated. Images of the cells are acquired at regular time intervals over several hours using microscopes equipped with CCD camera. The locations (x,y,t) of each cell on the recorded sequence of frames then need to be tracked. Manual computer-assisted tracking is the traditional method for analyzing the migratory behavior of cells. However, this processing is extremely tedious and time-consuming. Most existing tracking algorithms require experience in programming languages that are unfamiliar to most biologists. We therefore developed an automated cell tracking program, written in Java, which uses a mean-shift algorithm and ImageJ as a library. iTrack4U is a user-friendly software. Compared to manual tracking, it saves considerable amount of time to generate and analyze the variables characterizing cell migration, since they are automatically computed with iTrack4U. Another major interest of iTrack4U is the standardization and the lack of inter-experimenter differences. Finally, iTrack4U is adapted for phase contrast and fluorescent cells.

  16. Bioremediation and detoxification of industrial wastes by earthworms: Vermicompost as powerful crop nutrient in sustainable agriculture.

    PubMed

    Bhat, Sartaj Ahmad; Singh, Sharanpreet; Singh, Jaswinder; Kumar, Sunil; Bhawana; Vig, Adarsh Pal

    2018-03-01

    Vermicompost is the final product of the vermicomposting process involving the collective action of earthworms and microbes. During this process, the waste is converted into useful manure by reducing the harmful effects of waste. Toxicity of industrial wastes is evaluated by plant bioassays viz. Allium cepa and Vicia faba test. These bioassays are sensitive and cost-effective for the monitoring of environmental contamination. The valorization potential of earthworms and their ability to detoxify heavy metals in industrial wastes is because of their strong metabolic system and involvement of earthworm gut microbes and chloragocyte cells. Most of the studies reported that the vermicompost produced from organic wastes contains higher amounts of humic substances, which plays a major role in growth of plants. The present article discusses the detoxification of industrial wastes by earthworms and the role of final vermicompost in plant growth and development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Preliminary grid data and maps for an aeromagnetic survey of the Taylor mountains quadrangle and a portion of the Bethel quadrangle, Alaska

    USGS Publications Warehouse

    Saltus, R.W.; Milicevic, B.

    2004-01-01

    A preliminary data grid and maps are presented for an aeromagnetic survey of the Taylor Mountains and a portion of the Bethel quadrangles, Alaska. The aeromagnetic survey was flown by McPhar Geosurveys Ltd. for the U.S. Geological Survey (USGS). A flight-line spacing of 1,600 meters (1 mile) and nominal flight height of 305 meters (1,000 feet) above topography (draped) was used for the survey. The preliminary data grid has a grid cell size of 350 meters (1150 feet). Final data processing and quality control have not been applied to these data. The purpose of this preliminary data release is to allow prompt public access to these data, which are of interest for active mineral exploration in the region. A more complete data release and description will be published later once the final data processing is complete.

  18. Singled-walled carbon nanotubes produced by induction thermal plasma: Cytotoxicity evaluation of the feedstock materials and the final product for a potential bone application

    NASA Astrophysics Data System (ADS)

    Alinejad, Yasaman

    One of the most challenging issues that the technologies related to nanomaterials face is the impact they have on human health and environment. It is therefore of great importance to investigate the toxicological impacts of these technologies prior to their widespread utilization in different fields of application. Therefore, in this study, the cytotoxicity of the materials present throughout the process of single-walled carbon nanotubes (SWCNTs) synthesis by induction thermal plasma (from the feedstock materials to the final product) was evaluated. First of all, the influence of the induction thermal plasma process on the physico-chemical and cytotoxic properties of feedstock materials (i.e. commercial Co, Ni, Y2O3, Mo catalysts and carbon black) was investigated. The strongest cytotoxicity was observed for commercial Co compared to other catalysts. Although the thermal plasma process affected the properties of all catalysts, only the cytotoxicity of Ni was increased. Comparing the properties and cytotoxicity of the plasma treated Ni particles with commercial Ni nanoparticles revealed that the particles with similar surface area had different cytotoxicities. Plus, the observed cytotoxicity of the catalysts was not mainly due to the release of ions. In order to evaluate the capacity of the RF induction thermal plasma process to produce high quality SWCNTs using non-toxic catalysts, the effects of the type and quantity of three catalyst mixtures (Ni-Y2O 3, Ni-Co-Y2O3, and Ni-Mo-Y2O3 ) on SWCNTs synthesis were examined. Thermodynamic calculations, in gas and particularly in liquid solution phases, were also performed. The results showed that catalyst type affected the quality of the SWCNT final product and similar quality SWCNTs was produced when the same amount of Co was replaced by Ni. Then, to investigate the cytotoxicity of the SWCNTs produced with the three catalyst mixtures, their effect was evaluated on the behavior of murine MC3T3-E1 preosteoblasts. Either SWCNTs were added on the attached cells or cells were seeded on the SWCNT-covered culture plates. SWCNTs which were added on the attached cells reduced cell viability drastically in a dose-dependent manner. However, the viability of the cells seeded on SWCNTs was only slightly decreased at 24 h, even on those produced with Ni-Co-Y2O3 . Moreover, cells could proliferate within 48 h. Thus, except mechanical membrane disturbance, thermal plasma grown SWCNTs seemed to induce no severe cytotoxicity on MC3T3-E1 preosteoblasts. Consequently, SWCNTs were purified and their influence on the viability and proliferation of MC3T3-E1 preosteoblasts was determined. The impact of SWCNTs on Smad activation and cell differentiation induced by BMP-2 and BMP-9 was also studied. SWCNTs pre-treatment accelerated the Smad1/5/8 activation induced by both BMP-2 and BMP-9. It did not reduce the viability of preosteoblasts but slightly affected their proliferation at 48 h. Furthermore, after 72 h incubation with BMP-2 or BMP-9, preosteoblasts pre-treated with SWCNTs for 24 h could express genes encoding osteogenic markers such as osterix and osteocalcin and showed high alkaline phosphatase activity. Interestingly, BMP-9 favored the differentiation of preosteoblasts pre-treated with SWCNTs more remarkably than BMP-2. Therefore, combination of BMP-9 with SWCNTs seems to be a promising avenue for bone regeneration. Keywords: Carbon nanotubes, metallic nanoparticles, induction thermal plasma, cytotoxicity, cell proliferation, mitochondrial enzymatic activity, lactate dehydrogenase, osteogenesis.

  19. Harnessing system models of cell death signalling for cytotoxic chemotherapy: towards personalised medicine approaches?

    PubMed

    Huber, Heinrich J; McKiernan, Ross G; Prehn, Jochen H M

    2014-03-01

    Most cytotoxic chemotherapeutics are believed to kill cancer cells by inducing apoptosis. Understanding the factors that contribute to impairment of apoptosis in cancer cells is therefore critical for the development of novel therapies that circumvent the widespread chemoresistance. Apoptosis, however, is a complex and tightly controlled process that can be induced by different classes of chemotherapeutics targeting different signalling nodes and pathways. Moreover, apoptosis initiation and apoptosis execution strongly depend on patient-specific, genomic and proteomic signatures. Here, we will review recent translational studies that suggest a critical link between the sensitivity of cancer cells to initiate apoptosis and clinical outcome. Next we will discuss recent advances in the field of system modelling of apoptosis pathways for the prediction of treatment responses. We propose that initiation of mitochondrial apoptosis, defined as the process of mitochondrial outer membrane permeabilisation (MOMP), is a dose-dependent decision process that allows for a prediction of individual therapy responses and therapeutic windows. We provide evidence in contrast that apoptosis execution post-MOMP may be a binary decision that dictates whether apoptosis is executed or not. We will discuss the implications of this concept for the future use of novel adjuvant therapeutics that specifically target apoptosis signalling pathways or which may be used to reduce the impact of cell-to-cell heterogeneity on therapy responses. Finally, we will discuss the technical and regulatory requirements surrounding the use and implications of system-based patient stratification tools for the future of personalised oncology.

  20. Making quantitative morphological variation from basic developmental processes: where are we? The case of the Drosophila wing

    PubMed Central

    Alexis, Matamoro-Vidal; Isaac, Salazar-Ciudad; David, Houle

    2015-01-01

    One of the aims of evolutionary developmental biology is to discover the developmental origins of morphological variation. The discipline has mainly focused on qualitative morphological differences (e.g., presence or absence of a structure) between species. Studies addressing subtle, quantitative variation are less common. The Drosophila wing is a model for the study of development and evolution, making it suitable to investigate the developmental mechanisms underlying the subtle quantitative morphological variation observed in nature. Previous reviews have focused on the processes involved in wing differentiation, patterning and growth. Here, we investigate what is known about how the wing achieves its final shape, and what variation in development is capable of generating the variation in wing shape observed in nature. Three major developmental stages need to be considered: larval development, pupariation, and pupal development. The major cellular processes involved in the determination of tissue size and shape are cell proliferation, cell death, oriented cell division and oriented cell intercalation. We review how variation in temporal and spatial distribution of growth and transcription factors affects these cellular mechanisms, which in turn affects wing shape. We then discuss which aspects of the wing morphological variation are predictable on the basis of these mechanisms. PMID:25619644

  1. Molecular diodes in optical rectennas

    NASA Astrophysics Data System (ADS)

    Duché, David; Palanchoke, Ujwol; Terracciano, Luigi; Dang, Florian-Xuan; Patrone, Lionel; Le Rouzo, Judikael; Balaban, Téodore Silviu; Alfonso, Claude; Charai, Ahmed; Margeat, Olivier; Ackermann, Jorg; Gourgon, Cécile; Simon, Jean-Jacques; Escoubas, Ludovic

    2016-09-01

    The photo conversion efficiencies of the 1st and 2nd generat ion photovoltaic solar cells are limited by the physical phenomena involved during the photo-conversion processes. An upper limit around 30% has been predicted for a monojunction silicon solar cell. In this work, we study 3rd generation solar cells named rectenna which could direct ly convert visible and infrared light into DC current. The rectenna technology is at odds with the actual photovoltaic technologies, since it is not based on the use of semi-conducting materials. We study a rectenna architecture consist ing of plasmonic nano-antennas associated with rectifying self assembled molecular diodes. We first opt imized the geometry of plasmonic nano-antennas using an FDTD method. The optimal antennas are then realized using a nano-imprint process and associated with self assembled molecular diodes in 11- ferrocenyl-undecanethiol. Finally, The I(V) characterist ics in darkness of the rectennas has been carried out using an STM. The molecular diodes exhibit averaged rect ification ratios of 5.

  2. Research, development and demonstration of nickel-iron batteries for electric-vehicle propulsion

    NASA Astrophysics Data System (ADS)

    1982-03-01

    Full-size, prototype cell, module and battery fabrication and evaluation, aimed at advancing the technical capabilities of the nickel-iron battery, while simultaneously reducing its potential cost in materials and process areas are discussed. Improved electroprecipitation process nickel electrodes of design thickness (2.5 mm) are now being prepared that display stable capacities for the C/3 drain rate with less than 10% capacity decline for greater than 1000 test cycles. Iron electrodes of the composite-type are delivering 24 Ah at the target thickness (1.0 mm). Iron electrodes also are displaying capacity stability for greater than 1000 test cycles in continuing 3-plate cell tests. Finished cells delivered 57 to 63 Wh/kg at C/3, and have demonstrated cyclic stability up to 1200 cycles at 80 percent depth of discharge profiles. Modules exceeded 580 test cycles and remain on test. Reduction in nickel electrode swelling (and concurrent stack starvation), to improve cycling, continues to be an area of major effort to reach the final battery cycle life objectives.

  3. The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled

    PubMed Central

    Gupta, Tripti; Kumar, Arun; Cattenoz, Pierre B.; VijayRaghavan, K; Giangrande, Angela

    2016-01-01

    Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia toward their final destination. DOI: http://dx.doi.org/10.7554/eLife.15983.001 PMID:27740455

  4. Effect of the size-selective silver clusters on lithium peroxide morphology in lithium–oxygen batteries

    DOE PAGES

    Lu, Jun; Cheng, Lei; Lau, Kah Chun; ...

    2014-09-12

    Lithium–oxygen batteries have the potential needed for long-range electric vehicles, but the charge and discharge chemistries are complex and not well understood. The active sites on cathode surfaces and their role in electrochemical reactions in aprotic lithium–oxygen cells are difficult to ascertain because the exact nature of the sites is unknown. In this paper, we report the deposition of subnanometre silver clusters of exact size and number of atoms on passivated carbon to study the discharge process in lithium–oxygen cells. The results reveal dramatically different morphologies of the electrochemically grown lithium peroxide dependent on the size of the clusters. Thismore » dependence is found to be due to the influence of the cluster size on the formation mechanism, which also affects the charge process. Finally, the results of this study suggest that precise control of subnanometre surface structure on cathodes can be used as a means to improve the performance of lithium–oxygen cells.« less

  5. Inducible error-prone repair in B. subtilis. Final report, September 1, 1979-June 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasbin, R. E.

    1981-06-01

    The research performed under this contract has been concentrated on the relationship between inducible DNA repair systems, mutagenesis and the competent state in the gram positive bacterium Bacillus subtilis. The following results have been obtained from this research: (1) competent Bacillus subtilis cells have been developed into a sensitive tester system for carcinogens; (2) competent B. subtilis cells have an efficient excision-repair system, however, this system will not function on bacteriophage DNA taken into the cell via the process of transfection; (3) DNA polymerase III is essential in the mechanism of the process of W-reactivation; (4) B. subtilis strains curedmore » of their defective prophages have been isolated and are now being developed for gene cloning systems; (5) protoplasts of B. subtilis have been shown capable of acquiring DNA repair enzymes (i.e., enzyme therapy); and (6) a plasmid was characterized which enhanced inducible error-prone repair in a gram positive organism.« less

  6. Mechanisms and Consequences of Double-strand DNA Break Formation in Chromatin

    PubMed Central

    Cannan, Wendy J.; Pederson, David S.

    2016-01-01

    All organisms suffer double-strand breaks (DSBs) in their DNA as a result of exposure to ionizing radiation. DSBs can also form when replication forks encounter DNA lesions or repair intermediates. The processing and repair of DSBs can lead to mutations, loss of heterozygosity, and chromosome rearrangements that result in cell death or cancer. The most common pathway used to repair DSBs in metazoans (non-homologous DNA end joining) is more commonly mutagenic than the alternative pathway (homologous recombination mediated repair). Thus, factors that influence the choice of pathways used DSB repair can affect an individual’s mutation burden and risk of cancer. This review describes radiological, chemical and biological mechanisms that generate DSBs, and discusses the impact of such variables as DSB etiology, cell type, cell cycle, and chromatin structure on the yield, distribution, and processing of DSBs. The final section focuses on nucleosome-specific mechanisms that influence DSB production, and the possible relationship between higher order chromosome coiling and chromosome shattering (chromothripsis). PMID:26040249

  7. Investigation and process optimization of SONOS cell's drain disturb in 2-transistor structure flash arrays

    NASA Astrophysics Data System (ADS)

    Xu, Zhaozhao; Qian, Wensheng; Chen, Hualun; Xiong, Wei; Hu, Jun; Liu, Donghua; Duan, Wenting; Kong, Weiran; Na, Wei; Zou, Shichang

    2017-03-01

    The mechanism and distribution of drain disturb (DD) are investigated in silicon-oxide-nitride-oxide-silicon (SONOS) flash cells. It is shown that DD is the only concern in this paper. First, the distribution of trapped charge in nitride layer is found to be non-localized (trapped in entire nitride layer along the channel) after programming. Likewise, the erase is also non-localized. Then, the main disturb mechanism: Fowler Nordheim tunneling (FNT) has been confirmed in this paper with negligible disturb effect from hot-hole injection (HHI). And then, distribution of DD is confirmed to be non-localized similarly, which denotes that DD exists in entire tunneling oxide (Oxide for short). Next, four process optimization ways are proposed for minimization of DD, and VTH shift is measured. It reveals that optimized lightly doped drain (LDD), halo, and channel implant are required for the fabrication of a robust SONOS cell. Finally, data retention and endurance of the optimized SONOS are demonstrated.

  8. Melanogenesis in dermal melanocytes of Japanese Silky chicken embryos.

    PubMed

    Ortolani-Machado, C F; Freitas, P F; Faraco, C D

    2009-08-01

    The Japanese Silky chicken (SK) shows dermal and visceral hyperpigmentation. This study characterizes ultrastructurally the melanin granules developing in dermal melanocytes of the dorsal skin of SK, in an attempt to better understand the processes of melanogenesis in these permanently ectopic cells. The steps of melanogenesis are similar to those described for epidermal melanocytes, with melanosomes going from stage I to IV but, in SK, the maturation occurs in the cell body, as well as in the cytoplasmic processes. At stage III, the deposition of melanin is cumulative and can aggregate in rounded structures, which combine to turn into the mature granule. The final destiny of mature melanosomes is still unclear, although it was observed that dermal macrophages can accumulate melanin granules in their phagosomes. Even with the close proximity between melanocytes and other dermal cells, the transference of melanosomes was not observed. Our findings indicate that melanogenesis in dermal melanocytes in SK has the same morphological characteristics found in epidermal melanocytes, but the functional aspect still remains to be elucidated.

  9. Carbon monoxide improves neuronal differentiation and yield by increasing the functioning and number of mitochondria.

    PubMed

    Almeida, Ana S; Sonnewald, Ursula; Alves, Paula M; Vieira, Helena L A

    2016-08-01

    The process of cell differentiation goes hand-in-hand with metabolic adaptations, which are needed to provide energy and new metabolites. Carbon monoxide (CO) is an endogenous cytoprotective molecule able to inhibit cell death and improve mitochondrial metabolism. Neuronal differentiation processes were studied using the NT2 cell line, which is derived from human testicular embryonic teratocarcinoma and differentiates into post-mitotic neurons upon retinoic acid treatment. CO-releasing molecule A1 (CORM-A1) was used do deliver CO into cell culture. CO treatment improved NT2 neuronal differentiation and yield, since there were more neurons and the total cell number increased following the differentiation process. CO supplementation enhanced the mitochondrial population in post-mitotic neurons derived from NT2 cells, as indicated by an increase in mitochondrial DNA. CO treatment during neuronal differentiation increased the extent of the classical metabolic change that occurs during neuronal differentiation, from glycolytic to more oxidative metabolism, by decreasing the ratio of lactate production and glucose consumption. The expression of pyruvate and lactate dehydrogenases was higher, indicating an augmented oxidative metabolism. Moreover, these findings were corroborated by an increased percentage of (13) C incorporation from [U-(13) C]glucose into the tricarboxylic acid cycle metabolites malate and citrate, and also glutamate and aspartate in CO-treated cells. Finally, under low levels of oxygen (5%), which enhances glycolytic metabolism, some of the enhancing effects of CO on mitochondria were not observed. In conclusion, our data show that CO improves neuronal and mitochondrial yield by stimulation of tricarboxylic acid cycle activity, and thus oxidative metabolism of NT2 cells during the process of neuronal differentiation. The process of cell differentiation is coupled with metabolic adaptations. Carbon monoxide (CO) is an endogenous cytoprotective gasotransmitter able to prevent cell death and improve mitochondrial metabolism. Herein CO supplementation improved neuronal differentiation yield, by enhancing mitochondrial population and promoting the classical metabolic change that occurs during neuronal differentiation, from glycolytic to oxidative metabolism. © 2016 International Society for Neurochemistry.

  10. Deep phylogeny, ancestral groups and the four ages of life

    PubMed Central

    Cavalier-Smith, Thomas

    2010-01-01

    Organismal phylogeny depends on cell division, stasis, mutational divergence, cell mergers (by sex or symbiogenesis), lateral gene transfer and death. The tree of life is a useful metaphor for organismal genealogical history provided we recognize that branches sometimes fuse. Hennigian cladistics emphasizes only lineage splitting, ignoring most other major phylogenetic processes. Though methodologically useful it has been conceptually confusing and harmed taxonomy, especially in mistakenly opposing ancestral (paraphyletic) taxa. The history of life involved about 10 really major innovations in cell structure. In membrane topology, there were five successive kinds of cell: (i) negibacteria, with two bounding membranes, (ii) unibacteria, with one bounding and no internal membranes, (iii) eukaryotes with endomembranes and mitochondria, (iv) plants with chloroplasts and (v) finally, chromists with plastids inside the rough endoplasmic reticulum. Membrane chemistry divides negibacteria into the more advanced Glycobacteria (e.g. Cyanobacteria and Proteobacteria) with outer membrane lipolysaccharide and primitive Eobacteria without lipopolysaccharide (deserving intenser study). It also divides unibacteria into posibacteria, ancestors of eukaryotes, and archaebacteria—the sisters (not ancestors) of eukaryotes and the youngest bacterial phylum. Anaerobic eobacteria, oxygenic cyanobacteria, desiccation-resistant posibacteria and finally neomura (eukaryotes plus archaebacteria) successively transformed Earth. Accidents and organizational constraints are as important as adaptiveness in body plan evolution. PMID:20008390

  11. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture.

    PubMed

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-05-25

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes.

  12. Development and Characterization of a Parallelizable Perfusion Bioreactor for 3D Cell Culture

    PubMed Central

    Egger, Dominik; Fischer, Monica; Clementi, Andreas; Ribitsch, Volker; Hansmann, Jan; Kasper, Cornelia

    2017-01-01

    The three dimensional (3D) cultivation of stem cells in dynamic bioreactor systems is essential in the context of regenerative medicine. Still, there is a lack of bioreactor systems that allow the cultivation of multiple independent samples under different conditions while ensuring comprehensive control over the mechanical environment. Therefore, we developed a miniaturized, parallelizable perfusion bioreactor system with two different bioreactor chambers. Pressure sensors were also implemented to determine the permeability of biomaterials which allows us to approximate the shear stress conditions. To characterize the flow velocity and shear stress profile of a porous scaffold in both bioreactor chambers, a computational fluid dynamics analysis was performed. Furthermore, the mixing behavior was characterized by acquisition of the residence time distributions. Finally, the effects of the different flow and shear stress profiles of the bioreactor chambers on osteogenic differentiation of human mesenchymal stem cells were evaluated in a proof of concept study. In conclusion, the data from computational fluid dynamics and shear stress calculations were found to be predictable for relative comparison of the bioreactor geometries, but not for final determination of the optimal flow rate. However, we suggest that the system is beneficial for parallel dynamic cultivation of multiple samples for 3D cell culture processes. PMID:28952530

  13. Simplified Large-Scale Refolding, Purification, and Characterization of Recombinant Human Granulocyte-Colony Stimulating Factor in Escherichia coli

    PubMed Central

    Kim, Chang Kyu; Lee, Chi Ho; Lee, Seung-Bae; Oh, Jae-Wook

    2013-01-01

    Granulocyte-colony stimulating factor (G-CSF) is a pleiotropic cytokine that stimulates the development of committed hematopoietic progenitor cells and enhances the functional activity of mature cells. Here, we report a simplified method for fed-batch culture as well as the purification of recombinant human (rh) G-CSF. The new system for rhG-CSF purification was performed using not only temperature shift strategy without isopropyl-l-thio-β-d-galactoside (IPTG) induction but also the purification method by a single step of prep-HPLC after the pH precipitation of the refolded samples. Through these processes, the final cell density and overall yield of homogenous rhG-CSF were obtained 42.8 g as dry cell weights, 1.75 g as purified active proteins, from 1 L culture broth, respectively. The purity of rhG-CSF was finally 99% since the isoforms of rhG-CSF could be separated through the prep-HPLC step. The result of biological activity indicated that purified rhG-CSF has a similar profile to the World Health Organization (WHO) 2nd International Standard for G-CSF. Taken together, our results demonstrate that the simple purification through a single step of prep-HPLC may be valuable for the industrial-scale production of biologically active proteins. PMID:24224041

  14. Stochastic modeling of cell growth with symmetric or asymmetric division

    NASA Astrophysics Data System (ADS)

    Marantan, Andrew; Amir, Ariel

    2016-07-01

    We consider a class of biologically motivated stochastic processes in which a unicellular organism divides its resources (volume or damaged proteins, in particular) symmetrically or asymmetrically between its progeny. Assuming the final amount of the resource is controlled by a growth policy and subject to additive and multiplicative noise, we derive the recursive integral equation describing the evolution of the resource distribution over subsequent generations and use it to study the properties of stable resource distributions. We find conditions under which a unique stable resource distribution exists and calculate its moments for the class of affine linear growth policies. Moreover, we apply an asymptotic analysis to elucidate the conditions under which the stable distribution (when it exists) has a power-law tail. Finally, we use the results of this asymptotic analysis along with the moment equations to draw a stability phase diagram for the system that reveals the counterintuitive result that asymmetry serves to increase stability while at the same time widening the stable distribution. We also briefly discuss how cells can divide damaged proteins asymmetrically between their progeny as a form of damage control. In the appendixes, motivated by the asymmetric division of cell volume in Saccharomyces cerevisiae, we extend our results to the case wherein mother and daughter cells follow different growth policies.

  15. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Bi, Enbing; Chen, Han; Xie, Fengxian; Wu, Yongzhen; Chen, Wei; Su, Yanjie; Islam, Ashraful; Grätzel, Michael; Yang, Xudong; Han, Liyuan

    2017-06-01

    Long-term stability is crucial for the future application of perovskite solar cells, a promising low-cost photovoltaic technology that has rapidly advanced in the recent years. Here, we designed a nanostructured carbon layer to suppress the diffusion of ions/molecules within perovskite solar cells, an important degradation process in the device. Furthermore, this nanocarbon layer benefited the diffusion of electron charge carriers to enable a high-energy conversion efficiency. Finally, the efficiency on a perovskite solar cell with an aperture area of 1.02 cm2, after a thermal aging test at 85 °C for over 500 h, or light soaking for 1,000 h, was stable of over 15% during the entire test. The present diffusion engineering of ions/molecules and photo generated charges paves a way to realizing long-term stable and highly efficient perovskite solar cells.

  16. Hydrodynamic Assists Magnetophoreses Rare Cancer cells Separation in Microchannel Simulation and Experimental Verifications

    NASA Astrophysics Data System (ADS)

    Saeed, O.; Duru, L.; Yulin, D.

    2018-05-01

    A proposed microfluidic design has been fabricated and simulated using COMSOL Multiphysics software, based on two physical models included in this design. The device’s ability to create a narrow stream of the core sample by controlling the sheath flow rates Qs1 and Qs2 in both peripheral channels was investigated. The main target of this paper is to study the possibility of combing the hydrodynamic and magnetic techniques, in order to achieve a high rate of cancer cells separation from a cell mixture and/or buffer sample. The study has been conducted in two stages, firstly, the effects of the sheath flow rates (Qs1 and Qs2) on the sample stream focusing were studied, to find the proposed device effectiveness optimal conditions and its capability in cell focusing, and then the magnetic mechanism has been utilized to finalize the pre-labelled cells separation process.

  17. A Scalable System for Production of Functional Pancreatic Progenitors from Human Embryonic Stem Cells

    PubMed Central

    Schulz, Thomas C.; Young, Holly Y.; Agulnick, Alan D.; Babin, M. Josephine; Baetge, Emmanuel E.; Bang, Anne G.; Bhoumik, Anindita; Cepa, Igor; Cesario, Rosemary M.; Haakmeester, Carl; Kadoya, Kuniko; Kelly, Jonathan R.; Kerr, Justin; Martinson, Laura A.; McLean, Amanda B.; Moorman, Mark A.; Payne, Janice K.; Richardson, Mike; Ross, Kelly G.; Sherrer, Eric S.; Song, Xuehong; Wilson, Alistair Z.; Brandon, Eugene P.; Green, Chad E.; Kroon, Evert J.; Kelly, Olivia G.; D’Amour, Kevin A.; Robins, Allan J.

    2012-01-01

    Development of a human embryonic stem cell (hESC)-based therapy for type 1 diabetes will require the translation of proof-of-principle concepts into a scalable, controlled, and regulated cell manufacturing process. We have previously demonstrated that hESC can be directed to differentiate into pancreatic progenitors that mature into functional glucose-responsive, insulin-secreting cells in vivo. In this study we describe hESC expansion and banking methods and a suspension-based differentiation system, which together underpin an integrated scalable manufacturing process for producing pancreatic progenitors. This system has been optimized for the CyT49 cell line. Accordingly, qualified large-scale single-cell master and working cGMP cell banks of CyT49 have been generated to provide a virtually unlimited starting resource for manufacturing. Upon thaw from these banks, we expanded CyT49 for two weeks in an adherent culture format that achieves 50–100 fold expansion per week. Undifferentiated CyT49 were then aggregated into clusters in dynamic rotational suspension culture, followed by differentiation en masse for two weeks with a four-stage protocol. Numerous scaled differentiation runs generated reproducible and defined population compositions highly enriched for pancreatic cell lineages, as shown by examining mRNA expression at each stage of differentiation and flow cytometry of the final population. Islet-like tissue containing glucose-responsive, insulin-secreting cells was generated upon implantation into mice. By four- to five-months post-engraftment, mature neo-pancreatic tissue was sufficient to protect against streptozotocin (STZ)-induced hyperglycemia. In summary, we have developed a tractable manufacturing process for the generation of functional pancreatic progenitors from hESC on a scale amenable to clinical entry. PMID:22623968

  18. Molecular polygamy: The promiscuity of l-phenylalanyl-tRNA-synthetase triggers misincorporation of meta- and ortho-tyrosine in monoclonal antibodies expressed by Chinese hamster ovary cells.

    PubMed

    Popp, Oliver; Larraillet, Vincent; Kettenberger, Hubert; Gorr, Ingo H; Hilger, Maximiliane; Lipsmeier, Florian; Zeck, Anne; Beaucamp, Nicola

    2015-06-01

    In-depth analytical characterization of biotherapeutics originating from different production batches is mandatory to ensure product safety and consistent molecule efficacy. Previously, we have shown unintended incorporation of tyrosine (Tyr) and leucine/isoleucine (Leu/Ile) at phenylalanine (Phe) positions in a recombinant produced monoclonal antibody (mAb) using an orthogonal MASCOT/SIEVE based approach for mass spectrometry data analysis. The misincorporation could be avoided by sufficient supply of phenylalanine throughout the process. Several non-annotated signals in the primarily chromatographic peptide separation step for apparently single Phe→Tyr sequence variants (SVs) suggest a role for isobar tyrosine isoforms. Meta- and ortho-Tyr are spontaneously generated during aerobic fed-batch production processes using Chinese hamster ovary (CHO) cell lines. Process induced meta- and ortho-Tyr but not proteinogenic para-Tyr are incorporated at Phe locations in Phe-starved CHO cultures expressing a recombinant mAb. Furthermore, meta- and ortho-Tyr are preferably misincorporated over Leu. Structural modeling of the l-phenylalanyl-tRNA-synthetase (PheRS) substrate activation site indicates a possible fit of non-cognate ortho-Tyr and meta-Tyr substrates. Dose-dependent misincorporations of Tyr isoforms support the hypothesis that meta- and ortho-Tyr are competing, alternative substrates for PheRS in CHO processes. Finally, easily accessible at-line surrogate markers for Phe→Tyr SV formation in biotherapeutic production were defined by the calculation of critical ratios for meta-Tyr/Phe and ortho-Tyr/Phe to support early prediction of SV probability, and finally, to allow for immediate process controlled Phe→Tyr SV prevention. © 2014 Wiley Periodicals, Inc.

  19. Bioplausible multiscale filtering in retino-cortical processing as a mechanism in perceptual grouping.

    PubMed

    Nematzadeh, Nasim; Powers, David M W; Lewis, Trent W

    2017-12-01

    Why does our visual system fail to reconstruct reality, when we look at certain patterns? Where do Geometrical illusions start to emerge in the visual pathway? How far should we take computational models of vision with the same visual ability to detect illusions as we do? This study addresses these questions, by focusing on a specific underlying neural mechanism involved in our visual experiences that affects our final perception. Among many types of visual illusion, 'Geometrical' and, in particular, 'Tilt Illusions' are rather important, being characterized by misperception of geometric patterns involving lines and tiles in combination with contrasting orientation, size or position. Over the last decade, many new neurophysiological experiments have led to new insights as to how, when and where retinal processing takes place, and the encoding nature of the retinal representation that is sent to the cortex for further processing. Based on these neurobiological discoveries, we provide computer simulation evidence from modelling retinal ganglion cells responses to some complex Tilt Illusions, suggesting that the emergence of tilt in these illusions is partially related to the interaction of multiscale visual processing performed in the retina. The output of our low-level filtering model is presented for several types of Tilt Illusion, predicting that the final tilt percept arises from multiple-scale processing of the Differences of Gaussians and the perceptual interaction of foreground and background elements. The model is a variation of classical receptive field implementation for simple cells in early stages of vision with the scales tuned to the object/texture sizes in the pattern. Our results suggest that this model has a high potential in revealing the underlying mechanism connecting low-level filtering approaches to mid- and high-level explanations such as 'Anchoring theory' and 'Perceptual grouping'.

  20. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  1. GMP-conformant on-site manufacturing of a CD133+ stem cell product for cardiovascular regeneration.

    PubMed

    Skorska, Anna; Müller, Paula; Gaebel, Ralf; Große, Jana; Lemcke, Heiko; Lux, Cornelia A; Bastian, Manuela; Hausburg, Frauke; Zarniko, Nicole; Bubritzki, Sandra; Ruch, Ulrike; Tiedemann, Gudrun; David, Robert; Steinhoff, Gustav

    2017-02-10

    CD133 + stem cells represent a promising subpopulation for innovative cell-based therapies in cardiovascular regeneration. Several clinical trials have shown remarkable beneficial effects following their intramyocardial transplantation. Yet, the purification of CD133 + stem cells is typically performed in centralized clean room facilities using semi-automatic manufacturing processes based on magnetic cell sorting (MACS®). However, this requires time-consuming and cost-intensive logistics. CD133 + stem cells were purified from patient-derived sternal bone marrow using the recently developed automatic CliniMACS Prodigy® BM-133 System (Prodigy). The entire manufacturing process, as well as the subsequent quality control of the final cell product (CP), were realized on-site and in compliance with EU guidelines for Good Manufacturing Practice. The biological activity of automatically isolated CD133 + cells was evaluated and compared to manually isolated CD133 + cells via functional assays as well as immunofluorescence microscopy. In addition, the regenerative potential of purified stem cells was assessed 3 weeks after transplantation in immunodeficient mice which had been subjected to experimental myocardial infarction. We established for the first time an on-site manufacturing procedure for stem CPs intended for the treatment of ischemic heart diseases using an automatized system. On average, 0.88 × 10 6 viable CD133 + cells with a mean log 10 depletion of 3.23 ± 0.19 of non-target cells were isolated. Furthermore, we demonstrated that these automatically isolated cells bear proliferation and differentiation capacities comparable to manually isolated cells in vitro. Moreover, the automatically generated CP shows equal cardiac regeneration potential in vivo. Our results indicate that the Prodigy is a powerful system for automatic manufacturing of a CD133 + CP within few hours. Compared to conventional manufacturing processes, future clinical application of this system offers multiple benefits including stable CP quality and on-site purification under reduced clean room requirements. This will allow saving of time, reduced logistics and diminished costs.

  2. Unified quantitative characterization of epithelial tissue development

    PubMed Central

    Guirao, Boris; Rigaud, Stéphane U; Bosveld, Floris; Bailles, Anaïs; López-Gay, Jesús; Ishihara, Shuji; Sugimura, Kaoru

    2015-01-01

    Understanding the mechanisms regulating development requires a quantitative characterization of cell divisions, rearrangements, cell size and shape changes, and apoptoses. We developed a multiscale formalism that relates the characterizations of each cell process to tissue growth and morphogenesis. Having validated the formalism on computer simulations, we quantified separately all morphogenetic events in the Drosophila dorsal thorax and wing pupal epithelia to obtain comprehensive statistical maps linking cell and tissue scale dynamics. While globally cell shape changes, rearrangements and divisions all significantly participate in tissue morphogenesis, locally, their relative participations display major variations in space and time. By blocking division we analyzed the impact of division on rearrangements, cell shape changes and tissue morphogenesis. Finally, by combining the formalism with mechanical stress measurement, we evidenced unexpected interplays between patterns of tissue elongation, cell division and stress. Our formalism provides a novel and rigorous approach to uncover mechanisms governing tissue development. DOI: http://dx.doi.org/10.7554/eLife.08519.001 PMID:26653285

  3. Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent.

    PubMed

    Fujita, Ken-Ichi; Fujita, Tomoko; Kubo, Isao

    2007-01-01

    Anethole shows synergistic effects on the antifungal activities of phytochemicals including polygodial and (2E)-undecenal against Saccharomyces cerevisiae and Candida albicans. It was found that a fungistatic dodecanol combined with a sublethal amount of anethole showed a fungicidal activity against S. cerevisiae. The MIC of dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control, indicating that the effect of dodecanol on this yeast was classified as sublethal damage. On the other hand, anethole completely restricted the recovery of cell viability. Therefore the expression of the synergistic effect was probably due to a blockade of the recovery process from dodecanol-induced stress.

  4. Histone phosphorylation: its role during cell cycle and centromere identity in plants.

    PubMed

    Zhang, B; Dong, Q; Su, H; Birchler, J A; Han, F

    2014-01-01

    As the main protein components of chromatin, histones can alter the structural/functional capabilities of chromatin by undergoing extensive post-translational modifications (PTMs) such as phosphorylation, methylation, acetylation, ubiquitination, sumoylation, and so on. These PTMs are thought to transmit signals from the chromatin to the cell machinery to regulate various processes. Histone phosphorylation is associated with chromosome condensation/segregation, activation of transcription, and DNA damage repair. In this review, we focus on how different histone phosphorylations mark for chromatin change during the cell cycle, the relationship between histone phosphorylation and functional centromeres, and the candidate kinases that trigger and the phosphatase or kinase inhibitors that alter histone phosphorylation. Finally, we review the crosstalk between different PTMs. © 2014 S. Karger AG, Basel.

  5. Final Report - Advanced Cathode Catalysts and Supports for PEM Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debe, Mark

    2012-09-28

    The principal objectives of the program were development of a durable, low cost, high performance cathode electrode (catalyst and support), that is fully integrated into a fuel cell membrane electrode assembly with gas diffusion media, fabricated by high volume capable processes, and is able to meet or exceed the 2015 DOE targets. Work completed in this contract was an extension of the developments under three preceding cooperative agreements/grants Nos. DE-FC-02-97EE50473, DE-FC-99EE50582 and DE-FC36- 02AL67621 which investigated catalyzed membrane electrode assemblies for PEM fuel cells based on a fundamentally new, nanostructured thin film catalyst and support system, and demonstrated the feasibilitymore » for high volume manufacturability.« less

  6. Assessment of Augmented Immune Surveillance and Tumor Cell Death by Cytoplasmic Stabilization of p53 as a Chemopreventive Strategy of 3 Promising Medicinal Herbs in Murine 2-Stage Skin Carcinogenesis.

    PubMed

    Ali, Farrah; Khan, Rehan; Khan, Abdul Quaiyoom; Lateef, Md Abdul; Maqbool, Tahir; Sultana, Sarwat

    2014-07-01

    Cancer is the final outcome of a plethora of events. Targeting the proliferation or inducing programmed cell death in a proliferating population is a major standpoint in the cancer therapy. However, proliferation is regulated by several cellular and immunologic processes. This study reports the inhibition of proliferation by augmenting immune surveillance, silencing acute inflammation, and inducing p53-mediated apoptosis of skin cancer by 3 promising medicinal extracts. We used the well-characterized model for experimental skin carcinogenesis in mice for 32 weeks to study the chemopreventive effect of the methanolic extracts of Trigonella foenumgraecum, Eclipta alba, and Calendula officinalis. All 3 extracts reduced the number, incidence, and multiplicity of tumors, which was confirmed by the pathologic studies that showed regressed tumors. There was a significant reduction in the PCNA+ nuclei in all treatment groups 32 weeks after the initiation. Mechanistic studies revealed that proliferative population in tumors is diminished by the restoration of the endogenous antioxidant defense, inhibition of the stress-related signal-transducing element NFκB, reduction of inflammation, enhancement of immunosurveillance of the genetically mutated cells, along with silencing of the cell cycle progression signals. Finally, all 3 medicinal extracts induced stable expression of p53 within the tumors, confirmed by the CFDA-Cy3 apoptosis assay. Results of our study confirm that these extracts not only limit the rate of proliferation by inhibition of the processes integral to cancer development but also induce stable cytoplasmic expression of p53-mediated apoptosis, leading to fewer and regressed tumors in mice. © The Author(s) 2013.

  7. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.

    PubMed

    Liu, Zhike; Lau, Shu Ping; Yan, Feng

    2015-08-07

    Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.

  8. Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila

    PubMed Central

    Haralalka, Shruti; Shelton, Claude; Cartwright, Heather N.; Katzfey, Erin; Janzen, Evan; Abmayr, Susan M.

    2011-01-01

    Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion. PMID:21389053

  9. T cell activity in successful treatment of chronic urticaria with omalizumab

    PubMed Central

    2011-01-01

    Omalizumab, a humanized monoclonal anti-IgE antibody has the potential to alter allergen processing. Recently, it has been postulated the assessment of PHA-stimulated adenosine triphosphate (ATP) activity as maker of CD4+ T cells activity in peripheral blood cells. We present the case report of a 35-year-old woman with a history of chronic idiopathic urticaria and angioedema of 8 years of development with poor response to treatment. The patient was partially controlled with cyclosporine at doses of 100 mg/12 h. However, she was still developing hives daily. Finally treatment with omalizumab was started at dose of 300 mg every 2 weeks. The patient experienced a decrease in urticarial lesions 2 days after starting therapy. We also evaluated the effects of omalizumab therapy on the activity of peripheral blood CD4+ T cells from the patient, in order to determine the potential modification of anti-IgE therapy on the process of antigen presentation-recognition. Activity of CD4+ cells by ATP release was clearly increased demonstrating an enlarged CD4 activity. Omalizumab may be useful in the treatment of severe chronic urticaria. ATP activity of peripheral blood CD4+ T cells might be a non-subjective method to assess Omalizumab activity. PMID:21791043

  10. The sweet taste of death: glucose triggers apoptosis during yeast chronological aging.

    PubMed

    Ruckenstuhl, Christoph; Carmona-Gutierrez, Didac; Madeo, Frank

    2010-10-01

    As time goes by, a postmitotic cell ages following a degeneration process ultimately ending in cell death. This phenomenon is evolutionary conserved and present in unicellular eukaryotes as well, making the yeast chronological aging system an appreciated model. Here, single cells die in a programmed fashion (both by apoptosis and necrosis) for the benefit of the whole population. Besides its meaning for aging and cell death research, age-induced programmed cell death represents the first experimental proof for the so-called group selection theory: Apoptotic genes became selected during evolution because of the benefits they might render to the whole cell culture and not to the individual cell. Many anti‐aging stimuli have been discovered in the yeast chronological aging system and have afterwards been confirmed in higher cells or organisms. New work from the Burhans group (this issue) now demonstrates that glucose signaling has a progeriatric effect on chronologically aged yeast cells: Glucose administration results in a diminished efficacy of cells to enter quiescence, finally causing superoxide‐mediated replication stress and apoptosis.

  11. Adult pituitary stem cells: from pituitary plasticity to adenoma development.

    PubMed

    Florio, Tullio

    2011-01-01

    The pituitary needs high plasticity of the hormone-producing cell compartment to generate the continuously changing hormonal signals that govern the key physiological processes it is involved in, as well as homeostatic cell turnover. However, the underlying mechanisms are still poorly understood. It was proposed that adult stem cells direct the generation of newborn cells with a hormonal phenotype according to the physiological requirements. However, only in recent years adult pituitary stem cells have begun to be phenotypically characterized in several studies that identified multiple stem/progenitor cell candidates. Also considering the incompletely defined features of this cell subpopulation, some discrepancies among the different reports are clearly apparent and long-term self-renewal remains to be unequivocally demonstrated. Here, all the recently published evidence is analyzed, trying, when possible, to reconcile the results of the different studies. Finally, with the perspective of shedding light on pituitary tumorigenesis and the development of potentially new pharmacological approaches directed against these cells, very recent evidence on the presence of putative cancer stem cells in human pituitary adenomas is discussed. Copyright © 2011 S. Karger AG, Basel.

  12. Quiescent gastric stem cells maintain the adult Drosophila stomach.

    PubMed

    Strand, Marie; Micchelli, Craig A

    2011-10-25

    The adult Drosophila copper cell region or "stomach" is a highly acidic compartment of the midgut with pH < 3. In this region, a specialized group of acid-secreting cells similar to mammalian gastric parietal cells has been identified by a unique ultrastructure and by copper-metallothionein fluorescence. However, the homeostatic mechanism maintaining the acid-secreting "copper cells" of the adult midgut has not been examined. Here, we combine cell lineage tracing and genetic analysis to investigate the mechanism by which the gastric epithelium is maintained. Our investigation shows that a molecularly identifiable population of multipotent, self-renewing gastric stem cells (GSSCs) produces the acid-secreting copper cells, interstitial cells, and enteroendocrine cells of the stomach. Our assays demonstrate that GSSCs are largely quiescent but can be induced to regenerate the gastric epithelium in response to environmental challenge. Finally, genetic analysis reveals that adult GSSC maintenance depends on Wnt signaling. Characterization of the GSSC lineage in Drosophila, with striking similarities to mammals, will advance the study of both homeostatic and pathogenic processes in the stomach.

  13. Spire, an actin nucleation factor, regulates cell division during Drosophila heart development.

    PubMed

    Xu, Peng; Johnson, Tamara L; Stoller-Conrad, Jessica R; Schulz, Robert A

    2012-01-01

    The Drosophila dorsal vessel is a beneficial model system for studying the regulation of early heart development. Spire (Spir), an actin-nucleation factor, regulates actin dynamics in many developmental processes, such as cell shape determination, intracellular transport, and locomotion. Through protein expression pattern analysis, we demonstrate that the absence of spir function affects cell division in Myocyte enhancer factor 2-, Tinman (Tin)-, Even-skipped- and Seven up (Svp)-positive heart cells. In addition, genetic interaction analysis shows that spir functionally interacts with Dorsocross, tin, and pannier to properly specify the cardiac fate. Furthermore, through visualization of double heterozygous embryos, we determines that spir cooperates with CycA for heart cell specification and division. Finally, when comparing the spir mutant phenotype with that of a CycA mutant, the results suggest that most Svp-positive progenitors in spir mutant embryos cannot undergo full cell division at cell cycle 15, and that Tin-positive progenitors are arrested at cell cycle 16 as double-nucleated cells. We conclude that Spir plays a crucial role in controlling dorsal vessel formation and has a function in cell division during heart tube morphogenesis.

  14. Cryopreservation: Evolution of Molecular Based Strategies.

    PubMed

    Baust, John M; Corwin, William; Snyder, Kristi K; Van Buskirk, Robert; Baust, John G

    2016-01-01

    Cryopreservation (CP) is an enabling process providing for on-demand access to biological material (cells and tissues) which serve as a starting, intermediate or even final product. While a critical tool, CP protocols, approaches and technologies have evolved little over the last several decades. A lack of conversion of discoveries from the CP sciences into mainstream utilization has resulted in a bottleneck in technological progression in areas such as stem cell research and cell therapy. While the adoption has been slow, discoveries including molecular control and buffering of cell stress response to CP as well as the development of new devices for improved sample freezing and thawing are providing for improved CP from both the processing and sample quality perspectives. Numerous studies have described the impact, mechanisms and points of control of cryopreservation-induced delayed-onset cell death (CIDOCD). In an effort to limit CIDOCD, efforts have focused on CP agent and freeze media formulation to provide a solution path and have yielded improvements in survival over traditional approaches. Importantly, each of these areas, new technologies and cell stress modulation, both individually and in combination, are now providing a new foundation to accelerate new research, technology and product development for which CP serves as an integral component. This chapter provides an overview of the molecular stress responses of cells to cryopreservation, the impact of the hypothermic and cell death continuums and the targeted modulation of common and/or cell specific responses to CP in providing a path to improving cell quality.

  15. Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies.

    PubMed

    Abbasalizadeh, Saeed; Baharvand, Hossein

    2013-12-01

    Recent technological advances in the generation, characterization, and bioprocessing of human pluripotent stem cells (hPSCs) have created new hope for their use as a source for production of cell-based therapeutic products. To date, a few clinical trials that have used therapeutic cells derived from hESCs have been approved by the Food and Drug Administration (FDA), but numerous new hPSC-based cell therapy products are under various stages of development in cell therapy-specialized companies and their future market is estimated to be very promising. However, the multitude of critical challenges regarding different aspects of hPSC-based therapeutic product manufacturing and their therapies have made progress for the introduction of new products and clinical applications very slow. These challenges include scientific, technological, clinical, policy, and financial aspects. The technological aspects of manufacturing hPSC-based therapeutic products for allogeneic and autologous cell therapies according to good manufacturing practice (cGMP) quality requirements is one of the most important challenging and emerging topics in the development of new hPSCs for clinical use. In this review, we describe main critical challenges and highlight a series of technological advances in all aspects of hPSC-based therapeutic product manufacturing including clinical grade cell line development, large-scale banking, upstream processing, downstream processing, and quality assessment of final cell therapeutic products that have brought hPSCs closer to clinical application and commercial cGMP manufacturing. © 2013.

  16. BRAIN REGENERATION IN PHYSIOLOGY AND PATHOLOGY: THE IMMUNE SIGNATURE DRIVING THERAPEUTIC PLASTICITY OF NEURAL STEM CELLS

    PubMed Central

    Martino, Gianvito; Pluchino, Stefano; Bonfanti, Luca; Schwartz, Michal

    2013-01-01

    Regenerative processes occurring under physiological (maintenance) and pathological (reparative) conditions are a fundamental part of life and vary greatly among different species, individuals, and tissues. Physiological regeneration occurs naturally as a consequence of normal cell erosion, or as an inevitable outcome of any biological process aiming at the restoration of homeostasis. Reparative regeneration occurs as a consequence of tissue damage. Although the central nervous system (CNS) has been considered for years as a “perennial” tissue, it has recently become clear that both physiological and reparative regeneration occur also within the CNS to sustain tissue homeostasis and repair. Proliferation and differentiation of neural stem/progenitor cells (NPCs) residing within the healthy CNS, or surviving injury, are considered crucial in sustaining these processes. Thus a large number of experimental stem cell-based transplantation systems for CNS repair have recently been established. The results suggest that transplanted NPCs promote tissue repair not only via cell replacement but also through their local contribution to changes in the diseased tissue milieu. This review focuses on the remarkable plasticity of endogenous and exogenous (transplanted) NPCs in promoting repair. Special attention will be given to the cross-talk existing between NPCs and CNS-resident microglia as well as CNS-infiltrating immune cells from the circulation, as a crucial event sustaining NPC-mediated neuroprotection. Finally, we will propose the concept of the context-dependent potency of transplanted NPCs (therapeutic plasticity) to exert multiple therapeutic actions, such as cell replacement, neurotrophic support, and immunomodulation, in CNS repair. PMID:22013212

  17. Soft-sensing model of temperature for aluminum reduction cell on improved twin support vector regression

    NASA Astrophysics Data System (ADS)

    Li, Tao

    2018-06-01

    The complexity of aluminum electrolysis process leads the temperature for aluminum reduction cells hard to measure directly. However, temperature is the control center of aluminum production. To solve this problem, combining some aluminum plant's practice data, this paper presents a Soft-sensing model of temperature for aluminum electrolysis process on Improved Twin Support Vector Regression (ITSVR). ITSVR eliminates the slow learning speed of Support Vector Regression (SVR) and the over-fit risk of Twin Support Vector Regression (TSVR) by introducing a regularization term into the objective function of TSVR, which ensures the structural risk minimization principle and lower computational complexity. Finally, the model with some other parameters as auxiliary variable, predicts the temperature by ITSVR. The simulation result shows Soft-sensing model based on ITSVR has short time-consuming and better generalization.

  18. Summary of flat-plate solar array project documentation: Abstracts of published documents, 1975-1986, revision 1

    NASA Technical Reports Server (NTRS)

    Phillips, M. J.

    1986-01-01

    Abstracts of final reports, or the latest quarterly or annual, of the Flat-Plate Solar Array (FSA) Project Contractor of Jet Propulsion Laboratory (JPL) in-house activities are presented. Also presented is a list of proceedings and publications, by author, of work connected with the project. The aim of the program has been to stimulate the development of technology that will enable the private sector to manufacture and widely use photovoltaic systems for the generation of electricity in residential, commercial, industrial, and Government applications at a cost per watt that is competitive with utility generated power. FSA Project activities have included the sponsoring of research and development efforts in silicon refinement processes, advanced silicon sheet growth techniques, higher efficiency solar cells, solar cell/module fabrication processes, encapsulation, module/array engineering and reliability, and economic analyses.

  19. Biodiesel production from heterotrophic microalgal oil.

    PubMed

    Miao, Xiaoling; Wu, Qingyu

    2006-04-01

    The present study introduced an integrated method for the production of biodiesel from microalgal oil. Heterotrophic growth of Chlorella protothecoides resulted in the accumulation of high lipid content (55%) in cells. Large amount of microalgal oil was efficiently extracted from these heterotrophic cells by using n-hexane. Biodiesel comparable to conventional diesel was obtained from heterotrophic microalgal oil by acidic transesterification. The best process combination was 100% catalyst quantity (based on oil weight) with 56:1 molar ratio of methanol to oil at temperature of 30 degrees C, which reduced product specific gravity from an initial value of 0.912 to a final value of 0.8637 in about 4h of reaction time. The results suggested that the new process, which combined bioengineering and transesterification, was a feasible and effective method for the production of high quality biodiesel from microalgal oil.

  20. Fe(II)-regulated moderate pre-oxidation of Microcystis aeruginosa and formation of size-controlled algae flocs for efficient flotation of algae cell and organic matter.

    PubMed

    Qi, Jing; Lan, Huachun; Liu, Ruiping; Liu, Huijuan; Qu, Jiuhui

    2018-06-15

    The coagulation/flocculation/flotation (C/F/F) process is becoming a popular method for algae-laden water treatment. However, the efficiency of flotation is highly dependent on the ability of the preceding coagulation/flocculation process to form flocculated algae flocs. This study aims to improve the Microcystis aeruginosa flotation efficiency from algae cell and organic matter aspects by applying Fe(II)-regulated pretreatment enhanced Al coagulation process. The ability of the C/F/F process to remove cyanobacterial cells can be enhanced from 8% to 99% at a Fe(II) dose of 30 μM. The Al dose needed can be reduced by more than half while achieving successful flotation. The introduced Fe(II) after KMnO 4 can not only realize moderate pre-oxidation of cyanobacterial cells, but also form in-situ Fe(III). The DOC value can also be decreased significantly due to the formation of in-situ Fe(III), which is more efficient in dissolved organic matter (DOM) removal compared with pre-formed Fe(III). In addition, the gradually hydrolyzed in-situ Fe(III) can facilitate the hydrolysis of Al as a dual-coagulant and promote the clustering and cross-linking of Al hydrolyzates, which can enhance the formation of size-controlled algae flocs. Finally, the size-controlled algae flocs can be effectively floated by the bubbles released in the flotation process due to the efficient collision and attachment between flocs and bubbles. Therefore, the efficient flotation of algae cell and organic matter can be realized by the Fe(II) regulated moderate pre-oxidation of M. aeruginosa and formation of size-controlled algae flocs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Lupus erythematosus (LE) cells in ascites: initial diagnosis of systemic lupus erythematosus by cytological examination: a case report.

    PubMed

    Chou, Kun-Ta; Lee, Yu-Chin; Chen, Chun-Wei; Shih, Jen-Fu; Tung, Su-Mei; Yang, Ya-Ting; Perng, Reury-Perng

    2007-11-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease, involving multiple organs. Diverse manifestations may obscure the diagnosis and confuse our thinking process, especially when few clues are present at the beginning. Serositis is one of the various presentations, and the presence of lupus erythematosus (LE) cell in body fluid may be a hint for the final diagnosis of SLE. Herein, we present a young female patient diagnosed of SLE with initial presentation of lupus peritonitis. Finding of LE cell in ascites prompted us for immunologic survey. Diagnosis of SLE was confirmed with high titer of anti-nuclear antibody and antibody to double-stranded DNA. Cytologic examination of body fluid is mainly useful in detecting malignant cells, but high specificity of this marker aids in early diagnosis of SLE.

  2. Thin film battery/fuel cell power generating system. Final report of the continuation contract (Tasks 1-4), April 1, 1978-March 31, 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-06-30

    Research on the design, development, and testing of a high-temperature solid electrolyte (HTSOE) fuel cell is described in detail. Task 1 involves the development and refinement of fabrication processes for the porous support tube, fuel electrode, solid electrolyte, air electrode, and interconnection. Task 2 includes the life testing of cell components and the stack; task 3 involves the stack performance evaluation; task 4 includes demonstrating the reproducibility of 10 watt stacks. A cost, design and benefit study to evaluate the nature and worth of an industrial cogeneration application of the HTSOE fuel cell is underway. Here, promisng applications are nowmore » being considered, from which a single application has been selected as a basis for the study - an integrated aluminum production facility. (WHK)« less

  3. Potential role of macrophages as immunoregulators of pregnancy

    PubMed Central

    Mor, Gil; Abrahams, Vikki M

    2003-01-01

    The role of the maternal immune system during pregnancy has focused mainly on the aspect of immune tolerance to the invading trophoblast and, therefore, fetus. While this is a critical aspect of reproductive immunology, it is also important to consider the function of the maternal immune system in the promotion of implantation and maintenance of pregnancy. Apoptosis or cell death is not the final stage in tissue development. The quick and effective removal of apoptotic cells by tissue macrophages represents a vital process preventing "leak" of self-antigens and promoting the production of proliferative/survival factors. One of the key requirements of apoptotic cell clearance is the resolution of inflammatory conditions, which, as in the case of pregnancy, may have lethal consequences. This review will focus on decidual macrophages and their role on apoptosis and cell clearance during pregnancy. PMID:14651752

  4. Actomyosin tension as a determinant of metastatic cancer mechanical tropism

    NASA Astrophysics Data System (ADS)

    McGrail, Daniel J.; Kieu, Quang Minh N.; Iandoli, Jason A.; Dawson, Michelle R.

    2015-04-01

    Despite major advances in the characterization of molecular regulators of cancer growth and metastasis, patient survival rates have largely stagnated. Recent studies have shown that mechanical cues from the extracellular matrix can drive the transition to a malignant phenotype. Moreover, it is also known that the metastatic process, which results in over 90% of cancer-related deaths, is governed by intracellular mechanical forces. To better understand these processes, we identified metastatic tumor cells originating from different locations which undergo inverse responses to altered matrix elasticity: MDA-MB-231 breast cancer cells that prefer rigid matrices and SKOV-3 ovarian cancer cells that prefer compliant matrices as characterized by parameters such as tumor cell proliferation, chemoresistance, and migration. Transcriptomic analysis revealed higher expression of genes associated with cytoskeletal tension and contractility in cells that prefer stiff environments, both when comparing MDA-MB-231 to SKOV-3 cells as well as when comparing bone-metastatic to lung-metastatic MDA-MB-231 subclones. Using small molecule inhibitors, we found that blocking the activity of these pathways mitigated rigidity-dependent behavior in both cell lines. Probing the physical forces exerted by cells on the underlying substrates revealed that though force magnitude may not directly correlate with functional outcomes, other parameters such as force polarization do correlate directly with cell motility. Finally, this biophysical analysis demonstrates that intrinsic levels of cell contractility determine the matrix rigidity for maximal cell function, possibly influencing tissue sites for metastatic cancer cell engraftment during dissemination. By increasing our understanding of the physical interactions of cancer cells with their microenvironment, these studies may help develop novel therapeutic strategies.

  5. Regulation of endothelial Fas expression as a mechanism of promotion of vascular integrity by mural cells in tumors.

    PubMed

    Kamei, Ryosuke; Tanaka, Hiroyoshi Y; Kawano, Takao; Morii, Chiharu; Tanaka, Sayaka; Nishihara, Hiroshi; Iwata, Caname; Kano, Mitsunobu R

    2017-05-01

    Angiogenesis is a multi-step process that culminates in vascular maturation whereby nascent vessels stabilize to become functional, and mural cells play an essential role in this process. Recent studies have shown that mural cells in tumors also promote and maintain vascular integrity, with wide-reaching clinical implications including the regulation of tumor growth, metastases, and drug delivery. Various regulatory signaling pathways have been hitherto implicated, but whether regulation of Fas-dependent apoptotic mechanisms is involved has not yet been fully investigated. We first compared endothelial FAS staining in human pancreatic ductal adenocarcinomas and colon carcinomas and show that the latter, characterized by lower mural cell coverage of tumor vasculature, demonstrated higher expression of FAS than the former. Next, in an in vitro coculture system of MS-1 and 10T1/2 cells as endothelial and mural cells respectively, we show that mural cells decreased endothelial Fas expression. Then, in an in vivo model in which C26 colon carcinoma cells were inoculated together with MS-1 cells alone or with the further addition of 10T1/2 cells, we demonstrate that mural cells prevented hemorrhage. Finally, knockdown of endothelial Fas sufficiently recapitulated the protection against hemorrhage seen with the addition of mural cells. These results together suggest that regulation of endothelial Fas signaling is involved in the promotion of vascular integrity by mural cells in tumors. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  6. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells.

    PubMed

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B; Kuwada, Nathan J; Wiggins, Paul A

    2016-11-01

    Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment microcolonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter and neighbouring cells, and computing statistics on cellular fluorescence, the location and intensity of fluorescent foci. SuperSegger provides a variety of postprocessing data visualization tools for single cell and population level analysis, such as histograms, kymographs, frame mosaics, movies and consensus images. Finally, we demonstrate the power of the package by analyzing lag phase growth with single cell resolution. © 2016 John Wiley & Sons Ltd.

  7. Programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae and ashing analysis: A decrement solution for nuclide and heavy metal disposal.

    PubMed

    Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege

    2016-08-15

    One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. PREPARATION OF U-PLANT FOR FINAL DEMOLITION AND DISPOSAL - 12109E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FARABEE OA; HERZOG B; CAMERON C

    2012-02-16

    The U-Plant is one of the five major nuclear materials processing facilities at Hanford and was chosen as a pilot project to develop the modalities for closure of the other four facilities at Hanford and the rest of the Department of Energy (DOE) complex. The remedy for this facility was determined by a Record of Decision (ROD) pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). That remedy was to 'Close in Place - Partially Demolished Structure'. The U-Plant facility is identified as the 221-U Building and is a large, concrete structure nominally 247m (810 ft)more » long, 20 M (66 ft) wide and 24 m (77 ft) high with approximately 9 m (30 ft) being below grade level. It is a robust facility with walls ranging from 0.9 m to 2.7 m (3 ft to 9 ft) thick. One large room extends the entire length of the building that provides access to 40 sub-grade processing cells containing tanks, piping and other components. The work breakdown was divided into three major deliverables: (1) Tank D-10 Removal: removal of Tank D-10, which contained TRU waste; (2) Equipment Disposition: placement of contaminated equipment in the sub-grade cells; and (3) Canyon Grouting: grouting canyon void spaces to the maximum extent practical. A large number of pieces of contaminated equipment (pumps, piping, centrifuges, tanks, etc) from other facilities that had been stored on the canyon operating floor were placed inside of the sub-grade cells as final disposition, grouted and the cell shield plug reinstalled. This action precluded a large volume of waste being transported to another burial site. Finally, {approx}19,000 m3 ({approx}25,000 yd3) of grout was placed inside of the cells (in and around the contaminated equipment), in the major galleries. the ventilation tunnel, the external ventilation duct, and the hot pipe trench to minimize the potential for void spaces and to reduce the mobility, solubility, and/or toxicity of the grouted waste. The interim condition of the facility is 'cold and dark'. Upon availability of funding the structure will have contamination fixative applied to all contaminated surfaces and may be explosively demolished, with the remaining structure buried under an engineered barrier.« less

  9. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-08

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.

  10. Members of FOX family could be drug targets of cancers.

    PubMed

    Wang, Jinhua; Li, Wan; Zhao, Ying; Kang, De; Fu, Weiqi; Zheng, Xiangjin; Pang, Xiaocong; Du, Guanhua

    2018-01-01

    FOX families play important roles in biological processes, including metabolism, development, differentiation, proliferation, apoptosis, migration, invasion and longevity. Here we are focusing on roles of FOX members in cancers, FOX members and drug resistance, FOX members and stem cells. Finally, FOX members as drug targets of cancer treatment were discussed. Future perspectives of FOXC1 research were described in the end. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis.

    PubMed

    Franden, Mary Ann; Pienkos, Philip T; Zhang, Min

    2009-12-01

    Overcoming the effects of hydrolysate toxicity towards ethanologens is a key technical barrier in the biochemical conversion process for biomass feedstocks to ethanol. Despite its importance, the complexity of the hydrolysate toxicity phenomena and the lack of systematic studies, analysis and tools surrounding this issue have blocked a full understanding of relationships involving toxic compounds in hydrolysates and their effects on ethanologen growth and fermentation. In this study, we developed a quantitative, high-throughput biological growth assay using an automated turbidometer to obtain detailed inhibitory kinetics for individual compounds present in lignocellulosic biomass hydrolysate. Information about prolonged lag time and final cell densities can also be obtained. The effects of furfural, hydroxymethylfurfural (HMF), acetate and ethanol on growth rate and final cell densities of Zymomonas mobilis 8b on glucose are presented. This method was also shown to be of value in toxicity studies of hydrolysate itself, despite the highly colored nature of this material. Using this approach, we can generate comprehensive inhibitory profiles with many individual compounds and develop models that predict and examine toxic effects in the complex mixture of hydrolysates, leading to the development of improved pretreatment and conditioning processes as well as fermentation organisms.

  12. Stochastic Analysis of Reaction–Diffusion Processes

    PubMed Central

    Hu, Jifeng; Kang, Hye-Won

    2013-01-01

    Reaction and diffusion processes are used to model chemical and biological processes over a wide range of spatial and temporal scales. Several routes to the diffusion process at various levels of description in time and space are discussed and the master equation for spatially discretized systems involving reaction and diffusion is developed. We discuss an estimator for the appropriate compartment size for simulating reaction–diffusion systems and introduce a measure of fluctuations in a discretized system. We then describe a new computational algorithm for implementing a modified Gillespie method for compartmental systems in which reactions are aggregated into equivalence classes and computational cells are searched via an optimized tree structure. Finally, we discuss several examples that illustrate the issues that have to be addressed in general systems. PMID:23719732

  13. In-Situ Biocatalytic Production of Trehalose with Autoinduction Expression of Trehalose Synthase.

    PubMed

    Yan, Xincheng; Zhu, Liying; Yu, Yadong; Xu, Qing; Huang, He; Jiang, Ling

    2018-02-14

    We developed an in-situ biocatalytic process that couples autoinduction expression of trehalose synthase (TreS) and whole-cell catalysis for trehalose production. With lactose as the autoinducer, the activity of recombinant TreS in recombinant Escherichia coli was optimized through a visualization method, which resulted in a maximum value of 12 033 ± 730 U/mL in pH-stat fed-batch fermentation mode. Meanwhile, the permeability of the autoinduced E. coli increased significantly, which makes it possible to be directly used as a whole-cell biocatalyst for trehalose production, whereby the byproduct glucose can also act as an extra carbon source. In this case, the final yield of trehalose was improved to 90.5 ± 5.7% and remained as high as 83.2 ± 5.0% at the 10th batch, which is the highest value achieved using recombinant TreS. Finally, an integrated strategy for trehalose production was established, and its advantages compared to the traditional mode have been summarized.

  14. Room-temperature solution-processed and metal oxide-free nano-composite for the flexible transparent bottom electrode of perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.

    2016-03-01

    The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00011h

  15. Portable low-coherence interferometry for quantitatively imaging fast dynamics with extended field of view

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Girshovitz, Pinhas; Frenklach, Irena

    2014-06-01

    We present our recent advances in the development of compact, highly portable and inexpensive wide-field interferometric modules. By a smart design of the interferometric system, including the usage of low-coherence illumination sources and common-path off-axis geometry of the interferometers, spatial and temporal noise levels of the resulting quantitative thickness profile can be sub-nanometric, while processing the phase profile in real time. In addition, due to novel experimentally-implemented multiplexing methods, we can capture low-coherence off-axis interferograms with significantly extended field of view and in faster acquisition rates. Using these techniques, we quantitatively imaged rapid dynamics of live biological cells including sperm cells and unicellular microorganisms. Then, we demonstrated dynamic profiling during lithography processes of microscopic elements, with thicknesses that may vary from several nanometers to hundreds of microns. Finally, we present new algorithms for fast reconstruction (including digital phase unwrapping) of off-axis interferograms, which allow real-time processing in more than video rate on regular single-core computers.

  16. Processing and characterization of α-elastin electrospun membranes

    NASA Astrophysics Data System (ADS)

    Araujo, J.; Padrão, J.; Silva, J. P.; Dourado, F.; Correia, D. M.; Botelho, G.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Sencadas, V.

    2014-06-01

    Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water were electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 μm width were achieved. After cross-linking with glutaraldehyde, α-elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ˜80 °C. Moreover, α-Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for random and aligned fibers mats in a PBS solution was 330±10 kPa and 732±165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.

  17. Involvement of the Warburg effect in non-tumor diseases processes.

    PubMed

    Chen, Zhe; Liu, Meiqing; Li, Lanfang; Chen, Linxi

    2018-04-01

    Warburg effect, as an energy shift from mitochondrial oxidative phosphorylation to aerobic glycolysis, is extensively found in various cancers. Interestingly, increasing researchers show that Warburg effect plays a crucial role in non-tumor diseases. For instance, inhibition of Warburg effect can alleviate pulmonary vascular remodeling in the process of pulmonary hypertension (PH). Interference of Warburg effect improves mitochondrial function and cardiac function in the process of cardiac hypertrophy and heart failure. Additionally, the Warburg effect induces vascular smooth muscle cell proliferation and contributes to atherosclerosis. Warburg effect may also involve in axonal damage and neuronal death, which are related with multiple sclerosis. Furthermore, Warburg effect significantly promotes cell proliferation and cyst expansion in polycystic kidney disease (PKD). Besides, Warburg effect relieves amyloid β-mediated cell death in Alzheimer's disease. And Warburg effect also improves the mycobacterium tuberculosis infection. Finally, we also introduce some glycolytic agonists. This review focuses on the newest researches about the role of Warburg effect in non-tumor diseases, including PH, tuberculosis, idiopathic pulmonary fibrosis (IPF), failing heart, cardiac hypertrophy, atherosclerosis, Alzheimer's diseases, multiple sclerosis, and PKD. Obviously, Warburg effect may be a potential therapeutic target for those non-tumor diseases. © 2017 Wiley Periodicals, Inc.

  18. Role of substrate biomechanics in controlling (stem) cell fate: Implications in regenerative medicine.

    PubMed

    Macri-Pellizzeri, Laura; De-Juan-Pardo, Elena M; Prosper, Felipe; Pelacho, Beatriz

    2018-04-01

    Tissue-specific stem cells reside in a specialized environment known as niche. The niche plays a central role in the regulation of cell behaviour and, through the concerted action of soluble molecules, supportive somatic cells, and extracellular matrix components, directs stem cells to proliferate, differentiate, or remain quiescent. Great efforts have been done to decompose and separately analyse the contribution of these cues in the in vivo environment. Specifically, the mechanical properties of the extracellular matrix influence many aspects of cell behaviour, including self-renewal and differentiation. Deciphering the role of biomechanics could thereby provide important insights to control the stem cells responses in a more effective way with the aim to promote their therapeutic potential. In this review, we provide a wide overview of the effect that the microenvironment stiffness exerts on the control of cell behaviour with a particular focus on the induction of stem cells differentiation. We also describe the process of mechanotransduction and the molecular effectors involved. Finally, we critically discuss the potential involvement of tissue biomechanics in the design of novel tissue engineering strategies. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Engineering of a synthetic quadrastable gene network to approach Waddington landscape and cell fate determination

    PubMed Central

    Wu, Fuqing; Su, Ri-Qi; Lai, Ying-Cheng; Wang, Xiao

    2017-01-01

    The process of cell fate determination has been depicted intuitively as cells travelling and resting on a rugged landscape, which has been probed by various theoretical studies. However, few studies have experimentally demonstrated how underlying gene regulatory networks shape the landscape and hence orchestrate cellular decision-making in the presence of both signal and noise. Here we tested different topologies and verified a synthetic gene circuit with mutual inhibition and auto-activations to be quadrastable, which enables direct study of quadruple cell fate determination on an engineered landscape. We show that cells indeed gravitate towards local minima and signal inductions dictate cell fates through modulating the shape of the multistable landscape. Experiments, guided by model predictions, reveal that sequential inductions generate distinct cell fates by changing landscape in sequence and hence navigating cells to different final states. This work provides a synthetic biology framework to approach cell fate determination and suggests a landscape-based explanation of fixed induction sequences for targeted differentiation. DOI: http://dx.doi.org/10.7554/eLife.23702.001 PMID:28397688

  20. Rare cell isolation and analysis in microfluidics

    PubMed Central

    Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun

    2014-01-01

    Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985

  1. Mouse embryonic stem cells undergo Charontosis, a novel programmed cell death pathway dependent upon cathepsins, p53, and EndoG, in response to etoposide treatment

    PubMed Central

    Tichy, Elisia D.; Stephan, Zachary A.; Osterburg, Andrew; Noel, Greg; Stambrook, Peter J.

    2013-01-01

    Embryonic stem cells (ESCs) are hypersensitive to many DNA damaging agents and can rapidly undergo cell death or cell differentiation following exposure. Treatment of mouse ESCs (mESCs) with etoposide (ETO), a topoisomerase II poison, followed by a recovery period resulted in massive cell death with characteristics of a programmed cell death pathway (PCD). While cell death was both caspase- and necroptosis-independent, it was partially dependent on the activity of lysosomal proteases. A role for autophagy in the cell death process was eliminated, suggesting that ETO induces a novel PCD pathway in mESCs. Inhibition of p53 either as a transcription factor by pifithrin α or in its mitochondrial role by pifithrin μ significantly reduced ESC death levels. Finally, EndoG was newly identified as a protease participating in the DNA fragmentation observed during ETO-induced PCD. We coined the term Charontosis after Charon, the ferryman of the dead in Greek mythology, to refer to the PCD signaling events induced by ETO in mESCs. PMID:23500643

  2. Improved single-cell culture achieved using micromolding in capillaries technology coupled with poly (HEMA).

    PubMed

    Ye, Fang; Jiang, Jin; Chang, Honglong; Xie, Li; Deng, Jinjun; Ma, Zhibo; Yuan, Weizheng

    2015-07-01

    Cell studies at the single-cell level are becoming more and more critical for understanding the complex biological processes. Here, we present an optimization study investigating the positioning of single cells using micromolding in capillaries technology coupled with the cytophobic biomaterial poly (2-hydroxyethyl methacrylate) (poly (HEMA)). As a cytophobic biomaterial, poly (HEMA) was used to inhibit cells, whereas the glass was used as the substrate to provide a cell adhesive background. The poly (HEMA) chemical barrier was obtained using micromolding in capillaries, and the microchannel networks used for capillarity were easily achieved by reversibly bonding the polydimethylsiloxane mold and the glass. Finally, discrete cell adhesion regions were presented on the glass surface. This method is facile and low cost, and the reagents are commercially available. We validated the cytophobic abilities of the poly (HEMA), optimized the channel parameters for higher quality and more stable poly (HEMA) patterns by investigating the effects of changing the aspect ratio and the width of the microchannel on the poly (HEMA) grid pattern, and improved the single-cell occupancy by optimizing the dimensions of the cell adhesion regions.

  3. Engineering stem cells for future medicine.

    PubMed

    Ricotti, Leonardo; Menciassi, Arianna

    2013-03-01

    Despite their great potential in regenerative medicine applications, stem cells (especially pluripotent ones) currently show a limited clinical success, partly due to a lack of biological knowledge, but also due to a lack of specific and advanced technological instruments able to overcome the current boundaries of stem cell functional maturation and safe/effective therapeutic delivery. This paper aims at describing recent insights, current limitations, and future horizons related to therapeutic stem cells, by analyzing the potential of different bioengineering disciplines in bringing stem cells toward a safe clinical use. First, we clarify how and why stem cells should be properly engineered and which could be in a near future the challenges and the benefits connected with this process. Second, we identify different routes toward stem cell differentiation and functional maturation, relying on chemical, mechanical, topographical, and direct/indirect physical stimulation. Third, we highlight how multiscale modeling could strongly support and optimize stem cell engineering. Finally, we focus on future robotic tools that could provide an added value to the extent of translating basic biological knowledge into clinical applications, by developing ad hoc enabling technologies for stem cell delivery and control.

  4. Cytotoxicity induced by cypermethrin in Human Neuroblastoma Cell Line SH-SY5Y.

    PubMed

    Raszewski, Grzegorz; Lemieszek, Marta Kinga; Łukawski, Krzysztof

    2016-01-01

    The purpose of this study was to evaluate the cytotoxic potential of Cypermethrin (CM) on cultured human Neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with CM at 0-200µM for 24, 48, and 72 h, in vitro. It was found that CM induced the cell death of Neuroblastoma cells in a dose- and time-dependent manner, as shown by LDH assays. Next, some aspects of the process of cell death triggered by CM in the human SH-SY5Y cell line were investigated. It was revealed that the pan-caspase inhibitor Q-VD-OPh, sensitizes SH-SY5Y cells to necroptosis caused by CM. Furthermore, signal transduction inhibitors PD98059, SL-327, SB202190, SP600125 failed to attenuate the effect of the pesticide. Finally, it was shown that inhibition of TNF-a by Pomalidomide (PLD) caused statistically significant reduction in CM-induced cytotoxicity. Overall, the data obtained suggest that CM induces neurotoxicity in SH-SY5Y cells by necroptosis.

  5. The differentiation of mammalian ovarian granulosa cells – living in the shadow of cellular developmental capacity.

    PubMed

    Chachuła, A; Kranc, W; Budna, J; Bryja, A; Ciesiólka, S; Wojtanowicz-Markiewicz, K; Piotrowska, H; Bukowska, D; Krajecki, M; Antosik, P; Brüssow, K P; Bruska, M; Nowicki, M; Zabel, M; Kempisty, B

    2016-01-01

    The mammalian cumulus-oocyte complex (COCs) promotes oocyte growth and development during long stages of folliculogenesis and oogenesis. Before ovulation, the follicle is formed by a variety of fully differentiated cell populations; cumulus cells (CCs) that tightly surround the female gamete, granulosa cells (GCs) and theca cells (TCs) which build the internal and external mass of the follicular wall. It is well documented that CCs surrounding the oocyte are necessary for resumption of meiosis and full maturation of the gamete. However, the role of the granulosa cells in acquisition of MII stage and/or full fertilization ability is not yet entirely known. In this article, we present an overview of mammalian oocytes and their relationship to the surrounding cumulus and granulosa cells. We also describe the processes of GCs differentiation and developmental capacity. Finally, we describe several markers of mammalian GCs, which could be used for positive identification of isolated cells. The developmental capacity of oocytes and surrounding somatic cells – a “fingerprint” of folliculogenesis and oogenesis.

  6. Endoplasmic reticulum calcium release potentiates the ER stress and cell death caused by an oxidative stress in MCF-7 cells.

    PubMed

    Dejeans, Nicolas; Tajeddine, Nicolas; Beck, Raphaël; Verrax, Julien; Taper, Henryk; Gailly, Philippe; Calderon, Pedro Buc

    2010-05-01

    Increase in cytosolic calcium concentration ([Ca2+](c)), release of endoplasmic reticulum (ER) calcium ([Ca2+](er)) and ER stress have been proposed to be involved in oxidative toxicity. Nevertheless, their relative involvements in the processes leading to cell death are not well defined. In this study, we investigated whether oxidative stress generated during ascorbate-driven menadione redox cycling (Asc/Men) could trigger these three events, and, if so, whether they contributed to Asc/Men cytoxicity in MCF-7 cells. Using microspectrofluorimetry, we demonstrated that Asc/Men-generated oxidative stress was associated with a slow and moderate increase in [Ca2+](c), largely preceding permeation of propidium iodide, and thus cell death. Asc/Men treatment was shown to partially deplete ER calcium stores after 90 min (decrease by 45% compared to control). This event was associated with ER stress activation, as shown by analysis of eIF2 phosphorylation and expression of the molecular chaperone GRP94. Thapsigargin (TG) was then used to study the effect of complete [Ca2+](er) emptying during the oxidative stress generated by Asc/Men. Surprisingly, the combination of TG and Asc/Men increased ER stress to a level considerably higher than that observed for either treatment alone, suggesting that [Ca2+](er) release alone is not sufficient to explain ER stress activation during oxidative stress. Finally, TG-mediated [Ca2+](er) release largely potentiated ER stress, DNA fragmentation and cell death caused by Asc/Men, supporting a role of ER stress in the process of Asc/Men cytotoxicity. Taken together, our results highlight the involvement of ER stress and [Ca2+](er) decrease in the process of oxidative stress-induced cell death in MCF-7 cells. 2009 Elsevier Inc. All rights reserved.

  7. Heterologous expression of anti-apoptotic human 14-3-3β/α enhances iron-mediated programmed cell death in yeast

    PubMed Central

    Eid, Rawan; Zhou, David R.; Arab, Nagla T. T.; Boucher, Eric; Young, Paul G.; Mandato, Craig A.

    2017-01-01

    The induction of Programmed Cell Death (PCD) requires the activation of complex responses involving the interplay of a variety of different cellular proteins, pathways, and processes. Uncovering the mechanisms regulating PCD requires an understanding of the different processes that both positively and negatively regulate cell death. Here we have examined the response of normal as well as PCD resistant yeast cells to different PCD inducing stresses. As expected cells expressing the pro-survival human 14-3-3β/α sequence show increased resistance to numerous stresses including copper and rapamycin. In contrast, other stresses including iron were more lethal in PCD resistant 14-3-3β/α expressing cells. The increased sensitivity to PCD was not iron and 14-3-3β/α specific since it was also observed with other stresses (hydroxyurea and zinc) and other pro-survival sequences (human TC-1 and H-ferritin). Although microscopical examination revealed little differences in morphology with iron or copper stresses, cells undergoing PCD in response to high levels of prolonged copper treatment were reduced in size. This supports the interaction some forms of PCD have with the mechanisms regulating cell growth. Analysis of iron-mediated effects in yeast mutant strains lacking key regulators suggests that a functional vacuole is required to mediate the synergistic effects of iron and 14-3-3β/α on yeast PCD. Finally, mild sub-lethal levels of copper were found to attenuate the observed inhibitory effects of iron. Taken together, we propose a model in which a subset of stresses like iron induces a complex process that requires the cross-talk of two different PCD inducing pathways. PMID:28854230

  8. Integrating human stem cell expansion and neuronal differentiation in bioreactors

    PubMed Central

    Serra, Margarida; Brito, Catarina; Costa, Eunice M; Sousa, Marcos FQ; Alves, Paula M

    2009-01-01

    Background Human stem cells are cellular resources with outstanding potential for cell therapy. However, for the fulfillment of this application, major challenges remain to be met. Of paramount importance is the development of robust systems for in vitro stem cell expansion and differentiation. In this work, we successfully developed an efficient scalable bioprocess for the fast production of human neurons. Results The expansion of undifferentiated human embryonal carcinoma stem cells (NTera2/cl.D1 cell line) as 3D-aggregates was firstly optimized in spinner vessel. The media exchange operation mode with an inoculum concentration of 4 × 105 cell/mL was the most efficient strategy tested, with a 4.6-fold increase in cell concentration achieved in 5 days. These results were validated in a bioreactor where similar profile and metabolic performance were obtained. Furthermore, characterization of the expanded population by immunofluorescence microscopy and flow cytometry showed that NT2 cells maintained their stem cell characteristics along the bioreactor culture time. Finally, the neuronal differentiation step was integrated in the bioreactor process, by addition of retinoic acid when cells were in the middle of the exponential phase. Neurosphere composition was monitored and neuronal differentiation efficiency evaluated along the culture time. The results show that, for bioreactor cultures, we were able to increase significantly the neuronal differentiation efficiency by 10-fold while reducing drastically, by 30%, the time required for the differentiation process. Conclusion The culture systems developed herein are robust and represent one-step-forward towards the development of integrated bioprocesses, bridging stem cell expansion and differentiation in fully controlled bioreactors. PMID:19772662

  9. MicroRNA-196b Inhibits Cell Growth and Metastasis of Lung Cancer Cells by Targeting Runx2.

    PubMed

    Bai, Xiaoxue; Meng, Lin; Sun, Huijie; Li, Zhuo; Zhang, Xiufang; Hua, Shucheng

    2017-01-01

    Lung cancer is one of the most common causes of cancer related deaths worldwide. The role of several microRNAs (miRNAs) including miR-196b in different cancers has already been established. The study was aimed to explore the role of miR-196b in lung cancer and its possible underlying mechanism. Human lung cancer cell line A549 was transfected with miR-196b mimic, miR-196b inhibitor and corresponding controls. Then cell viability, migration, invasion, and apoptosis of A549 lung cancer cells either with overexpression or with suppression of miR-196b were estimated sequentially. Next, dual luciferase activity assay was performed to clarify whether Runx2 was a direct target of miR-196b. Finally, the expressions of main factors associated with epithelial mesenchymal transition (EMT), PI3K/AKT/GSK3β, Smad, and JNK pathways were detected by western blot. MiR-196b expression was significantly decreased in A549, H1650 and H1299 cell lines compared with in WI-38 and HEL-1 cell lines. Overexpression of miR-196b suppressed cell viability, migration, invasion, and induced apoptosis as well as inhibited TGF-β induced EMT process in A549 cells. In addition, Runx2 was a putative target of miR-196b, and Runx2 silence remarkably increased cell apoptosis and abolished the promotive effects of miR-196b suppression on cell viability, migration and invasion. Finally, miR-196b also mediated its action by inactivation of PI3K/AKT/GSK3β, Smad, and JNK pathways by down-regulation of Runx2. MiR-196b functions as a tumor suppressor that inhibited cell growth and metastasis of lung cancer cells by targeting Runx2. These findings provided further evidences for treatment of lung cancer. The Author(s). Published by S. Karger AG, Basel.

  10. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.

  11. Simplified process for the production of anti-CD19-CAR engineered T cells

    PubMed Central

    Tumaini, Barbara; Lee, Daniel W.; Lin, Tasha; Castiello, Luciano; Stroncek, David F.; Mackall, Crystal; Wayne, Alan; Sabatino, Marianna

    2014-01-01

    Background Adoptive Immunotherapy using chimeric antigen receptor (CAR) engineered T cells specific for CD19 has shown promising results for the treatment of B cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. Here, we describe a new, simplified method to produce anti-CD19-CAR T cells. Methods T cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 hours and then a second transduction was performed. No spinoculation was used. Cells were then expanded for an additional 9 days. Results The method was validated using 2 PBMC products from a patient with B-CLL and one PBMC product from a healthy subject. The 2 PBMC products from the B-CLL patient contained 11.4% and 12.9% T cells. The manufacture process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6 fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first 4 ALL patients treated at our institution. Discussion We developed a simplified semi-closed system for the initial selection, activation, transduction and expansion of T cells using anti-CD3/anti-CD28 beads and bags, to produce autologous anti-CD19 CAR transduced T cells to support an ongoing clinical trial. PMID:23992830

  12. Cytomics - importance of multimodal analysis of cell function and proliferation in oncology.

    PubMed

    Tárnok, A; Bocsi, J; Brockhoff, G

    2006-12-01

    Cancer is a highly complex and heterogeneous disease involving a succession of genetic changes (frequently caused or accompanied by exogenous trauma), and resulting in a molecular phenotype that in turn results in a malignant specification. The development of malignancy has been described as a multistep process involving self-sufficiency in growth signals, insensitivity to antigrowth signals, evasion of apoptosis, limitless replicative potential, sustained angiogenesis, and finally tissue invasion and metastasis. The quantitative analysis of networking molecules within the cells might be applied to understand native-state tissue signalling biology, complex drug actions and dysfunctional signalling in transformed cells, that is, in cancer cells. High-content and high-throughput single-cell analysis can lead to systems biology and cytomics. The application of cytomics in cancer research and diagnostics is very broad, ranging from the better understanding of the tumour cell biology to the identification of residual tumour cells after treatment, to drug discovery. The ultimate goal is to pinpoint in detail these processes on the molecular, cellular and tissue level. A comprehensive knowledge of these will require tissue analysis, which is multiplex and functional; thus, vast amounts of data are being collected from current genomic and proteomic platforms for integration and interpretation as well as for new varieties of updated cytomics technology. This overview will briefly highlight the most important aspects of this continuously developing field.

  13. Butein, a Tetrahydroxychalcone, Suppresses Cancer-induced Osteoclastogenesis Through Inhibition of RANKL Signaling

    PubMed Central

    Sung, Bokyung; Cho, Sung-Gook; Liu, Mingyao; Aggarwal, Bharat B.

    2011-01-01

    Osteoclastogenesis is associated with aging and various age-related inflammatory chronic diseases, including cancer. Receptor activator of nuclear factor-kappaB (NF-κB) ligand (RANKL), a member of the tumor necrosis factor superfamily, has been implicated as a major mediator of bone resorption, suggesting that agents that can suppress RANKL signaling might inhibit osteoclastogenesis, a process closely linked to bone resorption. We therefore investigated whether butein, a tetrahydroxychalcone, could inhibit RANKL signaling and suppress osteoclastogenesis induced by RANKL or tumor cells. We found that human multiple myeloma cells (MM.1S and U266), breast tumor cells (MDA-MB-231), and prostate tumor cells (PC-3) induced differentiation of macrophages to osteoclasts, as indicated by TRAP-positive cells, and that butein suppressed this process. The chalcone also suppressed the expression of RANKL by the tumor cells. We further found that butein suppressed RANKL-induced NF-κB activation and that this suppression correlated with the inhibition of IκBα kinase and suppression of phosphorylation and degradation of IκBα, an inhibitor of NF-κB. Finally, butein also suppressed the RANKL-induced differentiation of macrophages to osteoclasts in a dose-dependent and time-dependent manner. Collectively, our results indicate that butein suppresses the osteoclastogenesis induced by tumor cells and by RANKL, by suppression of the NF-κB activation pathway. PMID:21170936

  14. Differential effects of AMPK agonists on cell growth and metabolism

    PubMed Central

    Vincent, Emma E.; Coelho, Paula P.; Blagih, Julianna; Griss, Takla; Viollet, Benoit; Jones, Russell G.

    2016-01-01

    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK-dependence of six commonly used AMPK agonists (metformin, phenformin, AICAR, 2DG, salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity (SRC). Finally, contrary to the view of AMPK activity being tumor suppressive, we find A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the anti-growth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution, not only regarding the type of AMPK agonist proposed for cancer treatment, but also the context in which they are used. PMID:25241895

  15. Differential effects of AMPK agonists on cell growth and metabolism.

    PubMed

    Vincent, E E; Coelho, P P; Blagih, J; Griss, T; Viollet, B; Jones, R G

    2015-07-01

    As a sensor of cellular energy status, the AMP-activated protein kinase (AMPK) is believed to act in opposition to the metabolic phenotypes favored by proliferating tumor cells. Consequently, compounds known to activate AMPK have been proposed as cancer therapeutics. However, the extent to which the anti-neoplastic properties of these agonists are mediated by AMPK is unclear. Here we examined the AMPK dependence of six commonly used AMPK agonists (metformin, phenformin, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), 2-deoxy-D-glucose (2DG), salicylate and A-769662) and their influence on cellular processes often deregulated in tumor cells. We demonstrate that the majority of these agonists display AMPK-independent effects on cell proliferation and metabolism with only the synthetic activator, A-769662, exerting AMPK-dependent effects on these processes. We find that A-769662 promotes an AMPK-dependent increase in mitochondrial spare respiratory capacity. Finally, contrary to the view of AMPK activity being tumor suppressive, we find that A-769662 confers a selective proliferative advantage to tumor cells growing under nutrient deprivation. Our results indicate that many of the antigrowth properties of these agonists cannot be attributed to AMPK activity in cells, and thus any observed effects using these agonists should be confirmed using AMPK-deficient cells. Ultimately, our data urge caution not only regarding the type of AMPK agonist proposed for cancer treatment but also the context in which they are used.

  16. Control of adult neurogenesis by programmed cell death in the mammalian brain.

    PubMed

    Ryu, Jae Ryun; Hong, Caroline Jeeyeon; Kim, Joo Yeon; Kim, Eun-Kyoung; Sun, Woong; Yu, Seong-Woon

    2016-04-21

    The presence of neural stem cells (NSCs) and the production of new neurons in the adult brain have received great attention from scientists and the public because of implications to brain plasticity and their potential use for treating currently incurable brain diseases. Adult neurogenesis is controlled at multiple levels, including proliferation, differentiation, migration, and programmed cell death (PCD). Among these, PCD is the last and most prominent process for regulating the final number of mature neurons integrated into neural circuits. PCD can be classified into apoptosis, necrosis, and autophagic cell death and emerging evidence suggests that all three may be important modes of cell death in neural stem/progenitor cells. However, the molecular mechanisms that regulate PCD and thereby impact the intricate balance between self-renewal, proliferation, and differentiation during adult neurogenesis are not well understood. In this comprehensive review, we focus on the extent, mechanism, and biological significance of PCD for the control of adult neurogenesis in the mammalian brain. The role of intrinsic and extrinsic factors in the regulation of PCD at the molecular and systems levels is also discussed. Adult neurogenesis is a dynamic process, and the signals for differentiation, proliferation, and death of neural progenitor/stem cells are closely interrelated. A better understanding of how adult neurogenesis is influenced by PCD will help lead to important insights relevant to brain health and diseases.

  17. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    PubMed

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  18. Toward a Droplet-Based Single-Cell Radiometric Assay.

    PubMed

    Gallina, Maria Elena; Kim, Tae Jin; Shelor, Mark; Vasquez, Jaime; Mongersun, Amy; Kim, Minkyu; Tang, Sindy K Y; Abbyad, Paul; Pratx, Guillem

    2017-06-20

    Radiotracers are widely used to track molecular processes, both in vitro and in vivo, with high sensitivity and specificity. However, most radionuclide detection methods have spatial resolution inadequate for single-cell analysis. A few existing methods can extract single-cell information from radioactive decays, but the stochastic nature of the process precludes high-throughput measurement (and sorting) of single cells. In this work, we introduce a new concept for translating radioactive decays occurring stochastically within radiolabeled single-cells into an integrated, long-lasting fluorescence signal. Single cells are encapsulated in radiofluorogenic droplets containing molecular probes sensitive to byproducts of ionizing radiation (primarily reactive oxygen species, or ROS). Different probes were examined in bulk solutions, and dihydrorhodamine 123 (DHRh 123) was selected as the lead candidate due to its sensitivity and reproducibility. Fluorescence intensity of DHRh 123 in bulk increased at a rate of 54% per Gy of X-ray radiation and 15% per MBq/ml of 2-deoxy-2-[ 18 F]-fluoro-d-glucose ([ 18 F]FDG). Fluorescence imaging of microfluidic droplets showed the same linear response, but droplets were less sensitive overall than the bulk ROS sensor (detection limit of 3 Gy per droplet). Finally, droplets encapsulating radiolabeled cancer cells allowed, for the first time, the detection of [ 18 F]FDG radiotracer uptake in single cells through fluorescence activation. With further improvements, we expect this technology to enable quantitative measurement and selective sorting of single cells based on the uptake of radiolabeled small molecules.

  19. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  20. The availability of filament ends modulates actin stochastic dynamics in live plant cells

    PubMed Central

    Li, Jiejie; Staiger, Benjamin H.; Henty-Ridilla, Jessica L.; Abu-Abied, Mohamad; Sadot, Einat; Blanchoin, Laurent; Staiger, Christopher J.

    2014-01-01

    A network of individual filaments that undergoes incessant remodeling through a process known as stochastic dynamics comprises the cortical actin cytoskeleton in plant epidermal cells. From images at high spatial and temporal resolution, it has been inferred that the regulation of filament barbed ends plays a central role in choreographing actin organization and turnover. How this occurs at a molecular level, whether different populations of ends exist in the array, and how individual filament behavior correlates with the overall architecture of the array are unknown. Here we develop an experimental system to modulate the levels of heterodimeric capping protein (CP) and examine the consequences for actin dynamics, architecture, and cell expansion. Significantly, we find that all phenotypes are the opposite for CP-overexpression (OX) cells compared with a previously characterized cp-knockdown line. Specifically, CP OX lines have fewer filament–filament annealing events, as well as reduced filament lengths and lifetimes. Further, cp-knockdown and OX lines demonstrate the existence of a subpopulation of filament ends sensitive to CP concentration. Finally, CP levels correlate with the biological process of axial cell expansion; for example, epidermal cells from hypocotyls with reduced CP are longer than wild-type cells, whereas CP OX lines have shorter cells. On the basis of these and other genetic studies in this model system, we hypothesize that filament length and lifetime positively correlate with the extent of axial cell expansion in dark-grown hypocotyls. PMID:24523291

  1. Enhanced Fluorescence Imaging of Live Cells by Effective Cytosolic Delivery of Probes

    PubMed Central

    Massignani, Marzia; Canton, Irene; Sun, Tao; Hearnden, Vanessa; MacNeil, Sheila; Blanazs, Adam; Armes, Steven P.; Lewis, Andrew; Battaglia, Giuseppe

    2010-01-01

    Background Microscopic techniques enable real-space imaging of complex biological events and processes. They have become an essential tool to confirm and complement hypotheses made by biomedical scientists and also allow the re-examination of existing models, hence influencing future investigations. Particularly imaging live cells is crucial for an improved understanding of dynamic biological processes, however hitherto live cell imaging has been limited by the necessity to introduce probes within a cell without altering its physiological and structural integrity. We demonstrate herein that this hurdle can be overcome by effective cytosolic delivery. Principal Findings We show the delivery within several types of mammalian cells using nanometre-sized biomimetic polymer vesicles (a.k.a. polymersomes) that offer both highly efficient cellular uptake and endolysomal escape capability without any effect on the cellular metabolic activity. Such biocompatible polymersomes can encapsulate various types of probes including cell membrane probes and nucleic acid probes as well as labelled nucleic acids, antibodies and quantum dots. Significance We show the delivery of sufficient quantities of probes to the cytosol, allowing sustained functional imaging of live cells over time periods of days to weeks. Finally the combination of such effective staining with three-dimensional imaging by confocal laser scanning microscopy allows cell imaging in complex three-dimensional environments under both mono-culture and co-culture conditions. Thus cell migration and proliferation can be studied in models that are much closer to the in vivo situation. PMID:20454666

  2. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    DOE PAGES

    Werner, Jeremie; Barraud, Loris; Walter, Arnaud; ...

    2016-07-30

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less

  3. Efficient Near-Infrared-Transparent Perovskite Solar Cells Enabling Direct Comparison of 4-Terminal and Monolithic Perovskite/Silicon Tandem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werner, Jeremie; Barraud, Loris; Walter, Arnaud

    Combining market-proven silicon solar cell technology with an efficient wide band gap top cell into a tandem device is an attractive approach to reduce the cost of photovoltaic systems. For this, perovskite solar cells are promising high-efficiency top cell candidates, but their typical device size (<0.2 cm 2), is still far from standard industrial sizes. Here, we present a 1 cm 2 near-infrared transparent perovskite solar cell with 14.5% steadystate efficiency, as compared to 16.4% on 0.25 cm 2. By mechanically stacking these cells with silicon heterojunction cells, we experimentally demonstrate a 4-terminal tandem measurement with a steady-state efficiency ofmore » 25.2%, with a 0.25 cm 2 top cell. The developed top cell processing methods enable the fabrication of a 20.5% efficient and 1.43 cm 2 large monolithic perovskite/silicon heterojunction tandem solar cell, featuring a rear-side textured bottom cell to increase its near-infrared spectral response. Finally, we compare both tandem configurations to identify efficiency-limiting factors and discuss the potential for further performance improvement.« less

  4. Airborne particle monitoring in clean room environments for stem cell cultures.

    PubMed

    Cobo, Fernando; Grela, David; Concha, Angel

    2008-01-01

    Modern high-technology industrial practices like pharmaceutical and stem cell line production demand high-quality environmental conditions to avoid particle contamination in the final product. Particles are important because their presence can affect both the output and the productivity and because they can have repercussion on human health. In this kind of production practice it is necessary to implement optimal methods for particle management and to introduce an environmental monitoring program. This should also address the regional regulatory requirements and will depend on local conditions in each processing center. Each center must evaluate its specific needs and establish appropriate monitoring procedures.

  5. SOCE and cancer: Recent progress and new perspectives.

    PubMed

    Xie, Jiansheng; Pan, Hongming; Yao, Junlin; Zhou, Yubin; Han, Weidong

    2016-05-01

    Ca(2+) acts as a universal and versatile second messenger in the regulation of a myriad of biological processes, including cell proliferation, differentiation, migration and apoptosis. Store-operated Ca(2+) entry (SOCE) mediated by ORAI and the stromal interaction molecule (STIM) constitutes one of the major routes of calcium entry in nonexcitable cells, in which the depletion of intracellular Ca(2+) stores triggers activation of the endoplasmic reticulum (ER)-resident Ca(2+) sensor protein STIM to gate and open the ORAI Ca(2+) channels in the plasma membrane (PM). Accumulating evidence indicates that SOCE plays critical roles in cancer cell proliferation, metastasis and tumor neovascularization, as well as in antitumor immunity. We summarize herein the recent advances in our understanding of the function of SOCE in various types of tumor cells, vascular endothelial cells and cells of the immune system. Finally, the therapeutic potential of SOCE inhibitors in the treatment of cancer is also discussed. © 2015 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  6. MicroRNA and extracellular vesicles in glioblastoma – Small but powerful

    PubMed Central

    Rooj, Arun K.; Mineo, Marco; Godlewski, Jakub

    2016-01-01

    To promote the tumor growth, angiogenesis, metabolism, and invasion, glioblastoma multiforme (GBM) cells subvert the surrounding microenvironment by influencing the endogenous activity of other brain cells including endothelial cells, macrophages, astrocytes, and microglia. Large number of studies indicates that the intracellular communication between the different cell types of the GBM microenvironment occurs through the functional transfer of oncogenic components such as proteins, non-coding RNAs, DNA and lipids via the release and uptake of extracellular vesicles (EVs). Unlike the communication through the secretion of chemokines and cytokines, the transfer and gene silencing activity of microRNAs through EVs is more complex as the biogenesis and proper packaging of microRNAs is crucial for their uptake by recipient cells. Although the specific mechanism of EV-derived microRNA uptake and processing in recipient cells is largely unknown, the screening, identifying and finally targeting of the EV-associated pro-tumorigenic microRNAs are emerging as new therapeutic strategy to combat the GBM. PMID:26968172

  7. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy

    PubMed Central

    Lan, Xiaoyang; Jörg, David J.; Cavalli, Florence M. G.; Richards, Laura M.; Nguyen, Long V.; Vanner, Robert J.; Guilhamon, Paul; Lee, Lilian; Kushida, Michelle; Pellacani, Davide; Park, Nicole I.; Coutinho, Fiona J.; Whetstone, Heather; Selvadurai, Hayden J.; Che, Clare; Luu, Betty; Carles, Annaick; Moksa, Michelle; Rastegar, Naghmeh; Head, Renee; Dolma, Sonam; Prinos, Panagiotis; Cusimano, Michael D.; Das, Sunit; Bernstein, Mark; Arrowsmith, Cheryl H.; Mungall, Andrew J.; Moore, Richard A.; Ma, Yussanne; Gallo, Marco; Lupien, Mathieu; Pugh, Trevor J.; Taylor, Michael D.; Hirst, Martin; Eaves, Connie J.; Simons, Benjamin D.; Dirks, Peter B.

    2017-01-01

    Summary Human glioblastomas (GBMs) harbour a subpopulation of glioblastoma stem cells (GSCs) that drive tumourigenesis. However, the origin of intra-tumoural functional heterogeneity between GBM cells remains poorly understood. Here we study the clonal evolution of barcoded GBM cells in an unbiased way following serial xenotransplantation to define their individual fate behaviours. Independent of an evolving mutational signature, we show that the growth of GBM clones in vivo is consistent with a remarkably neutral process involving a conserved proliferative hierarchy rooted in GSCs. In this model, slow-cycling stem-like cells give rise to a more rapidly cycling progenitor population with extensive self-maintenance capacity, that in turn generates non-proliferative cells. We also identify rare “outlier” clones that deviate from these dynamics, and further show that chemotherapy facilitates the expansion of pre-existing drug-resistant GSCs. Finally, we show that functionally distinct GSCs can be separately targeted using epigenetic compounds, suggesting new avenues for GBM targeted therapy. PMID:28854171

  8. Cell intrinsic modulation of Wnt signaling controls neuroblast migration in C. elegans.

    PubMed

    Mentink, Remco A; Middelkoop, Teije C; Rella, Lorenzo; Ji, Ni; Tang, Chung Yin; Betist, Marco C; van Oudenaarden, Alexander; Korswagen, Hendrik C

    2014-10-27

    Members of the Wnt family of secreted signaling proteins are key regulators of cell migration and axon guidance. In the nematode C. elegans, the migration of the QR neuroblast descendants requires multiple Wnt ligands and receptors. We found that the migration of the QR descendants is divided into three sequential phases that are each mediated by a distinct Wnt signaling mechanism. Importantly, the transition from the first to the second phase, which is the main determinant of the final position of the QR descendants along the anteroposterior body axis, is mediated through a cell-autonomous process in which the time-dependent expression of a Wnt receptor turns on the canonical Wnt/β-catenin signaling response that is required to terminate long-range anterior migration. Our results show that, in addition to direct guidance of cell migration by Wnt morphogenic gradients, cell migration can also be controlled indirectly through cell-intrinsic modulation of Wnt signaling responses.

  9. Commandeering Channel Voltage Sensors for Secretion, Cell Turgor, and Volume Control.

    PubMed

    Karnik, Rucha; Waghmare, Sakharam; Zhang, Ben; Larson, Emily; Lefoulon, Cécile; Gonzalez, Wendy; Blatt, Michael R

    2017-01-01

    Control of cell volume and osmolarity is central to cellular homeostasis in all eukaryotes. It lies at the heart of the century-old problem of how plants regulate turgor, mineral and water transport. Plants use strongly electrogenic H + -ATPases, and the substantial membrane voltages they foster, to drive solute accumulation and generate turgor pressure for cell expansion. Vesicle traffic adds membrane surface and contributes to wall remodelling as the cell grows. Although a balance between vesicle traffic and ion transport is essential for cell turgor and volume control, the mechanisms coordinating these processes have remained obscure. Recent discoveries have now uncovered interactions between conserved subsets of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins that drive the final steps in secretory vesicle traffic and ion channels that mediate in inorganic solute uptake. These findings establish the core of molecular links, previously unanticipated, that coordinate cellular homeostasis and cell expansion. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Osteopontin is a Novel Marker of Pancreatic Ductal Tissues and of Undifferentiated Pancreatic Precursors in Mice

    PubMed Central

    Kilic, Gamze; Wang, Junfeng; Sosa-Pineda, Beatriz

    2008-01-01

    Matricellular proteins mediate both tissue morphogenesis and tissue homeostasis in important ways because they modulate cell-matrix and cell-cell interactions. In this study, we found that the matricellular protein osteopontin (Opn) is a novel marker of undifferentiated pancreatic precursors and pancreatic ductal tissues in mice. Our analysis also underscored a specific, dynamic profile of Opn expression in embryonic pancreatic tissues that suggests the participation of this protein’s function in processes involving cell migration, cell-cell interactions, or both. Surprisingly, our analysis of Opn-deficient pancreata did not reveal obvious alterations in the morphology or differentiation of these tissues. Therefore, in embryonic pancreatic tissues, it is possible that other proteins act redundantly to Opn or that this protein’s function is dispensable for pancreas development. Finally, the maintenance of Opn expression in pancreatic tissues of adults argues for a possible function of this protein in injury and pathologic responses. PMID:16518820

  11. Technology Pathway Partnership Final Scientific Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, John C. Dr.; Godby, Larry A.

    2012-04-26

    This report covers the scientific progress and results made in the development of high efficiency multijunction solar cells and the light concentrating non-imaging optics for the commercial generation of renewable solar energy. During the contract period the efficiency of the multijunction solar cell was raised from 36.5% to 40% in commercially available fully qualified cells. In addition significant strides were made in automating production process for these cells in order to meet the costs required to compete with commercial electricity. Concurrent with the cells effort Boeing also developed a non imaging optical systems to raise the light intensity at themore » photovoltaic cell to the rage of 800 to 900 suns. Solar module efficiencies greater than 30% were consistently demonstrated. The technology and its manufacturing were maturated to a projected price of < $0.015 per kWh and demonstrated by automated assembly in a robotic factory with a throughput of 2 MWh/yr. The technology was demonstrated in a 100 kW power plant erected at California State University Northridge, CA.« less

  12. Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device.

    PubMed

    Bensalem, Sakina; Lopes, Filipa; Bodénès, Pierre; Pareau, Dominique; Français, Olivier; Le Pioufle, Bruno

    2018-06-01

    One way envisioned to overcome part of the issues biodiesel production encounters today is to develop a simple, economically viable and eco-friendly process for the extraction of lipids from microalgae. This study investigates the lipid extraction efficiency from the microalga Chlamydomonas reinhardtii as well as the underlying mechanisms. We propose a new methodology combining a pulsed electric field (PEF) application and mechanical stresses as a pretreatment to improve lipid extraction with solvents. Cells enriched in lipids are therefore submitted to electric field pulses creating pores on the cell membrane and then subjected to a mechanical stress by applying cyclic pressures on the cell wall (using a microfluidic device). Results showed an increase in lipid extraction when cells were pretreated by the combination of both methods. Microscopic observations showed that both pretreatments affect the cell structure. Finally, the dependency of solvent lipid extraction efficiency with the cell wall structure is discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

    DTIC Science & Technology

    2015-12-21

    SECURITY CLASSIFICATION OF: The overall goal of this project is to determine how electrode surface chemistry can be rationally designed to decrease...2015 Approved for Public Release; Distribution Unlimited Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for...ABSTRACT Final Report: Rational Design of Anode Surface Chemistry in Microbial Fuel Cells for Improved Exoelectrogen Attachment and Electron Transfer

  14. NaviSE: superenhancer navigator integrating epigenomics signal algebra.

    PubMed

    Ascensión, Alex M; Arrospide-Elgarresta, Mikel; Izeta, Ander; Araúzo-Bravo, Marcos J

    2017-06-06

    Superenhancers are crucial structural genomic elements determining cell fate, and they are also involved in the determination of several diseases, such as cancer or neurodegeneration. Although there are pipelines which use independent pieces of software to predict the presence of superenhancers from genome-wide chromatin marks or DNA-interaction protein binding sites, there is not yet an integrated software tool that processes automatically algebra combinations of raw data sequencing into a comprehensive final annotated report of predicted superenhancers. We have developed NaviSE, a user-friendly streamlined tool which performs a fully-automated parallel processing of genome-wide epigenomics data from sequencing files into a final report, built with a comprehensive set of annotated files that are navigated through a graphic user interface dynamically generated by NaviSE. NaviSE also implements an 'epigenomics signal algebra' that allows the combination of multiple activation and repression epigenomics signals. NaviSE provides an interactive chromosomal landscaping of the locations of superenhancers, which can be navigated to obtain annotated information about superenhancer signal profile, associated genes, gene ontology enrichment analysis, motifs of transcription factor binding sites enriched in superenhancers, graphs of the metrics evaluating the superenhancers quality, protein-protein interaction networks and enriched metabolic pathways among other features. We have parallelised the most time-consuming tasks achieving a reduction up to 30% for a 15 CPUs machine. We have optimized the default parameters of NaviSE to facilitate its use. NaviSE allows different entry levels of data processing, from sra-fastq files to bed files; and unifies the processing of multiple replicates. NaviSE outperforms the more time-consuming processes required in a non-integrated pipeline. Alongside its high performance, NaviSE is able to provide biological insights, predicting cell type specific markers, such as SOX2 and ZIC3 in embryonic stem cells, CDK5R1 and REST in neurons and CD86 and TLR2 in monocytes. NaviSE is a user-friendly streamlined solution for superenhancer analysis, annotation and navigation, requiring only basic computer and next generation sequencing knowledge. NaviSE binaries and documentation are available at: https://sourceforge.net/projects/navise-superenhancer/ .

  15. Short communication: Effects of high-pressure processing on the inactivity of Cronobacter sakazakii in whole milk and skim milk samples.

    PubMed

    Jiao, Rui; Gao, Jina; Li, Yinxiang; Zhang, Xiyan; Zhang, Maofeng; Ye, Yingwang; Wu, Qingping; Fan, Hongying

    2016-10-01

    Powdered infant formula is considered as the main transmission vehicle for Cronobacter sakazakii infections including meningitis, septicemia, and necrotizing enterocolitis. The effects of high-pressure processing treatment on inactivation of C. sakazakii ranging from 100 to 400 MPa for 3.0, 5.0, and 7.0 min in whole milk and skim milk were studied. Significant differences in inactivation of C. sakazakii were observed in milk samples under different pressures for 3 to 7 min compared with untreated samples, and C. sakazakii was not detected after 400 MPa for 3 min. The lethality rates of C. sakazakii cells in whole and skim milk with an initial level of 10(4) cfu/mL after 100 and 200 MPa treatments were not significantly different, but relatively higher lethality rates were found in whole milk after 300 MPa treatment than in skim milk. Finally, the scanning electron micrographs indicated that cellular envelope and intracellular damage of C. sakazakii cells were apparent after 300 and 400 MPa for 5.0 min compared with the untreated cells, and a progressive increase of injured cells with increased pressure treatment was found. It was concluded that C. sakazakii was sensitive to high-pressure processing treatment and that high-pressure processing treatment with 400 MPa for 3.0 min can be used to control C. sakazakii contamination in milk samples. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Cathepsin B is not the processing enzyme for mouse prorenin.

    PubMed

    Mercure, Chantal; Lacombe, Marie-Josée; Khazaie, Khashayarsha; Reudelhuber, Timothy L

    2010-05-01

    Renin, an aspartyl protease that catalyzes the rate-limiting step in the renin-angiotensin system (RAS), is proteolytically activated by a second protease [referred to as the prorenin processing enzyme (PPE)] before its secretion from the juxtaglomerular cells of the kidney. Although several enzymes are capable of activating renin in vitro, the leading candidate for the PPE in the kidney is cathepsin B (CTSB) due to is colocalization with the renin precursor (prorenin) in juxtaglomerular cell granules and because of its site-selective activation of human prorenin both in vitro and in transfected tissue culture cell models. To verify the role of CTSB in prorenin processing in vivo, we tested the ability of CTSB-deficient (CTSB-/-) mice to generate active renin. CTSB-/- mice do not exhibit any overt symptoms (renal malformation, preweaning mortality) typical of an RAS deficiency and have normal levels of circulating active renin, which, like those in control animals, rise more than 15-fold in response to pharmacologic inhibition of the RAS. The mature renin enzyme detected in kidney lysates of CTSB-/- mice migrates at the same apparent molecular weight as that in control mice, and the processing to active renin is not affected by chloroquine treatment of the animals. Finally, the distribution and morphology of renin-producing cells in the kidney is normal in CTSB-/- mice. In conclusion, CTSB-deficient mice exhibit no differences compared with controls in their ability to generate active renin, and our results do not support CTSB as the PPE in mice.

  17. Nursing students learning the pharmacology of diabetes mellitus with complexity-based computerized models: A quasi-experimental study.

    PubMed

    Dubovi, Ilana; Dagan, Efrat; Sader Mazbar, Ola; Nassar, Laila; Levy, Sharona T

    2018-02-01

    Pharmacology is a crucial component of medications administration in nursing, yet nursing students generally find it difficult and self-rate their pharmacology skills as low. To evaluate nursing students learning pharmacology with the Pharmacology Inter-Leaved Learning-Cells environment, a novel approach to modeling biochemical interactions using a multiscale, computer-based model with a complexity perspective based on a small set of entities and simple rules. This environment represents molecules, organelles and cells to enhance the understanding of cellular processes, and combines these cells at a higher scale to obtain whole-body interactions. Sophomore nursing students who learned the pharmacology of diabetes mellitus with the Pharmacology Inter-Leaved Learning-Cells environment (experimental group; n=94) or via a lecture-based curriculum (comparison group; n=54). A quasi-experimental pre- and post-test design was conducted. The Pharmacology-Diabetes-Mellitus questionnaire and the course's final exam were used to evaluate students' knowledge of the pharmacology of diabetes mellitus. Conceptual learning was significantly higher for the experimental than for the comparison group for the course final exam scores (unpaired t=-3.8, p<0.001) and for the Pharmacology-Diabetes-Mellitus questionnaire (U=942, p<0.001). The largest effect size for the Pharmacology-Diabetes-Mellitus questionnaire was for the medication action subscale. Analysis of complex-systems component reasoning revealed a significant difference for micro-macro transitions between the levels (F(1, 82)=6.9, p<0.05). Learning with complexity-based computerized models is highly effective and enhances the understanding of moving between micro and macro levels of the biochemical phenomena, this is then related to better understanding of medication actions. Moreover, the Pharmacology Inter-Leaved Learning-Cells approach provides a more general reasoning scheme for biochemical processes, which enhances pharmacology learning beyond the specific topic learned. The present study implies that deeper understanding of pharmacology will support nursing students' clinical decisions and empower their proficiency in medications administration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. BAY 81-8973, a full-length recombinant factor VIII: Human heat shock protein 70 improves the manufacturing process without affecting clinical safety.

    PubMed

    Maas Enriquez, Monika; Thrift, John; Garger, Stephen; Katterle, Yvonne

    2016-11-01

    BAY 81-8973 is a full-length, unmodified recombinant human factor VIII (FVIII) approved for the treatment of hemophilia A. BAY 81-8973 has the same amino acid sequence as the currently marketed sucrose-formulated recombinant FVIII (rFVIII-FS) product and is produced using additional advanced manufacturing technologies. One of the key manufacturing advances for BAY 81-8973 is introduction of the gene for human heat shock protein 70 (HSP70) into the rFVIII-FS cell line. HSP70 facilitates proper folding of proteins, enhances cell survival by inhibiting apoptosis, and potentially impacts rFVIII glycosylation. HSP70 expression in the BAY 81-8973 cell line along with other manufacturing advances resulted in a higher-producing cell line and improvements in the pharmacokinetics of the final product as determined in clinical studies. HSP70 protein is not detected in the harvest or in the final BAY 81-8973 product. However, because this is a new process, clinical trial safety assessments included monitoring for anti-HSP70 antibodies. Most patients, across all age groups, had low levels of anti-HSP70 antibodies before exposure to the investigational product. During BAY 81-8973 treatment, 5% of patients had sporadic increases in anti-HSP70 antibody levels above a predefined threshold (cutoff value, 239 ng/mL). No clinical symptoms related to anti-HSP70 antibody development occurred. In conclusion, addition of HSP70 to the BAY 81-8973 cell line is an innovative technology for manufacturing rFVIII aimed at improving protein folding and expression. Improved pharmacokinetics and no effect on safety of BAY 81-8973 were observed in clinical trials in patients with hemophilia A. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Performance Evaluation of 18F Radioluminescence Microscopy Using Computational Simulation

    PubMed Central

    Wang, Qian; Sengupta, Debanti; Kim, Tae Jin; Pratx, Guillem

    2017-01-01

    Purpose Radioluminescence microscopy can visualize the distribution of beta-emitting radiotracers in live single cells with high resolution. Here, we perform a computational simulation of 18F positron imaging using this modality to better understand how radioluminescence signals are formed and to assist in optimizing the experimental setup and image processing. Methods First, the transport of charged particles through the cell and scintillator and the resulting scintillation is modeled using the GEANT4 Monte-Carlo simulation. Then, the propagation of the scintillation light through the microscope is modeled by a convolution with a depth-dependent point-spread function, which models the microscope response. Finally, the physical measurement of the scintillation light using an electron-multiplying charge-coupled device (EMCCD) camera is modeled using a stochastic numerical photosensor model, which accounts for various sources of noise. The simulated output of the EMCCD camera is further processed using our ORBIT image reconstruction methodology to evaluate the endpoint images. Results The EMCCD camera model was validated against experimentally acquired images and the simulated noise, as measured by the standard deviation of a blank image, was found to be accurate within 2% of the actual detection. Furthermore, point-source simulations found that a reconstructed spatial resolution of 18.5 μm can be achieved near the scintillator. As the source is moved away from the scintillator, spatial resolution degrades at a rate of 3.5 μm per μm distance. These results agree well with the experimentally measured spatial resolution of 30–40 μm (live cells). The simulation also shows that the system sensitivity is 26.5%, which is also consistent with our previous experiments. Finally, an image of a simulated sparse set of single cells is visually similar to the measured cell image. Conclusions Our simulation methodology agrees with experimental measurements taken with radioluminescence microscopy. This in silico approach can be used to guide further instrumentation developments and to provide a framework for improving image reconstruction. PMID:28273348

  20. Hybrid life-cycle assessment of natural gas based fuel chains for transportation.

    PubMed

    Strømman, Anders Hammer; Solli, Christian; Hertwich, Edgar G

    2006-04-15

    This research compares the use of natural gas, methanol, and hydrogen as transportation fuels. These three fuel chains start with the extraction and processing of natural gas in the Norwegian North Sea and end with final use in Central Europe. The end use is passenger transportation with a sub-compact car that has an internal combustion engine for the natural gas case and a fuel cell for the methanol and hydrogen cases. The life cycle assessment is performed by combining a process based life-cycle inventory with economic input-output data. The analysis shows that the potential climate impacts are lowest for the hydrogen fuel scenario with CO2 deposition. The hydrogen fuel chain scenario has no significant environmental disadvantage compared to the other fuel chains. Detailed analysis shows that the construction of the car contributes significantly to most impact categories. Finally, it is shown how the application of a hybrid inventory model ensures a more complete inventory description compared to standard process-based life-cycle assessment. This is particularly significant for car construction which would have been significantly underestimated in this study using standard process life-cycle assessment alone.

  1. FINAL REPORT: Transformational electrode drying process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claus Daniel, C.; Wixom, M.

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheatingmore » and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.« less

  2. Identification of genes involved in the ACC-mediated control of root cell elongation in Arabidopsis thaliana

    PubMed Central

    2012-01-01

    Background Along the root axis of Arabidopsis thaliana, cells pass through different developmental stages. In the apical meristem repeated cycles of division increase the numbers of cells. Upon leaving the meristem, these cells pass the transition zone where they are physiologically and mechanically prepared to undergo subsequent rapid elongation. During the process of elongation epidermal cells increase their length by 300% in a couple of hours. When elongation ceases, the cells acquire their final size, shape and functions (in the differentiation zone). Ethylene administered as its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) is capable of inhibiting elongation in a concentration-dependent way. Using a microarray analysis, genes and/or processes involved in this elongation arrest are identified. Results Using a CATMA-microarray analysis performed on control and 3h ACC-treated roots, 240 differentially expressed genes were identified. Quantitative Real-Time RT-PCR analysis of the 10 most up and down regulated genes combined with literature search confirmed the accurateness of the analysis. This revealed that inhibition of cell elongation is, at least partly, caused by restricting the events that under normal growth conditions initiate elongation and by increasing the processes that normally stop cellular elongation at the end of the elongation/onset of differentiation zone. Conclusions ACC interferes with cell elongation in the Arabidopsis thaliana roots by inhibiting cells from entering the elongation process and by immediately stimulating the formation of cross-links in cell wall components, diminishing the remaining elongation capacity. From the analysis of the differentially expressed genes, it becomes clear that many genes identified in this response, are also involved in several other kind of stress responses. This suggests that many responses originate from individual elicitors, but that somewhere in the downstream signaling cascade, these are converged to a ’common pathway’. Furthermore, several potential keyplayers, such as transcription factors and auxin-responsive genes, were identified by the microarray analysis. They await further analysis to reveal their exact role in the control of cell elongation. PMID:23134674

  3. Excess fructose intake-induced hypertrophic visceral adipose tissue results from unbalanced precursor cell adipogenic signals.

    PubMed

    Zubiría, María G; Fariña, Juan P; Moreno, Griselda; Gagliardino, Juan J; Spinedi, Eduardo; Giovambattista, Andrés

    2013-11-01

    We studied the effect of feeding normal adult male rats with a commercial diet supplemented with fructose added to the drinking water (10% w/v; fructose-rich diet, FRD) on the adipogenic capacity of stromal-vascular fraction (SVF) cells isolated from visceral adipose tissue (VAT) pads. Animals received either the commercial diet or FRD ad libitum for 3 weeks; thereafter, we evaluated the in vitro proliferative and adipogenic capacities of their VAT SVF cells. FRD significantly increased plasma insulin, triglyceride and leptin levels, VAT mass/cell size, and the in vitro adipogenic capacity of SVF cells. Flow cytometry studies indicated that the VAT precursor cell population number did not differ between groups; however, the accelerated adipogenic process could result from an imbalance between endogenous pro- and anti-adipogenic SVF cell signals, which are clearly shifted towards the former. The increased insulin milieu and its intracellular mediator (insulin receptor substrate-1) in VAT pads, as well as the enhanced SVF cell expression of Zpf423 and peroxisome proliferator receptor-γ2 (all pro-adipogenic modulators), together with a decreased SVF cell concentration of anti-adipogenic factors (pre-adipocyte factor-1 and wingless-type MMTV-10b), strongly supports this assumption. We hypothesize that the VAT mass expansion recorded in FRD rats results from the combination of initial accelerated adipogenesis and final cell hypertrophy. It remains to be determined whether FRD administration over longer periods could perpetuate both processes, or whether cell hypertrophy itself remains responsible for a further VAT mass expansion, as observed in advanced/morbid obesity. © 2013 FEBS.

  4. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia T.

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.

  5. Physical View on the Interactions Between Cancer Cells and the Endothelial Cell Lining During Cancer Cell Transmigration and Invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia T.

    2015-10-01

    There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.

  6. High efficiency vapor-fed AMTEC system for direct conversion. Appendices for final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, W.G.; Bland, J.J.

    1997-05-23

    This report consists of four appendices for the final report. They are: Appendix A: 700 C Vapor-Fed AMTEC Cell Calculations; Appendix B: 700 C Vapor-Fed AMTEC Cell Parts Drawings; Appendix C: 800 C Vapor-Fed AMTEC Cell Calculations; and Appendix D: 800 C Wick-Pumped AMTEC Cell System Design.

  7. Microfabricated systems and assays for studying the cytoskeletal organization, micromechanics, and motility patterns of cancerous cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huda, Sabil; Pilans, Didzis; Makurath, Monika

    Cell motions are driven by coordinated actions of the intracellular cytoskeleton – actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this paper, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting ofmore » FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cell types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Finally, together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior.« less

  8. Microfabricated systems and assays for studying the cytoskeletal organization, micromechanics, and motility patterns of cancerous cells

    DOE PAGES

    Huda, Sabil; Pilans, Didzis; Makurath, Monika; ...

    2014-08-28

    Cell motions are driven by coordinated actions of the intracellular cytoskeleton – actin, microtubules (MTs) and substrate/focal adhesions (FAs). This coordination is altered in metastatic cancer cells resulting in deregulated and increased cellular motility. Microfabrication tools, including photolithography, micromolding, microcontact printing, wet stamping and microfluidic devices have emerged as a powerful set of experimental tools with which to probe and define the differences in cytoskeleton organization/dynamics and cell motility patterns in non-metastatic and metastatic cancer cells. In this paper, we discuss four categories of microfabricated systems: (i) micropatterned substrates for studying of cell motility sub-processes (for example, MT targeting ofmore » FAs or cell polarization); (ii) systems for studying cell mechanical properties, (iii) systems for probing overall cell motility patterns within challenging geometric confines relevant to metastasis (for example, linear and ratchet geometries), and (iv) microfluidic devices that incorporate co-cultures of multiple cell types and chemical gradients to mimic in vivo intravasation/extravasation steps of metastasis. Finally, together, these systems allow for creating controlled microenvironments that not only mimic complex soft tissues, but are also compatible with live cell high-resolution imaging and quantitative analysis of single cell behavior.« less

  9. A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion.

    PubMed

    Anderson, Alexander R A

    2005-06-01

    In this paper we present a hybrid mathematical model of the invasion of healthy tissue by a solid tumour. In particular we consider early vascular growth, just after angiogenesis has occurred. We examine how the geometry of the growing tumour is affected by tumour cell heterogeneity caused by genetic mutations. As the tumour grows, mutations occur leading to a heterogeneous tumour cell population with some cells having a greater ability to migrate, proliferate or degrade the surrounding tissue. All of these cell properties are closely controlled by cell-cell and cell-matrix interactions and as such the physical geometry of the whole tumour will be dependent on these individual cell interactions. The hybrid model we develop focuses on four key variables implicated in the invasion process: tumour cells, host tissue (extracellular matrix), matrix-degradative enzymes and oxygen. The model is considered to be hybrid since the latter three variables are continuous (i.e. concentrations) and the tumour cells are discrete (i.e. individuals). With this hybrid model we examine how individual-based cell interactions (with one another and the matrix) can affect the tumour shape and discuss which of these interactions is perhaps most crucial in influencing the tumour's final structure.

  10. On-Chip Quantitative Measurement of Mechanical Stresses During Cell Migration with Emulsion Droplets

    NASA Astrophysics Data System (ADS)

    Molino, D.; Quignard, S.; Gruget, C.; Pincet, F.; Chen, Y.; Piel, M.; Fattaccioli, J.

    2016-07-01

    The ability of immune cells to migrate within narrow and crowded spaces is a critical feature involved in various physiological processes from immune response to metastasis. Several in-vitro techniques have been developed so far to study the behaviour of migrating cells, the most recent being based on the fabrication of microchannels within which cells move. To address the question of the mechanical stress a cell is able to produce during the encounter of an obstacle while migrating, we developed a hybrid microchip made of parallel PDMS channels in which oil droplets are sparsely distributed and serve as deformable obstacles. We thus show that cells strongly deform droplets while passing them. Then, we show that the microdevice can be used to study the influence of drugs on migration at the population level. Finally, we describe a quantitative analysis method of the droplet deformation that allows measuring in real-time the mechanical stress exerted by a single cell. The method presented herein thus constitutes a powerful analytical tool for cell migration studies under confinement.

  11. Twist1-positive epithelial cells retain adhesive and proliferative capacity throughout dissemination

    PubMed Central

    Shamir, Eliah R.; Coutinho, Kester; Georgess, Dan; Auer, Manfred

    2016-01-01

    ABSTRACT Dissemination is the process by which cells detach and migrate away from a multicellular tissue. The epithelial-to-mesenchymal transition (EMT) conceptualizes dissemination in a stepwise fashion, with downregulation of E-cadherin leading to loss of intercellular junctions, induction of motility, and then escape from the epithelium. This gain of migratory activity is proposed to be mutually exclusive with proliferation. We previously developed a dissemination assay based on inducible expression of the transcription factor Twist1 and here utilize it to characterize the timing and dynamics of intercellular adhesion, proliferation and migration during dissemination. Surprisingly, Twist1+ epithelium displayed extensive intercellular junctions, and Twist1– luminal epithelial cells could still adhere to disseminating Twist1+ cells. Although proteolysis and proliferation were both observed throughout dissemination, neither was absolutely required. Finally, Twist1+ cells exhibited a hybrid migration mode; their morphology and nuclear deformation were characteristic of amoeboid cells, whereas their dynamic protrusive activity, pericellular proteolysis and migration speeds were more typical of mesenchymal cells. Our data reveal that epithelial cells can disseminate while retaining competence to adhere and proliferate. PMID:27402962

  12. Chemotaxis of Amoeba proteus in the developing pH gradient within a pocket-like chamber studied with the computer assisted method.

    PubMed

    Korohoda, W; Golda, J; Sroka, J; Wojnarowicz, A; Jochym, P; Madeja, Z

    1997-01-01

    A new "U" shaped, pocket-like chamber was used to observe the chemotactic responses of individual cells. This method permits monitoring of both the development of the concentration gradient of a tested substance and cell locomotion. We investigated the chemotactic responses of Amoeba proteus and observed that the amoebae moved in positively and negatively developing [H+] gradients towards the solution of lower pH in a pH range 5.75-7.75. The chemotactic response of amoebae to [H+] gradients required the presence of extracellular calcium ions. It was blocked and random locomotion was restored by the replacement of calcium with magnesium in the cell medium. Time-lapse video recording and data processing were accomplished with computer-assisted methods. This made it possible to compare selected methods of data presentation and analysis for cells locomoting in isotropic and anisotropic conditions. The cell trajectories were determined and displayed in circular diagrams, lengths of cell tracks and final cell displacements were estimated and a few parameters characterizing cell locomotion were computed.

  13. CrxOS maintains the self-renewal capacity of murine embryonic stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Ryota; Yamasaki, Tokiwa; Nagai, Yoko

    2009-12-25

    Embryonic stem (ES) cells maintain pluripotency by self-renewal. Several homeoproteins, including Oct3/4 and Nanog, are known to be key factors in maintaining the self-renewal capacity of ES cells. However, other genes required for the mechanisms underlying this process are still unclear. Here we report the identification by in silico analysis of a homeobox-containing gene, CrxOS, that is specifically expressed in murine ES cells and is essential for their self-renewal. ES cells mainly express the short isoform of endogenous CrxOS. Using a polyoma-based episomal expression system, we demonstrate that overexpression of the CrxOS short isoform is sufficient for maintaining the undifferentiatedmore » morphology of ES cells and stimulating their proliferation. Finally, using RNA interference, we show that CrxOS is essential for the self-renewal of ES cells, and provisionally identify foxD3 as a downstream target gene of CrxOS. To our knowledge, ours is the first delineation of the physiological role of CrxOS in ES cells.« less

  14. Mitosis-specific phosphorylation of amyloid precursor protein at Threonine 668 leads to its altered processing and association with centrosomes

    PubMed Central

    2011-01-01

    Background Atypical expression of cell cycle regulatory proteins has been implicated in Alzheimer's disease (AD), but the molecular mechanisms by which they induce neurodegeneration are not well understood. We examined transgenic mice expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) for changes in cell cycle regulatory proteins to determine whether there is a correlation between cell cycle activation and pathology development in AD. Results Our studies in the AD transgenic mice show significantly higher levels of cyclin E, cyclin D1, E2F1, and P-cdc2 in the cells in the vicinity of the plaques where maximum levels of Threonine 668 (Thr668)-phosphorylated APP accumulation was observed. This suggests that the cell cycle regulatory proteins might be influencing plaque pathology by affecting APP phosphorylation. Using neuroglioma cells overexpressing APP we demonstrate that phosphorylation of APP at Thr668 is mitosis-specific. Cells undergoing mitosis show altered cellular distribution and localization of P-APP at the centrosomes. Also, Thr668 phosphorylation in mitosis correlates with increased processing of APP to generate Aβ and the C-terminal fragment of APP, which is prevented by pharmacological inhibitors of the G1/S transition. Conclusions The data presented here suggests that cell cycle-dependent phosphorylation of APP may affect its normal cellular function. For example, association of P-APP with the centrosome may affect spindle assembly and cell cycle progression, further contributing to the development of pathology in AD. The experiments with G1/S inhibitors suggest that cell cycle inhibition may impede the development of Alzheimer's pathology by suppressing modification of βAPP, and thus may represent a novel approach to AD treatment. Finally, the cell cycle regulated phosphorylation and processing of APP into Aβ and the C-terminal fragment suggest that these proteins may have a normal function during mitosis. PMID:22112898

  15. Fluorescence dye-based detection of mAb aggregates in CHO culture supernatants.

    PubMed

    Paul, Albert Jesuran; Schwab, Karen; Prokoph, Nina; Haas, Elena; Handrick, René; Hesse, Friedemann

    2015-06-01

    Product yields, efficacy, and safety of monoclonal antibodies (mAbs) are reduced by the formation of higher molecular weight aggregates during upstream processing. In-process characterization of mAb aggregate formation is a challenge since there is a lack of a fast detection method to identify mAb aggregates in cell culture. In this work, we present a rapid method to characterize mAb aggregate-containing Chinese hamster ovary (CHO) cell culture supernatants. The fluorescence dyes thioflavin T (ThT) and 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS) enabled the detection of soluble as well as large mAb aggregates. Partial least square (PLS) regression models were used to evaluate the linearity of the dye-based mAb aggregate detection in buffer down to a mAb aggregate concentration of 2.4 μg mL(-1). Furthermore, mAb aggregates were detected in bioprocess medium using Bis-ANS and ThT. Dye binding to aggregates was stable for 60 min, making the method robust and reliable. Finally, the developed method using 10 μmol L(-1) Bis-ANS enabled discrimination between CHO cell culture supernatants containing different levels of mAb aggregates. The method can be adapted for high-throughput screening, e.g., to screen for cell culture conditions influencing mAb product quality, and hence can contribute to the improvement of production processes of biopharmaceuticals in mammalian cell culture.

  16. Quantifying the cellular uptake of semiconductor quantum dot nanoparticles by analytical electron microscopy.

    PubMed

    Hondow, Nicole; Brown, M Rowan; Starborg, Tobias; Monteith, Alexander G; Brydson, Rik; Summers, Huw D; Rees, Paul; Brown, Andy

    2016-02-01

    Semiconductor quantum dot nanoparticles are in demand as optical biomarkers yet the cellular uptake process is not fully understood; quantification of numbers and the fate of internalized particles are still to be achieved. We have focussed on the characterization of cellular uptake of quantum dots using a combination of analytical electron microscopies because of the spatial resolution available to examine uptake at the nanoparticle level, using both imaging to locate particles and spectroscopy to confirm identity. In this study, commercially available quantum dots, CdSe/ZnS core/shell particles coated in peptides to target cellular uptake by endocytosis, have been investigated in terms of the agglomeration state in typical cell culture media, the traverse of particle agglomerates across U-2 OS cell membranes during endocytosis, the merging of endosomal vesicles during incubation of cells and in the correlation of imaging flow cytometry and transmission electron microscopy to measure the final nanoparticle dose internalized by the U-2 OS cells. We show that a combination of analytical transmission electron microscopy and serial block face scanning electron microscopy can provide a comprehensive description of the internalization of an initial exposure dose of nanoparticles by an endocytically active cell population and how the internalized, membrane bound nanoparticle load is processed by the cells. We present a stochastic model of an endosome merging process and show that this provides a data-driven modelling framework for the prediction of cellular uptake of engineered nanoparticles in general. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. Standard cell-based implementation of a digital optoelectronic neural-network hardware.

    PubMed

    Maier, K D; Beckstein, C; Blickhan, R; Erhard, W

    2001-03-10

    A standard cell-based implementation of a digital optoelectronic neural-network architecture is presented. The overall structure of the multilayer perceptron network that was used, the optoelectronic interconnection system between the layers, and all components required in each layer are defined. The design process from VHDL-based modeling from synthesis and partly automatic placing and routing to the final editing of one layer of the circuit of the multilayer perceptrons are described. A suitable approach for the standard cell-based design of optoelectronic systems is presented, and shortcomings of the design tool that was used are pointed out. The layout for the microelectronic circuit of one layer in a multilayer perceptron neural network with a performance potential 1 magnitude higher than neural networks that are purely electronic based has been successfully designed.

  18. Li-ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts

    PubMed Central

    Zhang, Xiaowei; Sahraei, Elham; Wang, Kai

    2016-01-01

    Separator integrity is an important factor in preventing internal short circuit in lithium-ion batteries. Local penetration tests (nail or conical punch) often produce presumably sporadic results, where in exactly similar cell and test set-ups one cell goes to thermal runaway while the other shows minimal reactions. We conducted an experimental study of the separators under mechanical loading, and discovered two distinct deformation and failure mechanisms, which could explain the difference in short circuit characteristics of otherwise similar tests. Additionally, by investigation of failure modes, we provided a hypothesis about the process of formation of local “soft short circuits” in cells with undetectable failure. Finally, we proposed a criterion for predicting onset of soft short from experimental data. PMID:27581185

  19. Tribbles in normal and malignant haematopoiesis.

    PubMed

    Stein, Sarah J; Mack, Ethan A; Rome, Kelly S; Pear, Warren S

    2015-10-01

    The tribbles protein family, an evolutionarily conserved group of pseudokinases, have been shown to regulate multiple cellular events including those involved in normal and malignant haematopoiesis. The three mammalian Tribbles homologues, Trib1, Trib2 and Trib3 are characterized by conserved motifs, including a pseudokinase domain and a C-terminal E3 ligase-binding domain. In this review, we focus on the role of Trib (mammalian Tribbles homologues) proteins in mammalian haematopoiesis and leukaemia. The Trib proteins show divergent expression in haematopoietic cells, probably indicating cell-specific functions. The roles of the Trib proteins in oncogenesis are also varied and appear to be tissue-specific. Finally, we discuss the potential mechanisms by which the Trib proteins preferentially regulate these processes in multiple cell types. © 2015 Authors; published by Portland Press Limited.

  20. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components

    PubMed

    Torkashvand, Fatemeh; Vaziri, Behrouz

    2017-05-01

    The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.

Top