The Interplay between Cell Wall Mechanical Properties and the Cell Cycle in Staphylococcus aureus
Bailey, Richard G.; Turner, Robert D.; Mullin, Nic; Clarke, Nigel; Foster, Simon J.; Hobbs, Jamie K.
2014-01-01
The nanoscale mechanical properties of live Staphylococcus aureus cells during different phases of growth were studied by atomic force microscopy. Indentation to different depths provided access to both local cell wall mechanical properties and whole-cell properties, including a component related to cell turgor pressure. Local cell wall properties were found to change in a characteristic manner throughout the division cycle. Splitting of the cell into two daughter cells followed a local softening of the cell wall along the division circumference, with the cell wall on either side of the division circumference becoming stiffer. Once exposed, the newly formed septum was found to be stiffer than the surrounding, older cell wall. Deeper indentations, which were affected by cell turgor pressure, did not show a change in stiffness throughout the division cycle, implying that enzymatic cell wall remodeling and local variations in wall properties are responsible for the evolution of cell shape through division. PMID:25468333
Analysis of surface properties of fixed and live cells using derivatized agarose beads.
Navarro, Vanessa M; Walker, Sherri L; Badali, Oliver; Abundis, Maria I; Ngo, Lylla L; Weerasinghe, Gayani; Barajas, Marcela; Zem, Gregory; Oppenheimer, Steven B
2002-01-01
A novel assay has been developed for the histochemical characterization of surface properties of cells based on their adhesion to agarose beads derivatized with more than 100 types of molecules, including sugars, lectins and other proteins, and amino acids. The assay simply involves mixing small quantities of washed cells and beads in droplets on glass microscope slides and determining to which beads various cell types adhere. Distilled water was found to be the best medium for this assay because added ions or molecules in other media inhibit adhesion in some cases. Many cells, however, cannot tolerate distilled water. Here we show that cells fixed with either of two fixatives (1% formaldehyde or Prefer fixative) displayed similar bead-binding properties as did live cells. Specificity of cell-bead binding was tested by including specific free molecules in the test suspensions in hapten-type inhibition experiments. If a hapten compound inhibited live-cell adhesion to a specific bead, it also inhibited fixed-cell adhesion to a specific bead. The results of these experiments suggest that fixed cells display authentic surface properties, opening the door for the use of this assay with many cell types that cannot tolerate distilled water.
Iron Oxide as an MRI Contrast Agent for Cell Tracking
Korchinski, Daniel J.; Taha, May; Yang, Runze; Nathoo, Nabeela; Dunn, Jeff F.
2015-01-01
Iron oxide contrast agents have been combined with magnetic resonance imaging for cell tracking. In this review, we discuss coating properties and provide an overview of ex vivo and in vivo labeling of different cell types, including stem cells, red blood cells, and monocytes/macrophages. Furthermore, we provide examples of applications of cell tracking with iron contrast agents in stroke, multiple sclerosis, cancer, arteriovenous malformations, and aortic and cerebral aneurysms. Attempts at quantifying iron oxide concentrations and other vascular properties are examined. We advise on designing studies using iron contrast agents including methods for validation. PMID:26483609
Dufrêne, Y F
2001-02-01
The application of atomic force microscopy (AFM) to probe the ultrastructure and physical properties of microbial cell surfaces is reviewed. The unique capabilities of AFM can be summarized as follows: imaging surface topography with (sub)nanometer lateral resolution; examining biological specimens under physiological conditions; measuring local properties and interaction forces. AFM is being used increasingly for: (i) visualizing the surface ultrastructure of microbial cell surface layers, including bacterial S-layers, purple membranes, porin OmpF crystals and fungal rodlet layers; (ii) monitoring conformational changes of individual membrane proteins; (iii) examining the morphology of bacterial biofilms, (iv) revealing the nanoscale structure of living microbial cells, including fungi, yeasts and bacteria, (v) mapping interaction forces at microbial surfaces, such as van der Waals and electrostatic forces, solvation forces, and steric/bridging forces; and (vi) probing the local mechanical properties of cell surface layers and of single cells.
Mechanical phenotyping of tumor cells using a microfluidic cell squeezer device
NASA Astrophysics Data System (ADS)
Khan, Zeina S.; Kamyabi, Nabiollah; Vanapalli, Siva A.
2013-03-01
Studies have indicated that cancer cells have distinct mechanical properties compared to healthy cells. We are investigating the potential of cell mechanics as a biophysical marker for diagnostics and prognosis of cancer. To establish the significance of mechanical properties for cancer diagnostics, a high throughput method is desired. Although techniques such as atomic force microscopy are very precise, they are limited in throughput for cellular mechanical property measurements. To develop a device for high throughput mechanical characterization of tumor cells, we have fabricated a microfludic cell squeezer device that contains narrow micrometer-scale pores. Fluid flow is used to drive cells into these pores mimicking the flow-induced passage of circulating tumor cells through microvasculature. By integrating high speed imaging, the device allows for the simultaneous characterization of five different parameters including the blockage pressure, cell velocity, cell size, elongation and the entry time into squeezer. We have tested a variety of in vitro cell lines, including brain and prostate cancer cell lines, and have found that the entry time is the most sensitive measurement capable of differentiating between cell lines with differing invasiveness.
Genetic Engineering of Mesenchymal Stem Cells for Regenerative Medicine.
Nowakowski, Adam; Walczak, Piotr; Janowski, Miroslaw; Lukomska, Barbara
2015-10-01
Mesenchymal stem cells (MSCs), which can be obtained from various organs and easily propagated in vitro, are one of the most extensively used types of stem cells and have been shown to be efficacious in a broad set of diseases. The unique and highly desirable properties of MSCs include high migratory capacities toward injured areas, immunomodulatory features, and the natural ability to differentiate into connective tissue phenotypes. These phenotypes include bone and cartilage, and these properties predispose MSCs to be therapeutically useful. In addition, MSCs elicit their therapeutic effects by paracrine actions, in which the metabolism of target tissues is modulated. Genetic engineering methods can greatly amplify these properties and broaden the therapeutic capabilities of MSCs, including transdifferentiation toward diverse cell lineages. However, cell engineering can also affect safety and increase the cost of therapy based on MSCs; thus, the advantages and disadvantages of these procedures should be discussed. In this review, the latest applications of genetic engineering methods for MSCs with regenerative medicine purposes are presented.
NASA Technical Reports Server (NTRS)
Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)
2014-01-01
A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.
Wang, Yi-Xiang J.; Xuan, Shouhu; Port, Marc; Idee, Jean-Marc
2013-01-01
Advances of nanotechnology have led to the development of nanomaterials with both potential diagnostic and therapeutic applications. Among them, superparamagnetic iron oxide (SPIO) nanoparticles have received particular attention. Over the past decade, various SPIOs with unique physicochemical and biological properties have been designed by modifying the particle structure, size and coating. This article reviews the recent advances in preparing SPIOs with novel properties, the way these physicochemical properties of SPIOs influence their interaction with cells, and the development of SPIOs in liver and lymph nodes magnetic resonance imaging (MRI) contrast. Cellular uptake of SPIO can be exploited in a variety of potential clinical applications, including stem cell and inflammation cell tracking and intra-cellular drug delivery to cancerous cells which offers higher intra-cellular concentration. When SPIOs are used as carrier vehicle, additional advantages can be achieved including magnetic targeting and hyperthermia options, as well as monitoring with MRI. Other potential applications of SPIO include magnetofection and gene delivery, targeted retention of labeled stem cells, sentinel lymph nodes mapping, and magnetic force targeting and cell orientation for tissue engineering. PMID:23621536
2017-01-01
The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858
Intrinsic physiological properties of rat retinal ganglion cells with a comparative analysis.
Wong, Raymond C S; Cloherty, Shaun L; Ibbotson, Michael R; O'Brien, Brendan J
2012-10-01
Mammalian retina contains 15-20 different retinal ganglion cell (RGC) types, each of which is responsible for encoding different aspects of the visual scene. The encoding is defined by a combination of RGC synaptic inputs, the neurotransmitter systems used, and their intrinsic physiological properties. Each cell's intrinsic properties are defined by its morphology and membrane characteristics, including the complement and localization of the ion channels expressed. In this study, we examined the hypothesis that the intrinsic properties of individual RGC types are conserved among mammalian species. To do so, we measured the intrinsic properties of 16 morphologically defined rat RGC types and compared these data with cat RGC types. Our data demonstrate that in the rat different morphologically defined RGC types have distinct patterns of intrinsic properties. Variation in these properties across cell types was comparable to that found for cat RGC types. When presumed morphological homologs in rat and cat retina were compared directly, some RGC types had very similar properties. The rat A2 cell exhibited patterns of intrinsic properties nearly identical to the cat alpha cell. In contrast, rat D2 cells (ON-OFF directionally selective) had a very different pattern of intrinsic properties than the cat iota cell. Our data suggest that the intrinsic properties of RGCs with similar morphology and suspected visual function may be subject to variation due to the behavioral needs of the species.
A network of heterochronic genes including Imp1 regulates temporal changes in stem cell properties
Nishino, Jinsuke; Kim, Sunjung; Zhu, Yuan; Zhu, Hao; Morrison, Sean J
2013-01-01
Stem cell properties change over time to match the changing growth and regeneration demands of tissues. We showed previously that adult forebrain stem cell function declines during aging because of increased expression of let-7 microRNAs, evolutionarily conserved heterochronic genes that reduce HMGA2 expression. Here we asked whether let-7 targets also regulate changes between fetal and adult stem cells. We found a second let-7 target, the RNA binding protein IMP1, that is expressed by fetal, but not adult, neural stem cells. IMP1 expression was promoted by Wnt signaling and Lin28a expression and opposed by let-7 microRNAs. Imp1-deficient neural stem cells were prematurely depleted in the dorsal telencephalon due to accelerated differentiation, impairing pallial expansion. IMP1 post-transcriptionally inhibited the expression of differentiation-associated genes while promoting the expression of self-renewal genes, including Hmga2. A network of heterochronic gene products including Lin28a, let-7, IMP1, and HMGA2 thus regulates temporal changes in stem cell properties. DOI: http://dx.doi.org/10.7554/eLife.00924.001 PMID:24192035
Phenotypic, Functional, and Safety Control at Preimplantation Phase of MSC-Based Therapy.
Lech, Wioletta; Figiel-Dabrowska, Anna; Sarnowska, Anna; Drela, Katarzyna; Obtulowicz, Patrycja; Noszczyk, Bartlomiej Henryk; Buzanska, Leonora; Domanska-Janik, Krystyna
2016-01-01
Mesenchymal stem cells (MSC) exhibit enormous heterogeneity which can modify their regenerative properties and therefore influence therapeutic effectiveness as well as safety of these cells transplantation. In addition the high phenotypic plasticity of MSC population makes it enormously sensitive to any changes in environmental properties including fluctuation in oxygen concentration. We have shown here that lowering oxygen level far below air atmosphere has a beneficial impact on various parameters characteristic for umbilical cord Wharton Jelly- (WJ-) MSC and adipose tissue- (AD-) derived MSC cultures. This includes their cellular composition, rate of proliferation, and maintenance of stemness properties together with commitment to cell differentiation toward mesodermal and neural lineages. In addition, the culture genomic stability increased significantly during long-term cell passaging and eventually protected cells against spontaneous transformation. Also by comparing of two routinely used methods of MSCs isolation (mechanical versus enzymatic) we have found substantial divergence arising between cell culture properties increasing along the time of cultivation in vitro. Thus, in this paper we highlight the urgent necessity to develop the more sensitive and selective methods for prediction and control cells fate and functioning during the time of growth in vitro.
NASA Astrophysics Data System (ADS)
Bailey, Richard; Mullin, Nic; Turner, Robert; Foster, Simon; Hobbs, Jamie
2014-03-01
Staphylococcus aureus is a major cause of infection in humans, including the Methicillin resistant strain, MRSA. However, very little is known about the mechanical properties of these cells. Our investigations use AFM to examine live S. aureus cells to quantify mechanical properties. These were explored using force spectroscopy with different trigger forces, allowing the properties to be extracted at different indentation depths. A value for the cell wall stiffness has been extracted, along with a second, higher value which is found upon indenting at higher forces. This higher value drops as the cells are exposed to high salt, sugar and detergent concentrations, implying that this measurement contains a contribution from the internal turgor pressure. We have monitored these properties as the cells progress through the cell cycle. Force maps were taken over the cells at different stages of the growth process to identify changes in the mechanics throughout the progression of growth and division. The effect of Oxacillin has also been studied, to better understand its mechanism of action. Finally mutant strains of S. aureus and a second species Bacillus subtilis have been used to link the mechanical properties of the cell walls with the chain lengths and substructures involved.
External tufted cells in the main olfactory bulb form two distinct subpopulations.
Antal, Miklós; Eyre, Mark; Finklea, Bryson; Nusser, Zoltan
2006-08-01
The glomeruli of the main olfactory bulb are the first processing station of the olfactory pathway, where complex interactions occur between sensory axons, mitral cells and a variety of juxtaglomerular neurons, including external tufted cells (ETCs). Despite a number of studies characterizing ETCs, little is known about how their morphological and functional properties correspond to each other. Here we determined the active and passive electrical properties of ETCs using in vitro whole-cell recordings, and correlated them with their dendritic arborization patterns. Principal component followed by cluster analysis revealed two distinct subpopulations of ETCs based on their electrophysiological properties. Eight out of 12 measured physiological parameters exhibited significant difference between the two subpopulations, including the membrane time constant, amplitude of spike afterhyperpolarization, variance in the interspike interval distribution and subthreshold resonance. Cluster analysis of the morphological properties of the cells also revealed two subpopulations, the most prominent dissimilarity between the groups being the presence or absence of secondary, basal dendrites. Finally, clustering the cells taking all measured properties into account also indicated the presence of two subpopulations that mapped in an almost perfect one-to-one fashion to both the physiologically and the morphologically derived groups. Our results demonstrate that a number of functional and structural properties of ETCs are highly predictive of one another. However, cells within each subpopulation exhibit pronounced variability, suggesting a large degree of specialization evolved to fulfil specific functional requirements in olfactory information processing.
External tufted cells in the main olfactory bulb form two distinct subpopulations
Antal, Miklós; Eyre, Mark; Finklea, Bryson; Nusser, Zoltan
2006-01-01
The glomeruli of the main olfactory bulb are the first processing station of the olfactory pathway, where complex interactions occur between sensory axons, mitral cells and a variety of juxtaglomerular neurons, including external tufted cells (ETCs). Despite a number of studies characterizing ETCs, little is known about how their morphological and functional properties correspond to each other. Here we determined the active and passive electrical properties of ETCs using in vitro whole-cell recordings, and correlated them with their dendritic arborization patterns. Principal component followed by cluster analysis revealed two distinct subpopulations of ETCs based on their electrophysiological properties. Eight out of 12 measured physiological parameters exhibited significant difference between the two subpopulations, including the membrane time constant, amplitude of spike afterhyperpolarization, variance in the interspike interval distribution and subthreshold resonance. Cluster analysis of the morphological properties of the cells also revealed two subpopulations, the most prominent dissimilarity between the groups being the presence or absence of secondary, basal dendrites. Finally, clustering the cells taking all measured properties into account also indicated the presence of two subpopulations that mapped in an almost perfect one-to-one fashion to both the physiologically and the morphologically derived groups. Our results demonstrate that a number of functional and structural properties of ETCs are highly predictive of one another. However, cells within each subpopulation exhibit pronounced variability, suggesting a large degree of specialization evolved to fulfil specific functional requirements in olfactory information processing. PMID:16930438
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassett, J.M.
1988-01-01
Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, andmore » 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.« less
NASA Astrophysics Data System (ADS)
Sutter, Leo; Kolbman, Dan; Wu, Mingming; Ma, Minglin; Das, Moumita
The biophysics of cell co-cultures, i.e. binary systems of cell populations, is of great interest in many biological processes including formation of embryos, and tumor progression. During these processes, different types of cells with different physical properties are mixed with each other, with important consequences for cell-cell interaction, aggregation, and migration. The role of the differences in their physical properties in their collective behavior remains poorly understood. Furthermore, until recently most theoretical studies of collective cell migration have focused on two dimensional systems. Under physiological conditions, however, cells often have to navigate three dimensional and confined micro-environments. We study a confined, three-dimensional binary system of interacting, active, and deformable particles with different physical properties such as deformability, motility, adhesion, and division rates using Langevin Dynamics simulations. Our findings may provide insights into how the differences in and interplay between cell mechanical properties, division, and motility influence emergent collective behavior such as cell aggregation and segregation experimentally observed in co-cultures of breast cancer cells and healthy breast epithelial cells. This work was partially supported by a Cottrell College Science Award.
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
Yue, Kan; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali
2015-01-01
Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. Three dimensional (3D) GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties which mimic the native ECM. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental single-single cell research, cell signaling, drug and gene delivery, and bio-sensing. PMID:26414409
Cell refractive index for cell biology and disease diagnosis: past, present and future.
Liu, P Y; Chin, L K; Ser, W; Chen, H F; Hsieh, C-M; Lee, C-H; Sung, K-B; Ayi, T C; Yap, P H; Liedberg, B; Wang, K; Bourouina, T; Leprince-Wang, Y
2016-02-21
Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.
van Lith, R.; Gregory, E.K.; Yang, J.; Kibbe, M.R.; Ameer, G.A.
2014-01-01
Oxidative stress plays an important role in the limited biological compatibility of many biomaterials due to inflammation, as well as in various pathologies including atherosclerosis and restenosis as a result of vascular interventions. Engineering antioxidant properties into a material is therefore a potential avenue to improve the biocompatibility of materials, as well as to locally attenuate oxidative stress-related pathologies. Moreover, biodegradable polymers that have antioxidant properties built into their backbone structure have high relative antioxidant content and may provide prolonged, continuous attenuation of oxidative stress while the polymer or its degradation products are present. In this report, we describe the synthesis of poly(1,8-octanediol-co-citrate-co-ascorbate) (POCA), a citric-acid based biodegradable elastomer with native, intrinsic antioxidant properties. The in vitro antioxidant activity of POCA as well as its effects on vascular cells in vitro and in vivo were studied. Antioxidant properties investigated included scavenging of free radicals, iron chelation and the inhibition of lipid peroxidation. POCA reduced reactive oxygen species generation in cells after an oxidative challenge and protected cells from oxidative stress-induced cell death. Importantly, POCA antioxidant properties remained present upon degradation. Vascular cells cultured on POCA showed high viability, and POCA selectively inhibited smooth muscle cell proliferation, while supporting endothelial cell proliferation. Finally, preliminary data on POCA-coated ePTFE grafts showed reduced intimal hyperplasia when compared to standard ePTFE grafts. This biodegradable, intrinsically antioxidant polymer may be useful for tissue engineering application where oxidative stress is a concern. PMID:24976244
Bi-directional signaling: Extracellular Matrix and Integrin Regulation of Breast Tumor Progression
Gehler, Scott; Ponik, Suzanne M.; Riching, Kristin M; Keely, Patricia J.
2016-01-01
Cell transformation and tumor progression involves a common set of acquired capabilities, including increased proliferation, failure of cell death, self-sufficiency in growth, angiogenesis, and tumor cell invasion and metastasis (1). The stromal environment consists of many cell types, including fibroblasts, macrophages, and endothelial cells, in addition to various extracellular matrix (ECM) proteins that function to support normal tissue maintenance, but have also been implicated in tumor progression (2). Both the chemical and mechanical properties of the ECM have been shown to influence normal and malignant cell behavior. For instance, mesenchymal stem cells differentiate into specific lineages that are dependent on matrix stiffness (3), while tumor cells undergo changes in cell behavior and gene expression in response to matrix stiffness (4). ECM remodeling is implicated in tumor progression and includes changes in both the chemical and mechanical properties of the ECM (5) that can be a result of 1.) increased deposition of stromal ECM, 2.) enhanced contraction of ECM fibrils, and 3.) altered collagen alignment and ECM stiffness. In addition, remodeling of the ECM may alter whether tumor cells employ proteolytic degradation mechanisms during invasion and metastasis. Tumor cells respond to such changes in ECM remodeling through altered intracellular signaling and cell cycle control that lead to enhanced proliferation, loss of normal tissue architecture, and local tumor cell migration and invasion into the surrounding stromal tissue (6). This review will focus on the bi-directional interplay between the mechanical properties of the ECM and changes in integrin-mediated signal transduction events in an effort to elucidate cell behaviors during tumor progression. PMID:23582036
BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS
Johnstone, Scott; Isakson, Brant; Locke, Darren
2010-01-01
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177
Connelly, William M; Crunelli, Vincenzo; Errington, Adam C
2015-11-25
Low-threshold Ca(2+) spikes (LTS) are an indispensible signaling mechanism for neurons in areas including the cortex, cerebellum, basal ganglia, and thalamus. They have critical physiological roles and have been strongly associated with disorders including epilepsy, Parkinson's disease, and schizophrenia. However, although dendritic T-type Ca(2+) channels have been implicated in LTS generation, because the properties of low-threshold spiking neuron dendrites are unknown, the precise mechanism has remained elusive. Here, combining data from fluorescence-targeted dendritic recordings and Ca(2+) imaging from low-threshold spiking cells in rat brain slices with computational modeling, the cellular mechanism responsible for LTS generation is established. Our data demonstrate that key somatodendritic electrical conduction properties are highly conserved between glutamatergic thalamocortical neurons and GABAergic thalamic reticular nucleus neurons and that these properties are critical for LTS generation. In particular, the efficiency of soma to dendrite voltage transfer is highly asymmetric in low-threshold spiking cells, and in the somatofugal direction, these neurons are particularly electrotonically compact. Our data demonstrate that LTS have remarkably similar amplitudes and occur synchronously throughout the dendritic tree. In fact, these Ca(2+) spikes cannot occur locally in any part of the cell, and hence we reveal that LTS are generated by a unique whole-cell mechanism that means they always occur as spatially global spikes. This all-or-none, global electrical and biochemical signaling mechanism clearly distinguishes LTS from other signals, including backpropagating action potentials and dendritic Ca(2+)/NMDA spikes, and has important consequences for dendritic function in low-threshold spiking neurons. Low-threshold Ca(2+) spikes (LTS) are critical for important physiological processes, including generation of sleep-related oscillations, and are implicated in disorders including epilepsy, Parkinson's disease, and schizophrenia. However, the mechanism underlying LTS generation in neurons, which is thought to involve dendritic T-type Ca(2+) channels, has remained elusive due to a lack of knowledge of the dendritic properties of low-threshold spiking cells. Combining dendritic recordings, two-photon Ca(2+) imaging, and computational modeling, this study reveals that dendritic properties are highly conserved between two prominent low-threshold spiking neurons and that these properties underpin a whole-cell somatodendritic spike generation mechanism that makes the LTS a unique global electrical and biochemical signal in neurons. Copyright © 2015 Connelly et al.
Chen, Jian; Xue, Chengcheng; Zhao, Yang; Chen, Deyong; Wu, Min-Hsien; Wang, Junbo
2015-01-01
This article reviews recent developments in microfluidic impedance flow cytometry for high-throughput electrical property characterization of single cells. Four major perspectives of microfluidic impedance flow cytometry for single-cell characterization are included in this review: (1) early developments of microfluidic impedance flow cytometry for single-cell electrical property characterization; (2) microfluidic impedance flow cytometry with enhanced sensitivity; (3) microfluidic impedance and optical flow cytometry for single-cell analysis and (4) integrated point of care system based on microfluidic impedance flow cytometry. We examine the advantages and limitations of each technique and discuss future research opportunities from the perspectives of both technical innovation and clinical applications. PMID:25938973
Abdeen, Amr A; Lee, Junmin; Kilian, Kristopher A
2016-05-01
Rapid advances in biology have led to the establishment of new fields with tremendous translational potential including regenerative medicine and immunoengineering. One commonality to these fields is the need to extract cells for manipulation in vitro; however, results obtained in laboratory cell culture will often differ widely from observations made in vivo. To more closely emulate native cell biology in the laboratory, designer engineered environments have proved a successful methodology to decipher the properties of the extracellular matrix that govern cellular decision making. Here, we present an overview of matrix properties that affect cell behavior, strategies for recapitulating important parameters in vitro, and examples of how these properties can affect cell and tissue level processes, with emphasis on leveraging these tools for immunoengineering. © 2016 by the Society for Experimental Biology and Medicine.
Kumar, Nathan; Richter, Jenna; Cutts, Josh; Bush, Kevin T; Trujillo, Cleber; Nigam, Sanjay K; Gaasterland, Terry; Brafman, David; Willert, Karl
2015-01-01
The field of tissue engineering entered a new era with the development of human pluripotent stem cells (hPSCs), which are capable of unlimited expansion whilst retaining the potential to differentiate into all mature cell populations. However, these cells harbor significant risks, including tumor formation upon transplantation. One way to mitigate this risk is to develop expandable progenitor cell populations with restricted differentiation potential. Here, we used a cellular microarray technology to identify a defined and optimized culture condition that supports the derivation and propagation of a cell population with mesodermal properties. This cell population, referred to as intermediate mesodermal progenitor (IMP) cells, is capable of unlimited expansion, lacks tumor formation potential, and, upon appropriate stimulation, readily acquires properties of a sub-population of kidney cells. Interestingly, IMP cells fail to differentiate into other mesodermally-derived tissues, including blood and heart, suggesting that these cells are restricted to an intermediate mesodermal fate. DOI: http://dx.doi.org/10.7554/eLife.08413.001 PMID:26554899
Biophysics and dynamics of natural and engineered stem cell microenvironments.
Keung, Albert J; Healy, Kevin E; Kumar, Sanjay; Schaffer, David V
2010-01-01
Stem cells are defined by their ability to self-renew and to differentiate into one or more mature lineages, and they reside within natural niches in many types of adult and embryonic tissues that present them with complex signals to regulate these two hallmark properties. The diverse nature of these in vivo microenvironments raises important questions about the microenvironmental cues regulating stem cell plasticity, and the stem cell field has built a strong foundation of knowledge on the biochemical identities and regulatory effects of the soluble, cellular, and extracellular matrix factors surrounding stem cells through the isolation and culture of stem cells in vitro within microenvironments that, in effect, emulate the properties of the natural niche. Recent work, however, has expanded the field's perspective to include biophysical and dynamic characteristics of the microenvironment. These include biomechanical characteristics such as elastic modulus, shear force, and cyclic strain; architectural properties such as geometry, topography, and dimensionality; and dynamic structures and ligand profiles. We will review how these microenvironmental characteristics have been shown to regulate stem cell fate and discuss future research directions that may help expand our current understanding of stem cell biology and aid its application to regenerative medicine.
Unique properties of halide perovskites as possible origins of the superior solar cell performance.
Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
2014-07-16
Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shay, Christopher F.; Ferrante, Michele; Chapman, G. William; Hasselmo, Michael E.
2015-01-01
Rebound spiking properties of medial entorhinal cortex (mEC) stellate cells induced by inhibition may underlie their functional properties in awake behaving rats, including the temporal phase separation of distinct grid cells and differences in grid cell firing properties. We investigated rebound spiking properties using whole cell patch recording in entorhinal slices, holding cells near spiking threshold and delivering sinusoidal inputs, superimposed with realistic inhibitory synaptic inputs to test the capacity of cells to selectively respond to specific phases of inhibitory input. Stellate cells showed a specific phase range of hyperpolarizing inputs that elicited spiking, but non-stellate cells did not show phase specificity. In both cell types, the phase range of spiking output occurred between the peak and subsequent descending zero crossing of the sinusoid. The phases of inhibitory inputs that induced spikes shifted earlier as the baseline sinusoid frequency increased, while spiking output shifted to later phases. Increases in magnitude of the inhibitory inputs shifted the spiking output to earlier phases. Pharmacological blockade of h-current abolished the phase selectivity of hyperpolarizing inputs eliciting spikes. A network computational model using cells possessing similar rebound properties as found in vitro produces spatially periodic firing properties resembling grid cell firing when a simulated animal moves along a linear track. These results suggest that the ability of mEC stellate cells to fire rebound spikes in response to a specific range of phases of inhibition could support complex attractor dynamics that provide completion and separation to maintain spiking activity of specific grid cell populations. PMID:26385258
Memory-like Responses of Natural Killer Cells
Cooper, Megan A.; Yokoyama, Wayne M.
2010-01-01
Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571
Mitsiades, Constantine S; Rouleau, Cecile; Echart, Cinara; Menon, Krishna; Teicher, Beverly; Distaso, Maria; Palumbo, Antonio; Boccadoro, Mario; Anderson, Kenneth C; Iacobelli, Massimo; Richardson, Paul G
2009-02-15
Defibrotide, an orally bioavailable polydisperse oligonucleotide, has promising activity in hepatic veno-occlusive disease, a stem cell transplantation-related toxicity characterized by microangiopathy. The antithrombotic properties of defibrotide and its minimal hemorrhagic risk could serve for treatment of cancer-associated thrombotic complications. Given its cytoprotective effect on endothelium, we investigated whether defibrotide protects tumor cells from cytotoxic antitumor agents. Further, given its antiadhesive properties, we evaluated whether defibrotide modulates the protection conferred to multiple myeloma cells by bone marrow stromal cells. Defibrotide lacks significant single-agent in vitro cytotoxicity on multiple myeloma or solid tumor cells and does not attenuate their in vitro response to dexamethasone, bortezomib, immunomodulatory thalidomide derivatives, and conventional chemotherapeutics, including melphalan and cyclophosphamide. Importantly, defibrotide enhances in vivo chemosensitivity of multiple myeloma and mammary carcinoma xenografts in animal models. In cocultures of multiple myeloma cells with bone marrow stromal cells in vitro, defibrotide enhances the multiple myeloma cell sensitivity to melphalan and dexamethasone, and decreases multiple myeloma-bone marrow stromal cell adhesion and its sequelae, including nuclear factor-kappaB activation in multiple myeloma and bone marrow stromal cells, and associated cytokine production. Moreover, defibrotide inhibits expression and/or function of key mediators of multiple myeloma interaction with bone marrow stromal cell and endothelium, including heparanase, angiogenic cytokines, and adhesion molecules. Defibrotide's in vivo chemosensitizing properties and lack of direct in vitro activity against tumor cells suggest that it favorably modulates antitumor interactions between bone marrow stromal cells and endothelia in the tumor microenvironment. These data support clinical studies of defibrotide in combination with conventional and novel therapies to potentially improve patient outcome in multiple myeloma and other malignancies.
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
Li, Minghua; Yan, Xiaoqin; Kang, Zhuo; Liao, Xinqin; Li, Yong; Zheng, Xin; Lin, Pei; Meng, Jingjing; Zhang, Yue
2017-03-01
The low-cost inorganic-organic lead halide perovskite materials become particularly promising for solar cells with high photovoltaic conversion efficiency. The uniform and pinhole-free perovskite films play an important role for high-performance solar cells. We demonstrate an antisolvent treatment by controlling the PbI 2 morphology to enhance the perovskite conversion and photophysical properties, including high absorption, crystallinity, and rapid carrier transfer. The fabricated perovskite solar cells show tremendous PCE improvement to about 16.1% from 12% with less hysteresis, and retain over 90% initial PCE after 30 days in ambient and dark atmosphere. In prospect, this antisolvent treatment will be a feasible route to prepare high-quality perovskite films including favorite photophysical properties.
Cell Model Of A Disordered Solid
NASA Technical Reports Server (NTRS)
Peng, Steven T. J.; Landel, Robert F.; Moacanin, Jovan; Simha, Robert; Papazoglou, Elizabeth
1990-01-01
Elastic properties predicted from first principles. Paper discusses generalization of cell theory of disordered (non-crystaline) solid to include anisotropic stresses. Study part of continuing effort to understand macroscopic stress-and-strain properties of solid materials in terms of microscopic physical phenomena. Emphasis on derivation, from first principles, of bulk, shear, and Young's moduli of glassy material at zero absolute temperature.
Dental pulp stem cells. Biology and use for periodontal tissue engineering.
Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M
2015-12-01
Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.
Measuring nanoscale viscoelastic parameters of cells directly from AFM force-displacement curves.
Efremov, Yuri M; Wang, Wen-Horng; Hardy, Shana D; Geahlen, Robert L; Raman, Arvind
2017-05-08
Force-displacement (F-Z) curves are the most commonly used Atomic Force Microscopy (AFM) mode to measure the local, nanoscale elastic properties of soft materials like living cells. Yet a theoretical framework has been lacking that allows the post-processing of F-Z data to extract their viscoelastic constitutive parameters. Here, we propose a new method to extract nanoscale viscoelastic properties of soft samples like living cells and hydrogels directly from conventional AFM F-Z experiments, thereby creating a common platform for the analysis of cell elastic and viscoelastic properties with arbitrary linear constitutive relations. The method based on the elastic-viscoelastic correspondence principle was validated using finite element (FE) simulations and by comparison with the existed AFM techniques on living cells and hydrogels. The method also allows a discrimination of which viscoelastic relaxation model, for example, standard linear solid (SLS) or power-law rheology (PLR), best suits the experimental data. The method was used to extract the viscoelastic properties of benign and cancerous cell lines (NIH 3T3 fibroblasts, NMuMG epithelial, MDA-MB-231 and MCF-7 breast cancer cells). Finally, we studied the changes in viscoelastic properties related to tumorigenesis including TGF-β induced epithelial-to-mesenchymal transition on NMuMG cells and Syk expression induced phenotype changes in MDA-MB-231 cells.
(Invited) Effect of Aging on Mechanical Properties of Lithium Ion Cell Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Zenan; Cao, Lei; Hartig, Julia
The mechanical properties of aged and fresh lithium ion cell components are evaluated in this paper. Cells components were obtained from destructive physical analysis of 40Ah NMC/Graphite-based pouch cells before and after cycling and were subjected to mechanical testing. The aging tests comprised of cycling the cell across a voltage window of 4.1V to 3.0V at room temperature (25?). Using a 2C charging rate and 1C discharging rate, the cells were subjected to over 5600 cycles before a 80% drop in the name-plate capacity was observed. Mechanical tests, including compression test, tensile test and indentation test, were conducted on themore » cell components to investigate differences in the mechanical performance. Comparison of the fresh and aged cells components shows that cycling the cells has different degrees of impact on the different cell components. Anodes suffered the most serious deterioration in mechanical properties while separators remained intact under the test condition investigated.« less
[Therapeutic strategies targeting brain tumor stem cells].
Toda, Masahiro
2009-07-01
Progress in stem cell research reveals cancer stem cells to be present in a variety of malignant tumors. Since they exhibit resistance to anticancer drugs and radiotherapy, analysis of their properties has been rapidly carried forward as an important target for the treatment of intractable malignancies, including brain tumors. In fact, brain cancer stem cells (BCSCs) have been isolated from brain tumor tissue and brain tumor cell lines by using neural stem cell culture methods and isolation methods for side population (SP) cells, which have high drug-efflux capacity. Although the analysis of the properties of BCSCs is the most important to developing methods in treating BCSCs, the absence of BCSC purification methods should be remedied by taking it up as an important research task in the immediate future. Thus far, there are no effective treatment methods for BCSCs, and several treatment methods have been proposed based on the cell biology characteristics of BCSCs. In this article, I outline potential treatment methods damaging treatment-resistant BCSCs, including immunotherapy which is currently a topic of our research.
Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing
2017-12-01
The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.
Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.
Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng
2018-01-01
Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.
Chuah, Yon Jin; Zhang, Ying; Wu, Yingnan; Menon, Nishanth V; Goh, Ghim Hian; Lee, Ann Charlene; Chan, Vincent; Zhang, Yilei; Kang, Yuejun
2015-09-01
Cell sheet engineering has been exploited as an alternative approach in tissue regeneration and the use of stem cells to generate cell sheets has further showed its potential in stem cell-mediated tissue regeneration. There exist vast interests in developing strategies to enhance the formation of stem cell sheets for downstream applications. It has been proved that stem cells are sensitive to the biophysical cues of the microenvironment. Therefore we hypothesized that the combinatorial substratum properties could be tailored to modulate the development of cell sheet formation and further influence its multipotency. For validation, polydimethylsiloxane (PDMS) of different combinatorial substratum properties (including stiffness, roughness and wettability) were created, on which the human bone marrow derived mesenchymal stem cells (BMSCs) were cultured to form cell sheets with their multipotency evaluated after induced differentiation. The results showed that different combinatorial effects of these substratum properties were able to influence BMSC behavior such as adhesion, spreading and proliferation during cell sheet development. Collagen formation within the cell sheet was enhanced on substrates with lower stiffness, higher hydrophobicity and roughness, which further assisted the induced chondrogenesis and osteogenesis, respectively. These findings suggested that combinatorial substratum properties had profound effects on BMSC cell sheet integrity and multipotency, which had significant implications for future biomaterials and scaffold designs in the field of BMSC-mediated tissue regeneration. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[Peripheral neuropathy and blood-nerve barrier].
Kanda, Takashi
2009-11-01
It is important to know the cellular properties of endoneurial microvascular endothelial cells (PnMECs) and microvascular pericytes which constitute blood-nerve barrier (BNB), since this barrier structure in the peripheral nervous system (PNS) may play pivotal pathophysiological roles in various disorders of the PNS including inflammatory neuropathies (i.e. Guillain-Barré syndrome), vasculitic neuropathies, hereditary neuropathies and diabetic neuropathy. However, in contrast to blood-brain barrier (BBB), very few studies have been directed to BNB and no adequate cell lines originating from BNB had been launched. In our laboratory, we successfully established human immortalized cell lines originating from BNB using temperature-sensitive SV40 large T antigen and the cellular properties of human cell lines are presented in this paper. Human PnMEC cell line showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Human pericyte cell line also possessed tight junction proteins except claudin-5 and secrete various cytokines and growth factors including bFGF, VEGF, GDNF, NGF, BDNF and angiopoietin-1. Co-culture with pericytes or pericyte-conditioned media strengthend barrier properties of PnMEC, suggesting that in the PNS, peripheral nerve pericytes support the BNB function and play the same role of astrocytes in the BBB. Future accumulation of the knowledge concerning the cellular properties of BNB-forming cells will open the door to novel therapeutic strategies for intractable peripheral neuropathies.
The surface characteristics of microbial cells directly influence their mobility and behavior within aqueous environments. The cell surface hydrophobicity (CSH) and electrophoretic mobility (EPM) of microbial cells impact a number of interactions and processes including aggregati...
Investigation of the electronic, magnetic and optical properties of newest carbon allotrope
NASA Astrophysics Data System (ADS)
Kazemi, Samira; Moradian, Rostam
2018-05-01
We investigate triple properties of monolayer pentagon graphene that include electronic, magnetic and optical properties based on density functional theory (DFT). Our results show that in the electronic and magnetic properties this structure with a direct energy gap of about 2.2 eV along Γ - Γ direction and total magnetic moment of 0.0013 μB per unit cell is almost a non-magnetic semiconductor. Also, its optical properties show that if this allotrope used in solar cell technology, its efficiency in the low energy will be better, because, in the range of energy, its loss energy function and reflectivity will be minimum.
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...
2017-07-01
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Chen; Poplawsky, Jonathan; Yan, Yanfa
Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Cheng-Chia; School of Dentistry, Chung Shan Medical University, Taichung, Taiwan; Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
Cigarette smoking is one of the major risk factors in the development and further progression of tumorigenesis, including oral squamous cell carcinoma (OSCC). Recent studies suggest that interplay cancer stem-like cells (CSCs) and epithelial−mesenchymal transdifferentiation (EMT) properties are responsible for the tumor maintenance and metastasis in OSCC. The aim of the present study was to investigate the effects of long-term exposure with nicotine, a major component in cigarette, on CSCs and EMT characteristics. The possible reversal regulators were further explored in nicotine-induced CSCs and EMT properties in human oral epithelial (OE) cells. Long-term exposure with nicotine was demonstrated to up-regulatemore » ALDH1 population in normal gingival and primary OSCC OE cells dose-dependently. Moreover, long-term nicotine treatment was found to enhance the self-renewal sphere-forming ability and stemness gene signatures expression and EMT regulators in OE cells. The migration/cell invasiveness/anchorage independent growth and in vivo tumor growth by nude mice xenotransplantation assay was enhanced in long-term nicotine-stimulated OE cells. Knockdown of Snail in long-term nicotine-treated OE cells was found to reduce their CSCs properties. Therapeutic delivery of Si-Snail significantly blocked the xenograft tumorigenesis of long-term nicotine-treated OSCC cells and largely significantly improved the recipient survival. The present study demonstrated that the enrichment of CSCs coupled EMT property in oral epithelial cells induced by nicotine is critical for the development of OSCC tumorigenesis. Targeting Snail might offer a new strategy for the treatment of OSCC patients with smoking habit. -- Highlights: ► Sustained nicotine treatment induced CSCs properties of oral epithelial cells. ► Long-term nicotine treatment enhance EMT properties of oral epithelial cells. ► Long-term nicotine exposure increased tumorigenicity of oral epithelial cells. ► Si-Snail blocked xenograft tumorigenesis of long-term nicotine-treated OSCC cells.« less
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith
2011-01-01
The purpose of this innovation is to use microstrain gauges to monitor minute changes in temperature along with material properties of the metal cans and pouches used in the construction of lithium-ion cells. The sensitivity of the microstrain gauges to extremely small changes in temperatures internal to the cells makes them a valuable asset in controlling the hazards in lithium-ion cells. The test program on lithium-ion cells included various cell configurations, including the pouch type configurations. The thermal properties of microstrain gauges have been found to contribute significantly as safety monitors in lithium-ion cells that are designed even with hard metal cases. Although the metal cans do not undergo changes in material property, even under worst-case unsafe conditions, the small changes in thermal properties observed during charge and discharge of the cell provide an observable change in resistance of the strain gauge. Under abusive or unsafe conditions, the change in the resistance is large. This large change is observed as a significant change in slope, and this can be used to prevent cells from going into a thermal runaway condition. For flexible metal cans or pouch-type lithium-ion cells, combinations of changes in material properties along with thermal changes can be used as an indication for the initiation of an unsafe condition. Lithium-ion cells have a very high energy density, no memory effect, and almost 100-percent efficiency of charge and discharge. However, due to the presence of a flammable electrolyte, along with the very high energy density and the capability of releasing oxygen from the cathode, these cells can go into a hazardous condition of venting, fire, and thermal runaway. Commercial lithium-ion cells have current and voltage monitoring devices that are used to control the charge and discharge of the batteries. Some lithium-ion cells have internal protective devices, but when used in multi-cell configurations, these protective devices either do not protect or are themselves a hazard to the cell due to their limitations. These devices do not help in cases where the cells develop high impedance that suddenly causes them to go into a thermal runaway condition. Temperature monitoring typically helps with tracking the performance of a battery. But normal thermistors or thermal sensors do not provide the accuracy needed for this and cannot track a change in internal cell temperatures until it is too late to stop a thermal runaway.
Investigation of Effective Material Properties of Stony Meteorites
NASA Technical Reports Server (NTRS)
Agrawal, Parul; Carlozzi, Alex; Bryson, Kathryn
2016-01-01
To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the Asteroid material properties is needed to achieve this objective. At present, the meteorite material found on Earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Therefore, unit cell models are developed to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. The various classes under investigation includes H-class, L-class, and LL-class chondrites. The effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell are calculated by performing several hundreds of Monte-Carlo simulations. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology.
Hu, Jingjie; Zhou, Yuxiao; Obayemi, John D; Du, Jing; Soboyejo, Winston O
2018-05-30
An improved understanding of the evolution of cell structure and viscoelasticity with cancer malignancy could enable the development of a new generation of biomarkers and methods for cancer diagnosis. Hence, in this study, we present the viscoelastic properties (moduli and viscosities) and the actin cytoskeletal structures of triple negative breast cancer (TNBC) cells with different metastatic potential. These include: MCF-10A normal breast cells (studied as a control); MDA-MB-468 cells (less metastatic TNBC cells), and MDA-MB-231 cells (highly metastatic TNBC cells). A combination of shear assay and digital imaging correlation (DIC) techniques is used to measure the local viscoelastic properties of live breast cells subjected to constant shear stress. The local moduli and viscosities of the nuclei and cytoplasm are characterized using a generalized Maxwell model, which is used to determine the time-dependent creep responses of cells. The nuclei are shown to be stiffer and more viscous than the cytoplasms of the normal breast cells and TNBC cells. The MCF-10A normal breast cells are found to be twice as stiff as the less metastatic MDA-MB-468 breast cancer cells and over ten times stiffer than the highly metastatic MDA-MB-231 breast cancer cells. Similar trends are also observed in the viscosities of the nuclei and the cytoplasms. The measured differences in cell viscoelastic properties are also associated with significant changes in the cell cytoskeletal structure, which is studied using confocal fluorescence microscopy. This reveals significant differences in the levels of actin expression and organization in TNBC cells as they become highly metastatic. Our results suggest that the shear assay measurements of cell viscoelastic properties may be used as effective biomarkers for TNBC diagnosis and screening. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bagher, Zohreh; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Mirzadeh, Hamid; Soleimani, Mansooreh; Ai, Jafar; Nourani, Mohammad Reza; Joghataei, Mohammad Taghi
2015-10-01
The most important property of stem cells from different sources is the capacity to differentiate into various cells and tissue types. However, problems including contamination, normal karyotype, and ethical issues cause many limitations in obtaining and using these cells from different sources. The cells in Wharton's jelly region of umbilical cord represent a pool source of primitive cells with properties of mesenchymal stem cells (MSCs). The aim of this study was to determine the potential of human Wharton's jelly-derived mesenchymal stem cells (WJMSCs) for differentiation to motor neuron cells. WJMSCs were induced to differentiate into motor neuron-like cells by using different signaling molecules and neurotrophic factors in vitro. Differentiated neurons were then characterized for expression of motor neuron markers including nestin, PAX6, NF-H, Islet 1, HB9, and choline acetyl transferase (ChAT) by quantitative reverse transcription PCR and immunocytochemistry. Our results showed that differentiated WJMSCs could significantly express motor neuron biomarkers in RNA and protein levels 15 d post induction. These results suggested that WJMSCs can differentiate to motor neuron-like cells and might provide a potential source in cell therapy for neurodegenerative disease.
Method and system for measurement of mechanical properties of molecules and cells
NASA Technical Reports Server (NTRS)
Fredberg, Jeffrey J. (Inventor); Butler, James P. (Inventor); Ingber, Donald E. (Inventor); Wang, Ning (Inventor)
1996-01-01
Mechanical stresses and deformations are applied directly to cell surface receptors or molecules and measured using a system including a magnetic twisting device in combination with ferromagnetic microbeads coated with ligands for integrins or any other surface receptors. The system can be used diagnostically to characterize cells and molecules and to determine the effect of transformation and compounds, including drugs, on the cells and molecules. The system can also be used to induce cells to grow or alter production of molecules by the cells.
Ahmadi, Seyed Mohammad; Amin Yavari, Saber; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A.
2015-01-01
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (Es20–70), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of Es20–70, the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell). PMID:28788037
Ahmadi, Seyed Mohammad; Yavari, Saber Amin; Wauthle, Ruebn; Pouran, Behdad; Schrooten, Jan; Weinans, Harrie; Zadpoor, Amir A
2015-04-21
It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morphological designs. In the present work, we studied the relationship between relative density (RD) of porous Ti6Al4V EFI alloy and five compressive properties of the material, namely elastic gradient or modulus (E s20 -70 ), first maximum stress, plateau stress, yield stress, and energy absorption. Porous structures with different RD and six different unit cell configurations (cubic (C), diamond (D), truncated cube (TC), truncated cuboctahedron (TCO), rhombic dodecahedron (RD), and rhombicuboctahedron (RCO)) were fabricated using selective laser melting. Each of the compressive properties increased with increase in RD, the relationship being of a power law type. Clear trends were seen in the influence of unit cell configuration and porosity on each of the compressive properties. For example, in terms of E s20 -70 , the structures may be divided into two groups: those that are stiff (comprising those made using C, TC, TCO, and RCO unit cell) and those that are compliant (comprising those made using D and RD unit cell).
Tendon and ligament as novel cell sources for engineering the knee meniscus.
Hadidi, P; Paschos, N K; Huang, B J; Aryaei, A; Hu, J C; Athanasiou, K A
2016-12-01
The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Tendon and ligament as novel cell sources for engineering the knee meniscus
Hadidi, Pasha; Paschos, Nikolaos K.; Huang, Brian J.; Aryaei, Ashkan; Hu, Jerry C.; Athanasiou, Kyriacos A.
2016-01-01
Objective The application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage. Method Self-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties. Results In terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties. Conclusion Tenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells. PMID:27473559
Long-term temperature effects on GaAs solar cells
NASA Technical Reports Server (NTRS)
Heinbockel, J. H.; Hong, K. H.
1979-01-01
The thermal degradation of AlGaAs solar cells resulting from a long-term operation in a space environment is investigated. The solar cell degradation effects caused by zinc and aluminum diffusion as well as deterioration by arsenic evaporation are presented. Also, the results are presented of experimental testing and measurements of various GaAs solar cell properties while the solar cell was operating in the temperature range of 27 C to 350 C. In particular, the properties of light current voltage curves, dark current voltage curves, and spectral response characteristics are given. Finally, some theoretical models for the annealing of radiation damage over various times and temperatures are included.
Bone marrow-derived fibrocytes promote stem cell-like properties of lung cancer cells.
Saijo, Atsuro; Goto, Hisatsugu; Nakano, Mayuri; Mitsuhashi, Atsushi; Aono, Yoshinori; Hanibuchi, Masaki; Ogawa, Hirohisa; Uehara, Hisanori; Kondo, Kazuya; Nishioka, Yasuhiko
2018-05-01
Cancer stem cells (CSCs) represent a minor population that have clonal tumor initiation and self-renewal capacity and are responsible for tumor initiation, metastasis, and therapeutic resistance. CSCs reside in niches, which are composed of diverse types of stromal cells and extracellular matrix components. These stromal cells regulate CSC-like properties by providing secreted factors or by physical contact. Fibrocytes are differentiated from bone marrow-derived CD14 + monocytes and have features of both macrophages and fibroblasts. Accumulating evidence has suggested that stromal fibrocytes might promote cancer progression. However, the role of fibrocytes in the CSC niches has not been revealed. We herein report that human fibrocytes enhanced the CSC-like properties of lung cancer cells through secreted factors, including osteopontin, CC-chemokine ligand 18, and plasminogen activator inhibitor-1. The PIK3K/AKT pathway was critical for fibrocytes to mediate the CSC-like functions of lung cancer cells. In human lung cancer specimens, the number of tumor-infiltrated fibrocytes was correlated with high expression of CSC-associated protein in cancer cells. These results suggest that fibrocytes may be a novel cell population that regulates the CSC-like properties of lung cancer cells in the CSC niches. Copyright © 2018. Published by Elsevier B.V.
Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel
2017-08-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.
2017-01-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. PMID:28835540
Matrix Rigidity Regulates Cancer Cell Growth by Modulating Cellular Metabolism and Protein Synthesis
Tilghman, Robert W.; Blais, Edik M.; Cowan, Catharine R.; Sherman, Nicholas E.; Grigera, Pablo R.; Jeffery, Erin D.; Fox, Jay W.; Blackman, Brett R.; Tschumperlin, Daniel J.; Papin, Jason A.; Parsons, J. Thomas
2012-01-01
Background Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy. Methodology/Principal Findings This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa), cells on soft substrates (150–300 Pa) exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC) and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins) and glycolysis (e.g., phosphofructokinase-1), whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway. Conclusions/Significance The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical environments encountered by cancer cells upon metastasis to distant sites. PMID:22623999
Cardiac Fibroblast: The Renaissance Cell
Souders, Colby A.; Bowers, Stephanie L.K.; Baudino, Troy A.
2012-01-01
The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. While a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart. PMID:19959782
The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies.
Neal, Lillian R; Bailey, Stefanie R; Wyatt, Megan M; Bowers, Jacob S; Majchrzak, Kinga; Nelson, Michelle H; Haupt, Carl; Paulos, Chrystal M; Varela, Juan C
2017-01-01
Adoptive T cell transfer (ACT) can mediate objective responses in patients with advanced malignancies. There have been major advances in this field, including the optimization of the ex vivo generation of tumor-reactive lymphocytes to ample numbers for effective ACT therapy via the use of natural and artificial antigen presenting cells (APCs). Herein we review the basic properties of APCs and how they have been manufactured through the years to augment vaccine and T cell-based cancer therapies. We then discuss how these novel APCs impact the function and memory properties of T cells. Finally, we propose new ways to synthesize aAPCs to augment the therapeutic effectiveness of antitumor T cells for ACT therapy.
The Basics of Artificial Antigen Presenting Cells in T Cell-Based Cancer Immunotherapies
Neal, Lillian R.; Bailey, Stefanie R.; Wyatt, Megan M.; Bowers, Jacob S.; Majchrzak, Kinga; Nelson, Michelle H.; Haupt, Carl; Paulos, Chrystal M.; Varela, Juan C.
2017-01-01
Adoptive T cell transfer (ACT) can mediate objective responses in patients with advanced malignancies. There have been major advances in this field, including the optimization of the ex vivo generation of tumor-reactive lymphocytes to ample numbers for effective ACT therapy via the use of natural and artificial antigen presenting cells (APCs). Herein we review the basic properties of APCs and how they have been manufactured through the years to augment vaccine and T cell-based cancer therapies. We then discuss how these novel APCs impact the function and memory properties of T cells. Finally, we propose new ways to synthesize aAPCs to augment the therapeutic effectiveness of antitumor T cells for ACT therapy. PMID:28825053
Scribner, Elizabeth; Fathallah-Shaykh, Hassan M
2017-01-01
Glioblastoma (GBM) is a malignant brain tumor that continues to be associated with neurological morbidity and poor survival times. Brain invasion is a fundamental property of malignant glioma cells. The Go-or-Grow (GoG) phenotype proposes that cancer cell motility and proliferation are mutually exclusive. Here, we construct and apply a single glioma cell mathematical model that includes motility and angiogenesis and lacks the GoG phenotype. Simulations replicate key features of GBM including its multilayer structure (i.e.edema, enhancement, and necrosis), its progression patterns associated with bevacizumab treatment, and replicate the survival times of GBM treated or untreated with bevacizumab. These results suggest that the GoG phenotype is not a necessary property for the formation of the multilayer structure, recurrence patterns, and the poor survival times of patients diagnosed with GBM.
The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common Complex Disease.
Astle, William J; Elding, Heather; Jiang, Tao; Allen, Dave; Ruklisa, Dace; Mann, Alice L; Mead, Daniel; Bouman, Heleen; Riveros-Mckay, Fernando; Kostadima, Myrto A; Lambourne, John J; Sivapalaratnam, Suthesh; Downes, Kate; Kundu, Kousik; Bomba, Lorenzo; Berentsen, Kim; Bradley, John R; Daugherty, Louise C; Delaneau, Olivier; Freson, Kathleen; Garner, Stephen F; Grassi, Luigi; Guerrero, Jose; Haimel, Matthias; Janssen-Megens, Eva M; Kaan, Anita; Kamat, Mihir; Kim, Bowon; Mandoli, Amit; Marchini, Jonathan; Martens, Joost H A; Meacham, Stuart; Megy, Karyn; O'Connell, Jared; Petersen, Romina; Sharifi, Nilofar; Sheard, Simon M; Staley, James R; Tuna, Salih; van der Ent, Martijn; Walter, Klaudia; Wang, Shuang-Yin; Wheeler, Eleanor; Wilder, Steven P; Iotchkova, Valentina; Moore, Carmel; Sambrook, Jennifer; Stunnenberg, Hendrik G; Di Angelantonio, Emanuele; Kaptoge, Stephen; Kuijpers, Taco W; Carrillo-de-Santa-Pau, Enrique; Juan, David; Rico, Daniel; Valencia, Alfonso; Chen, Lu; Ge, Bing; Vasquez, Louella; Kwan, Tony; Garrido-Martín, Diego; Watt, Stephen; Yang, Ying; Guigo, Roderic; Beck, Stephan; Paul, Dirk S; Pastinen, Tomi; Bujold, David; Bourque, Guillaume; Frontini, Mattia; Danesh, John; Roberts, David J; Ouwehand, Willem H; Butterworth, Adam S; Soranzo, Nicole
2016-11-17
Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal. Copyright © 2016 Elsevier Inc. All rights reserved.
Mesenchymal stem cell mechanobiology and emerging experimental platforms
MacQueen, Luke; Sun, Yu; Simmons, Craig A.
2013-01-01
Experimental control over progenitor cell lineage specification can be achieved by modulating properties of the cell's microenvironment. These include physical properties of the cell adhesion substrate, such as rigidity, topography and deformation owing to dynamic mechanical forces. Multipotent mesenchymal stem cells (MSCs) generate contractile forces to sense and remodel their extracellular microenvironments and thereby obtain information that directs broad aspects of MSC function, including lineage specification. Various physical factors are important regulators of MSC function, but improved understanding of MSC mechanobiology requires novel experimental platforms. Engineers are bridging this gap by developing tools to control mechanical factors with improved precision and throughput, thereby enabling biological investigation of mechanics-driven MSC function. In this review, we introduce MSC mechanobiology and review emerging cell culture platforms that enable new insights into mechanobiological control of MSCs. Our main goals are to provide engineers and microtechnology developers with an up-to-date description of MSC mechanobiology that is relevant to the design of experimental platforms and to introduce biologists to these emerging platforms. PMID:23635493
Cancer (stem) cell differentiation: An inherent or acquired property?
Mohr, Marieke; Zänker, Kurt S; Dittmar, Thomas
2015-12-01
There is a growing list of data indicating that cancer (stem) cells could functionally adapt foreign tissue features, such as endothelial-like cells or neuroendocrine cells, express lineage markers or could differentiate into various lineages in response to appropriate differentiation criteria. The finding that cancer (stem) cells may possess some kind of differentiation capacity poses the question whether this might be an inherent or acquired property. Cancer stem cells share stem cell characteristics and may thus possess an inherent differentiation capacity enabling the cells to respond to various differentiation stimuli. Considering the plasticity of cancer (stem) cells, even non-tumorigenic (and putatively non-differentiable) tumor cells could give rise to tumorigenic tumor stem cells, exhibiting stem cell characteristics including an inherent differentiation capacity. On the contrary, cancer (stem) cells may have acquired differentiation capacity as a consequence of a previous cell fusion event with cell types exhibiting differentiation potential and being fusogenic, such as macrophages or stem cells. Of pivotal interest in a tumor context are macrophages, which chiefly foster the chronically inflamed tumor microenvironment. Because chronically inflamed tissue is a well-known trigger for cell fusion and both macrophages and stem cells are highly fusogenic we conclude that cell fusion events between these cell types and cancer (stem) cells should frequently occur, thereby giving rise to hybrid cells exhibiting not only novel properties, like an enhanced metastatogenic phenotype, but also parental characteristics, such as differentiation capacity. Conceivably, the combination of both properties might be advantageous for metastasizing cancer (stem) cells to adapt better and faster to a foreign organ tissue environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Şen, Özlem; Culha, Mustafa
2016-02-01
Boron nitride nanotubes (BNNTs) are increasingly investigated for their medical and biomedical applications due to their unique properties such as resistance to oxidation, thermal and electrical insulation, and biocompatibility. BNNTs can be used to enhance mechanical strength of biomedical structures such as scaffolds in tissue engineering applications. In this study, we report the use of BNNTs and hydroxylated BNNTs (BNNT-OH) to improve the properties of gelatin-glucose scaffolds prepared with electrospinning technique. Human dermal fibroblast (HDF) cells are used for the toxicity assessment and cell seeding studies. It is found that the addition of BNNTs into the scaffold does not influence cell viability, decreases the scaffold degradation rate, and improves cell attachment and proliferation compared to only-gelatin scaffold. Copyright © 2015 Elsevier B.V. All rights reserved.
Hedayati, R; Sadighi, M; Mohammadi-Aghdam, M; Zadpoor, A A
2016-03-01
Additive manufacturing (AM) has enabled fabrication of open-cell porous biomaterials based on repeating unit cells. The micro-architecture of the porous biomaterials and, thus, their physical properties could then be precisely controlled. Due to their many favorable properties, porous biomaterials manufactured using AM are considered as promising candidates for bone substitution as well as for several other applications in orthopedic surgery. The mechanical properties of such porous structures including static and fatigue properties are shown to be strongly dependent on the type of the repeating unit cell based on which the porous biomaterial is built. In this paper, we study the mechanical properties of porous biomaterials made from a relatively new unit cell, namely truncated cube. We present analytical solutions that relate the dimensions of the repeating unit cell to the elastic modulus, Poisson's ratio, yield stress, and buckling load of those porous structures. We also performed finite element modeling to predict the mechanical properties of the porous structures. The analytical solution and computational results were found to be in agreement with each other. The mechanical properties estimated using both the analytical and computational techniques were somewhat higher than the experimental data reported in one of our recent studies on selective laser melted Ti-6Al-4V porous biomaterials. In addition to porosity, the elastic modulus and Poisson's ratio of the porous structures were found to be strongly dependent on the ratio of the length of the inclined struts to that of the uninclined (i.e. vertical or horizontal) struts, α, in the truncated cube unit cell. The geometry of the truncated cube unit cell approaches the octahedral and cube unit cells when α respectively approaches zero and infinity. Consistent with those geometrical observations, the analytical solutions presented in this study approached those of the octahedral and cube unit cells when α approached respectively 0 and infinity. Copyright © 2015 Elsevier B.V. All rights reserved.
Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity.
Karin, Nathan; Razon, Hila
2018-09-01
Chemokines are mostly known for their chemotactic properties, and less for their ability to direct the biological function of target cells, including T cells. The current review focuses on a key chemokine named CXCL10 and its role in directing the migratory propertied and biological function of CD4+ and CD8+ T cells in the context of cancer and inflammatory autoimmunity. CXCR3 is a chemokine receptor that is abundant on CD4+ T cells, CD8+ T cells and NK cells. It has three known ligands: CXCL9, CXCL10 and CXCL11. Different studies, including those coming form our laboratory, indicated that aside of attracting CD8+ and CD4+ effector T cells to tumor sites and sites of inflammation CXCL10 directs the polarization and potentiates the biological function of these cells. This makes CXCL10 a "key driver chemokine" and a valid target for therapy of autoimmune diseases such as Inflammatory Bowl's Disease, Multiple Sclerosis, Rheumatoid arthritis and others. As for cancer this motivated different groups, including our group to develop CXCL10 based therapies for cancer due to its ability to enhance T-dependent anti cancer immunity. The current review summarizes these findings and their potential translational implication. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tarjan, Gabor; Haines, G Kenneth; Vesper, Benjamin J; Xue, Jiaping; Altman, Michael B; Yarmolyuk, Yaroslav R; Khurram, Huma; Elseth, Kim M; Roeske, John C; Aydogan, Bulent; Radosevich, James A
2011-02-01
It is not understood why some head and neck squamous cell carcinomas, despite having identical morphology, demonstrate different tumor aggressiveness, including radioresistance. High levels of the free radical nitric oxide (NO) and increased expression of the NO-producing enzyme nitric oxide synthase (NOS) have been implicated in tumor progression. We previously adapted three human tongue cancer cell lines to high NO (HNO) levels by gradually exposing them to increasing concentrations of an NO donor; the HNO cells grew faster than their corresponding untreated ("parent") cells, despite being morphologically identical. Herein we initially characterize the HNO cells and compare the biological properties of the HNO and parent cells. HNO/parent cell line pairs were analyzed for cell cycle distribution, DNA damage, X-ray and ultraviolet radiation response, and expression of key cellular enzymes, including NOS, p53, glutathione S-transferase-pi (GST-pi), apurinic/apyrimidinic endonuclease-1 (APE1), and checkpoint kinases (Chk1, Chk2). While some of these properties were cell line-specific, the HNO cells typically exhibited properties associated with a more aggressive behavior profile than the parent cells (greater S-phase percentage, radioresistance, and elevated expression of GST-pi/APE1/Chk1/Chk2). To correlate these findings with conditions in primary tumors, we examined the NOS, GST-pi, and APE1 expression in human tongue squamous cell carcinomas. A majority of the clinical samples exhibited elevated expression levels of these enzymes. Together, the results herein suggest cancer cells exposed to HNO levels can develop resistance to free radicals by upregulating protective mechanisms, such as GST-pi and APE1. These upregulated defense mechanisms may contribute to their aggressive expression profile.
In vivo quantification of spatially-varying mechanical properties in developing tissues
Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David A.; Lucio, Adam A.; Hockenbery, Zachary M.; Campàs, Otger
2017-01-01
It is generally believed that the mechanical properties of the cellular microenvironment and their spatiotemporal variations play a central role in sculpting embryonic tissues, maintaining organ architecture and controlling cell behavior, including cell differentiation. However, no direct in vivo and in situ measurement of mechanical properties within developing 3D tissues and organs has been performed yet. Here we introduce a technique that employs biocompatible ferrofluid microdroplets as local mechanical actuators and allows quantitative spatiotemporal measurements of mechanical properties in vivo. Using this technique, we show that vertebrate body elongation entails spatially-varying tissue mechanics along the anteroposterior axis. Specifically, we find that the zebrafish tailbud is viscoelastic (elastic below a few seconds and fluid after just one minute) and displays decreasing stiffness and increasing fluidity towards its posterior elongating region. This method opens new avenues to study mechanobiology in vivo, both in embryogenesis and in disease processes, including cancer. PMID:27918540
Mitsiades, Constantine S.; Rouleau, Cecile; Echart, Cinara; Menon, Krishna; Teicher, Beverly; Distaso, Maria; Palumbo, Antonio; Boccadoro, Mario; Anderson, Kenneth C.; Iacobelli, Massimo; Richardson, Paul G.
2015-01-01
Purpose of the study Defibrotide (DF), an orally bioavailable polydisperse oligonucleotide has promising activity in hepatic veno-occlusive disease (VOD), a stem cell transplantation-related toxicity, characterized by microangiopathy. The anti-thrombotic properties of DF and its minimal hemorrhagic risk could serve for treatment of cancer-associated thrombotic complications. Given its cytoprotective effect on endothelium, we investigated whether DF protects tumor cells from cytotoxic anti-tumor agents. Further, given its anti-adhesive properties, we evaluated whether DF modulates the protection conferred to multiple myeloma (MM) cells by bone marrow stromal cells (BMSCs). Methods-Results DF lacks significant single-agent in vitro cytotoxicity on MM or solid tumor cells and does not attenuate their in vitro response to dexamethasone, bortezomib, immunomodulatory thalidomide derivatives, and conventional chemotherapeutics, including melphalan and cyclophosphamide. Importantly, DF enhances in vivo chemosensitivity of MM and mammary carcinoma xenografts in animal models. In co-cultures of MM cells with BMSCs in vitro, DF enhances the MM cell sensitivity to melphalan and dexamethasone, decreases MM-BMSC adhesion and its sequelae, including NF-κB activation in MM and BMSCs, and associated cytokine production. Moreover, DF inhibits expression and/or function of key mediators of MM interaction with BMSC and endothelium, including heparanase, angiogenic cytokines and adhesion molecules. Conclusion Defibrotide’s in vivo chemosensitizing properties and lack of direct in vitro activity against tumor cells suggest that it favorably modulates antitumor interactions between BMSC and endothelia in the tumor microenvironment. These data support clinical studies of DF in combination with conventional and novel therapies to potentially improve patient outcome in MM and other malignancies. PMID:19228727
Endothelial glycocalyx: permeability barrier and mechanosensor.
Curry, F E; Adamson, R H
2012-04-01
Endothelial cells are covered with a polysaccharide rich layer more than 400 nm thick, mechanical properties of which limit access of circulating plasma components to endothelial cell membranes. The barrier properties of this endothelial surface layer are deduced from the rate of tracer penetration into the layer and the mechanics of red and white cell movement through capillary microvessels. This review compares the mechanosensor and permeability properties of an inner layer (100-150 nm, close to the endothelial membrane) characterized as a quasi-periodic structure which accounts for key aspects of transvascular exchange and vascular permeability with those of the whole endothelial surface layers. We conclude that many of the barrier properties of the whole surface layer are not representative of the primary fiber matrix forming the molecular filter determining transvascular exchange. The differences between the properties of the whole layer and the inner glycocalyx structures likely reflect dynamic aspects of the endothelial surface layer including tracer binding to specific components, synthesis and degradation of key components, activation of signaling pathways in the endothelial cells when components of the surface layer are lost or degraded, and the spatial distribution of adhesion proteins in microdomains of the endothelial cell membrane.
Solar cell array design handbook, volume 1
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1976-01-01
Twelve chapters discuss the following: historical developments, the environment and its effects, solar cells, solar cell filters and covers, solar cell and other electrical interconnections, blocking and shunt diodes, substrates and deployment mechanisms, material properties, design synthesis and optimization, design analysis, procurement, production and cost aspects, evaluation and test, orbital performance, and illustrative design examples. A comprehensive index permits rapid locating of desired topics. The handbook consists of two volumes: Volume 1 is of an expository nature while Volume 2 contains detailed design data in an appendix-like fashion. Volume 2 includes solar cell performance data, applicable unit conversion factors and physical constants, and mechanical, electrical, thermal optical, magnetic, and outgassing material properties. Extensive references are provided.
Foam generator and viscometer apparatus and process
Reed, Troy D.; Pickell, Mark B.; Volk, Leonard J.
2004-10-26
An apparatus and process to generate a liquid-gas-surfactant foam and to measure its viscosity and enable optical and or electronic measurements of physical properties. The process includes the steps of pumping selected and measured liquids and measured gases into a mixing cell. The mixing cell is pressurized to a desired pressure and maintained at a desired pressure. Liquids and gas are mixed in the mixing cell to produce a foam of desired consistency. The temperature of the foam in the mixing cell is controlled. Foam is delivered from the mixing cell through a viscometer under controlled pressure and temperature conditions where the viscous and physical properties of the foam are measured and observed.
Mechanisms of T-Cell Immunosuppression by Mesenchymal Stromal Cells: What Do We Know So Far?
Haddad, Rodrigo; Saldanha-Araujo, Felipe
2014-01-01
Mesenchymal stromal cells (MSCs) are multipotent cells, which can give rise to several cell types including osteoblasts, adipocytes, and chondroblasts. These cells can be found in a variety of adult and fetal tissues, such as bone marrow, adipose tissue, cord blood, and placenta. In recent years, the biological properties of MSCs have attracted the attention of researchers worldwide due to their potential application for treating a series of clinical situations. Among these properties, special attention should be given to the immunoregulatory potential of those cells. MSCs are able to act on all cells of the immune system, which includes the capacity to inhibit the proliferation and function of T-cells. This feature renders them natural candidates to treat several diseases in which cellular immune response is exacerbated. In this review, we outline the main mechanisms by which MSCs immunosuppress T-cell response, focusing on cell-cell contact, secretion of soluble factors, and regulatory T-cell generation. The influence of surface markers in the immunosuppression process and features of MSCs isolated from different sources are also discussed. Finally, the influences of toll-like receptors and cytokines on the inflammatory microenvironment are highlighted regarding the activation of MSCs to exert their immunoregulatory function. PMID:25025040
Derakhshanfar, Soroosh; Mbeleck, Rene; Xu, Kaige; Zhang, Xingying; Zhong, Wen; Xing, Malcolm
2018-06-01
3D printing, an additive manufacturing based technology for precise 3D construction, is currently widely employed to enhance applicability and function of cell laden scaffolds. Research on novel compatible biomaterials for bioprinting exhibiting fast crosslinking properties is an essential prerequisite toward advancing 3D printing applications in tissue engineering. Printability to improve fabrication process and cell encapsulation are two of the main factors to be considered in development of 3D bioprinting. Other important factors include but are not limited to printing fidelity, stability, crosslinking time, biocompatibility, cell encapsulation and proliferation, shear-thinning properties, and mechanical properties such as mechanical strength and elasticity. In this review, we recite recent promising advances in bioink development as well as bioprinting methods. Also, an effort has been made to include studies with diverse types of crosslinking methods such as photo, chemical and ultraviolet (UV). We also propose the challenges and future outlook of 3D bioprinting application in medical sciences and discuss the high performance bioinks.
Yong, Kar Wey; Wan Safwani, Wan Kamarul Zaman; Xu, Feng; Wan Abas, Wan Abu Bakar; Choi, Jane Ru; Pingguan-Murphy, Belinda
2015-08-01
Mesenchymal stem cells (MSCs) hold many advantages over embryonic stem cells (ESCs) and other somatic cells in clinical applications. MSCs are multipotent cells with strong immunosuppressive properties. They can be harvested from various locations in the human body (e.g., bone marrow and adipose tissues). Cryopreservation represents an efficient method for the preservation and pooling of MSCs, to obtain the cell counts required for clinical applications, such as cell-based therapies and regenerative medicine. Upon cryopreservation, it is important to preserve MSCs functional properties including immunomodulatory properties and multilineage differentiation ability. Further, a biosafety evaluation of cryopreserved MSCs is essential prior to their clinical applications. However, the existing cryopreservation methods for MSCs are associated with notable limitations, leading to a need for new or improved methods to be established for a more efficient application of cryopreserved MSCs in stem cell-based therapies. We review the important parameters for cryopreservation of MSCs and the existing cryopreservation methods for MSCs. Further, we also discuss the challenges to be addressed in order to preserve MSCs effectively for clinical applications.
Cell Surface Interference with Plasma Membrane and Transport Processes in Yeasts.
Francois, Jean Marie
2016-01-01
The wall of the yeast Saccharomyces cerevisiae is a shell of about 120 nm thick, made of two distinct layers, which surrounds the cell. The outer layer is constituted of highly glycosylated proteins and the inner layer is composed of β-glucan and chitin. These two layers are interconnected through covalent linkages leading to a supramolecular architecture that is characterized by physical and chemical properties including rigidity, porosity and biosorption. The later property results from the presence of highly negative charged phosphate and carboxylic groups of the cell wall proteins, allowing the cell wall to act as an efficient barrier to metals ions, toxins and organic compounds. An intimate connection between cell wall and plasma membrane is indicated by the fact that changes in membrane fluidity results in change in cell wall nanomechanical properties. Finally, cell wall contributes to transport processes through the use of dedicated cell wall mannoproteins, as it is the case for Fit proteins implicated in the siderophore-iron bound transport and the Tir/Dan proteins family in the uptake of sterols.
Mechanical Cell-Cell Communication in Fibrous Networks: The Importance of Network Geometry.
Humphries, D L; Grogan, J A; Gaffney, E A
2017-03-01
Cells contracting in extracellular matrix (ECM) can transmit stress over long distances, communicating their position and orientation to cells many tens of micrometres away. Such phenomena are not observed when cells are seeded on substrates with linear elastic properties, such as polyacrylamide (PA) gel. The ability for fibrous substrates to support far reaching stress and strain fields has implications for many physiological processes, while the mechanical properties of ECM are central to several pathological processes, including tumour invasion and fibrosis. Theoretical models have investigated the properties of ECM in a variety of network geometries. However, the effects of network architecture on mechanical cell-cell communication have received little attention. This work investigates the effects of geometry on network mechanics, and thus the ability for cells to communicate mechanically through different networks. Cell-derived displacement fields are quantified for various network geometries while controlling for network topology, cross-link density and micromechanical properties. We find that the heterogeneity of response, fibre alignment, and substrate displacement fields are sensitive to network choice. Further, we show that certain geometries support mechanical communication over longer distances than others. As such, we predict that the choice of network geometry is important in fundamental modelling of cell-cell interactions in fibrous substrates, as well as in experimental settings, where mechanical signalling at the cellular scale plays an important role. This work thus informs the construction of theoretical models for substrate mechanics and experimental explorations of mechanical cell-cell communication.
Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D
2018-03-22
Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.
Dahl, Kris Noel; Scaffidi, Paola; Islam, Mohammad F; Yodh, Arjun G; Wilson, Katherine L; Misteli, Tom
2006-07-05
The nuclear lamina is a network of structural filaments, the A and B type lamins, located at the nuclear envelope and throughout the nucleus. Lamin filaments provide the nucleus with mechanical stability and support many basic activities, including gene regulation. Mutations in LMNA, the gene encoding A type lamins, cause numerous human diseases, including the segmental premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). Here we show that structural and mechanical properties of the lamina are altered in HGPS cells. We demonstrate by live-cell imaging and biochemical analysis that lamins A and C become trapped at the nuclear periphery in HGPS patient cells. Using micropipette aspiration, we show that the lamina in HGPS cells has a significantly reduced ability to rearrange under mechanical stress. Based on polarization microscopy results, we suggest that the lamins are disordered in the healthy nuclei, whereas the lamins in HGPS nuclei form orientationally ordered microdomains. The reduced deformability of the HGPS nuclear lamina possibly could be due to the inability of these orientationally ordered microdomains to dissipate mechanical stress. Surprisingly, intact HGPS cells exhibited a degree of resistance to acute mechanical stress similar to that of cells from healthy individuals. Thus, in contrast to the nuclear fragility seen in lmna null cells, the lamina network in HGPS cells has unique mechanical properties that might contribute to disease phenotypes by affecting responses to mechanical force and misregulation of mechanosensitive gene expression.
Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia
Xu, Zhiliang; Zartman, Jeremiah J.; Alber, Mark
2017-01-01
Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive. PMID:28531187
Nanocellulose as Material Building Block for Energy and Flexible Electronics
NASA Astrophysics Data System (ADS)
Hu, Liangbing
2014-03-01
In this talk, I will discuss the fabrications, properties and device applications of functional nanostructured paper based on nanocellulose. Nanostructures with tunable optical, electrical, ionic and mechanical properties will be discussed. Lab-scale demonstration devices, including low-cost Na-ion batteries, microbial fuel cells, solar cells, transparent transistors, actuators and touch screens will be briefly mentioned. These studies show that nanocellulose is a promising green material for electronics and energy devices.
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Kenty, J. L.; Moudy, L. A.; Simpson, W. I.; Yang, J. J.
1976-01-01
The chemical vapor deposition (CVD) method for the growth of Si sheet on inexpensive substrate materials is investigated. The objective is to develop CVD techniques for producing large areas of Si sheet on inexpensive substrate materials, with sheet properties suitable for fabricating solar cells meeting the technical goals of the Low Cost Silicon Solar Array Project. Specific areas covered include: (1) modification and test of existing CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using standard and near-standard processing techniques.
Řezanka, Tomáš; Matoulková, Dagmar; Kolouchová, Irena; Masák, Jan; Viden, Ivan; Sigler, Karel
2015-05-01
The methods of preparation of fatty acids from brewer's yeast and its use in production of biofuels and in different branches of industry are described. Isolation of fatty acids from cell lipids includes cell disintegration (e.g., with liquid nitrogen, KOH, NaOH, petroleum ether, nitrogenous basic compounds, etc.) and subsequent processing of extracted lipids, including analysis of fatty acid and computing of biodiesel properties such as viscosity, density, cloud point, and cetane number. Methyl esters obtained from brewer's waste yeast are well suited for the production of biodiesel. All 49 samples (7 breweries and 7 methods) meet the requirements for biodiesel quality in both the composition of fatty acids and the properties of the biofuel required by the US and EU standards.
Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László
2016-03-20
This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.
Design properties of hydrogel tissue-engineering scaffolds
Zhu, Junmin; Marchant, Roger E
2011-01-01
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626
Cytokine activation induces human memory-like NK cells.
Romee, Rizwan; Schneider, Stephanie E; Leong, Jeffrey W; Chase, Julie M; Keppel, Catherine R; Sullivan, Ryan P; Cooper, Megan A; Fehniger, Todd A
2012-12-06
Natural killer (NK) cells are lymphocytes that play an important role in the immune response to infection and malignancy. Recent studies in mice have shown that stimulation of NK cells with cytokines or in the context of a viral infection results in memory-like properties. We hypothesized that human NK cells exhibit such memory-like properties with an enhanced recall response after cytokine preactivation. In the present study, we show that human NK cells preactivated briefly with cytokine combinations including IL-12, IL-15, and IL-18 followed by a 7- to 21-day rest have enhanced IFN-γ production after restimulation with IL-12 + IL-15, IL-12 + IL-18, or K562 leukemia cells. This memory-like phenotype was retained in proliferating NK cells. In CD56(dim) NK cells, the memory-like IFN-γ response was correlated with the expression of CD94, NKG2A, NKG2C, and CD69 and a lack of CD57 and KIR. Therefore, human NK cells have functional memory-like properties after cytokine activation, which provides a novel rationale for integrating preactivation with combinations of IL-12, IL-15, and IL-18 into NK cell immunotherapy strategies.
Multidimensional proteomics for cell biology.
Larance, Mark; Lamond, Angus I
2015-05-01
The proteome is a dynamic system in which each protein has interconnected properties - dimensions - that together contribute to the phenotype of a cell. Measuring these properties has proved challenging owing to their diversity and dynamic nature. Advances in mass spectrometry-based proteomics now enable the measurement of multiple properties for thousands of proteins, including their abundance, isoform expression, turnover rate, subcellular localization, post-translational modifications and interactions. Complementing these experimental developments are new data analysis, integration and visualization tools as well as data-sharing resources. Together, these advances in the multidimensional analysis of the proteome are transforming our understanding of various cellular and physiological processes.
Calcium phosphate cements for bone engineering and their biological properties
Xu, Hockin HK; Wang, Ping; Wang, Lin; Bao, Chongyun; Chen, Qianming; Weir, Michael D; Chow, Laurence C; Zhao, Liang; Zhou, Xuedong; Reynolds, Mark A
2017-01-01
Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the 1980s, extensive research has been conducted to improve their properties, and emerging evidence supports their increased application in bone tissue engineering. Much effort has been made to enhance the biological performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability, bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs, including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and osteogenesis. PMID:29354304
Menard, Cedric; Pacelli, Luciano; Bassi, Giulio; Dulong, Joelle; Bifari, Francesco; Bezier, Isabelle; Zanoncello, Jasmina; Ricciardi, Mario; Latour, Maelle; Bourin, Philippe; Schrezenmeier, Hubert; Sensebé, Luc; Tarte, Karin; Krampera, Mauro
2013-06-15
Clinical-grade mesenchymal stromal cells (MSCs) are usually expanded from bone marrow (BMMSCs) or adipose tissue (ADSCs) using processes mainly differing in the use of fetal calf serum (FCS) or human platelet lysate (PL). We aimed to compare immune modulatory properties of clinical-grade MSCs using a combination of fully standardized in vitro assays. BMMSCs expanded with FCS (BMMSC-FCS) or PL (BMMSC-PL), and ADSC-PL were analyzed in quantitative phenotypic and functional experiments, including their capacity to inhibit the proliferation of T, B, and NK cells. The molecular mechanisms supporting T-cell inhibition were investigated. These parameters were also evaluated after pre-stimulation of MSCs with inflammatory cytokines. BMMSC-FCS, BMMSC-PL, and ADSC-PL displayed significant differences in expression of immunosuppressive and adhesion molecules. Standardized functional assays revealed that resting MSCs inhibited proliferation of T and NK cells, but not B cells. ADSC-PL were the most potent in inhibiting T-cell growth, a property ascribed to interferon-γ-dependent indoleamine 2,3-dioxygenase activity. MSCs did not stimulate allogeneic T cell proliferation but were efficiently lysed by activated NK cells. The systematic use of quantitative and reproducible validation techniques highlights differences in immunological properties of MSCs produced using various clinical-grade processes. ADSC-PL emerge as a promising candidate for future clinical trials.
Menard, Cedric; Pacelli, Luciano; Bassi, Giulio; Dulong, Joelle; Bifari, Francesco; Bezier, Isabelle; Zanoncello, Jasmina; Ricciardi, Mario; Latour, Maelle; Bourin, Philippe; Schrezenmeier, Hubert; Sensebé, Luc
2013-01-01
Clinical-grade mesenchymal stromal cells (MSCs) are usually expanded from bone marrow (BMMSCs) or adipose tissue (ADSCs) using processes mainly differing in the use of fetal calf serum (FCS) or human platelet lysate (PL). We aimed to compare immune modulatory properties of clinical-grade MSCs using a combination of fully standardized in vitro assays. BMMSCs expanded with FCS (BMMSC-FCS) or PL (BMMSC-PL), and ADSC-PL were analyzed in quantitative phenotypic and functional experiments, including their capacity to inhibit the proliferation of T, B, and NK cells. The molecular mechanisms supporting T-cell inhibition were investigated. These parameters were also evaluated after pre-stimulation of MSCs with inflammatory cytokines. BMMSC-FCS, BMMSC-PL, and ADSC-PL displayed significant differences in expression of immunosuppressive and adhesion molecules. Standardized functional assays revealed that resting MSCs inhibited proliferation of T and NK cells, but not B cells. ADSC-PL were the most potent in inhibiting T-cell growth, a property ascribed to interferon-γ-dependent indoleamine 2,3-dioxygenase activity. MSCs did not stimulate allogeneic T cell proliferation but were efficiently lysed by activated NK cells. The systematic use of quantitative and reproducible validation techniques highlights differences in immunological properties of MSCs produced using various clinical-grade processes. ADSC-PL emerge as a promising candidate for future clinical trials. PMID:23339531
Biological interaction of living cells with COSAN-based synthetic vesicles
Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J.
2015-01-01
Cobaltabisdicarbollide (COSAN) [3,3′-Co(1,2-C2B9H11)2]−, is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes. PMID:25588708
Biological interaction of living cells with COSAN-based synthetic vesicles.
Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J
2015-01-15
Cobaltabisdicarbollide (COSAN) [3,3'-Co(1,2-C2B9H11)2](-), is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.
Material Modeling of Stony Meteorites for Mechanical Properties
NASA Astrophysics Data System (ADS)
Agrawal, P.
2016-12-01
To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the asteroid material properties is needed to achieve this objective. At present, the meteorite material found on earth are the only objects (other than synthetic meteorites) from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Due to limited number of meteorites available for testing it is difficult to develop a material model that can be purely based on statistics from the test data. Therefore, we are developing computational models to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The internal structure of meteorites are very complex. They consists of several minerals that include the silica based materials such as Olivine, Pyroxene, Feldspar that are found in terrestrial rocks, as well as Fe-Ni based minerals such as Kamacite, Troilite and Taenite that are unique to meteorites. Each of these minerals have different densities and mechanical properties. In addition, the meteorites have different phases that can be summarized as chondrules, metal and matrix. The meteorites have varying degree of porosity and pre-cracked structure. In order to account for diverse petrology of the meteorites a unique methodology is developed the form of unit cell model. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. All the minerals and phases inside these unit cells are randomly distributed. Several hundreds of Monte-Carlo simulations are performed to generate the effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell. Stress-strain curves as well as strength estimates are generated based on the unit cell models. These estimates will used as material models for full scale modeling of atmospheric entry for asteroids. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology. Structural tests are also being performed on some of the meteorites including Tamdakht and Mbole to validate the predictions from unit cell models.
Cancer stem-like cells in Epstein-Barr virus-associated nasopharyngeal carcinoma
Wei-Man Lun, Samantha; Cheung, Siu-Tim; Lo, Kwok-Wai
2014-01-01
Although the Epstein-Barr virus (EBV) has spread to all populations in the world, EBV-associated nasopharyngeal carcinoma (NPC) is prevalent only in South China and Southeast Asia. The role of EBV in the malignant transformation of nasopharyngeal epithelium is the main focus of current researches. Radiotherapy and chemoradiotherapy have been successful in treating early stage NPC, but the recurrence rates remain high. Unfortunately, local relapse and metastasis are commonly unresponsive to conventional treatments. These recurrent and metastatic lesions are believed to arise from residual or surviving cells that have the properties of cancer stem cells. These cancer stem-like cells (CSCs) have the ability to self-renew, differentiate, and sustain propagation. They are also chemo-resistant and can form spheres in anchorage-independent environments. This review summarizes recent researches on the CSCs in EBV-associated NPC, including the findings regarding cell surface markers, stem cell-related transcription factors, and various signaling pathways. In particular, the review focuses on the roles of EBV latent genes [latent membrane protein 1 (LMP1) and latent membrane protein 2A (LMP2A)], cellular microRNAs, and adenosine triphosphate (ATP)-binding cassette chemodrug transporters in contributing to the properties of CSCs, including the epithelial-mesenchymal transition, stem-like transition, and chemo-resistance. Novel therapeutics that enhance the efficacy of radiotherapy and chemoradiotherapy and inhibitors that suppress the properties of CSCs are also discussed. PMID:25223912
E. coli Surface Properties Differ between Stream Water and Sediment Environments.
Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M
2016-01-01
The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .
Modeling the Spatiotemporal Evolution of the Melanoma Tumor Microenvironment
NASA Astrophysics Data System (ADS)
Signoriello, Alexandra; Bosenberg, Marcus; Shattuck, Mark; O'Hern, Corey
The tumor microenvironment, which includes tumor cells, tumor-associated macrophages (TAM), cancer-associated fibroblasts, and endothelial cells, drives the formation and progression of melanoma tumors. Using quantitative analysis of in vivo confocal images of melanoma tumors in three spatial dimensions, we examine the physical properties of the melanoma tumor microenvironment, including the numbers of different cells types, cell size, and morphology. We also compute the nearest neighbor statistics and measure intermediate range spatial correlations between different cell types. We also calculate the step size distribution, mean-square displacement, and non-Gaussian parameter from the spatial trajectories of different cell types in the tumor microenvironment.
The influence of mineral particles on fibroblast behaviour: A comparative study.
Soto Veliz, Diosangeles; Luoto, Jens C; Pulli, Ilari; Toivakka, Martti
2018-07-01
Minerals are versatile tools utilised to modify and control the physical-chemical and functional properties of substrates. Those properties include ones directing cell fate; thus, minerals can potentially provide a direct and inexpensive method to manipulate cell behaviour. This paper shows how different minerals influence human dermal fibroblast behaviour depending on their properties. Different calcium carbonates, calcium sulphates, silica, silicates, and titanium dioxide were characterised using TEM, ATR-FTIR, and zeta potential measurements. Mineral-cell interactions were analysed through MTT assay, LDH assay, calcein AM staining, live cell imaging, immunofluorescence staining, western blot, and extra/intracellular calcium measurements. Results show that the interaction of the fibroblasts with the minerals was governed by a shared period of adaptation, followed by increased proliferation, growth inhibition, or increased toxicity. Properties such as size, ion release and chemical composition had a direct influence on the cells leading to cell agglomeration, morphological changes, and the possible formation of protein-mineral complexes. In addition, zeta potential and FTIR measurements of the minerals showed adsorption of the cell culture media onto the particles. This article provides fundamental insight into the mineral-fibroblast interactions, and makes it possible to arrange the minerals according to the time-dependent cellular response. Copyright © 2018 Elsevier B.V. All rights reserved.
Mechanisms of Neuronal Computation in Mammalian Visual Cortex
Priebe, Nicholas J.; Ferster, David
2012-01-01
Orientation selectivity in the primary visual cortex (V1) is a receptive field property that is at once simple enough to make it amenable to experimental and theoretical approaches and yet complex enough to represent a significant transformation in the representation of the visual image. As a result, V1 has become an area of choice for studying cortical computation and its underlying mechanisms. Here we consider the receptive field properties of the simple cells in cat V1—the cells that receive direct input from thalamic relay cells—and explore how these properties, many of which are highly nonlinear, arise. We have found that many receptive field properties of V1 simple cells fall directly out of Hubel and Wiesel’s feedforward model when the model incorporates realistic neuronal and synaptic mechanisms, including threshold, synaptic depression, response variability, and the membrane time constant. PMID:22841306
Advances in vascular tissue engineering.
Thomas, Anita C; Campbell, Gordon R; Campbell, Julie H
2003-01-01
Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the supply of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. "Tissue-engineered blood vessels" may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. "Artificial arteries" may be also be derived from peritoneal granulation tissue in body "bioreactors" by adapting the body's natural wound healing response to produce a hollow tube.
NASA Astrophysics Data System (ADS)
Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen
2015-05-01
There is a growing interest in cell biology and clinical diagnostics in label-free, optical techniques as the interaction with the sample is minimized and substances like dyes or fixatives do not affect the investigated cells. Such techniques include digital holographic microscopy (DHM) and the optical stretching by fiber optical two beam traps. DHM enables quantitative phase contrast imaging and thereby the determination of the cellular refractive index, dry mass and the volume, whereas optical cell stretching reveals the deformability of cells. Since optical stretching strongly depends on the optical properties and the shape of the investigated material we combined the usage of fiber optical stretching and DHM for the characterization of pancreatic tumor cells. The risk of tumors is their potential to metastasize, spread through the bloodstream and build distal tumors/metastases. The grade of dedifferentiation in which the cells lose their cell type specific properties is a measure for this metastatic potential. The less differentiated the cells are, the higher is their risk to metastasize. Our results demonstrate that pancreatic tumor cells, which are from the same tumor but vary in their grade of differentiation, show significant differences in their deformability. The retrieved data show that differentiated cells have a higher stiffness than less differentiated cells of the same tumor. Even cells that differ only in the expression of a single tumor suppressor gene which is responsible for cell-cell adhesions can be distinguished by their mechanical properties. Additionally, results from DHM measurements yield that the refractive index shows only few variations, indicating that it does not significantly influence optical cell stretching. The obtained results show a promising new approach for the phenotyping of different cell types, especially in tumor cell characterization and cancer diagnostics.
Myosin II Activity Softens Cells in Suspension.
Chan, Chii J; Ekpenyong, Andrew E; Golfier, Stefan; Li, Wenhong; Chalut, Kevin J; Otto, Oliver; Elgeti, Jens; Guck, Jochen; Lautenschläger, Franziska
2015-04-21
The cellular cytoskeleton is crucial for many cellular functions such as cell motility and wound healing, as well as other processes that require shape change or force generation. Actin is one cytoskeleton component that regulates cell mechanics. Important properties driving this regulation include the amount of actin, its level of cross-linking, and its coordination with the activity of specific molecular motors like myosin. While studies investigating the contribution of myosin activity to cell mechanics have been performed on cells attached to a substrate, we investigated mechanical properties of cells in suspension. To do this, we used multiple probes for cell mechanics including a microfluidic optical stretcher, a microfluidic microcirculation mimetic, and real-time deformability cytometry. We found that nonadherent blood cells, cells arrested in mitosis, and naturally adherent cells brought into suspension, stiffen and become more solidlike upon myosin inhibition across multiple timescales (milliseconds to minutes). Our results hold across several pharmacological and genetic perturbations targeting myosin. Our findings suggest that myosin II activity contributes to increased whole-cell compliance and fluidity. This finding is contrary to what has been reported for cells attached to a substrate, which stiffen via active myosin driven prestress. Our results establish the importance of myosin II as an active component in modulating suspended cell mechanics, with a functional role distinctly different from that for substrate-adhered cells. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Bourboulia, Dimitra; Stetler-Stevenson, William G
2010-06-01
Cells adhere to one another and/or to matrices that surround them. Regulation of cell-cell (intercellular) and cell-matrix adhesion is tightly controlled in normal cells, however, defects in cell adhesion are common in the majority of human cancers. Multilateral communication among tumor cells with the extracellular matrix (ECM) and neighbor cells is accomplished through adhesion molecules, ECM components, proteolytic enzymes and their endogenous inhibitors. There is sufficient evidence to suggest that reduced adherence is a tumor cell property engaged during tumor progression. Tumor cells acquire the ability to change shape, detach and easily move through spaces disorganizing the normal tissue architecture. This property is due to changes in expression levels of adhesion molecules and/or due to elevated levels of secreted proteolytic enzymes, including matrix metalloproteinases (MMPs). Among other roles, MMPs degrade the ECM and, therefore, prepare the path for tumor cells to migrate, invade and spread to distant secondary areas, where they form metastasis. Tissue inhibitors of metalloproteinases or TIMPs control MMP activities and, therefore, minimize matrix degradation. Both MMPs and TIMPs are involved in tissue remodeling and decisively regulate tumor cell progression including tumor angiogenesis. In this review, we describe and discuss data that support the important role of MMPs and TIMPs in cancer cell adhesion and tumor progression. Published by Elsevier Ltd.
Application of stem cells for cardiovascular grafts tissue engineering.
Wu, Kaihong; Liu, Ying Long; Cui, Bin; Han, Zhongchao
2006-06-01
Congenital and acquired heart diseases are leading causes of morbidity and mortality world-wide. Currently, the synthetic materials or bioprosthetic replacement devices for cardiovascular surgery are imperfect and subject patients to one or more ongoing risks including thrombosis, limited durability and need for reoperations due to lack of growth in children and young adults. Suitable replacement grafts should have appropriate characteristics, including resistance to infection, low immunogenicity, good biocompatability and thromboresistance, with appropriate mechanical and physiological properties. Tissue engineering is a new scientific field aiming at fabrication of living, autologous grafts having structure or function properties that can be used to restore, maintain or improve tissue function. The use of autologous stem cells in cardiovascular tissue engineering is quite promising due to their capacity of self-renewal, high proliferation, and differentiation into specialized progeny. Progress has been made in engineering the various components of the cardiovascular system, including myocardial constructs, heart valves, and vascular patches or conduits with autologous stem cells. This paper will review the current achievements in stem cell-based cardiovascular grafts tissue engineering, with an emphasis on its clinical or possible clinical use in cardiovascular surgery.
Osińska-Jaroszuk, Monika; Błachowicz, Adriana; Wydrych, Jerzy; Polak, Jolanta; Jarosz-Wilkołazka, Anna; Kandefer-Szerszeń, Martyna
2014-01-01
A new exopolysaccharide preparation isolated from stationary cultures of the white rot fungus Ganoderma applanatum (GpEPS) was tested in terms of its bioactive properties including its cytotoxic and immunostimulatory effect. The results indicate that the tested GpEPS (at concentrations above 22.85 µg/mL and 228.5 µg/mL) may exhibit selective activity against tumor cells (cell lines SiHa) and stimulate production of TNF-α THP-1-derived macrophages at the level of 752.17 pg/mL. The GpEPS showed antibacterial properties against Staphyloccoccus aureus and a toxic effect against Vibrio fischeri cells (82.8% cell damage). High cholesterol-binding capacity and triglycerides-binding capacity (57.9% and 41.6% after 24 h of incubation with the tested substances, resp.) were also detected for the investigated samples of GpEPS. PMID:25114920
Antigen discovery and delivery of subunit vaccines by nonliving bacterial ghost vectors.
Walcher, Petra; Mayr, Ulrike B; Azimpour-Tabrizi, Chakameh; Eko, Francis O; Jechlinger, Wolfgang; Mayrhofer, Peter; Alefantis, Tim; Mujer, Cesar V; DelVecchio, Vito G; Lubitz, Werner
2004-12-01
The bacterial ghost (BG) platform system is a novel vaccine delivery system endowed with intrinsic adjuvant properties. BGs are nonliving Gram-negative bacterial cell envelopes which are devoid of their cytoplasmic contents, yet maintain their cellular morphology and antigenic structures, including bioadhesive properties. The main advantages of BGs as carriers of subunit vaccines include their ability to stimulate a high immune response and to target the carrier itself to primary antigen-presenting cells. The intrinsic adjuvant properties of BGs enhance the immune response to target antigens, including T-cell activation and mucosal immunity. Since native and foreign antigens can be carried in the envelope complex of BGs, combination vaccines with multiple antigens of diverse origin can be presented to the immune system simultaneously. Beside the capacity of BGs to function as carriers of protein antigens, they also have a high loading capacity for DNA. Thus, loading BGs with recombinant DNA takes advantage of the excellent bioavailability for DNA-based vaccines and the high expression rates of the DNA-encoded antigens in target cell types such as macrophages and dendritic cells. There are many spaces within BGs including the inner and outer membranes, the periplasmic space and the internal lumen which can carry antigens, DNA or mediators of the immune response. All can be used for subunit antigen to design new vaccine candidates with particle presentation technology. In addition, the fact that BGs can also carry piggyback large-size foreign antigen particles, increases the technologic usefulness of BGs as combination vaccines against viral and bacterial pathogens. Furthermore, the BG antigen carriers can be stored as freeze-dried preparations at room temperature for extended periods without loss of efficacy. The potency, safety and relatively low production cost of BGs offer a significant technical advantage over currently utilized vaccine technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishnoi, Dimple
In this paper, we demonstrate theoretically that the Quantum dots are quite interesting for the electronics industry. Semiconductor quantum dots (QDs) are nanometer-scale crystals, which have unique photo physical, quantum electrical properties, size-dependent optical properties, There small size means that electrons do not have to travel as far as with larger particles, thus electronic devices can operate faster. Cheaper than modern commercial solar cells while making use of a wider variety of photon energies, including “waste heat” from the sun’s energy. Quantum dots can be used in tandem cells, which are multi junction photovoltaic cells or in the intermediate bandmore » setup. PbSe (lead selenide) is commonly used in quantum dot solar cells.« less
Advances of blood cell-based drug delivery systems.
Sun, Yanan; Su, Jing; Liu, Geyi; Chen, Jianjun; Zhang, Xiumei; Zhang, Ran; Jiang, Minhan; Qiu, Mingfeng
2017-01-01
Blood cells, including erythrocytes, leukocytes and platelets are used as drug carriers in a wide range of applications. They have many unique advantages such as long life-span in circulation (especially erythrocytes), target release capacities (especially platelets), and natural adhesive properties (leukocytes and platelets). These properties make blood cell based delivery systems, as well as their membrane-derived carriers, far superior to other drug delivery systems. Despite the advantages, the further development of blood cell-based delivery systems was hindered by limitations in the source, storage, and mass production. To overcome these problems, synthetic biomaterials that mimic blood cell and nanocrystallization of blood cells have been developed and may represent the future direction for blood cell membrane-based delivery systems. In this paper, we review recent progress of the rising blood cell-based drug delivery systems, and also discuss their challenges and future tendency of development. Copyright © 2016. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Nadkarni, Seemantini K.
2013-12-01
During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
Auraptene Attenuates Malignant Properties of Esophageal Stem-Like Cancer Cells.
Saboor-Maleki, Saffiyeh; Rassouli, Fatemeh B; Matin, Maryam M; Iranshahi, Mehrdad
2017-08-01
The high incidence of esophageal squamous cell carcinoma has been reported in selected ethnic populations including North of Iran. Low survival rate of esophageal carcinoma is partially due to the presence of stem-like cancer cells with chemotherapy resistance. In the current study, we aimed to determine the effects of auraptene, an interesting dietary coumarin with various biological activities, on malignant properties of stem-like esophageal squamous cell carcinoma, in terms of sensitivity to anticancer drugs and expression of specific markers. To do so, the half maximal inhibitory concentration values of auraptene, cisplatin, paclitaxel, and 5-fluorouracil were determined on esophageal carcinoma cells (KYSE30 cell line). After administrating combinatorial treatments, including nontoxic concentrations of auraptene + cisplatin, paclitaxel, or 5-fluorouracil, sensitivity of cells to chemical drugs and also induced apoptosis were assessed. In addition, quantitative real-time polymerase chain reaction was used to study changes in the expression of tumor suppressor proteins 53 and 21 ( P53 and P21), cluster of differentiation 44 ( CD44), and B cell-specific Moloney murine leukemia virus integration site 1 ( BMI-1) upon treatments. Results of thiazolyl blue assay revealed that auraptene significantly ( P < .05) increased toxicity of cisplatin, paclitaxel, and 5-fluorouracil in KYSE30 cells, specifically 72 hours after treatment. Conducting an apoptosis assay using flow cytometry also confirmed the synergic effects of auraptene. Results of quantitative real-time polymerase chain reaction revealed significant ( P < .05) upregulation of P53 and P21 upon combinatorial treatments and also downregulation of CD44 and BMI-1 after auraptene administration. Current study provided evidence, for the first time, that auraptene attenuates the properties of esophageal stem-like cancer cells through enhancing sensitivity to chemical agents and reducing the expression of CD44 and BMI-1 markers.
Koo, Min-Ah; Lee, Mi Hee; Kwon, Byeong-Ju; Seon, Gyeung Mi; Kim, Min Sung; Kim, Dohyun; Nam, Ki Chang; Park, Jong-Chul
2018-04-01
To date, most of invasive cell sheet harvesting methods have used culture surface property variations, such as wettability, pH, electricity, and magnetism, to induce cell detachment. These methods that rely on surface property changes are effective when cell detachment prior to application is necessary, but of limited use when used for cell sheet transfer to target regions. The study reports a new reactive oxygen species (ROS)-induced strategy based on hematoporphyrin-incorporated polyketone film (Hp-PK film) to transfer cell sheets directly to target areas without an intermediate harvesting process. After green LED (510 nm) irradiation, production of exogenous ROS from the Hp-PK films induces cell sheet detachment and transfer. The study suggests that ROS-induced cell detachment property of the Hp-PK film is closely related to conformational changes of extracellular matrix (ECM) proteins. Also, this strategy with the Hp-PK film can be applied by regulating production rate of exogenous ROS in various types of cells, including fibroblasts, mesenchymal stem cells and keratinocytes. In conclusion, ROS-induced method using the Hp-PK film can be used for one-step cell sheet transplantation and has potential in biomedical applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ahmad, Suhana; Zamry, Anes Ateqah; Tan, Hern-Tze Tina; Wong, Kah Keng; Lim, JitKang; Mohamud, Rohimah
2017-11-01
Gold nanoparticles (NPs) have been proposed as a highly potential tool in immunotherapies due to its advantageous properties including customizable size and shapes, surface functionality and biocompatibility. Dendritic cells (DCs), the sentinels of immune response, have been of interest to be manipulated by using gold NPs for targeted delivery of immunotherapeutic agent. Researches done especially in human DCs showed a variation of gold NPs effects on cellular uptake and internalization, DC maturation and subsequent T cells priming as well as cytotoxicity. In this review, we describe the synthesis and physiochemical properties of gold NPs as well as the importance of gold NPs in immunotherapies through their actions on human DCs. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Perovskite Materials: Solar Cell and Optoelectronic Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Bin; Geohegan, David B; Xiao, Kai
2017-01-01
Hybrid organometallic trihalide perovskites are promising candidates in the applications for next-generation, high-performance, low-cost optoelectronic devices, including photovoltaics, light emitting diodes, and photodetectors. Particularly, the solar cells based on this type of materials have reached 22% lab scale power conversion efficiency in only about seven years, comparable to the other thin film photovoltaic technologies. Hybrid perovskite materials not only exhibit superior optoelectronic properties, but also show many interesting physical properties such as ion migration and defect physics, which may allow the exploration of more device functionalities. In this article, the fundamental understanding of the interrelationships between crystal structure, electronic structure,more » and material properties is discussed. Various chemical synthesis and processing methods for superior device performance in solar cells and optoelectronic devices are reviewed.« less
NASA Technical Reports Server (NTRS)
Boeer, K. W.
1971-01-01
Theoretical and experimental investigations on CdS single crystals and CuxS:CdS photovoltaic cells prepared from CdS single crystals by a chemical-dip procedure are described. The studies are aimed at clarifying cell mechanisms which affect key cell properties (efficiency, reliability, and lifetime) by examining the properties of intrinsic and extrinsic defects in the junction and surface regions and their effects on carrier transport through these regions. The experimental research described includes studies of thermal, infrared, and field quenching of acceptor-doped CdS crystals; investigation of optical and electrical properties of CuxS:CdS photovoltaic cells (current-voltage characteristics, spectral distribution of photocurrent and photovoltage) and the dependence of these properties on temperature and light intensity; measurement of changes, as a result of heat treatment in ultrahigh vacuum, in the spectral distribution of photoconductivity at room temperature and liquid nitrogen temperature, the luminescence spectrum at liquid nitrogen temperature, and the thermally stimulated current curves of CdS crystals; determination of the effect of irradiation with 150 keV (maximum) X-rays on the spectral distribution of photoconductivity and thermally-stimulated current of CdS crystals; and studies of the effect of growth conditions on the photoconductive properties of CdS crystals.
Estimation of ovular fiber production in cotton
Van't Hof, Jack
1998-09-01
The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means.
Advances in mechanisms of asthma, allergy, and immunology in 2008.
Boyce, Joshua A; Broide, David; Matsumoto, Kenji; Bochner, Bruce S
2009-03-01
This review summarizes selected articles appearing in 2008 in the Journal. Articles chosen include those improving our understanding of mechanisms of allergic diseases by focusing on human basophil, mast cell, and eosinophil biology; IgE and its high-affinity receptor on various cells; novel properties of omalizumab; airways remodeling; and genetics. Articles from other journals have been included to supplement the topics presented.
NASA Astrophysics Data System (ADS)
Yin, Shizhuo; Zhang, Xueqian; Cheung, Joseph; Wu, Juntao; Zhan, Chun; Xue, Jinchao
2004-07-01
In this paper, a unique non-contact, minimum invasive technique for the assessment of mechanical properties of single cardiac myocyte is presented. The assessment process includes following major steps: (1) attach a micro magnetic bead to the cell to be measured, (2) measure the contractile performance of the cell under the different magnetic field loading, (3) calculate mechanical loading force, and (4) derive the contractile force from the measured contraction data under different magnetic field loading.
Demonstrations of Some Optical Properties of Liquid Crystals.
ERIC Educational Resources Information Center
Nicastro, Anthony J.
1983-01-01
Discusses several properties of liquid crystal displays. Includes instructions for demonstrating liquid crystalline phase, ordering of the long axes of molecules along one direction, and electro-optic effects. The latter is accomplished with the use of an overhead projector following preparation of a sandwich cell. (JN)
Quantification of cell response to polymeric composites using a two-dimensional gradient platform.
Lin, Nancy J; Hu, Haiqing; Sung, Lipin; Lin-Gibson, Sheng
2009-07-01
A simple and straightforward screening process to assess the toxicity and corresponding cell response of dental composites would be useful prior to extensive in vitro or in vivo characterization. To this end, gradient composite samples were prepared with variations in filler content/type and in degree of conversion (DC). The DC was determined using near infrared spectroscopy (NIR), and the surface morphology was evaluated by laser scanning confocal microscopy (LSCM). RAW 264.7 macrophage-like cells were cultured directly on the composite gradient samples, and cell viability, density, and area were measured at 24 h. All three measures of cell response varied as a function of material properties. For instance, compositions with higher filler content had no reduction in cell viability or cell density, even at low conversions of 52%, whereas significant decreases in viability and density were present when the filler content was 35% or below (by mass). The overall results demonstrate the complexity of the cell-material interactions, with properties including DC, filler type, filler mass ratio, and surface morphology influencing the cell response. The combinatorial approach described herein enables simultaneous screening of multiple compositions and material properties, providing a more thorough characterization of cell response for the improved selection of biocompatible composite formulations and processing conditions.
Clinico-Pathologic Relevance of Survivin Splice Variant Expression in Cancer
de Necochea-Campion, Rosalia; Chen, Chien-Shing; Mirshahidi, Saied; Howard, Frank D.; Wall, Nathan R.
2013-01-01
Survivin is a member of the inhibitor of apoptosis (IAP) family and has multifunctional properties that include aspects of proliferation, invasion and cell survival control. Survivin is a promising candidate for targeted cancer therapy as its expression is associated with poor clinical outcome, more aggressive clinico-pathologic features, and resistance to radiation and chemotherapy. In the present review the different properties of the Survivin splice variants are discussed and their activities correlated with different aspects of cancer cell biology, to include subcellular location. Special emphasis is placed on our current understanding of these Survivin splice variants influence on each other and on the phenotypic responses to therapy that they may control. PMID:23791888
NASA Astrophysics Data System (ADS)
Žáková, Pavlína; Slepičková Kasálková, Nikola; Slepička, Petr; Kolská, Zdeňka; Karpíšková, Jana; Stibor, Ivan; Švorčík, Václav
2017-11-01
Various carbon nanostructures are widely researched as scaffolds for tissue engineering. We evaluated the surface properties and cell-substrate interactions of carbon nanoparticles functionalized with triethylenetetramine (CNPs) grafted polymer film. Two forms of polyethylene (HDPE, LDPE) were treated in an inert argon plasma discharge and, subsequently, grafted with CNPs. The surface properties were studied using multiple methods, including Raman spectroscopy, goniometry, atomic force microscopy, X-ray photoelectron spectroscopy and electrokinetic analysis. Cell-substrate interactions were determined in vitro by studying adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs) from the aorta of a rat. Cell-substrate interactions on pristine and modified substrates were compared to standard tissue culture polystyrene. Our results show that CNPs affect surface morphology and wettability and therefore adhesion, proliferation and viability of cultured muscle cells.
Multiscale simulation of red blood cell aggregation
NASA Astrophysics Data System (ADS)
Bagchi, P.; Popel, A. S.
2004-11-01
In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.
Cell biomechanics and its applications in human disease diagnosis
NASA Astrophysics Data System (ADS)
Nematbakhsh, Yasaman; Lim, Chwee Teck
2015-04-01
Certain diseases are known to cause changes in the physical and biomechanical properties of cells. These include cancer, malaria, and sickle cell anemia among others. Typically, such physical property changes can result in several fold increases or decreases in cell stiffness, which are significant and can result in severe pathology and eventual catastrophic breakdown of the bodily functions. While there are developed biochemical and biological assays to detect the onset or presence of diseases, there is always a need to develop more rapid, precise, and sensitive methods to detect and diagnose diseases. Biomechanical property changes can play a significant role in this regard. As such, research into disease biomechanics can not only give us an in-depth knowledge of the mechanisms underlying disease progression, but can also serve as a powerful tool for detection and diagnosis. This article provides some insights into opportunities for how significant changes in cellular mechanical properties during onset or progression of a disease can be utilized as useful means for detection and diagnosis. We will also showcase several technologies that have already been developed to perform such detection and diagnosis.
Phase imaging of mechanical properties of live cells (Conference Presentation)
NASA Astrophysics Data System (ADS)
Wax, Adam
2017-02-01
The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.
NASA Astrophysics Data System (ADS)
Kim, Min-Ji; Doh, Il; Bae, Gab-Yong; Cha, Hyuk-Jin; Cho, Young-Ho
2014-08-01
This paper presents a cell chip capable to characterize cell-matrix adhesion by monitoring cell detachment rate. The proposed cell chip can supply multiple levels of shear stress in single stepwise microchannel. As epithelial-mesenchymal transition (EMT), one of hallmarks of cancer metastasis is closely associated to the interaction with extracelluar matrix (ECM), we took advantage of two lung cancer cell models with different adhesion properties to ECM depending their epithelial or mesenchymal properties, including the pair of lung cancer cells with (A549sh) or without E-cadherin expression (A549sh-Ecad), which would be optimal model to examine the alteration of adhesion properties after EMT induction. The cell-matrix adhesion resisting to shear stress appeared to be remarkably differed between lung cancer cells. The detachment rate of epithelial-like H358 and mesenchymal-like H460 cells was 53%-80% and 25%-66% in the shear stress range of 34-60 dyn/cm2, respectively. A549sh-Ecad cells exhibits lower detachment rate (5%-9%) compared to A549sh cells (14%-40%). By direct comparison of adhesion between A549sh and A549sh-Ecad, we demonstrated that A549shE-cad to mimic EMT were more favorable to the ECM attachment under the various levels of shear stress. The present method can be applied to quantitative analysis of tumor cell-ECM adhesion.
Principles and applications of flow cytometry and cell sorting in companion animal medicine.
Wilkerson, Melinda J
2012-01-01
Flow cytometry measures multiple characteristic of single cells using light scatter properties and fluorescence properties of fluorescent probes with specificity to cellular constituents. The use of flow cytometry in the veterinary clinical laboratory has become more routine in veterinary diagnostic laboratories and institutions (http://www.vet.k-state.edu/depts/dmp/service/immunology/index.htm), and reference laboratories. The most common applications in small animal medicine includes quantitation of erythrocytes and leukocytes in automated hematology instruments, detection of antibodies to erythrocytes and platelets in cases of immune-mediated diseases, immunophenotyping of leukocytes and lymphocytes in immunodeficiency syndromes, or leukemias and lymphomas. DNA content analysis to identify aneuploidy or replicating cells in tumor preparations has not gained routine acceptance because of the variability of prognostic results. Other applications including cell sorting and multiplexing using microspheres are potential assays of the future once they become validated and the instrumentation footprint becomes more and more compact, less expensive, and easier to use.
Research progress in photolectric materials of CuFeS2
NASA Astrophysics Data System (ADS)
Jing, Mingxing; Li, Jing; Liu, Kegao
2018-03-01
CuFeS2 as a photoelectric material, there are many advantages, such as high optical absorption coefficient, direct gap semiconductor, thermal stability, no photo-recession effect and so on. Because of its low price, abundant reserves and non-toxic, CuFeS2 has attracted extensive attention of scientists.Preparation method of thin film solar cells are included that Electrodeposition, sputtering, thermal evaporation, thermal spraying method, co-reduction method.In this paper, the development of CuFeS2 thin films prepared by co-reduction method and co-reduction method is introduced.In this paper, the structure and development of solar cells, advantages of CuFeS2 as solar cell material, the structure and photoelectric properties and magnetic properties of CuFeS2, preparation process analysis of CuFeS2 thin film, research and development of CuFeS2 in solar cells is included herein. Finally, the development trend of CuFeS2 optoelectronic materials is analyzed and further research directions are proposed.
Shape Transformations of Epithelial Shells
Misra, Mahim; Audoly, Basile; Kevrekidis, Ioannis G.; Shvartsman, Stanislav Y.
2016-01-01
Regulated deformations of epithelial sheets are frequently foreshadowed by patterning of their mechanical properties. The connection between patterns of cell properties and the emerging tissue deformations is studied in multiple experimental systems, but the general principles remain poorly understood. For instance, it is in general unclear what determines the direction in which the patterned sheet is going to bend and whether the resulting shape transformation will be discontinuous or smooth. Here these questions are explored computationally, using vertex models of epithelial shells assembled from prismlike cells. In response to rings and patches of apical cell contractility, model epithelia smoothly deform into invaginated or evaginated shapes similar to those observed in embryos and tissue organoids. Most of the observed effects can be captured by a simpler model with polygonal cells, modified to include the effects of the apicobasal polarity and natural curvature of epithelia. Our models can be readily extended to include the effects of multiple constraints and used to describe a wide range of morphogenetic processes. PMID:27074691
Miller, Mark N.; Okaty, Benjamin W.; Kato, Saori; Nelson, Sacha B.
2010-01-01
The diverse cell types that comprise neocortical circuits each have characteristic integrative and firing properties that are specialized to perform specific functions within the network. Parvalbumin-positive fast-spiking (FS) interneurons are a particularly specialized cortical cell-type that controls the dynamics of ongoing activity and prevents runaway excitation by virtue of remarkably high firing rates, a feature that is permitted by narrow action potentials and the absence of spike-frequency adaptation. Although several neuronal intrinsic membrane properties undergo activity-dependent plasticity, the role of network activity in shaping and maintaining specialized, cell-type-specific firing properties is unknown. We tested whether the specialized firing properties of mature FS interneurons are sensitive to activity perturbations by inactivating a portion of motor cortex in vivo for 48 hours and measuring resulting plasticity of FS intrinsic and firing properties with whole-cell recording in acute slices. Many of the characteristic properties of FS interneurons, including non-adapting high-frequency spiking and narrow action potentials, were profoundly affected by activity deprivation both at an age just after maturation of FS firing properties and also a week after their maturation. Using microarray screening, we determined that although normal maturation of FS electrophysiological specializations is accompanied by large-scale transcriptional changes, the effects of deprivation on the same specializations involve more modest transcriptional changes, and may instead be primarily mediated by post-transcriptional mechanisms. PMID:21154910
Su, Jingna; Zhou, Xiuxia; Yin, Xuyuan; Wang, Lixia; Zhao, Zhe; Hou, Yingying; Zheng, Nana; Xia, Jun; Wang, Zhiwei
2017-09-15
Pancreatic cancer (PC) is one of the most fatal cancers worldwide. The incidence and death rates are still increasing for PC. Curcumin is the biologically active diarylheptanoid constituent of the spice turmeric, which exerts its anticancer properties in various human cancers including PC. In particular, accumulating evidence has proved that curcumin targets numerous therapeutically important proteins in cell signaling pathways. The neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) is an E3 HECT ubiquitin ligase and is frequently over-expressed in various cancers. It has reported that NEDD4 might facilitate tumorigenesis via targeting and degradation of multiple tumor suppressor proteins including PTEN. Hence, in the present study we explore whether curcumin inhibits NEDD4, resulting in the suppression of cell growth, migration and invasion in PC cells. We found that curcumin inhibited cell proliferation and triggered apoptosis in PC, which is associated with increased expression of PTEN and p73. These results suggested that inhibition of NEDD4 might be beneficial to the antitumor properties of curcumin on PC treatments. Copyright © 2017 Elsevier Inc. All rights reserved.
Cheung, Yuen-Ting; Lau, Way Kwok-Wai; Yu, Man-Shan; Lai, Cora Sau-Wan; Yeung, Sze-Chun; So, Kwok-Fai; Chang, Raymond Chuen-Chung
2009-01-01
Human neuroblastoma SH-SY5Y is a dopaminergic neuronal cell line which has been used as an in vitro model for neurotoxicity experiments. Although the neuroblastoma is usually differentiated by all-trans-retinoic acid (RA), both RA-differentiated and undifferentiated SH-SY5Y cells have been used in neuroscience research. However, the changes in neuronal properties triggered by RA as well as the subsequent responsiveness to neurotoxins have not been comprehensively studied. Therefore, we aim to re-evaluate the differentiation property of RA on this cell line. We hypothesize that modulation of signaling pathways and neuronal properties during RA-mediated differentiation in SH-SY5Y cells can affect their susceptibility to neurotoxins. The differentiation property of RA was confirmed by showing an extensive outgrowth of neurites, increased expressions of neuronal nuclei, neuron specific enolase, synaptophysin and synaptic associated protein-97, and decreased expression of inhibitor of differentiation-1. While undifferentiated SH-SY5Y cells were susceptible to 6-OHDA and MPP+, RA-differentiation conferred SH-SY5Y cells higher tolerance, potentially by up-regulating survival signaling, including Akt pathway as inhibition of Akt removed RA-induced neuroprotection against 6-OHDA. As a result, the real toxicity cannot be revealed in RA-differentiated cells. Therefore, undifferentiated SH-SY5Y is more appropriate for studying neurotoxicity or neuroprotection in experimental Parkinson's disease research.
Modeling hygroelastic properties of genetically modified aspen
Laszlo Horvath; Perry Peralta; Ilona Peszlen; Levente Csoka; Balazs Horvath; Joseph Jakes
2012-01-01
Numerical and three-dimensional finite element models were developed to improve understanding of major factors affecting hygroelastic wood properties. Effects of chemical composition, microfibril angle, crystallinity, structure of microfibrils, moisture content, and hydrophilicity of the cell wall were included in the model. Wood from wild-type and decreased-lignin...
Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.
Madl, Christopher M; Heilshorn, Sarah C
2018-06-04
Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.
Gold nanocages for imaging and therapy of prostate cancer cells
NASA Astrophysics Data System (ADS)
Sironi, Laura; Avvakumova, Svetlana; Galbiati, Elisabetta; Locarno, Silvia A.; Macchi, Chiara; D'Alfonso, Laura; Ruscica, Massimiliano; Magni, Paolo; Collini, Maddalena; Romeo, Sergio; Chirico, Giuseppe; Prosperi, Davide
2016-04-01
Gold nanocages (AuNCs) have been shown to be a useful tool both for imaging and hyperthermia therapy of cancer, thanks to their outstanding optical properties, low toxicity and facile functionalization with targeting molecules, including peptides and antibodies. In particular, hyperthermia is a minimally invasive therapy which takes advantage of the peculiar properties of gold nanoparticles to efficiently convert the absorbed light into heat. Here, we use AuNCs for the selective targeting and imaging of prostate cancer cells. Moreover, we report the hyperthermic effect characterization of the AuNCs both in solution and internalized in cells. Prostate cancer cells were irradiated at different exposure times, with a pulsed near infrared laser, and the cellular viability was evaluated by confocal microscopy.
Using Polymeric Materials to Control Stem Cell Behavior for Tissue Regeneration
Zhang, Nianli; Kohn, David H.
2017-01-01
Patients with organ failure often suffer from increased morbidity and decreased quality of life. Current strategies of treating organ failure have limitations, including shortage of donor organs, low efficiency of grafts, and immunological problems. Tissue engineering emerged about two decades ago as a strategy to restore organ function with a living, functional engineered substitute. However, the ability to engineer a functional organ substitute is limited by a limited understanding of the interactions between materials and cells that are required to yield functional tissue equivalents. Polymeric materials are one of the most promising classes of materials for use in tissue engineering due to their biodegradability, flexibility in processing and property design, and the potential to use polymer properties to control cell function. Stem cells offer potential in tissue engineering because of their unique capacity to self renew and differentiate into neurogenic, osteogenic, chondrogenic, myogenic lineages under appropriate stimuli from extracellular components. This review examines recent advances in stem cell-polymer interactions for tissue regeneration, specifically highlighting control of polymer properties to direct adhesion, proliferation, and differentiation of stem cells, and how biomaterials can be designed to provide some of the stimuli to cells that the natural extracellular matrix does. PMID:22457178
Nanomechanics of Yeast Surfaces Revealed by AFM
NASA Astrophysics Data System (ADS)
Dague, Etienne; Beaussart, Audrey; Alsteens, David
Despite the large and well-documented characterization of the microbial cell wall in terms of chemical composition, the determination of the mechanical properties of surface molecules in relation to their function remains a key challenge in cell biology.The emergence of powerful tools allowing molecular manipulations has already revolutionized our understanding of the surface properties of fungal cells. At the frontier between nanophysics and molecular biology, atomic force microscopy (AFM), and more specifically single-molecule force spectroscopy (SMFS), has strongly contributed to our current knowledge of the cell wall organization and nanomechanical properties. However, due to the complexity of the technique, measurements on live cells are still at their infancy.In this chapter, we describe the cell wall composition and recapitulate the principles of AFM as well as the main current methodologies used to perform AFM measurements on live cells, including sample immobilization and tip functionalization.The current status of the progress in probing nanomechanics of the yeast surface is illustrated through three recent breakthrough studies. Determination of the cell wall nanostructure and elasticity is presented through two examples: the mechanical response of mannoproteins from brewing yeasts and elasticity measurements on lacking polysaccharide mutant strains. Additionally, an elegant study on force-induced unfolding and clustering of adhesion proteins located at the cell surface is also presented.
Bobbin, R P; Fallon, M; Puel, J L; Bryant, G; Bledsoe, S C; Zajic, G; Schacht, J
1990-08-01
The mechanical and electrical properties of cochlear outer hair cells (OHCs) are suggested to modulate transduction by inner hair cells. These properties of OHCs are presumably regulated by efferent neurons which use several transmitters including acetylcholine (Ach) and gamma aminobutyric acid (GABA). Since it had been suggested that Ach causes isolated OHCs to shorten visibly, this study was designed to investigate whether GABA also alters the length of OHCs. OHCs were isolated from the guinea pig cochlea by mechanical dispersion after collagenase treatment. Cells were initially selected by strict morphological criteria. In addition they were only included in further studies if they attained a constant length during 10 min of superfusion with buffer solution. Neither GABA (20 microM: 100 microM), Ach (5 mM; 10 microM with 10 microM eserine) or carbachol (10 microM; 100 microM) altered OHC length when applied in iso-osmotic Hank's balanced salt solution (total number of cells tested, 72). If a change in length occurred it must have been smaller than 0.3 microns, our detection ability. In contrast, high potassium and variations in osmolarity changed hair cell length by 3-10% in agreement with other reports.
Space in the brain: how the hippocampal formation supports spatial cognition
Hartley, Tom; Lever, Colin; Burgess, Neil; O'Keefe, John
2014-01-01
Over the past four decades, research has revealed that cells in the hippocampal formation provide an exquisitely detailed representation of an animal's current location and heading. These findings have provided the foundations for a growing understanding of the mechanisms of spatial cognition in mammals, including humans. We describe the key properties of the major categories of spatial cells: place cells, head direction cells, grid cells and boundary cells, each of which has a characteristic firing pattern that encodes spatial parameters relating to the animal's current position and orientation. These properties also include the theta oscillation, which appears to play a functional role in the representation and processing of spatial information. Reviewing recent work, we identify some themes of current research and introduce approaches to computational modelling that have helped to bridge the different levels of description at which these mechanisms have been investigated. These range from the level of molecular biology and genetics to the behaviour and brain activity of entire organisms. We argue that the neuroscience of spatial cognition is emerging as an exceptionally integrative field which provides an ideal test-bed for theories linking neural coding, learning, memory and cognition. PMID:24366125
Yook, Jin-Seon; Kim, Mina; Pichiah, Pichiah BalasubramanianTirupathi; Jung, Su-Jin; Chae, Soo-Wan; Cha, Youn-Soo
2015-07-01
The objective of this study was to explore the antioxidant levels and anticancer properties of chicory cultivated using three different kinds of fertilizers (i.e., developed, organic, and chemical) in the presence and absence of pesticides. Phenolic phytochemicals, including total polyphenols and flavonoids, and antioxidant activities, including reducing power, ABTS+ and DPPH radical scavenging activity, were analyzed using several antioxidant assays. HepG2 cell viability was analyzed using the MTT assay. The antioxidant properties of chicory were found to increase when cultivated with chemical fertilizer in the absence of pesticides. On the other hand, antioxidant capacity was higher in chicory cultivated with eco-developed fertilizer even in the presence of pesticides. Chicory grown using eco-developed or organic fertilizer was more effective in suppressing the proliferation of HepG2 cells when compared to chicory grown with chemical fertilizer. This effect was time dependent, regardless of treatment with or without pesticides. In conclusion, the antioxidant activity of chicory were affected by the presence or absence of pesticides. However, developed and organic fertilizers showed a strong anti-proliferative effect against HepG2 cells, regardless of the presence or absence of pesticides.
Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.
Okech, William; Kuo, Catherine K
Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.
Epidermal stem cells: location, potential and contribution to cancer.
Ambler, C A; Määttä, A
2009-01-01
Epidermal stem cells have been classically characterized as slow-cycling, long-lived cells that reside in discrete niches in the skin. Gene expression studies of niche-resident cells have revealed a number of stem cell markers and regulators, including the Wnt/beta-catenin, Notch, p63, c-Myc and Hedgehog pathways. A new study challenges the traditional developmental paradigm of slow-cycling stem cells and rapid-cycling transit amplifying cells in some epidermal regions, and there is mounting evidence to suggest that multi-lineage epidermal progenitors can be isolated from highly proliferative, non-niche regions. Whether there is a unique microenvironment surrounding these progenitors remains to be determined. Interestingly, cancer stem cells derived from epidermal tumours exist independent of the classic skin stem cell niche, yet also have stem cell properties, including multi-lineage differentiation. This review summarizes recent studies identifying the location and regulators of mouse and human epidermal stem cells and highlights the strategies used to identify cancer stem cells, including expression of normal epidermal stem cell markers, expression of cancer stem cell markers identified in other epidermal tumours and characterization of side-population tumour cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li Hongzhen; Zhou Jianjun; Miki, Jun
2008-01-01
Understanding prostate stem cells may provide insight into the origin of prostate cancer. Primary cells have been cultured from human prostate tissue but they usually survive only 15-20 population doublings before undergoing senescence. We report here that RC-170N/h/clone 7 cells, a clonal cell line from hTERT-immortalized primary non-malignant tissue-derived human prostate epithelial cell line (RC170N/h), retain multipotent stem cell properties. The RC-170N/h/clone 7 cells expressed a human embryonic stem cell marker, Oct-4, and potential prostate epithelial stem cell markers, CD133, integrin {alpha}2{beta}1{sup hi} and CD44. The RC-170N/h/clone 7 cells proliferated in KGM and Dulbecco's Modified Eagle Medium with 10% fetalmore » bovine serum and 5 {mu}g/ml insulin (DMEM + 10% FBS + Ins.) medium, and differentiated into epithelial stem cells that expressed epithelial cell markers, including CK5/14, CD44, p63 and cytokeratin 18 (CK18); as well as the mesenchymal cell markers, vimentin, desmin; the neuron and neuroendocrine cell marker, chromogranin A. Furthermore the RC170 N/h/clone 7 cells differentiated into multi tissues when transplanted into the sub-renal capsule and subcutaneously of NOD-SCID mice. The results indicate that RC170N/h/clone 7 cells retain the properties of multipotent stem cells and will be useful as a novel cell model for studying the mechanisms of human prostate stem cell differentiation and transformation.« less
Huang, Chi-Cheng; Lin, Chien-Min; Huang, Yan-Jiun; Wei, Li; Ting, Lei-Li; Kuo, Chia-Chun; Hsu, Cheyu; Chiou, Jeng-Fong; Wu, Alexander T H; Lee, Wei-Hwa
2017-03-01
Pancreatic cancer represents one of the most aggressive types of malignancy due to its high resistance toward most clinically available treatments. The presence of pancreatic cancer stem-like cells (CSCs) has been attributed to the intrinsically high resistance and highly metastatic potential of this disease. Here, we identified and isolated pancreatic CSCs using the side population (SP) method from human pancreatic cancer cell line, PANC-1. We then compared the SP and non-SP PANC-1 cells genetically. PANC-1 SP cells exhibited CSC properties including enhanced self-renewal ability, increased metastatic potential, and resistance toward gemcitabine treatment. These cancer stem-like phenotypes were supported by their enhanced expression of ABCG2, Oct4, and CD44. A traditional plant-derived antioxidant, garcinol, has been implicated for its anticancer properties. Here, we found that garcinol treatment to PANC-1 SP cells significantly suppressed the stem-like properties of PANC-1 SP cells and metastatic potential by downregulating the expression of Mcl-1, EZH2, ABCG2, Gli-1, and Notch1. More importantly, garcinol treatment led to the upregulation of several tumor suppressor microRNAs, and miR-200c increased by garcinol treatment was found to target and downregulate Notch1. Thus, PANC-1 SP cells may serve as a model for studying drug-resistant pancreatic CSCs, and garcinol has the potential as an antagonist against pancreatic CSCs. © 2015 International Union of Biochemistry and Molecular Biology, Inc.
Single-Cell Microgels: Technology, Challenges, and Applications.
Kamperman, Tom; Karperien, Marcel; Le Gac, Séverine; Leijten, Jeroen
2018-04-12
Single-cell-laden microgels effectively act as the engineered counterpart of the smallest living building block of life: a cell within its pericellular matrix. Recent breakthroughs have enabled the encapsulation of single cells in sub-100-μm microgels to provide physiologically relevant microniches with minimal mass transport limitations and favorable pharmacokinetic properties. Single-cell-laden microgels offer additional unprecedented advantages, including facile manipulation, culture, and analysis of individual cell within 3D microenvironments. Therefore, single-cell microgel technology is expected to be instrumental in many life science applications, including pharmacological screenings, regenerative medicine, and fundamental biological research. In this review, we discuss the latest trends, technical challenges, and breakthroughs, and present our vision of the future of single-cell microgel technology and its applications. Copyright © 2018 Elsevier Ltd. All rights reserved.
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells
Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu
2015-01-01
Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279
Xu, Qilin; Zhang, Qunzhou; Ishida, Yasutaka; Hajjar, Souren; Tang, Xudong; Shi, Haoran; Dang, Chi V; Le, Anh D
2017-02-07
"Warburg effect", the enhanced glycolysis or aerobic glycolysis, confers cancer cells the ability to survive and proliferate even under stressed conditions. In this study, we explored the role of epidermal growth factor (EGF) in orchestrating Warburg effect, the epithelial-mesenchymal transition (EMT) process, and the acquisition of cancer stem-like cell properties in human oral squamous cell carcinoma (OSCC) cells. Our results showed that EGF induces EMT process in OSCC cells, which correlates with the acquisition of cancer stem-like properties, including the enrichment of CD44+/CD24- population of cancer cells and an increased expression of CSC-related genes, aldehyde dehydrogenase-1 (ALDH1) and Bmi-1. We also showed that EGF concomitantly enhanced L-lactate production, while blocking glycolysis by 2-deoxy-D-glucose (2-DG) robustly reversed EGF-induced EMT process and CSC-like properties in OSCC cells. Mechanistically, we demonstrated that EGF promoted EMT process and CSC generation through EGFR/PI3K/HIF-1α axis-orchestrated glycolysis. Using an orthotopic tumor model of human OSCC (UM-SCC1) injected in the tongue of BALB/c nude mice, we showed that treatment with 2-DG in vivo significantly inhibited the metastasis of tumor cells to the regional cervical lymph nodes and reduced the expression of ALDH1 and vimentin in both in situ tumors and tumor cell-invaded regional lymph nodes. Taken together, these findings have unveiled a new mechanism that EGF drives OSCC metastasis through induction of EMT process and CSC generation, which is driven by an enhanced glycolytic metabolic program in OSCC cells.
Mathematical modeling of the malignancy of cancer using graph evolution.
Gunduz-Demir, Cigdem
2007-10-01
We report a novel computational method based on graph evolution process to model the malignancy of brain cancer called glioma. In this work, we analyze the phases that a graph passes through during its evolution and demonstrate strong relation between the malignancy of cancer and the phase of its graph. From the photomicrographs of tissues, which are diagnosed as normal, low-grade cancerous and high-grade cancerous, we construct cell-graphs based on the locations of cells; we probabilistically generate an edge between every pair of cells depending on the Euclidean distance between them. For a cell-graph, we extract connectivity information including the properties of its connected components in order to analyze the phase of the cell-graph. Working with brain tissue samples surgically removed from 12 patients, we demonstrate that cell-graphs generated for different tissue types evolve differently and that they exhibit different phase properties, which distinguish a tissue type from another.
Blood cell interactions and segregation in flow.
Munn, Lance L; Dupin, Michael M
2008-04-01
For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall.
Lentiviral Delivery of HIV-1 Vpr Protein Induces Apoptosis in Transformed Cells
NASA Astrophysics Data System (ADS)
Stewart, Sheila A.; Poon, Betty; Jowett, Jeremy B. M.; Xie, Yiming; Chen, Irvin S. Y.
1999-10-01
Most current anticancer therapies act by inducing tumor cell stasis followed by apoptosis. HIV-1 Vpr effectively induces apoptosis of T cells after arrest of cells at a G2/M checkpoint. Here, we investigated whether this property of Vpr could be exploited for use as a potential anticancer agent. As a potentially safer alternative to transfer of genes encoding Vpr, we developed a method to efficiently introduce Vpr protein directly into cells. Vpr packaged into HIV-1 virions lacking a genome induced efficient cell cycle arrest and apoptosis. Introduction of Vpr into tumor cell lines of various tissue origin, including those bearing predisposing mutations in p53, XPA, and hMLH1, induced cell cycle arrest and apoptosis with high efficiency. Significantly, apoptosis mediated by virion-associated Vpr was more effective on rapidly dividing cells compared with slow-growing cells, thus, in concept, providing a potential differential effect between some types of tumor cells and surrounding normal cells. This model system provides a rationale and proof of concept for the development of potential cancer therapeutic agents based on the growth-arresting and apoptotic properties of Vpr.
Role of cell division and self-propulsion in self-organization of 2D cell co-cultures
NASA Astrophysics Data System (ADS)
Das, Moumita; Dey, Supravat; Wu, Mingming; Ma, Minglin
Self-organization of cells is a key process in developmental and cancer biology. The differential adhesion hypothesis (DAH), which assumes cells as equilibrium liquid droplets and relates the self-assembly of cells to differences in inter-cellular adhesiveness, has been very successful in explaining cellular organization during morphogenesis where neighboring cells have the same non-equilibrium properties (motility, proliferation rate). However, recently it has been experimentally shown that for a co-culture of two different cell types proliferating at different rates, the resulting spatial morphologies cannot be explained using the DAH alone. Motivated by this, we develop and study a two-dimensional model of a cell co-culture that includes cell division and self-propulsion in addition to cell-cell adhesion, and systemically study how cells with significantly different adhesion, motility, and proliferation rate dynamically organize themselves in a spatiotemporal and context-dependent manner. Our results may help to understand how differential equilibrium and non-equilibrium properties cooperate and compete leading to different morphologies during tumor development, with important consequences for invasion and metastasis
Circuit Design Features of a Stable Two-Cell System.
Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan
2018-02-08
Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.
Structural analysis of cell wall polysaccharides using PACE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mortimer, Jennifer C.
The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.
Estimation of ovular fiber production in cotton
Van`t Hof, J.
1998-09-01
The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means. 4 figs.
Estimation of ovular fiber production in cotton
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van`t Hof, J.
The present invention is a method for rendering cotton fiber cells that are post-anthesis and pre-harvest available for analysis of their physical properties. The method includes the steps of hydrolyzing cotton fiber cells and separating cotton fiber cells from cotton ovules thereby rendering the cells available for analysis. The analysis of the fiber cells is through any suitable means, e.g., visual inspection. Visual inspection of the cells can be accomplished by placing the cells under an instrument for detection, such as microscope or other means. 4 figs.
Properties of resistant cells generated from lung cancer cell lines treated with EGFR inhibitors.
Ghosh, Gargi; Lian, Xiaojun; Kron, Stephen J; Palecek, Sean P
2012-03-20
Epidermal growth factor receptor (EGFR) signaling plays an important role in non-small cell lung cancer (NSCLC) and therapeutics targeted against EGFR have been effective in treating a subset of patients bearing somatic EFGR mutations. However, the cancer eventually progresses during treatment with EGFR inhibitors, even in the patients who respond to these drugs initially. Recent studies have identified that the acquisition of resistance in approximately 50% of cases is due to generation of a secondary mutation (T790M) in the EGFR kinase domain. In about 20% of the cases, resistance is associated with the amplification of MET kinase. In the remaining 30-40% of the cases, the mechanism underpinning the therapeutic resistance is unknown. An erlotinib resistant subline (H1650-ER1) was generated upon continuous exposure of NSCLC cell line NCI-H1650 to erlotinib. Cancer stem cell like traits including expression of stem cell markers, enhanced ability to self-renew and differentiate, and increased tumorigenicity in vitro were assessed in erlotinib resistant H1650-ER1 cells. The erlotinib resistant subline contained a population of cells with properties similar to cancer stem cells. These cells were found to be less sensitive towards erlotinib treatment as measured by cell proliferation and generation of tumor spheres in the presence of erlotinib. Our findings suggest that in cases of NSCLC accompanied by mutant EGFR, treatment targeting inhibition of EGFR kinase activity in differentiated cancer cells may generate a population of cancer cells with stem cell properties.
Cell encapsulation in biodegradable hydrogels for tissue engineering applications.
Nicodemus, Garret D; Bryant, Stephanie J
2008-06-01
Encapsulating cells in biodegradable hydrogels offers numerous attractive features for tissue engineering, including ease of handling, a highly hydrated tissue-like environment for cell and tissue growth, and the ability to form in vivo. Many properties important to the design of a hydrogel scaffold, such as swelling, mechanical properties, degradation, and diffusion, are closely linked to the crosslinked structure of the hydrogel, which is controlled through a variety of different processing conditions. Degradation may be tuned by incorporating hydrolytically or enzymatically labile segments into the hydrogel or by using natural biopolymers that are susceptible to enzymatic degradation. Because cells are present during the gelation process, the number of suitable chemistries and formulations are limited. In this review, we describe important considerations for designing biodegradable hydrogels for cell encapsulation and highlight recent advances in material design and their applications in tissue engineering.
Rationale: The evaluation of sputum leukocytes by flow cytometry is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. ...
Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells
Golebiewska, Anna; Bougnaud, Sébastien; Stieber, Daniel; Brons, Nicolaas H. C.; Vallar, Laurent; Hertel, Frank; Klink, Barbara; Schröck, Evelin; Bjerkvig, Rolf
2013-01-01
The identification and significance of cancer stem-like cells in malignant gliomas remains controversial. It has been proposed that cancer stem-like cells display increased drug resistance, through the expression of ATP-binding cassette transporters that detoxify cells by effluxing exogenous compounds. Here, we investigated the ‘side population’ phenotype based on efflux properties of ATP-binding cassette transporters in freshly isolated human glioblastoma samples and intracranial xenografts derived thereof. Using fluorescence in situ hybridization analysis on sorted cells obtained from glioblastoma biopsies, as well as human tumour xenografts developed in immunodeficient enhanced green fluorescence protein-expressing mice that allow an unequivocal tumour-stroma discrimination, we show that side population cells in human glioblastoma are non-neoplastic and exclusively stroma-derived. Tumour cells were consistently devoid of efflux properties regardless of their genetic background, tumour ploidy or stem cell associated marker expression. Using multi-parameter flow cytometry we identified the stromal side population in human glioblastoma to be brain-derived endothelial cells with a minor contribution of astrocytes. In contrast with their foetal counterpart, neural stem/progenitor cells in the adult brain did not display the side population phenotype. Of note, we show that CD133-positive cells often associated with cancer stem-like cells in glioblastoma biopsies, do not represent a homogenous cell population and include CD31-positive endothelial cells. Interestingly, treatment of brain tumours with the anti-angiogenic agent bevacizumab reduced total vessel density, but did not affect the efflux properties of endothelial cells. In conclusion our findings contribute to an unbiased identification of cancer stem-like cells and stromal cells in brain neoplasms, and provide novel insight into the complex issue of drug delivery to the brain. Since efflux properties of endothelial cells are likely to compromise drug availability, transiently targeting ATP-binding cassette transporters may be a valuable therapeutic strategy to improve treatment effects in brain tumours. PMID:23460667
Rahimi, Hamid Reza; Arastoo, Mohammad; Ostad, Seyed Nasser
2012-01-01
Punica granatum (Pg), commonly known as pomegranate (Pg), is a member of the monogeneric family, Punicaceae, and is mainly found in Iran which is considered to be its primary centre of origin. Pg and its chemical components possess various pharmacological and toxicological properties including antioxidant, anti-inflammatory (by inhibiting pro-inflammatory cytokines), anti-cancer and anti-angiogenesis activities. They also show inhibitory effects on invasion/motility, cell cycle, apoptosis, and vital enzymes such as cyclooxygenase (COX), lipooxygenase (LOX), cytochrome P450 (CYP450), phospholipase A2 (PLA2), ornithine decarboxylase (ODC), carbonic anhydrase (CA), 17beta-hydroxysteroid dehydrogenase (17β-HSDs) and serine protease (SP). Furthermore, they can stimulate cell differentiation and possess anti-mutagenic effects. Pg can also interfere with several signaling pathways including PI3K/AKT, mTOR, PI3K, Bcl-X, Bax, Bad, MAPK, ERK1/2, P38, JNK, and caspase. However, the exact mechanisms for its pharmacological and toxicological properties remain to be unclear and need further evaluation. These properties strongly suggest a wide range use of Pg for clinical applications. This review will discuss the areas for which Pg has shown therapeutic properties in different mechanisms. PMID:24250463
NASA Astrophysics Data System (ADS)
Sha, Wei E. I.; Zhu, Hugh L.; Chen, Luzhou; Chew, Weng Cho; Choy, Wallace C. H.
2015-02-01
It is well known that transport paths of photocarriers (electrons and holes) before collected by electrodes strongly affect bulk recombination and thus electrical properties of solar cells, including open-circuit voltage and fill factor. For boosting device performance, a general design rule, tailored to arbitrary electron to hole mobility ratio, is proposed to decide the transport paths of photocarriers. Due to a unique ability to localize and concentrate light, plasmonics is explored to manipulate photocarrier transport through spatially redistributing light absorption at the active layer of devices. Without changing the active materials, we conceive a plasmonic-electrical concept, which tunes electrical properties of solar cells via the plasmon-modified optical field distribution, to realize the design rule. Incorporating spectrally and spatially configurable metallic nanostructures, thin-film solar cells are theoretically modelled and experimentally fabricated to validate the design rule and verify the plasmonic-tunable electrical properties. The general design rule, together with the plasmonic-electrical effect, contributes to the evolution of emerging photovoltaics.
Aĭlamazian, E K; Stepanova, O I; Sel'kov, S A; Sokolov, D I
2013-01-01
In the present review modern data about change of morfo-functional properties of a trophoblast during pregnancy, and also about influence of the cytokines produced by cells of a microenvironment, including leucocytes of mother, on a functional state of trophoblast is cited. Features of interaction between trophoblast and immune cells of mother are described within physiological pregnancy and within pregnancy complicated by preeclampsia.
Metastatic potential of tumor-initiating cells in solid tumors.
Adhikari, Amit S; Agarwal, Neeraj; Iwakuma, Tomoo
2011-01-01
The lethality of cancer is mainly caused by its properties of metastasis, drug resistance, and subsequent recurrence. Understanding the mechanisms governing these properties and developing novel strategies to overcome them will greatly improve the survival of cancer patients. Recent findings suggest that tumors are comprised of heterogeneous cell populations, and only a small fraction of these are tumorigenic with the ability to self-renew and produce phenotypically diverse tumor cell populations. Cells in this fraction are called tumor-initiating cells (TICs) or cancer stem cells (CSCs). TICs have been identified from many types of cancer. They share several similarities with normal adult stem cells including sphere-forming ability, self-renewability, and expression of stem cell surface markers and transcription factors. TICs have also been proposed to be responsible for cancer metastasis, however, scarce evidence for their metastatic potential has been provided. In this review article, we have attempted to summarize the studies which have examined the metastatic potential of TICs in solid tumors.
Which bank? A guardian model for regulation of embryonic stem cell research in Australia.
McLennan, A
2007-08-01
In late 2005 the Legislation Review: Prohibition of Human Cloning Act 2002 (Cth) and the Research Involving Human Embryos Act 2002 (Cth) recommended the establishment of an Australian stem cell bank. This article aims to address a lack of discussion of issues surrounding stem cell banking by suggesting possible answers to the questions of whether Australia should establish a stem cell bank and what its underlying philosophy and functions should be. Answers are developed through an analysis of regulatory, scientific and intellectual property issues relating to embryonic stem cell research in the United Kingdom, United States and Australia. This includes a detailed analysis of the United Kingdom Stem Cell Bank. It is argued that a "guardian" model stem cell bank should be established in Australia. This bank would aim to promote the maximum public benefit from human embryonic stem cell research by providing careful regulatory oversight and addressing ethical issues, while also facilitating research by addressing practical scientific concerns and intellectual property issues.
Biomaterials and bone mechanotransduction
NASA Technical Reports Server (NTRS)
Sikavitsas, V. I.; Temenoff, J. S.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)
2001-01-01
Bone is an extremely complex tissue that provides many essential functions in the body. Bone tissue engineering holds great promise in providing strategies that will result in complete regeneration of bone and restoration of its function. Currently, such strategies include the transplantation of highly porous scaffolds seeded with cells. Prior to transplantation the seeded cells are cultured in vitro in order for the cells to proliferate, differentiate and generate extracellular matrix. Factors that can affect cellular function include the cell-biomaterial interaction, as well as the biochemical and the mechanical environment. To optimize culture conditions, good understanding of these parameters is necessary. The new developments in bone biology, bone cell mechanotransduction, and cell-surface interactions are reviewed here to demonstrate that bone mechanotransduction is strongly influenced by the biomaterial properties.
Does corneal hysteresis correlate with endothelial cell density?
Akova-Budak, Berna; Kıvanç, Sertaç Argun
2015-05-21
Our aim was to determine if there is a correlation between corneal biomechanical properties, endothelial cell count, and corneal pachymetry in healthy corneas. Ninety-two eyes of all subjects underwent complete ocular examination, including intraocular pressure measurement by Goldmann applanation tonometer, objective refraction, and slit-lamp biomicroscopy. Topographic measurements and corneal pachymetry were performed using a Scheimpflug-based (Pentacam, Oculus, Germany) corneal topographer. Corneal hysteresis (CH) and corneal resistance factor (CRF) were measured with an Ocular Response Analyzer (ORA, Reichert Ophthalmic Instruments, Buffalo, NY). Endothelial cell count measurement was done using a specular microscope (CellChek, Konan, USA). Right eye values of the subjects were taken for the study. The mean CH was 11.5±1.7 mmHg and the mean CRF was 11.2±1.4 mmHg. Mean intraocular pressure was 15.3±2.3 mmHg. The mean endothelial cell count was 2754±205 cells/mm2. No correlation was found between biomechanical properties of cornea and endothelial cell count. There was a significant positive correlation between CH, CRF, and corneal thickness (p<0.001; r=0.79). The corneal biomechanical properties significantly correlated with corneal thickness. We found no correlation between CH and CRF with the endothelial cell density in normal subjects.
Measuring tendon properties in mdx mice: cell viability and viscoelastic characteristics.
Rizzuto, E; Musarò, A; Catizone, A; Del Prete, Z
2009-10-16
Muscular dystrophy is a genetic disorder of skeletal muscle characterized by progressive muscle weakness. Here we assessed whether muscle wasting affects cell viability and mechanical properties of extensor digitorum longus (EDL) and of tibialis anterior (TA) tendons from mdx dystrophic mice compared to wild type (WT) mice. mdx mice represent the classical animal model for human Duchenne muscular dystrophy, and show several signs of the pathology, including a decrease in specific force and an increase of fibrotic index. Cell viability of tendons was evaluated by histological analysis, and viscoelastic properties have been assessed by a rapid measurement protocol that allowed us to compute, at the same time, tissue complex compliance for all the frequencies of interest. Confocal microscopy and mechanical properties measurements revealed that mdx tendons, compared to WT ones, have an increase in the number of dead cells and a significant reduction in tissue elasticity for all the frequencies that were tested. These findings indicate a reduced quality of the tissue. Moreover, mdx tendons have an increase in the viscous response, indicating that during dynamic loading, they dissipate more energy compared to WT. Our results demonstrate that muscular dystrophy involves not only muscle wasting, but also alteration in the viscoelastic properties of tendons, suggesting a paracrine effect of altered skeletal muscle on tendinous tissue.
NASA Astrophysics Data System (ADS)
Zhu, Chenyuan; Lv, Yuting; Qian, Chao; Qian, Haixin; Jiao, Ting; Wang, Liqiang; Zhang, Fuqiang
2016-12-01
The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration.
Alternative Sources of Adult Stem Cells: Human Amniotic Membrane
NASA Astrophysics Data System (ADS)
Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja
Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.
Purification and cultivation of human pituitary growth hormone secreting cells
NASA Technical Reports Server (NTRS)
Hymer, W. C.
1984-01-01
A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.
Horne, Gillian A; Copland, Mhairi
2017-05-01
Self-renewal is considered a defining property of stem cells. Self-renewal is essential in embryogenesis and normal tissue repair and homeostasis. However, in cancer, self-renewal pathways, e.g. WNT, NOTCH, Hedgehog and BMP, frequently become de-regulated in stem cells, or more mature progenitor cells acquire self-renewal properties, resulting in abnormal tissue growth and tumorigenesis. Areas covered: This review considers the conserved embryonic self-renewal pathways, including WNT, NOTCH, Hedgehog and BMP. The article describes recent advances in our understanding of these pathways in leukemia and, more specifically, leukemia stem cells (LSC), how these pathways cross-talk and interact with the LSC microenvironment, and discusses the clinical implications and potential therapeutic strategies, both in preclinical and in clinical trials for hematological malignancies. Expert opinion: The conserved embryonic self-renewal pathways are frequently de-regulated in cancer stem cells (CSC), including LSCs. There is significant cross-talk between self-renewal pathways, and their downstream targets, and the microenvironment. Effective targeting of these pathways is challenging due to cross-talk, and importantly, because these pathways are important for normal stem cells as well as CSC, adverse effects on normal tissues may mean a therapeutic window cannot be identified. Nonetheless, several agents targeting these pathways are currently in clinical trials in hematological malignancies.
The Properties of Confined Water and Fluid Flow at the Nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwegler, E; Reed, J; Lau, E
This project has been focused on the development of accurate computational tools to study fluids in confined, nanoscale geometries, and the application of these techniques to probe the structural and electronic properties of water confined between hydrophilic and hydrophobic substrates, including the presence of simple ions at the interfaces. In particular, we have used a series of ab-initio molecular dynamics simulations and quantum Monte Carlo calculations to build an understanding of how hydrogen bonding and solvation are modified at the nanoscale. The properties of confined water affect a wide range of scientific and technological problems - including protein folding, cell-membranemore » flow, materials properties in confined media and nanofluidic devices.« less
Silk fibroin-based scaffolds for tissue engineering
NASA Astrophysics Data System (ADS)
Li, Zi-Heng; Ji, Shi-Chen; Wang, Ya-Zhen; Shen, Xing-Can; Liang, Hong
2013-09-01
Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here.
Modeling the mechanics of cells in the cell-spreading process driven by traction forces
NASA Astrophysics Data System (ADS)
Fang, Yuqiang; Lai, King W. C.
2016-04-01
Mechanical properties of cells and their mechanical interaction with the extracellular environments are main factors influencing cellular function, thus indicating the progression of cells in different disease states. By considering the mechanical interactions between cell adhesion molecules and the extracellular environment, we developed a cell mechanical model that can characterize the mechanical changes in cells during cell spreading. A cell model was established that consisted of various main subcellular components, including cortical cytoskeleton, nuclear envelope, actin filaments, intermediate filaments, and microtubules. We demonstrated the structural changes in subcellular components and the changes in spreading areas during cell spreading driven by traction forces. The simulation of nanoindentation tests was conducted by integrating the indenting force to the cell model. The force-indentation curve of the cells at different spreading states was simulated, and the results showed that cell stiffness increased with increasing traction forces, which were consistent with the experimental results. The proposed cell mechanical model provides a strategy to investigate the mechanical interactions of cells with the extracellular environments through the adhesion molecules and to reveal the cell mechanical properties at the subcellular level as cells shift from the suspended state to the adherent state.
Modeling the mechanics of cells in the cell-spreading process driven by traction forces.
Fang, Yuqiang; Lai, King W C
2016-04-01
Mechanical properties of cells and their mechanical interaction with the extracellular environments are main factors influencing cellular function, thus indicating the progression of cells in different disease states. By considering the mechanical interactions between cell adhesion molecules and the extracellular environment, we developed a cell mechanical model that can characterize the mechanical changes in cells during cell spreading. A cell model was established that consisted of various main subcellular components, including cortical cytoskeleton, nuclear envelope, actin filaments, intermediate filaments, and microtubules. We demonstrated the structural changes in subcellular components and the changes in spreading areas during cell spreading driven by traction forces. The simulation of nanoindentation tests was conducted by integrating the indenting force to the cell model. The force-indentation curve of the cells at different spreading states was simulated, and the results showed that cell stiffness increased with increasing traction forces, which were consistent with the experimental results. The proposed cell mechanical model provides a strategy to investigate the mechanical interactions of cells with the extracellular environments through the adhesion molecules and to reveal the cell mechanical properties at the subcellular level as cells shift from the suspended state to the adherent state.
Molecular deformation mechanisms of the wood cell wall material.
Jin, Kai; Qin, Zhao; Buehler, Markus J
2015-02-01
Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.
Enhancement of healing in osteochondral defects by collagen sponge implants.
Speer, D P; Chvapil, M; Volz, R G; Holmes, M D
1979-10-01
Implants of porous, highly cross-linked collagen sponge (CS) were tested for their capacity to enhance the healing of osteochondral defects in rabbits. Comparison was made to the healing of similar defects with polyvinyl alcohol sponge (PVAS) implants and with no implants (CONT). Evaluation was carried out up to 44 weeks following implantation and included observation of host cellular response, biodegradability of implant, gross appearance of restored joint surface, collagenous architecture of repair tissue, and properties of the junctions of implants and host articular cartilage, subchondral bone, and medullary bone. Collagen sponge proved most effective in promoting healing of osteochondral defects with fibrous and fibrocartilaginous tissue over restored subchondral bone. Collagen sponge showed many desirable properties as a potential material for biologic resurfacing of damaged joints. These properties included porosity, biodegradability, biocompatability, ability to mechanically protect cells and matrix while directing cell ingrowth, and an available chemical technology for modifying its biomechanical and biological properties. Comparative analysis of results of healing of CS, PVAS, and CONT osteochondral defects suggest rational design criteria for implant materials to improve their effectiveness in restoration of articular surfaces.
Oh, Sun-Joo; Kim, Kyunghoon; Lim, Chang-Jin
2015-06-01
Ginsenosides, also known as ginseng saponins, are responsible for most pharmacological effect of ginseng. Ginsenoside Rb1 (Rb1) exerts a variety of pharmacological properties, including anti-inflammatory, antistress, anti-aging and anti-neurodegenerative activities. The aim of the present work was to assess the skin anti-photoaging properties of Rb1 in human dermal keratinocyte HaCaT cells. The anti-photoaging activity was evaluated by analyzing the levels of reactive oxygen species (ROS) and matrix metalloproteinases (MMPs) as well as cell viability for HaCaT cells under UV-B irradiation. Rb1 was able to suppress the ROS levels which were elevated under UV-B irradiation, and unable to influence cellular survival in UV-B-irradiated HaCaT cells. Rb1 diminished the enhancement of MMP-2 gelatinolytic activity in conditioned medium, which corresponded with the decreased MMP-2 protein levels in both conditioned medium and cellular lysate prepared from UV-B-irradiated HaCaT cultures. Rb1 could restore the total glutathione (GSH) and superoxide dismutase (SOD) activity diminished in UV-B-irradiated HaCaT cells. Ginsenoside Rb1 possesses skin anti-photoaging properties through scavenging ROS and decreasing MMP-2 levels possibly by enhancing antioxidant activity in keratinocytes under UV-B irradiation.
Advances in Mechanisms of Asthma, Allergy, and Immunology in 2008
Boyce, Joshua A.; Broide, David; Matsumoto, Kenji; Bochner, Bruce S.
2009-01-01
This review summarizes selected articles appearing in 2008 in the Journal of Allergy and Clinical Immunology (JACI). Papers chosen include those improving our understanding of mechanisms of allergic diseases by focusing on human basophil, mast cell and eosinophil biology; IgE and its high affinity receptor on various cells; novel properties of omalizumab; airways remodeling; and genetics. Papers from other journals have been included to supplement the topics being presented. PMID:19281904
The development of magnetic degradable DP-Bioglass for hyperthermia cancer therapy.
Wang, Tzu-Wei; Wu, Hsi-Chin; Wang, Wei-Ren; Lin, Feng-Huei; Lou, Pei-Jen; Shieh, Ming-Jium; Young, Tai-Horng
2007-12-01
In this study, a novel magnetic degradable material was developed by adding Fe ions into DP-Bioglass (Na(2)O-CaO-P(2)O(5)-SiO(2)) as thermoseed for hyperthermia cancer therapy under an alternating magnetic field. We have investigated the properties of developed magnetic DP-Bioglass including morphology, chemical composition, and magnetism. The degradability was conducted by measuring the released concentrations of Na, Ca, Si, P, and Fe ions. The biocompatibility was analyzed by biological assays, and the functional hyperthermia effect to cancer cells was evaluated by in vitro cell culture test. In the results, the morphology of synthesized magnetic DP-Bioglass was revealed in sphere and rod shape with particle size around 50-100 nm. From the hysteresis loop analysis, it showed that the group of Fe/Bioglass = 0.2 possessed the maximum magnetization property. When cultured with fibroblasts, the magnetic DP-Bioglass had no significant influence on cell viability and mediated low cytotoxicity. The thermal-induced property demonstrated that after exposure to an alternating magnetic field, the cell number of human Caucasian lung carcinoma cells (A549) was significantly decreased when temperature was increasing to 45 degrees C. In brief, successfully incorporated with Fe ions by sol-gel method, this magnetic degradable DP-Bioglass possessed the potential and properties of hyperthermia effect to lung carcinoma cells. Copyright 2007 Wiley Periodicals, Inc.
Dobrzyńska, Izabela; Gęgotek, Agnieszka; Gajko, Ewelina; Skrzydlewska, Elżbieta; Figaszewski, Zbigniew A
2018-02-25
Human skin provides the body's first line of defense against physical and environmental assaults. This study sought to determine how rutin affects the membrane electrical properties, sialic acid content, and lipid peroxidation levels of fibroblast membranes after disruption by ultraviolet (UV) radiation. Changes in cell function may affect the basal electrical surface properties of cell membranes, and changes can be detected by electrokinetic measurements. The charge density of the fibroblast membrane surface was measured as a function of pH. A four-component equilibrium model was used to describe the interaction between ions in solution and ions on the membrane surface. Agreement was found between experimental and theoretical charge variation curves of fibroblast cells between pH 2.5 and 8. Sialic acid content was determined by Svennerholm's resorcinol method, and lipid peroxidation was estimated by measuring the malondialdehyde level. Compared to untreated cells, ultraviolet A (UVA)- or ultraviolet B (UVB)-treated skin cell membranes exhibited higher concentrations of acidic functional groups and higher average association constants with hydroxyl ions, but lower average association constants with hydrogen ions. Moreover, our results showed that UVA and UVB radiation is associated with increased levels of sialic acid and lipid peroxidation products in fibroblasts. Rutin protected cells from some deleterious UV-associated membrane changes, including changes in electrical properties, oxidative state, and biological functions. Copyright © 2018 Elsevier B.V. All rights reserved.
The ethics of patenting human embryonic stem cells.
Chapman, Audrey R
2009-09-01
Just as human embryonic stem cell research has generated controversy about the uses of human embryos for research and therapeutic applications, human embryonic stem cell patents raise fundamental ethical issues. The United States Patent and Trademark Office has granted foundational patents, including a composition of matter (or product) patent to the Wisconsin Alumni Research Foundation (WARF), the University of Wisconsin-Madison's intellectual property office. In contrast, the European Patent Office rejected the same WARF patent application for ethical reasons. This article assesses the appropriateness of these patents placing the discussion in the context of the deontological and consequentialist ethical issues related to human embryonic stem cell patenting. It advocates for a patent system that explicitly takes ethical factors into account and explores options for new types of intellectual property arrangements consistent with ethical concerns.
Design rules for biomolecular adhesion: lessons from force measurements.
Leckband, Deborah
2010-01-01
Cell adhesion to matrix, other cells, or pathogens plays a pivotal role in many processes in biomolecular engineering. Early macroscopic methods of quantifying adhesion led to the development of quantitative models of cell adhesion and migration. The more recent use of sensitive probes to quantify the forces that alter or manipulate adhesion proteins has revealed much greater functional diversity than was apparent from population average measurements of cell adhesion. This review highlights theoretical and experimental methods that identified force-dependent molecular properties that are central to the biological activity of adhesion proteins. Experimental and theoretical methods emphasized in this review include the surface force apparatus, atomic force microscopy, and vesicle-based probes. Specific examples given illustrate how these tools have revealed unique properties of adhesion proteins and their structural origins.
Immunostimulatory properties and antitumor activities of glucans
VANNUCCI, LUCA; KRIZAN, JIRI; SIMA, PETR; STAKHEEV, DMITRY; CAJA, FABIAN; RAJSIGLOVA, LENKA; HORAK, VRATISLAV; SAIEH, MUSTAFA
2013-01-01
New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments. PMID:23739801
Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration.
Stroka, Kimberly M; Konstantopoulos, Konstantinos
2014-01-15
As tumor cells metastasize from the primary tumor location to a distant secondary site, they encounter an array of biologically and physically heterogeneous microenvironments. While it is well established that biochemical signals guide all stages of the metastatic cascade, mounting evidence indicates that physical cues also direct tumor cell behavior, including adhesion and migration phenotypes. Physical cues acting on tumor cells in vivo include extracellular matrix mechanical properties, dimensionality, and topography, as well as interstitial flow, hydrodynamic shear stresses, and local forces due to neighboring cells. State-of-the-art technologies have recently enabled us and other researchers to engineer cell microenvironments that mimic specific physical properties of the cellular milieu. Through integration of these engineering strategies, along with physics, molecular biology, and imaging techniques, we have acquired new insights into tumor cell adhesion and migration mechanisms. In this review, we focus on the extravasation and invasion stages of the metastatic cascade. We first discuss the physical role of the endothelium during tumor cell extravasation and invasion and how contractility of endothelial and tumor cells contributes to the ability of tumor cells to exit the vasculature. Next, we examine how matrix dimensionality and stiffness coregulate tumor cell adhesion and migration beyond the vasculature. Finally, we summarize how tumor cells translate and respond to physical cues through mechanotransduction. Because of the critical role of tumor cell mechanotransduction at various stages of the metastatic cascade, targeting signaling pathways involved in tumor cell mechanosensing of physical stimuli may prove to be an effective therapeutic strategy for cancer patients.
Kaspi, Omer; Yosipof, Abraham; Senderowitz, Hanoch
2017-06-06
An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. RANSAC could be used as a "one stop shop" algorithm for developing and validating QSAR models, performing outlier removal, descriptors selection, model development and predictions for test set samples using applicability domain. For "future" predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties and lead to good predictive statistics for these properties. These models were subsequently used to predict the properties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.
Sapudom, Jiranuwat; Rubner, Stefan; Martin, Steve; Kurth, Tony; Riedel, Stefanie; Mierke, Claudia T; Pompe, Tilo
2015-06-01
The behavior of cancer cells is strongly influenced by the properties of extracellular microenvironments, including topology, mechanics and composition. As topological and mechanical properties of the extracellular matrix are hard to access and control for in-depth studies of underlying mechanisms in vivo, defined biomimetic in vitro models are needed. Herein we show, how pore size and fibril diameter of collagen I networks distinctively regulate cancer cell morphology and invasion. Three-dimensional collagen I matrices with a tight control of pore size, fibril diameter and stiffness were reconstituted by adjustment of concentration and pH value during matrix reconstitution. At first, a detailed analysis of topology and mechanics of matrices using confocal laser scanning microscopy, image analysis tools and force spectroscopy indicate pore size and not fibril diameter as the major determinant of matrix elasticity. Secondly, by using two different breast cancer cell lines (MDA-MB-231 and MCF-7), we demonstrate collagen fibril diameter--and not pore size--to primarily regulate cell morphology, cluster formation and invasion. Invasiveness increased and clustering decreased with increasing fibril diameter for both, the highly invasive MDA-MB-231 cells with mesenchymal migratory phenotype and the MCF-7 cells with amoeboid migratory phenotype. As this behavior was independent of overall pore size, matrix elasticity is shown to be not the major determinant of the cell characteristics. Our work emphasizes the complex relationship between structural-mechanical properties of the extracellular matrix and invasive behavior of cancer cells. It suggests a correlation of migratory and invasive phenotype of cancer cells in dependence on topological and mechanical features of the length scale of single fibrils and not on coarse-grained network properties. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein
2018-03-01
Long-term culture, passage and proliferation of human mesenchymal stem cells (hMSCs) cause loss of their stemness properties including self-renewal and multipotency. By optimizing the MSCs environment in vitro, maintaining the stemness state and better controlling the cell fate might be possible. We have recently reported the significant effects of bioactive Tat protein-derived peptide named R-peptide on hMSC adhesion, morphology and proliferation, which has demonstrated R-peptide enhanced MSC early adhesion and proliferation in comparison to other bioactive molecules including RGD peptide, fibronectin and collagen. In this study, R-peptide was used to evaluate stemness properties of MSCs after long-term passaging. R-peptide conjugated poly caprolactone (PCL) nanofibrous scaffold and unmodified nanofibrous scaffold were used to study the impact of R-peptide modified PCL nanofibers and PCL nanofibers on cell behavior. The results showed early formation of focal adhesion (FA) complex on R-peptide modified scaffolds at 30min after cell seeding. The rate of cell proliferation was significantly increased due to presence of R-peptide, and the MSCs marker analyses using flow cytometry and immunocytochemistry staining proved the ability of R-peptide to maintain mesenchymal stem cell properties (high proliferation, expression of multipotent markers and differentiation capacity) even after long-term passage culturing. Accordingly, our (The) results concluded that bioactive R-peptide in combination with nanofibrous scaffold can mimic the native ECM comprising micro/nano architecture and biochemical molecules in a best way. The designed scaffold can link extracellular matrix (ECM) to nucleus via formation of FA and organization of cytoskeleton, causing fast and strong attachment of MSCs and allowing integrin-mediated signaling to start. Copyright © 2017 Elsevier B.V. All rights reserved.
Histochemical identification of malignant and premalignant lesions
NASA Astrophysics Data System (ADS)
Liebow, Charles; Maloney, M. J.
1991-06-01
Malignant and transforming cells can be identified by biochemical parameters which can be used to localize lesions in situ for laser surgery. These cells express unique proteins, proteins in unusual quantities, or other biochemical alterations which can be utilized to image lesions of such cells. Several methods have been identified, both in vitro and in vivo, to identify such lesions. Several antibodies were examined for their properties of tissue identification, including CEA, F36/22, and AE1/AE3. F36/22, an antibody developed by M. T. Chu against human breast cancer cells, associated with two lines of oral cancer (KB and HCPC), and against two naturally occurring human oral squamous cell cancers. CEA, an antibody developed against human colon cancer, also reacted against both cell lines and both pathological samples. AE1/AE3, developed against normal fibrous components, also reacted against the samples, but in a much less regular manner. F36/22 associated with the histologically identifiably most dedifferentiated cells at the leading edge of the invading cancer. CEA, on the other hand, associated with more quiescent, older, established cancer cells. This demonstrates that antibodies developed against cancers of different organs can be used to identify a wide variety of cancers, and may have prognostic value. F36/22 coupled to fluorescein was used to identify oral cancer cells. Other properties of cancers and developing cancers can also be exploited to identify cancers, including their over-expression of tyrosine kinase and tyrosine kinase stimulating hormones such as Epidermal Growth Factor (EGF). A model of premalignant lesion produced in the hamster buccal cheek pouch with 6 week application of DMBA over-expresses constitutive tyrosine kinase which can be demonstrated biochemically. This initiated lesion can be promoted to frank cancer by growth factors released in response to laser surgery. Preliminary results suggest that these lesions can be identified by Photofrin II uptake. This work suggests that biochemical properties of cancers can be used to identify premalignant cells.
Label-free cell separation and sorting in microfluidic systems
Gossett, Daniel R.; Weaver, Westbrook M.; Mach, Albert J.; Hur, Soojung Claire; Tse, Henry Tat Kwong; Lee, Wonhee; Amini, Hamed
2010-01-01
Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties PMID:20419490
Lay, John C.; Peden, David B.; Alexis, Neil E.
2012-01-01
Background The evaluation of sputum leukocytes by flow cytometry is an opportunity to assess characteristics of cells residing in the central airways, yet it is hampered by certain inherent properties of sputum including mucus and large amounts of contaminating cells and debris. Objective To develop a gating strategy based on specific antibody panels in combination with light scatter properties for flow cytometric evaluation of sputum cells. Methods Healthy and mild asthmatic volunteers underwent sputum induction. Manually selected mucus “plug” material was treated with dithiothrietol, filtered and total leukocytes acquired. Multicolor flow cytometry was performed using specific gating strategies based on light scatter properties, differential expression of CD45 and cell lineage markers to discriminate leukocytes from squamous epithelial cells and debris. Results The combination of forward scatter and CD45 expression reliably segregated sputum leukocytes from contaminating squamous epithelial cells and debris. Overlap of major leukocyte populations (neutrophils, macrophages/monocytes) required the use of specific antibodies (e.g. CD16, CD64, CD14, HLA-DR) that differentiated granulocytes from monocytes and macrophages. These gating strategies allowed identification of small populations of eosinophils, CD11c+ myeloid dendritic cells, B cells and NK cells. Conclusions Multicolor flow cytometry can be successfully applied to sputum samples to identify and characterize leukocyte populations residing on the surfaces of the central airways. PMID:21639708
Therapeutic Applications of Extracellular Vesicles: Clinical Promise and Open Questions
Breakefield, Xandra O.; Leonard, Joshua N.
2015-01-01
This review provides an updated perspective on rapidly proliferating efforts to harness extracellular vesicles (EVs) for therapeutic applications. We summarize current knowledge, emerging strategies, and open questions pertaining to clinical potential and translation. Potentially useful EVs comprise diverse products of various cell types and species. EV components may also be combined with liposomes and nanoparticles to facilitate manufacturing as well as product safety and evaluation. Potential therapeutic cargoes include RNA, proteins, and drugs. Strategic issues considered herein include choice of therapeutic agent, means of loading cargoes into EVs, promotion of EV stability, tissue targeting, and functional delivery of cargo to recipient cells. Some applications may harness natural EV properties, such as immune modulation, regeneration promotion, and pathogen suppression. These properties can be enhanced or customized to enable a wide range of therapeutic applications, including vaccination, improvement of pregnancy outcome, and treatment of autoimmune disease, cancer, and tissue injury. PMID:25292428
Assembly properties of the Bacillus subtilis actin, MreB.
Mayer, Joshua A; Amann, Kurt J
2009-02-01
The bacterial actin MreB has been implicated in a variety of cellular roles including cell shape determination, cell wall synthesis, chromosome condensation and segregation, and the establishment and maintenance of cell polarity. Toward elucidating a clearer understanding of how MreB functions inside the bacterial cell, we investigated biochemically the polymerization of MreB from Bacillus subtilis. Light scattering and sedimentation assays revealed pH-, ionic-, cationic-, and temperature-dependent behavior. B. subtilis MreB polymerizes in the presence of millimolar divalent cations in a protein concentration-dependent manner. Polymerization is favored by decreasing pH and inhibited by monovalent salts and low temperatures. Although B. subtilis MreB binds and hydrolyzes both ATP and GTP, it does not require a bound nucleotide for assembly and polymerizes indistinguishably regardless of the nucleotide species bound, with a critical concentration of approximately 900 nM. A number of the presently reported properties of B. subtilis MreB differ significantly from those of T. maritima MreB1 (Bean and Amann [2008]: Biochemistry 47: 826-835), including the nucleotide requirements and temperature and ionic effects on polymerization state. These observations collectively suggest that additional factors interact with MreB to account for its complex dynamic behavior in cells.
NASA Astrophysics Data System (ADS)
Yazici, Hilal; Alpaslan, Ece; Webster, Thomas J.
2015-04-01
Cerium oxide nanoparticles have demonstrated great potential as antioxidant and radioprotective agents for nanomedicine applications especially for cancer therapy. The surface chemistry of nanoparticles is an important property that has a significant effect on their performance in biological applications including cancer diagnosis, cancer treatment, and bacterial infection. Recently, various nanosized cerium oxide particles with different types of polymer coatings have been developed to improve aqueous solubility and allow for surface functionalization for distinct applications. In this study, the role of ceria nanoparticles coated with dextran on the cytotoxicity properties of bone cancer cells was shown. Specifically, 0.1 M and 0.01 M dextran-coated, <5-nm ceria nanoparticles, were synthesized. The cytotoxicity of 0.1 M and 0.01 M dextran-coated ceria nanoparticles was evaluated against osteosarcoma cells. A change in cell viability was observed when treating osteosarcoma cells with 0.1 M dextran-coated ceria nanoparticles in the 250 -1000 μg/mL concentration range. In contrast, minimal toxicity to bone cancer cells was observed for the 0.01 M dextran coating after 3 days compared with the 0.1 M dextran coating. These results indicated that surface dextran functionalization had a positive impact on the cytotoxicity of cerium oxide nanoparticles against osteosarcoma cells.
ERIC Educational Resources Information Center
Zemke, Jennifer M.; Franz, Justin
2016-01-01
Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…
Jantama, Sirima Suvarnakuta; Prasitpuriprecha, Chutinun; Kanchanatawee, Sunthorn
2016-01-01
The viability and functionality of probiotics may be influenced by industrial production processes resulting in a decrease in probiotic efficiency that benefit the health of humans. This study aimed to investigate the probiotic characteristics of Bifidobacterium strains isolated from fecal samples of healthy Thai infants. In the present work, three local strains (BF014, BF052, and BH053) belonging to Bifidobacterium animalis showed a great resistance against conditions simulating the gastrointestinal tract. Among these, B. animalis BF052 possessed considerable probiotic properties, including high acid and bile tolerance, strong adhesion capability to Caco-2 cells, and inhibitory activity against pathogens including Salmonella typhimurium and Vibrio cholerae. This strain also exhibited a high survival rate compared to commercial strains during storage in a wide variety of products, including pasteurized milk, soy milk, drinking yogurt, and orange juice. The impact of food processing processes as well as the freeze-drying process, storage of freeze-dried powders, and incorporation of freeze-dried cells in food matrix on probiotic properties was also determined. The stability of the probiotic properties of the BF052 strain was not affected by food processing chain, especially its resistance in the simulated gastrointestinal conditions and its adherence ability to Caco-2 cells. It indicates that it satisfies the criteria as a potential probiotic and may be used as an effective probiotic starter in food applications. PMID:27333286
Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; Williams, Daniel L.; Magee, Timothy D.; Kaeppler, Shawn M.; de Leon, Natalia; Hodge, David B.
2015-01-01
A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. PMID:25871649
Maghodia, Ajay B; Geisler, Christoph; Jarvis, Donald L
2016-06-01
Cell lines derived from the fall armyworm, Spodoptera frugiperda (Sf), are widely used as hosts for recombinant protein production in the baculovirus-insect cell system (BICS). However, it was recently discovered that these cell lines are contaminated with a virus, now known as Sf-rhabdovirus [1]. The detection of this adventitious agent raised a potential safety issue that could adversely impact the BICS as a commercial recombinant protein production platform. Thus, we examined the properties of Sf-RVN, an Sf-rhabdovirus-negative Sf cell line, as a potential alternative host. Nested RT-PCR assays showed Sf-RVN cells had no detectable Sf-rhabdovirus over the course of 60 passages in continuous culture. The general properties of Sf-RVN cells, including their average growth rates, diameters, morphologies, and viabilities after baculovirus infection, were virtually identical to those of Sf9 cells. Baculovirus-infected Sf-RVN and Sf9 cells produced equivalent levels of three recombinant proteins, including an intracellular prokaryotic protein and two secreted eukaryotic glycoproteins, and provided similar N-glycosylation patterns. In fact, except for the absence of Sf-rhabdovirus, the only difference between Sf-RVN and Sf9 cells was SF-RVN produced higher levels of infectious baculovirus progeny. These results show Sf-RVN cells can be used as improved, alternative hosts to circumvent the potential safety hazard associated with the use of Sf-rhabdovirus-contaminated Sf cells for recombinant protein manufacturing with the BICS. Copyright © 2016 Elsevier Inc. All rights reserved.
Phytochemical properties and cytotoxicity evaluation of the aqueous extracts from Rafflesia cantleyi
NASA Astrophysics Data System (ADS)
Bakoush, Sumaia Mohamed Mohamed; Yaacob, Wan Ahmad; Adam, Jumaat; Ibrahim, Nazlina
2015-09-01
In the present study, phytochemical properties and cytotoxic evaluation of aqueous extract of Rafflesia cantleyi bud parts were done. Three bud parts including disk, bract and perigone tube were extracted in water to produce crude aqueous extract. Cytotoxic activity of R. cantleyi bud parts was assessed by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against normal cells Vero, 3T3 cell lines and mice peripheral blood mononuclear cells PBMC. Phytochemical analyses revealed the presence of tannins, flavonoids, steroids and alkaloids. The CC50 value against Vero, 3T3 and PBMC cells were equal or more than 125 µg/ml indicating the non-cytotoxic effect of the bud parts extracts. The finding revealed that crude extracts of all the tested bud parts contained potential bioactive compounds which can be used for various biological activities and have no cytotoxicity to selected normal cells.
Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials
NASA Astrophysics Data System (ADS)
Guz, Nataliia
In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.
Tymchenko, Nina; Nilebäck, Erik; Voinova, Marina V; Gold, Julie; Kasemo, Bengt; Svedhem, Sofia
2012-12-01
The mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in real-time by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size. In this work, QCM-D was combined with light microscopy to study in situ cell attachment and spreading. Overtone-dependent changes of the QCM-D responses (frequency and dissipation shifts) were first recorded, as fibroblast cells attached to protein-coated sensors in a window equipped flow module. Then, as the cell layer had stabilised, morphological changes were induced in the cells by injecting cytochalasin D. This caused changes in the QCM-D signals that were reversible in the sense that they disappeared upon removal of cytochalasin D. These results are compared to other cell QCM-D studies. Our results stress the combination of QCM-D and light microscopy to help interpret QCM-D results obtained in cell assays and thus suggests a direction to develop the QCM-D technique as an even more useful tool for real-time cell studies.
Sabuncu, A C; Stacey, M; Craviso, G L; Semenova, N; Vernier, P T; Leblanc, N; Chatterjee, I; Zaklit, J
2018-02-01
Knowledge of the dielectric properties of biological cells plays an important role in numerical models aimed at understanding how high intensity ultrashort nanosecond electric pulses affect the plasma membrane and the membranes of intracellular organelles. To this end, using electrical impedance spectroscopy, the dielectric properties of isolated, neuroendocrine adrenal chromaffin cells were obtained. Measured impedance data of the cell suspension, acquired between 1kHz and 20MHz, were fit into a combination of constant phase element and Cole-Cole models from which the effect of electrode polarization was extracted. The dielectric spectrum of each cell suspension was fit into a Maxwell-Wagner mixture model and the Clausius-Mossotti factor was obtained. Lastly, to extract the cellular dielectric parameters, the cell dielectric data were fit into a granular cell model representative of a chromaffin cell, which was based on the inclusion of secretory granules in the cytoplasm. Chromaffin cell parameters determined from this study were the cell and secretory granule membrane specific capacitance (1.22 and 7.10μF/cm 2 , respectively), the cytoplasmic conductivity, which excludes and includes the effect of intracellular membranous structures (1.14 and 0.49S/m, respectively), and the secretory granule milieu conductivity (0.35S/m). These measurements will be crucial for incorporating into numerical models aimed at understanding the differential poration effect of nanosecond electric pulses on chromaffin cell membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
Rare cell isolation and analysis in microfluidics
Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun
2014-01-01
Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985
Shi, Xiarong; Sousa, Leiliane P.; Mandel-Bausch, Elizabeth M.; Tome, Francisco; Reshetnyak, Andrey V.; Hadari, Yaron; Schlessinger, Joseph; Lax, Irit
2016-01-01
Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants. PMID:27482095
Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues
2017-01-01
Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations. PMID:29152560
Effects of Inflammation on Multiscale Biomechanical Properties of Cartilaginous Cells and Tissues.
Nguyen, Q T; Jacobsen, T D; Chahine, N O
2017-11-13
Cells within cartilaginous tissues are mechanosensitive and thus require mechanical loading for regulation of tissue homeostasis and metabolism. Mechanical loading plays critical roles in cell differentiation, proliferation, biosynthesis, and homeostasis. Inflammation is an important event occurring during multiple processes, such as aging, injury, and disease. Inflammation has significant effects on biological processes as well as mechanical function of cells and tissues. These effects are highly dependent on cell/tissue type, timing, and magnitude. In this review, we summarize key findings pertaining to effects of inflammation on multiscale mechanical properties at subcellular, cellular, and tissue level in cartilaginous tissues, including alterations in mechanotransduction and mechanosensitivity. The emphasis is on articular cartilage and the intervertebral disc, which are impacted by inflammatory insults during degenerative conditions such as osteoarthritis, joint pain, and back pain. To recapitulate the pro-inflammatory cascades that occur in vivo, different inflammatory stimuli have been used for in vitro and in situ studies, including tumor necrosis factor (TNF), various interleukins (IL), and lipopolysaccharide (LPS). Therefore, this review will focus on the effects of these stimuli because they are the best studied pro-inflammatory cytokines in cartilaginous tissues. Understanding the current state of the field of inflammation and cell/tissue biomechanics may potentially identify future directions for novel and translational therapeutics with multiscale biomechanical considerations.
NASA Astrophysics Data System (ADS)
Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.
2010-12-01
A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our understanding of mechanical properties and composite behavior to suggest new approaches to designing high-pressure experiments to target specific measurements of a wide variety of mechanical properties.
Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra
2014-07-01
In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca3(PO4)2) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. Copyright © 2014 Elsevier B.V. All rights reserved.
Stem Cell-Like Gene Expression in Ovarian Cancer Predicts Type II Subtype and Prognosis
Schwede, Matthew; Spentzos, Dimitrios; Bentink, Stefan; Hofmann, Oliver; Haibe-Kains, Benjamin; Harrington, David; Quackenbush, John; Culhane, Aedín C.
2013-01-01
Although ovarian cancer is often initially chemotherapy-sensitive, the vast majority of tumors eventually relapse and patients die of increasingly aggressive disease. Cancer stem cells are believed to have properties that allow them to survive therapy and may drive recurrent tumor growth. Cancer stem cells or cancer-initiating cells are a rare cell population and difficult to isolate experimentally. Genes that are expressed by stem cells may characterize a subset of less differentiated tumors and aid in prognostic classification of ovarian cancer. The purpose of this study was the genomic identification and characterization of a subtype of ovarian cancer that has stem cell-like gene expression. Using human and mouse gene signatures of embryonic, adult, or cancer stem cells, we performed an unsupervised bipartition class discovery on expression profiles from 145 serous ovarian tumors to identify a stem-like and more differentiated subgroup. Subtypes were reproducible and were further characterized in four independent, heterogeneous ovarian cancer datasets. We identified a stem-like subtype characterized by a 51-gene signature, which is significantly enriched in tumors with properties of Type II ovarian cancer; high grade, serous tumors, and poor survival. Conversely, the differentiated tumors share properties with Type I, including lower grade and mixed histological subtypes. The stem cell-like signature was prognostic within high-stage serous ovarian cancer, classifying a small subset of high-stage tumors with better prognosis, in the differentiated subtype. In multivariate models that adjusted for common clinical factors (including grade, stage, age), the subtype classification was still a significant predictor of relapse. The prognostic stem-like gene signature yields new insights into prognostic differences in ovarian cancer, provides a genomic context for defining Type I/II subtypes, and potential gene targets which following further validation may be valuable in the clinical management or treatment of ovarian cancer. PMID:23536770
Fujiwara, Hiroshi
2014-02-01
The functional properties of the adoptive immune response mediated by effector T lymphocytes are decisively regulated by their T-cell receptors (TCRs). Transfer of genes encoding target antigen-specific receptors enables polyclonal T cells to redirect toward cancer cells and virally infected cells expressing those defined antigens. Using this technology, a large population of redirected T cells displaying uniform therapeutic properties has been produced, powerfully advancing their clinical application as "cellular drugs" for adoptive immunotherapy against cancer. Clinically, anticancer adoptive immunotherapy using these genetically engineered T cells has an impressive and proven track record. Notable examples include the dramatic benefit of chimeric antigen receptor gene-modified T cells redirected towards B-cell lineage antigen CD19 in patients with chronic lymphocytic leukemia, and the impressive outcomes in the use of TCR gene-modified T cells redirected towards NY-ESO-1, a representative cancer-testis antigen, in patients with advanced melanoma and synovial cell sarcoma. In this review, we briefly overview the current status of this treatment option in the context of hematological malignancy, and discuss a number of challenges that still pose an obstacle to the full effectiveness of this strategy.
Hönigsperger, Christoph; Marosi, Máté; Murphy, Ricardo; Storm, Johan F
2015-01-01
Key points Kv7 (KCNQ/M) channels are known to control excitability and generate subthreshold M-resonance in CA1 hippocampal pyramidal cells, but their properties and functions have not previously been compared along the dorsoventral (septotemporal) axis We used whole-cell recordings to compare electrophysiological properties of dorsal and ventral CA1 pyramidal cells in hippocampal slices from 3- to 4-week-old rats Blockade of Kv7/M-channels with 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) had a stronger impact on electrical properties in dorsal than ventral pyramidal cells, including input resistance, temporal summation, M-resonance, spike threshold, medium after-hyperpolarization, excitability, and spike frequency adaptation. Voltage-clamp recordings revealed a larger amplitude and left-shifted voltage dependence of XE991-sensitive current (IM) in dorsal vs. ventral cells. IM-dependent differences in excitability and resonance may be important for rate and phase coding of CA1 place cells along the dorsoventral axis and may enhance epileptiform activity in ventral pyramidal cells. Abstract In rodent hippocampi, the connections, gene expression and functions differ along the dorsoventral (D–V) axis. CA1 pyramidal cells show increasing excitability along the D–V axis, although the underlying mechanism is not known. In the present study, we investigated how the M-current (IM), caused by Kv7/M (KCNQ) potassium channels, and known to often control neuronal excitability, contributes to D–V differences in intrinsic properties of CA1 pyramidal cells. Using whole-cell patch clamp recordings and the selective Kv7/M blocker 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE991) in hippocampal slices from 3- to 4-week-old rats, we found that: (i) IM had a stronger impact on subthreshold electrical properties in dorsal than ventral CA1 pyramidal cells, including input resistance, temporal summation of artificial synaptic potentials, and M-resonance; (ii) IM activated at more negative potentials (left-shifted) and had larger peak amplitude in the dorsal than ventral CA1; and (iii) the initial spike threshold (during ramp depolarizations) was elevated, and the medium after-hyperpolarization and spike frequency adaptation were increased (i.e. excitability was lower) in the dorsal rather than ventral CA1. These differences were abolished or reduced by application of XE991, indicating that they were caused by IM. Thus, it appears that IM has stronger effects in dorsal than in ventral rat CA1 pyramidal cells because of a larger maximal M-conductance and left-shifted activation curve in the dorsal cells. These mechanisms may contribute to D–V differences in the rate and phase coding of position by CA1 place cells, and may also enhance epileptiform activity in ventral CA1. PMID:25656084
Chow, Lyndah; Johnson, Valerie; Regan, Dan; Wheat, William; Webb, Saiphone; Koch, Peter; Dow, Steven
2017-12-01
Mesenchymal stem cells (MSCs) exhibit broad immune modulatory activity in vivo and can suppress T cell proliferation and dendritic cell activation in vitro. Currently, most MSC for clinical usage are derived from younger donors, due to ease of procurement and to the superior immune modulatory activity. However, the use of MSC from multiple unrelated donors makes it difficult to standardize study results and compare outcomes between different clinical trials. One solution is the use of MSC derived from induced pluripotent stem cells (iPSC); as iPSC-derived MSC have nearly unlimited proliferative potential and exhibit in vitro phenotypic stability. Given the value of dogs as a spontaneous disease model for pre-clinical evaluation of stem cell therapeutics, we investigated the functional properties of canine iPSC-derived MSC (iMSC), including immune modulatory properties and potential for teratoma formation. We found that canine iMSC downregulated expression of pluripotency genes and appeared morphologically similar to conventional MSC. Importantly, iMSC retained a stable phenotype after multiple passages, did not form teratomas in immune deficient mice, and did not induce tumor formation in dogs following systemic injection. We concluded therefore that iMSC were phenotypically stable, immunologically potent, safe with respect to tumor formation, and represented an important new source of cells for therapeutic modulation of inflammatory disorders. Copyright © 2017. Published by Elsevier B.V.
Camel urine components display anti-cancer properties in vitro.
Al-Yousef, Nujoud; Gaafar, Ameera; Al-Otaibi, Basem; Al-Jammaz, Ibrahim; Al-Hussein, Khaled; Aboussekhra, Abdelilah
2012-10-11
While camel urine (CU) is widely used in the Arabian Peninsula to treat various diseases, including cancer, its exact mechanism of action is still not defined. The objective of the present study is to investigate whether camel urine has anti-cancer effect on human cells in vitro. The annexinV/PI assay was used to assess apoptosis, and immunoblotting analysis determined the effect of CU on different apoptotic and oncogenic proteins. Furthermore, flow cytometry and Elispot were utilized to investigate cytotoxicity and the effect on the cell cycle as well as the production of cytokines, respectively. Camel urine showed cytotoxicity against various, but not all, human cancer cell lines, with only marginal effect on non-tumorigenic epithelial and normal fibroblast cells epithelial and fibroblast cells. Interestingly, 216 mg/ml of lyophilized CU inhibited cell proliferation and triggered more than 80% of apoptosis in different cancer cells, including breast carcinomas and medulloblastomas. Apoptosis was induced in these cells through the intrinsic pathway via Bcl-2 decrease. Furthermore, CU down-regulated the cancer-promoting proteins survivin, β-catenin and cyclin D1 and increased the level of the cyclin-dependent kinase inhibitor p21. In addition, we have shown that CU has no cytotoxic effect against peripheral blood mononuclear cells and has strong immuno-inducer activity through inducing IFN-γ and inhibiting the Th2 cytokines IL-4, IL-6 and IL-10. CU has specific and efficient anti-cancer and potent immune-modulator properties in vitro. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Mechanistic insights into the antileukemic activity of hyperforin.
Billard, C; Merhi, F; Bauvois, B
2013-01-01
Hyperforin is a prenylated phloroglucinol present in the medicinal plant St John's wort (Hypericum perforatum). The compound has many biological properties, including antidepressant, anti-inflammatory, antibacterial and antitumor activities. This review focuses on the in vitro antileukemic effects of purified hyperforin and related mechanisms in chronic lymphoid leukemia (CLL) and acute myeloid leukemia (AML) - conditions that are known for their resistance to chemotherapy. Hyperforin induces apoptosis in both CLL and AML cells. In AML cell lines and primary AML cells, hyperforin directly inhibits the kinase activity of the serine/threonine protein kinase B/AKT1, leading to activation of the pro-apoptotic Bcl-2 family protein Bad through its non-phosphorylation by AKT1. In primary CLL cells, hyperforin acts by stimulating the expression of the pro-apoptotic Bcl-2 family member Noxa (possibly through the inhibition of proteasome activity). Other hyperforin targets include matrix metalloproteinase-2 in AML cells and vascular endothelial growth factor and matrix metalloproteinase-9 in CLL cells - two mediators of cell migration and angiogenesis. In summary, hyperforin targets molecules involved in signaling pathways that control leukemic cell proliferation, survival, apoptosis, migration and angiogenesis. Hyperforin also downregulates the expression of P-glycoprotein, a protein that is involved in the resistance of leukemia cells to chemotherapeutic agents. Lastly, native hyperforin and its stable derivatives show interesting in vivo properties in animal models. In view of their low toxicity, hyperforin and its derivatives are promising antileukemic agents and deserve further investigation in vivo.
Louis, E; Degli Esposti Boschi, C; Ortega, G; Andreu, E; Fernández, E; Sánchez-Andrés, J V
2002-04-19
Electrical properties of gap-junction connected cells (input voltage and length constant) are shown to depend strongly on fluctuations in membrane and contact conductances. This opens new possibilities and incorporates a further difficulty to the analysis of electrophysiological data, since four, instead of two, parameters (the average values and the magnitude of fluctuations of the two conductances) have to be used in fitting the experimental data. The discussion is illustrated by investigating the effects of dopamine on signal spreading in horizontal cells of turtle retina, assuming a linear cell arrangement. It is shown that while a standard fitting with the average values of the two conductances leads to the conclusion that both are equally affected by dopamine, including fluctuations allows fitting the data by varying just the average contact conductance plus the magnitude of fluctuations.
Zhu, Chenyuan; Lv, Yuting; Qian, Chao; Qian, Haixin; Jiao, Ting; Wang, Liqiang; Zhang, Fuqiang
2016-01-01
The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration. PMID:27958394
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2003-07-01
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2001-11-20
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
Testing of gallium arsenide solar cells on the CRRES vehicle
NASA Technical Reports Server (NTRS)
Trumble, T. M.
1985-01-01
A flight experiment was designed to determine the optimum design for gallium arsenide (GaAs) solar cell panels in a radiation environment. Elements of the experiment design include, different coverglass material and thicknesses, welded and soldered interconnects, different solar cell efficiencies, different solar cell types, and measurement of annealing properties. This experiment is scheduled to fly on the Combined Release and Radiation Effects Satellite (CRRES). This satellite will simultaneously measure the radiation environment and provide engineering data on solar cell degradation that can be directly related to radiation damage.
The Emerging Cell Biology of Thyroid Stem Cells
Latif, Rauf; Minsky, Noga C.; Ma, Risheng
2011-01-01
Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219
Derivation of novel human ground state naive pluripotent stem cells.
Gafni, Ohad; Weinberger, Leehee; Mansour, Abed AlFatah; Manor, Yair S; Chomsky, Elad; Ben-Yosef, Dalit; Kalma, Yael; Viukov, Sergey; Maza, Itay; Zviran, Asaf; Rais, Yoach; Shipony, Zohar; Mukamel, Zohar; Krupalnik, Vladislav; Zerbib, Mirie; Geula, Shay; Caspi, Inbal; Schneir, Dan; Shwartz, Tamar; Gilad, Shlomit; Amann-Zalcenstein, Daniela; Benjamin, Sima; Amit, Ido; Tanay, Amos; Massarwa, Rada; Novershtern, Noa; Hanna, Jacob H
2013-12-12
Mouse embryonic stem (ES) cells are isolated from the inner cell mass of blastocysts, and can be preserved in vitro in a naive inner-cell-mass-like configuration by providing exogenous stimulation with leukaemia inhibitory factor (LIF) and small molecule inhibition of ERK1/ERK2 and GSK3β signalling (termed 2i/LIF conditions). Hallmarks of naive pluripotency include driving Oct4 (also known as Pou5f1) transcription by its distal enhancer, retaining a pre-inactivation X chromosome state, and global reduction in DNA methylation and in H3K27me3 repressive chromatin mark deposition on developmental regulatory gene promoters. Upon withdrawal of 2i/LIF, naive mouse ES cells can drift towards a primed pluripotent state resembling that of the post-implantation epiblast. Although human ES cells share several molecular features with naive mouse ES cells, they also share a variety of epigenetic properties with primed murine epiblast stem cells (EpiSCs). These include predominant use of the proximal enhancer element to maintain OCT4 expression, pronounced tendency for X chromosome inactivation in most female human ES cells, increase in DNA methylation and prominent deposition of H3K27me3 and bivalent domain acquisition on lineage regulatory genes. The feasibility of establishing human ground state naive pluripotency in vitro with equivalent molecular and functional features to those characterized in mouse ES cells remains to be defined. Here we establish defined conditions that facilitate the derivation of genetically unmodified human naive pluripotent stem cells from already established primed human ES cells, from somatic cells through induced pluripotent stem (iPS) cell reprogramming or directly from blastocysts. The novel naive pluripotent cells validated herein retain molecular characteristics and functional properties that are highly similar to mouse naive ES cells, and distinct from conventional primed human pluripotent cells. This includes competence in the generation of cross-species chimaeric mouse embryos that underwent organogenesis following microinjection of human naive iPS cells into mouse morulas. Collectively, our findings establish new avenues for regenerative medicine, patient-specific iPS cell disease modelling and the study of early human development in vitro and in vivo.
Mechanical and biocompatible characterizations of a readily available multilayer vascular graft
Madhavan, Krishna; Elliott, Winston H; Bonani, Walter; Monnet, Eric; Tan, Wei
2013-01-01
There is always a considerable clinical need for vascular grafts. Considering the availability, physical and mechanical properties, and regenerative potential, we have developed and characterized readily available, strong, and compliant multilayer grafts that support cell culture and ingrowth. The grafts were made from heterogeneous materials and structures, including a thin, dense, nanofibrous core composed of poly-ε-caprolactone (PCL), and a thick, porous, hydrogel sleeve composed of genipin-crosslinked collagen–chitosan (GCC). Because the difference in physicochemical properties between PCL and GCC caused layer separation, the layer adhesion was identified as a determinant to graft property and integrity under physiological conditions. Thus, strategies to modify the layer interface, including increasing porosity of the PCL surface, decreasing hydrophobicity, and increasing interlayer crosslinking, were developed. Results from microscopic images showed that increasing PCL porosity was characterized by improved layer adhesion. The resultant graft was characterized by high compliance (4.5%), and desired permeability (528 mL/cm2/min), burst strength (695 mmHg), and suture strength (2.38 N) for readily grafting. Results also showed that PCL mainly contributed to the graft mechanical properties, whereas GCC reduced the water permeability. In addition to their complementary contributions to physical and mechanical properties, the distinct graft layers also provided layer-specific structures for seeding and culture of vascular endothelial and smooth muscle cells in vitro. Acellular graft constructs were readily used to replace abdominal aorta of rabbits, resulting in rapid cell ingrowth and flow reperfusion. The multilayer constructs capable of sustaining physiological conditions and promoting cellular activities could serve as a platform for future development of regenerative vascular grafts. PMID:23165922
Rationale for two phase polymer system microgravity separation experiments
NASA Technical Reports Server (NTRS)
Brooks, D. E.; Bamberger, S. B.; Harris, J. M.; Vanalstine, J.
1984-01-01
The two-phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) are mixed at concentrations above a few percent are discussed. They provide useful media for the partition and isolation of macromolecules and cell subpopulations. By manipulating their composition, separations based on a variety of molecular and surface properties are achieved, including membrane hydrophobic properties, cell surface charge, and membrane antigenicity. Work on the mechanism of cell partition shows there is a randomizing, nonthermal energy present which reduces separation resolution. This stochastic energy is probably associated with hydrodynamic interactions present during separation. Because such factors should be markedly reduced in microgravity, a series of shuttle experiments to indicate approaches to increasing the resolution of the procedure are planned.
Concise Review: Fetal Membranes in Regenerative Medicine: New Tricks from an Old Dog?
2017-01-01
Abstract The clinical application of the fetal membranes dates back to nearly a century. Their use has ranged from superficial skin dressings to surgical wound closure. The applications of the fetal membranes are constantly evolving, and key to this is the uncovering of multiple populations of stem and stem‐like cells, each with unique properties that can be exploited for regenerative medicine. In addition to pro‐angiogenic and immunomodulatory properties of the stem and stem‐like cells arising from the fetal membranes, the dehydrated and/or decellularized forms of the fetal membranes have been used to support the growth and function of other cells and tissues, including adipose‐derived mesenchymal stem cells. This concise review explores the biological origin of the fetal membranes, a history of their use in medicine, and recent developments in the use of fetal membranes and their derived stem and stem‐like cells in regenerative medicine. Stem Cells Translational Medicine 2017;6:1767–1776 PMID:28834402
Chua, Chee Wai; Epsi, Nusrat J; Leung, Eva Y; Xuan, Shouhong; Lei, Ming; Li, Bo I; Bergren, Sarah K; Hibshoosh, Hanina; Mitrofanova, Antonina
2018-01-01
Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer. PMID:29334357
Blood Cell Interactions and Segregation in Flow
Munn, Lance L.; Dupin, Michael M.
2009-01-01
For more than a century, pioneering researchers have been using novel experimental and computational approaches to probe the mysteries of blood flow. Thanks to their efforts, we know that blood cells generally prefer to migrate to the axis of flow, that red and white cells segregate in flow, and that cell deformability and their tendency to reversibly aggregate contribute to the non-Newtonian nature of this unique fluid. All of these properties have beneficial physiological consequences, allowing blood to perform a variety of critical functions. Our current understanding of these unusual flow properties of blood have been made possible by the ingenuity and diligence of a number of researchers, including Harry Goldsmith, who developed novel technologies to visualize and quantify the flow of blood at the level of individual cells. Here we summarize efforts in our lab to continue this tradition and to further our understanding of how blood cells interact with each other and with the blood vessel wall. PMID:18188702
Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R
2009-06-01
At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.
NASA Astrophysics Data System (ADS)
Nikolaev, A. G.; Yushkov, G. Yu.; Oks, E. M.; Oztarhan, A.; Akpek, A.; Hames-Kocabas, E.; Urkac, E. S.; Brown, I. G.
2014-08-01
Ion implantation provides an important technology for the modification of material surface properties. The vacuum arc ion source is a unique instrument for the generation of intense beams of metal ions as well as gaseous ions, including mixed metal-gas beams with controllable metal:gas ion ratio. Here we describe our exploratory work on the application of vacuum arc ion source-generated ion beams for ion implantation into polymer textile materials for modification of their biological cell compatibility surface properties. We have investigated two specific aspects of cell compatibility: (i) enhancement of the antibacterial characteristics (we chose to use Staphylococcus aureus bacteria) of ion implanted polymer textile fabric, and (ii) the "inverse" concern of enhancement of neural cell growth rate (we chose Rat B-35 neuroblastoma cells) on ion implanted polymer textile. The results of both investigations were positive, with implantation-generated antibacterial efficiency factor up to about 90%, fully comparable to alternative conventional (non-implantation) approaches and with some potentially important advantages over the conventional approach; and with enhancement of neural cell growth rate of up to a factor of 3.5 when grown on suitably implanted polymer textile material.
Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application
About, Imad
2016-01-01
Dental Mesenchymal Stem Cells (MSCs), including Dental Pulp Stem Cells (DPSCs), Stem Cells from Human Exfoliated Deciduous teeth (SHED), and Stem Cells From Apical Papilla (SCAP), have been extensively studied using highly sophisticated in vitro and in vivo systems, yielding substantially improved understanding of their intriguing biological properties. Their capacity to reconstitute various dental and nondental tissues and the inherent angiogenic, neurogenic, and immunomodulatory properties of their secretome have been a subject of meticulous and costly research by various groups over the past decade. Key milestone achievements have exemplified their clinical utility in Regenerative Dentistry, as surrogate therapeutic modules for conventional biomaterial-based approaches, offering regeneration of damaged oral tissues instead of simply “filling the gaps.” Thus, the essential next step to validate these immense advances is the implementation of well-designed clinical trials paving the way for exploiting these fascinating research achievements for patient well-being: the ultimate aim of this ground breaking technology. This review paper presents a concise overview of the major biological properties of the human dental MSCs, critical for the translational pathway “from bench to clinic.” PMID:27818690
Lu, Jui-Hua; Wei, Hong-Jian; Peng, Bou-Yue; Chou, Hsin-Hua; Chen, Wei-Hong; Liu, Hen-Yu; Deng, Win-Ping
2016-12-01
Adipose-derived stem cells (ADSCs) are multipotent cells that have attracted much recent attention and emerged as therapeutic approaches in several medical fields. Although current knowledge of the biological impacts of ADSCs in cancer research is greatly improved, the underlying effects of ADSCs in tumor development remain controversial and cause the safety concerns in clinical utilization. Hence, we isolated primary ADSCs from the abdominal fat of mice and conducted interaction of ADSCs with Lewis lung carcinoma cells in culture and in mice to investigate the impacts of ADSCs on tumor development. Cytokine array and neutralizing antibody were further utilized to identify the key regulator and downstream signaling pathway. In this study, we demonstrated that ADSCs enhance the malignant characteristics of LLC1 cells, including cell growth ability and especially cancer stem cell property. ADSCs were then identified to promote tumor formation and growth in mice. We further determined that ADSC interaction with LLC1 cells stimulates increased secretion of interleukin-6 mainly from ADSCs, which then act in a paracrine manner on LLC1 cells to enhance their malignant characteristics. Interleukin-6 was also identified to regulate genes related to cell proliferation and cancer stem cell, as well as to activate JAK2/STAT3, a predominant interleukin-6-activated pathway, in LLC1 cells. Collectively, we demonstrated that ADSCs play a pro-malignant role in tumor development of Lewis lung carcinoma cells by particularly promoting cancer stem cell property through interleukin-6 paracrine circuit, which is important for safety considerations regarding the clinical application of ADSCs.
Liao, Guiying; Peng, Ejun; Wu, Bolin; Wang, Yuxi; Zeng, Xiaoyong; Xie, Xiaolin
2013-01-01
The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid) (PLLA) and poly (ε-caprolactone) (PCL) are both excellent aliphatic polyester with almost “opposite” characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS) and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs) were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering. PMID:23990941
Chang, Yu-Jen; Jeng, U-Ser; Chiang, Ya-Ling; Hwang, Ing-Shouh; Chen, Yun-Ru
2016-03-04
Hexanucleotide expansions, GGGGCC, in the non-coding regions of the C9orf72 gene were found in major frontotemporal lobar dementia and amyotrophic lateral sclerosis patients (C9FTD/ALS). In addition to possible RNA toxicity, several dipeptide repeats (DPRs) are translated through repeat-associated non-ATG-initiated translation. The DPRs, including poly(GA), poly(GR), poly(GP), poly(PR), and poly(PA), were found in the brains and spinal cords of C9FTD/ALS patients. Among the DPRs, poly(GA) is highly susceptible to form cytoplasmic inclusions, which is a characteristic of C9FTD/ALS. To elucidate DPR aggregation, we used synthetic (GA)15 DPR as a model system to examine the aggregation and structural properties in vitro. We found that (GA)15 with 15 repeats fibrillates rapidly and ultimately forms flat, ribbon-type fibrils evidenced by transmission electron microscopy and atomic force microscopy. The fibrils are capable of amyloid dye binding and contain a characteristic cross-β sheet structure, as revealed by x-ray scattering. Furthermore, using neuroblastoma cells, we demonstrated the neurotoxicity and cell-to-cell transmission property of (GA)15 DPR. Overall, our results show the structural and toxicity properties of GA DPR to facilitate future DPR-related therapeutic development. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Tipton, Christopher M; Hom, Jennifer R; Fucile, Christopher F; Rosenberg, Alexander F; Sanz, Inaki
2018-07-01
Understanding antibody repertoires and in particular, the properties and fates of B cells expressing potentially pathogenic antibodies is critical to define the mechanisms underlying multiple immunological diseases including autoimmune and allergic conditions as well as transplant rejection. Moreover, an integrated knowledge of the antibody repertoires expressed by B cells and plasma cells (PC) of different functional properties and longevity is essential to develop new therapeutic strategies, better biomarkers for disease segmentation, and new assays to measure restoration of B-cell tolerance or, at least, of normal B-cell homeostasis. Reaching these goals, however, will require a more precise phenotypic, functional and molecular definition of B-cell and PC populations, and a comprehensive analysis of the antigenic reactivity of the antibodies they express. While traditionally hampered by technical and ethical limitations in human experimentation, new technological advances currently enable investigators to address these questions in a comprehensive fashion. In this review, we shall discuss these concepts as they apply to the study of Systemic Lupus Erythematosus. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lu, Huijie; Peng, Zhangli
2017-11-01
Our goal is to develop a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidic devices, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases, e.g. anemia, sickle cell diseases, and malaria. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We are developing a high-efficiency multiscale model of cell-fluid interaction to study these two topics.
Chitosan biopolymer for fuel cell applications.
Ma, Jia; Sahai, Yogeshwar
2013-02-15
Fuel cell is an electrochemical device which converts chemical energy stored in a fuel into electrical energy. Fuel cells have been receiving attention due to its potential applicability as a good alternative power source. Recently, cost-effective and eco-friendly biopolymer chitosan has been extensively studied as a material for membrane electrolytes and electrodes in low to intermediate temperature hydrogen polymer electrolyte fuel cell, direct methanol fuel cell, alkaline fuel cell, and biofuel cell. This paper reviews structure and property of chitosan with respect to its applications in fuel cells. Recent achievements and prospect of its applications have also been included. Copyright © 2012 Elsevier Ltd. All rights reserved.
Advanced energy storage for space applications: A follow-up
NASA Technical Reports Server (NTRS)
Halpert, Gerald; Surampudi, Subbarao
1994-01-01
Viewgraphs on advanced energy storage for space applications are presented. Topics covered include: categories of space missions using batteries; battery challenges; properties of SOA and advanced primary batteries; lithium primary cell applications; advanced rechargeable battery applications; present limitations of advanced battery technologies; and status of Li-TiS2, Ni-MH, and Na-NiCl2 cell technologies.
Molecular Design of Low-Density Multifunctional Hybrid Materials
2016-01-01
properties, but also the synergistic interactions of reactive chemical and simulated solar UV environments with the hybrid film which leads to...applications possible including microelectronic interlayer dielectrics, antireflective coatings for solar cells , optical waveguides, size-selective...membranes, biosensors, micro-fluidic structures, and membranes in fuel cells . A critical aspect for all of these applications is that the hybrids
Bacterial Identification Using Light Scattering Measurements: a Preliminary Report
NASA Technical Reports Server (NTRS)
Wilkins, J. R.
1971-01-01
The light scattering properties of single bacterial cells were examined as a possible means of identification. Three species were studied with streptococcus faecalis exhibiting a unique pattern; the light-scattering traces for staphylococcus aureus and escherichia coli were quite similar although differences existed. Based on preliminary investigations, the light scattering approach appeared promising with additional research needed to include a wide variety of bacterial species, computer capability to handle and analyze data, and expansion of light scattering theory to include bacterial cells.
BDNF - A key player in cardiovascular system.
Pius-Sadowska, Ewa; Machaliński, Bogusław
2017-09-01
Neurotrophins (NTs) were first identified as target-derived survival factors for neurons of the central and peripheral nervous system (PNS). They are known to control neural cell fate, development and function. Independently of their neuronal properties, NTs exert unique cardiovascular activity. The heart is innervated by sensory, sympathetic and parasympathetic neurons, which require NTs during early development and in the establishment of mature properties, contributing to the maintenance of cardiovascular homeostasis. The identification of molecular mechanisms regulated by NTs and involved in the crosstalk between cardiac sympathetic nerves, cardiomyocytes, cardiac fibroblasts, and vascular cells, has a fundamental importance in both normal heart function and disease. The article aims to review the recent data on the effects of Brain-Derived Neurotrophic Factor (BDNF) on various cardiovascular neuronal and non-neuronal functions such as the modulation of synaptic properties of autonomic neurons, axonal outgrowth and sprouting, formation of the vascular and neural networks, smooth muscle migration, and control of endothelial cell survival and cardiomyocytes. Understanding these mechanisms may be crucial for developing novel therapeutic strategies, including stem cell-based therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Labriola, Nicholas R.; Azagury, Aharon; Gutierrez, Robert; Mathiowitz, Edith
2018-01-01
Abstract Stem and non‐stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues. Thus, cell mimicking microparticles (CMMPs) have been developed to more accurately recapitulate the properties of surrounding cells while still offering ways to tailor what stimuli are presented. This nascent field holds the promise of reducing, or even eliminating, the need for live cells in select, regenerative medicine therapies, and diagnostic applications. Recent, CMMP‐based studies show great promise for the technology, yet only reproduce a small subset of cellular characteristics from among those possible: size, morphology, topography, mechanical properties, surface molecules, and tailored chemical release to name the most prominent. This Review summarizes the strengths, weaknesses, and ideal applications of micro/nanoparticle fabrication and customization methods relevant to cell mimicking and provides an outlook on the future of this technology. Moving forward, researchers should seek to combine multiple techniques to yield CMMPs that replicate as many cellular characteristics as possible, with an emphasis on those that most strongly influence the desired therapeutic effects. The level of flexibility in customizing CMMP properties allows them to substitute for cells in a variety of regenerative medicine, drug delivery, and diagnostic systems. Stem Cells Translational Medicine 2018;7:232–240 PMID:29316362
The therapeutic properties of Carapa guianensis.
Henriques, Maria das Graças; Penido, Carmen
2014-01-01
Carapa guianensis Aublet (Meliaceae), also known as andiroba, is used in popular medicine in Brazil and other countries encompassing the Amazon rainforest. Virtually all parts of the andiroba tree are utilized, including the seed's oil, which is employed to treat inflammation and infections. The medicinal properties of C. guianensis have been attributed to the presence of limonoids, which are tetranortriterpenoids. We have previously demonstrated that the oil obtained from C. guianensis seeds contains different tetranortriterpenoids, including 6α-acetoxygedunin, 7-deacetoxy-7-oxogedunin, andirobin, gedunin and methyl-angolensate. The seeds oil and this fraction of tetranortriterpenoids present marked anti-inflammatory and anti-allergic properties, by inhibiting edema formation in different experimental models in rodents, via the impairment of signaling pathways triggered by histamine, bradykinin and platelet-activating factor. Tetranortriterpenoids also impaired the production of inflammatory mediators that trigger leukocyte infiltration into the inflammatory site, including the eosinophilotactic mediators interleukin (IL)-5 and CCL11/eotaxin, as well as the inflammatory cytokines tumor necrosis factor (TNF)-α and IL-1β. This phenomenon seems to depend on the inhibition of nuclear factor κB (NFκB) activation. We have further demonstrated that each one of the five tetranortriterpenoids listed above presented inhibitory effects on the activation of different cell populations, including mast cells, eosinophils and T lymphocytes, through which they impaired allergy and inflammation. This review will discuss the therapeutic effects of C. guianensis oil and its compounds, focusing on the scientific evidences that support its traditional use in inflammatory conditions and its anti-allergic properties.
Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A
2015-01-01
Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues.
Cuyàs, Elisabet; Martin-Castillo, Begoña; Corominas-Faja, Bruna; Massaguer, Anna; Bosch-Barrera, Joaquim; Menendez, Javier A
2015-01-01
Key players in translational regulation such as ribosomes might represent powerful, but hitherto largely unexplored, targets to eliminate drug-refractory cancer stem cells (CSCs). A recent study by the Lisanti group has documented how puromycin, an old antibiotic derived from Streptomyces alboniger that inhibits ribosomal protein translation, can efficiently suppress CSC states in tumorspheres and monolayer cultures. We have used a closely related approach based on Biolog Phenotype Microarrays (PM), which contain tens of lyophilized antimicrobial drugs, to assess the chemosensitivity profiles of breast cancer cell lines enriched for stem cell-like properties. Antibiotics directly targeting active sites of the ribosome including emetine, puromycin and cycloheximide, inhibitors of ribosome biogenesis such as dactinomycin, ribotoxic stress agents such as daunorubicin, and indirect inhibitors of protein synthesis such as acriflavine, had the largest cytotoxic impact against claudin-low and basal-like breast cancer cells. Thus, biologically aggressive, treatment-resistant breast cancer subtypes enriched for stem cell-like properties exhibit exacerbated chemosensitivities to anti-protozoal and anti-bacterial antibiotics targeting protein synthesis. These results suggest that old/existing microbicides might be repurposed not only as new cancer therapeutics, but also might provide the tools and molecular understanding needed to develop second-generation inhibitors of ribosomal translation to eradicate CSC traits in tumor tissues. PMID:25970790
Hydroxycarbamide reduces eosinophil adhesion and degranulation in sickle cell anaemia patients.
Pallis, Flavia Rubia; Conran, Nicola; Fertrin, Kleber Yotsumoto; Olalla Saad, Sara Terezinha; Costa, Fernando Ferreira; Franco-Penteado, Carla Fernanda
2014-01-01
Inflammation, leucocyte and red cell adhesion to the endothelium contribute to the pathogenesis of sickle cell anaemia. Neutrophils appear to be important for vaso-occlusion, however, eosinophils may also participate in this phenomenon. The role of eosinophils in the pathophysiology of sickle cell anaemia (SCA) and the effect of hydroxycarbamide (HC) therapy on the functional properties of these cells are not understood. Patients with SCA and those on HC therapy (SCAHC) were included in the study. SCAHC individuals presented significantly lower absolute numbers of eosinophils than SCA. Furthermore, SCAHC eosinophils demonstrated significantly lower adhesive properties, compared to SCA eosinophils. SCA and SCAHC eosinophils presented greater spontaneous migration when compared with control eosinophils. Baseline eosinophil peroxidase and reactive oxygen species release was higher for SCA individuals than for control individuals, as were plasma levels of eosinophil derived neurotoxin. SCAHC eosinophil degranulation was lower than that of SCA eosinophil degranulation. Eotaxin-1 and RANTES levels were higher in the plasma of SCA and SCAHC individuals, when compared with controls. These data suggest that eosinophils exist in an activated state in SCA and indicate that these cells play a role in the vaso-occlusive process. The exact mechanism by which HC may alter SCA eosinophil properties is not clear. © 2013 John Wiley & Sons Ltd.
Tumorigenic Properties of Drosophila Epithelial Cells Mutant for lethal giant larvae.
Calleja, Manuel; Morata, Ginés; Casanova, Jordi
2016-08-01
Mutations in Drosophila tumor suppressor genes (TSGs) lead to the formation of invasive tumors in the brain and imaginal discs. Here we studied the tumorigenic properties of imaginal discs mutant for the TSG gene lethal giant larvae (lgl). lgl mutant cells display the characteristic features of mammalian tumor cells: they can proliferate indefinitely, induce additional tracheogenesis (an insect counterpart of vasculogenesis) and invade neighboring tissues. Lgl mutant tissues exhibit high apoptotic levels, which lead to the activation of the Jun-N-Terminal Kinase (JNK) pathway. We propose that JNK is a key factor in the acquisition of these tumorigenic properties; it promotes cell proliferation and induces high levels of Mmp1 and confers tumor cells capacity to invade wild-type tissue. Noteworthy, lgl RNAi-mediated down-regulation does not produce similar transformations in the central nervous system (CNS), thereby indicating a fundamental difference between the cells of developing imaginal discs and those of differentiated organs. We discuss these results in the light of the "single big-hit origin" of some human pediatric or developmental cancers. Down-regulation of lgl in imaginal discs is sufficient to enhance tracheogenesis and to promote invasion and colonization of other larval structures including the CNS. Developmental Dynamics 245:834-843, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Finding and tracing human MSC in 3D microenvironments with the photoconvertible protein Dendra2
NASA Astrophysics Data System (ADS)
Caires, Hugo R.; Gomez-Lazaro, Maria; Oliveira, Carla M.; Gomes, David; Mateus, Denisa D.; Oliveira, Carla; Barrias, Cristina C.; Barbosa, Mário A.; Almeida, Catarina R.
2015-05-01
Mesenchymal Stem/Stromal Cells (MSC) are a promising cell type for cell-based therapies - from tissue regeneration to treatment of autoimmune diseases - due to their capacity to migrate to damaged tissues, to differentiate in different lineages and to their immunomodulatory and paracrine properties. Here, a simple and reliable imaging technique was developed to study MSC dynamical behavior in natural and bioengineered 3D matrices. Human MSC were transfected to express a fluorescent photoswitchable protein, Dendra2, which was used to highlight and follow the same group of cells for more than seven days, even if removed from the microscope to the incubator. This strategy provided reliable tracking in 3D microenvironments with different properties, including the hydrogels Matrigel and alginate as well as chitosan porous scaffolds. Comparison of cells mobility within matrices with tuned physicochemical properties revealed that MSC embedded in Matrigel migrated 64% more with 5.2 mg protein/mL than with 9.6 mg/mL and that MSC embedded in RGD-alginate migrated 51% faster with 1% polymer concentration than in 2% RGD-alginate. This platform thus provides a straightforward approach to characterize MSC dynamics in 3D and has applications in the field of stem cell biology and for the development of biomaterials for tissue regeneration.
Application of Hydrogels in Heart Valve Tissue Engineering
Zhang, Xing; Xu, Bin; Puperi, Daniel S.; Wu, Yan; West, Jennifer L.; Grande-Allen, K. Jane
2015-01-01
With an increasing number of patients requiring valve replacement, there is heightened interest in advancing heart valve tissue engineering (HVTE) to provide solutions to the many limitations of current surgical treatments. A variety of materials have been developed as scaffolds for HVTE including natural polymers, synthetic polymers, and decellularized valvular matrices. Among them, biocompatible hydrogels are generating growing interest. Natural hydrogels, such as collagen and fibrin, generally show good bioactivity, but poor mechanical durability. Synthetic hydrogels, on the other hand, have tunable mechanical properties; however, appropriate cell-matrix interactions are difficult to obtain. Moreover, hydrogels can be used as cell carriers when the cellular component is seeded into the polymer meshes or decellularized valve scaffolds. In this review, we discuss current research strategies for HVTE with an emphasis on hydrogel applications. The physicochemical properties and fabrication methods of these hydrogels, as well as their mechanical properties and bioactivities are described. Performance of some hydrogels including in vitro evaluation using bioreactors and in vivo tests in different animal models are also discussed. For future HVTE, it will be compelling to examine how hydrogels can be constructed from composite materials to replicate mechanical properties and mimic biological functions of the native heart valve. PMID:25955010
Understanding thread properties for red blood cell antigen assays: weak ABO blood typing.
Nilghaz, Azadeh; Zhang, Liyuan; Li, Miaosi; Ballerini, David R; Shen, Wei
2014-12-24
"Thread-based microfluidics" research has so far focused on utilizing and manipulating the wicking properties of threads to form controllable microfluidic channels. In this study we aim to understand the separation properties of threads, which are important to their microfluidic detection applications for blood analysis. Confocal microscopy was utilized to investigate the effect of the microscale surface morphologies of fibers on the thread's separation efficiency of red blood cells. We demonstrated the remarkably different separation properties of threads made using silk and cotton fibers. Thread separation properties dominate the clarity of blood typing assays of the ABO groups and some of their weak subgroups (Ax and A3). The microfluidic thread-based analytical devices (μTADs) designed in this work were used to accurately type different blood samples, including 89 normal ABO and 6 weak A subgroups. By selecting thread with the right surface morphology, we were able to build μTADs capable of providing rapid and accurate typing of the weak blood groups with high clarity.
Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D; Williams, Daniel L; Magee, Timothy D; Kaeppler, Shawn M; de Leon, Natalia; Hodge, David B
2015-07-01
A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA) content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. This indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.
A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less
Wallin, Patric; Zandén, Carl; Carlberg, Björn; Hellström Erkenstam, Nina; Liu, Johan; Gold, Julie
2012-01-01
The properties of a cell’s microenvironment are one of the main driving forces in cellular fate processes and phenotype expression invivo. The ability to create controlled cell microenvironments invitro becomes increasingly important for studying or controlling phenotype expression in tissue engineering and drug discovery applications. This includes the capability to modify material surface properties within well-defined liquid environments in cell culture systems. One successful approach to mimic extra cellular matrix is with porous electrospun polymer fiber scaffolds, while microfluidic networks have been shown to efficiently generate spatially and temporally defined liquid microenvironments. Here, a method to integrate electrospun fibers with microfluidic networks was developed in order to form complex cell microenvironments with the capability to vary relevant parameters. Spatially defined regions of electrospun fibers of both aligned and random orientation were patterned on glass substrates that were irreversibly bonded to microfluidic networks produced in poly-dimethyl-siloxane. Concentration gradients obtained in the fiber containing channels were characterized experimentally and compared with values obtained by computational fluid dynamic simulations. Velocity and shear stress profiles, as well as vortex formation, were calculated to evaluate the influence of fiber pads on fluidic properties. The suitability of the system to support cell attachment and growth was demonstrated with a fibroblast cell line. The potential of the platform was further verified by a functional investigation of neural stem cell alignment in response to orientation of electrospun fibers versus a microfluidic generated chemoattractant gradient of stromal cell-derived factor 1 alpha. The described method is a competitive strategy to create complex microenvironments invitro that allow detailed studies on the interplay of topography, substrate surface properties, and soluble microenvironment on cellular fate processes. PMID:23781291
Khalyfa, Abdelnaby; Almendros, Isaac; Gileles-Hillel, Alex; Akbarpour, Mahzad; Trzepizur, Wojciech; Mokhlesi, Babak; Huang, Lei; Andrade, Jorge; Farré, Ramon; Gozal, David
2016-01-01
Background Chronic sleep fragmentation (SF) increases cancer aggressiveness in mice. Exosomes exhibit pleiotropic biological functions, including immune regulatory functions, antigen presentation, intracellular communication and inter-cellular transfer of RNA and proteins. We hypothesized that SF-induced alterations in biosynthesis and cargo of plasma exosomes may affect tumor cell properties. Results SF-derived exosomes increased tumor cell proliferation (~13%), migration (~2.3-fold) and extravasation (~10%) when compared to exosomes from SC-exposed mice. Similarly, Pre exosomes from OSA patients significantly enhanced proliferation and migration of human adenocarcinoma cells compared to Post. SF-exosomal cargo revealed 3 discrete differentially expressed miRNAs, and exploration of potential mRNA targets in TC1 tumor cells uncovered 132 differentially expressed genes that encode for multiple cancer-related pathways. Methods Plasma-derived exosomes from C57/B6 mice exposed to 6 wks of SF or sleep control (SC), and from adult human patients with obstructive sleep apnea (OSA) before (Pre) and after adherent treatment for 6 wks (Post) were co-cultured with mouse lung TC1 or human adenocarcinoma tumor cell lines, respectively. Proliferation, migration, invasion, endothelial barrier integrity and extravasation assays of tumor cells were performed. Plasma mouse exosomal miRNAs were profiled with arrays, and transcriptomic assessments of TC1 cells exposed to SF or SC exosomes were conducted to identify gene targets. Conclusions Chronic SF induces alterations in exosomal miRNA cargo that alter the biological properties of TC1 lung tumor cells to enhance their proliferative, migratory and extravasation properties, and similar findings occur in OSA patients, in whom SF is a constitutive component of their sleep disorder. Thus, exosomes could participate, at least in part, in the adverse cancer outcomes observed in OSA. PMID:27419627
Li, Muyang; Heckwolf, Marlies; Crowe, Jacob D.; ...
2015-02-20
A maize (Zea mays L. subsp. mays) diversity panel consisting of 26 maize lines exhibiting a wide range of cell-wall properties and responses to hydrolysis by cellulolytic enzymes was employed to investigate the relationship between cell-wall properties, cell-wall responses to mild NaOH pre-treatment, and enzymatic hydrolysis yields. Enzymatic hydrolysis of the cellulose in the untreated maize was found to be positively correlated with the water retention value, which is a measure of cell-wall susceptibility to swelling. It was also positively correlated with the lignin syringyl/guaiacyl ratio and negatively correlated with the initial cell-wall lignin, xylan, acetate, and p-coumaric acid (pCA)more » content, as well as pCA released from the cell wall by pre-treatment. The hydrolysis yield following pre-treatment exhibited statistically significant negative correlations to the lignin content after pre-treatment and positive correlations to the solubilized ferulic acid and pCA. Several unanticipated results were observed, including a positive correlation between initial lignin and acetate content, lack of correlation between acetate content and initial xylan content, and negative correlation between each of these three variables to the hydrolysis yields for untreated maize. Also, another surprising result was that pCA release was negatively correlated with hydrolysis yields for untreated maize and, along with ferulic acid release, was positively correlated with the pre-treated maize hydrolysis yields. In conclusion, this indicates that these properties that may negatively contribute to the recalcitrance in untreated cell walls may positively contribute to their deconstruction by alkaline pre-treatment« less
Okaty, Benjamin W; Miller, Mark N; Sugino, Ken; Hempel, Chris M; Nelson, Sacha B
2009-01-01
Fast-spiking (FS) interneurons are important elements of neocortical circuitry that constitute the primary source of synaptic inhibition in adult cortex and impart temporal organization on ongoing cortical activity. The highly specialized intrinsic membrane and firing properties that allow cortical FS interneurons to perform these functions are due to equally specialized gene expression, which is ultimately coordinated by cell-type-specific transcriptional regulation. While embryonic transcriptional events govern the initial steps of cell-type specification in most cortical interneurons, including FS cells, the electrophysiological properties that distinguish adult cortical cell types emerge relatively late in postnatal development, and the transcriptional events that drive this maturational process are not known. To address this, we used mouse whole-genome microarrays and whole-cell patch clamp to characterize the transcriptional and electrophysiological maturation of cortical FS interneurons between postnatal day 7 (P7) and P40. We found that the intrinsic and synaptic physiology of FS cells undergoes profound regulation over the first four postnatal weeks, and that these changes are correlated with largely monotonic but bidirectional transcriptional regulation of thousands of genes belonging to multiple functional classes. Using our microarray screen as a guide, we discovered that upregulation of 2-pore K+ leak channels between P10 and P25 contributes to one of the major differences between the intrinsic membrane properties of immature and adult FS cells, and found a number of other candidate genes that likely confer cell-type specificity on mature FS cells. PMID:19474331
Liu, Qiuying; Chen, Kefei; Liu, Zhongjian; Huang, Yuan; Zhao, Rongce; Wei, Ling; Yu, Xiaoqin; He, Jingyang; Liu, Jun; Qi, Jianguo; Qin, Yang; Li, Bo
2017-09-10
Accumulating evidence has revealed the importance of cancer stem cells (CSCs) in chemoresistance and recurrence. BORIS, a testes-specific CTCF paralog, has been shown to be associated with stemness traits of embryonic cancer cells and epithelial CSCs. We previously reported that BORIS is correlated with the expression of the CSC marker CD90 in hepatocellular carcinoma (HCC). These results encourage us to wonder whether BORIS exerts functions on CSC-like traits of human liver cancer cells. Here, we report that BORIS was enriched in HCC tissues. Exogenous overexpression of BORIS promoted CSC-like properties, including self-renewal, chemoresistance, migration and invasion in Huh7 and HCCLM3 cells. Conversely, BORIS knockdown suppressed CSC-like properties in SMMC-7721 and HepG2 cells and inhibited tumorigenicity in SMMC-7721 cells. Moreover, BORIS alteration did not affect the DNA methylation status of the minimal promoter and exon 1 region of OCT4. However, BORIS overexpression enhanced the amount of BORIS bound on the OCT4 promoter and increased H3K4me2, while reducing H3K27me3; BORIS depletion decreased BORIS and H3K4me2 on the OCT4 promoter, while increasing H3K27me3. These results revealed that BORIS is associated with the CSC-like traits of human liver cancer cells through the epigenetic regulation of OCT4. Copyright © 2017 Elsevier B.V. All rights reserved.
Turnquist, Hēth R.; Zhao, Zhenlin; Rosborough, Brian R.; Liu, Quan; Castellaneta, Antonino; Isse, Kumiko; Wang, Zhiliang; Lang, Megan; Stolz, Donna Beer; Zheng, Xin Xiao; Demetris, A. Jake; Liew, Foo Y.; Wood, Kathryn J.; Thomson, Angus W.
2011-01-01
IL-33 administration is associated with facilitation of Th type-2 (Th2) responses and cardioprotective properties in rodent models. However, in heart transplantation, the mechanism by which IL-33, signaling through ST2L, the membrane-bound form of ST2, promotes transplant survival is unclear. We report that IL-33 administration, while facilitating Th2 responses, also increases immunoregulatory myeloid cells and CD4+ Foxp3+ regulatory T cells (Treg) in mice. IL-33 expands functional myeloid-derived suppressor cells (MDSC), -CD11b+ cells that exhibit intermediate (int) levels of Gr-1 and potent T cell suppressive function. Furthermore, IL-33 administration causes a St2-dependent expansion of suppressive CD4+ Foxp3+ Treg, including a ST2L+ population. IL-33 monotherapy following fully allogeneic mouse heart transplantation resulted in significant graft prolongation, associated with increased Th2-type responses and decreased systemic CD8+ IFN-γ+ cells. Also, despite reducing overall CD3+ cell infiltration of the graft, IL-33 administration markedly increased intragraft Foxp3+ cells. Whereas control graft recipients displayed increases in systemic CD11b+ Gr-1hi cells, IL-33-treated recipients exhibited increased CD11b+ Gr-1int cells. Enhanced ST2 expression was observed in the myocardium and endothelium of rejecting allografts, however the therapeutic effect of IL-33 required recipient St2 expression and was dependent on Treg. These findings reveal a new immunoregulatory property of IL-33. Specifically, in addition to supporting Th2 responses, IL-33 facilitates regulatory cells, particularly functional CD4+ Foxp3+ Treg that underlie IL-33-mediated cardiac allograft survival. PMID:21949025
Brain mesenchymal stem cells: physiology and pathological implications.
Pombero, Ana; Garcia-Lopez, Raquel; Martinez, Salvador
2016-06-01
Mesenchymal stem cells (MSCs) are defined as progenitor cells that give rise to a number of unique, differentiated mesenchymal cell types. This concept has progressively evolved towards an all-encompassing concept including multipotent perivascular cells of almost any tissue. In central nervous system, pericytes are involved in blood-brain barrier, and angiogenesis and vascular tone regulation. They form the neurovascular unit (NVU) together with endothelial cells, astrocytes and neurons. This functional structure provides an optimal microenvironment for neural proliferation in the adult brain. Neurovascular niche include both diffusible signals and direct contact with endothelial and pericytes, which are a source of diffusible neurotrophic signals that affect neural precursors. Therefore, MSCs/pericyte properties such as differentiation capability, as well as immunoregulatory and paracrine effects make them a potential resource in regenerative medicine. © 2016 Japanese Society of Developmental Biologists.
Holle, Andrew W; Young, Jennifer L; Van Vliet, Krystyn J; Kamm, Roger D; Discher, Dennis; Janmey, Paul; Spatz, Joachim P; Saif, Taher
2018-01-10
Extracellular biophysical cues have a profound influence on a wide range of cell behaviors, including growth, motility, differentiation, apoptosis, gene expression, adhesion, and signal transduction. Cells not only respond to definitively mechanical cues from the extracellular matrix (ECM) but can also sometimes alter the mechanical properties of the matrix and hence influence subsequent matrix-based cues in both physiological and pathological processes. Interactions between cells and materials in vitro can modify cell phenotype and ECM structure, whether intentionally or inadvertently. Interactions between cell and matrix mechanics in vivo are of particular importance in a wide variety of disorders, including cancer, central nervous system injury, fibrotic diseases, and myocardial infarction. Both the in vitro and in vivo effects of this coupling between mechanics and biology hold important implications for clinical applications.
Lin, Yu-Chung; Tsai, Lin-Wei; Perevedentseva, Elena; Chang, Hsin-Hou; Lin, Ching-Hui; Sun, Der-Shan; Lugovtsov, Andrei E; Priezzhev, Alexander; Mona, Jani; Cheng, Chia-Liang
2012-10-01
Nanodiamond has been proven to be biocompatible and proposed for various biomedical applications. Recently, nanometer-sized diamonds have been demonstrated as an effective Raman/fluorescence probe for bio-labeling, as well as, for drug delivery. Bio-labeling/drug delivery can be extended to the human blood system, provided one understands the interaction between nanodiamonds and the blood system. Here, the interaction of nanodiamonds (5 and 100 nm) with human red blood cells (RBC) in vitro is discussed. Measurements have been facilitated using Raman spectroscopy, laser scanning fluorescence spectroscopy, and laser diffractometry (ektacytometry). Data on cell viability and hemolytic analysis are also presented. Results indicate that the nanodiamonds in the studied condition do not cause hemolysis, and the cell viability is not affected. Importantly, the oxygenation/deoxygenation process was not found to be altered when nanodiamonds interacted with the RBC. However, the nanodiamond can affect some RBC properties such as deformability and aggregation in a concentration dependent manner. These results suggest that the nanodiamond can be used as an effective bio-labeling and drug delivery tool in ambient conditions, without complicating the blood's physiological conditions. However, controlling the blood properties including deformability of RBCs and rheological properties of blood is necessary during treatment.
A flexible and qualitatively stable model for cell cycle dynamics including DNA damage effects.
Jeffries, Clark D; Johnson, Charles R; Zhou, Tong; Simpson, Dennis A; Kaufmann, William K
2012-01-01
This paper includes a conceptual framework for cell cycle modeling into which the experimenter can map observed data and evaluate mechanisms of cell cycle control. The basic model exhibits qualitative stability, meaning that regardless of magnitudes of system parameters its instances are guaranteed to be stable in the sense that all feasible trajectories converge to a certain trajectory. Qualitative stability can also be described by the signs of real parts of eigenvalues of the system matrix. On the biological side, the resulting model can be tuned to approximate experimental data pertaining to human fibroblast cell lines treated with ionizing radiation, with or without disabled DNA damage checkpoints. Together these properties validate a fundamental, first order systems view of cell dynamics. Classification Codes: 15A68.
Zhuang, Yan; Zhang, Qian; Feng, Jinqi; Wang, Na; Xu, Weilin; Yang, Hongjun
2017-04-01
Naturally derived fibers such as silk fibroin can potentially enhance the biocompatibility of currently used biomaterials. This study investigated the physical properties of native silk fibroin powder and its effect on the biocompatibility of biomedical polyurethane. Native silk fibroin powder with an average diameter of 3 µm was prepared on a purpose-built machine. A simple method of phase inversion was used to produce biomedical polyurethane/native silk fibroin powder hybrid membranes at different blend ratios by immersing a biomedical polyurethane/native silk fibroin powder solution in deionized water at room temperature. The physical properties of the membranes including morphology, hydrophilicity, roughness, porosity, and compressive modulus were characterized, and in vitro biocompatibility was evaluated by seeding the human umbilical vein endothelial cells on the top surface. Native silk fibroin powder had a concentration-dependent effect on the number and morphology of human umbilical vein endothelial cells growing on the membranes; cell number increased as native silk fibroin powder content in the biomedical polyurethane/native silk fibroin powder hybrid membrane was increased from 0% to 50%, and cell morphology changed from spindle-shaped to cobblestone-like as the native silk fibroin powder content was increased from 0% to 70%. The latter change was related to the physical characteristics of the membrane, including hydrophilicity, roughness, and mechanical properties. The in vivo biocompatibility of the native silk fibroin powder-modified biomedical polyurethane membrane was evaluated in a rat model; the histological analysis revealed no systemic toxicity. These results indicate that the biomedical polyurethane/native silk fibroin powder hybrid membrane has superior in vitro and in vivo biocompatibility relative to 100% biomedical polyurethane membranes and thus has potential applications in the fabrication of small-diameter vascular grafts and in tissue engineering.
The Properties of 3 Different Plasma Formulations and Their Effects on Tendinopathic Cells.
Rubio-Azpeitia, Eva; Bilbao, Ane M; Sánchez, Pello; Delgado, Diego; Andia, Isabel
2016-08-01
Tendinopathies are attributed to failure of the healing process and inadequate tissue remodeling. Plasma injections can trigger regenerative responses by modifying the molecular microenvironment. To examine the differences in the mitotic, chemotactic, anabolic, and inflammatory effects between leukocyte- and platelet-rich plasma (L-PRP), platelet-rich plasma (PRP), and platelet-poor plasma (PPP). Controlled laboratory study. Tendinopathic cells were cultured in 3-dimensional (3D) hydrogels formed using PPP, PRP, and L-PRP. Cell migration was evaluated using a μ-Slide chemotaxis chamber with video microscopy. Proliferation was assessed using XTT assays. Expression of genes associated with matrix turnover, including type 1 collagen (COL1A1), COL3A1, aggrecan, decorin, fibronectin, matrix metalloproteinase 1 (MMP-1), MMP-3, A Disintegrin-Like And Metalloprotease With Thrombospondin Type 1 Motif proteins 4 (ADAMTS-4), and ADAMTS-5, was assessed using real-time reverse-transcription polymerase chain reaction. Secreted inflammatory proteins, including interleukin (IL)-1β, IL-6, IL-8, monocyte chemotactic protein 1 (MCP-1), and regulated on activation, normal T cell expressed and secreted (RANTES), as well as vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF), were quantified using enzyme-linked immunosorbent assay. Tendinopathic cells migrate at a higher velocity along L-PRP and PRP than along PPP gradients. PRP and L-PRP promote hypercellularity. PPP and PRP showed more pronounced anabolic properties, as demonstrated by enhanced COL1A1 and COL3A1 and reduced MMP-1 expression. Decorin, fibronectin, and aggrecan were downregulated in L-PRP compared with PPP and PRP. L-PRP and PRP were shown to be more proinflammatory than PPP in terms of IL-6 secretion, but cells in PPP showed MCP-1(high) phenotype. CTGF secretion was significantly reduced in L-PRP compared with PPP and PRP. The main advantages of L-PRP and PRP use, compared with PPP, include their stronger chemotactic and proliferative properties. While PPP and PRP stimulate matrix anabolism, L-PRP is more proinflammatory. Emphasis should be placed on the temporal needs and biological characteristics of injured tendons, and plasma formulations need to be tailored accordingly. Versatile systems allowing the preparation of different plasma formulations, such as PPP, PRP, or L-PRP, can help refine clinical applications by taking advantage of their different biological properties. © 2016 The Author(s).
Baicalein inhibits the migration and invasive properties of human hepatoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, Yung-Wei; Institute of Medicine, Chung Shan Medical University, Taiwan; Lin, Tseng-Hsi
Flavonoids have been demonstrated to exert health benefits in humans. We investigated whether the flavonoid baicalein would inhibit the adhesion, migration, invasion, and growth of human hepatoma cell lines, and we also investigated its mechanism of action. The separate effects of baicalein and baicalin on the viability of HA22T/VGH and SK-Hep1 cells were investigated for 24 h. To evaluate their invasive properties, cells were incubated on matrigel-coated transwell membranes in the presence or absence of baicalein. We examined the effect of baicalein on the adhesion of cells, on the activation of matrix metalloproteinases (MMPs), protein kinase C (PKC), and p38more » mitogen-activated protein kinase (MAPK), and on tumor growth in vivo. We observed that baicalein suppresses hepatoma cell growth by 55%, baicalein-treated cells showed lower levels of migration than untreated cells, and cell invasion was significantly reduced to 28%. Incubation of hepatoma cells with baicalein also significantly inhibited cell adhesion to matrigel, collagen I, and gelatin-coated substrate. Baicalein also decreased the gelatinolytic activities of the matrix metalloproteinases MMP-2, MMP-9, and uPA, decreased p50 and p65 nuclear translocation, and decreased phosphorylated I-kappa-B (IKB)-{beta}. In addition, baicalein reduced the phosphorylation levels of PKC{alpha} and p38 proteins, which regulate invasion in poorly differentiated hepatoma cells. Finally, when SK-Hep1 cells were grown as xenografts in nude mice, intraperitoneal (i.p.) injection of baicalein induced a significant dose-dependent decrease in tumor growth. These results demonstrate the anticancer properties of baicalein, which include the inhibition of adhesion, invasion, migration, and proliferation of human hepatoma cells in vivo. - Highlight: > Baicalein inhibits several essential steps in the onset of metastasis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pipin, V. V.; Kosovichev, A. G.
Recent helioseismology findings, as well as advances in direct numerical simulations of global dynamics of the Sun, have indicated that in each solar hemisphere meridional circulation may form more than one cell along the radius in the convection zone. In particular, recent helioseismology results revealed a double-cell structure of the meridional circulation. We investigate properties of a mean-field solar dynamo with such double-cell meridional circulation. The dynamo model also includes the realistic profile of solar differential rotation (including the tachocline and subsurface shear layer) and takes into account effects of turbulent pumping, anisotropic turbulent diffusivity, and conservation of magnetic helicity.more » Contrary to previous flux-transport dynamo models, we find that the dynamo model can robustly reproduce the basic properties of the solar magnetic cycles for a wide range of model parameters and circulation speeds. The best agreement with observations is achieved when the surface meridional circulation speed is about 12 m s{sup –1}. For this circulation speed, the simulated sunspot activity shows good synchronization with the polar magnetic fields. Such synchronization was indeed observed during previous sunspot Cycles 21 and 22. We compare theoretical and observed phase diagrams of the sunspot number and the polar field strength and discuss the peculiar properties of Cycle 23.« less
Gianfrani, Carmen; Camarca, Alessandra; Mazzarella, Giuseppe; Di Stasio, Luigia; Giardullo, Nicola; Ferranti, Pasquale; Picariello, Gianluca; Rotondi Aufiero, Vera; Picascia, Stefania; Troncone, Riccardo; Pogna, Norberto; Auricchio, Salvatore; Mamone, Gianfranco
2015-09-01
The ancient diploid Triticum monococcum is of special interest as a candidate low-toxic wheat species for celiac disease patients. Here, we investigated how an in vitro gastro-intestinal digestion, affected the immune toxic properties of gliadin from diploid compared to hexaploid wheat. Gliadins from Triticum monococcum, and Triticum aestivum cultivars were digested using either a partial proteolysis with pepsin-chymotrypsin, or an extensive degradation that used gastrointestinal enzymes including the brush border membrane enzymes. The immune stimulatory properties of the digested samples were investigated on T-cell lines and jejunal biopsies from celiac disease patients. The T-cell response profile to the Triticum monococcum gliadin was comparable to that obtained with Triticum aestivum gliadin after the partial pepsin-chymotrypsin digestion. In contrast, the extensive gastrointestinal hydrolysis drastically reduced the immune stimulatory properties of Triticum monococcum gliadin. MS-based analysis showed that several Triticum monococcum peptides, including known T-cell epitopes, were degraded during the gastrointestinal treatment, whereas many of Triticum aestivum gliadin survived the gastrointestinal digestion. The pattern of Triticum monococcum gliadin proteins is sufficiently different from those of common hexaploid wheat to determine a lower toxicity in celiac disease patients following in vitro simulation of human digestion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gladilin, Evgeny; Gonzalez, Paula; Eils, Roland
2014-08-22
Mechanical cell properties play an important role in many basic biological functions, including motility, adhesion, proliferation and differentiation. There is a growing body of evidence that the mechanical cell phenotype can be used for detection and, possibly, treatment of various diseases, including cancer. Understanding of pathological mechanisms requires investigation of the relationship between constitutive properties and major structural components of cells, i.e., the nucleus and cytoskeleton. While the contribution of actin und microtubules to cellular rheology has been extensively studied in the past, the role of intermediate filaments has been scarcely investigated up to now. Here, for the first time we compare the effects of drug-induced disruption of actin and vimentin intermediate filaments on mechanical properties of suspended NK cells using high-throughput deformability measurements and computational modeling. Although, molecular mechanisms of actin and vimentin disruption by the applied cytoskeletal drugs, Cytochalasin-D and Withaferin-A, are different, cell softening in both cases can be attributed to reduction of the effective density and stiffness of filament networks. Our experimental data suggest that actin and vimentin deficient cells exhibit, in average, 41% and 20% higher deformability in comparison to untreated control. 3D Finite Element simulation is performed to quantify the contribution of cortical actin and perinuclear vimentin to mechanical phenotype of the whole cell. Our simulation provides quantitative estimates for decreased filament stiffness in drug-treated cells and predicts more than two-fold increase of the strain magnitude in the perinuclear vimentin layer of actin deficient cells relatively to untreated control. Thus, the mechanical function of vimentin becomes particularly essential in motile and proliferating cells that have to dynamically remodel the cortical actin network. These insights add functional cues to frequently observed overexpression of vimentin in diverse types of cancer and underline the role of vimentin targeting drugs, such as Withaferin-A, as a potent cancerostatic supplement. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kuroda, Kouichi; Ueda, Mitsuyoshi
2017-12-01
Microbial cell factories are subject to various stresses, leading to the reductions of metabolic activity and bioproduction efficiency. Therefore, the development of stress-tolerant microorganisms is important for improving bio-production efficiency. Recently, modifications of cell surface properties and master regulators have been shown to be effective approaches for enhancing stress tolerance. The cell surface is an attractive target owing to its interactions with the environment and its role in transmitting environmental information. Cell surface engineering in yeast has enabled the convenient modification of cell surface properties. Displaying random peptide libraries and subsequent screening can successfully improve stress tolerance. Furthermore, master regulators including transcription factors are also promising target to be engineered because stress tolerance is determined by many cooperative factors and modification of master regulators can simultaneously affect the expression of multiple downstream genes. The key single amino acid mutations in transcription factors have been identified by analyzing tolerant yeasts that were isolated by adaptive evolution under stress conditions. This enabled the reconstruction of stress-tolerant yeast without burdening cells by introducing the identified mutations. Therefore, for the construction of stress-tolerant yeast from any strains, these two approaches are promising alternatives to conventional overexpression and deletion of stress-related genes. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Study of hepatocyte plasma membrane mechanical properties using optical trapping
NASA Astrophysics Data System (ADS)
Vedyaykin, A. D.; Morozova, N. E.; Pobegalov, G. E.; Arseniev, A. N.; Khodorkoskii, M. A.; Sabantsev, A. V.
2014-12-01
In this paper we describe the use of membrane tether formation technique which is widely used to study mechanical properties of plasma membranes. This method was successfully used for the direct measurement of parameters characterizing membranes mechanical properties (static tether tension force and effective membrane viscosity) of human hepatocytes (HepG2 hepatocellular carcinoma line). These results allow using this method in future for diagnostics of the cell membrane, evaluating the influence on the mechanical parameters of various factors, including toxins and drugs.
NASA Astrophysics Data System (ADS)
Jaymand, Mehdi; lotfi, Mehrdad; Abbasian, Mojtaba
2018-03-01
This article evaluates physicochemical, mechanical, and biological properties of a series of novel dental nanocomposites that fabricated from multifunctional methacrylate-based dental monomers, triethyleneglycol dimethacrylate (TEGDMA) monomer, and modified silica nanoparticles (SiO2 NPs). The antibacterial activities of the monomers were investigated against lactobacillus plantarum by standard agar disk diffusion method. The cytotoxicity characteristics of the monomers and fabricated nanocomposites were evaluated by MTT and trypan blue cell viability tests, respectively against NIH3T3 cell line. In addition, the mechanical properties, as well as physicochemical characteristics including water sorption, sol fraction, and double bond conversion were also investigated. According to the results, the formulated nanocomposites have potential to apply as dental nanocomposites mainly due to their acceptable physicochemical, mechanical and biological characteristics.
Jung, Young-Kwang; Lee, Ji-Hwan; Walsh, Aron; Soon, Aloysius
2017-04-11
CsSnI 3 is a potential lead-free inorganic perovskite for solar energy applications due to its nontoxicity and attractive optoelectronic properties. Despite these advantages, photovoltaic cells using CsSnI 3 have not been successful to date, in part due to low stability. We demonstrate how gradual substitution of Rb for Cs influences the structural, thermodynamic, and electronic properties on the basis of first-principles density functional theory calculations. By examining the effect of the Rb:Cs ratio, we reveal a correlation between octahedral distortion and band gap, including spin-orbit coupling. We further highlight the cation-induced variation of the ionization potential (work function) and the importance of surface termination for tin-based halide perovskites for engineering high-performance solar cells.
Deb Majumdar, Ishita; Devanabanda, Arvind; Fox, Benjamin; Schwartzman, Jacob; Cong, Huan; Porco, John A; Weber, Horst C
2011-12-16
A number of cyclohexenyl chalcone Diels-Alder natural products possess promising biological properties including strong cytotoxicity in various human cancer cells. Herein, we show that natural products in this class including panduratin A and nicolaioidesin C inhibit cysteine cathepsins as indicated by protease profiling assays and cell-free cathepsin L enzyme assays. Owing to the critical roles of cathepsins in the biology of human tumor progression, invasion, and metastasis, these findings should pave the way for development of novel antitumor agents for use in clinical settings. Copyright © 2011 Elsevier Inc. All rights reserved.
Sawyer, Andrew J; Kyriakides, Themis R
2016-02-01
Extracellular matrix is composed of a complex array of molecules that together provide structural and functional support to cells. These properties are mainly mediated by the activity of collagenous and elastic fibers, proteoglycans, and proteins such as fibronectin and laminin. ECM composition is tissue-specific and could include matricellular proteins whose primary role is to modulate cell-matrix interactions. In adults, matricellular proteins are primarily expressed during injury, inflammation and disease. Particularly, they are closely associated with the progression and prognosis of cardiovascular and fibrotic diseases, and cancer. This review aims to provide an overview of the potential use of matricellular proteins in drug delivery including the generation of therapeutic agents based on the properties and structures of these proteins as well as their utility as biomarkers for specific diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Momordica charantia: a popular health-promoting vegetable with multifunctionality.
Wang, Shuzhen; Li, Zhiliang; Yang, Guliang; Ho, Chi-Tang; Li, Shiming
2017-05-24
Products derived from edible medicinal plants have been used for centuries to prevent, treat, and even cure multiple diseases. Momordica charantia L., widely cultivated around the world, is a typical one bred for vegetables and medicinal usage. All parts of M. charantia possess important medicinal properties, including antidiabetic, anticancer, hypotensive, anti-obesity, antimicrobial, antihyperlipidemic, antioxidant, anti-inflammatory, immuno-modulatory, anthelmintic, neuro-protective, as well as hepato-protective properties both in vitro and in vivo. This review summarizes the active components and medicinal properties of M. charantia, especially the activities and mechanisms of its anti-diabetic and anti-cancer properties. The anti-diabetic properties involve inhibiting intestinal α-glucosidase and glucose transport, protecting islet β-cells, enhancing insulin secretion, increasing hepatic glucose disposal, decreasing gluconeogenesis, and even ameliorating insulin resistance. Moreover, the expressions of PPARs could also be activated and up-regulated. Meanwhile, its anticancer properties are mostly due to apoptosis, cell cycle arrest, and expression of serum factors associated with immunity. In this review, we aim to provide an overview of M. charantia and its benefits for development as a functional food.
Is lactate an undervalued functional component of fermented food products?
Garrote, Graciela L.; Abraham, Analía G.; Rumbo, Martín
2015-01-01
Although it has been traditionally regarded as an intermediate of carbon metabolism and major component of fermented dairy products contributing to organoleptic and antimicrobial properties of food, there is evidence gathered in recent years that lactate has bioactive properties that may be responsible of broader properties of functional foods. Lactate can regulate critical functions of several key players of the immune system such as macrophages and dendritic cells, being able to modulate inflammatory activation of epithelial cells as well. Intraluminal levels of lactate derived from fermentative metabolism of lactobacilli have been shown to modulate inflammatory environment in intestinal mucosa. The molecular mechanisms responsible to these functions, including histone deacetylase dependent-modulation of gene expression and signaling through G-protein coupled receptors have started to be described. Since lactate is a major fermentation product of several bacterial families with probiotic properties, we here propose that it may contribute to some of the properties attributed to these microorganisms and in a larger view, to the properties of food products fermented by lactic acid bacteria. PMID:26150815
Towards the therapeutic use of vascular smooth muscle progenitor cells.
Merkulova-Rainon, Tatyana; Broquères-You, Dong; Kubis, Nathalie; Silvestre, Jean-Sébastien; Lévy, Bernard I
2012-07-15
Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.
A study of degradation of plates for nickel-cadmium spacecraft cells. [feasibility of coining
NASA Technical Reports Server (NTRS)
Scott, W. R.
1973-01-01
The relative merits of coining and not coining of sintered nickel-oxide and cadmium plates was investigated. A survey of the industry including cell manufactures and users was made and results summarized. Sample plate materials from most commercial cell suppliers were obtained and characterized for properties that may correlate with the tendency toward physical disintegration during handling and over long periods of time in the cell. Special test methods were developed to obtain comparative data in a short time. A wide range of physical properties and coining thicknesses was observed, resulting in a range of responses. The stronger, less brittle materials resisted loss of sinter better than weaker materials whether or not coined. Coining improved handling and resistance to electrochemical cycling in all materials tested. An apparent exception was found to be due to improper coining of a tapered edge.
Chemical vapor deposition growth
NASA Technical Reports Server (NTRS)
Ruth, R. P.; Manasevit, H. M.; Campbell, A. G.; Johnson, R. E.; Kenty, J. L.; Moudy, L. A.; Shaw, G. L.; Simpson, W. I.; Yang, J. J.
1978-01-01
The objective was to investigate and develop chemical vapor deposition (CVD) techniques for the growth of large areas of Si sheet on inexpensive substrate materials, with resulting sheet properties suitable for fabricating solar cells that would meet the technical goals of the Low Cost Silicon Solar Array Project. The program involved six main technical tasks: (1) modification and test of an existing vertical-chamber CVD reactor system; (2) identification and/or development of suitable inexpensive substrate materials; (3) experimental investigation of CVD process parameters using various candidate substrate materials; (4) preparation of Si sheet samples for various special studies, including solar cell fabrication; (5) evaluation of the properties of the Si sheet material produced by the CVD process; and (6) fabrication and evaluation of experimental solar cell structures, using impurity diffusion and other standard and near-standard processing techniques supplemented late in the program by the in situ CVD growth of n(+)/p/p(+) sheet structures subsequently processed into experimental cells.
Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve
2015-01-01
This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current–voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells. PMID:25907581
The spatial structure of a nonlinear receptive field.
Schwartz, Gregory W; Okawa, Haruhisa; Dunn, Felice A; Morgan, Josh L; Kerschensteiner, Daniel; Wong, Rachel O; Rieke, Fred
2012-11-01
Understanding a sensory system implies the ability to predict responses to a variety of inputs from a common model. In the retina, this includes predicting how the integration of signals across visual space shapes the outputs of retinal ganglion cells. Existing models of this process generalize poorly to predict responses to new stimuli. This failure arises in part from properties of the ganglion cell response that are not well captured by standard receptive-field mapping techniques: nonlinear spatial integration and fine-scale heterogeneities in spatial sampling. Here we characterize a ganglion cell's spatial receptive field using a mechanistic model based on measurements of the physiological properties and connectivity of only the primary excitatory circuitry of the retina. The resulting simplified circuit model successfully predicts ganglion-cell responses to a variety of spatial patterns and thus provides a direct correspondence between circuit connectivity and retinal output.
McAndrews, Kathleen M.; Kim, Min Jeong; Lam, Tuyet Y.; McGrail, Daniel J.
2014-01-01
Naturally derived biomaterials have emerged as modulators of cell function and tissue substitutes. Here, we developed crosslinked glutaraldehyde (GTA) scaffolds for the expansion and differentiation of mesenchymal stem cells (MSCs). The mechanical and architectural properties of the scaffolds were altered by varying the concentration of gelatin and GTA. Higher GTA concentrations were associated with an increase in more confined pores and osteogenic differentiation. In addition, myogenic potential varied with crosslinking degree, although bulk mechanical properties were unaltered. Correlation analysis revealed that ALP activity of differentiated MSCs on higher gelatin concentration scaffolds was dependent on traditional effectors, including environment elasticity and spread area. In contrast, the differentiation capacity of cells cultured on lower gelatin concentration scaffolds did not correlate with these factors, instead it was dependent on the hydrated pore structure. These results suggest that scaffold composition can determine what factors direct differentiation and may have critical implications for biomaterial design. PMID:24873687
Labriola, Nicholas R; Azagury, Aharon; Gutierrez, Robert; Mathiowitz, Edith; Darling, Eric M
2018-02-01
Stem and non-stem cell behavior is heavily influenced by the surrounding microenvironment, which includes other cells, matrix, and potentially biomaterials. Researchers have been successful in developing scaffolds and encapsulation techniques to provide stem cells with mechanical, topographical, and chemical cues to selectively direct them toward a desired differentiation pathway. However, most of these systems fail to present truly physiological replications of the in vivo microenvironments that stem cells are typically exposed to in tissues. Thus, cell mimicking microparticles (CMMPs) have been developed to more accurately recapitulate the properties of surrounding cells while still offering ways to tailor what stimuli are presented. This nascent field holds the promise of reducing, or even eliminating, the need for live cells in select, regenerative medicine therapies, and diagnostic applications. Recent, CMMP-based studies show great promise for the technology, yet only reproduce a small subset of cellular characteristics from among those possible: size, morphology, topography, mechanical properties, surface molecules, and tailored chemical release to name the most prominent. This Review summarizes the strengths, weaknesses, and ideal applications of micro/nanoparticle fabrication and customization methods relevant to cell mimicking and provides an outlook on the future of this technology. Moving forward, researchers should seek to combine multiple techniques to yield CMMPs that replicate as many cellular characteristics as possible, with an emphasis on those that most strongly influence the desired therapeutic effects. The level of flexibility in customizing CMMP properties allows them to substitute for cells in a variety of regenerative medicine, drug delivery, and diagnostic systems. Stem Cells Translational Medicine 2018;7:232-240. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Solar cell array design handbook - The principles and technology of photovoltaic energy conversion
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.
1980-01-01
Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.
Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells
NASA Astrophysics Data System (ADS)
Farzi, Bahman; Cetinkaya, Cetin
2017-09-01
The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330 ± 70 kHz and two breathing resonance frequencies of 1.53 ± 0.12 and 2.02 ± 0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20 ± 2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the currently known metabolistic response times of cells (milliseconds to seconds), thus, it has the potential to decouple metabolistic and mechanotransduction effects from external stimuli and to operate at high throughput rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borkiewicz, O. J.; Wiaderek, Kamila M.; Chupas, Peter J.
Dynamic properties and multiscale complexities governing electrochemical energy storage in batteries are most ideally interrogated under simulated operating conditions within an electrochemical cell. We assess how electrochemical reactivity can be impacted by experiment design, including the X-ray measurements or by common features or adaptations of electrochemical cells that enable X-ray measurements.
Heat-shock proteins as dendritic cell-targeting vaccines – getting warmer
McNulty, Shaun; Colaco, Camilo A; Blandford, Lucy E; Bailey, Christopher R; Baschieri, Selene; Todryk, Stephen
2013-01-01
Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by antigen internalization, processing and presentation. An improved understanding of the interaction of hsp with DC has driven the development of numerous hsp-containing vaccines, designed to deliver antigens directly to DC. Studies in mice have shown that for cancers, such vaccines generate impressive immune responses and protection from tumour challenge. However, translation to human use, as for many experimental immunotherapies, has been slow partly because of the need to perform trials in patients with advanced cancers, where demonstration of efficacy is challenging. Recently, the properties of hsp have been used for development of prophylactic vaccines against infectious diseases including tuberculosis and meningitis. These hsp-based vaccines, in the form of pathogen-derived hsp–antigen complexes, or recombinant hsp combined with selected antigens in vitro, offer an innovative approach against challenging diseases where broad antigen coverage is critical. PMID:23551234
Palchesko, Rachelle N.; Zhang, Ling; Sun, Yan; Feinberg, Adam W.
2012-01-01
Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation. PMID:23240031
Properties of skin stem cells and their potential clinical applications in modern dermatology.
Niezgoda, Anna; Niezgoda, Piotr; Nowowiejska, Laura; Białecka, Agnieszka; Męcińska-Jundziłł, Kaja; Adamska, Urszula; Czajkowski, Rafał
2017-06-01
Stem cells play an important role in medical science, and scientists are investing large sums in order to perform sophisticated studies designed to establish potential clinical applications of stem cells. Growing experience has enabled researchers to determine the precise nature of stem cell division. Although the properties of this particular population of cells have been known and used for some time, mainly with regards to bone marrow-derived mesenchymal stem cell transplantation, we now face a significant challenge in implementing the practical use of skin-derived precursors, making it possible to avoid the necessity for patients to undergo invasive procedures in order to obtain stem cells from bone marrow. Multiple trials have so far been performed, bringing hope for the treatment of disorders previously considered untreatable. Patients suffering from a number of dermatological diseases, including malignant melanoma, systemic lupus erythematosus, vitiligo, alopecia or junctional epidermolysis bullosa, may benefit from treatment based on stem cells. The aim of this review is to summarize available data on stem cells and their potential applications in the treatment of dermatological disorders. The work described is based on data published up to the end of September 2016.
Red Blood Cell Deformation Under Shear Flow: The Effect of Changing Cell Properties
NASA Astrophysics Data System (ADS)
Forsyth, Alison M.; Wan, Jiandi; Ristenpart, William D.; Stone, Howard A.
2008-11-01
The deformability of red blood cells plays a major role in the pathology of several diseases, including malaria, sickle cell anemia and spherocytosis. Moreover, deformations are believed to trigger the release of adenosine triphosphate, which helps regulate vascular tone and is consequently an important factor in various vascular diseases. Here we investigate single-cell viscoelastic responses to increased shear stress in poly(dimethylsiloxane) channels with a single constriction 2-4 times larger than a typical erythrocyte. These channels mimic arteriole-sized vessels, and have the advantage that the cell membrane is not in contact with the channel walls which have vastly different mechanical and material properties than living tissue. High-speed video and image analysis were used to quantify the trajectories and deformations of cells exposed to varied doses of diamide, a chemical known to ``rigidify'' erythrocytes. Our results show that (i) deformation is proportional to shear rate and (ii) the deformability of diamide-treated cells is greater than that of untreated cells. The latter is an unforeseen result because micropipette aspiration experiments have shown the opposite. We expect that the experimental procedure described here will be useful for characterizing the effect of different therapeutic agents on cellular deformability.
Predicting human blood viscosity in silico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedosov, Dmitry A.; Pan, Wenxiao; Caswell, Bruce
2011-07-05
Cellular suspensions such as blood are a part of living organisms and their rheological and flow characteristics determine and affect majority of vital functions. The rheological and flow properties of cell suspensions are determined by collective dynamics of cells, their structure or arrangement, cell properties and interactions. We study these relations for blood in silico using a mesoscopic particle-based method and two different models (multi-scale/low-dimensional) of red blood cells. The models yield accurate quantitative predictions of the dependence of blood viscosity on shear rate and hematocrit. We explicitly model cell aggregation interactions and demonstrate the formation of reversible rouleaux structuresmore » resulting in a tremendous increase of blood viscosity at low shear rates and yield stress, in agreement with experiments. The non-Newtonian behavior of such cell suspensions (e.g., shear thinning, yield stress) is analyzed and related to the suspension’s microstructure, deformation and dynamics of single cells. We provide the flrst quantitative estimates of normal stress differences and magnitude of aggregation forces in blood. Finally, the flexibility of the cell models allows them to be employed for quantitative analysis of a much wider class of complex fluids including cell, capsule, and vesicle suspensions.« less
Prijic, Sara; Chen, Xiaoling; Levental, Ilya; Chang, Jeffrey T.
2016-01-01
The Epithelial-Mesenchymal Transition (EMT) is a developmental program that provides cancer cells with the characteristics necessary for metastasis, including increased motility and stem cell properties. The cellular and molecular mechanisms underlying this process are not yet fully understood, hampering efforts to develop therapeutics. In recent years, it has become apparent that EMT is accompanied by wholesale changes in diverse signaling pathways that are initiated by proteins at the plasma membrane (PM). The PM contains thousands of lipid and protein species that are dynamically and spatially organized into lateral membrane domains, an example of which are lipid rafts. Since one of the major functions of rafts is modulation of signaling originating at the PM, we hypothesized that the signaling changes occurring during an EMT are associated with alterations in PM organization. To test this hypothesis, we used Giant Plasma Membrane Vesicles (GPMVs) to study the organization of intact plasma membranes isolated from live cells. We observed that induction of EMT significantly destabilized lipid raft domains. Further, this reduction in stability was crucial for the maintenance of the stem cell phenotype and EMT-induced remodeling of PM-orchestrated pathways. Exogenously increasing raft stability by feeding cells with ω-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) repressed these phenotypes without altering EMT markers, and inhibited the metastatic capacity of breast cancer cells. Hence, modulating raft properties regulates cell phenotype, suggesting a novel approach for targeting the impact of EMT in cancer. PMID:27303921
UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.
Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen
2015-12-01
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas
2017-08-02
The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS hybrid clones exhibited a mesenchymal phenotype and, with the exception of one hybrid clone, responded to EGF with an increased migratory activity. Fusion of human breast epithelial cells and human breast cancer cells can give rise to hybrid clone cells that possess certain CS/IC properties, suggesting that cell fusion might be a mechanism underlying how tumor cells exhibiting a CS/IC phenotype could originate.
Shrink-induced biomimetic wrinkled substrates for functional cardiac cell alignment and culture.
Mendoza, Nicole; Tu, Roger; Chen, Aaron; Lee, Eugene; Khine, Michelle
2014-01-01
The anisotropic alignment of cardiomyocytes in native myocardium tissue is a functional feature that is absent in traditional in vitro cardiac cell culture. Microenvironmental factors cue structural organization of the myocardium, which promotes the mechanical contractile properties and electrophysiological patterns seen in mature cardiomyocytes. Current nano- and microfabrication techniques, such as photolithography, generate simplified cell culture topographies that are not truly representative of the multifaceted and multi-scale fibrils of the cardiac extracellular matrix. In addition, such technologies are costly and require a clean room for fabrication. This chapter offers an easy, fast, robust, and inexpensive fabrication of biomimetic multi-scale wrinkled surfaces through the process of plasma treating and shrinking prestressed thermoplastic. Additionally, this chapter includes techniques for culturing stem cells and their cardiac derivatives on these substrates. Importantly, this wrinkled cell culture platform is compatible with both fluorescence and bright-field imaging; real-time physiological monitoring of CM action potential propagation and contraction properties can elucidate cardiotoxicity drug effects.
Fluorescence-tunable Ag-DNA biosensor with tailored cytotoxicity for live-cell applications
NASA Astrophysics Data System (ADS)
Bossert, Nelli; de Bruin, Donny; Götz, Maria; Bouwmeester, Dirk; Heinrich, Doris
2016-11-01
DNA-stabilized silver clusters (Ag-DNA) show excellent promise as a multi-functional nanoagent for molecular investigations in living cells. The unique properties of these fluorescent nanomaterials allow for intracellular optical sensors with tunable cytotoxicity based on simple modifications of the DNA sequences. Three Ag-DNA nanoagent designs are investigated, exhibiting optical responses to the intracellular environments and sensing-capability of ions, functional inside living cells. Their sequence-dependent fluorescence responses inside living cells include (1) a strong splitting of the fluorescence peak for a DNA hairpin construct, (2) an excitation and emission shift of up to 120 nm for a single-stranded DNA construct, and (3) a sequence robust in fluorescence properties. Additionally, the cytotoxicity of these Ag-DNA constructs is tunable, ranging from highly cytotoxic to biocompatible Ag-DNA, independent of their optical sensing capability. Thus, Ag-DNA represents a versatile live-cell nanoagent addressable towards anti-cancer, patient-specific and anti-bacterial applications.
Taghdisi, Seyed Mohammad; Danesh, Noor Mohammad; Ramezani, Mohammad; Yazdian-Robati, Rezvan; Abnous, Khalil
2018-05-07
Active targeting of nanostructures containing chemotherapeutic agents can improve cancer treatment. Here, a three-way junction pocket DNA nanostructure was developed for efficient doxorubicin (Dox) delivery into cancer cells. The three-way junction pocket DNA nanostructure is composed of three strands of AS1411 aptamer as both a therapeutic aptamer and nucleolin target, the potential biomarker of prostate (PC-3 cells) and breast (4T1 cells) cancers. The properties of the Dox-loaded three-way junction pocket DNA nanostructure were characterized and verified to have several advantages, including high serum stability and a pH-responsive property. Cellular uptake studies showed that the Dox-loaded DNA nanostructure was preferably internalized into target cancer cells (PC-3 and 4T1 cells). MTT cell viability assay demonstrated that the Dox-loaded DNA nanostructure had significantly higher cytotoxicity for PC-3 and 4T1 cells compared to that of nontarget cells (CHO cells, Chinese hamster ovary cell). The in vivo antitumor effect showed that the Dox-loaded DNA nanostructure was more effective in prohibition of the tumor growth compared to free Dox. These findings showed that the Dox-loaded three-way junction pocket DNA nanostructure could significantly reduce the cytotoxic effects of Dox against nontarget cells.
Physical properties of biophotons and their biological functions.
Chang, Jiin-Ju
2008-05-01
Biophotons (BPHs) are weak photons within or emitted from living organisms. The intensities of BPHs range from a few to several hundred photons s(-1) x cm(-2). BPH emission originates from a de-localized coherent electromagnetic field within the living organisms and is regulated by the field. In this paper based on the experimental results of Poisson and sub-Poisson distributions of photocount statistics, the coherent properties of BPHs and their functions in cell communication are described. Discussions are made on functions which BPHs may play in DNA and proteins functioning including the process of DNA replication, protein synthesis and cell signalling and in oxidative phosporylation and photosynthesis.
Blatt, Michael R; Wang, Yizhou; Leonhardt, Nathalie; Hills, Adrian
2014-05-15
It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward 'reverse engineering' of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual 'mindset' of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the 'communication' evident between the plasma membrane and tonoplast of the guard cell. Copyright © 2014 The Authors. Published by Elsevier GmbH.. All rights reserved.
Mast cell proteases as pharmacological targets
Caughey, George H.
2015-01-01
Mast cells are rich in proteases, which are the major proteins of intracellular granules and are released with histamine and heparin by activated cells. Most of these proteases are active in the granule as well outside of the mast cell when secreted, and can cleave targets near degranulating mast cells and in adjoining tissue compartments. Some proteases released from mast cells reach the bloodstream and may have far-reaching actions. In terms of relative amounts, the major mast cell proteases include the tryptases, chymases, cathepsin G, carboxypeptidase A3, dipeptidylpeptidase I/cathepsin C, and cathepsins L and S. Some mast cells also produce granzyme B, plasminogen activators, and matrix metalloproteinases. Tryptases and chymases are almost entirely mast cell-specific, whereas other proteases, such as cathepsins G, C, and L are expressed by a variety of inflammatory cells. Carboxypeptidase A3 expression is a property shared by basophils and mast cells. Other proteases, such as mastins, are largely basophil-specific, although human basophils are protease-deficient compared with their murine counterparts. The major classes of mast cell proteases have been targeted for development of therapeutic inhibitors. Also, a human β-tryptase has been proposed as a potential drug itself, to inactivate of snake venins. Diseases linked to mast cell proteases include allergic diseases, such as asthma, eczema, and anaphylaxis, but also include non-allergic diseases such inflammatory bowel disease, autoimmune arthritis, atherosclerosis, aortic aneurysms, hypertension, myocardial infarction, heart failure, pulmonary hypertension and scarring diseases of lungs and other organs. In some cases, studies performed in mouse models suggest protective or homeostatic roles for specific proteases (or groups of proteases) in infections by bacteria, worms and other parasites, and even in allergic inflammation. At the same time, a clearer picture has emerged of differences in the properties and patterns of expression of proteases expressed in human mast cell subsets, and in humans versus other mammals. These considerations are influencing prioritization of specific protease targets for therapeutic inhibition, as well as options of pre-clinical models, disease indications, and choice of topical versus systemic routes of inhibitor administration. PMID:25958181
Isolation and characterisation of mesenchymal stem/stromal cells in the ovine endometrium.
Letouzey, Vincent; Tan, Ker Sin; Deane, James A; Ulrich, Daniela; Gurung, Shanti; Ong, Y Rue; Gargett, Caroline E
2015-01-01
Mesenchymal stem/stromal cells (MSC) were recently discovered in the human endometrium. These cells possess key stem cell properties and show promising results in small animal models when used for preclinical tissue engineering studies. A small number of surface markers have been identified that enrich for MSC from bone marrow and human endometrium, including the Sushi Domain-containing 2 (SUSD2; W5C5) and CD271 markers. In preparation for developing a large animal preclinical model for urological and gynecological tissue engineering applications we aimed to identify and characterise MSC in ovine endometrium and determine surface markers to enable their prospective isolation. Ovine endometrium was obtained from hysterectomised ewes following progesterone synchronisation, dissociated into single cell suspensions and tested for MSC surface markers and key stem cell properties. Purified stromal cells were obtained by flow cytometry sorting with CD49f and CD45 to remove epithelial cells and leukocytes respectively, and MSC properties investigated. There was a small population CD271+ stromal cells (4.5 ± 2.3%) in the ovine endometrium. Double labelling with CD271 and CD49f showed that the sorted CD271+CD49f- stromal cell population possessed significantly higher cloning efficiency, serial cloning capacity and a qualitative increased ability to differentiate into 4 mesodermal lineages (adipocytic, smooth muscle, chondrocytic and osteoblastic) than CD271-CD49f- cells. Immunolabelling studies identified an adventitial perivascular location for ovine endometrial CD271+ cells. This is the first study to characterise MSC in the ovine endometrium and identify a surface marker profile identifying their location and enabling their prospective isolation. This knowledge will allow future preclinical studies with a large animal model that is well established for pelvic organ prolapse research.
Iwadate, Yasuo; Suganami, Akiko; Tamura, Yutaka; Matsutani, Tomoo; Hirono, Seiichiro; Shinozaki, Natsuki; Hiwasa, Takaki; Takiguchi, Masaki; Saeki, Naokatsu
2017-02-01
Hypomethylation of genomic DNA induces stem-cell properties in cancer cells and contributes to the treatment resistance of various malignancies. To examine the correlation between the methylation status of stem-cell-related genes and the treatment outcomes in patients with glioblastoma (GBM). The genome-wide DNA methylation status was determined using HumanMethylation450 BeadChips, and the methylation status was compared between a group of patients with good prognosis (survival > 4 yr) and a group with poor prognosis (survival < 1 yr). Immunohistochemistry for proteins translated from hypomethylated genes, including alkaline phosphatase (ALPL), CD133, and CD44, was performed in 70 GBMs and 60 oligodendroglial tumors. The genomic DNA in refractory GBM was more hypomethylated than in GBM from patients with relatively long survival (P = .0111). Stem-cell-related genes including ALPL, CD133, and CD44 were also significantly hypomethylated. A validation study using immunohistochemistry showed that DNA hypomethylation was strongly correlated with high protein expression of ALPL, CD133, and CD44. GBM patients with short survival showed high expression of these stem-cell markers. Multivariate analysis confirmed that co-expression of ALPL + CD133 or ALPL + CD44 was a strong predictor of short survival. Anaplastic oligodendroglial tumors without isocitrate dehydrogenase 1 mutation were significantly correlated with high ALPL expression and poor survival. Accumulation of stem-cell properties due to aberrant DNA hypomethylation is associated with the refractory nature of GBM. Copyright © 2017 by the Congress of Neurological Surgeons
Reinhardt, Peter; Glatza, Michael; Hemmer, Kathrin; Tsytsyura, Yaroslav; Thiel, Cora S.; Höing, Susanne; Moritz, Sören; Parga, Juan A.; Wagner, Lydia; Bruder, Jan M.; Wu, Guangming; Schmid, Benjamin; Röpke, Albrecht; Klingauf, Jürgen; Schwamborn, Jens C.; Gasser, Thomas; Schöler, Hans R.; Sterneckert, Jared
2013-01-01
Phenotypic drug discovery requires billions of cells for high-throughput screening (HTS) campaigns. Because up to several million different small molecules will be tested in a single HTS campaign, even small variability within the cell populations for screening could easily invalidate an entire campaign. Neurodegenerative assays are particularly challenging because neurons are post-mitotic and cannot be expanded for implementation in HTS. Therefore, HTS for neuroprotective compounds requires a cell type that is robustly expandable and able to differentiate into all of the neuronal subtypes involved in disease pathogenesis. Here, we report the derivation and propagation using only small molecules of human neural progenitor cells (small molecule neural precursor cells; smNPCs). smNPCs are robust, exhibit immortal expansion, and do not require cumbersome manual culture and selection steps. We demonstrate that smNPCs have the potential to clonally and efficiently differentiate into neural tube lineages, including motor neurons (MNs) and midbrain dopaminergic neurons (mDANs) as well as neural crest lineages, including peripheral neurons and mesenchymal cells. These properties are so far only matched by pluripotent stem cells. Finally, to demonstrate the usefulness of smNPCs we show that mDANs differentiated from smNPCs with LRRK2 G2019S are more susceptible to apoptosis in the presence of oxidative stress compared to wild-type. Therefore, smNPCs are a powerful biological tool with properties that are optimal for large-scale disease modeling, phenotypic screening, and studies of early human development. PMID:23533608
Hawkins, Jared B; Jones, Mark T; Plassmann, Paul E; Thorley-Lawson, David A
2011-01-01
Germinal centers (GCs) are complex dynamic structures that form within lymph nodes as an essential process in the humoral immune response. They represent a paradigm for studying the regulation of cell movement in the development of complex anatomical structures. We have developed a simulation of a modified cyclic re-entry model of GC dynamics which successfully employs chemotaxis to recapitulate the anatomy of the primary follicle and the development of a mature GC, including correctly structured mantle, dark and light zones. We then show that correct single cell movement dynamics (including persistent random walk and inter-zonal crossing) arise from this simulation as purely emergent properties. The major insight of our study is that chemotaxis can only achieve this when constrained by the known biological properties that cells are incompressible, exist in a densely packed environment, and must therefore compete for space. It is this interplay of chemotaxis and competition for limited space that generates all the complex and biologically accurate behaviors described here. Thus, from a single simple mechanism that is well documented in the biological literature, we can explain both higher level structure and single cell movement behaviors. To our knowledge this is the first GC model that is able to recapitulate both correctly detailed anatomy and single cell movement. This mechanism may have wide application for modeling other biological systems where cells undergo complex patterns of movement to produce defined anatomical structures with sharp tissue boundaries.
CARs: Synthetic Immunoreceptors for Cancer Therapy and Beyond
Chang, ZeNan L.; Chen, Yvonne Y.
2017-01-01
Chimeric antigen receptors (CARs) are versatile synthetic receptors that provide T cells with engineered specificity. Clinical success in treating B-cell malignancies has demonstrated the therapeutic potential of CAR-T cells against cancer, and efforts are underway to expand the use of engineered T cells to the treatment of diverse medical conditions, including infections and autoimmune diseases. Here, we review current understanding of the molecular properties of CARs, how this knowledge informs the rational design and characterization of novel receptors, successes and shortcomings of CAR-T cells in the clinic, and emerging solutions for the continued improvement of CAR-T cell therapy. PMID:28416139
Rejuvenating Strategies for Stem Cell-based Therapies in Aging
Neves, Joana; Sousa-Victor, Pedro; Jasper, Heinrich
2017-01-01
SUMMARY Recent advances in our understanding of tissue regeneration and the development of efficient approaches to induce and differentiate pluripotent stem cells for cell replacement therapies promise exciting avenues for treating degenerative age-related diseases. However, clinical studies and insights from model organisms have identified major roadblocks that normal aging processes impose on tissue regeneration. These new insights suggest that specific targeting of environmental niche components, including growth factors, ECM and immune cells, and intrinsic stem cell properties that are affected by aging will be critical for development of new strategies to improve stem cell function and optimize tissue repair processes. PMID:28157498
Black silicon: fabrication methods, properties and solar energy applications
Liu, Xiaogang; Coxon, Paul R.; Peters, Marius; ...
2014-08-04
Black silicon (BSi) represents a very active research area in renewable energy materials. The rise of BSi as a focus of study for its fundamental properties and potentially lucrative practical applications is shown by several recent results ranging from solar cells and light-emitting devices to antibacterial coatings and gas-sensors. Here in this article, the common BSi fabrication techniques are first reviewed, including electrochemical HF etching, stain etching, metal-assisted chemical etching, reactive ion etching, laser irradiation and the molten salt Fray-Farthing-Chen-Cambridge (FFC-Cambridge) process. The utilization of BSi as an anti-reflection coating in solar cells is then critically examined and appraised, basedmore » upon strategies towards higher efficiency renewable solar energy modules. Methods of incorporating BSi in advanced solar cell architectures and the production of ultra-thin and flexible BSi wafers are also surveyed. Particular attention is given to routes leading to passivated BSi surfaces, which are essential for improving the electrical properties of any devices incorporating BSi, with a special focus on atomic layer deposition of Al 2O 3. Finally, three potential research directions worth exploring for practical solar cell applications are highlighted, namely, encapsulation effects, the development of micro-nano dual-scale BSi, and the incorporation of BSi into thin solar cells. It is intended that this paper will serve as a useful introduction to this novel material and its properties, and provide a general overview of recent progress in research currently being undertaken for renewable energy applications.« less
Carbon nanotubes in neural interfacing applications
NASA Astrophysics Data System (ADS)
Voge, Christopher M.; Stegemann, Jan P.
2011-02-01
Carbon nanotubes (CNT) are remarkable materials with a simple and inert molecular structure that gives rise to a range of potentially valuable physical and electronic properties, including high aspect ratio, high mechanical strength and excellent electrical conductivity. This review summarizes recent research on the application of CNT-based materials to study and control cells of the nervous system. It includes the use of CNT as cell culture substrates, to create patterned surfaces and to study cell-matrix interactions. It also summarizes recent investigations of CNT toxicity, particularly as related to neural cells. The application of CNT-based materials to directing the differentiation of progenitor and stem cells toward neural lineages is also discussed. The emphasis is on how CNT surface chemistry and nanotopography can be altered, and how such changes can affect neural cell function. This knowledge can be applied to creating improved neural interfaces and devices, as well as providing new approaches to neural tissue engineering and regeneration.
Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1
NASA Technical Reports Server (NTRS)
Yoo, H. I.; Iles, P. A.; Tanner, D. P.
1979-01-01
Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.
Garba, Abubakar; Desmarets, Lowiese M. B.; Acar, Delphine D.; Devriendt, Bert; Nauwynck, Hans J.
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes. PMID:29036224
Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.
Podholová, Kristýna; Plocek, Vítězslav; Rešetárová, Stanislava; Kučerová, Helena; Hlaváček, Otakar; Váchová, Libuše; Palková, Zdena
2016-03-29
Mitochondrial retrograde signaling mediates communication from altered mitochondria to the nucleus and is involved in many normal and pathophysiological changes, including cell metabolic reprogramming linked to cancer development and progression in mammals. The major mitochondrial retrograde pathway described in yeast includes three activators, Rtg1p, Rtg2p and Rtg3p, and repressors, Mks1p and Bmh1p/Bmh2p. Using differentiated yeast colonies, we show that Mks1p-Rtg pathway regulation is complex and includes three branches that divergently regulate the properties and fate of three specifically localized cell subpopulations via signals from differently altered mitochondria. The newly identified RTG pathway-regulated genes ATO1/ATO2 are expressed in colonial upper (U) cells, the cells with active TORC1 that metabolically resemble tumor cells, while CIT2 is a typical target induced in one subpopulation of starving lower (L) cells. The viability of the second L cell subpopulation is strictly dependent on RTG signaling. Additional co-activators of Rtg1p-Rtg3p specific to particular gene targets of each branch are required to regulate cell differentiation.
Indium Zinc Oxide Mediated Wafer Bonding for III-V/Si Tandem Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamboli, Adele C.; Essig, Stephanie; Horowitz, Kelsey A. W.
Silicon-based tandem solar cells are desirable as a high efficiency, economically viable approach to one sun or low concentration photovoltaics. We present an approach to wafer bonded III-V/Si solar cells using amorphous indium zinc oxide (IZO) as an interlayer. We investigate the impact of a heavily doped III-V contact layer on the electrical and optical properties of bonded test samples, including the predicted impact on tandem cell performance. We present economic modeling which indicates that the path to commercial viability for bonded cells includes developing low-cost III-V growth and reducing constraints on material smoothness. If these challenges can be surmounted,more » bonded tandems on Si can be cost-competitive with incumbent PV technologies, especially in low concentration, single axis tracking systems.« less
Grossberg, Stephen; Pilly, Praveen K
2014-02-05
A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.
Engineering Stem Cells for Biomedical Applications
Yin, Perry T.; Han, Edward
2018-01-01
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. PMID:25772134
NASA Astrophysics Data System (ADS)
Zeidan, Adel; Yeheskely-Hayon, Daniella; Minai, Limor; Yelin, Dvir
2016-03-01
The properties of red blood cells are a remarkable indicator of the body's physiological condition; their density could indicate anemia or polycythemia, their absorption spectrum correlates with blood oxygenation, and their morphology is highly sensitive to various pathologic states including iron deficiency, ovalocytosis, and sickle cell disease. Therefore, measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient's health. In this work, we simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the cells' morphological parameters and the resulting characteristic interference patterns. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry (SEFC) that imaged the cells during linear flow and without artificial staining. By matching the simulated patterns to the SEFC images of the cells, the cells' three-dimensional shapes were evaluated and their volumes were calculated. Potential applications include measurement of the mean corpuscular volume, cell morphological abnormalities, cell stiffness under mechanical stimuli, and the detection of various hematological diseases.
Tan, Yu Jun; Tan, Xipeng; Yeong, Wai Yee; Tor, Shu Beng
2016-11-03
Polymeric fibrous scaffolds for guiding cell growth are designed to be potentially used for the tissue engineering (TE) of tubular organs including esophagi, blood vessels, tracheas, etc. Tubular scaffolds were fabricated via melt-drawing of highly elastic poly(l-lactide-co-ε-caprolactone) (PLC) fibers layer-by-layer on a cylindrical mandrel. The diameter and length of the scaffolds are customizable via 3D printing of the mandrel. Thickness of the scaffolds was varied by changing the number of layers of the melt-drawing process. The morphology and tensile properties of the PLC fibers were investigated. The fibers were highly aligned with a uniform diameter. Their diameters and tensile properties were tunable by varying the melt-drawing speeds. These tailorable topographies and tensile properties show that the additive-based scaffold fabrication technique is customizable at the micro- and macro-scale for different tubular tissues. The merits of these scaffolds in TE were further shown by the finding that myoblast and fibroblast cells seeded onto the scaffolds in vitro showed appropriate cell proliferation and distribution. Human mesenchymal stem cells (hMSCs) differentiated to smooth muscle lineage on the microfibrous scaffolds in the absence of soluble induction factors, showing cellular shape modulation and scaffold elasticity may encourage the myogenic differentiation of stem cells.
Biological properties of mud extracts derived from various spa resorts.
Spilioti, Eliana; Vargiami, Margarita; Letsiou, Sophia; Gardikis, Konstantinos; Sygouni, Varvara; Koutsoukos, Petros; Chinou, Ioanna; Kassi, Eva; Moutsatsou, Paraskevi
2017-08-01
Spa resorts are known for thousands of years for their healing properties and have been empirically used for the treatment of many inflammatory conditions. Mud is one of the most often used natural materials for preventive, healing and cosmetic reasons and although it has been used since the antiquity, little light has been shed on its physical, chemical and biological properties. In this study we examined the effect of mud extracts on the expression of adhesion molecules (CAMs) by endothelial cells as well as their effects on monocyte adhesion to activated endothelial cells. Most of mud extracts inhibited the expression of VCAM-1 by endothelial cells and reduced monocyte adhesion to activated endothelial cells, indicating a potent anti-inflammatory activity. Furthermore, the mud extracts were tested for their antimicrobial activity; however, most of them appeared inactive against S. aureus and S. epidermidis. One of the mud extracts (showing the best stabilization features) increased significantly the expression of genes involved in cell protection, longevity and hydration of human keratinocytes, such as, collagen 6A1, forkhead box O3, sirtuin-1, superoxide dismutase 1 and aquaporin-3. The present study reveals that mud exerts important beneficial effects including anti-inflammatory and anti-aging activity as well as moisturizing effects, implicating important cosmeceutical applications.
Programmable Control in Extracellular Matrix-mimicking Polymer Hydrogels.
Hof, Kevin S; Bastings, Maartje M C
2017-06-28
The extracellular matrix (ECM) and cells have a reciprocal relationship, one shapes the other and vice versa. One of the main challenges of synthetic material systems for developmental cell culturing, organoid and stem cell work includes the implementation of this reciprocal nature. The largest hurdle to achieve true cell-instructive materials in biomaterials engineering is a lack of spatial and temporal control over material properties and the display of bioactive signals compared to the natural cell environment. ECM-mimicking hydrogels have been developed using a wide range of polymers, assembly and cross-linking strategies. While our synthetic toolbox is larger than nature, often our systems underperform when compared to ECM systems with natural components like Matrigel. Material properties and three-dimensional structure ill-represent the three-dimensional ECM reciprocal nature and ligand presentation is an oversimplified version of the complexity found in nature. We hypothesize that the lack of programmable control in properties and ligand presentation forms the basis of this mismatch in performance and analyze the presence of control in current state of the art ECM-mimicking systems based on covalent, supramolecular and recombinant polymers. We conclude that through combining the dynamics of supramolecular materials, robustness from covalent systems and the programmable spatial control of bio-activation in recombinant ECM materials, the optimal synthetic artificial ECM could be assembled.
Inhibitors of the epidermal growth factor receptor in apple juice extract.
Kern, Melanie; Tjaden, Zeina; Ngiewih, Yufanyi; Puppel, Nicole; Will, Frank; Dietrich, Helmut; Pahlke, Gudrun; Marko, Doris
2005-04-01
The polyphenol-rich extract of a consumer-relevant apple juice blend was found to potently inhibit the growth of the human colon cancer cell line HT29 in vitro. The epidermal growth factor receptor (EGFR) and its subsequent signaling cascade play an important role in the regulation of cell proliferation in HT29 cells. The protein tyrosine kinase activity of an EGFR preparation was effectively inhibited by the polyphenol-rich apple juice extract. Treatment of intact cells with this extract resulted in the suppression of the subsequent mitogen-activated protein kinase cascade. Amongst the so far identified apple juice constituents, the proanthocyanidins B1 and B2 as well as quercetin-3-glc (isoquercitrin) and quercetin-3-gal (hyperoside) were found to possess substantial EGFR-inhibitory properties. However, as to be expected from the final concentration of these potential EGFR inhibitors in the original polyphenol-rich extract, a synthetic mixture of the apple juice constituents identified and available so far, including both proanthocyanidins and the quercetin glycosides, showed only marginal inhibitory effects on the EGFR. These results permit the assumption that yet unknown constituents contribute substantially to the potent EGFR-inhibitory properties of polyphenol-rich apple juice extract. In summary, the polyphenol composition of apple juice possesses promising growth-inhibitory properties, affecting proliferation-associated signaling cascades in colon tumor cells.
Hendrickson, Phillip J; Yu, Gene J; Song, Dong; Berger, Theodore W
2016-01-01
This paper describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust nonrandom pattern of spiking best described as a spatiotemporal "clustering." To identify the network property or properties responsible for generating such firing "clusters," we progressively eliminated from the model key mechanisms, such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatiotemporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as "functional units" or "channels" that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics.
NASA Astrophysics Data System (ADS)
Hu, J.; Rosenfeld, D.; Zhang, P.; Snyder, J.; Orville, R. E.; Ryzhkov, A.; Zrnic, D.; Williams, E. R.; Zhang, R.
2017-12-01
Here we apply the cell tracking methodology, shown in our companion poster, to quantifying factors affecting the vigor and the time-height evolution of hydrometeors and electrification properties of convective cells. Benefitting from the Dual-polarimetric NEXRAD radar network, we composite more than 5000 well-tracked cells among three radars (at Houston, Lubbock and Oklahoma City), stratified by CCN, CAPE and land/sea locations. The analyzed cell properties include Z, ZDR, Kdp, and ρhv, Dm (raindrop diameter) and Nw (raindrop concentration) by the algorithm of Bringi et al. (2003). Lightning Mapping Array (LMA) data is also included in the analysis, which provides a 3D structure of lightning occurrence and RF power. The contrasting CCN conditions over marine, land, pristine and polluted areas are identified based on the satellite retrieval technique described in Rosenfeld et al. (2016). The results show that more CCN are associated with: Increased echo top height, manifesting the invigoration effect. Enhanced reflectivities, especially above the freezing level at around 4.5 km. Raindrop sizes at the initial stage increase at the expense of their concentrations, due to the smaller cloud droplets and suppressed coalescence. Larger propensity for hail. Lightning sources increase with greater CCN concentration and is likely due to the delayed warm rain process and enhanced mixed phase process under more CCN condition, when activated CCN into cloud droplets is too high (> 1000 cm-3) the glaciation is delayed too much and leave little ice at lower levels and thus decrease lightning activity. Land pristine clouds have fewer lightning sources than polluted clouds. Marine pristine clouds seldom have lightning Increased CAPE had a similar effect to the effect of added CCN. The cloud tracking and properties are obtained by a new methodology of Multi-Cell Identification and Tracking (MCIT) algorithm (Hu et al, 2017), with details about the algorithm to be found in the author's accompanying poster session. References [1] Bringi, V. et al., J. Atmos. Sci., 60, 354-365. (2003) [2] Rosenfeld, D. et al., Proc. Natl. Acad. Sci., 113, 5828-5834. (2016) [3] Hu, J. et al., in preparation.
Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.
2016-01-01
Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482
Mutsenko, Vitalii V; Gryshkov, Oleksandr; Lauterboeck, Lothar; Rogulska, Olena; Tarusin, Dmitriy N; Bazhenov, Vasilii V; Schütz, Kathleen; Brüggemeier, Sophie; Gossla, Elke; Akkineni, Ashwini R; Meißner, Heike; Lode, Anja; Meschke, Stephan; Fromont, Jane; Stelling, Allison L; Tabachnik, Konstantin R; Gelinsky, Michael; Nikulin, Sergey; Rodin, Sergey; Tonevitsky, Alexander G; Petrenko, Alexander Y; Glasmacher, Birgit; Schupp, Peter J; Ehrlich, Hermann
2017-11-01
The extraordinary biocompatibility and mechanical properties of chitinous scaffolds from marine sponges endows these structures with unique properties that render them ideal for diverse biomedical applications. In the present work, a technological route to produce "ready-to-use" tissue-engineered products based on poriferan chitin is comprehensively investigated for the first time. Three key stages included isolation of scaffolds from the marine demosponge Ianthella basta, confirmation of their biocompatibility with human mesenchymal stromal cells, and cryopreservation of the tissue-like structures grown within these scaffolds using a slow cooling protocol. Biocompatibility of the macroporous, flat chitin scaffolds has been confirmed by cell attachment, high cell viability and the ability to differentiate into the adipogenic lineage. The viability of cells cryopreserved on chitin scaffolds was reduced by about 30% as compared to cells cryopreserved in suspension. However, the surviving cells were able to retain their differentiation potential; and this is demonstrated for the adipogenic lineage. The results suggest that chitin from the marine demosponge I. basta is a promising, highly biocompatible biomaterial for stem cell-based tissue-engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Chia-Ming; Peng, Chih-Yu; Liao, Yi-Wen; Lu, Ming-Yi; Tsai, Meng-Lun; Yeh, Jung-Chun; Yu, Chuan-Hang; Yu, Cheng-Chia
2017-01-01
Cancer stem cells (CSCs) are deemed as the driving force of tumorigenesis in oral squamous cell carcinomas (OSCCs). In this study, we investigated the chemotherapeutic effect of sulforaphane, a dietary component from broccoli sprouts, on targeting OSCC-CSCs. The effect of sulforaphane on normal oral epithelial cells (SG) and sphere-forming OSCC-CSCs isolated from SAS and GNM cells was examined. ALDH1 activity and CD44 positivity of OSCC-CSCs with sulforaphane treatment was assessed by flow cytometry analysis. In vitro and in vivo tumorigenicity assays of OSCC-CSCs with sulforaphane treatment were presented. We observed that the sulforaphane dose-dependently eliminated the proliferation rate of OSCC-CSCs, whereas the inhibition on SG cells proliferation was limited. Cancer stemness properties including self-renewal, CD44 positivity, and ALDH1 activity were also decreased in OSCC-CSCs with different doses of sulforaphane treatment. Moreover, sulforaphane treatment of OSCC-CSCs decreased the migration, invasion, clonogenicity, and in vivo tumorigenicity of xenograghts. Sulforaphane treatment resulted in a dose-dependent increase in the levels of tumor suppressive miR200c. These lines of evidence suggest that sulforaphane can suppress the cancer stemness and tumor-initiating properties in OSCC-CSCs both in vitro and in vivo. Copyright © 2016. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Smart, M. C.; Ratnakumar, B. V.; Whicanack, L. D.; Smith, K. A.; Santee, S.; Puglia, F. J.; Gitzendanner, R.
2009-01-01
With the intent of improving the performance of Li-ion cells over a wide operating temperature range, we have investigated the use of co-solvents to improve the properties of electrolyte formulations. In the current study, we have focused upon evaluating promising electrolytes which have been incorporated into large capacity (7 Ah) prototype Li-ion cells, fabricated by Yardney Technical Products, Inc. The electrolytes selected for performance evaluation include the use of a number of esters as co-solvents, including methyl propionate (MP), ethyl propionate (EP), ethyl butyrate (EB), propyl butyrate (PB), and 2,2,2-trifluoroethyl butyrate (TFEB). The performance of the prototype cells containing the ester-based electrolytes was compared with an extensive data base generated on cells containing previously developed all carbonate-based electrolytes. A number of performance tests were performed, including determining (i) the discharge rate capacity over a wide range of temperatures, (ii) the charge characteristics, (iii) the cycle life characteristics under various conditions, and (iv) the impedance characteristics.
Characteristics of a Nonvolatile SRAM Memory Cell Utilizing a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.
2011-01-01
The SRAM cell circuit is a standard for volatile data storage. When utilizing one or more ferroelectric transistors, the hysteresis characteristics give unique properties to the SRAM circuit, providing for investigation into the development of a nonvolatile memory cell. This paper discusses various formations of the SRAM circuit, using ferroelectric transistors, n-channel and p-channel MOSFETs, and resistive loads. With varied source and supply voltages, the effects on the timing and retention characteristics are investigated, including retention times of up to 24 hours.
Cell-ECM Interactions During Cancer Invasion
NASA Astrophysics Data System (ADS)
Jiang, Yi
The extracellular matrix (ECM), a fibrous material that forms a network in a tissue, significantly affects many aspects of cellular behavior, including cell movement and proliferation. Transgenic mouse tumor studies indicate that excess collagen, a major component of ECM, enhances tumor formation and invasiveness. Clinically, tumor associated collagen signatures are strong markers for breast cancer survival. However, the underlying mechanisms are unclear since the properties of ECM are complex, with diverse structural and mechanical properties depending on various biophysical parameters. We have developed a three-dimensional elastic fiber network model, and parameterized it with in vitro collagen mechanics. Using this model, we study ECM remodeling as a result of local deformation and cell migration through the ECM as a network percolation problem. We have also developed a three-dimensional, multiscale model of cell migration and interaction with ECM. Our model reproduces quantitative single cell migration experiments. This model is a first step toward a fully biomechanical cell-matrix interaction model and may shed light on tumor associated collagen signatures in breast cancer. This work was partially supported by NIH-U01CA143069.
Fetal Membranes-Derived Stem Cells Microenvironment.
Favaron, Phelipe Oliveira; Miglino, Maria Angelica
2017-01-01
Recently, the regenerative medicine has been trying to congregate different areas such as tissue engineering and cellular therapy, in order to offer effective treatments to overcome several human and veterinary medical problems. In this regard, fetal membranes have been proposed as a powerful source for obtainment of multipotent stem cells with low immunogenicity, anti-inflammatory properties and nontumorigenicity properties for the treatment of several diseases, including replacing cells lost due to tissue injuries or degenerative diseases. Morpho-physiological data have shown that fetal membranes, especially the yolk sac and amnion play different functions according to the gestational period, which are direct related to the features of the microenvironment that their cells are subject. The characteristics of the microenvironment affect or controls important cellular events involved with proliferation, division and maintenance of the undifferentiated stage or differentiation, especially acting on the extracellular matrix components. Considering the importance of the microenvironment and the diversity of embryonic and fetal membrane-derived stem cells, this chapter will addressed advances in the isolation, phenotyping, characteristics of the microenvironment, and applications of yolk sac and amniotic membrane-derived stem cells for human and veterinary regenerative medicine.
The Alternaria alternata Mycotoxin Alternariol Suppresses Lipopolysaccharide-Induced Inflammation
Grover, Shivani; Lawrence, Christopher B.
2017-01-01
The Alternaria mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) have been shown to possess genotoxic and cytotoxic properties. In this study, the ability of AOH and AME to modulate innate immunity in the human bronchial epithelial cell line (BEAS-2B) and mouse macrophage cell line (RAW264.7) were investigated. During these studies, it was discovered that AOH and to a lesser extent AME potently suppressed lipopolysaccharide (LPS)-induced innate immune responses in a dose-dependent manner. Treatment of BEAS-2B cells with AOH resulted in morphological changes including a detached pattern of growth as well as elongated arms. AOH/AME-related immune suppression and morphological changes were linked to the ability of these mycotoxins to cause cell cycle arrest at the G2/M phase. This model was also used to investigate the AOH/AME mechanism of immune suppression in relation to aryl hydrocarbon receptor (AhR). AhR was not found to be important for the immunosuppressive properties of AOH/AME, but appeared important for the low levels of cell death observed in BEAS-2B cells. PMID:28726766
Sliogeryte, Kristina; Thorpe, Stephen D; Wang, Zhao; Thompson, Clare L; Gavara, Nuria; Knight, Martin M
2016-01-25
The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hMSCs) were analysed using micropipette aspiration and the effective cellular equilibrium and instantaneous moduli calculated using the standard linear solid model. We show that LifeAct-GFP provides clearer visualisation of F-actin organisation and dynamics. Furthermore, LifeAct-GFP does not alter effective cellular mechanical properties whereas actin-GFP expression causes an increase in the cell modulus. Interestingly, LifeAct-GFP expression did produce a small (~10%) increase in the percentage of cells exhibiting aspiration-induced membrane bleb formation, whilst actin-GFP expression reduced blebbing. Further studies examined the influence of LifeAct-GFP in other cell types, namely chondrogenically differentiated hMSCs and murine chondrocytes. LifeAct-GFP also had no effect on the moduli of these non-blebbing cells for which mechanical properties are largely dependent on the actin cortex. In conclusion we show that LifeAct-GFP enables clearer visualisation of actin organisation and dynamics without disruption of the biomechanical properties of either the whole cell or the actin cortex. Thus the study provides new evidence supporting the use of LifeAct-GFP rather than actin-GFP for live cell microscopy and the study of cellular mechanobiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Sawicki, Lisa A.
Late recurrence of breast cancer within distant metastatic tissue sites is often difficult to diagnose and treat, resulting in poor prognosis for patients. It is hypothesized that cells may go dormant by interactions with or lack of adhesion to the extracellular matrix (ECM) within these tissues, which differs from native breast tissue. The metastatic ECM is a complex microenvironment, containing a mixture of mechanical and chemical cues to which cells respond. To investigate how the ECM regulates cancer recurrence, two-dimensional (2D, plates) and three-dimensional (3D, naturally-derived scaffolds) in vitro culture models have been used. However, lack of complexity (2D), mechanical property control (2D, 3D), and chemical property control (3D) makes it challenging to identify key factors involved in regulating dormancy or activation in these systems. The development of synthetic polymer-based scaffolds in recent years provides an alternate route to investigating cellular response to the presentation of microenvironmental cues in 3D. Initially bioinert, these scaffolds may be modified with chemical ligands to permit cell-matrix interactions and their mechanical properties may be precisely tuned to mimic different tissue sites. The goal of this dissertation is to develop and characterize a novel synthetic material for cell culture applications and to examine how physical and chemical factors in this microenvironment regulate breast cancer activation. Specifically, we have developed a novel poly(ethylene glycol) (PEG)-based hydrogel scaffold for in vitro cell culture. PEG modified with thiols and peptides containing alloxycarbonyl-protected lysines (containing a reactive vinyl) react rapidly upon the application of light in the presence of a photoinitiator, lithium acylphosphinate ( minutes). Scaffold mechanical properties are tuned by varying macromer concentration to mimic soft metastatic site tissue ECMs (Young's modulus 600 - 6000 Pa). These properties remain stable during long-term culture ( weeks). We also demonstrate the covalent attachment and spatial presentation of peptides mimicking proteins found within metastatic tissue ECMs in these scaffolds. All cell lines remain viable (>70%) after encapsulation, with many at greater than 90% viability, indicating minimal negative effects of light and radicals on cell survival post-polymerization. While initially well-defined, the properties of synthetic hydrogel scaffolds change as cells secrete soluble factors that permit cell-cell signaling and synthesize new proteins that provide additional binding sites with which cells may interact. To investigate these chemical property changes, we developed a shotgun proteomics technique to isolate and identify large proteins secreted within synthetic, polymer-based hydrogel scaffolds. Metastatic niche cells (adult human mesenchymal stem cells, hMSCs) were cultured within hydrogel scaffolds and large proteins, including fibronectin and collagen VI were identified. Additionally, a bead-based multiplex assay identified several soluble factors secreted by hMSCs (VEGF, IL-8), which may play a role in regulating cell function and fate. Finally, the response and activation of estrogen receptor negative (MDA-MB-231) and estrogen receptor positive (T-47D) breast cancer cells cultured within synthetic hydrogels with discrete mechanical and chemical properties was determined. The highly aggressive MDA-MB-231 cells demonstrated the greatest levels of activation and spread within these synthetic matrices, while T-47D cells, which have been associated with a dormant phenotype, exhibited only minimal response and formed multicellular spheroids. Specifically, hydrogels with high stiffness and matrix density restricted cancer cell growth, resulting in decreased spreading and smaller cell cluster volume. Individual and mixtures of peptides (GFOGER, RGDS, IKVAV) mimicking ECM proteins found within metastatic tissue sites and targeting cell surface receptors were also shown to affect response. GFOGER and RGDS, targeting integrin ?1, among others, resulted in the highest levels of activation observed within microenvironments. Collectively, this work describes the development of a novel material scaffold with well-defined chemical and physical properties that may be used to identify critical factors in metastatic microenvironments that regulate breast cancer activation toward development of new treatments for recurrent cancers.
Seoane, Marta; Esperanza, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles
2017-03-01
Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell -1 ), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell -1 . However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell -1 , respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mesenchymal stem cell and regenerative medicine: regeneration versus immunomodulatory challenges
Law, Sujata; Chaudhuri, Samaresh
2013-01-01
Mesenchymal Stem cells (MSC) are now presented with the opportunities of multifunctional therapeutic approaches. Several reports are in support of their self-renewal, capacity for multipotent differentiation, and immunomodulatory properties. They are unique to contribute to the regeneration of mesenchymal tissues such as bone, cartilage, muscle, ligament, tendon, and adipose. In addition to promising trials in regenerative medicine, such as in the treatment of major bone defects and myocardial infarction, MSC has shown a therapeutic effect other than direct hematopoiesis support in hematopoietic reconstruction. MSCs are identified by the expression of many molecules including CD105 (SH2) and CD73(SH3/4) and are negative for the hematopoietic markers CD34, CD45, and CD14. Manufacturing of MSC for clinical trials is also an important aspect as their differentiation, homing and Immunomodulatory properties may differ. Their suppressive effects on immune cells, including T cells, B cells, NK cells and DC cells, suggest MSCs as a novel therapy for GVHD and other autoimmune disorders. Since the cells by themselves are non-immunogenic, tissue matching between MSC donor and recipient is not essential and, MSC may be the first cell type able to be used as an “off-the-shelf” therapeutic product. Following a successful transplantation, the migration of MSC to the site of injury refers to the involvement of chemokines and chemokine receptors of respective specificity. It has been demonstrated that cultured MSCs have the ability to engraft into healthy as well as injured tissue and can differentiate into several cell types in vivo, which facilitates MSC to be an ideal tool for regenerative therapy in different disease types. However, some observations have raised questions about the limitations for proper use of MSC considering some critical factors that warn regular clinical use. PMID:23671814
In vitro growth inhibition of human cancer cells by novel honokiol analogs.
Lin, Jyh Ming; Prakasha Gowda, A S; Sharma, Arun K; Amin, Shantu
2012-05-15
Honokiol possesses many pharmacological activities including anti-cancer properties. Here in, we designed and synthesized honokiol analogs that block major honokiol metabolic pathway which may enhance their effectiveness. We studied their cytotoxicity in human cancer cells and evaluated possible mechanism of cell cycle arrest. Two analogs, namely 2 and 4, showed much higher growth inhibitory activity in A549 human lung cancer cells and significant increase of cell population in the G0-G1 phase. Further elucidation of the inhibition mechanism on cell cycle showed that analogs 2 and 4 inhibit both CDK1 and cyclin B1 protien levels in A549 cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mechanics and morphogenesis of fission yeast cells.
Davì, Valeria; Minc, Nicolas
2015-12-01
The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell. Copyright © 2015 Elsevier Ltd. All rights reserved.
The structure and function of cell membranes studied by atomic force microscopy.
Shi, Yan; Cai, Mingjun; Zhou, Lulu; Wang, Hongda
2018-01-01
The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Semiconductor Nanocrystals as Light Harvesters in Solar Cells
Etgar, Lioz
2013-01-01
Photovoltaic cells use semiconductors to convert sunlight into electrical current and are regarded as a key technology for a sustainable energy supply. Quantum dot-based solar cells have shown great potential as next generation, high performance, low-cost photovoltaics due to the outstanding optoelectronic properties of quantum dots and their multiple exciton generation (MEG) capability. This review focuses on QDs as light harvesters in solar cells, including different structures of QD-based solar cells, such as QD heterojunction solar cells, QD-Schottky solar cells, QD-sensitized solar cells and the recent development in organic-inorganic perovskite heterojunction solar cells. Mechanisms, procedures, advantages, disadvantages and the latest results obtained in the field are described. To summarize, a future perspective is offered. PMID:28809318
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1977-01-01
Three demonstrations are described: paramagnetic properties of Fe(11) and Fe(111), the preparation of polyurethane foam: a lecture demonstration and the electrolysis of water-fuel cell reactions. A small discussion of the concepts demonstrated is included in each demonstration's description. (MR)
Effects of geometry and cell-matrix interactions on the mechanics of 3D engineered microtissues
NASA Astrophysics Data System (ADS)
Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel
Approaches to measure and control cell-extracellular matrix (ECM) interactions in a dynamic mechanical environment are important both for studies of mechanobiology and for tissue design for bioengineering applications. We have developed a microtissue-based platform capable of controlling the ECM alignment of 3D engineered microtissues while simultaneously permitting measurement of cellular contractile forces and the tissues' mechanical properties. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of flexible elastic pillars. Tissue geometry and ECM alignment are controlled by the pillars' number, shape and location. Optical tracking of the pillars provides readout of the tissues' contractile forces. Magnetic materials bound to selected pillars allow quasi-static or dynamic stretching of the tissue, and together with simultaneous measurements of the tissues' local dynamic strain field, enable characterization of the mechanical properties of the system, including their degree of anisotropy. Results on the effects of symmetry and degree of ECM alignment and organization on the role of cell-ECM interactions in determining tissue mechanical properties will be discussed. This work is supported by NSF CMMI-1463011 and CMMI-1462710.
Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects
Dykman, L.A.; Khlebtsov, N.G.
2011-01-01
Functionalized gold nanoparticles with controlled geometrical and optical properties are the subject of intensive studies and biomedical applications, including genomics, biosensorics, immunoassays, clinical chemistry, laser phototherapy of cancer cells and tumors, the targeted delivery of drugs, DNA and antigens, optical bioimaging and the monitoring of cells and tissues with the use of state-of-the-art detection systems. This work will provide an overview of the recent advances and current challenges facing the biomedical application of gold nanoparticles of various sizes, shapes, and structures. The review is focused on the application of gold nanoparticle conjugates in biomedical diagnostics and analytics, photothermal and photodynamic therapies, as a carrier for delivering target molecules, and on the immunological and toxicological properties. Keeping in mind the huge volume and high speed of the data update rate, 2/3 of our reference list (certainly restricted to 250 Refs.) includes publications encompassing the past 5 years. PMID:22649683
Kennedy, Kelsey M; Bhaw-Luximon, Archana; Jhurry, Dhanjay
2017-03-01
Engineered scaffolds produced by electrospinning of biodegradable polymers offer a 3D, nanofibrous environment with controllable structural, chemical, and mechanical properties that mimic the extracellular matrix of native tissues and have shown promise for a number of tissue engineering applications. The microscale mechanical interactions between cells and electrospun matrices drive cell behaviors including migration and differentiation that are critical to promote tissue regeneration. Recent developments in understanding these mechanical interactions in electrospun environments are reviewed, with emphasis on how fiber geometry and polymer structure impact on the local mechanical properties of scaffolds, how altering the micromechanics cues cell behaviors, and how, in turn, cellular and extrinsic forces exerted on the matrix mechanically remodel an electrospun scaffold throughout tissue development. Techniques used to measure and visualize these mechanical interactions are described. We provide a critical outlook on technological gaps that must be overcome to advance the ability to design, assess, and manipulate the mechanical environment in electrospun scaffolds toward constructs that may be successfully applied in tissue engineering and regenerative medicine. Tissue engineering requires design of scaffolds that interact with cells to promote tissue development. Electrospinning is a promising technique for fabricating fibrous, biomimetic scaffolds. Effects of electrospun matrix microstructure and biochemical properties on cell behavior have been extensively reviewed previously; here, we consider cell-matrix interaction from a mechanical perspective. Micromechanical properties as a driver of cell behavior has been well established in planar substrates, but more recently, many studies have provided new insights into mechanical interaction in fibrillar, electrospun environments. This review provides readers with an overview of how electrospun scaffold mechanics and cell behavior work in a dynamic feedback loop to drive tissue development, and discusses opportunities for improved design of mechanical environments that are conducive to tissue development. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Pilly, Praveen K.; Grossberg, Stephen
2013-01-01
Medial entorhinal grid cells and hippocampal place cells provide neural correlates of spatial representation in the brain. A place cell typically fires whenever an animal is present in one or more spatial regions, or places, of an environment. A grid cell typically fires in multiple spatial regions that form a regular hexagonal grid structure extending throughout the environment. Different grid and place cells prefer spatially offset regions, with their firing fields increasing in size along the dorsoventral axes of the medial entorhinal cortex and hippocampus. The spacing between neighboring fields for a grid cell also increases along the dorsoventral axis. This article presents a neural model whose spiking neurons operate in a hierarchy of self-organizing maps, each obeying the same laws. This spiking GridPlaceMap model simulates how grid cells and place cells may develop. It responds to realistic rat navigational trajectories by learning grid cells with hexagonal grid firing fields of multiple spatial scales and place cells with one or more firing fields that match neurophysiological data about these cells and their development in juvenile rats. The place cells represent much larger spaces than the grid cells, which enable them to support navigational behaviors. Both self-organizing maps amplify and learn to categorize the most frequent and energetic co-occurrences of their inputs. The current results build upon a previous rate-based model of grid and place cell learning, and thus illustrate a general method for converting rate-based adaptive neural models, without the loss of any of their analog properties, into models whose cells obey spiking dynamics. New properties of the spiking GridPlaceMap model include the appearance of theta band modulation. The spiking model also opens a path for implementation in brain-emulating nanochips comprised of networks of noisy spiking neurons with multiple-level adaptive weights for controlling autonomous adaptive robots capable of spatial navigation. PMID:23577130
Broad Thorny Ganglion Cells: A Candidate for Visual Pursuit Error Signaling in the Primate Retina
Manookin, Michael B.; Neitz, Jay; Rieke, Fred
2015-01-01
Functional analyses exist only for a few of the morphologically described primate ganglion cell types, and their correlates in other mammalian species remain elusive. Here, we recorded light responses of broad thorny cells in the whole-mounted macaque retina. They showed ON-OFF-center light responses that were strongly suppressed by stimulation of the receptive field surround. Spike responses were delayed compared with parasol ganglion cells and other ON-OFF cells, including recursive bistratified ganglion cells and A1 amacrine cells. The receptive field structure was shaped by direct excitatory synaptic input and strong presynaptic and postsynaptic inhibition in both ON and OFF pathways. The cells responded strongly to dark or bright stimuli moving either in or out of the receptive field, independent of the direction of motion. However, they did not show a maintained spike response either to a uniform background or to a drifting plaid pattern. These properties could be ideally suited for guiding movements involved in visual pursuit. The functional characteristics reported here permit the first direct cross-species comparison of putative homologous ganglion cell types. Based on morphological similarities, broad thorny ganglion cells have been proposed to be homologs of rabbit local edge detector ganglion cells, but we now show that the two cells have quite distinct physiological properties. Thus, our data argue against broad thorny cells as the homologs of local edge detector cells. PMID:25834063
Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.
Mukherjee, Subhas; Brat, Daniel J
2017-01-01
Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.
Imaging macrophages with nanoparticles
NASA Astrophysics Data System (ADS)
Weissleder, Ralph; Nahrendorf, Matthias; Pittet, Mikael J.
2014-02-01
Nanomaterials have much to offer, not only in deciphering innate immune cell biology and tracking cells, but also in advancing personalized clinical care by providing diagnostic and prognostic information, quantifying treatment efficacy and designing better therapeutics. This Review presents different types of nanomaterial, their biological properties and their applications for imaging macrophages in human diseases, including cancer, atherosclerosis, myocardial infarction, aortic aneurysm, diabetes and other conditions. We anticipate that future needs will include the development of nanomaterials that are specific for immune cell subsets and can be used as imaging surrogates for nanotherapeutics. New in vivo imaging clinical tools for noninvasive macrophage quantification are thus ultimately expected to become relevant to predicting patients' clinical outcome, defining treatment options and monitoring responses to therapy.
Promoting justice in stem cell intellectual property.
Regenberg, Alan; Mathews, Debra J H
2011-11-01
According to the World Trade Organization, intellectual property rights are "rights given to persons over the creations of their minds. They usually give the creator an exclusive right over the use of his/her creation for a certain period of time." The rationale behind intellectual property rights is to offer a quid pro quo, between creators and the public, intended to spur innovation. Inventors gain exclusivity (and an opportunity for profits) in exchange for publicly disclosing details about their creations. The public gains free access to information - information that can then be used to support further innovation. Innovation is seen as an inherent good in this context, as it can lead to the development of things people need (e.g., treatments for disease, green energy technologies or a better mousetrap). Exclusive rights to intellectual property are managed via patents and licenses, with patenting being primarily regulated at the national level. Intellectual property rights are the dominant mechanism used in innovation policy, particularly in science. However, myriad modifications and alternatives to intellectual property rights have been proposed and utilized, including patent pooling, intellectual property exchanges and clearing houses, innovation prizes and open-source licenses. The challenges related to competing models of innovation policy present in a fairly consistent manner across most fields of science. However, this paper will focus exclusively on intellectual property rights and models of innovation policy in the context of stem cell science. It is not that the issues themselves are unique in this context, but rather that there are a series of factors that make a discussion of intellectual property rights and models of innovation policy particularly important in the context of stem cell science.
Aluminum-catalyzed silicon nanowires: Growth methods, properties, and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hainey, Mel F.; Redwing, Joan M.
Metal-mediated vapor-liquid-solid (VLS) growth is a promising approach for the fabrication of silicon nanowires, although residual metal incorporation into the nanowires during growth can adversely impact electronic properties particularly when metals such as gold and copper are utilized. Aluminum, which acts as a shallow acceptor in silicon, is therefore of significant interest for the growth of p-type silicon nanowires but has presented challenges due to its propensity for oxidation. This paper summarizes the key aspects of aluminum-catalyzed nanowire growth along with wire properties and device results. In the first section, aluminum-catalyzed nanowire growth is discussed with a specific emphasis onmore » methods to mitigate aluminum oxide formation. Next, the influence of growth parameters such as growth temperature, precursor partial pressure, and hydrogen partial pressure on nanowire morphology is discussed, followed by a brief review of the growth of templated and patterned arrays of nanowires. Aluminum incorporation into the nanowires is then discussed in detail, including measurements of the aluminum concentration within wires using atom probe tomography and assessment of electrical properties by four point resistance measurements. Finally, the use of aluminum-catalyzed VLS growth for device fabrication is reviewed including results on single-wire radial p-n junction solar cells and planar solar cells fabricated with nanowire/nanopyramid texturing.« less
Yang, Yi; Zhao, Yi; Ai, Xinghao; Cheng, Baijun; Lu, Shun
2014-01-01
Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells.
5-Fluorouracil may enrich cancer stem cells in canine mammary tumor cells in vitro.
Zhou, Bin; Jin, Yipeng; Zhang, Di; Lin, Degui
2018-05-01
Mammary gland carcinomas are the most common neoplasms in women and unsterilized female dogs. Owing to the existence of cancer stem cells (CSCs), chemotherapy is not able to cure these types of diseases completely. A number of studies have demonstrated that CSCs are resistant to chemotherapeutic drugs, but whether canine mammary tumor cells that have acquired resistance to 5-fluorouracil (5-FU) exhibited properties of CSCs remains unknown. The aim of the present study was to investigate whether 5-fluorouracil-resistant canine mammary tumor cells exhibited properties of CSCs. CSCs were analyzed using western blot assays, ultra-low attachment sphere cultures, flow cytometry and migration (wound healing and Transwell) assays. The results indicated that, compared with parental cells, proteins associated with the Wnt/β-catenin signaling pathway and aldehyde dehydrogenase 1 were overexpressed, the number and size of spheres in the 5-FU-resistant cells were increased, the ratio of CD44 + /CD24 -/low cells was increased and the migratory ability was improved in vitro compared with the 5-FU-susceptible cells. In conclusion, stimulation with chemotherapeutic drugs including 5-FU is a good method for increasing the proportion of canine mammary tumor stem cells in vitro , which may provide further understanding of chemotherapeutic methods and CSCs.
New decision support tool for acute lymphoblastic leukemia classification
NASA Astrophysics Data System (ADS)
Madhukar, Monica; Agaian, Sos; Chronopoulos, Anthony T.
2012-03-01
In this paper, we build up a new decision support tool to improve treatment intensity choice in childhood ALL. The developed system includes different methods to accurately measure furthermore cell properties in microscope blood film images. The blood images are exposed to series of pre-processing steps which include color correlation, and contrast enhancement. By performing K-means clustering on the resultant images, the nuclei of the cells under consideration are obtained. Shape features and texture features are then extracted for classification. The system is further tested on the classification of spectra measured from the cell nuclei in blood samples in order to distinguish normal cells from those affected by Acute Lymphoblastic Leukemia. The results show that the proposed system robustly segments and classifies acute lymphoblastic leukemia based on complete microscopic blood images.
Atomic force microscopy studies on cellular elastic and viscoelastic properties.
Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao
2018-01-01
In this work, a method based on atomic force microscopy (AFM) approach-reside-retract experiments was established to simultaneously quantify the elastic and viscoelastic properties of single cells. First, the elastic and viscoelastic properties of normal breast cells and cancerous breast cells were measured, showing significant differences in Young's modulus and relaxation times between normal and cancerous breast cells. Remarkable differences in cellular topography between normal and cancerous breast cells were also revealed by AFM imaging. Next, the elastic and viscoelasitc properties of three other types of cell lines and primary normal B lymphocytes were measured; results demonstrated the potential of cellular viscoelastic properties in complementing cellular Young's modulus for discerning different states of cells. This research provides a novel way to quantify the mechanical properties of cells by AFM, which allows investigation of the biomechanical behaviors of single cells from multiple aspects.
NASA Astrophysics Data System (ADS)
Zhang, Guangyun; Jia, Xiuping; Pham, Tuan D.; Crane, Denis I.
2010-01-01
The interpretation of the distribution of fluorescence in cells is often by simple visualization of microscope-derived images for qualitative studies. In other cases, however, it is desirable to be able to quantify the distribution of fluorescence using digital image processing techniques. In this paper, the challenges of fluorescence segmentation due to the noise present in the data are addressed. We report that intensity measurements alone do not allow separation of overlapping data between target and background. Consequently, spatial properties derived from neighborhood profile were included. Mathematical Morphological operations were implemented for cell boundary extraction and a window based contrast measure was developed for fluorescence puncta identification. All of these operations were applied in the proposed multistage processing scheme. The testing results show that the spatial measures effectively enhance the target separability.
Results and analysis of saltstone cores taken from saltstone disposal unit cell 2A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reigel, M. M.; Hill, K. A.
2016-03-01
As part of an ongoing Performance Assessment (PA) Maintenance Plan, Savannah River Remediation (SRR) has developed a sampling and analyses strategy to facilitate the comparison of field-emplaced samples (i.e., saltstone placed and cured in a Saltstone Disposal Unit (SDU)) with samples prepared and cured in the laboratory. The primary objectives of the Sampling and Analyses Plan (SAP) are; (1) to demonstrate a correlation between the measured properties of laboratory-prepared, simulant samples (termed Sample Set 3), and the field-emplaced saltstone samples (termed Sample Set 9), and (2) to validate property values assumed for the Saltstone Disposal Facility (SDF) PA modeling. Themore » analysis and property data for Sample Set 9 (i.e. six core samples extracted from SDU Cell 2A (SDU2A)) are documented in this report, and where applicable, the results are compared to the results for Sample Set 3. Relevant properties to demonstrate the aforementioned objectives include bulk density, porosity, saturated hydraulic conductivity (SHC), and radionuclide leaching behavior.« less
Potential Anticancer Properties of Osthol: A Comprehensive Mechanistic Review
Shokoohinia, Yalda; Jafari, Fataneh; Mohammadi, Zeynab; Bazvandi, Leili; Hosseinzadeh, Leila; Chow, Nicholas; Bhattacharyya, Piyali; Farzaei, Mohammad Hosein; Farooqi, Ammad Ahmad; Nabavi, Seyed Mohammad; Bishayee, Anupam
2018-01-01
Cancer is caused by uncontrolled cell proliferation which has the potential to occur in different tissues and spread into surrounding and distant tissues. Despite the current advances in the field of anticancer agents, rapidly developing resistance against different chemotherapeutic drugs and significantly higher off-target effects cause millions of deaths every year. Osthol is a natural coumarin isolated from Apiaceaous plants which has demonstrated several pharmacological effects, such as antineoplastic, anti-inflammatory and antioxidant properties. We have attempted to summarize up-to-date information related to pharmacological effects and molecular mechanisms of osthol as a lead compound in managing malignancies. Electronic databases, including PubMed, Cochrane library, ScienceDirect and Scopus were searched for in vitro, in vivo and clinical studies on anticancer effects of osthol. Osthol exerts remarkable anticancer properties by suppressing cancer cell growth and induction of apoptosis. Osthol’s protective and therapeutic effects have been observed in different cancers, including ovarian, cervical, colon and prostate cancers as well as chronic myeloid leukemia, lung adenocarcinoma, glioma, hepatocellular, glioblastoma, renal and invasive mammary carcinoma. A large body of evidence demonstrates that osthol regulates apoptosis, proliferation and invasion in different types of malignant cells which are mediated by multiple signal transduction cascades. In this review, we set spotlights on various pathways which are targeted by osthol in different cancers to inhibit cancer development and progression. PMID:29301373
Mesenchymal stem cells as a vector for the inflammatory prostate microenvironment
Brennen, W Nathaniel; Denmeade, Samuel R; Isaacs, John T
2014-01-01
Mesenchymal stem cells (MSCs) have an inherent tropism for sites of inflammation, which are frequently present in sites of cancer, including prostatic lesions. MSCs have been defined as CD73/CD90/CD105 triple-positive cells in the absence of hematopoietic lineage markers with the ability to differentiate into multiple mesodermal lineages, including osteoblasts, adipocytes, and chondrocytes. Our group has previously demonstrated that MSCs represent between 0.01 and 1.1% of the total cells present in human prostatectomy tissue. In addition to their multi-lineage differentiation potential, MSCs are immunoprivileged in nature and have a range of immunomodulatory effects on both the innate and adaptive arms of the immune system. MSCs have been detected in an increasing array of tissues, and evidence suggests that they are likely present in perivascular niches throughout the body. These observations suggest that MSCs represent critical mediators of the overall immune response during physiological homeostasis and likely contribute to pathophysiological conditions as well. Chronic inflammation has been suggested as an initiating event and progression factor in prostate carcinogenesis, a process in which the immunosuppressive properties of MSCs may play a role. MSCs have also been shown to influence malignant progression through a variety of other mechanisms, including effects on tumor proliferation, angiogenesis, survival, and metastasis. Additionally, human bone marrow-derived MSCs have been shown to traffic to human prostate cancer xenografts in immunocompromised murine hosts. The trafficking properties and immunoprivileged status of MSCs suggest that they can be exploited as an allogeneic cell-based vector to deliver cytotoxic or diagnostic agents for therapy. PMID:23975882
Skalniak, Lukasz; Dziendziel, Monika; Jura, Jolanta
2014-10-01
Recently, we have shown that the treatment of cells with proteasome inhibitor MG-132 results in the induction of expression of monocyte chemotactic protein-1 induced protein 1 (MCPIP1). MCPIP1 is a ribonuclease, responsible for the degradation of transcripts encoding certain pro-inflammatory cytokines. The protein is also known as an inhibitor of NF-κB transcription factor. Thanks to its molecular properties, MCPIP1 is considered as a regulator of inflammation, differentiation, and survival. Using siRNA technology, we show here that MCPIP1 expression contributes to the toxic properties of MG-132 in HeLa cells. The inhibition of proteasome by MG-132 and epoxomicin markedly increased MCPIP1 expression. While MG-132 induces HeLa cell death, down-regulation of MCPIP1 expression by siRNA partially protects HeLa cells from MG-132 toxicity and restores Nuclear factor-κB (NF-κB) activity, inhibited by MG-132 treatment. Inversely, overexpression of MCPIP1 decreased constitutive activity of NF-κB and limited the survival of HeLa cells, as we have shown in the previous study. Interestingly, although MG-132 decreased the expression of IκBα and increased p65 phosphorylation, the inhibition of constitutive NF-κB activity was observed in MG-132-treated cells. Since the elevated constitutive activity of NF-κB is one of the mechanisms providing increased survival of cancer cells, including HeLa cells, we propose that death-promoting properties of MCPIP1 in MG-132-treated HeLa cells may, at least partially, derive from the negative effect on the constitutive NF-κB activity.
Optical-mechanical properties of diseased cells measured by interferometry
NASA Astrophysics Data System (ADS)
Shaked, Natan T.; Bishitz, Y.; Gabai, H.; Girshovitz, P.
2013-04-01
Interferometric phase microscopy (IPM) enables to obtain quantitative optical thickness profiles of transparent samples, including live cells in-vitro, and track them in time with sub-nanometer accuracy without any external labeling, contact or force application on the sample. The optical thickness measured by IPM is a multiplication between the cell integral refractive index differences and its physical thickness. Based on the time-dependent optical thickness profile, one can generate the optical thickness fluctuation map. For biological cells that are adhered to the surface, the variance of the physical thickness fluctuations in time is inversely proportional to the spring factor indicating on cell stiffness, where softer cells are expected fluctuating more than more rigid cells. For homogenous refractive index cells, such as red blood cells, we can calculate a map indicating on the cell stiffness per each spatial point on the cell. Therefore, it is possible to obtain novel diagnosis and monitoring tools for diseases changing the morphology and the mechanical properties of these cells such as malaria, certain types of anaemia and thalassemia. For cells with a complex refractive-index structure, such as cancer cells, decoupling refractive index and physical thickness is not possible in single-exposure mode. In these cases, we measure a closely related parameter, under the assumption that the refractive index does not change much within less than a second of measurement. Using these techniques, we lately found that cancer cells fluctuate significantly more than healthy cells, and that metastatic cancer cells fluctuate significantly more than primary cancer cells.
Highlights of the advances in basic immunology in 2011.
Liu, Juan; Liu, Shuxun; Cao, Xuetao
2012-05-01
In this review, we summarize the major fundamental advances in immunological research reported in 2011. The highlights focus on the improved understanding of key questions in basic immunology, including the initiation and activation of innate responses as well as mechanisms for the development and function of various T-cell subsets. The research includes the identification of novel cytosolic RNA and DNA sensors as well as the identification of the novel regulators of the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Moreover, remarkable advances have been made in the developmental and functional properties of innate lymphoid cells (ILCs). Helper T cells and regulatory T (Treg) cells play indispensable roles in orchestrating adaptive immunity. There have been exciting discoveries regarding the regulatory mechanisms of the development of distinct T-cell subsets, particularly Th17 cells and Treg cells. The emerging roles of microRNAs (miRNAs) in T cell immunity are discussed, as is the recent identification of a novel T-cell subset referred to as follicular regulatory T (TFR) cells.
Highlights of the advances in basic immunology in 2011
Liu, Juan; Liu, Shuxun; Cao, Xuetao
2012-01-01
In this review, we summarize the major fundamental advances in immunological research reported in 2011. The highlights focus on the improved understanding of key questions in basic immunology, including the initiation and activation of innate responses as well as mechanisms for the development and function of various T-cell subsets. The research includes the identification of novel cytosolic RNA and DNA sensors as well as the identification of the novel regulators of the Toll-like receptor (TLR) and retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) signaling pathway. Moreover, remarkable advances have been made in the developmental and functional properties of innate lymphoid cells (ILCs). Helper T cells and regulatory T (Treg) cells play indispensable roles in orchestrating adaptive immunity. There have been exciting discoveries regarding the regulatory mechanisms of the development of distinct T-cell subsets, particularly Th17 cells and Treg cells. The emerging roles of microRNAs (miRNAs) in T cell immunity are discussed, as is the recent identification of a novel T-cell subset referred to as follicular regulatory T (TFR) cells. PMID:22522654
Application of single-cell sequencing in human cancer.
Rantalainen, Mattias
2017-11-02
Precision medicine is emerging as a cornerstone of future cancer care with the objective of providing targeted therapies based on the molecular phenotype of each individual patient. Traditional bulk-level molecular phenotyping of tumours leads to significant information loss, as the molecular profile represents an average phenotype over large numbers of cells, while cancer is a disease with inherent intra-tumour heterogeneity at the cellular level caused by several factors, including clonal evolution, tissue hierarchies, rare cells and dynamic cell states. Single-cell sequencing provides means to characterize heterogeneity in a large population of cells and opens up opportunity to determine key molecular properties that influence clinical outcomes, including prognosis and probability of treatment response. Single-cell sequencing methods are now reliable enough to be used in many research laboratories, and we are starting to see applications of these technologies for characterization of human primary cancer cells. In this review, we provide an overview of studies that have applied single-cell sequencing to characterize human cancers at the single-cell level, and we discuss some of the current challenges in the field. © The Author 2017. Published by Oxford University Press.
Gao, Yunhe; Cai, Aizhen; Xi, Hongqing; Li, Jiyang; Xu, Wei; Zhang, Yanmei; Zhang, Kecheng; Cui, Jianxin; Wu, Xiaosong; Wei, Bo; Chen, Lin
2017-04-26
Ring finger protein 43 (RNF43) is a member of the transmembrane E3 ubiquitin ligase family that was originally found in stem cells and plays important roles in tumor formation and progression. Our previous study indicated that RNF43 might be a tumor suppressor protein in gastric cancer. Given its antagonistic relationship with leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), one of the gastric cancer stem cell markers, investigation of the potential role of RNF43 in gastric stem cancer cells is necessary. Immunohistochemistry staining, western blot analysis, and quantitative reverse transcription polymerase chain reaction were used to determine the mRNA and protein expression level of RNF43 and other Wnt pathway factors. Gastric cancer stem-like cells were obtained from gastric cancer tumor and cell lines by tumorsphere culture. The adeno-associated virus system was used to upregulate RNF43 expression in cancer cells. Functional experiments including tumorsphere formation, chemotherapy resistance, surface marker detection, and tumor xenograft assay were performed to measure stem-like properties in gastric cancer stem-like cells after RNF43 overexpression. RNF43 loss was significantly associated with TNM stage, distant metastasis, and Lauren classification, and predicted worse prognosis in gastric cancer patients. RNF43 expression was even lower in tumorspheres derived from tumor tissues or cell lines compared with adherent cancer cells and normal gastric cells. Overexpression of RNF43 in gastric cancer cells impaired their stem-like properties, including sphere formation ability, chemoresistance in vitro, and tumorigenicity in vivo. Moreover, Wnt pathway-related proteins were decreased in RNF43-overexpressing cells, while Wnt pathway activators could reverse the trend to some extent. Our findings indicated that RNF43 might not only participate in gastric cancer progression, but also attenuate the stemness of gastric cancer stem-like cells through the Wnt/β-catenin pathway.
Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell
NASA Astrophysics Data System (ADS)
Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.
2017-04-01
The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.
Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering
Rothrauff, Benjamin B.; Lauro, Brian B.; Yang, Guang; Debski, Richard E.; Musahl, Volker
2017-01-01
Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs–stacked or braided–were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering. PMID:28071988
Braided and Stacked Electrospun Nanofibrous Scaffolds for Tendon and Ligament Tissue Engineering.
Rothrauff, Benjamin B; Lauro, Brian B; Yang, Guang; Debski, Richard E; Musahl, Volker; Tuan, Rocky S
2017-05-01
Tendon and ligament injuries are a persistent orthopedic challenge given their poor innate healing capacity. Nonwoven electrospun nanofibrous scaffolds composed of polyesters have been used to mimic the mechanics and topographical cues of native tendons and ligaments. However, nonwoven nanofibers have several limitations that prevent broader clinical application, including poor cell infiltration, as well as tensile and suture-retention strengths that are inferior to native tissues. In this study, multilayered scaffolds of aligned electrospun nanofibers of two designs-stacked or braided-were fabricated. Mechanical properties, including structural and mechanical properties and suture-retention strength, were determined using acellular scaffolds. Human bone marrow-derived mesenchymal stem cells (MSCs) were seeded on scaffolds for up to 28 days, and assays for tenogenic differentiation, histology, and biochemical composition were performed. Braided scaffolds exhibited improved tensile and suture-retention strengths, but reduced moduli. Both scaffold designs supported expression of tenogenic markers, although the effect was greater on braided scaffolds. Conversely, cell infiltration was superior in stacked constructs, resulting in enhanced cell number, total collagen content, and total sulfated glycosaminoglycan content. However, when normalized against cell number, both designs modulated extracellular matrix protein deposition to a similar degree. Taken together, this study demonstrates that multilayered scaffolds of aligned electrospun nanofibers supported tenogenic differentiation of seeded MSCs, but the macroarchitecture is an important consideration for applications of tendon and ligament tissue engineering.
Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM)
Tibullo, Daniele; Caporarello, Nunzia; Giallongo, Cesarina; Anfuso, Carmelina Daniela; Genovese, Claudia; Arlotta, Carmen; Puglisi, Fabrizio; Parrinello, Nunziatina L.; Bramanti, Vincenzo; Romano, Alessandra; Lupo, Gabriella; Toscano, Valeria; Avola, Roberto; Brundo, Maria Violetta; Di Raimondo, Francesco; Raccuia, Salvatore Antonio
2016-01-01
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by an accumulation of clonal plasma cells (PC) in the bone marrow (BM) leading to bone destruction and BM failure. Despite recent advances in pharmacological therapy, MM remains a largely incurable pathology. Therefore, novel effective and less toxic agents are urgently necessary. In the last few years, pomegranate has been studied for its potential therapeutic properties including treatment and prevention of cancer. Pomegranate juice (PGJ) contains a number of potential active compounds including organic acids, vitamins, sugars, and phenolic components that are all responsible of the pro-apoptotic effects observed in tumor cell line. The aim of present investigation is to assess the antiproliferative and antiangiogenic potential of the PGJ in human multiple myeloma cell lines. Our data demonstrate the anti-proliferative potential of PGJ in MM cells; its ability to induce G0/G1 cell cycle block and its anti-angiogenic effects. Interestingly, sequential combination of bortezomib/PGJ improved the cytotoxic effect of the proteosome inhibitor. We investigated the effect of PGJ on angiogenesis and cell migration/invasion. Interestingly, we observed an inhibitory effect on the tube formation, microvessel outgrowth aorting ring and decreased cell migration and invasion as showed by wound-healing and transwell assays, respectively. Analysis of angiogenic genes expression in endothelial cells confirmed the anti-angiogenic properties of pomegranate. Therefore, PGJ administration could represent a good tool in order to identify novel therapeutic strategies for MM treatment, exploiting its anti-proliferative and anti-angiogenic effects. Finally, the present research supports the evidence that PGJ could play a key role of a future therapeutic approach for treatment of MM in order to optimize the pharmacological effect of bortezomib, especially as adjuvant after treatment. PMID:27706074
Preclinical studies for induced pluripotent stem cell-based therapeutics.
Harding, John; Mirochnitchenko, Oleg
2014-02-21
Induced pluripotent stem cells (iPSCs) and their differentiated derivatives can potentially be applied to cell-based therapy for human diseases. The properties of iPSCs are being studied intensively both to understand the basic biology of pluripotency and cellular differentiation and to solve problems associated with therapeutic applications. Examples of specific preclinical applications summarized briefly in this minireview include the use of iPSCs to treat diseases of the liver, nervous system, eye, and heart and metabolic conditions such as diabetes. Early stage studies illustrate the potential of iPSC-derived cells and have identified several challenges that must be addressed before moving to clinical trials. These include rigorous quality control and efficient production of required cell populations, improvement of cell survival and engraftment, and development of technologies to monitor transplanted cell behavior for extended periods of time. Problems related to immune rejection, genetic instability, and tumorigenicity must be solved. Testing the efficacy of iPSC-based therapies requires further improvement of animal models precisely recapitulating human disease conditions.
Brain mast cells link the immune system to anxiety-like behavior
Nautiyal, Katherine M.; Ribeiro, Ana C.; Pfaff, Donald W.; Silver, Rae
2008-01-01
Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient KitW−sh/W−sh (sash−/−) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links. PMID:19004805
Brain mast cells link the immune system to anxiety-like behavior.
Nautiyal, Katherine M; Ribeiro, Ana C; Pfaff, Donald W; Silver, Rae
2008-11-18
Mast cells are resident in the brain and contain numerous mediators, including neurotransmitters, cytokines, and chemokines, that are released in response to a variety of natural and pharmacological triggers. The number of mast cells in the brain fluctuates with stress and various behavioral and endocrine states. These properties suggest that mast cells are poised to influence neural systems underlying behavior. Using genetic and pharmacological loss-of-function models we performed a behavioral screen for arousal responses including emotionality, locomotor, and sensory components. We found that mast cell deficient Kit(W-sh/W-sh) (sash(-/-)) mice had a greater anxiety-like phenotype than WT and heterozygote littermate control animals in the open field arena and elevated plus maze. Second, we show that blockade of brain, but not peripheral, mast cell activation increased anxiety-like behavior. Taken together, the data implicate brain mast cells in the modulation of anxiety-like behavior and provide evidence for the behavioral importance of neuroimmune links.
Perovskite solar cells: from materials to devices.
Jung, Hyun Suk; Park, Nam-Gyu
2015-01-07
Perovskite solar cells based on organometal halide light absorbers have been considered a promising photovoltaic technology due to their superb power conversion efficiency (PCE) along with very low material costs. Since the first report on a long-term durable solid-state perovskite solar cell with a PCE of 9.7% in 2012, a PCE as high as 19.3% was demonstrated in 2014, and a certified PCE of 17.9% was shown in 2014. Such a high photovoltaic performance is attributed to optically high absorption characteristics and balanced charge transport properties with long diffusion lengths. Nevertheless, there are lots of puzzles to unravel the basis for such high photovoltaic performances. The working principle of perovskite solar cells has not been well established by far, which is the most important thing for understanding perovksite solar cells. In this review, basic fundamentals of perovskite materials including opto-electronic and dielectric properties are described to give a better understanding and insight into high-performing perovskite solar cells. In addition, various fabrication techniques and device structures are described toward the further improvement of perovskite solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
mir-300 promotes self-renewal and inhibits the differentiation of glioma stem-like cells.
Zhang, Daming; Yang, Guang; Chen, Xin; Li, Chunmei; Wang, Lu; Liu, Yaohua; Han, Dayong; Liu, Huailei; Hou, Xu; Zhang, Weiguang; Li, Chenguang; Han, Zhanqiang; Gao, Xin; Zhao, Shiguang
2014-08-01
MicroRNAs (miRNAs) are small noncoding RNAs that have been critically implicated in several human cancers. miRNAs are thought to participate in various biological processes, including proliferation, cell cycle, apoptosis, and even the regulation of the stemness properties of cancer stem cells. In this study, we explore the potential role of miR-300 in glioma stem-like cells (GSLCs). We isolated GSLCs from glioma biopsy specimens and identified the stemness properties of the cells through neurosphere formation assays, multilineage differentiation ability analysis, and immunofluorescence analysis of glioma stem cell markers. We found that miR-300 is commonly upregulated in glioma tissues, and the expression of miR-300 was higher in GSLCs. The results of functional experiments demonstrated that miR-300 can enhance the self-renewal of GSLCs and reduce differentiation toward both astrocyte and neural fates. In addition, LZTS2 is a direct target of miR-300. In conclusion, our results demonstrate the critical role of miR-300 in GSLCs and its functions in LZTS2 inhibition and describe a new approach for the molecular regulation of tumor stem cells.
A truncated apoptin protein variant selectively kills cancer cells.
Ruiz-Martínez, Santiago; Castro, Jessica; Vilanova, Maria; Bruix, Marta; Laurents, Douglas V; Ribó, Marc; Benito, Antoni
2017-06-01
Apoptin is a nonstructural protein encoded by one of the three open reading frames of the chicken anemia virus genome. It has attracted a great deal of interest due to its ability to induce apoptosis in multiple transformed and malignant mammalian cell lines without affecting primary and non-transformed cells. However, the use of Apoptin as an anticancer drug is restricted by its strong tendency to aggregate. A number of methods to overcome this problem have been proposed, including transduction techniques to deliver the Apoptin gene into tumor cells, but all such methods have certain drawbacks. Here we describe that a truncated variant of Apoptin, lacking residues 1 to 43, is a soluble, non-aggregating protein that maintains most of the biological properties of wild-type Apoptin when transfected into cells. We show that the cytotoxic effect of this variant is also present when it is added exogenously to cancer cells, but not to normal cells. In addition to the interest this protein has attracted as a promising therapeutic strategy, it is also an excellent model to study the structural properties of Apoptin and how they relate to its mechanism of action.
VI-14, a novel flavonoid derivative, inhibits migration and invasion of human breast cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fanni; Li, Chenglin; Zhang, Haiwei
It has been well characterized that flavonoids possess pronounced anticancer potentials including anti-angiogenesis, anti-metastasis, and pro-apoptosis. Herein, we report, for the first time, that VI-14, a novel flavonoid derivative, possesses anti-cancer properties. The purpose of this study is to investigate the anti-migration and anti-invasion activities of VI-14 in breast cancer cells. Our data indicate that VI-14 inhibits adhesion, migration and invasion of MDA-MB-231 and MDA-MB-435 human breast cancer cells. MDA-MB-231 cells treated with VI-14 display reduced activities and expressions of ECM degradation-associated proteins including matrix metalloproteinase 2 (MMP-2) and 9 (MMP-9) at both the protein and mRNA levels. Meanwhile, VI-14more » treatment induces an up-regulated expression of tissue inhibitor of metalloproteinase 1 (TIMP-1) and 2 (TIMP-2) in MDA-MB-231 cells. Western blotting results show that phosphorylation levels of critical components of the MAPK signaling pathway, including ERK, JNK and P38, are dramatically decreased in VI-14-treated MDA-MB-231 cells. Furthermore, treatment of VI-14 significantly decreases the nuclear levels and the binding ability of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1). Taken together, our data suggest that VI-14 treatment suppresses migration and motility of breast cancer cells, and VI-14 may be a potential compound for cancer therapy. Highlights: ► We report for the first time that VI-14 possesses anti-cancer properties. ► VI-14 weakens the adhesion, migration and invasion of human breast cancer cells. ► VI-14 decreases the activities and expressions of MMP-2/9. ► VI-14 suppresses the phosphorylation levels of the MAPK signaling pathway. ► VI-14 decreases the nuclear levels and the binding ability of NF-κB and AP-1.« less
NASA Astrophysics Data System (ADS)
Mierke, Claudia T.
There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.
NASA Astrophysics Data System (ADS)
Mierke, Claudia T.
2015-10-01
There exist many reviews on the biological and biochemical interactions of cancer cells and endothelial cells during the transmigration and tissue invasion of cancer cells. For the malignant progression of cancer, the ability to metastasize is a prerequisite. In particular, this means that certain cancer cells possess the property to migrate through the endothelial lining into blood or lymph vessels, and are possibly able to transmigrate through the endothelial lining into the connective tissue and follow up their invasion path in the targeted tissue. On the molecular and biochemical level the transmigration and invasion steps are well-defined, but these signal transduction pathways are not yet clear and less understood in regards to the biophysical aspects of these processes. To functionally characterize the malignant transformation of neoplasms and subsequently reveal the underlying pathway(s) and cellular properties, which help cancer cells to facilitate cancer progression, the biomechanical properties of cancer cells and their microenvironment come into focus in the physics-of-cancer driven view on the metastasis process of cancers. Hallmarks for cancer progression have been proposed, but they still lack the inclusion of specific biomechanical properties of cancer cells and interacting surrounding endothelial cells of blood or lymph vessels. As a cancer cell is embedded in a special environment, the mechanical properties of the extracellular matrix also cannot be neglected. Therefore, in this review it is proposed that a novel hallmark of cancer that is still elusive in classical tumor biological reviews should be included, dealing with the aspect of physics in cancer disease such as the natural selection of an aggressive (highly invasive) subtype of cancer cells displaying a certain adhesion or chemokine receptor on their cell surface. Today, the physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light from a physical point of view with respect to cancer cell mechanics and the special and unique role of the endothelium on cancer cell invasion. The physical view on cancer disease may lead to novel insights into cancer disease and will help to overcome the classical views on cancer. In addition, in this review it will be discussed how physics of cancer can help to reveal and propose the functional mechanism which cancer cells use to invade connective tissue and transmigrate through the endothelium to finally metastasize. Finally, in this review it will be demonstrated how biophysical measurements can be combined with classical analysis approaches of tumor biology. The insights into physical interactions between cancer cells, the endothelium and the microenvironment may help to answer some "old," but still important questions in cancer disease progression.
Rapid prototyped porous nickel–titanium scaffolds as bone substitutes
Hoffmann, Waldemar; Bormann, Therese; Rossi, Antonella; Müller, Bert; Schumacher, Ralf; Martin, Ivan; Wendt, David
2014-01-01
While calcium phosphate–based ceramics are currently the most widely used materials in bone repair, they generally lack tensile strength for initial load bearing. Bulk titanium is the gold standard of metallic implant materials, but does not match the mechanical properties of the surrounding bone, potentially leading to problems of fixation and bone resorption. As an alternative, nickel–titanium alloys possess a unique combination of mechanical properties including a relatively low elastic modulus, pseudoelasticity, and high damping capacity, matching the properties of bone better than any other metallic material. With the ultimate goal of fabricating porous implants for spinal, orthopedic and dental applications, nickel–titanium substrates were fabricated by means of selective laser melting. The response of human mesenchymal stromal cells to the nickel–titanium substrates was compared to mesenchymal stromal cells cultured on clinically used titanium. Selective laser melted titanium as well as surface-treated nickel–titanium and titanium served as controls. Mesenchymal stromal cells had similar proliferation rates when cultured on selective laser melted nickel–titanium, clinically used titanium, or controls. Osteogenic differentiation was similar for mesenchymal stromal cells cultured on the selected materials, as indicated by similar gene expression levels of bone sialoprotein and osteocalcin. Mesenchymal stromal cells seeded and cultured on porous three-dimensional selective laser melted nickel–titanium scaffolds homogeneously colonized the scaffold, and following osteogenic induction, filled the scaffold’s pore volume with extracellular matrix. The combination of bone-related mechanical properties of selective laser melted nickel–titanium with its cytocompatibility and support of osteogenic differentiation of mesenchymal stromal cells highlights its potential as a superior bone substitute as compared to clinically used titanium. PMID:25383165
Zuber, T; Holm, D; Byrne, P; Ducreux, L; Taylor, M; Kaiser, M; Stushnoff, C
2015-01-01
Secondary metabolites in potato have been reported to possess bioactive properties, including growth inhibition of cancer cells. Because potatoes are widely consumed globally, potential health benefits may have broad application. Thus we investigated growth inhibition of HT-29 colon cancer cell cultures by extracts from 13 diverse genetic breeding clones. Extracts from three pigmented selections (CO97226-2R/R, CO97216-1P/P, CO04058-3RW/RW) inhibited growth of in vitro HT-29 cell cultures more effectively than other clones tested. While inhibition was highest from pigmented selections and pigmented tuber tissue sectors, not all pigmented breeding lines tested had appreciable inhibitory properties. Thus, inhibition was not uniquely linked to pigmentation. Immature tubers had the highest inhibitory properties, and in most cases mature tubers retained very low inhibition properties. Flowers and skins inhibited strongly at lower extract concentrations. An extract consisting of 7.2 mg mL⁻¹ cell culture medium was the lowest effective concentration. While raw tuber extracts inhibited most effectively, a few clones at higher concentrations retained inhibition after cooking. Heated whole tubers retained higher inhibition than heated aqueous extracts. While all aqueous extracts from the two tuber selections (CO97216-1P/P and CO97226-2R/R) inhibited HT-29 cell cultures, inhibition was significantly enhanced in purple pigmented tubers of CO97216-1P/P prepared cryogenically as liquid nitrogen powders compared to extracts from freeze dried samples. Upregulation of caspase-3 protease activity, indicative of apoptosis, was highest among the most inhibitory clone samples. The unique sectorial red pigment expressing selection (CO04058-3RW/RW) provided a model system that isolated expression in pigmented sectors, and thus eliminated developmental, environmental and genetic confounding.
NASA Astrophysics Data System (ADS)
Juntarapaso, Yada
Scanning Acoustic Microscopy (SAM) is one of the most powerful techniques for nondestructive evaluation and it is a promising tool for characterizing the elastic properties of biological tissues/cells. Exploring a single cell is important since there is a connection between single cell biomechanics and human cancer. Scanning acoustic microscopy (SAM) has been accepted and extensively utilized for acoustical cellular and tissue imaging including measurements of the mechanical and elastic properties of biological specimens. SAM provides superb advantages in that it is non-invasive, can measure mechanical properties of biological cells or tissues, and fixation/chemical staining is not necessary. The first objective of this research is to develop a program for simulating the images and contrast mechanism obtained by high-frequency SAM. Computer simulation algorithms based on MatlabRTM were built for simulating the images and contrast mechanisms. The mechanical properties of HeLa and MCF-7 cells were computed from the measurement data of the output signal amplitude as a function of distance from the focal planes of the acoustics lens which is known as V(z) . Algorithms for simulating V(z) responses involved the calculation of the reflectance function and were created based on ray theory and wave theory. The second objective is to design transducer arrays for SAM. Theoretical simulations based on Field II(c) programs of the high frequency ultrasound array designs were performed to enhance image resolution and volumetric imaging capabilities. Phased array beam forming and dynamic apodization and focusing were employed in the simulations. The new transducer array design will be state-of-the-art in improving the performance of SAM by electronic scanning and potentially providing a 4-D image of the specimen.
NASA Astrophysics Data System (ADS)
Bociaga, Dorota; Komorowski, Piotr; Batory, Damian; Szymanski, Witold; Olejnik, Anna; Jastrzebski, Krzysztof; Jakubowski, Witold
2015-11-01
The formation of bacteria biofilm on the surface of medical products is a major clinical issue nowadays. Highly adaptive ability of bacteria to colonize the surface of biomaterials causes a lot of infections. This study evaluates samples of the AISI 316 LVM with special nanocomposite silver-doped (by means of ion implantation) diamond-like carbon (DLC) coating prepared by hybrid RF/MS PACVD (radio frequency/magnetron sputtering plasma assisted chemical vapour deposition) deposition technique in order to improve the physicochemical and biological properties of biomaterials and add new features such as antibacterial properties. The aim of the following work was to evaluate antimicrobial efficacy and biocompatibility of gradient a-C:H/Ti + Ag coatings in relation to the physiochemical properties of the surface and chemical composition of coating. For this purpose, samples were tested in live/dead test using two cell strains: human endothelial cells (Ea.hy926) and osteoblasts-like cells (Saos-2). For testing bactericidal activity of the coatings, an exponential growth phase of Escherichia coli strain DH5α was used as a model microorganism. Surface condition and its physicochemical properties were investigated using SEM, AFM and XPS. Examined coatings showed a uniformity of silver ions distribution in the amorphous DLC matrix, good biocompatibility in contact with mammalian cells and an increased level of bactericidal properties. What is more, considering very good mechanical parameters of these Ag including gradient a-C:H/Ti coatings, they constitute an excellent material for biomedical application in e.g. orthopedics or dentistry.
Tortorella, Stephanie M; Royce, Simon G; Licciardi, Paul V; Karagiannis, Tom C
2015-06-01
Sulforaphane, produced by the hydrolytic conversion of glucoraphanin after ingestion of cruciferous vegetables, particularly broccoli and broccoli sprouts, has been extensively studied due to its apparent health-promoting properties in disease and limited toxicity in normal tissue. Recent Studies: Recent identification of a sub-population of tumor cells with stem cell-like self-renewal capacity that may be responsible for relapse, metastasis, and resistance, as a potential target of the dietary compound, may be an important aspect of sulforaphane chemoprevention. Evidence also suggests that sulforaphane may target the epigenetic alterations observed in specific cancers, reversing aberrant changes in gene transcription through mechanisms of histone deacetylase inhibition, global demethylation, and microRNA modulation. In this review, we discuss the biochemical and biological properties of sulforaphane with a particular emphasis on the anticancer properties of the dietary compound. Sulforaphane possesses the capacity to intervene in multistage carcinogenesis through the modulation and/or regulation of important cellular mechanisms. The inhibition of phase I enzymes that are responsible for the activation of pro-carcinogens, and the induction of phase II enzymes that are critical in mutagen elimination are well-characterized chemopreventive properties. Furthermore, sulforaphane mediates a number of anticancer pathways, including the activation of apoptosis, induction of cell cycle arrest, and inhibition of NFκB. Further characterization of the chemopreventive properties of sulforaphane and its capacity to be selectively toxic to malignant cells are warranted to potentially establish the clinical utility of the dietary compound as an anti-cancer compound alone, and in combination with clinically relevant therapeutic and management strategies.
Trevino, R. Sean; Lauckner, Jane E.; Sourigues, Yannick; Pearce, Margaret M.; Bousset, Luc; Melki, Ronald; Kopito, Ron R.
2012-01-01
The pathogenesis of most neurodegenerative diseases, including transmissible diseases like prion encephalopathy, inherited disorders like Huntington disease, and sporadic diseases like Alzheimer and Parkinson diseases, is intimately linked to the formation of fibrillar protein aggregates. It is becoming increasingly appreciated that prion-like intercellular transmission of protein aggregates can contribute to the stereotypical spread of disease pathology within the brain, but the mechanisms underlying the binding and uptake of protein aggregates by mammalian cells are largely uninvestigated. We have investigated the properties of polyglutamine (polyQ) aggregates that endow them with the ability to bind to mammalian cells in culture and the properties of the cell surface that facilitate such uptake. Binding and internalization of polyQ aggregates are common features of mammalian cells and depend upon both trypsin-sensitive and trypsin-resistant saturable sites on the cell surface, suggesting the involvement of cell surface proteins in this process. polyQ aggregate binding depends upon the presence of a fibrillar amyloid-like structure and does not depend upon electrostatic interaction of fibrils with the cell surface. Sequences in the huntingtin protein that flank the amyloid-forming polyQ tract also influence the extent to which aggregates are able to bind to cell surfaces. PMID:22753412
Ecker, Joseph R; Geschwind, Daniel H; Kriegstein, Arnold R; Ngai, John; Osten, Pavel; Polioudakis, Damon; Regev, Aviv; Sestan, Nenad; Wickersham, Ian R; Zeng, Hongkui
2017-11-01
A comprehensive characterization of neuronal cell types, their distributions, and patterns of connectivity is critical for understanding the properties of neural circuits and how they generate behaviors. Here we review the experiences of the BRAIN Initiative Cell Census Consortium, ten pilot projects funded by the U.S. BRAIN Initiative, in developing, validating, and scaling up emerging genomic and anatomical mapping technologies for creating a complete inventory of neuronal cell types and their connections in multiple species and during development. These projects lay the foundation for a larger and longer-term effort to generate whole-brain cell atlases in species including mice and humans. Copyright © 2017 Elsevier Inc. All rights reserved.
Method for determining properties of red blood cells
Gourley, Paul L.
2001-01-01
A method for quantifying the concentration of hemoglobin in a cell, and indicia of anemia, comprises determining the wavelength of the longitudinal mode of a liquid in a laser microcavity; determining the wavelength of the fundamental transverse mode of a red blood cell in the liquid in the laser microcavity; and determining if the cell is anemic from the difference between the wavelength of the longitudinal mode and the fundamental transverse mode. In addition to measuring hemoglobin, the invention includes a method using intracavity laser spectroscopy to measure the change in spectra as a function of time for measuring the influx of water into a red blood cell and the cell's subsequent rupture.
Lee, Junmin; Abdeen, Amr A; Tang, Xin; Saif, Taher A; Kilian, Kristopher A
2016-09-15
Mesenchymal stem cells (MSCs) can differentiate into multiple lineages through guidance from the biophysical and biochemical properties of the extracellular matrix. In this work we conduct a combinatorial study of matrix properties that influence adipogenesis and neurogenesis including: adhesion proteins, stiffness, and cell geometry, for mesenchymal stem cells derived from adipose tissue (AT-MSCs) and bone marrow (BM-MSCs). We uncover distinct differences in integrin expression, the magnitude of traction stress, and lineage specification to adipocytes and neuron-like cells between cell sources. In the absence of media supplements, adipogenesis in AT-MSCs is not significantly influenced by matrix properties, while the converse is true in BM-MSCs. Both cell types show changes in the expression of neurogenesis markers as matrix cues are varied. When cultured on laminin conjugated microislands of the same adhesive area, BM-MSCs display elevated adipogenesis markers, while AT-MSCs display elevated neurogenesis markers; integrin analysis suggests neurogenesis in AT-MSCs is guided by adhesion through integrin αvβ3. Overall, the properties of the extracellular matrix guides MSC adhesion and lineage specification to different degrees and outcomes, in spite of their similarities in general characteristics. This work will help guide the selection of MSCs and matrix components for applications where high fidelity of differentiation outcome is desired. Mesenchymal stem cells (MSCs) are an attractive cell type for stem cell therapies; however, in order for these cells to be useful in medicine, we need to understand how they respond to the physical and chemical environments of tissue. Here, we explore how two promising sources of MSCs-those derived from bone marrow and from adipose tissue-respond to the compliance and composition of tissue using model extracellular matrices. Our results demonstrate a source-specific propensity to undergo adipogenesis and neurogenesis, and uncover a role for adhesion, and the degree of traction force exerted on the substrate in guiding these lineage outcomes. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Oxygen deficiency and Sn doping of amorphous Ga{sub 2}O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinemann, M. D.; Unold, T.; Berry, J.
2016-01-11
The potential of effectively n-type doping Ga{sub 2}O{sub 3} considering its large band gap has made it an attractive target for integration into transistors and solar cells. As a result amorphous GaO{sub x} is now attracting interest as an electron transport layer in solar cells despite little information on its opto-electrical properties. Here we present the opto-electronic properties, including optical band gap, electron affinity, and charge carrier density, for amorphous GaO{sub x} thin films deposited by pulsed laser deposition. These properties are strongly dependent on the deposition temperature during the deposition process. The deposition temperature has no significant influence onmore » the general structural properties but produces significant changes in the oxygen stoichiometry of the films. The density of the oxygen vacancies is found to be related to the optical band gap of the GaO{sub x} layer. It is proposed that the oxygen deficiency leads to defect band below the conduction band minimum that increases the electron affinity. These properties facilitate the use of amorphous GaO{sub x} as an electron transport layer in Cu(In,Ga)Se{sub 2} and in Cu{sub 2}O solar cells. Further it is shown that at low deposition temperatures, extrinsic doping with Sn is effective at low Sn concentrations.« less
Cell volume change through water efflux impacts cell stiffness and stem cell fate
Pegoraro, Adrian F.; Mao, Angelo; Zhou, Enhua H.; Arany, Praveen R.; Han, Yulong; Burnette, Dylan T.; Jensen, Mikkel H.; Kasza, Karen E.; Moore, Jeffrey R.; Mackintosh, Frederick C.; Fredberg, Jeffrey J.; Mooney, David J.; Lippincott-Schwartz, Jennifer; Weitz, David A.
2017-01-01
Cells alter their mechanical properties in response to their local microenvironment; this plays a role in determining cell function and can even influence stem cell fate. Here, we identify a robust and unified relationship between cell stiffness and cell volume. As a cell spreads on a substrate, its volume decreases, while its stiffness concomitantly increases. We find that both cortical and cytoplasmic cell stiffness scale with volume for numerous perturbations, including varying substrate stiffness, cell spread area, and external osmotic pressure. The reduction of cell volume is a result of water efflux, which leads to a corresponding increase in intracellular molecular crowding. Furthermore, we find that changes in cell volume, and hence stiffness, alter stem-cell differentiation, regardless of the method by which these are induced. These observations reveal a surprising, previously unidentified relationship between cell stiffness and cell volume that strongly influences cell biology. PMID:28973866
Development and use of culture systems to modulate specific cell responses
NASA Astrophysics Data System (ADS)
Martin, Yves
Culture surfaces that induce specific localized cell responses are required to achieve tissue-like cell growth in three-dimensional (3D) environments, as well as to develop more efficient cell-based diagnostic techniques, noticeably when working with fragile cells such as stem cells or platelets. As such, Chapter 1 of this thesis work is devoted to the review of 3D cell-material interactions in vitro and the corresponding existing culture systems available to achieve in vivo-like cell responses. More adequate 3D culture systems will need to be developed to mimic several characteristics of in vivo environments, including lowered non-specific cell-material interactions and localized biochemical signaling. The experimental work in this thesis is based on the hypothesis that well-studied and optimized surface treatments will be able to lower non-specific cell-material interactions and allow local chemical modification in order to achieve specific localized cell-material interactions for different applications. As such, in Chapter 2 and Chapter 3 of this thesis, surface treatments were developed using plasma polymerization and covalent immobilization of a low-fouling polymer (i.e., poly(ethylene glycol)) and characterized and optimized using a large number of techniques including atomic force microscopy, quartz crystal microbalance, surface plasmon resonance, x-ray photoelectron spectroscopy and fluorescence-based techniques. The main plasma polymerization parameter important for surface chemical content, specifically nitrogen to carbon content, was identified as being glow discharge power, while reaction time and power determined plasma film thickness. Moreover, plasma films were shown to be stable in aqueous environments. Covalently-bound poly(ethylene glycol) (PEG) layers physicochemical and mechanical properties are dependent on fabrication methods. Polymer concentration in solution is an important indicator of final layer properties, and use of a theta solvent induces complex aggregation phenomena in solution yielding layers with widely different properties. Chemically available primary amine groups are also shown to be present, paving the way for the immobilization of bio-active molecules. An application of low-fouling locally modified surfaces is given in Chapter 4 by the development of a novel diagnostic surface to evaluate platelet activation which is until now very difficult as platelets are readily activated by in vitro manipulations. Significant results from volunteer donors indicate that this diagnostic instrument has the potential to allow the rapid estimation of platelet activation levels in whole blood.
Quantitative phase imaging for enhanced assessment of optomechanical cancer cell properties
NASA Astrophysics Data System (ADS)
Kastl, Lena; Kemper, Björn; Schnekenburger, Jürgen
2018-02-01
Optical cell stretching provides label-free investigations of cells by measuring their biomechanical properties based on deformability determination in a fiber optical two-beam trap. However, the stretching forces in this two-beam laser trap depend on the optical properties of the investigated specimen. Therefore, we characterized in parallel four cancer cell lines with varying degree of differentiation utilizing quantitative phase imaging (QPI) and optical cell stretching. The QPI data allowed enhanced assessment of the mechanical cell properties measured with the optical cell stretcher and demonstrates the high potential of cell phenotyping when both techniques are combined.
Dulla, Balakrishna; Kirla, Krishna Tulasi; Rathore, Vandana; Deora, Girdhar Singh; Kavela, Sridhar; Maddika, Subbareddy; Chatti, Kiranam; Reiser, Oliver; Iqbal, Javed; Pal, Manojit
2013-05-21
A series of functionalized phenyl oxazole derivatives was designed, synthesized and screened in vitro for their activities against LSD1 and for effects on viability of cervical and breast cancer cells, and in vivo for effects using zebrafish embryos. These compounds are likely to act via multiple epigenetic mechanisms specific to cancer cells including LSD1 inhibition.
Photovoltaic Cell Having A P-Type Polycrystalline Layer With Large Crystals
Albright, Scot P.; Chamberlin, Rhodes R.
1996-03-26
A photovoltaic cell has an n-type polycrystalline layer and a p-type polycrystalline layer adjoining the n-type polycrystalline layer to form a photovoltaic junction. The p-type polycrystalline layer comprises a substantially planar layer portion having relatively large crystals adjoining the n-type polycrystalline layer. The planar layer portion includes oxidized impurities which contribute to obtainment of p-type electrical properties in the planar layer portion.
Electrocatalysis of anodic oxidation of ethanol
NASA Astrophysics Data System (ADS)
Tarasevich, M. R.; Korchagin, O. V.; Kuzov, A. V.
2013-11-01
The results of fundamental and applied studies in the field of electrocatalysis of anodic oxidation of ethanol in fuel cells are considered. Features of the mechanism of ethanol electrooxidation are discussed as well as the structure and electrochemical properties of the most widely used catalysts of this process. The prospects of further studies of direct ethanol fuel cells with alkaline and acidic electrolytes are outlined. The bibliography includes 166 references.
Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.
Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo
2015-09-14
Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.
Multimetallic nanosheets: synthesis and applications in fuel cells.
Zeb Gul Sial, Muhammad Aurang; Ud Din, Muhammad Aizaz; Wang, Xun
2018-04-03
Two-dimensional nanomaterials, particularly multimetallic nanosheets with single or few atoms thickness, are attracting extensive research attention because they display remarkable advantages over their bulk counterparts, including high electron mobility, unsaturated surface coordination, a high aspect ratio, and distinctive physical, chemical, and electronic properties. In particular, their ultrathin thickness endows them with ultrahigh specific surface areas and a relatively high surface energy, making them highly favorable for surface active applications; for example, they have great potential for a broad range of fuel cell applications. First, the state-of-the-art research on the synthesis of nanosheets with a controlled size, thickness, shape, and composition is described and special emphasis is placed on the rational design of multimetallic nanosheets. Then, a correlation is performed with the performance of multimetallic nanosheets with modified and improved electrochemical properties and high stability, including for the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), formic acid oxidation (FAO), methanol oxidation reaction (MOR), ethanol oxidation reaction (EOR), and methanol tolerance are outlined. Finally, some perspectives and advantages offered by this class of materials are highlighted for the development of highly efficient fuel cell electrocatalysts, featuring low cost, enhanced performance, and high stability, which are the key factors for accelerating the commercialization of future promising fuel cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sopori, B.
The 11th Workshop will provide a forum for an informal exchange of technical and scientific information between international researchers in the photovoltaic and non-photovoltaic fields. Discussions will include the various aspects of impurities and defects in silicon--their properties, the dynamics during device processing, and their application for developing low-cost processes for manufacturing high-efficiency silicon solar cells. Sessions and panel discussions will review impurities and defects in crystalline-silicon PV, advanced cell structures, new processes and process characterization techniques, and future manufacturing demands. The workshop will emphasize some of the promising new technologies in Si solar cell fabrication that can lower PVmore » energy costs and meet the throughput demands of the future. The three-day workshop will consist of presentations by invited speakers, followed by discussion sessions. Topics to be discussed are: Si Mechanical properties and Wafer Handling, Advanced Topics in PV Fundamentals, Gettering and Passivation, Impurities and Defects, Advanced Emitters, Crystalline Silicon Growth, and Solar Cell Processing. The workshop will also include presentations by NREL subcontractors who will review the highlights of their research during the current subcontract period. In addition, there will be two poster sessions presenting the latest research and development results. Some presentations will address recent technologies in the microelectronics field that may have a direct bearing on PV.« less
NASA Astrophysics Data System (ADS)
Krieger, Helga; Seide, Gunnar; Gries, Thomas; Stapleton, Scott E.
2018-04-01
The global mechanical properties of textiles such as elasticity and strength, as well as transport properties such as permeability depend strongly on the microstructure of the textile. Textiles are heterogeneous structures with highly anisotropic material properties, including local fiber orientation and local fiber volume fraction. In this paper, an algorithm is presented to generate a virtual 3D-model of a woven fabric architecture with information about the local fiber orientation and the local fiber volume fraction. The geometric data of the woven fabric impregnated with resin was obtained by micron-resolution computed tomography (μCT). The volumetric μCT-scan was discretized into cells and the microstructure of each cell was analyzed and homogenized. Furthermore, the discretized data was used to calculate the local permeability tensors of each cell. An example application of the analyzed data is the simulation of the resin flow through a woven fabric based on the determined local permeability tensors and on Darcy's law. The presented algorithm is an automated and robust method of going from μCT-scans to structural or flow models.
Semiconductor chips, genes, and stem cells: new wine for new bottles?
Rose, Simone A
2012-01-01
This Article analogizes early semiconductor technology and its surrounding economics with isolated genes, stem cells, and related bioproducts, and their surrounding economics, to make the case for sui generis (of its own class) intellectual property protection for isolated bioproducts. Just as early semiconductors failed to meet the patent social bargain requiring novelty and non-obviousness in the 1980s, isolated genes and stem cells currently fail to meet the patent bargain requirements of non-obviousness and eligible subject matter that entitle them to traditional intellectual property protection. Like early semiconductor chip designs, nevertheless, the high cost of upstream bioproduct research and development, coupled with the need to sustain continued economic growth of the biotechnology industry, mandates that Congress provide some level of exclusive rights to ensure continued funding for this research. Sui generis intellectual property protection for isolated bioproducts would preserve the incentive to continue innovation in the field. As illustrated by the semiconductor industry, however, such sui generis protection for this technology must include limitations that address the need to provide an appropriate level of public access to facilitate downstream product development and enrich the public domain.
Cisplatin loaded PMMA: mechanical properties, surface analysis and effects on Saos-2 cell culture.
Özben, Hakan; Eralp, Levent; Baysal, Gökhan; Cort, Ayşegül; Sarkalkan, Nazli; Özben, Tomris
2013-01-01
Despite wide resection and systemic chemotherapy, bone tumors may present with local recurrences, metastases and pathological fractures. Application of bone cement containing antineoplastic drug to fill the defect after resection of metastatic lesions and to support implants has been suggested to prevent local tumor growth and implant failures. In this study, we aimed to demonstrate the effects of the addition of cisplatin which is a widely used antineoplastic drug for osteosarcoma, on the mechanical properties of bone cement, and to evaluate the cytotoxic effects of eluted cisplatin on Saos-2 cell culture. Two cement samples were prepared by mixing 100 mg and 300 mg of cisplatin powder with 40 g cement powder. The bone cement of the control group did not contain cisplatin. Mechanical analyses included 4-point bending, compression and shear testing. For cytotoxicity analysis, samples were incubated in Dulbecco's Modified Eagle's medium for 15 days. Mediums were applied to Saos-2 cell culture and cell viability was measured. Surface analyses were performed by scanning electron microscope (SEM). The addition of cisplatin did not alter the mechanical properties of bone cement. It was observed that the eluted cisplatin had cytotoxic effects on Saos-2 cells. SEM analyses demonstrated cisplatin granules on the surface of cement samples. Cisplatin maintains its cytotoxic property when released from bone cement without compromising the mechanical stability. Application of cisplatin loaded bone cement may help local control of tumor growth. We believe that our study will shed light on to these new practices for the treatment of bone cancers and will encourage future studies.
Blatt, Michael R.; Wang, Yizhou; Leonhardt, Nathalie; Hills, Adrian
2014-01-01
It is widely recognized that the nature and characteristics of transport across eukaryotic membranes are so complex as to defy intuitive understanding. In these circumstances, quantitative mathematical modeling is an essential tool, both to integrate detailed knowledge of individual transporters and to extract the properties emergent from their interactions. As the first, fully integrated and quantitative modeling environment for the study of ion transport dynamics in a plant cell, OnGuard offers a unique tool for exploring homeostatic properties emerging from the interactions of ion transport, both at the plasma membrane and tonoplast in the guard cell. OnGuard has already yielded detail sufficient to guide phenotypic and mutational studies, and it represents a key step toward ‘reverse engineering’ of stomatal guard cell physiology, based on rational design and testing in simulation, to improve water use efficiency and carbon assimilation. Its construction from the HoTSig libraries enables translation of the software to other cell types, including growing root hairs and pollen. The problems inherent to transport are nonetheless challenging, and are compounded for those unfamiliar with conceptual ‘mindset’ of the modeler. Here we set out guidelines for the use of OnGuard and outline a standardized approach that will enable users to advance quickly to its application both in the classroom and laboratory. We also highlight the uncanny and emergent property of OnGuard models to reproduce the ‘communication’ evident between the plasma membrane and tonoplast of the guard cell. PMID:24268743
The fundamental role of mechanical properties in the progression of cancer disease and inflammation
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2014-07-01
The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in particular the understanding of mechano-coupling and mechano-regulating functions in cell invasion, appears as an important step in cancer progression and inflammatory response to injuries. This may lead to novel insights into cancer disease and inflammatory diseases and will overcome classical views on cancer and inflammation. In addition, this review will discuss how the physics of cancer and inflammation can help to reveal whether cancer cells will invade connective tissue and metastasize or how leukocytes extravasate and migrate through the tissue. In this review, the physical concepts of cancer progression, including the tissue basement membrane a cancer cell is crossing, its invasion and transendothelial migration as well as the basic physical concepts of inflammatory processes and the cellular responses to the mechanical stress of the microenvironment such as external forces and matrix stiffness, are presented and discussed. In conclusion, this review will finally show how physical measurements can improve classical approaches that investigate cancer and inflammatory diseases, and how these physical insights can be integrated into classical tumor biological approaches.
Baraya, Yushau Shuaibu; Wong, Kah Keng; Yaacob, Nik Soriani
2017-01-01
Breast cancer has continued to cause high cancer death rates among women worldwide. The use of plants' natural products in breast cancer treatment has received more attention in recent years due to their potentially wider safety margin and the potential to complement conventional chemotherapeutic drugs. Plantbased products have demonstrated anticancer potential through different biological pathways including modulation of the immune system. Immunomodulatory properties of medicinal plants have been shown to mitigate breast cancer cell growth. Different immune cell types participate in this process especially cytotoxic T cells and natural killer cells, and cytokines including chemokines and tumor necrosis factor-α. Medicinal plants such as Glycyrrhiza glabra, Uncaria tomentosa, Camellia sinensis, Panax ginseng, Prunus armenaica (apricot), Allium sativum, Arctium lappa and Curcuma longa were reported to hold strong potential in breast cancer treatment in various parts of the world. Interestingly, research findings have shown that these plants possess bioactive immunomodulators as their main constituents producing the anticancer effects. These immunomodulatory compounds include ajoene, arctigenin, β-carotene, curcumin, epigallocatechin-3-gallate, ginsan, glabridin and quinic acid. In this review, we discussed the ability of these eight immunomodulators in regulating the immune system potentially applicable in breast cancer treatment via anti-inflammatory (curcumin, arctigenin, glabridin and ajoene) and lymphocytes activation (β-carotene, epigallocatechin-3-gallate, quinic acid and ginsan) properties, as well as future research direction in their use for breast cancer treatment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Park, Hye-Jung; Kim, Moon-Moo
2015-01-01
The aim of the present study was to examine the apoptotic effect of flavonoids in methanol extracts of Ginkgo biloba fallen leaves (MEGFL) on melanoma cells. Ginkgo biloba is a deciduous castle chaplain and its leaves include various types of flavonoids such as flavonol-O-glycosides. Ginkgo biloba is known to have therapeutic properties against a number of diseases such as cerebrovascular diseases, blood circulation disease and hypertension. In the present study MEGFL exhibited a higher cytotoxic effect on melanoma cells than Ginkgo biloba leaves (MEGL). It was also found that MEGFL induced apoptotic cell death which was characterized by DNA fragmentation. During the cell death process following treatment with MEGFL, the expression of a variety of death-associated proteins including p53, caspase-3, caspase-9, cytochrome c and Bax were analyzed in the cytosol of melanoma cells. MEGFL significantly increased the expression levels of caspase-3, caspase-9 and p53 in a dose-dependent manner. Our results indicate that MEGFL induced apoptotic cell death by increasing the expression of cell death-associated proteins in melanoma cells.
[Regulation of immune responses by exosomes derived from antigen presenting cells].
Maravillas-Montero, José Luis; Martínez-Cortés, Ismael
2017-01-01
Cells release several biomolecules to the extracellular environment using them as a communication alternative with neighbor cells. Besides these molecules, cells also release more complex elements, like vesicles; structures composed of a lipidic bilayer with transmembrane proteins that protect a hydrophilic content. Exosomes are a small subtype of vesicles (30-150 nm), produced by many cell types, such as tumor cells, neurons, epithelial cells and immune cells. Included in this last group, antigen presenting cells produce exosomes that contain different types of molecules depending on their activation and/or maturation state. In recent years there has been an exponential interest in exosomes due to the recent evidences that show the immunomodulatory properties of these vesicles and therefore, their great potential in diagnostic approaches and development of therapies for different inflammation-associated pathologies.
A neural model of motion processing and visual navigation by cortical area MST.
Grossberg, S; Mingolla, E; Pack, C
1999-12-01
Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.
Bi, Jingran; Li, Yao; Wang, Haitao; Song, Yukun; Cong, Shuang; Yu, Chenxu; Zhu, Bei-Wei; Tan, Mingqian
2018-03-21
Foodborne nanostructures have gained more and more attention in recent years. In this paper, the presence and physicochemical properties of carbonaceous nanostructures (CNSs) from roasted pike eel ( Muraenesox cinereus) were reported. The monodispersed CNSs are strongly photoluminescent under the illustration of ultraviolet (UV) light, with a fluorescent quantum yield of 80.16%, and display excitation-dependent emission behavior. The formation of CNSs is believed to go through a process of morphology evolution, including polymerization, pyrolysis, nucleation, growth, emergence, and blossom. The optical properties of the CNSs were shown to be affected by the roasting temperature. Furthermore, cellular uptake of the CNSs was investigated, and it is shown that the CNSs were clearly absorbed into live cells and were mainly distributed within the cell cytoplasm and not in the cell nucleus. This work is among the very first reports on CNSs present in roasted fish, providing valuable insights into the formation mechanism of such nanostructures and showcasing the biodistribution of these food-originated CNSs in live cells.
Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging.
Palmioli, Alessandro; Aliprandi, Alessandro; Septiadi, Dedy; Mauro, Matteo; Bernardi, Anna; De Cola, Luisa; Panigati, Monica
2017-02-21
The design, synthesis and photophysical characterization of four new luminescent glycosylated luminophores based on dinuclear rhenium complexes, namely Glyco-Re, are described. The derivatives have the general formula [Re 2 (μ-Cl) 2 (CO) 6 (μ-pydz-R)] (R-pydz = functionalized 1,2-pyridazine), where a sugar residue (R) is covalently bound to the pyridazine ligand in the β position. Different synthetic pathways have been investigated including the so-called neo-glycorandomization procedure, affording stereoselectively glyco-conjugates containing glucose and maltose in a β anomeric configuration. A multivalent dinuclear rhenium glycodendron bearing three glucose units is also synthesized. All the Glyco-Re conjugates are comprehensively characterized and their photophysical properties and cellular internalization experiments on human cervical adenocarcinoma (HeLa) cells are reported. The results show that such Glyco-Re complexes display interesting bio-imaging properties, i.e. high cell permeability, organelle selectivity, low cytotoxicity and fast internalization. These findings make the presented Glyco-Re derivatives efficient phosphorescent probes suitable for cell imaging application.
UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.
Zholobak, N M; Ivanov, V K; Shcherbakov, A B; Shaporev, A S; Polezhaeva, O S; Baranchikov, A Ye; Spivak, N Ya; Tretyakov, Yu D
2011-01-10
UV-shielding property, photocatalytic activity and cytotoxicity (including photocytotoxicity) of citrate-stabilized ceria colloid solutions were studied. It was established that UV-shielding property (namely, the sun protection factor, the critical absorption wavelength and the UVA/UVB-ratio) of ceria nanoparticles are as good as those of titanium dioxide and zinc oxide nanoparticles. It was further demonstrated that ceria nanoparticles possesses substantially lower photocatalytic activity, which additionally decreases upon decrease in ceria particle size. It was found that colloid ceria solutions are non-toxic to mouse fibroblasts (L929) and fibroblast-like cells of African Green monkey (VERO). Moreover, ceria nanoparticles are capable to protect these cells from UV-irradiation-induced damage. It was proposed that nanocrystalline ceria could be used not only as UV-blocking material, but also as prophylactic and even therapeutic compound for sunburns treatment. Copyright © 2010 Elsevier B.V. All rights reserved.
Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.
Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens.
Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis
Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.
2013-01-01
Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656
Analysis of Hypersonic Vehicle Wakes
2015-09-17
factor used with viscous Jacobian matrix of left eigenvectors for A R specific gas constant Re Reynolds number Recell cell Reynolds number......focus was shifted to characterizing other wake phenomena. The aerothermal phenomena of interest in the wake include: gas properties, chemical species
The emergence of ECM mechanics and cytoskeletal tension as important regulators of cell function.
Peyton, Shelly R; Ghajar, Cyrus M; Khatiwala, Chirag B; Putnam, Andrew J
2007-01-01
The ability to harvest and maintain viable cells from mammalian tissues represented a critical advance in biomedical research, enabling individual cells to be cultured and studied in molecular detail. However, in these traditional cultures, cells are grown on rigid glass or polystyrene substrates, the mechanical properties of which often do not match those of the in vivo tissue from which the cells were originally derived. This mechanical mismatch likely contributes to abrupt changes in cellular phenotype. In fact, it has been proposed that mechanical changes in the cellular microenvironment may alone be responsible for driving specific cellular behaviors. Recent multidisciplinary efforts from basic scientists and engineers have begun to address this hypothesis more explicitly by probing the effects of ECM mechanics on cell and tissue function. Understanding the consequences of such mechanical changes is physiologically relevant in the context of a number of tissues in which altered mechanics may either correlate with or play an important role in the onset of pathology. Examples include changes in the compliance of blood vessels associated with atherosclerosis and intimal hyperplasia, as well as changes in the mechanical properties of developing tumors. Compelling evidence from 2-D in vitro model systems has shown that substrate mechanical properties induce changes in cell shape, migration, proliferation, and differentiation, but it remains to be seen whether or not these same effects translate to 3-D systems or in vivo. Furthermore, the molecular "mechanotransduction" mechanisms by which cells respond to changes in ECM mechanics remain unclear. Here, we provide some historical context for this emerging area of research, and discuss recent evidence that regulation of cytoskeletal tension by changes in ECM mechanics (either directly or indirectly) may provide a critical switch that controls cell function.
Abdyazdani, Nima; Nourazarian, Alireza; Nozad Charoudeh, Hojjatollah; Kazemi, Masoumeh; Feizy, Navid; Akbarzade, Maryam; Mehdizadeh, Amir; Rezaie, Jafar; Rahbarghazi, Reza
2017-01-01
A lack of comprehensive data exists on the effect of morphine on neural stem cell neuro-steroidogenesis and neuro-angiogenesis properties. We, herein, investigated the effects of morphine (100μM), naloxone (100μM) and their combination on rat neural stem cells viability, clonogenicity and Ki-67 expression over a period of 72h. Any alterations in the total fatty acids profile under treatment protocols were elucidated by direct transesterification method. We also monitored the expression of p53, aromatase and 5-alpha reductase by real-time PCR assay. To examine angiogenic capacity, in vitro tubulogenesis and the level of VE-cadherin transcript were investigated during neural to endothelial differentiation under the experimental procedure. Cells supplemented with morphine displayed reduced survival (p<0.01) and clonogenicity (p<0.001). Flow cytometric analysis showed a decrease in Ki-67 during 72h. Naloxone potentially blunted morphine-induced all effects. The normal levels of fatty acids, including saturated and unsaturated were altered by naloxone and morphine supplements. Following 48h, the up-regulation of p53, aromatase and 5-alpha reductase genes occurred in morphine-primed cells. Using three-dimensional culture models of angiogenesis and real time PCR assay, we showed morphine impaired the tubulogenesis properties of neural stem cells (p<0.001) by the inhibition of trans-differentiation into vascular cells and led to decrease of in VE-cadherin expression. Collectively, morphine strongly impaired the healthy status of neural stem cells by inducing p53 and concurrent elevation of aromatase and 5-alpha reductase activities especially during early 48h. Also, neural stem cells-being exposed to morphine lost their potency to elicit angiogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz
2015-10-14
Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).
Friedman, Mendel
2016-11-29
More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases.
Friedman, Mendel
2016-01-01
More than 2000 species of edible and/or medicinal mushrooms have been identified to date, many of which are widely consumed, stimulating much research on their health-promoting properties. These properties are associated with bioactive compounds produced by the mushrooms, including polysaccharides. Although β-glucans (homopolysaccharides) are believed to be the major bioactive polysaccharides of mushrooms, other types of mushroom polysaccharides (heteropolysaccharides) also possess biological properties. Here we survey the chemistry of such health-promoting polysaccharides and their reported antiobesity and antidiabetic properties as well as selected anticarcinogenic, antimicrobial, and antiviral effects that demonstrate their multiple health-promoting potential. The associated antioxidative, anti-inflammatory, and immunomodulating activities in fat cells, rodents, and humans are also discussed. The mechanisms of action involve the gut microbiota, meaning the polysaccharides act as prebiotics in the digestive system. Also covered here are the nutritional, functional food, clinical, and epidemiological studies designed to assess the health-promoting properties of polysaccharides, individually and as blended mixtures, against obesity, diabetes, cancer, and infectious diseases, and suggestions for further research. The collated information and suggested research needs might guide further studies needed for a better understanding of the health-promoting properties of mushroom polysaccharides and enhance their use to help prevent and treat human chronic diseases. PMID:28231175
Simple display system of mechanical properties of cells and their dispersion.
Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun
2012-01-01
The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.
Simple Display System of Mechanical Properties of Cells and Their Dispersion
Shimizu, Yuji; Kihara, Takanori; Haghparast, Seyed Mohammad Ali; Yuba, Shunsuke; Miyake, Jun
2012-01-01
The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM) nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others. PMID:22479595
Ko, Ching-Huai; Cheng, Chieh-Fang; Lai, Chin-Pen; Tzu, Te-Hui; Chiu, Chih-Wei; Lin, Mei-Wei; Wu, Si-Yuan; Sun, Chung-Yuan; Tseng, Hsiang-Wen; Wang, Chun-Chung; Kuo, Zong-Keng; Wang, Ling-Mei; Chen, Sung-Fang
2013-08-02
Malignant tumors are relatively resistant to treatment due to their heterogeneous nature, drug resistance, and tendency for metastasis. Recent studies suggest that a subpopulation of cancer cells is responsible for the malignant outcomes. These cells are considered as cancer stem cells (CSC). Although a number of molecules have been identified in different cancer cells as markers for cancer stem cells, no promising markers are currently available for hepatocellular carcinoma cells. In this study, two clones of Hep3B cell lines were functionally characterized as control or CSC-like cells, based on properties including spheroid formation, drug resistance, and tumor initiation. Furthermore, their protein expression profiles were investigated by isobaric tags for relative and absolute quantitation (iTRAQ), and a total of 1,127 proteins were identified and quantified from the combined fractions; 50 proteins exhibited at least 2-fold differences between these two clones. These 50 proteins were analyzed by GeneGo and were found to be associated with liver neoplasms, hepatocellular carcinoma (HCC), and liver diseases. They were also components of metabolic pathways, immune responses, and cytoskeleton remodeling. Among these proteins, the expressions of S100P, S100A14, and vimentin were verified in several HCC cell lines, and their expressions were correlated with tumorigenicity in HCC cell lines. The functional significance of vimentin and S100A14 were also investigated and verified.
Li-Ion polymer cells thermal property changes as a function of cycle-life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maleki, Hossein; Wang, Hsin; Porter, Wallace D
2014-01-01
The impact of elevated temperature chargeedischarge cycling on thermal conductivity (K-value) of Lithium Ion Polymer (LIP) cells of various chemistries from three different manufacturers was investigated. These included high voltage (Graphite/LiCoO2:3.0e4.35 V), wide voltage (Si:C/LiCoO2:2.7e4.35 V) and conventional (Graphite/LiCoO2:3.0e4.2 V) chemistries. Investigation results show limited variability within the in-plane and through-plane K-values for the fresh cells with graphite-based anodes from all three suppliers. After 500 cycles at 45 C, in-plane and through-plane K-values of the high voltage cells reduced less vs. those for the wide voltage cells. Such results suggest that high temperature cycling could have a greater impact onmore » thermal properties of Si:C cells than on the LIP cells with graphite (Gr) anode cells we tested. This difference is due to the excess swelling of Si:C-anode based cells vs. Gr-anode cells during cycling, especially at elevated temperatures. Thermal modeling is used to evaluate the impact of K-value changes, due to cycles at 45 C, on the cells internal heat propagation under internal short circuit condition that leads to localized meltdown of the separator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tréhoux, Solange; Duchêne, Bélinda; Jonckheere, Nicolas
Highlights: • Loss of MUC1 decreases proliferation and tumor growth via β-catenin and p42–44 MAPK. • Inhibition of MUC1 decreases cell migration and invasion through MMP13. • Loss of MUC1 decreases survival and increases apoptosis via Akt and Bcl-2 pathways. • Loss of MUC1 sensitizes cells to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. - Abstract: MUC1 is an oncogenic mucin overexpressed in several epithelial cancers, including pancreatic ductal adenocarcinoma, and is considered as a potent target for cancer therapy. To this aim, we undertook to study MUC1 biological effects on pancreatic cancer cells and identify pathways mediating these effects. Our inmore » vitro experiments indicate that inhibiting MUC1 expression decreases cell proliferation, cell migration and invasion, cell survival and increases cell apoptosis. Moreover, lack of MUC1 in these cells profoundly altered their sensitivity to gemcitabine and 5-Fluorouracil chemotherapeutic drugs. In vivo MUC1-KD cell xenografts in SCID mice grew slower. Altogether, we show that MUC1 oncogenic mucin alters proliferation, migration, and invasion properties of pancreatic cancer cells and that these effects are mediated by p42–44 MAPK, Akt, Bcl-2 and MMP13 pathways.« less
Biocompatibility of NiTi alloys in the cell behaviour.
Sevcikova, Jana; Pavkova Goldbergova, Monika
2017-04-01
Metallic biomaterial alloys composed of nickel and titanium have unique thermal shape memory, superelastic, and high damping properties, which are widely used in the medicine. The major parameter evaluated in the studies regarding the behaviour of the material in the contact with organism or cells is biocompatibility. The aim of the studies is to clarify the differences in the proliferation, growth, and morphology especially in the cell cultures. The cytotoxicity is affected among other by release of the metal ions in the presence of the metal alloy, which is further dependent on the possible treatments of the material and the corrosive properties. To evaluate the cytotoxicity, wide range of tests including the Sulforhodamine B assay and MTT tests, expression profiles, cell survival tests such as apoptotic test are used. The review compares the cell behaviour in contact with the material alloys composed of nickel and titanium with respect to different materials composition and different surface treatment that affects the ion release. Even though the results published so far are controversial, almost all data suggest sufficient biocompatibility in medical use.
As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells
NASA Astrophysics Data System (ADS)
Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili
2016-07-01
Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Miao; Zheng, Mingjing; Xu, Hanying
Various methods have been used to evaluate anti-fibrotic activity of drugs. However, most of them are complicated, labor-intensive and lack of efficiency. This study was intended to develop a rapid method for anti-fibrotic drugs screening based on biophysical properties. A549 cells in vitro were stimulated with transforming growth factor-β1 (TGF-β1), and fibrogenesis was confirmed by conventional immunological assays. Meanwhile, the alterations of cyto-biophysical properties including morphology, roughness and stiffness were measured utilizing atomic force microscopy (AFM). It was found that fibrogenesis was accompanied with changes of cellular biophysical properties. TGF-β1-stimulated A549 cells became remarkably longer, rougher and stiffer than the control.more » Then, the effect of N-acetyl-L-cysteine (NAC) as a positive drug on ameliorating fibrogenesis in TGF-β1-stimulated A549 cells was verified respectively by immunological and biophysical markers. The result of Principal Component Analysis showed that stiffness was a leading index among all biophysical markers during fibrogenesis. Salvianolic acid B (SalB), a natural anti-oxidant, was detected by AFM to protect TGF-β1-stimulated A549 cells against stiffening. Then, SalB treatment was provided in preventive mode on a rat model of bleomycin (BLM) -induced pulmonary fibrosis. The results showed that SalB treatment significantly ameliorated BLM-induced histological alterations, blocked collagen accumulations and reduced α-SMA expression in lung tissues. All these results revealed the anti-pulmonary fibrotic activity of SalB. Detection of cyto-biophysical properties were therefore recommended as a rapid method for anti-pulmonary fibrotic drugs screening. - Highlights: • Fibrogenesis was accompanied with the changes of cyto-biophysical properties. • Cyto-biophysical properties could be markers for anti-fibrotic drugs screening. • Stiffness is a leading index among all biophysical markers. • SalB was detected to protect TGF-β1-stimulated A549 cells against stiffening. • SalB treatment ameliorated pulmonary fibrosis induced by BLM in rats.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten
Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitablemore » for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.« less
Plasma deposited composite coatings to control biological response of osteoblast-like MG-63 cells
NASA Astrophysics Data System (ADS)
Keremidarska, M.; Radeva, E.; Eleršič, K.; Iglič, A.; Pramatarova, L.; Krasteva, N.
2014-12-01
The successful osseointegration of a bone implant is greatly dependent on its ability to support cellular adhesion and functions. Deposition of thin composite coatings onto the implant surface is a promising approach to improve interactions with cells without compromising implant bulk properties. In this work, we have developed composite coatings, based on hexamethyldisiloxane (HMDS) and detonation nanodiamond (DND) particles and have studied adhesion, growth and function of osteoblast-like MG-63 cells. PPHMDS/DND composites are of interest for orthopedics because they combine superior mechanical properties and good biocompatibility of DND with high adherence of HMDS to different substrata including glass, metals and plastics. We have used two approaches of the implementation of DND particles into a polymer matrix: pre-mixture of both components followed by plasma polymerization and layer-by-layer deposition of HMDS and DND particles and found that the deposition approach affects significantly the surface properties of the resulting layers and cell behaviour. The composite, prepared by subsequent deposition of monomer and DND particles was hydrophilic, with a rougher surface and MG-63 cells demonstrated better spreading, growth and function compared to the other composite which was hydrophobic with a smooth surface similarly to unmodified polymer. Thus, by varying the deposition approach, different PPHMDS/DND composite coatings, enhancing or inhibiting osteoblast adhesion and functions, can be obtained. In addition, the effect of fibronectin pre-adsorption was studied and was found to increase greatly MG-63 cell spreading.
Li, Wen; Zhang, Zhihui; Zhang, Kai; Xue, Zhenyi; Li, Yan; Zhang, Zimu; Zhang, Lijuan; Gu, Chao; Zhang, Qi; Hao, Junwei; Da, Yurong; Yao, Zhi; Kong, Ying; Zhang, Rongxin
2016-10-01
Arctigenin is a herb compound extract from Arctium lappa and is reported to exhibit pharmacological properties, including neuronal protection and antidiabetic, antitumor, and antioxidant properties. However, the effects of arctigenin on autoimmune inflammatory diseases of the CNS, multiple sclerosis (MS), and its animal model experimental autoimmune encephalomyelitis (EAE) are still unclear. In this study, we demonstrated that arctigenin-treated mice are resistant to EAE; the clinical scores of arctigenin-treated mice are significantly reduced. Histochemical assays of spinal cord sections also showed that arctigenin reduces inflammation and demyelination in mice with EAE. Furthermore, the Th1 and Th17 cells in peripheral immune organs are inhibited by arctigenin in vivo. In addition, the Th1 cytokine IFN-γ and transcription factor T-bet, as well as the Th17 cytokines IL-17A, IL-17F, and transcription factor ROR-γt are significantly suppressed upon arctigenin treatment in vitro and in vivo. Interestedly, Th17 cells are obviously inhibited in CNS of mice with EAE, while Th1 cells do not significantly change. Besides, arctigenin significantly restrains the differentiation of Th17 cells. We further demonstrate that arctigenin activates AMPK and inhibits phosphorylated p38, in addition, upregulates PPAR-γ, and finally suppresses ROR-γt. These findings suggest that arctigenin may have anti-inflammatory and immunosuppressive properties via inhibiting Th17 cells, indicating that it could be a potential therapeutic drug for multiple sclerosis or other autoimmune inflammatory diseases.
Engineering Stem Cells for Biomedical Applications.
Yin, Perry T; Han, Edward; Lee, Ki-Bum
2016-01-07
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunomodulatory and therapeutic properties of the Nigella sativa L. seed.
Salem, Mohamed Labib
2005-12-01
A larger number of medicinal plants and their purified constituents have been shown beneficial therapeutic potentials. Seeds of Nigella sativa, a dicotyledon of the Ranunculaceae family, have been employed for thousands of years as a spice and food preservative. The oil and seed constituents, in particular thymoquinine (TQ), have shown potential medicinal properties in traditional medicine. In view of the recent literature, this article lists and discusses different immunomodulatory and immunotherapeutic potentials for the crude oil of N. sativa seeds and its active ingredients. The published findings provide clear evidence that both the oil and its active ingredients, in particular TQ, possess reproducible anti-oxidant effects through enhancing the oxidant scavenger system, which as a consequence lead to antitoxic effects induced by several insults. The oil and TQ have shown also potent anti-inflammatory effects on several inflammation-based models including experimental encephalomyelitis, colitis, peritonitis, oedama, and arthritis through suppression of the inflammatory mediators prostaglandins and leukotriens. The oil and certain active ingredients showed beneficial immunomodulatory properties, augmenting the T cell- and natural killer cell-mediated immune responses. Most importantly, both the oil and its active ingredients expressed anti-microbial and anti-tumor properties toward different microbes and cancers. Coupling these beneficial effects with its use in folk medicine, N. sativa seed is a promising source for active ingredients that would be with potential therapeutic modalities in different clinical settings. The efficacy of the active ingredients, however, should be measured by the nature of the disease. Given their potent immunomodulatory effects, further studies are urgently required to explore bystander effects of TQ on the professional antigen presenting cells, including macrophages and dendritic cells, as well as its modulatory effects upon Th1- and Th2-mediated inflammatory immune diseases. Ultimately, results emerging from such studies will substantially improve the immunotherapeutic application of TQ in clinical settings.
NASA Astrophysics Data System (ADS)
Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.
2013-03-01
Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.
Dolgova, Evgeniya V; Potter, Ekaterina A; Proskurina, Anastasiya S; Minkevich, Alexandra M; Chernych, Elena R; Ostanin, Alexandr A; Efremov, Yaroslav R; Bayborodin, Sergey I; Nikolin, Valeriy P; Popova, Nelly A; Kolchanov, Nikolay A; Bogachev, Sergey S
2016-05-25
Previously, we demonstrated that poorly differentiated cells of various origins, including tumor-initiating stem cells present in the ascites form of mouse cancer cell line Krebs-2, are capable of naturally internalizing both linear double-stranded DNA and circular plasmid DNA. The method of co-incubating Krebs-2 cells with extracellular plasmid DNA (pUC19) or TAMRA-5'-dUTP-labeled polymerase chain reaction (PCR) product was used. It was found that internalized plasmid DNA isolated from Krebs-2 can be transformed into competent Escherichia coli cells. Thus, the internalization processes taking place in the Krebs-2 cell subpopulation have been analyzed and compared, as assayed by E. coli colony formation assay (plasmid DNA) and cytofluorescence (TAMRA-DNA). We showed that extracellular DNA both in the form of plasmid DNA and a PCR product is internalized by the same subpopulation of Krebs-2 cells. We found that the saturation threshold for Krebs-2 ascites cells is 0.5 μg DNA/10(6) cells. Supercoiled plasmid DNA, human high-molecular weight DNA, and 500 bp PCR fragments are internalized into the Krebs-2 tumor-initiating stem cells via distinct, non-competing internalization pathways. Under our experimental conditions, each cell may harbor 340-2600 copies of intact plasmid material, or up to 3.097 ± 0.044×10(6) plasmid copies (intact or not), as detected by quantitative PCR. The internalization dynamics of extracellular DNA, copy number of the plasmids taken up by the cells, and competition between different types of double-stranded DNA upon internalization into tumor-initiating stem cells of mouse ascites Krebs-2 have been comprehensively analyzed. Investigation of the extracellular DNA internalization into tumor-initiating stem cells is an important part of understanding their properties and possible destruction mechanisms. For example, a TAMRA-labeled DNA probe may serve as an instrument to develop a target for the therapy of cancer, aiming at elimination of tumor stem cells, as well as developing a straightforward test system for the quantification of poorly differentiated cells, including tumor-initiating stem cells, in the bulk tumor sample (biopsy or surgery specimen).
Biological and Pathological Activities of Interleukin-22
Lanfranca, Mirna Perusina; Lin, Yanwei; Fang, Jingyuan; Zou, Weiping; Frankel, Timothy
2016-01-01
Interleukin (IL)-22, a member of the IL-10 family, is a cytokine secreted by several types of immune cells including IL-22+CD4+ T cells (Th22) and IL-22 expressing innate leukocytes (ILC22). Recent studies have demonstrated that IL-22 is a key component in mucosal barrier defense, tissue repair, epithelial cell survival and proliferation. Furthermore, accumulating evidence has defined both protective and pathogenic properties of IL-22 in a number of conditions including autoimmune disease, infection and malignancy. In this Review we summarize the expression and signaling pathway and functional characteristics of the IL-22 and IL-22 receptor axis in physiological and pathological scenarios, and discuss the potential to target IL-22 signaling to treat human diseases. PMID:26923718
NASA Astrophysics Data System (ADS)
Li, Dong-Peng; Wang, Zhao-Yang; Cui, Jie; Wang, Xin; Miao, Jun-Ying; Zhao, Bao-Xiang
2017-03-01
A new ratiometric fluorescent probe was constructed with hemicyanine and 7-nitrobenzofurazan for detection of sulfur dioxide derivatives (HSO3-/SO32-). The ratiometric response mode could be attributed to the efficient FRET (Förster resonance energy transfer) platform. The probe exbihited some desirable properties including fast response (within 2 minutes), good selectivity and high sensitivity. Moreover, the probe could detect endogenous HSO3- in liver cancer cells rather than normal liver cells, implying the diagnosal potential of the probe.
Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films
NASA Astrophysics Data System (ADS)
Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine
2007-03-01
In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media).
Electrical excitability: a spectrum of properties in the progeny of a single embryonic neuroblast.
Goodman, C S; Pearson, K G; Spitzer, N C
1980-01-01
We have examined the range of some properties of the progeny of a single embryonic precursor cell in the grasshopper. The approximately 100 progeny of this single neuroblast share certain features such as their transmitter and some aspects of their morphology; at the same time, however, they demonstrate a broad spectrum of electrical properties, from spiking to non-spiking neurons. The first-born progeny are spiking neurons with peripheral axons. Many of the progeny, including all of the last-born, do not generate action potentials. The nonspiking progeny are local intraganglionic neurons and appear to compose a major proportion of the progeny of this neuroblast. All of the nonspiking neurons have calcium inward current channels and can make action potentials when outward current channels are blocked. We propose a model for grasshopper neurogenesis based on cell lineage such that (i) certain features (e.g., transmitter) are shared by the progeny of all cell divisions from a single neuroblast, and (ii) other features (e.g., electrical properties) are shared by the progeny of a given birth position (e.g., first versus last born) from all of the neuroblasts. According to this model, the first-born progeny from all neuroblasts are spiking neurons, whereas the last-born are nonspiking. Images PMID:6246499
NASA Astrophysics Data System (ADS)
Ding, Shoujun; Zhang, Haotian; Zhang, Qingli; Chen, Yuanzhi; Dou, Renqin; Peng, Fang; Liu, Wenpeng; Sun, Dunlu
2018-06-01
In this work, GdNbO4 polycrystalline with monoclinic phase was prepared by traditional high-temperature solid-state reaction. Its structure was determined by X-ray diffraction and its unit cell parameters were obtained with Rietveld refinement method. Its luminescence properties (including absorbance, emission and luminescence lifetime) were investigated with experiment method and the CIE chromaticity coordinate was presented. Furthermore, a systematic theoretical calculation (including band gap, density of states and optical properties) based on the density function theory methods was performed on GdNbO4. Lastly, a comparison between experiment and calculated results was conducted. The calculated and experiment results obtained in this work can provide an essential understanding of GdNbO4 material.
Wingstrand, Vibe Lindeblad; Jensen, David H.; Bork, Kristian; Sebbesen, Lars; Balle, Jesper; Fischer-Nielsen, Anne; von Buchwald, Christian
2016-01-01
Objectives Therapy with mesenchymal stem cells exhibits potential for the development of novel interventions for many diseases and injuries. The use of mesenchymal stem cells in regenerative therapy for vocal fold scarring exhibited promising results to reduce stiffness and enhance the biomechanical properties of injured vocal folds. This study evaluated the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring. Data Sources PubMed, Embase, the Cochrane Library and Google Scholar were searched. Methods Controlled studies that assessed the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring were included. Primary outcomes were viscoelastic properties and mucosal wave amplitude. Results Seven preclinical animal studies (n = 152 single vocal folds) were eligible for inclusion. Evaluation of viscoelastic parameters revealed a decreased dynamic viscosity (η’) and elastic modulus (G’), i.e., decreased resistance and stiffness, in scarred vocal folds treated with mesenchymal stem cells compared to non-treated scarred vocal folds. Mucosal wave amplitude was increased in scarred vocal folds treated with mesenchymal stem cells vs. non-treated scarred vocal folds. Conclusion The results from these studies suggest an increased regenerative effect of therapy with mesenchymal stem cells for scarred vocal folds and are encouraging for further clinical studies. PMID:27631373
Wingstrand, Vibe Lindeblad; Grønhøj Larsen, Christian; Jensen, David H; Bork, Kristian; Sebbesen, Lars; Balle, Jesper; Fischer-Nielsen, Anne; von Buchwald, Christian
2016-01-01
Therapy with mesenchymal stem cells exhibits potential for the development of novel interventions for many diseases and injuries. The use of mesenchymal stem cells in regenerative therapy for vocal fold scarring exhibited promising results to reduce stiffness and enhance the biomechanical properties of injured vocal folds. This study evaluated the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring. PubMed, Embase, the Cochrane Library and Google Scholar were searched. Controlled studies that assessed the biomechanical effects of mesenchymal stem cell therapy for the treatment of vocal fold scarring were included. Primary outcomes were viscoelastic properties and mucosal wave amplitude. Seven preclinical animal studies (n = 152 single vocal folds) were eligible for inclusion. Evaluation of viscoelastic parameters revealed a decreased dynamic viscosity (η') and elastic modulus (G'), i.e., decreased resistance and stiffness, in scarred vocal folds treated with mesenchymal stem cells compared to non-treated scarred vocal folds. Mucosal wave amplitude was increased in scarred vocal folds treated with mesenchymal stem cells vs. non-treated scarred vocal folds. The results from these studies suggest an increased regenerative effect of therapy with mesenchymal stem cells for scarred vocal folds and are encouraging for further clinical studies.
NASA Astrophysics Data System (ADS)
Rezvanpanah, Elham; Ghaffarian Anbaran, S. Reza
2017-11-01
This study establishes a model and simulation scheme to describe the effect of crystallinity as one of the most effective parameters on cell growth phenomena in a solid batch foaming process. The governing model of cell growth dynamics, based on the well-known ‘Cell model’, is attained in details. To include the effect of crystallinity in the model, the properties of the polymer/gas mixtures (i.e. solubility, diffusivity, surface tension and viscosity) are estimated by modifying relations to consider the effect of crystallinity. A finite element-finite difference (FEFD) method is employed to solve the highly nonlinear and coupled equations of cell growth dynamics. The proposed simulation is able to evaluate all properties of the system at the given process condition and uses them to calculate the cell size, pressure and gas concentration gradient with time. A high-density polyethylene/nitrogen (HDPE/N2) system is used herein as a case study. Comparing the simulation results with the others works and experimental results verify the accuracy of the simulation scheme. The cell growth is a complicated combination of several phenomena. This study attempted to reach a better understanding of cell growth trend, driving and retarding forces and the effect of crystallinity on them.
NASA Astrophysics Data System (ADS)
Lu, Huijie; Peng, Zhangli
2017-11-01
We developed a high-efficiency multiscale modeling method to predict the stress and deformation of cells during the interactions with their microenvironments in microcirculation and microfluidics, including red blood cells (RBCs) and circulating tumor cells (CTCs). There are more than 1 billion people in the world suffering from RBC diseases. The mechanical properties of RBCs are changed in these diseases due to molecular structure alternations, which is not only important for understanding the disease pathology but also provides an opportunity for diagnostics. On the other hand, the mechanical properties of cancer cells are also altered compared to healthy cells. This can lead to acquired ability to cross the narrow capillary networks and endothelial gaps, which is crucial for metastasis, the leading cause of cancer mortality. Therefore, it is important to predict the deformation and stress of RBCs and CTCs in microcirculations. We develop a high-efficiency multiscale model of cell-fluid interaction. We pass the information from our molecular scale models to the cell scale to study the effect of molecular mutations. Using our high-efficiency boundary element methods of fluids, we will be able to run 3D simulations using a single CPU within several hours, which will enable us to run extensive parametric studies and optimization.
Gatti, Monica; Wurth, Roberto; Vito, Guendalina; Pattarozzi, Alessandra; Campanella, Chiara; Thellung, Stefano; Maniscalco, Lorella; De Maria, Raffaella; Villa, Valentina; Corsaro, Alessandro; Nizzari, Mario; Bajetto, Adriana; Ratto, Alessandra; Ferrari, Angelo; Barbieri, Federica; Florio, Tullio
2016-05-01
Cancer stem cells (CSCs) represent a small subpopulation of cells responsible for tumor formation and progression, drug resistance, tumor recurrence and metastasization. CSCs have been identified in many human tumors including osteosarcoma (OSA). CSC distinctive properties are the expression of stem cell markers, sustained growth, self-renewal and tumorigenicity. Here we report the isolation of stem-like cells from two canine OSA cultures, characterized by self-renewal, evaluated by sphere formation ability, differential marker expression, and in vitro proliferation when cultured in a medium containing EGF and bFGF. Current therapies for OSA increased survival time, but prognosis remains poor, due to the development of drug resistance and metastases. Chemotherapy shrinks the tumor mass but CSCs remain unaffected, leading to tumor recurrence. Metformin, a drug for type 2 diabetes, has been shown to possess antitumor properties affecting CSC survival in different human and animal cancers. Here we show that metformin has a significant antiproliferative effect on canine OSA stem-like cells, validating this in vitro model for further pre-clinical drug evaluations. In conclusion, our results demonstrate the feasibility of obtaining CSC-enriched cultures from primary canine OSA cells as a promising model for biological and pharmacological studies of canine and human OSAs.
NASA Astrophysics Data System (ADS)
Lee, Young Ju; Ahn, Hyung Joon; Lee, Gi-Ja; Jung, Gyeong Bok; Lee, Gihyun; Kim, Dohyun; Shin, Jae-Ho; Jin, Kyung-Hyun; Park, Hun-Kuk
2015-07-01
The study was to investigate the changes in biochemical properties of activated mature CD8+ T cells related to apoptosis at a molecular level. We confirmed the activation and apoptosis of CD8+ T cells by fluorescence-activated cell sorting and atomic force microscopy and then performed Raman spectral measurements on activated mature CD8+ T cells and cellular deoxyribose nucleic acid (DNA). In the activated mature CD8+ T cells, there were increases in protein spectra at 1002 and 1234 cm-1. In particular, to assess the apoptosis-related DNA spectral signatures, we investigated the spectra of the cellular DNA isolated from resting and activated mature CD8+ T cells. Raman spectra at 765 to 786 cm-1 and 1053 to 1087 cm-1 were decreased in activated mature DNA. In addition, we analyzed Raman spectrum using the multivariate statistical method including principal component analysis. Raman spectra of activated mature DNA are especially well-discriminated from those of resting DNA. Our findings regarding the biochemical and structural changes associated with apoptosis in activated mature T cells and cellular DNA according to Raman spectroscopy provide important insights into allospecific immune responses generated after organ transplantation, and may be useful for therapeutic manipulation of the immune response.
Functional role of DNA mismatch repair gene PMS2 in prostate cancer cells.
Fukuhara, Shinichiro; Chang, Inik; Mitsui, Yozo; Chiyomaru, Takeshi; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Gill, Ankurpreet; Wong, Darryn K; Shiina, Hiroaki; Nonomura, Norio; Lau, Yun-Fai C; Dahiya, Rajvir; Tanaka, Yuichiro
2015-06-30
DNA mismatch repair (MMR) enzymes act as proofreading complexes that maintains genomic integrity and MMR-deficient cells show an increased mutation rate. MMR has also been shown to influence cell signaling and the regulation of tumor development. MMR consists of various genes and includes post-meiotic segregation (PMS) 2 which is a vital component of mutL-alpha. In prostate, the functional role of this gene has never been reported and in this study, our aim was to investigate the effect of PMS2 on growth properties of prostate cancer (PCa) cells. Previous studies have shown PMS2 to be deficient in DU145 cells and this lack of expression was confirmed by Western blotting whereas normal prostatic PWR-1E and RWPE-1 cells expressed this gene. PMS2 effects on various growth properties of DU145 were then determined by creating stable gene transfectants. Interestingly, PMS2 caused decreased cell proliferation, migration, invasion, and in vivo growth; and increased apoptosis as compared to vector control. We further analyzed genes affected by PMS2 expression and observe the apoptosis-related TMS1 gene to be significantly upregulated whereas anti-apoptotic BCL2A1 was downregulated. These results demonstrate a functional role for PMS2 to protect against PCa progression by enhancing apoptosis of PCa cells.
Guo, Rongrong; Zhang, Shasha; Xiao, Miao; Qian, Fuping; He, Zuhong; Li, Dan; Zhang, Xiaoli; Li, Huawei; Yang, Xiaowei; Wang, Ming; Chai, Renjie; Tang, Mingliang
2016-11-01
In order to govern cell-specific behaviors in tissue engineering for neural repair and regeneration, a better understanding of material-cell interactions, especially the bioelectric functions, is extremely important. Graphene has been reported to be a potential candidate for use as a scaffold and neural interfacing material. However, the bioelectric evolvement of cell membranes on these conductive graphene substrates remains largely uninvestigated. In this study, we used a neural stem cell (NSC) model to explore the possible changes in membrane bioelectric properties - including resting membrane potentials and action potentials - and cell behaviors on graphene films under both proliferation and differentiation conditions. We used a combination of single-cell electrophysiological recordings and traditional cell biology techniques. Graphene did not affect the basic membrane electrical parameters (capacitance and input resistance), but resting membrane potentials of cells on graphene substrates were more strongly negative under both proliferation and differentiation conditions. Also, NSCs and their progeny on graphene substrates exhibited increased firing of action potentials during development compared to controls. However, graphene only slightly affected the electric characterizations of mature NSC progeny. The modulation of passive and active bioelectric properties on the graphene substrate was accompanied by enhanced NSC differentiation. Furthermore, spine density, synapse proteins expressions and synaptic activity were all increased in graphene group. Modeling of the electric field on conductive graphene substrates suggests that the electric field produced by the electronegative cell membrane is much higher on graphene substrates than that on control, and this might explain the observed changes of bioelectric development by graphene coupling. Our results indicate that graphene is able to accelerate NSC maturation during development, especially with regard to bioelectric evolvement. Our findings provide a fundamental understanding of the role of conductive materials in tuning the membrane bioelectric properties in a graphene model and pave the way for future studies on the development of methods and materials for manipulating membrane properties in a controllable way for NSC-based therapies. Copyright © 2016 Elsevier Ltd. All rights reserved.
3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.
Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A
2017-01-01
We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor tissue is composed by malignant cells surviving in a microenvironment, or stroma. Stroma plays a pivotal role in cancer progression. Current in vitro models, i.e. spheroids, can't replicate the phenomena related to the tumor stroma remodeling. For this reason, to better replicate the tumor physiology in vitro that include functional and morphological changes, a novel 3D cancer model is proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Matsuda, Tomoki; Nagai, Takeharu
2014-12-01
Unlike in vitro protein dynamics, intracellular protein dynamics are intricately regulated by protein-protein interactions or interactions between proteins and other cellular components, including nucleic acids, the plasma membrane and the cytoskeleton. Alteration of these dynamics plays a crucial role in physiological phenomena such as gene expression and cell division. Live-cell imaging via microscopy with the inherent properties of fluorescent proteins, i.e. photobleaching and photoconversion, or fluorescence correlation spectroscopy, provides insight into the movement of proteins and their interactions with cellular components. This article reviews techniques based on photo-induced changes in the physicochemical properties of fluorescent proteins to measure protein dynamics inside living cells, and it also discusses the strengths and weaknesses of these techniques. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells
NASA Astrophysics Data System (ADS)
Gokmen, Tayfun; Gunawan, Oki; Mitzi, David B.
2014-07-01
We present a device model for the hydrazine processed kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cell with a world record efficiency of ˜12.6%. Detailed comparison of the simulation results, performed using wxAMPS software, to the measured device parameters shows that our model captures the vast majority of experimental observations, including VOC, JSC, FF, and efficiency under normal operating conditions, and temperature vs. VOC, sun intensity vs. VOC, and quantum efficiency. Moreover, our model is consistent with material properties derived from various techniques. Interestingly, this model does not have any interface defects/states, suggesting that all the experimentally observed features can be accounted for by the bulk properties of CZTSSe. An electrical (mobility) gap that is smaller than the optical gap is critical to fit the VOC data. These findings point to the importance of tail states in CZTSSe solar cells.
Morphological and physical behavior of styrenic, phosphonium-containing ionomers
NASA Astrophysics Data System (ADS)
Beyer, Rick; Stokes, Kristoffer
2010-03-01
Despite many years of effort, a clear understanding of the factors controlling morphology in Nafion and other ionomers has not been achieved. The increasing need for fuel cell technology continues to drive efforts to develop materials having better performance characteristics even though fundamental structure-property relationships remain unclarified. Alkaline fuel cells (AFCs) present several benefits over proton exchange membrane (PEM) fuel cells, including cost of manufacture (less expensive catalysts) and a significantly shorter path to commercialization. Here we present the most recent findings from our efforts to examine structure-morphology-property relationships for a series of model cationic ionomers. A series of statistical copolymers of styrene and p-vinylbenzyl-trimethyl-phosphonium chloride have been prepared via RAFT polymerization, allowing us to investigate the effect of ion content on physical behavior. Chemical, physical, and morphological characterization has been undertaken using NMR, TGA, DSC, SAXS, and TEM.
Son, JoonGon; Kim, GeunHyung
2009-01-01
Various mechanical techniques have been used to fabricate biomedical scaffolds, including rapid prototyping (RP) devices that operate from CAD files of the target feature information. The three-dimensional (3-D) bio-plotter is one RP system that can produce design-based scaffolds with good mechanical properties for mimicking cartilage and bones. However, the scaffolds fabricated by RP have very smooth surfaces, which tend to discourage initial cell attachment. Initial cell attachment, migration, differentiation and proliferation are strongly dependent on the chemical and physical characteristics of the scaffold surface. In this study, we propose a new 3-D plotting method supplemented with a piezoelectric system for fabricating surface-modified scaffolds. The effects of the physically-modified surface on the mechanical and hydrophilic properties were investigated, and the results of cell culturing of chondrocytes indicate that this technique is a feasible new method for fabricating high-quality 3-D polymeric scaffolds.
Protonophore properties of hyperforin are essential for its pharmacological activity.
Sell, Thomas S; Belkacemi, Thabet; Flockerzi, Veit; Beck, Andreas
2014-12-16
Hyperforin is a pharmacologically active component of the medicinal plant Hypericum perforatum (St. John's wort), recommended as a treatment for a range of ailments including mild to moderate depression. Part of its action has been attributed to TRPC6 channel activation. We found that hyperforin induces TRPC6-independent H(+) currents in HEK-293 cells, cortical microglia, chromaffin cells and lipid bilayers. The latter demonstrates that hyperforin itself acts as a protonophore. The protonophore activity of hyperforin causes cytosolic acidification, which strongly depends on the holding potential, and which fuels the plasma membrane sodium-proton exchanger. Thereby the free intracellular sodium concentration increases and the neurotransmitter uptake by Na(+) cotransport is inhibited. Additionally, hyperforin depletes and reduces loading of large dense core vesicles in chromaffin cells, which requires a pH gradient in order to accumulate monoamines. In summary the pharmacological actions of the "herbal Prozac" hyperforin are essentially determined by its protonophore properties shown here.
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K W
2016-10-01
Origami-based design holds promise for developing new mechanical metamaterials whose overall kinematic and mechanical properties can be programmed using purely geometric criteria. In this article, we demonstrate that the deformation of a generic degree-four vertex (4-vertex) origami cell is a combination of contracting, shearing, bending, and facet-binding. The last three deformation mechanisms are missing in the current rigid-origami metamaterial investigations, which focus mainly on conventional Miura-ori patterns. We show that these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns as well as extraordinary kinematical and mechanical properties, including self-locking, tridirectional negative Poisson's ratios, flipping of stiffness profiles, and emerging shearing stiffness. This study reveals that the 4-vertex cells offer a better platform and greater design space for developing origami-based mechanical metamaterials than the conventional Miura-ori cell.
NASA Astrophysics Data System (ADS)
Fang, Hongbin; Li, Suyi; Ji, Huimin; Wang, K. W.
2016-10-01
Origami-based design holds promise for developing new mechanical metamaterials whose overall kinematic and mechanical properties can be programmed using purely geometric criteria. In this article, we demonstrate that the deformation of a generic degree-four vertex (4-vertex) origami cell is a combination of contracting, shearing, bending, and facet-binding. The last three deformation mechanisms are missing in the current rigid-origami metamaterial investigations, which focus mainly on conventional Miura-ori patterns. We show that these mechanisms provide the 4-vertex origami sheets and blocks with new deformation patterns as well as extraordinary kinematical and mechanical properties, including self-locking, tridirectional negative Poisson's ratios, flipping of stiffness profiles, and emerging shearing stiffness. This study reveals that the 4-vertex cells offer a better platform and greater design space for developing origami-based mechanical metamaterials than the conventional Miura-ori cell.
The Iron Metallome in Eukaryotic Organisms
Dlouhy, Adrienne C.; Outten, Caryn E.
2013-01-01
This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels. PMID:23595675
Ng, Chew Hee; Kong, King Chow; Von, Sze Tin; Balraj, Pauline; Jensen, Paul; Thirthagiri, Eswary; Hamada, Hirokazu; Chikira, Makoto
2008-01-28
A series of ternary metal(ii) complexes {M(phen)(edda); 1a (Cu), 1b (Co), 1c (Zn), 1d (Ni); H(2)edda = N,N(')-ethylenediaminediacetic acid} of N,N'-ethylene-bridged diglycine and 1,10-phenanthroline were synthesized and characterized by elemental analysis, FTIR, UV-visible spectroscopy and magnetic susceptibility measurement. The interaction of these complexes with DNA was investigated using CD and EPR spectroscopy. MTT assay results of 1a-1c , screened on MCF-7 cancer cell lines, show that synergy between the metal and ligands results in significant enhancement of their antiproliferative properties. Preliminary results from apoptosis and cell cycle analyses with flow cytometry are reported. seems to be able to induce cell cycle arrest at G(0)/G(1). The crystal structure of 1a is also included.
Design of biomimetic cellular scaffolds for co-culture system and their application.
Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun
2017-01-01
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.
Primary brain tumors, neural stem cell, and brain tumor cancer cells: where is the link?
Germano, Isabelle; Swiss, Victoria; Casaccia, Patrizia
2010-01-01
The discovery of brain tumor-derived cells (BTSC) with the properties of stem cells has led to the formulation of the hypothesis that neural stem cells could be the cell of origin of primary brain tumors (PBT). In this review we present the most common molecular changes in PBT, define the criteria of identification of BTSC and discuss the similarities between the characteristics of these cells and those of the endogenous population of neural stem cells (NPCs) residing in germinal areas of the adult brain. Finally, we propose possible mechanisms of cancer initiation and progression and suggest a model of tumor initiation that includes intrinsic changes of resident NSC and potential changes in the microenvironment defining the niche where the NSC reside. PMID:20045420
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D.
2015-01-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Nav1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Nav1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Nav1.8 channels. We also show that native human DRG neurons recapitulate these properties of Nav1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Nav1.8, which contribute to the firing properties of human DRG neurons. PMID:25787950
Han, Chongyang; Estacion, Mark; Huang, Jianying; Vasylyev, Dymtro; Zhao, Peng; Dib-Hajj, Sulayman D; Waxman, Stephen G
2015-05-01
Although species-specific differences in ion channel properties are well-documented, little has been known about the properties of the human Nav1.8 channel, an important contributor to pain signaling. Here we show, using techniques that include voltage clamp, current clamp, and dynamic clamp in dorsal root ganglion (DRG) neurons, that human Na(v)1.8 channels display slower inactivation kinetics and produce larger persistent current and ramp current than previously reported in other species. DRG neurons expressing human Na(v)1.8 channels unexpectedly produce significantly longer-lasting action potentials, including action potentials with half-widths in some cells >10 ms, and increased firing frequency compared with the narrower and usually single action potentials generated by DRG neurons expressing rat Na(v)1.8 channels. We also show that native human DRG neurons recapitulate these properties of Na(v)1.8 current and the long-lasting action potentials. Together, our results demonstrate strikingly distinct properties of human Na(v)1.8, which contribute to the firing properties of human DRG neurons.
Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.
Ding, Changqin; Zhu, Anwei; Tian, Yang
2014-01-21
Nanoparticles are promising scaffolds for applications such as imaging, chemical sensors and biosensors, diagnostics, drug delivery, catalysis, energy, photonics, medicine, and more. Surface functionalization of nanoparticles introduces an additional dimension in controlling nanoparticle interfacial properties and provides an effective bridge to connect nanoparticles to biological systems. With fascinating photoluminescence properties, carbon dots (C-dots), carbon-containing nanoparticles that are attracting considerable attention as a new type of quantum dot, are becoming both an important class of imaging probes and a versatile platform for engineering multifunctional nanosensors. In order to transfer C-dots from proof-of-concept studies toward real world applications such as in vivo bioimaging and biosensing, careful design and engineering of C-dot probes is becoming increasingly important. A comprehensive knowledge of how C-dot surfaces with various properties behave is essential for engineering C-dots with useful imaging properties such as high quantum yield, stability, and low toxicity, and with desirable biosensing properties such as high selectivity, sensitivity, and accuracy. Several reviews in recent years have reported preparation methods and properties of C-dots and described their application in biosensors, catalysis, photovoltatic cells, and more. However, no one has yet systematically summarized the surface engineering of C-dots, nor the use of C-dots as fluorescent nanosensors or probes for in vivo imaging in cells, tissues, and living organisms. In this Account, we discuss the major design principles and criteria for engineering the surface functionality of C-dots for biological applications. These criteria include brightness, long-term stability, and good biocompatibility. We review recent developments in designing C-dot surfaces with various functionalities for use as nanosensors or as fluorescent probes with fascinating analytical performance, and we emphasize applications in bioimaging and biosensing in live cells, tissues, and animals. In addition, we highlight our work on the design and synthesis of a C-dot ratiometric biosensor for intracellular Cu(2+) detection, and a twophoton fluorescent probe for pH measurement in live cells and tissues. We conclude this Account by outlining future directions in engineering the functional surface of C-dots for a variety of in vivo imaging applications, including dots with combined targeting, imaging and therapeutic-delivery capabilities, or high-resolution multiplexed vascular imaging. With each application C-dots should open new horizons of multiplexed quantitative detection, high-resolution fluorescence imaging, and long-term, real-time monitoring of their target.
Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction.
Miyahara, Yoshinori; Nagaya, Noritoshi; Kataoka, Masaharu; Yanagawa, Bobby; Tanaka, Koichi; Hao, Hiroyuki; Ishino, Kozo; Ishida, Hideyuki; Shimizu, Tatsuya; Kangawa, Kenji; Sano, Shunji; Okano, Teruo; Kitamura, Soichiro; Mori, Hidezo
2006-04-01
Mesenchymal stem cells are multipotent cells that can differentiate into cardiomyocytes and vascular endothelial cells. Here we show, using cell sheet technology, that monolayered mesenchymal stem cells have multipotent and self-propagating properties after transplantation into infarcted rat hearts. We cultured adipose tissue-derived mesenchymal stem cells characterized by flow cytometry using temperature-responsive culture dishes. Four weeks after coronary ligation, we transplanted the monolayered mesenchymal stem cells onto the scarred myocardium. After transplantation, the engrafted sheet gradually grew to form a thick stratum that included newly formed vessels, undifferentiated cells and few cardiomyocytes. The mesenchymal stem cell sheet also acted through paracrine pathways to trigger angiogenesis. Unlike a fibroblast cell sheet, the monolayered mesenchymal stem cells reversed wall thinning in the scar area and improved cardiac function in rats with myocardial infarction. Thus, transplantation of monolayered mesenchymal stem cells may be a new therapeutic strategy for cardiac tissue regeneration.
Asynchronous Replication and Autosome-Pair Non-Equivalence in Human Embryonic Stem Cells
Dutta, Devkanya; Ensminger, Alexander W.; Zucker, Jacob P.; Chess, Andrew
2009-01-01
A number of mammalian genes exhibit the unusual properties of random monoallelic expression and random asynchronous replication. Such exceptional genes include genes subject to X inactivation and autosomal genes including odorant receptors, immunoglobulins, interleukins, pheromone receptors, and p120 catenin. In differentiated cells, random asynchronous replication of interspersed autosomal genes is coordinated at the whole chromosome level, indicative of chromosome-pair non-equivalence. Here we have investigated the replication pattern of the random asynchronously replicating genes in undifferentiated human embryonic stem cells, using fluorescence in situ hybridization based assay. We show that allele-specific replication of X-linked genes and random monoallelic autosomal genes occur in human embryonic stem cells. The direction of replication is coordinated at the whole chromosome level and can cross the centromere, indicating the existence of autosome-pair non-equivalence in human embryonic stem cells. These results suggest that epigenetic mechanism(s) that randomly distinguish between two parental alleles are emerging in the cells of the inner cell mass, the source of human embryonic stem cells. PMID:19325893
From immunotoxicity to nanotherapy: the effects of nanomaterials on the immune system.
Smith, Matthew J; Brown, Jared M; Zamboni, William C; Walker, Nigel J
2014-04-01
The potential for human exposure to the diverse and ever-changing world of nanoscale materials has raised concerns about their influence on health and disease. The novel physical and chemical properties of these materials, which are associated with their small size, complicate toxicological evaluations. Further, these properties may make engineered nanomaterials (ENMs) a prime target for interaction with the immune system following uptake by phagocytes. Undesired effects on antigen-presenting cells and other phagocytic cells are of concern due to the high likelihood of ENM uptake by these cells. In addition, ENM interactions with lymphocytes and other cell types can contribute to a varied spectrum of possible effects, including inflammation, hypersensitivity, and immunomodulation. Furthermore, the mast cell (a type of immune cell traditionally associated with allergy) appears to contribute to certain inflammatory and toxic effects associated with some ENMs. Although incidental exposure may be undesirable, nanomedicines engineered for various clinical applications provide opportunities to develop therapies that may or may not intentionally target the immune system. The interaction between ENMs and the immune system and the resulting pharmacokinetic and phenotypic responses are critical factors that dictate the balance between toxicity and clinical efficacy of nanotherapeutics.
Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;
NASA Astrophysics Data System (ADS)
Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil
2017-09-01
In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.
Muessig, L; Hauser, J; Wills, T J; Cacucci, F
2016-08-01
Place cells are hippocampal pyramidal cells that are active when an animal visits a restricted area of the environment, and collectively their activity constitutes a neural representation of space. Place cell populations in the adult rat hippocampus display fundamental properties consistent with an associative memory network: the ability to 1) generate new and distinct spatial firing patterns when encountering novel spatial contexts or changes in sensory input ("remapping") and 2) reinstate previously stored firing patterns when encountering a familiar context, including on the basis of an incomplete/degraded set of sensory cues ("pattern completion"). To date, it is unknown when these spatial memory responses emerge during brain development. Here, we show that, from the age of first exploration (postnatal day 16) onwards, place cell populations already exhibit these key features: they generate new representations upon exposure to a novel context and can reactivate familiar representations on the basis of an incomplete set of sensory cues. These results demonstrate that, as early as exploratory behaviors emerge, and despite the absence of an adult-like grid cell network, the developing hippocampus processes incoming sensory information as an associative memory network. © The Author 2016. Published by Oxford University Press.
The Role of Oligosaccharides in Host-Microbial Interactions for Human Health.
Ross, Sarah A; Lane, Jonathan A; Marotta, Mariarosaria; Kavanaugh, Devon; Ryan, Joseph Thomas; Joshi, Lokesh; Hickey, Rita M
Milk oligosaccharides have many associated bioactivities which can contribute to human health and offer protective properties to the host. Such bioactivities include anti-infective properties whereby oligosaccharides interact with bacterial cells and prevent adhesion to the host and subsequent colonization. Milk oligosaccharides have also been shown to alter the glycosylation of intestinal cells, leading to a reduction in pathogenic colonization. In addition, these sugars promote adhesion of commensal bacterial strains to host cells as well as possessing the ability to alter mucin expression in intestinal cells and improve barrier function. The ability of milk oligosaccharides to alter the transcriptome of both commensal bacterial strains and intestinal epithelial cells has also been revealed, indicating the potential of many cell types to detect the presence of milk oligosaccharides and respond accordingly at the genetic level. Interestingly, domestic animal milk may provide a bioactive source of oligosaccharides for formula supplementation with the aim of emulating the gold standard that is human milk. Overall, this review highlights the ability of milk oligosaccharides to promote health in a variety of ways, for example, through direct bacterial interactions, immunomodulatory activities, promotion of gut barrier function, and induction of protective transcriptional responses.
Phytochemical-rich foods inhibit the growth of pathogenic trichomonads
USDA-ARS?s Scientific Manuscript database
Plants produce bioactive organic compounds known as secondary metabolites that possess numerous health benefits, including antimicrobial properties. One mechanism of action of these plant bioactive compounds targets the disruption of cell membranes. The main of objective of the present study was t...
Yang, Yi; Zhao, Yi; Ai, Xinghao; Cheng, Baijun; Lu, Shun
2014-01-01
Formononetin is a novel herbal isoflavonoid isolated from Astragalus membranaceus and possesses antitumorigenic properties. In the present study, we investigated the anti-proliferative effects of formononetin on human non-small cell lung cancer (NSCLC), and further elucidated the molecular mechanism underlying the anti-tumor property. MTT assay showed that formononetin treatment significantly inhibited the proliferation of two NSCLC cell lines including A549 and NCI-H23 in a time- and dose-dependent manner. Flow cytometric analysis demonstrated that formononetin induced G1-phase cell cycle arrest and promoted cell apoptosis in NSCLC cells. On the molecular level, we observed that exposure to formononetin altered the expression levels of cell cycle arrest-associated proteins p21, cyclin A and cyclin D1. Meanwhile, the apoptosis-related proteins cleaved caspase-3, bax and bcl-2 were also changed following treatment with formononetin. In addition, the expression level of p53 was dose-dependently upregulated after administration with formononetin. We also found that formononetin treatment increased the phosphorylation of p53 at Ser15 and Ser20 and enhances its transcriptional activity in a dose-dependent manner. Collectively, these results demonstrated that formononetin might be a potential chemopreventive drug for lung cancer therapy through induction of cell cycle arrest and apoptosis in NSCLC cells. PMID:25674209
Properties and cellular effects of particulate matter from direct emissions and ambient sources.
Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu
2016-10-14
The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis.
Andorko, James I.
2017-01-01
Abstract Recent research in the vaccine and immunotherapy fields has revealed that biomaterials have the ability to activate immune pathways, even in the absence of other immune‐stimulating signals. Intriguingly, new studies reveal these responses are influenced by the physicochemical properties of the material. Nearly all of this work has been done in the vaccine and immunotherapy fields, but there is tremendous opportunity to apply this same knowledge to tissue engineering and regenerative medicine. This review discusses recent findings that reveal how material properties—size, shape, chemical functionality—impact immune response, and links these changes to emerging opportunities in tissue engineering and regenerative medicine. We begin by discussing what has been learned from studies conducted in the contexts of vaccines and immunotherapies. Next, research is highlighted that elucidates the properties of materials that polarize innate immune cells, including macrophages and dendritic cells, toward either inflammatory or wound healing phenotypes. We also discuss recent studies demonstrating that scaffolds used in tissue engineering applications can influence cells of the adaptive immune system—B and T cell lymphocytes—to promote regenerative tissue microenvironments. Through greater study of the intrinsic immunogenic features of implantable materials and scaffolds, new translational opportunities will arise to better control tissue engineering and regenerative medicine applications. PMID:28932817
Umbaugh, Charles Samuel; Diaz-Quiñones, Adriana; Neto, Manoel Figueiredo; Shearer, Joseph J; Figueiredo, Marxa L
2018-01-19
Laminin receptor (67 LR) is a 67 kDa protein derived from a 37 kDa precursor (37 LR). 37/67 LR is a strong clinical correlate for progression, aggression, and chemotherapeutic relapse of several cancers including breast, prostate, and colon. The ability of 37/67 LR to promote cancer cell aggressiveness is further increased by its ability to transduce physiochemical and mechanosensing signals in endothelial cells and modulate angiogenesis. Recently, it was demonstrated that 37/67 LR modulates the anti-angiogenic potential of the secreted glycoprotein pigment epithelium-derived factor (PEDF). Restoration of PEDF balance is a desirable therapeutic outcome, and we sought to identify a small molecule that could recapitulate known signaling properties of PEDF but without the additional complications of peptide formulation or gene delivery safety validation. We used an in silico drug discovery approach to target the interaction interface between PEDF and 37 LR. Following cell based counter screening and binding validation, we characterized a hit compound's anti-viability, activation of PEDF signaling-related genes, anti-wound healing, and anti-cancer signaling properties. This hit compound has potential for future development as a lead compound for treating tumor growth and inhibiting angiogenesis.
Immune surveillance properties of human NK cell-derived exosomes.
Lugini, Luana; Cecchetti, Serena; Huber, Veronica; Luciani, Francesca; Macchia, Gianfranco; Spadaro, Francesca; Paris, Luisa; Abalsamo, Laura; Colone, Marisa; Molinari, Agnese; Podo, Franca; Rivoltini, Licia; Ramoni, Carlo; Fais, Stefano
2012-09-15
Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.
Huang, Qin; Chen, Meizhen; Liang, Sitai; Acha, Victor; Liu, Dan; Yuan, Furong; Hawks, Christina L.; Hornsby, Peter J.
2007-01-01
Cell therapy is the use of stem cells and other types of cells in various therapies for age-related diseases. Two issues that must be addressed before cell therapy could be used routinely in medicine are improved efficacy of the transplanted cells and demonstrated long-term safety. Desirable genetic modifications that could be made to cells to be used for cell therapy include immortalization with hTERT (human telomerase reverse transcriptase). We have used a model for cell therapy in which transplantation of adrenocortical cells restores glucocorticoid and mineralocorticoid hormone levels in adrenalectomized immunodeficient mice. In this model, clones of cells that had been immortalized with hTERT were shown to be able to replace the function of the animals'adrenal glands by forming vascularized tissue structures when cells were transplanted beneath the capsule of the kidney. hTERT-modified cells showed no tendency for neoplastic changes. Moreover, a series of experiments showed that hTERT does not cooperate with known oncoproteins in tumorigenesis either in adrenocortical cells or in human fibroblasts. Nevertheless, hTERT was required for tumorigenesis when cells were implanted subcutaneously rather than in the subrenal capsule space. Changes in gene expression make hTERT-modified cells more robust. Understanding these changes is important so as to be able to separately control immortalization and other desirable properties of cells that could be used in cell therapy. Alternatively, desirable properties of transplants might be provided by co-transplanted mesenchymal cells: mesenchymal cell-assisted cell therapy. For both hTERT modification and mesenchymal cell-assisted cell therapy, genomics approaches will be needed to define what genetic modifications are desirable and safe in cells used in cell therapy. PMID:17123586
Targeted Ablation of CML Stem Cells
2007-01-01
centuries .12 More recently, PTL has been found to have several other properties, including antitumor activity, inhibition of DNA synthesis, and...as a chemopreventive agent in a UVB-induced skin cancer animal model. 21 PTL is a potent inhibitor of NF-B activation and has been shown to directly...diluted in phosphate buffer saline (PBS). Ara-C was obtained from Sigma ( St Louis, MO). Total cell numbers were determined before and after culture for
Canetta, Elisabetta; Duperray, Alain; Leyrat, Anne; Verdier, Claude
2005-01-01
Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below. It allows investigation of the effects of rheology involved during cell stretching. To test the ability of our system to characterize such viscoelastic properties, ICAM-1 transfected CHO cells were analyzed. Two forms of ICAM-1 were tested; wild type ICAM-1, which can interact with the cytoskeleton, and a mutant form which lacks the cytoplasmic domain, and is unable to associate with the cytoskeleton. Stretching experiments carried out on these cells show the formation of long filaments. Using a previous model of filament elongation, we could determine the viscoelastic properties of a single cell. As expected, different viscoelastic components were found between the wild type and the mutant, which reveal that the presence of interactions between ICAM-1 and the cytoskeleton increases the stiffness of the cell. PMID:16308464
Canetta, Elisabetta; Duperray, Alain; Leyrat, Anne; Verdier, Claude
2005-01-01
Cell adhesive and rheological properties play a very important role in cell transmigration through the endothelial barrier, in particular in the case of inflammation (leukocytes) or cancer metastasis (cancer cells). In order to characterize cell viscoelastic properties, we have designed a force spectrometer (AFM) which can stretch cells thereby allowing measurement of their rheological properties. This custom-made force spectrometer allows two different visualizations, one lateral and one from below. It allows investigation of the effects of rheology involved during cell stretching. To test the ability of our system to characterize such viscoelastic properties, ICAM-1 transfected CHO cells were analyzed. Two forms of ICAM-1 were tested; wild type ICAM-1, which can interact with the cytoskeleton, and a mutant form which lacks the cytoplasmic domain, and is unable to associate with the cytoskeleton. Stretching experiments carried out on these cells show the formation of long filaments. Using a previous model of filament elongation, we could determine the viscoelastic properties of a single cell. As expected, different viscoelastic components were found between the wild type and the mutant, which reveal that the presence of interactions between ICAM-1 and the cytoskeleton increases the stiffness of the cell.
Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi
2013-01-01
A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for studying and manipulating pancreatic epithelial cell growth and morphogenesis in 3D. PMID:23602364
Stem cells to gametes: how far should we go?
Whittaker, Peter
2007-03-01
Murine embryonic stem cells have recently been shown to be capable of differentiating in vitro into oocytes or sperm. Should these findings be duplicated using human embryonic stem cells, this would raise a number of social and ethical concerns, some specific to these particular developments, others shared with other aspects of stem cell research. This review outlines the properties of stem cells and their conversion to gametes. Concerns raised include embryo destruction, quality of gametes derived in this way, possibility for children with two male biological parents, movement towards germ line gene therapy and 'designer babies', and the future impacts on health service provisions. It is important that public discussion of some of these issues should take place.
Semiconductor quantum dot-sensitized solar cells.
Tian, Jianjun; Cao, Guozhong
2013-10-31
Semiconductor quantum dots (QDs) have been drawing great attention recently as a material for solar energy conversion due to their versatile optical and electrical properties. The QD-sensitized solar cell (QDSC) is one of the burgeoning semiconductor QD solar cells that shows promising developments for the next generation of solar cells. This article focuses on recent developments in QDSCs, including 1) the effect of quantum confinement on QDSCs, 2) the multiple exciton generation (MEG) of QDs, 3) fabrication methods of QDs, and 4) nanocrystalline photoelectrodes for solar cells. We also make suggestions for future research on QDSCs. Although the efficiency of QDSCs is still low, we think there will be major breakthroughs in developing QDSCs in the future.
Distinctive properties of metastasis-initiating cells
Celià-Terrassa, Toni; Kang, Yibin
2016-01-01
Primary tumors are known to constantly shed a large number of cancer cells into systemic dissemination, yet only a tiny fraction of these cells is capable of forming overt metastases. The tremendous rate of attrition during the process of metastasis implicates the existence of a rare and unique population of metastasis-initiating cells (MICs). MICs possess advantageous traits that may originate in the primary tumor but continue to evolve during dissemination and colonization, including cellular plasticity, metabolic reprogramming, the ability to enter and exit dormancy, resistance to apoptosis, immune evasion, and co-option of other tumor and stromal cells. Better understanding of the molecular and cellular hallmarks of MICs will facilitate the development and deployment of novel therapeutic strategies. PMID:27083997
Activity of neurons in area 6 of the cat during fixation and eye movements.
Weyand, T G; Gafka, A C
1998-01-01
We studied the visuomotor properties of 645 neurons in area 6 of five cats trained in oculomotor tasks. The area we recorded from corresponds well with territories believed to contain the feline homologue of the frontal eye fields observed in primates. Despite an expectation that cells with pre-saccadic activity would be common, only a small fraction (approximately 5%) of the cells displayed activity that could be linked to subsequent saccadic eye movements. These pre-motor cells appeared to be distributed over a broad region of cortex mixed in with other cell types. As in primates, saccade-related activity tended to occur only during "purposeful" saccades. At least 30% (208/645) of the neurons were visual, with many of these cells possessing huge receptive fields that appeared to include the entire contralateral visual field. Visual responsiveness was generally attenuated by fixation during the oculomotor tasks. Although attentional mechanisms may play a role in this attenuation, this cortical area also exhibits powerful lateral interactions in which spatially displaced visual stimuli suppress each other. Most cells, visually responsive or not, were affected by fixation. Nearly equal proportions of cells showed increases or decreases in activity during fixation. For many of the cells affected by fixation, the source of this modulation appears to reflect cognitive, rather than sensory or motor processes. This included cells that showed anticipatory activity, and cells that responded to the reward only when it was presented in the context of the task. Based on the paucity of pre-saccadic neurons, it would be difficult to conclude that this region of cortex in the cat is homologous to the frontal eye fields of the monkey. However, when considered in the context of differences in the oculomotor habits of these two animals, we believe the homology fits. In addition to pre-motor neurons, the properties of several other cell types found in this area could contribute to the control of gaze.
Friedemann, Thomas; Otto, Benjamin; Klätschke, Kristin; Schumacher, Udo; Tao, Yi; Leung, Alexander Kai-Man; Efferth, Thomas; Schröder, Sven
2014-08-08
The dried rhizome of Coptis chinensis Franch. (family Ranunculaceae) is traditionally used in Chinese medicine for the treatment of inflammatory diseases and diabetes. Recent studies showed a variety of activities of Coptis chinensis Franch. alkaloids, including neuroprotective, neuroregenerative, anti-diabetic, anti-oxidative and anti-inflammatory effects. However, there is no report on the neuroprotective effect of Coptis chinensis Franch. watery extract against tert-butylhydroperoxide (t-BOOH) induced oxidative damage. The aim of the study is to investigate neuroprotective properties of Coptis chinensis Franch. rhizome watery extract (CRE) and to evaluate its potential mechanism of action. Neuroprotective properties on t-BOOH induced oxidative stress were investigated in SH-SY5Y human neuroblastoma cells. Cells were pretreated with CRE for 2 h or 24 h followed by 2 h of treatment with t-BOOH. To evaluate the neuroprotective effect of CRE, cell viability, cellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and the apoptotic rate were determined and microarray analyses, as well as qRT-PCR analyses were conducted. Two hours of exposure to 100 µM t-BOOH resulted in a significant reduction of cell viability, increased apoptotic rate, declined mitochondrial membrane potential (MMP) and increased ROS production. Reduction of cell viability, increased apoptotic rate and declined mitochondrial membrane potential (MMP) could be significantly reduced in cells pretreated with CRE (100 µg/ml) for 2h or 24h ahead of t-BOOH exposure with the greatest effect after 24h of pretreatment; however ROS production was not changed significantly. Furthermore, microarray analyses revealed that the expressions of 2 genes; thioredoxin-interacting protein (TXNIP) and mitochondrially encoded NADH dehydrogenase 1, were significantly regulated. Down regulation of TXNIP was confirmed by qRT-PCR. Due to its neuroprotective properties CRE might be a potential therapeutic agent for the prevention or amelioration of diseases like diabetic neuropathy and neurodegenerative disorders like Alzheimer and Parkinsons disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Single-Walled Carbon Nanohorns for Energy Applications
Zhang, Zhichao; Han, Shuang; Wang, Chao; Li, Jianping; Xu, Guobao
2015-01-01
With the growth of the global economy and population, the demand for energy is increasing sharply. The development of environmentally a benign and reliable energy supply is very important and urgent. Single-walled carbon nanohorns (SWCNHs), which have a horn-shaped tip at the top of single-walled nanotube, have emerged as exceptionally promising nanomaterials due to their unique physical and chemical properties since 1999. The high purity and thermal stability, combined with microporosity and mesoporosity, high surface area, internal pore accessibility, and multiform functionalization make SWCNHs promising candidates in many applications, such as environment restoration, gas storage, catalyst support or catalyst, electrochemical biosensors, drug carrier systems, magnetic resonance analysis and so on. The aim of this review is to provide a comprehensive overview of SWCNHs in energy applications, including energy conversion and storage. The commonly adopted method to access SWCNHs, their structural modifications, and their basic properties are included, and the emphasis is on their application in different devices such as fuel cells, dye-sensitized solar cells, supercapacitors, Li-ion batteries, Li-S batteries, hydrogen storage, biofuel cells and so forth. Finally, a perspective on SWCNHs’ application in energy is presented. PMID:28347092
Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A
2014-08-01
This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.
Blasig, I E; Giese, H; Schroeter, M L; Sporbert, A; Utepbergenov, D I; Buchwalow, I B; Neubert, K; Schönfelder, G; Freyer, D; Schimke, I; Siems, W E; Paul, M; Haseloff, R F; Blasig, R
2001-09-01
To investigate the relevance of *NO and oxyradicals in the blood-brain barrier (BBB), differentiated and well-proliferating brain capillary endothelial cells (BCEC) are required. Therefore, rat BCEC (rBCEC) were transfected with immortalizing genes. The resulting lines exhibited endothelial characteristics (factor VIII, angiotensin-converting enzyme, high prostacyclin/thromboxane release rates) and BBB markers (gamma-glutamyl transpeptidase, alkaline phosphatase). The control line rBCEC2 (mock transfected) revealed fibroblastoid morphology, less factor VIII, reduced gamma-glutamyl transpeptidase, weak radical defence, low prostanoid metabolism, and limited proliferation. Lines transfected with immortalizing genes (especially rBCEC4, polyoma virus large T antigen) conserved primary properties: epitheloid morphology, subcultivation with high proliferation rate under pure culture conditions, and powerful defence against reactive oxygen species (Mn-, Cu/Zn-superoxide dismutase, catalase, glutathione peroxidase, glutathione) effectively controlling radical metabolism. Only 100 microM H2O2 overcame this defence and stimulated the formation of eicosanoids similarly as in primary cells. Some BBB markers were expressed to a lower degree; however, cocultivation with astrocytes intensified these markers (e.g., alkaline phosphatase) and paraendothelial tightness, indicating induction of BBB properties. Inducible NO synthase was induced by a cytokine plus lipopolysaccharide mixture in all lines and primary cells, resulting in *NO release. Comparing the cell lines obtained, rBCEC4 are stable immortalized and reveal the best conservation of properties from primary cells, including enzymes producing or decomposing reactive species. These cells can be subcultivated in large amounts and, hence, they are suitable to study the role of radical metabolism in the BBB and in the cerebral microvasculature. Copyright 2001 Academic Press.
Yu, Hye-Sun; Lee, Eun-Jung; Seo, Seog-Jin; Knowles, Jonathan C; Kim, Hae-Won
2015-09-01
Exploiting hydrogels for the cultivation of stem cells, aiming to provide them with physico-chemical cues suitable for osteogenesis, is a critical demand for bone engineering. Here, we developed hybrid compositions of collagen and silica into hydrogels via a simple sol-gel process. The physico-chemical and mechanical properties, degradation behavior, and bone-bioactivity were characterized in-depth; furthermore, the in vitro mesenchymal stem cell growth and osteogenic differentiation behaviors within the 3D hybrid gel matrices were communicated for the first time. The hydrolyzed and condensed silica phase enabled chemical links with the collagen fibrils to form networked hybrid gels. The hybrid gels showed improved chemical stability and greater resistance to enzymatic degradation. The in vitro apatite-forming ability was enhanced by the hybrid composition. The viscoelastic mechanical properties of the hybrid gels were significantly improved in terms of the deformation resistance to an applied load and the modulus values under a dynamic oscillation. Mesenchymal stem cells adhered well to the hybrid networks and proliferated actively with substantial cytoskeletal extensions within the gel matrices. Of note, the hybrid gels substantially reduced the cell-mediated gel contraction behaviors, possibly due to the stiffer networks and higher resistance to cell-mediated degradation. Furthermore, the osteogenic differentiation of cells, including the expression of bone-associated genes and protein, was significantly upregulated within the hybrid gel matrices. Together with the physico-chemical and mechanical properties, the cellular behaviors observed within 3D gel matrices, being different from the previous approaches reported on 2D substrates, provide new information on the feasibility and usefulness of the silica-collagen system for stem cell culture and tissue engineering of hard tissues. © The Author(s) 2015.
Efficient optical analysis of surface texture combinations for silicon solar cells
NASA Astrophysics Data System (ADS)
Tucher, Nico; Eisenlohr, Johannes; Kiefel, Peter; Gebrewold, Habtamu; Höhn, Oliver; Hauser, Hubert; Müller, Claas; Goldschmidt, Jan Christoph; Bläsi, Benedikt
2016-04-01
Surface textures can significantly improve anti-reflective and light trapping properties of silicon solar cells. Combining standard pyramidal front side textures with scattering or diffractive rear side textures has the potential to further increase the light path length inside the silicon and thereby increase the solar cell efficiency. In this work we introduce the OPTOS (Optical Properties of Textured Optical Sheets) simulation formalism and apply it to the modelling of silicon solar cells with different surface textures at front and rear side. OPTOS is a matrix-based method that allows for the computationally-efficient calculation of non-coherent light propagation within textured solar cells, featuring multiple textures that may operate in different optical regimes. After calculating redistribution matrices for each individual surface texture with the most appropriate technique, optical properties like angle dependent reflectance, transmittance or absorptance can be determined via matrix multiplications. Using OPTOS, we demonstrate for example that the integration of a diffractive grating at the rear side of solar cells with random pyramids at the front results in an absorptance gain that corresponds to a photocurrent density enhancement of 0.73 mA/cm2 for a 250 μm thick cell. The re-usability of matrices enables the investigation of different solar cell thicknesses within minutes. For thicknesses down to 50 μm the simulated gain increases up to 1.22 mA/cm2. The OPTOS formalism is furthermore not restricted with respect to the number of textured interfaces. By combining two or more textured sheets to effective interfaces, it is possible to optically model a complete photovoltaic module including EVA and potentially textured glass layers with one calculation tool.
NASA Astrophysics Data System (ADS)
Koirala, Prakash
Spectroscopic ellipsometry (SE) in the mid-infrared to ultraviolet range has been implemented in order to develop and evaluate optimization procedures for CdTe solar cells at the different stages of fabrication. In this dissertation research, real time SE (RT-SE) has been applied during the fabrication of the as-deposited CdS/CdTe solar cell. Two areas of background research were addressed before undertaking the challenging RT-SE analysis procedures. First, optical functions were parameterized versus temperature for the glass substrate and its overlayers, including three different SnO2 layers. This database has applications not only for RT-SE analysis but also for on-line monitoring of the coated glass itself at elevated temperature. Second, post-deposition modifications of substrate have been studied by infrared spectroscopic ellipsometry (IR-SE) prior to the RT-SE analysis in order to evaluate the need for such modification in the analysis. With support from these background studies, RT-SE has been implemented in analyses of the evolution of the thin film structural properties during sputter deposition of polycrystalline CdS/CdTe solar cells on the transparent conducting oxide (TCO) coated glass substrates. The real time optical spectra collected during CdS/CdTe deposition were analyzed using the optical property database for all substrate components as a function of measurement temperature. RT-SE enables characterization of the filling process of the surface roughness modulations on the top-most SnO2 substrate layer, commonly referred to as the high resistivity transparent (HRT) layer. In this filling process, the optical properties of this surface layer are modified in accordance with an effective medium theory. In addition to providing information on interface formation to the substrate during film growth, RT-SE also provides information on the bulk layer CdS growth, its surface roughness evolution, as well as overlying CdTe interface formation and bulk layer growth. Information from RT-SE at a single point during solar cell stack deposition assists in the development of a model that has been used for mapping the properties of the completed cell stack, which can then be correlated with device performance. Independent non-uniformities in the layers over the full area of the cell stack enable optimization of cell performance combinatorially. The polycrystalline CdS/CdTe thin-film solar cell in the superstrate configuration has been studied by SE using glass side illumination whereby the single reflection from the glass/film-stack interface is collected whereas that from the ambient/glass interface and those from multiple glass/film-stack reflections are rejected. The SE data analysis applies an optical model consisting of a multilayer stack with bulk and interface layers. The dielectric functions epsilonfor the solar cell component materials were obtained by variable-angle and in-situ SE. Variability in the properties of the materials are introduced through free parameters in analytical expressions for the dielectric functions. In the SE analysis of the complete cell, a step-wise procedure ranks all free parameters of the model, including thicknesses and those defining the spectra in epsilon, according to their ability to reduce the root-mean-square deviation between simulated and measured SE spectra. The results for the best fit thicknesses compare well with electron microscopy. From the optical model, including all best-fit parameters, the solar cell quantum efficiency (QE) can be simulated without free parameters, and comparisons with QE measurements have enabled the identification of losses. The capabilities have wide applications in off-line photovoltaic module mapping and in-line monitoring of coated glass at intermediate stages of production. Mapping spectroscopic ellipsometry (M-SE) has been applied in this dissertation research as an optimization procedure for polycrystalline CdS/CdTe solar cell fabrication on TCO coated glass superstrates. During fabrication of these solar cells, the structure undergoes key processing steps after the sputter-deposition of the CdS/CdTe. These steps include CdCl2 treatment of the CdTe layer and subsequent deposition of ultrathin Cu. Additional steps involve final metal back contact layer deposition and an anneal for Cu diffusion that completes the device. In this study, we have fabricated cells with variable absorber thicknesses, ranging from 0.5 to 2.5 mum, and variable CdCl2 treatment times, ranging from 5 to 30 min. Because both CdS window and Cu back contact layers are critical for determining device performance, the ability to characterize their deposition processes and determine the resulting process-property-performance relationships is important for device optimization. We have applied M-SE to map the effective thickness (volume/area) of the CdS and Cu films over 15 cm x 15 cm substrates prior to the fabrication of 16 x 16 arrays of dot cells. We report correlations of cell performance parameters with the CdCl2 treatment time and with the effective thicknesses from M-SE analysis. We demonstrate that correlations between optical/structural parameters extracted from M-SE analysis and device performance parameters facilitate process optimization. (Abstract shortened by ProQuest.).
In-situ short circuit protection system and method for high-energy electrochemical cells
Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.
2000-01-01
An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.
In-situ short-circuit protection system and method for high-energy electrochemical cells
Gauthier, Michel; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Rouillard, Jean; Rouillard, Roger; Shiota, Toshimi; Trice, Jennifer L.
2003-04-15
An in-situ thermal management system for an energy storage device. The energy storage device includes a plurality of energy storage cells each being coupled in parallel to common positive and negative connections. Each of the energy storage cells, in accordance with the cell's technology, dimensions, and thermal/electrical properties, is configured to have a ratio of energy content-to-contact surface area such that thermal energy produced by a short-circuit in a particular cell is conducted to a cell adjacent the particular cell so as to prevent the temperature of the particular cell from exceeding a breakdown temperature. In one embodiment, a fuse is coupled in series with each of a number of energy storage cells. The fuses are activated by a current spike capacitively produced by a cell upon occurrence of a short-circuit in the cell, thereby electrically isolating the short-circuited cell from the common positive and negative connections.
Madhankumar, A B; Mrowczynski, Oliver D; Patel, Suhag R; Weston, Cody L; Zacharia, Brad E; Glantz, Michael J; Siedlecki, Christopher A; Xu, Li-Chong; Connor, James R
2017-08-01
Cadmium selenide (CdSe) based quantum dots modified with polyethylene glycol and chemically linked to interleukin-13 (IL13) were prepared with the aim of identifying the high affinity receptor (IL13Rα2) which is expressed in glioma stem cells and exosomes secreted by these cancer stem cells. IL13 conjugated quantum dots (IL13QD) were thoroughly characterized for their physicochemical properties including particle size and surface morphology. Furthermore, the specific binding of the IL13QD to glioma cells and to glioma stem cells (GSC) was verified using a competitive binding study. The exosomes were isolated from the GSC conditioned medium and the expression of IL13Rα2 in the GSC and exosomes was verified. The binding property of IL13QD to the tumor associated exosomes was initially confirmed by transmission electron microscopy. The force of attraction between the quantum dots and U251 glioma cells and the exosomes was investigated by atomic force microscopy, which indicated a higher force of binding interaction between the IL13QD and IL13Rα2 expressing glioma cells and exosomes secreted by glioma stem cells. Flow cytometry of the IL13QD and exosomes from the culture media and cerebrospinal fluid (CSF) of patients with glioma tumors indicated a distinctly populated complex pattern different from that of non-targeted quantum dots and bovine serum albumin (BSA) conjugated quantum dots confirming specific binding potential of the IL13QD to the tumor associated exosomes. The results of this study demonstrate that IL13QD can serve as an ex vivo marker for glioma stem cells and exosomes that can inform diagnosis and prognosis of patients harboring malignant disease. Functionalized quantum dots are flexible semiconductor nanomaterials which have an immense application in biomedical research. In particular, when they are functionalized with biomolecules like proteins or antibodies, they have the specialized ability to detect the expression of receptors and antigens in cells and tissues. In this study we designed a cytokine (interleukin-13) functionalized quantum dot to detect a cancer associated receptor expressed in cancer stem cells and the extracellular vesicles (exosomes) secreted by the cancer cells themselves. The binding pattern of these cytokine modified quantum dots to the cancer stem cells and exosomes alters the physical properties of the complex in the fixed and suspended form. This altered binding pattern can be monitored by a variety of techniques, including transmission electron microscopy, atomic force microscopy and flow cytometry, and subsequent characterization of this quantum dot binding profile provides useful data that can be utilized as a fingerprint to detect cancer disease progression. This type of functionalized quantum dot fingerprint is especially useful for invasive cancers including brain and other metastatic cancers and may allow for earlier detection of disease progression or recurrence, thus saving the lives of patients suffering from this devastating disease. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Design and Photovoltaic Properties of Graphene/Silicon Solar Cell
NASA Astrophysics Data System (ADS)
Xu, Dikai; Yu, Xuegong; Yang, Lifei; Yang, Deren
2018-04-01
Graphene/silicon (Gr/Si) Schottky junction solar cells have attracted widespread attention for the fabrication of high-efficiency and low-cost solar cells. However, their performance is still limited by the working principles of Schottky junctions. Modulating the working mechanism of the solar cells into a quasi p-n junction has advantages, including higher open-circuit voltage (V OC) and less carrier recombination. In this study, Gr/Si quasi p-n junction solar cells were formed by inserting a tunneling Al2O3 interlayer in-between graphene and silicon, which led to obtain the PCE up to 8.48% without antireflection or chemical doping techniques. Our findings could pave a new way for the development of Gr/Si solar cells.
Determination of thermal properties of commercial Ni-MH cells
NASA Astrophysics Data System (ADS)
Darcy, Eric C.
1994-02-01
The test objectives were to evaluate the electrical and thermal performance of commercial Ni-MH cells, evaluate the effectiveness of commercial charge control circuits, assess the abuse tolerance of these cells, and correlate performance and abuse tolerances to cell design via disassembly. Design objectives were to determine which cell designs are most suitable for scale-up and to guide the design of future shuttle and space station based battery chargers. Results, displayed in viewgraph format, include: reflex charging with ICS circuit resulted in premature charge termination; Ni-MH cells appear very tolerant to overcharge at low rates; Enstore's charger is more electrically and thermally efficient at high rates; and Ni-MH cycles much more efficiently than Ni-Cd with the delta-V/delta-t termination.
Determination of thermal properties of commercial Ni-MH cells
NASA Technical Reports Server (NTRS)
Darcy, Eric C.
1994-01-01
The test objectives were to evaluate the electrical and thermal performance of commercial Ni-MH cells, evaluate the effectiveness of commercial charge control circuits, assess the abuse tolerance of these cells, and correlate performance and abuse tolerances to cell design via disassembly. Design objectives were to determine which cell designs are most suitable for scale-up and to guide the design of future shuttle and space station based battery chargers. Results, displayed in viewgraph format, include: reflex charging with ICS circuit resulted in premature charge termination; Ni-MH cells appear very tolerant to overcharge at low rates; Enstore's charger is more electrically and thermally efficient at high rates; and Ni-MH cycles much more efficiently than Ni-Cd with the delta-V/delta-t termination.
Wood formation in Angiosperms.
Déjardin, Annabelle; Laurans, Françoise; Arnaud, Dominique; Breton, Christian; Pilate, Gilles; Leplé, Jean-Charles
2010-04-01
Wood formation is a complex biological process, involving five major developmental steps, including (1) cell division from a secondary meristem called the vascular cambium, (2) cell expansion (cell elongation and radial enlargement), (3) secondary cell wall deposition, (4) programmed cell death, and (5) heartwood formation. Thanks to the development of genomic studies in woody species, as well as genetic engineering, recent progress has been made in the understanding of the molecular mechanisms underlying wood formation. In this review, we will focus on two different aspects, the lignification process and the control of microfibril angle in the cell wall of wood fibres, as they are both key features of wood material properties. Copyright (c) 2010 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Mulani, Shaheen K; Guh, Jih-Hwa; Mong, Kwok-Kong Tony
2014-05-14
A general strategy for the synthesis of phenylethanoid glycosides (PhG) including echinacoside 1, acteoside 2, calceolarioside-A 3 and calceolarioside-B 4 is reported. The strategy features the application of low substrate concentration glycosylation and N-formyl morpholine modulated glycosylation methods for the construction of 1,2-trans β- and α-glycosidic bonds. The reported strategy does not invoke the use of the participatory acyl protecting function, which is incompatible with the ester function present in target PhG compounds. A preliminary study of the anti-proliferation properties of the PhG compounds 1–4 was performed; the acteoside 2 exhibited the best inhibition on the prostatic cancer cell proliferation.
Research and progress on ClC-2
Wang, Hongwei; Xu, Minghui; Kong, Qingjie; Sun, Peng; Yan, Fengyun; Tian, Wenying; Wang, Xin
2017-01-01
Chloride channel 2 (ClC-2) is one of the nine mammalian members of the ClC family. The present review discusses the molecular properties of ClC-2, including CLCN2, ClC-2 promoter and the structural properties of ClC-2 protein; physiological properties; functional properties, including the regulation of cell volume. The effects of ClC-2 on the digestive, respiratory, circulatory, nervous and optical systems are also discussed, in addition to the mechanisms involved in the regulation of ClC-2. The review then discusses the diseases associated with ClC-2, including degeneration of the retina, Sjögren's syndrome, age-related cataracts, degeneration of the testes, azoospermia, lung cancer, constipation, repair of impaired intestinal mucosa barrier, leukemia, cystic fibrosis, leukoencephalopathy, epilepsy and diabetes mellitus. It was concluded that future investigations of ClC-2 are likely to be focused on developing specific drugs, activators and inhibitors regulating the expression of ClC-2 to treat diseases associated with ClC-2. The determination of CLCN2 is required to prevent and treat several diseases associated with ClC-2. PMID:28534947
Simvastatin Potently Induces Calcium-dependent Apoptosis of Human Leiomyoma Cells*
Borahay, Mostafa A.; Kilic, Gokhan S.; Yallampalli, Chandrasekha; Snyder, Russell R.; Hankins, Gary D. V.; Al-Hendy, Ayman; Boehning, Darren
2014-01-01
Statins are drugs commonly used for the treatment of high plasma cholesterol levels. Beyond these well known lipid-lowering properties, they possess broad-reaching effects in vivo, including antitumor effects. Statins inhibit the growth of multiple tumors. However, the mechanisms remain incompletely understood. Here we show that simvastatin inhibits the proliferation of human leiomyoma cells. This was associated with decreased mitogen-activated protein kinase signaling and multiple changes in cell cycle progression. Simvastatin potently stimulated leiomyoma cell apoptosis in a manner mechanistically dependent upon apoptotic calcium release from voltage-gated calcium channels. Therefore, simvastatin possesses antitumor effects that are dependent upon the apoptotic calcium release machinery. PMID:25359773
Mesenchymal stem cell therapy in cats: Current knowledge and future potential.
Quimby, Jessica M; Borjesson, Dori L
2018-03-01
Practical relevance: Stem cell therapy is an innovative field of scientific investigation with tremendous potential for clinical application in veterinary medicine. Based on the known desirable immunomodulatory properties of mesenchymal stem cells, this therapy holds promise for the treatment of a variety of inflammatory diseases in cats. This review details our current understanding of feline stem cell biology and proposed mechanism of action. Studies performed in feline clinical trials for diseases including gingivostomatitis, chronic enteropathy, asthma and kidney disease are summarized, with the goal of providing an overview of the current status of this treatment modality and its potential for the future.
Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R B S; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S
2017-01-01
The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety.
Sivasubramanian, Srinivasan; Chandrasekar, Gayathri; Svensson Akusjärvi, Sara; Thangam, Ramar; Sathuvan, Malairaj; Kumar, R. B. S.; Hussein, Hawraa; Vincent, Savariar; Madhan, Balaraman; Gunasekaran, Palani; Kitambi, Satish S.
2017-01-01
The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented with other features including non-toxicity, biocompatibility, and safety. PMID:28769790