Science.gov

Sample records for cell rbc membrane

  1. Canine RBC osmotic tolerance and membrane permeability.

    PubMed

    Liu, J; Christian, J A; Critser, J K

    2002-06-01

    The objective of this study was to determine the cryobiological characteristics of canine red blood cells (RBC). These included the hydraulic conductivity (L(p)), the permeability coefficients (P(s)) of common cryoprotectant agents (CPAs), the associated reflection coefficient (sigma), the activation energies (E(a)) of L(p) and P(s) and the osmotic tolerance limits. By using a stopped-flow apparatus, the changes of fluorescence intensity emitted by intracellularly entrapped 5-carboxyfluorescein diacetate (CFDA) were recorded when cells were experiencing osmotic volume changes. After the determination of the relationship between fluorescence intensity and cell volume, cell volume changes were calculated. These volume changes were used in three-parameter fitting calculations to determine the values of L(p), P(s), and sigma for common CPAs. These volume measurements and data analyses were repeated at three different temperatures (22, 14, 7 degrees C). Using the Arrhenius equation, the activation energies of L(p) and P(s) in the presence of CPAs were determined. The osmotic tolerance limits for canine RBC were determined by measuring the percentage of free hemoglobin in NaCl solutions with various osmolalities compared to that released by RBC incubated in double distilled water. The upper and lower osmotic tolerance limits were found to be 150mOsm (1.67V(iso)) and 1200mOsm (0.45V(iso)), respectively. These parameters were then used to calculate the amount of non-permeating solute needed to keep cell volume excursions within the osmotic tolerance limits during CPA addition and removal. PMID:12237091

  2. Endurance training alters enzymatic and rheological properties of red blood cells (RBC) in type 2 diabetic men during in vivo RBC aging.

    PubMed

    Brinkmann, C; Bizjak, D A; Bischof, S; Latsch, J; Brixius, K; Bloch, W; Grau, M

    2016-09-12

    This study examines the effects of endurance training on red blood cells (RBC) in seventeen non-insulin-dependent type 2 diabetic men with a special focus on in vivo RBC aging. Venous blood was collected pre- and post-training at rest. RBC from whole blood and RBC separated according to cell age by density-gradient centrifugation were analyzed. RBC deformability was measured by ektacytometry. Immunohistochemical staining was performed to quantify the RBC-nitric oxide (NO) synthase activation (RBC-NOSSer1177) because RBC-NOS-produced NO can contribute to increased RBC deformability. The proportion of "young" RBC was significantly higher post-training. RBC deformability of all RBC (RBC of all ages) remained unaltered post-training. During RBC aging, RBC deformability decreased in both pre- and post-training. However, the training significantly increased RBC deformability in "young" and reduced their deformability in aging RBC. RBC-NOS activation remained unaltered in all RBC post-training. It tendentially increased in aging RBC pre-training, but did not change during aging post-training. The training significantly reduced RBC-NOS activation in "old" RBC. Endurance training may improve the RBC system (higher amount of "young" RBC which are more deformable). It remains speculative whether changes in older RBC (reduced RBC-NOS activation and deformability) could lead to more rapid elimination of aged RBC.

  3. Regulatory T Cells Are Dispensable for Tolerance to RBC Antigens

    PubMed Central

    Richards, Amanda L.; Kapp, Linda M.; Wang, Xiaohong; Howie, Heather L.; Hudson, Krystalyn E.

    2016-01-01

    Autoimmune hemolytic anemia (AIHA) occurs when pathogenic autoantibodies against red blood cell (RBC) antigens are generated. While the basic disease pathology of AIHA is well studied, the underlying mechanism(s) behind the failure in tolerance to RBC autoantigens are poorly understood. Thus, to investigate the tolerance mechanisms required for the establishment and maintenance of tolerance to RBC antigens, we developed a novel murine model. With this model, we evaluated the role of regulatory T cells (Tregs) in tolerance to RBC-specific antigens. Herein, we show that neither sustained depletion of Tregs nor immunization with RBC-specific proteins in conjunction with Treg depletion led to RBC-specific autoantibody generation. Thus, these studies demonstrate that Tregs are not required to prevent autoantibodies to RBCs and suggest that other tolerance mechanisms are likely involved.

  4. Regulatory T Cells Are Dispensable for Tolerance to RBC Antigens

    PubMed Central

    Richards, Amanda L.; Kapp, Linda M.; Wang, Xiaohong; Howie, Heather L.; Hudson, Krystalyn E.

    2016-01-01

    Autoimmune hemolytic anemia (AIHA) occurs when pathogenic autoantibodies against red blood cell (RBC) antigens are generated. While the basic disease pathology of AIHA is well studied, the underlying mechanism(s) behind the failure in tolerance to RBC autoantigens are poorly understood. Thus, to investigate the tolerance mechanisms required for the establishment and maintenance of tolerance to RBC antigens, we developed a novel murine model. With this model, we evaluated the role of regulatory T cells (Tregs) in tolerance to RBC-specific antigens. Herein, we show that neither sustained depletion of Tregs nor immunization with RBC-specific proteins in conjunction with Treg depletion led to RBC-specific autoantibody generation. Thus, these studies demonstrate that Tregs are not required to prevent autoantibodies to RBCs and suggest that other tolerance mechanisms are likely involved. PMID:27698653

  5. A band 3-based macrocomplex of integral and peripheral proteins in the RBC membrane

    SciTech Connect

    Bruce, Lesley J.; Beckmann, Roland; Ribeiro, M. Leticia; Peters, Luanne L.; Chasis, Joel A.; Delaunay, Jean; Mohandas, Narla; Anstee, David J.; Tanner, Michael J.A.

    2003-06-18

    We have studied the membrane proteins of band 3 anion exchanger (AE1)-deficient mouse and human red blood cells. It has been shown previously that proteins of the band 3 complex are reduced or absent in these cells. In this study we show that proteins of the Rh complex are also greatly reduced (Rh-associated glycoprotein, Rh polypeptides, CD47, glycophorin B) or absent (LW). These observations suggest that the Rh complex is associated with the band 3 complex in healthy RBCs. Mouse band 3 RBCs differed from the human band 3-deficient RBCs in that they retained CD47. Aquaporin 1 was reduced, and its glycosylation was altered in mouse and human band 3-deficient RBCs. Proteins of the glycophorin complex, and other proteins with independent cytoskeletal interactions, were present in normal or increased amounts. To obtain direct evidence for the association of the band 3 and the Rh protein complexes in the RBC, we examined whether Rh complex proteins were coimmunoprecipitated with band 3 from membranes. RhAG and Rh were found to be efficiently coimmunoprecipitated with band 3 from deoxycholate-solubilized membranes. Results suggest that band 3 forms the core of a macrocomplex of integral and peripheral RBC membrane proteins. The presence of these proteins in a single structural Macrocomplex makes it likely that they have linked functional or regulatory roles. We speculate that this macrocomplex may function as an integrated CO2/O2 gas exchange unit (metabolon) in the erythrocyte.

  6. Choroideremia Is a Systemic Disease With Lymphocyte Crystals and Plasma Lipid and RBC Membrane Abnormalities

    PubMed Central

    Zhang, Alice Yang; Mysore, Naveen; Vali, Hojatollah; Koenekoop, Jamie; Cao, Sang Ni; Li, Shen; Ren, Huanan; Keser, Vafa; Lopez-Solache, Irma; Siddiqui, Sorath Noorani; Khan, Ayesha; Mui, Jeannie; Sears, Kelly; Dixon, Jim; Schwartzentruber, Jeremy; Majewski, Jacek; Braverman, Nancy; Koenekoop, Robert K.

    2015-01-01

    Purpose Photoreceptor neuronal degenerations are common, incurable causes of human blindness affecting 1 in 2000 patients worldwide. Only half of all patients are associated with known mutations in over 250 disease genes, prompting our research program to identify the remaining new genes. Most retinal degenerations are restricted to the retina, but photoreceptor degenerations can also be found in a wide variety of systemic diseases. We identified an X-linked family from Sri Lanka with a severe choroidal degeneration and postulated a new disease entity. Because of phenotypic overlaps with Bietti's crystalline dystrophy, which was recently found to have systemic features, we hypothesized that a systemic disease may be present in this new disease as well. Methods For phenotyping, we performed detailed eye exams with in vivo retinal imaging by optical coherence tomography. For genotyping, we performed whole exome sequencing, followed by Sanger sequencing confirmations and cosegregation. Systemic investigations included electron microscopy studies of peripheral blood cells in patients and in normal controls and detailed fatty acid profiles (both plasma and red blood cell [RBC] membranes). Fatty acid levels were compared to normal controls, and only values two standard deviations above or below normal controls were further evaluated. Results The family segregated a REP1 mutation, suggesting choroideremia (CHM). We then found crystals in peripheral blood lymphocytes and discovered significant plasma fatty acid abnormalities and RBC membrane abnormalities (i.e., elevated plasmalogens). To replicate our discoveries, we expanded the cohort to nine CHM patients, genotyped them for REP1 mutations, and found the same abnormalities (crystals and fatty acid abnormalities) in all patients. Conclusions Previously, CHM was thought to be restricted to the retina. We show, to our knowledge for the first time, that CHM is a systemic condition with prominent crystals in lymphocytes and

  7. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    NASA Astrophysics Data System (ADS)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  8. Decrease in red blood cell deformability is associated with a reduction in RBC-NOS activation during storage.

    PubMed

    Grau, Marijke; Friederichs, Petra; Krehan, Sebastian; Koliamitra, Christina; Suhr, Frank; Bloch, Wilhelm

    2015-07-16

    During storage, red blood cells (RBC) become more susceptible to hemolysis and it has also been shown that RBC deformability, which is influenced by RBC nitric oxide synthase (RBC-NOS) activity, decreases during blood storage while a correlation between these two parameters under storage conditions has not been investigated so far. Therefore, blood from 15 male volunteers was anticoagulated, leuko-reduced and stored as either concentrated RBC or RBC diluted in saline-adenine-glucose-mannitol (SAGM) for eight weeks at 4°C and results were compared to data obtained from freshly drawn blood. During storage, decrease of RBC deformability was related to increased mean cellular volume and increased cell lysis but also to a decrease in RBC-NOS activation. The changes were more pronounced in concentrated RBC than in RBC diluted in SAGM suggesting that the storage method affects the quality of blood. These data shed new light on mechanisms underlying the phenomenon of storage lesion and reveal that RBC-NOS activation and possibly nitric oxide production in RBC are key elements that are influenced by storage and in turn alter deformability. Further studies should therefore also focus on improving these parameters during storage to improve the quality of stored blood with respect to blood transfusion.

  9. Measurement of RBC agglutination with microscopic cell image analysis in a microchannel chip.

    PubMed

    Cho, Chi Hyun; Kim, Ju Yeon; Nyeck, Agnes E; Lim, Chae Seung; Hur, Dae Sung; Chung, Chanil; Chang, Jun Keun; An, Seong Soo A; Shin, Sehyun

    2014-01-01

    Since Landsteiner's discovery of ABO blood groups, RBC agglutination has been one of the most important immunohematologic techniques for ABO and RhD blood groupings. The conventional RBC agglutination grading system for RhD blood typings relies on macroscopic reading, followed by the assignment of a grade ranging from (-) to (4+) to the degree of red blood cells clumping. However, with the new scoring method introduced in this report, microscopically captured cell images of agglutinated RBCs, placed in a microchannel chip, are used for analysis. Indeed, the cell images' pixel number first allows the differentiation of agglutinated and non-agglutinated red blood cells. Finally, the ratio of agglutinated RBCs per total RBC counts (CRAT) from 90 captured images is then calculated. During the trial, it was observed that the agglutinated group's CRAT was significantly higher (3.77-0.003) than that of the normal control (0). Based on these facts, it was established that the microchannel method was more suitable for the discrimination between agglutinated RBCs and non-agglutinated RhD negative, and thus more reliable for the grading of RBCs agglutination than the conventional method.

  10. RBC urine test

    MedlinePlus

    Red blood cells in urine; Hematuria test; Urine - red blood cells ... A normal result is 4 red blood cells per high power field (RBC/HPF) or less when the sample is examined under a microscope. The example above ...

  11. Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors

    PubMed Central

    Luk, Brian T.; Fang, Ronnie H.; Hu, Che-Ming J.; Copp, Jonathan A.; Thamphiwatana, Soracha; Dehaini, Diana; Gao, Weiwei; Zhang, Kang; Li, Shulin; Zhang, Liangfang

    2016-01-01

    The therapeutic potential of nanoparticle-based drug carriers depends largely on their ability to evade the host immune system while delivering their cargo safely to the site of action. Of particular interest are simple strategies for the functionalization of nanoparticle surfaces that are both inherently safe and can also bestow immunoevasive properties, allowing for extended blood circulation times. Here, we evaluated a recently reported cell membrane-coated nanoparticle platform as a drug delivery vehicle for the treatment of a murine model of lymphoma. These biomimetic nanoparticles, consisting of a biodegradable polymeric material cloaked with natural red blood cell membrane, were shown to efficiently deliver a model chemotherapeutic, doxorubicin, to solid tumor sites for significantly increased tumor growth inhibition compared with conventional free drug treatment. Importantly, the nanoparticles also showed excellent immunocompatibility as well as an advantageous safety profile compared with the free drug, making them attractive for potential translation. This study demonstrates the promise of using a biomembrane-coating approach as the basis for the design of functional, safe, and immunocompatible nanocarriers for cancer drug delivery. PMID:27217833

  12. Detection and characterization of red blood cell (RBC) aggregation with photoacoustics

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.

    2012-02-01

    Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.

  13. Quasi-elastic light scattering studies of membrane motion in single red blood cells.

    PubMed Central

    Tishler, R B; Carlson, F D

    1987-01-01

    Studies of red blood cells (RBCs) and RBC ghosts, using a quasi-elastic light scattering (QELS) microscope spectrometer, have identified the membrane as the primary source of the light scattering signal. This is the first report in which motion of the cell membrane has been demonstrated to be the primary source of the QELS signal from a cell. Cytoplasmic changes induced in the RBC by varying the osmotic strength of the medium were also detected using this technique. Comparison of the data from white blood cells (WBCs) with the RBC data demonstrated significant differences between different types of cells. PMID:3607216

  14. Large Deformation Properties of Red Blood Cell Membrane Based on a Higher Order Gradient Quasi-continuum Model.

    PubMed

    Wang, X Y; Wang, J B; Qiu, B B; Hu, L F

    2015-12-01

    Based on the proposed higher order gradient quasi-continuum model, the numerical investigations of the basic mechanical properties and deformation behaviors of human red blood cell (RBC) membrane under large deformation at room temperature (i.e., 300 K) are carried out in the present paper. The results show that RBC membrane is a nonlinear hyperelastic material. The mechanical properties of RBC membrane is dominated by isotropic nature at the stage of initial deformation, however, its anisotropic material properties emerge clearly with the loading increasing. The out-of-plane wrinkling of RBC membrane upon shear loading can be reproduced numerically. With the use of the so-called higher order Cauchy-Born rule as the kinematic description, the bending stiffness of RBC membrane can be considered conveniently.

  15. Increased rigidity of red blood cell membrane in young spontaneously hypertensive rats.

    PubMed

    Chabanel, A; Schachter, D; Chien, S

    1987-12-01

    The micropipette test was used to study the effects of age on the elasticity of red blood cell (RBC) membrane in spontaneously hypertensive rats (SHR) and age-matched normotensive Wistar-Kyoto rats (WKY), ranging from 3 to 23 weeks of age. The development of hypertension in the SHR started at 3 weeks and was fully established at 7 to 8 weeks. In the developmental phase of hypertension (3-5 weeks), the SHR showed a significant increase in RBC membrane elastic modulus (i.e., a decrease in RBC membrane deformability) when compared with the age-matched normotensive control rats (WKY). After the establishment of hypertension (7-8 weeks), however, the deformability of the RBC membrane of SHR improved and became comparable to that of the WKY. These results indicate that abnormal erythrocyte membrane elasticity is an early event in SHR and that adaptive recovery occurs when hypertension is fully developed.

  16. Contribution of membrane permeability and unstirred layer diffusion to nitric oxide-red blood cell interaction

    PubMed Central

    Deonikar, Prabhakar; Kavdia, Mahendra

    2012-01-01

    Nitric oxide (NO) consumption by red blood cell (RBC) hemoglobin (Hb) in vasculature is critical in regulating the vascular tone. The paradox of NO production at endothelium in close proximity of an effective NO scavenger Hb in RBCs is mitigated by lower NO consumption by RBCs compared to that of free Hb due to transport resistances including membrane resistance, extra- and intra- cellular resistances for NO biotransport to the RBC. Relative contribution of each transport resistance on NO-RBC interactions is still not clear. We developed a mathematical model of NO transport to a single RBC to quantify the contributions from individual transport barriers by analyzing the effect of RBC membrane permeability (Pm), hematocrit (Hct) and NO-Hb reaction rate constants on NO-RBC interactions. Our results indicated that intracellular diffusion of NO was not a rate limiting step for NO-RBC interactions. The extracellular diffusion contributed 70–90% of total transport resistance for Pm >1 cm/s whereas membrane resistance accounts for 50–75% of total transport resistance for Pm < 0.1 cm/s. We propose a narrow Pm range of 0.21–0.44 cm/s for 10–45% Hct, respectively, below which membrane resistance is more significant and above which extracellular diffusion is a dominating transport resistance for NO-RBC interactions. PMID:23116664

  17. Homologous RBC-derived vesicles as ultrasmall carriers of iron oxide for magnetic resonance imaging of stem cells

    NASA Astrophysics Data System (ADS)

    Chang, Microsugar; Hsiao, Jong-Kai; Yao, Ming; Chien, Li-Ying; Hsu, Szu-Chun; Ko, Bor-Sheng; Chen, Shin-Tai; Liu, Hon-Man; Chen, Yao-Chang; Yang, Chung-Shi; Huang, Dong-Ming

    2010-06-01

    Ultrasmall superparamagnetic iron oxide (USPIO) particles are very useful for cellular magnetic resonance imaging (MRI), which plays a key role in developing successful stem cell therapies. However, their low intracellular labeling efficiency, and biosafety concerns associated with their use, have limited their potential usage. In this study we develop a novel system composed of RBC-derived vesicles (RDVs) for efficient delivery of USPIO particles into human bone marrow mesenchymal stem cells (MSCs) for cellular MRI in vitro and in vivo. RDVs are highly biosafe to their autologous MSCs as manifested by cell viability, differentiation, and gene microarray assays. The data demonstrate the potential of RDVs as intracellular delivery vehicles for biomedical applications.

  18. Routine Storage of Red Blood Cell Units in Additive Solution-3: a comprehensive investigation of the RBC metabolome

    PubMed Central

    D'Alessandro, Angelo; Nemkov, Travis; Kelher, Marguerite; West, Bernadette F.; Schwindt, Rani K.; Banerjee, Anirban; Moore, Ernest E; Silliman, Christopher C.; Hansen, Kirk C.

    2014-01-01

    Background In most countries, packed red blood cells (RBCs) can be stored up to 42 days before transfusion. However, observational studies have suggested that storage duration might be associated with increased morbidity and mortality. While clinical trials are underway, impaired metabolism has been documented in RBCs stored in several additive solutions. Here we hypothesize that, despite reported beneficial effects, storage in additive solution-3 (AS-3) results in metabolic impairment weeks before the end of the unit shelf-life. Study design and Methods Five leukocyte-filtered AS-3 RBC units were sampled before, during and after leukoreduction at day0, and then assayed on a weekly basis from storage day1 through day42. RBC extracts and supernatants were assayed using a UHPLC-MS metabolomics workflow. Results Blood bank storage significantly affects metabolic profiles of RBC extracts and supernatants by day14. In addition to energy and redox metabolism impairment, intra- and extracellular accumulation of amino acids was observed proportionally to storage duration, suggesting a role for glutamine and serine metabolism in aging RBCs. Conclusion Metabolomics of stored RBCs could drive the introduction of alternative additive solutions to address some of the storage-dependent metabolic lesions herein reported, thereby increasing the quality of transfused RBCs and minimizing potential links to patient morbidity. PMID:25556331

  19. RBC indices

    MedlinePlus

    ... corpuscular hemoglobin concentration (MCHC); Mean corpuscular volume (MCV); Red blood cell indices ... PA: Elsevier Saunders; 2015:chap 158. Goljan EF. Red blood cell disorders. In: Goljan E, ed. Rapid ...

  20. Tension of red blood cell membrane in simple shear flow

    NASA Astrophysics Data System (ADS)

    Omori, T.; Ishikawa, T.; Barthès-Biesel, D.; Salsac, A.-V.; Imai, Y.; Yamaguchi, T.

    2012-11-01

    When a red blood cell (RBC) is subjected to an external flow, it is deformed by the hydrodynamic forces acting on its membrane. The resulting elastic tensions in the membrane play a key role in mechanotransduction and govern its rupture in the case of hemolysis. In this study, we analyze the motion and deformation of an RBC in a simple shear flow and the resulting elastic tensions on the membrane. The large deformation of the red blood cell is modelled by coupling a finite element method to solve the membrane mechanics and a boundary element method to solve the flows of the internal and external liquids. Depending on the capillary number Ca, ratio of the viscous to elastic forces, we observe three kinds of RBC motion: tumbling at low Ca, swinging at larger Ca, and breathing at the transitions. In the swinging regime, the region of the high principal tensions periodically oscillates, whereas that of the high isotropic tensions is almost unchanged. Due to the strain-hardening property of the membrane, the deformation is limited but the membrane tension increases monotonically with the capillary number. We have quantitatively compared our numerical results with former experimental results. It indicates that a membrane isotropic tension O(10-6 N/m) is high enough for molecular release from RBCs and that the typical maximum membrane principal tension for haemolysis would be O(10-4 N/m). These findings are useful to clarify not only the membrane rupture but also the mechanotransduction of RBCs.

  1. The study on RBC characteristic in paroxysmal nocturnal hemoglobinuria (PNH) patients using common path interferometric quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Park, Byung Jun; Won, Youngjae; Kim, Byungyeon; Lee, Seungrag

    2016-03-01

    We have studied the RBC membrane properties between a normal RBC and a RBC in Paroxysrnal nocturnal hemoglobinuria (PNH) patient using common path interferometric quantitative phase microscopy (CPIQPM). CPIQPM system has provided the subnanometer optical path length sensitivity on a millisecond. We have measured the dynamic thickness fluctuations of a normal RBC membrane and a RBC membrane in PNH patient over the whole cell surface with CPIQPM. PNH is a rare and serious disease of blood featured by destruction of red blood cells (RBCs). This destruction happens since RBCs show the defect of protein which protects RBCs from the immune system. We have applied CPIQPM to study the characteristic of RBC membrane in PNH patient. We have shown the morphological shape, volume, and projected surface for both different RBC types. The results have showed both RBCs had the similar shape with donut, but membrane fluctuations in PNH patient was shown to reveal the difference of temporal properties compared with a normal RBC. In order to demonstrate the practical tool of the CPIQPM technique, we have also obtained the time series thickness fluctuation outside a cell.

  2. Geometric, osmotic, and membrane mechanical properties of density-separated human red cells.

    PubMed

    Linderkamp, O; Meiselman, H J

    1982-06-01

    Although there is evidence that the deformability of the entire red blood cell (RBC) decreases during aging, reports on changes in relevant specific properties associated with the aging process are limited and not in total agreement. The purpose of this study was to evaluate some of the factors that might contribute to this decreased deformability. Geometric, osmotic, and membrane mechanical properties of unfractionated, top ("young") and bottom ("old") RBC from 5 healthy adult donors were measured using micropipette techniques. Surface area, volume, and diameter of RBC were measured at osmolalities of 297, 254, 202, and 153 mosm/kg. Two membrane mechanical properties, surface shear modulus of elasticity (mu) and time constant (tc) of viscoelastic recovery, were studied only in isotonic media. At each of the osmolalities, volume and surface area of the bottom cells were about 25% lower than those of the top cells. Bottom cells showed smaller increases in volume with decreasing osmolality than top cells; the surface area remained constant with changing osmolality for all three groups. The surface area-to-volume ratio and the minimum cylindrical diameter of the bottom cells were essentially identical to the top cells. However, both the surface area index (actual are of RBC divided by area of a sphere of same volume) and the swelling index (maximal volume divided by actual volume) of the bottom cells were significantly lower than top RBC. The shear modules of elasticity (mu) was about 0.006 dyne/cm in all 3 RBC populations, indicating that the forces necessary to deform a portion of the membrane did not change with RBC aging. The viscoelastic time constant (tc) was 0.148 +/- 0.020 (SD) sec for the bottom RBC and 0.099 +/- 0.017 sec for the top cells. This difference indicates that shape recovery following membrane deformation is delayed in old RBC. The membrane surface viscosity (eta), calculated as the product of tc times mu was 0.95 +/- 0.22 x 10(-3) dyne-sec/cm for

  3. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.

    PubMed

    Ng, Yan Cheng; Namgung, Bumseok; Tien, Sim Leng; Leo, Hwa Liang; Kim, Sangho

    2016-08-01

    Heterogeneous distribution of red blood cells (RBCs) in downstream vessels of arteriolar bifurcations can be promoted by an asymmetric formation of cell-free layer (CFL) in upstream vessels. Consequently, the CFL widths in subsequent downstream vessels become an important determinant for tissue oxygenation (O2) and vascular tone change by varying nitric oxide (NO) availability. To extend our previous understanding on the formation of CFL in arteriolar bifurcations, this study investigated the formation of CFL widths from 2 to 6 vessel-diameter (2D-6D) downstream of arteriolar bifurcations in the rat cremaster muscle (D = 51.5 ± 1.3 μm). As the CFL widths are highly influenced by RBC aggregation, the degree of aggregation was adjusted to simulate levels seen during physiological and pathological states. Our in vivo experimental results showed that the asymmetry of CFL widths persists along downstream vessels up to 6D from the bifurcating point. Moreover, elevated levels of RBC aggregation appeared to retard the recovery of CFL width symmetry. The required length of complete symmetry recovery was estimated to be greater than 11D under reduced flow conditions, which is relatively longer than interbifurcation distances of arterioles for vessel diameter of ∼50 μm. In addition, our numerical prediction showed that the persistent asymmetry of CFL widths could potentially result in a heterogeneous vasoactivity over the entire arteriolar network in such abnormal flow conditions.

  4. Smoking and red blood cell phospholipid membrane fatty acids.

    PubMed

    Murff, H J; Tindle, H A; Shrubsole, M J; Cai, Q; Smalley, W; Milne, G L; Swift, L L; Ness, R M; Zheng, W

    2016-09-01

    Smoking is associated with lower n-3 long chain polyunsaturated fatty acids (LCPUFA) concentrations; however, limited studies have accounted for dietary PUFA intake or whether tobacco dose or smoking duration influences this association. We measured red blood cell phospholipid (RBC) membrane concentrations of fatty acids in 126 current smokers, 311 former smokers, and 461 never smokers using gas liquid chromatography and tandem mass spectrometry. Smokers had lower RBC membrane percentages of total n-3 LCPUFAs compared to former smokers or never smokers (median percent: 5.46, [interquartile range (IQR) 4.52, 6.28] versus 6.39; [IQR: 5.18, 7.85] versus 6.59; [IQR 5.34, 8.01]) (p<0.001) and this association remained after adjusting for dietary PUFA intake. Duration of smoking and cigarettes per day were not associated with RBC membrane n-3 LCPUFA differences. Smoking is associated with lower n-3 LCPUFA RBC membrane percentages and this association was not influenced by diet or smoking dose or duration. PMID:27637337

  5. RBC Antibody Screen

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Screen Share this page: Was this page ... Screen Related tests: Direct Antiglobulin Test ; Blood Typing ; RBC Antibody Identification ; Type and Screen; Crossmatch All content ...

  6. RBC nuclear scan

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  7. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  8. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  9. Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method.

    PubMed

    Duez, J; Holleran, J P; Ndour, P A; Pionneau, C; Diakité, S; Roussel, C; Dussiot, M; Amireault, P; Avery, V M; Buffet, P A

    2015-08-01

    During their lifespan, circulating RBC are frequently checked for their deformability. This mechanical quality control operates essentially in the human spleen. RBC unable to squeeze though narrow splenic slits are retained and cleared from the blood circulation. Under physiological conditions this prevents microvessels from being clogged by senescent, rigid RBC. Retention of poorly deformable RBC is an important determinant of pathogenesis in malaria and may also impact the clinical benefit of transfusion. Modulating the splenic retention of RBC has already been proposed to support therapeutic approaches in these research fields. To this aim, the development of microplates for high throughput filtration of RBC through microsphere layers (microplate-based microsphiltration) has been undertaken. This review focuses on potential therapeutic applications provided by this technology in malaria chemotherapy and transfusion. PMID:26138907

  10. Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method.

    PubMed

    Duez, J; Holleran, J P; Ndour, P A; Pionneau, C; Diakité, S; Roussel, C; Dussiot, M; Amireault, P; Avery, V M; Buffet, P A

    2015-08-01

    During their lifespan, circulating RBC are frequently checked for their deformability. This mechanical quality control operates essentially in the human spleen. RBC unable to squeeze though narrow splenic slits are retained and cleared from the blood circulation. Under physiological conditions this prevents microvessels from being clogged by senescent, rigid RBC. Retention of poorly deformable RBC is an important determinant of pathogenesis in malaria and may also impact the clinical benefit of transfusion. Modulating the splenic retention of RBC has already been proposed to support therapeutic approaches in these research fields. To this aim, the development of microplates for high throughput filtration of RBC through microsphere layers (microplate-based microsphiltration) has been undertaken. This review focuses on potential therapeutic applications provided by this technology in malaria chemotherapy and transfusion.

  11. Overcoming blood shortages: red blood cell and platelet substitutes and membrane modifications.

    PubMed

    Davey, Richard J

    2004-03-01

    Blood shortages are increasingly common as the donor base declines and extensive restrictions on blood donation disqualify many donors. Red blood cell (RBC) and platelet substitutes have long been anticipated as alternatives to standard transfusions. However, difficulties in manufacturing, efficacy, and safety have slowed the development of these products. New understanding of the relationship between blood viscosity, oxygen transport, and vasoactivity have led to more effective RBC substitutes, several of which are in advanced clinical trials. In addition, creative approaches to RBC membrane modification, such as the enzymatic cleavage of ABH glycoproteins, may lead to a universal RBC. Advances in the understanding of platelet membrane behavior at low temperatures may lead to extended platelet storage at refrigerator temperatures. Standard transfusions of human RBCs and platelets will not be replaced soon. However, these new products will be a useful alternative for selected clinical applications and will lessen our dependence on our marginally adequate blood supply.

  12. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells

    PubMed Central

    Buckingham, Donna W.; Blanc, Lionel; Hale, John; Guo, Xinhua; Pei, Xinhong; Herrmann, Susann; Hanssen, Eric G.; Coppel, Ross L.; Mohandas, Narla; An, Xiuli; Cooke, Brian M.

    2015-01-01

    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined subdomains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process. PMID:25883090

  13. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells.

    PubMed

    Kats, Lev M; Proellocks, Nicholas I; Buckingham, Donna W; Blanc, Lionel; Hale, John; Guo, Xinhua; Pei, Xinhong; Herrmann, Susann; Hanssen, Eric G; Coppel, Ross L; Mohandas, Narla; An, Xiuli; Cooke, Brian M

    2015-07-01

    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.

  14. Red blood cell membrane viscoelasticity, agglutination and zeta potential measurements with double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; de Ysasa Pozzo, Liliana; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-02-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. There are techniques, however, to decrease the zeta potential to allow cell agglutination which are the basis of most of the tests of antigen-antibody interactions in blood banks. This report shows the use of a double optical tweezers to measure RBC membrane viscosity, agglutination and zeta potential. In our technique one of the optical tweezers trap a silica bead that binds strongly to a RBC at the end of a RBCs rouleaux and, at the same time, acts as a pico-Newton force transducer, after calibration through its displacement from the equilibrium position. The other optical tweezers trap the RBC at the other end. To measure the membrane viscosity the optical force is measured as a function of the velocity between the RBCs. To measure the adhesion the tweezers are slowly displaced apart until the RBCs disagglutination happens. The RBC zeta potential is measured in two complimentary ways, by the force on the silica bead attached to a single RBC in response to an applied electric field, and the conventional way, by the measurement of terminal velocity of the RBC after released from the optical trap. These two measurements provide information about the RBC charges and, also, electrolytic solution properties. We believe this can improve the methods of diagnosis in blood banks.

  15. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  16. Giant Host Red Blood Cell Membrane Mimicking Polymersomes Bind Parasite Proteins and Malaria Parasites.

    PubMed

    Najer, Adrian; Thamboo, Sagana; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2016-01-01

    Malaria is an infectious disease that needs to be addressed using innovative approaches to counteract spread of drug resistance and to establish or optimize vaccination strategies. With our approach, we aim for a dual action with drug- and 'vaccine-like' activity against malaria. By inhibiting entry of malaria parasites into host red blood cells (RBCs) - using polymer vesicle-based (polymersome) nanomimics of RBC membranes - the life cycle of the parasite is interrupted and the exposed parasites are accessible to the host immune system. Here, we describe how host cell-sized RBC membrane mimics, formed with the same block copolymers as nanomimics, also bind the corresponding malaria parasite ligand and whole malaria parasites, similar to nanomimics. This was demonstrated using fluorescence imaging techniques and confirms the suitability of giant polymersomes (GUVs) as simple mimics for RBC membranes.

  17. Rheological properties of RBC in the microcirculation of mammalian skeletal muscle. [red blood cells

    NASA Technical Reports Server (NTRS)

    Ehrenberg, M. H.

    1974-01-01

    In the investigation the established technique of direct microscopic viewing was combined with the use of a closed circuit television system and cinematography. The red cell flow patterns in all capillaries were found to be oscillatory with characteristic cycle frequencies and amplitudes for all concentrations of inspired oxygen greater than 8%. Generally, there was a transient decrease in mean flow rate with increasing severity of hypoxia, with a gradual return toward control values. Red cell flow patterns are discussed along with questions of red cell configuration.

  18. Optical Trapping Techniques Applied to the Study of Cell Membranes

    NASA Astrophysics Data System (ADS)

    Morss, Andrew J.

    , unlike bulk electroporation, nano-electroporation directly injects nanoparticles, such as quantum dots, to the cell interior, bypassing the cell membrane without the need for endocytosis. The aging of RBC's can render them rigid, an issue for the survivability of transfusion patients. This rigidity can be assessed by examining the fluctuations in the cell membrane. In the third experiment, we use back focal plane detection—an interferometric detection scheme using an optical tweezers setup—to measure the membrane fluctuations of RBC's and K562 cells. Membrane fluctuations have long been observed in RBC's and a well developed theory exists linking them to the cells internal viscosity η, the membrane bending modulus k and the surface tension of the membrane σ. We use back focal plane detection to measure the effect of ascorbic acid treatment on RBC aging and find no improvement in cell flexibility. K562 cells differ from RBC's in that they possess an actin cortex which the membrane attaches to. We demonstrate that K562 cells exhibit as much as an order of magnitude more variation in their fluctuations than RBC's do.

  19. Extracellular Methemoglobin Mediated Early ROS Spike Triggers Osmotic Fragility and RBC Destruction: An Insight into the Enhanced Hemolysis During Malaria.

    PubMed

    Balaji, S N; Trivedi, Vishal

    2012-04-01

    Malaria infection is known to cause severe hemolysis due to production of abnormal RBCs and enhanced RBC destruction through apoptosis. Infected RBC lysis exposes uninfected RBC to the large amount of pro-oxidant molecules such as methemoglobin. Methemoglobin (MetHb) exposure dose dependently makes RBCs susceptible to osmotic stress and causes hemolysis. MetHb mediated oxidative stress in RBC correlated well with osmotic fragility and hemolysis. Interestingly, a reactive oxygen species (ROS) spike at 15 min was responsible for the observed effects on RBC cells. Two natural antioxidants N-acetyl cysteine and mannitol protected the RBC from MetHb-mediated defects, which clearly indicated involvement of oxidative stress in the process. MetHb due to its pseudo-peroxidase activity produces ROS in the external microenvironment. Therefore, classical peroxidase inhibitors were tested to probe peroxidase activity mediated ROS production with defects in RBCs. Clotrimazole (CLT), which irreversibly inactivates the MetHb (CLT-MetHb) and abolishes peroxidase activity, did not produce significant ROS outside RBC and was inefficient to cause osmotic fragility and hemolysis. Hence, initiating a chain reaction, MetHb released from ruptured RBC produces significant ROS in the external microenvironment to make RBC membrane leaky and enhanced hemolysis. Together data presented in the current work explored the role of MetHb in accelerated humorless during malaria which could be responsible for severe outcomes of pathological disorders.

  20. A Facile Approach to Functionalize Cell Membrane-Coated Nanoparticles

    PubMed Central

    Zhou, Hao; Fan, Zhiyuan; Lemons, Pelin K.; Cheng, Hao

    2016-01-01

    Convenient strategies to provide cell membrane-coated nanoparticles (CM-NPs) with multi-functionalities beyond the natural function of cell membranes would dramatically expand the application of this emerging class of nanomaterials. We have developed a facile approach to functionalize CM-NPs by chemically modifying live cell membranes prior to CM-NP fabrication using a bifunctional linker, succinimidyl-[(N-maleimidopropionamido)-polyethyleneglycol] ester (NHS-PEG-Maleimide). This method is particularly suitable to conjugate large bioactive molecules such as proteins on cell membranes as it establishes a strong anchorage and enable the control of linker length, a critical parameter for maximizing the function of anchored proteins. As a proof of concept, we show the conjugation of human recombinant hyaluronidase, PH20 (rHuPH20) on red blood cell (RBC) membranes and demonstrate that long linker (MW: 3400) is superior to short linker (MW: 425) for maintaining enzyme activity, while minimizing the changes to cell membranes. When the modified membranes were fabricated into RBC membrane-coated nanoparticles (RBCM-NPs), the conjugated rHuPH20 can assist NP diffusion more efficiently than free rHuPH20 in matrix-mimicking gels and the pericellular hyaluronic acid matrix of PC3 prostate cancer cells. After quenching the unreacted chemical groups with polyethylene glycol, we demonstrated that the rHuPH20 modification does not reduce the ultra-long blood circulation time of RBCM-NPs. Therefore, this surface engineering approach provides a platform to functionlize CM-NPs without sacrificing the natural function of cell membranes. PMID:27217834

  1. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  2. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men

    PubMed Central

    Stookey, Jodi D; Klein, Alexis; Hamer, Janice; Chi, Christine; Higa, Annie; Ng, Vivian; Arieff, Allen; Kuypers, Frans A; Larkin, Sandra; Perrier, Erica; Lang, Florian

    2013-01-01

    Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20–25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration. PMID:24303184

  3. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men.

    PubMed

    Stookey, Jodi D; Klein, Alexis; Hamer, Janice; Chi, Christine; Higa, Annie; Ng, Vivian; Arieff, Allen; Kuypers, Frans A; Larkin, Sandra; Perrier, Erica; Lang, Florian

    2013-10-01

    Biomarkers of chronic cell hydration status are needed to determine whether chronic hyperosmotic stress increases chronic disease risk in population-representative samples. In vitro, cells adapt to chronic hyperosmotic stress by upregulating protein breakdown to counter the osmotic gradient with higher intracellular amino acid concentrations. If cells are subsequently exposed to hypo-osmotic conditions, the adaptation results in excess cell swelling and/or efflux of free amino acids. This study explored whether increased red blood cell (RBC) swelling and/or plasma or urine amino acid concentrations after hypo-osmotic challenge might be informative about relative chronic hyperosmotic stress in free-living men. Five healthy men (20-25 years) with baseline total water intake below 2 L/day participated in an 8-week clinical study: four 2-week periods in a U-shaped A-B-C-A design. Intake of drinking water was increased by +0.8 ± 0.3 L/day in period 2, and +1.5 ± 0.3 L/day in period 3, and returned to baseline intake (0.4 ± 0.2 L/day) in period 4. Each week, fasting blood and urine were collected after a 750 mL bolus of drinking water, following overnight water restriction. The periods of higher water intake were associated with significant decreases in RBC deformability (index of cell swelling), plasma histidine, urine arginine, and urine glutamic acid. After 4 weeks of higher water intake, four out of five participants had ½ maximal RBC deformability below 400 mmol/kg; plasma histidine below 100 μmol/L; and/or undetectable urine arginine and urine glutamic acid concentrations. Work is warranted to pursue RBC deformability and amino acid concentrations after hypo-osmotic challenge as possible biomarkers of chronic cell hydration. PMID:24303184

  4. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    SciTech Connect

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.; Masouredis, S.P. )

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.

  5. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  6. Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance.

    PubMed

    Rao, Lang; Bu, Lin-Lin; Xu, Jun-Hua; Cai, Bo; Yu, Guang-Tao; Yu, Xiaolei; He, Zhaobo; Huang, Qinqin; Li, Andrew; Guo, Shi-Shang; Zhang, Wen-Feng; Liu, Wei; Sun, Zhi-Jun; Wang, Hao; Wang, Tza-Huei; Zhao, Xing-Zhong

    2015-12-01

    For decades, poly(ethylene glycol) (PEG) has been widely incorporated into nanoparticles for evading immune clearance and improving the systematic circulation time. However, recent studies have reported a phenomenon known as "accelerated blood clearance (ABC)" where a second dose of PEGylated nanomaterials is rapidly cleared when given several days after the first dose. Herein, we demonstrate that natural red blood cell (RBC) membrane is a superior alternative to PEG. Biomimetic RBC membrane-coated Fe(3)O(4) nanoparticles (Fe(3)O(4) @RBC NPs) rely on CD47, which is a "don't eat me" marker on the RBC surface, to escape immune clearance through interactions with the signal regulatory protein-alpha (SIRP-α) receptor. Fe(3)O(4) @RBC NPs exhibit extended circulation time and show little change between the first and second doses, with no ABC suffered. In addition, the administration of Fe(3)O(4) @RBC NPs does not elicit immune responses on neither the cellular level (myeloid-derived suppressor cells (MDSCs)) nor the humoral level (immunoglobulin M and G (IgM and IgG)). Finally, the in vivo toxicity of these cell membrane-camouflaged nanoparticles is systematically investigated by blood biochemistry, hematology testing, and histology analysis. These findings are significant advancements toward solving the long-existing clinical challenges of developing biomaterials that are able to resist both immune response and rapid clearance. PMID:26488923

  7. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein.

    PubMed

    Victoria, E J; Pierce, S W; Branks, M J; Masouredis, S P

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10% (dog, 2.6%; rhesus monkey, 7.4%), consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3. Unlike RBC autoantibodies from antiglobulin-positive normal blood donors

  8. Inconsistencies in the red blood cell membrane proteome analysis: generation of a database for research and diagnostic applications

    PubMed Central

    Hegedűs, Tamás; Chaubey, Pururawa Mayank; Várady, György; Szabó, Edit; Sarankó, Hajnalka; Hofstetter, Lia; Roschitzki, Bernd; Sarkadi, Balázs

    2015-01-01

    Based on recent results, the determination of the easily accessible red blood cell (RBC) membrane proteins may provide new diagnostic possibilities for assessing mutations, polymorphisms or regulatory alterations in diseases. However, the analysis of the current mass spectrometry-based proteomics datasets and other major databases indicates inconsistencies—the results show large scattering and only a limited overlap for the identified RBC membrane proteins. Here, we applied membrane-specific proteomics studies in human RBC, compared these results with the data in the literature, and generated a comprehensive and expandable database using all available data sources. The integrated web database now refers to proteomic, genetic and medical databases as well, and contains an unexpected large number of validated membrane proteins previously thought to be specific for other tissues and/or related to major human diseases. Since the determination of protein expression in RBC provides a method to indicate pathological alterations, our database should facilitate the development of RBC membrane biomarker platforms and provide a unique resource to aid related further research and diagnostics. Database URL: http://rbcc.hegelab.org PMID:26078478

  9. The First Cell Membranes

    NASA Technical Reports Server (NTRS)

    Deamer, David; Dworkin, Jason P.; Sandford, Scott A.; Bernstein, Max P.; Allamandola, Louis J.

    2004-01-01

    Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous organic mixtures. Some of these compounds are amphiphilic, having polar and non-polar groups on the same molecule. Amphiphilic compounds spontaneously self-assembly into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to be available on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. A goal of future investigations is to fabricate artificial cells as models of the origin of life.

  10. Cell Membrane Softening in Cancer Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  11. Red blood cell (RBC) transfusion rates among US chronic dialysis patients during changes to Medicare end-stage renal disease (ESRD) reimbursement systems and erythropoiesis stimulating agent (ESA) labels

    PubMed Central

    2014-01-01

    Background Several major ESRD-related regulatory and reimbursement changes were introduced in the United States in 2011. In several large, national datasets, these changes have been associated with decreases in erythropoiesis stimulating agent (ESA) utilization and hemoglobin concentrations in the ESRD population, as well as an increase in the use of red blood cell (RBC) transfusions in this population. Our objective was to examine the use of RBC transfusion before and after the regulatory and reimbursement changes implemented in 2011 in a prevalent population of chronic dialysis patients in a large national claims database. Methods Patients in the Truven Health MarketScan Commercial and Medicare Databases with evidence of chronic dialysis were selected for the study. The proportion of chronic dialysis patients who received any RBC transfusion and RBC transfusion event rates per 100 patient-months were calculated in each month from January 1, 2007 to March 31, 2012. The results were analyzed overall and stratified by primary health insurance payer (commercial payer or Medicare). Results Overall, the percent of chronic dialysis patients with RBC transfusion and RBC transfusion event rates per 100 patient-months increased between January 2007 and March 2012. When stratified by primary health insurance payer, it appears that the increase was driven by the primary Medicare insurance population. While the percent of patients with RBC transfusion and RBC transfusion event rates did not increase in the commercially insured population between 2007 and 2012 they did increase in the primary Medicare insurance population; the majority of the increase occurred in 2011 during the same time frame as the ESRD-related regulatory and reimbursement changes. Conclusions The regulatory and reimbursement changes implemented in 2011 may have contributed to an increase in the use of RBC transfusions in chronic dialysis patients in the MarketScan dataset who were covered by Medicare plus

  12. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions

    PubMed Central

    2014-01-01

    Background Computational modeling of Red Blood Cell (RBC) flow contributes to the fundamental understanding of microhemodynamics and microcirculation. In order to construct theoretical RBC models, experimental studies on single RBC mechanics have presented a material description for RBC membranes based on their membrane shear, bending and area moduli. These properties have been directly employed in 3D continuum models of RBCs but practical flow analysis with 3D models have been limited by their computationally expensive nature. As such, various researchers have employed 2D models to efficiently and qualitatively study microvessel flows. Currently, the representation of RBC dynamics using 2D models is a limited methodology that breaks down at high shear rates due to excessive and unrealistic stretching. Methods We propose a localized scaling of the 2D elastic moduli such that it increases with RBC local membrane strain, thereby accounting for effects such as the Poisson effect and membrane local area incompressibility lost in the 2D simplification. Validation of our 2D Large Deformation (2D-LD) RBC model was achieved by comparing the predicted RBC deformation against the 3D model from literature for the case of a single RBC in simple shear flow under various shear rates (dimensionless shear rate G = 0.05, 0.1, 0.2, 0.5). The multi-cell flow of RBCs (38% Hematocrit) in a 20 μm width microchannel under varying shear rates (50, 150, 150 s-1) was then simulated with our proposed model and the popularly-employed 2D neo-Hookean model in order to evaluate the efficacy of our proposed 2D-LD model. Results The validation set indicated similar RBC deformation for both the 2D-LD and the 3D models across the studied shear rates, highlighting the robustness of our model. The multi-cell simulation indicated that the 2D neo-Hookean model predicts noodle-like RBC shapes at high shear rates (G = 0.5) whereas our 2D-LD model maintains sensible RBC deformations. Conclusion

  13. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics.

  14. Protein area occupancy at the center of the red blood cell membrane.

    PubMed

    Dupuy, Allison D; Engelman, Donald M

    2008-02-26

    In the Fluid Mosaic Model for biological membrane structure, proposed by Singer and Nicolson in 1972, the lipid bilayer is represented as a neutral two-dimensional solvent in which the proteins of the membrane are dispersed and distributed randomly. The model portrays the membrane as dominated by a membrane lipid bilayer, directly exposed to the aqueous environment, and only occasionally interrupted by transmembrane proteins. This view is reproduced in virtually every textbook in biochemistry and cell biology, yet some critical features have yet to be closely examined, including the key parameter of the relative occupancy of protein and lipid at the center of a natural membrane. Here we show that the area occupied by protein and lipid at the center of the human red blood cell (RBC) plasma membrane is at least approximately 23% protein and less than approximately 77% lipid. This measurement is in close agreement with previous estimates for the RBC plasma membrane and the recently published measurements for the synaptic vesicle. Given that transmembrane proteins are surrounded by phospholipids that are perturbed by their presence, the occupancy by protein of more than approximately 20% of the RBC plasma membrane and the synaptic vesicle plasma membrane implies that natural membrane bilayers may be more rigid and less fluid than has been thought for the past several decades, and that studies of pure lipid bilayers do not fully reveal the properties of lipids in membranes. Thus, it appears to be the case that membranes may be more mosaic than fluid, with little unperturbed phospholipid bilayer. PMID:18287056

  15. Sialoglycosylation of RBC in visceral leishmaniasis leads to enhanced oxidative stress, calpain-induced fragmentation of spectrin and hemolysis.

    PubMed

    Samanta, Sajal; Ghoshal, Angana; Bhattacharya, Kaushik; Saha, Bibhuti; Walden, Peter; Mandal, Chitra

    2012-01-01

    Visceral leishmaniasis (VL) caused by the intracellular parasite Leishmania donovani accounts for an estimated 12 million cases of human infection. It is almost always associated with anemia, which severely complicates the disease course. However, the pathological processes leading to anemia in VL have thus far not been adequately characterized to date. In studying the glycosylation patterns of peripheral blood cells we found that the red blood cells (RBC) of VL patients (RBC(VL)) express eight 9-O-acetylated sialoglycoproteins (9-O-AcSGPs) that are not detected in the RBC of healthy individuals (RBC(N)). At the same time, the patients had high titers of anti-9-O-AcSGP IgG antibodies in their sera. These two conditions appear to be linked and related to the anemic state of the patients, as exposure of RBC(VL) but not RBC(N) to anti-9-O-AcSGPs antibodies purified from patient sera triggered a series of responses. These included calcium influx via the P/Q-type but not L-type channels, activation of calpain I, proteolysis of spectrin, enhanced oxidative stress, lipid peroxidation, externalization of phosphatidyl serine with enhanced erythrophagocytosis, enhanced membrane fragility and, finally, hemolysis. Taken together, this study suggests that the enhanced hemolysis is linked to an impairment of membrane integrity in RBC(VL) which is mediated by ligand-specific interaction of surface 9-O-AcSGPs. This affords a potential explanation for the structural and functional features of RBC(VL) which are involved in the hemolysis related to the anemia which develops in VL patients.

  16. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  17. Metabolomics of AS-1 RBC storage

    PubMed Central

    Roback, John D.; Josephson, Cassandra D.; Waller, Edmund K.; Newman, James L.; Karatela, Sulaiman; Uppal, Karan; Jones, Dean; Zimring, James C.; Dumont, Larry J.

    2014-01-01

    Background Population based investigations suggest that red blood cells (RBCs) are therapeutically effective when collected, processed and stored for up to 42 days under validated conditions prior to transfusion. However, some retrospective clinical studies have shown worse patient outcomes when transfused RBCs have been stored for the longest times. Furthermore, studies of RBC persistence in the circulation after transfusion have suggested that considerable donor-to-donor variability exists, and may affect transfusion efficacy. To understand the limitations of current blood storage technologies and to develop approaches to improve RBC storage and transfusion efficacy, we investigated the global metabolic alterations that occur when RBCs are stored in AS-1 (AS1-RBC). Methods Leukoreduced AS1-RBC units prepared from 9 volunteer research donors (12 total donated units) were serially sampled for metabolomics analysis over 42 days of refrigerated storage. Samples were tested by GC/MS and LC/MS/MS, and specific biochemical compounds were identified by comparison to a library of purified standards. Results Over three experiments, 185–264 defined metabolites were quantified in stored RBC samples. Kinetic changes in these biochemicals confirmed known alterations in glycolysis and other pathways previously identified in RBCs stored in SAGM (SAGM-RBC). Furthermore, we identified additional alterations not previously seen in SAGM-RBCs (e.g., stable pentose phosphate pathway flux, progressive decreases in oxidized glutathione), and we delineated changes occurring in other metabolic pathways not previously studied (e.g., S-adenosyl methionine cycle). These data are presented in the context of a detailed comparison with previous studies of SAGM-RBCs from human donors and murine AS1-RBCs. Conclusion Global metabolic profiling of AS1-RBCs revealed a number of biochemical alterations in stored blood that may affect RBC viability during storage as well as therapeutic effectiveness

  18. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression. PMID:26133667

  19. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression.

  20. Stress-free state of the red blood cell membrane and the deformation of its skeleton.

    PubMed

    Svelc, Tjaša; Svetina, Saša

    2012-06-01

    The response of a red blood cell (RBC) to deformation depends on its membrane, a composite of a lipid bilayer and a skeleton, which is a closed, two-dimensional network of spectrin tetramers as its bonds. The deformation of the skeleton and its lateral redistribution are studied in terms of the RBC resting state for a fixed geometry of the RBC, partially aspirated into a micropipette. The geometry of the RBC skeleton in its initial state is taken to be either two concentric circles, a references biconcave shape or a sphere. It is assumed that in its initial state the skeleton is distributed laterally in a homogeneous manner with its bonds either unstressed, presenting its stress-free state, or prestressed. The lateral distribution was calculated using a variational calculation. It was assumed that the spectrin tetramer bonds exhibit a linear elasticity. The results showed a significant effect of the initial skeleton geometry on its lateral distribution in the deformed state. The proposed model is used to analyze the measurements of skeleton extension ratios by the method of applying two modes of RBC micropipette aspiration.

  1. Membrane phospholipid organization and vesiculation of erythrocytes in sickle cell anaemia.

    PubMed

    Wagner, G M; Schwartz, R S; Chiu, D T; Lubin, B H

    1985-02-01

    This review has examined the lipid composition of the RBC membrane and the methods used to determine the distribution of the phospholipids within the membrane. The importance of the membrane cytoskeletal proteins, in particular spectrin and protein 4.1, in maintaining this distribution has also been described. Membrane vesiculation and altered membrane phospholipid asymmetry in sickle cell anaemia have been reviewed. The relationships between vesiculation and hypercoagulability and an abnormal reticuloendothelial system in sickle cell disease have been examined. It is apparent that the single amino acid substitution leading to the production of sickle haemoglobin has profound effects on the entire erythrocyte, reaching to the limits of the cell, its plasma membrane. PMID:3886236

  2. Studying red blood cell agglutination by measuring membrane viscosity with optical tweezers

    NASA Astrophysics Data System (ADS)

    Fernandes, Heloise P.; Fontes, Adriana; de Thomaz, André A.; Barbosa, Luiz C.; Barjas-Castro, Maria L.; Cesar, Carlos L.

    2007-09-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycoproteins embedded in a fluid lipid bilayer that are responsible for cell agglutination. Manipulating RBCs rouleaux with a double optical tweezers, we observed that the cells slide easily one over the others but are strongly connected by their edges. An explanation for this behavior could be the fact that when the cells slide one over the others, proteins are dragged through the membrane. It confers to the movement a viscous characteristic that is dependent of the velocity between the RBCs and justifies why is so easy to slide them apart. Therefore, in a first step of this work, by measuring the force as a function of the relative velocity between two cells, we confirmed this assumption and used this viscous characteristic of the RBC rouleaux to determine the apparent membrane viscosity of the cell. As this behavior is related to the proteins interactions, we can use the apparent membrane viscosity to obtain a better understanding about cell agglutination. Methods related to cell agglutination induced by antigen-antibody interactions are the basis of most of tests used in transfusion centers. Then, in a second step of this work, we measured the apparent membrane viscosity using antibodies. We observed that this methodology is sensitive to different kinds of bindings between RBCs. Better comprehension of the forces and bindings between RBCs could improve the sensibility and specificity of the hemagglutination reactions and also guides the development of new potentiator substances.

  3. Lipid peroxidation affects red blood cells membrane properties in patients with systemic lupus erythematosus.

    PubMed

    Spengler, M I; Svetaz, M J; Leroux, M B; Bertoluzzo, S M; Parente, F M; Bosch, P

    2014-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune, chronic inflammatory, non-organ specific disease with an important morbimortality affecting several organs and systems. Oxidative stress is a well documented mechanism of red blood cells (RBC) mechanical impairment. Free radicals could produced, through lipid peroxidation, physical and chemical alterations in the cellular membrane properties modifying its composition, packing and lipid distribution on the membrane erythrocyte. The aim of the present work is to study the lipid peroxidation in the RBC membrane in SLE patients (n = 42) affecting so far the lipid membrane fluidity and erythrocyte deformability in comparison with healthy controls (n = 52). Malonildialdehyde (MDA) is a subrogate assessing lipidic peroxidation, rigidity index estimating erythrocyte deformability and the anisotropy coefficient estimating lipid membrane fluidity were used. Our results show that MDA values are increased, while erythrocyte deformability and membrane fluidity are significantly decreased in erythrocyte membrane from SLE patients in comparison with normal controls. The association of thiobarbituric acid reactive substances (TBARS) with membrane lipid fluidity and erythrocyte deformability confirms that the damage of membrane properties is produced by lipid peroxidation. PMID:23603321

  4. RBC micromotors carrying multiple cargos towards potential theranostic applications

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph

    2015-08-01

    Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic

  5. The Molecules of the Cell Membrane.

    ERIC Educational Resources Information Center

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  6. Metabolic remodeling of the human red blood cell membrane measured by quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Park, YongKeun; Best, Catherine; Auth, Thorsten; Gov, Nir S.; Safran, Samuel; Popescu, Gabriel

    2011-02-01

    We have quantitatively and systemically measured the morphologies and dynamics of fluctuations in human RBC membranes using a full-field laser interferometry technique that accurately measures dynamic membrane fluctuations. We present conclusive evidence that the presence of adenosine 5'-triphosphate (ATP) facilitates nonequilibrium dynamic fluctuations in the RBC membrane and that these fluctuations are highly correlated with specific regions in the biconcave shape of RBCs. Spatial analysis reveals that these nonequilibrium membrane fluctuations are enhanced at the scale of the spectrin mesh size. Our results indicate the presence of dynamic remodeling in the RBC membrane cortex powered by ATP, which results in nonequilibrium membrane fluctuations.

  7. Responses of red blood cell-membrane systems: temperature and calcium effects on volume, deformability, and osmotic fragility as studied by resistive pulse spectroscopy

    SciTech Connect

    Richieri, G.V.

    1984-04-01

    The effects exerted by temperature and calcium on red blood cells were studied using resistive pulse spectroscopy (RPS). A new RPS protocol is presented which enables cell volume and shape to be determined more accurately than previously possible. Repair processes of the RBC membrane following osmotic hemolysis were examined. 140 references, 44 figures, 6 tables.

  8. Cell secretion and membrane fusion.

    PubMed

    Jena, Bhanu P

    2005-07-01

    Secretion occurs in all cells of multicellular organisms and involves the delivery of secretory products packaged in membrane-bound vesicles to the cell exterior. Specialized cells for neurotransmission, enzyme secretion or hormone release utilize a highly regulated secretory process. Secretory vesicles are transported to specific sites at the plasma membrane, where they dock and fuse to release their contents. Similar to other cellular processes, cell secretion is found to be highly regulated and a precisely orchestrated event. It has been demonstrated that membrane-bound secretory vesicles dock and fuse at porosomes, which are specialized supramolecular structures at the cell plasma membrane. Swelling of secretory vesicles results in a build-up of pressure, allowing expulsion of intravesicular contents. The extent of secretory vesicle swelling dictates the amount of intravesicular contents expelled during secretion. The discovery of the porosome, its isolation, its structure and dynamics at nm resolution and in real time, its biochemical composition and functional reconstitution into artificial lipid membrane, have been determined. The molecular mechanism of secretory vesicle fusion at the base of porosomes, and vesicle swelling, has also been resolved. These findings reveal the molecular mechanism of cell secretion.

  9. Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin.

    PubMed

    Muzykantov, V R; Murciano, J C; Taylor, R P; Atochina, E N; Herraez, A

    1996-10-01

    Red blood cells (RBC) modified with biotin and streptavidin (SA) present an interesting potential drug delivery system. Biotinylation and SA attachment, however, alter the biocompatibility of RBC. We have reported that polyvalent SA attachment induces lysis of biotinylated RBC (b-RBC) by homologous complement via the alternative pathway. Lysis occurs due to inactivation of the membrane regulators of complement, DAF and CD59, cross-linked by SA. However, monovalent SA attachment does not induce lysis. On the basis of these findings we hypothesized that reduction of the biotin surface density on b-RBC would allow for monovalent SA attachment to b-RBC and that such SA/b-RBC should then be stable in the circulation. In the present work we injected into rats several different radiolabeled RBC probes: rat RBC biotinylated to varying degrees (bn-RBC, where bn represents the input micromolar concentration of biotinylating agent), as well as SA/bn-RBC. Extensively biotinylated rat RBC (b700-RBC, stable in serum in vitro) were rapidly cleared from the bloodstream. We further found that extensively biotinylated human b1000-RBC bound C3b from serum in vitro without detectable lysis, and that rat b700-RBC bound to isolated macrophages in a complement-dependent fashion. Therefore, nonlytic C3b flxation and uptake of C3b-carrying b700-RBC by macrophages appears to be the mechanism leading to clearance of b700-RBC in vivo. Moderately biotinylated RBC (b70-RBC and b240-RBC) were stable in serum in vitro. SA attachment to b240-RBC led to their rapid lysis in serum in vitro, lysis in the bloodstream, and clearance by the liver and spleen. SA attachment to b70-RBC led to fast elimination of SA/b70-RBC from the bloodstream, while in vitro SA/ b70-RBC were stable in serum. Modestly biotinylated RBC (b22-RBC) demonstrated only marginally decreased 60-min survival in the bloodstream regardless of SA attachment. Our in vitro studies indicate that b23-RBC bound approximately 10(5) SA

  10. Dielectric breakdown of cell membranes.

    PubMed

    Zimmermann, U; Pilwat, G; Riemann, F

    1974-11-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  11. Marathon Running Fails to Influence RBC Survival Rates in Iron-Replete Women.

    ERIC Educational Resources Information Center

    Steenkamp, Irene; And Others

    1986-01-01

    This study used radiolabeling to measure red blood cell (RBC) survival rates in six iron-replete female marathon runners, and urinary tests were conducted to search for secondary evidence of RBC damage. The hypothesized RBC fragmentation was not disclosed. (Author/MT)

  12. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    PubMed

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-07-19

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae.

  13. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL.

    PubMed Central

    Freshwater, D W; Fredericq, S; Butler, B S; Hommersand, M H; Chase, M W

    1994-01-01

    A phylogeny for the Rhodophyta has been inferred by parsimony analysis of plastid rbcL sequences representing 81 species, 68 genera, 38 families, and 17 orders of red algae; rbcL encodes the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Levels of sequence divergence among species, genera, and families are high in red algae, typically much greater than those reported for flowering plants. The Rhodophyta traditionally consists of one class, Rhodophyceae, and two subclasses, Bangiophycidae and Florideophycidae. The Bangiophycidae with three orders (Porphyridiales, Compsopogonales, and Bangiales) appears to be polyphyletic, and the Florideophycidae with 17 orders is monophyletic in this study. The current classification of the Florideophycidae based on ultrastructure of pit connections is supported. With the exception of the Rhodogorgonales, which appears to be misplaced, orders with one or two pit-plug cap layers (Hildenbrandiales, Corallinales, Acrochaetiales, Palmanales, Batrachospermales, and Nemaliales) terminate long branches of basal position within Florideophycidae in the most parsimonious rbcL tree. Orders that lack typical cap layers but possess a cap membrane are resolved as a monophyletic clade sister to the Ahnfeltiales. The large order Gigartinales, which is distributed among five rbcL clades, is polyphyletic. Families that possess typical carrageenan in their cell walls are resolved as a terminal clade containing two family complexes centered around the Solieriaceae and Gigartinaceae. PMID:8041781

  14. Corrugated Membrane Fuel Cell Structures

    SciTech Connect

    Grot, Stephen

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  15. Importance of spectrin network reorganization in computer simulations of RBC shapes

    NASA Astrophysics Data System (ADS)

    Schiller, Ulf; Ladd, Tony

    2011-03-01

    The shape of red blood cells (RBCs) has been the subject of intensive investigations in both experiments and theoretical models. Various computational models for RBCs have also been developed. However, a rigorous quantitative comparison of the observed shapes is still lacking. We have developed a flexible model that allows to study the influence of the various contributions to the membrane stress and their relevance for RBC shape. Our model reveals that a pure curvature model does not fully explain the experimentally observed discocyte shapes. We demonstrate that the in-plane stresses of the spectrin network have a crucial effect on the cell shapes and their transitions, and that the dynamic relaxation of the stresses due to spectrin reorganization is important. We present an extended model that incorporates the effects of dynamic spectrin remodeling and study their role on the dynamics of RBC shapes. Financial support from the Volkswagen Foundation is gratefully acknowledged.

  16. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.

  17. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats

    PubMed Central

    Remesar, Xavier; Antelo, Arantxa; Llivina, Clàudia; Albà, Emma; Berdié, Lourdes; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José Antonio

    2015-01-01

    Background and objectives. Red blood cells (RBC) are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet. Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids. Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells’ extracts, there was a marked depletion of PUFA (and, in general, of insaturation). Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma) fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources. Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool. PMID:26213652

  18. Multifractal characterization of morphology of human red blood cells membrane skeleton.

    PubMed

    Ţălu, Ş; Stach, S; Kaczmarska, M; Fornal, M; Grodzicki, T; Pohorecki, W; Burda, K

    2016-04-01

    The purpose of this paper is to show applicability of multifractal analysis in investigations of the morphological changes of ultra-structures of red blood cells (RBCs) membrane skeleton measured using atomic force microscopy (AFM). Human RBCs obtained from healthy and hypertensive donors as well as healthy erythrocytes irradiated with neutrons (45 μGy) were studied. The membrane skeleton of the cells was imaged using AFM in a contact mode. Morphological characterization of the three-dimensional RBC surfaces was realized by a multifractal method. The nanometre scale study of human RBCs surface morphology revealed a multifractal geometry. The generalized dimensions Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of their membrane skeleton organization. Surface characterization was made using areal ISO 25178-2: 2012 topography parameters in combination with AFM topography measurement. The surface structure of human RBCs is complex with hierarchical substructures resulting from the organization of the erythrocyte membrane skeleton. The analysed AFM images confirm a multifractal nature of the surface that could be useful in histology to quantify human RBC architectural changes associated with different disease states. In case of very precise measurements when the red cell surface is not wrinkled even very fine differences can be uncovered as was shown for the erythrocytes treated with a very low dose of ionizing radiation. PMID:27002485

  19. Multifractal characterization of morphology of human red blood cells membrane skeleton.

    PubMed

    Ţălu, Ş; Stach, S; Kaczmarska, M; Fornal, M; Grodzicki, T; Pohorecki, W; Burda, K

    2016-04-01

    The purpose of this paper is to show applicability of multifractal analysis in investigations of the morphological changes of ultra-structures of red blood cells (RBCs) membrane skeleton measured using atomic force microscopy (AFM). Human RBCs obtained from healthy and hypertensive donors as well as healthy erythrocytes irradiated with neutrons (45 μGy) were studied. The membrane skeleton of the cells was imaged using AFM in a contact mode. Morphological characterization of the three-dimensional RBC surfaces was realized by a multifractal method. The nanometre scale study of human RBCs surface morphology revealed a multifractal geometry. The generalized dimensions Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of their membrane skeleton organization. Surface characterization was made using areal ISO 25178-2: 2012 topography parameters in combination with AFM topography measurement. The surface structure of human RBCs is complex with hierarchical substructures resulting from the organization of the erythrocyte membrane skeleton. The analysed AFM images confirm a multifractal nature of the surface that could be useful in histology to quantify human RBC architectural changes associated with different disease states. In case of very precise measurements when the red cell surface is not wrinkled even very fine differences can be uncovered as was shown for the erythrocytes treated with a very low dose of ionizing radiation.

  20. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet.

    PubMed

    Oliva, Laia; Baron, Cristian; Fernández-López, José-Antonio; Remesar, Xavier; Alemany, Marià

    2015-01-01

    Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower

  1. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet.

    PubMed

    Oliva, Laia; Baron, Cristian; Fernández-López, José-Antonio; Remesar, Xavier; Alemany, Marià

    2015-01-01

    Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower

  2. Lipopolysaccharide from Proteus mirabilis O29 induces changes in red blood cell membrane lipids and proteins.

    PubMed

    Gwoździński, Krzysztof; Pieniazek, Anna; Kaca, Wiesław

    2003-03-01

    Alterations in red blood cell (RBC) plasma membranes, i.e. in lipids and proteins, and osmotic fragility of these cells after treatment with Proteus mirabilis O29 endotoxin (lipolysaccharide (LPS)) were examined using a spin labelling method. At the highest concentration of LPS, insignificantly decreased fluidity of membrane lipids was observed. Changes in conformation of membrane proteins were determined by two covalently bound spin labels, 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (MSL) and 4-iodoacetamido-2,2,6,6-tetramethylpiperidine-1-oxyl (ISL). The analysis of spectra of MSL and ISL showed modifications in membrane proteins in red blood cells treated with the highest concentration of lipopolysaccharide. On the other hand, in the case of isolated membranes, disturbances in membrane were observed for all concentrations of LPS. The alterations in membrane lipids and proteins are paralleled in a significant rise in osmotic fragility of RBCs upon endotoxin treatment. These results provide experimental evidence that P. mirabilis O29 LPS causes deleterious changes in membranes of human red blood cells. They show that action of lipopolysaccharide mainly concerns the membrane cytoskeleton. PMID:12531246

  3. Prolongation of RBC survival in the hypophysectomized rat.

    NASA Technical Reports Server (NTRS)

    Landaw, S. A.; Bristol, S. K.

    1971-01-01

    Red blood cell (RBC) survival was prolonged in hypophysectomized rats. While the rate of random hemolysis was decreased in some hypophysectomized hosts, in all directly injected and cross-transfused hypophysectomized rat hosts, there was a significant prolongation of the phase of senescent death. In contrast, RBCs from hypophysectomized donors survived normally in normal hosts. These experiments are further evidence of a relationship between RBC aging and metabolic rate, and suggest an intimate involvement with the calorigenic hormones.

  4. Strategies for cell membrane functionalization

    PubMed Central

    Armstrong, James PK

    2016-01-01

    The ability to rationally manipulate and augment the cytoplasmic membrane can be used to overcome many of the challenges faced by conventional cellular therapies and provide innovative opportunities when combined with new biotechnologies. The focus of this review is on emerging strategies used in cell functionalization, highlighting both pioneering approaches and recent developments. These will be discussed within the context of future directions in this rapidly evolving field. PMID:27229904

  5. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Grapsa, E.; Manios, E.; Gogola, V.; Bakirtzi, N.

    2012-12-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.

  6. Following-up changes in red blood cell deformability and membrane stability in the presence of PTFE graft implanted into the femoral artery in a canine model

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Kiss, Ferenc; Klarik, Zoltan; Gergely, Eszter; Toth, Eniko; Peto, Katalin; Vanyolos, Erzsebet; Miko, Iren; Nemeth, Norbert

    2014-05-01

    It is known that a moderate mechanical stress can even improve the red blood cells' (RBC) micro-rheological characteristics, however, a more significant stress causes deterioration in the deformability. In this study, we aimed to investigate the effect of the presence of artificial graft on the RBC deformability and membrane stability in beagles. In the Control group only anesthesia was induced and in the postoperative (p.o.) period blood samplings were carried out. In the Grafted group under general anesthesia, the left femoral artery was isolated, from which a 3.5 cm segment was resected and a PTFE graft (O.D.: 3 mm) of equal in length was implanted into the gap. On the 1st, 3rd, 5th, 7th and 14th p.o. days blood was collected the cephalic veins and RBC deformability was determined ektacytometry (LoRRca MaxSis Osmoscan). Membrane stability test consisted of two deformability measurements before and after the cells were being exposed to mechanical stress (60 or 100 Pa for 300 seconds). Compared to the Control group and the baseline values the red blood cell deformability showed significant deterioration on the 3rd, 5th and mainly on the 7th postoperative day after the graft implantation. The membrane stability of erythrocyte revealed marked inter-group difference on the 3rd, 5th and 7th day: in the Grafted group the deformability decreased and during the membrane stability test smaller difference was observed between the states before and after shearing. We concluded that the presence of a PTFE graft in the femoral artery may cause changes in RBC deformability in the first p.o. week. RBC membrane stability investigation shows a lower elongation index profile for the grafted group and a narrowed alteration in the deformability curves due to mechanical stress.

  7. Transfusion of cell saver salvaged blood in neonates and infants undergoing open heart surgery significantly reduces RBC and coagulant product transfusions and donor exposures: results of a prospective, randomized, clinical trial

    PubMed Central

    Cholette, Jill M; Powers, Karen S; Alfieris, George M; Angona, Ronald; Henrichs, Kelly F; Masel, Debra; Swartz, Michael F; Daugherty, L. Eugene; Belmont, Kevin; Blumberg, Neil

    2013-01-01

    Objective To evaluate whether transfusion of cell saver salvaged, stored at the bedside for up to 24 hours, would decrease the number of post-operative allogeneic RBC transfusions and donor exposures, and possibly improve clinical outcomes. Design Prospective, randomized, controlled, clinical trial. Setting Pediatric cardiac intensive care unit. Patients Infants <20kg (n = 106) presenting for cardiac surgery with cardiopulmonary bypass. Interventions Subjects were randomized to a cell saver transfusion group where cell saver blood was available for transfusion up to 24 hours post-collection, or to a control group. Cell saver subjects received cell saver blood for volume replacement and/or RBC transfusions. Control subjects received crystalloid or albumin for volume replacement and RBCs for anemia. Blood product transfusions, donor exposures, and clinical outcomes were compared between groups. Measurements and Main Results Children randomized to the cell saver group had significantly fewer RBC transfusions (cell saver: 0.19 ± 0.44 v. control: 0.75 ± 1.2; p = 0.003) and coagulant product transfusions in the first 48 hours post-op (cell saver: 0.09 ± 0.45 v. control: 0.62 ± 1.4; p = 0.013), and significantly fewer donor exposures (cell saver: 0.60 ± 1.4 v. control: 2.3 ± 4.8; p =0.019). This difference persisted over the first week post-op, but did not reach statistical significance (cell saver: 0.64 ± 1.24 v. control: 1.1 ± 1.4; p =0.07). There were no significant clinical outcome differences. Conclusion Cell saver blood can be safely stored at the bedside for immediate transfusion for 24 hours post-collection. Administration of cell saver blood significantly reduces the number of RBC and coagulant product transfusions and donor exposures in the immediate post-operative period. Reduction of blood product transfusions has the potential to reduce transfusion-associated complications and decrease post-operative morbidity. Larger studies are needed to determine

  8. Maize rbcS promoter activity depends on sequence elements not found in dicot rbcS promoters.

    PubMed Central

    Schäffner, A R; Sheen, J

    1991-01-01

    Although the molecular mechanisms of dicot photosynthetic gene regulation have been pursued actively, comparable studies of monocot regulation have been slow to come forth. We show here that monocot (maize and wheat) but not dicot (pea, tobacco, and Arabidopsis) ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) gene promoters are active in maize mesophyll protoplasts. The evolutionarily conserved GT and G boxes of dicot rbcS promoters are not essential for light-responsive expression in monocot leaf cells. Instead, at least six constitutive and light-sensitive regulatory elements are likely important for maize rbcS expression. Synergism between upstream and downstream promoter elements is required. Whereas in dicots, light triggers coupled leaf development and photosynthetic gene expression, in monocots, light regulation of rbcS is uncoupled from leaf development. Light regulation of maize rbcS may be divided into direct and indirect contributions mediated by different regulatory elements. Because wheat and maize rbcS promoters show sequence homologies and similar expression patterns in monocot and dicot leaf cells, it appears likely that monocots share conserved regulatory elements irrespective of whether they utilize the C3 or C4 pathway for carbon fixation. PMID:1822995

  9. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  10. Actinide transport across cell membranes.

    PubMed

    Bulman, R A; Griffin, R J

    1980-01-01

    Protactinium uptake into the normal liver does not exceed 3%, but when the phospholipid levels in the liver are elevated by administration of thioacetamide this uptake increases to 31%. Phosphatidic acid, which is absent from the normal liver, has been shown to extract protactinium into organic solvents. However, phosphatidylserine, a component of normal liver cell membranes, does not extract protactinium. It might be conjectured that this is why so little protactinium is taken up by the normal liver. The hypothesis is advanced that phosphatidylserine, which is known to complex plutonium, americium and curium, may regulate the uptake of these elements by liver.

  11. Actinide transport across cell membranes.

    PubMed

    Bulman, R A; Griffin, R J

    1980-01-01

    Protactinium uptake into the normal liver does not exceed 3%, but when the phospholipid levels in the liver are elevated by administration of thioacetamide this uptake increases to 31%. Phosphatidic acid, which is absent from the normal liver, has been shown to extract protactinium into organic solvents. However, phosphatidylserine, a component of normal liver cell membranes, does not extract protactinium. It might be conjectured that this is why so little protactinium is taken up by the normal liver. The hypothesis is advanced that phosphatidylserine, which is known to complex plutonium, americium and curium, may regulate the uptake of these elements by liver. PMID:7373293

  12. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    SciTech Connect

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  13. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  14. Cholesterol-rich membrane coatings for interaction studies in capillary electrophoresis: application to red blood cell lipid extracts.

    PubMed

    Lindén, Maria V; Holopainen, Juha M; Laukkanen, Antti; Riekkola, Marja-Liisa; Wiedmer, Susanne K

    2006-10-01

    The purpose was to develop a stable biological membrane coating for CE useful for membrane interaction studies. The effect of cholesterol (chol) on the stability of dipalmitoylphosphatidylcholine (DPPC) and sphingomyelin (SM) coatings was studied. In addition, a fused-silica capillary for CE was coated with human red blood cell (RBC) ghost lipids. Liposomes prepared of DPPC/SM with and without chol or RBC ghost lipids were flushed through the capillary and the stability of the coating was measured electrophoretically. Similar mixtures of DPPC/SM with and without chol were further studied by differential scanning calorimetry. The presence of phosphatidylcholine as a basic component in the coating solution of DPPC/SM/chol was found to be essential to achieve a good and stable coating. The results also confirmed the stability of coatings obtained with solutions of DPPC with 0-30 mol% of chol and SM in different ratios, which more closely resemble natural membranes. Finally, the electrophoretic measurements revealed that a stable coating is formed when capillaries are coated with liposomes of RBC ghost lipids. PMID:16983633

  15. Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes.

    PubMed

    Chen, Kai Loon; Bothun, Geoffrey D

    2014-01-21

    Nanotoxicity studies have shown that both carbon-based and inorganic engineered nanoparticles can be toxic to microorganisms. Although the pathways for cytotoxicity are diverse and dependent upon the nature of the engineered nanoparticle and the chemical environment, numerous studies have provided evidence that direct contact between nanoparticles and bacterial cell membranes is necessary for cell inactivation or damage, and may in fact be a primary mechanism for cytotoxicity. The propensities for nanoparticles to attach to and disrupt cell membranes are still not well understood due to the heterogeneous and dynamic nature of biological membranes. Model biological membranes can be employed for systematic investigations of nanoparticle-membrane interactions. In this article, current and emerging experimental approaches to identify the key parameters that control the attachment of ENPs on model membranes and the disruption of membranes by ENPs will be discussed. This critical information will help enable the "safe-by-design" production of engineered nanoparticles that are nontoxic or biocompatible, and also allow for the design of antimicrobial nanoparticles for environmental and biomedical applications.

  16. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  17. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  18. Fuel cell ion-exchange membrane investigation

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1972-01-01

    The present deficiencies in the fluorocarbon sulfonic acid membrane used as the solid polymer electrolyte in the H2/O2 fuel cell are studied. Considered are: Adhesives selection, elastomeric formulations, scavenger exploration, and membrane characterization. The significant data are interpreted and recommendations are given for both short and long range further investigations in two of the four major areas: membrane adhesives and membrane stabilization.

  19. Inhibition of phagocytic recognition of anti-D opsonized Rh D+ RBC by polymer-mediated immunocamouflage.

    PubMed

    Li, Li; Noumsi, Ghislain T; Kwok, Yin Yu Eunice; Moulds, Joann M; Scott, Mark D

    2015-12-01

    The Rh D antigen posed both a significant clinical risk and inventory supply issue in transfusion medicine. The successful development of the immunocamouflaged RBC has the potential to address both the risk of acute anti-D transfusion reactions and to improve D- blood inventory in geographic locations where D- blood is rare (e.g., China). The immunocamouflage of RBC was mediated by the covalent grafting of methoxy(polyethylene glycol) to the cell membrane thereby obscuring the D protein from the immune system. To determine the potential efficacy of mPEG-D+ RBC in D- recipients, anti-D alloantibodies from previously alloimmunized individuals were utilized. The effects of polymer chain size (2-30 kDa) and grafting concentration (0-4 mM) on antibody binding and erythrophagocytosis were determined using the clinically validated monocyte monolayer assay (MMA) and flow cytometry. The immunocamouflage of D was polymer size and grafting concentration dependent as determined using human anti-D alloantibodies (both pooled [RhoGAM] and single donors). Importantly, the 20 kDa polymer provided excellent immunocamouflage of D and reached a clinically significant level of protection, as measured by the MMA, at grafting concentrations of ≥1.5 mM. These findings further support the potential use of immunocamouflaged RBC to reduce the risk of acute transfusion reactions following administration of D+ blood to D- recipients in situations where D- units are unavailable or supply is geographically constrained. PMID:26440218

  20. Fuel cell and membrane therefore

    DOEpatents

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  1. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.

    PubMed

    Svetina, Saša; Kokot, Gašper; Kebe, Tjaša Švelc; Žekš, Boštjan; Waugh, Richard E

    2016-06-01

    Red blood cell (RBC) membrane skeleton is a closed two-dimensional elastic network of spectrin tetramers with nodes formed by short actin filaments. Its three-dimensional shape conforms to the shape of the bilayer, to which it is connected through vertical linkages to integral membrane proteins. Numerous methods have been devised over the years to predict the response of the RBC membrane to applied forces and determine the corresponding increase in the skeleton elastic energy arising either directly from continuum descriptions of its deformation, or seeking to relate the macroscopic behavior of the membrane to its molecular constituents. In the current work, we present a novel continuum formulation rooted in the molecular structure of the membrane and apply it to analyze model deformations similar to those that occur during aspiration of RBCs into micropipettes. The microscopic elastic properties of the skeleton are derived by treating spectrin tetramers as simple linear springs. For a given local deformation of the skeleton, we determine the average bond energy and define the corresponding strain energy function and stress-strain relationships. The lateral redistribution of the skeleton is determined variationally to correspond to the minimum of its total energy. The predicted dependence of the length of the aspirated tongue on the aspiration pressure is shown to describe the experimentally observed system behavior in a quantitative manner by taking into account in addition to the skeleton energy an energy of attraction between RBC membrane and the micropipette surface.

  2. Multiple-capillary measurement of RBC speed, flux, and density with optical coherence tomography.

    PubMed

    Lee, Jonghwan; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2013-11-01

    As capillaries exhibit heterogeneous and fluctuating dynamics even during baseline, a technique measuring red blood cell (RBC) speed and flux over many capillaries at the same time is needed. Here, we report that optical coherence tomography can capture individual RBC passage simultaneously over many capillaries located at different depths. Further, we demonstrate the ability to quantify RBC speed, flux, and linear density. This technique will provide a means to monitor microvascular flow dynamics over many capillaries at different depths at the same time.

  3. Proton Exchange Membranes for Fuel Cells

    SciTech Connect

    Devanathan, Ramaswami

    2010-11-01

    Proton exchange membrane, also known as polymer electrolyte membrane, fuel cells (PEMFCs) offer the promise of efficient conversion of chemical energy of fuel, such as hydrogen or methanol, into electricity with minimal pollution. Their widespread use to power zero-emission automobiles as part of a hydrogen economy can contribute to enhanced energy security and reduction in greenhouse gas emissions. However, the commercial viability of PEMFC technology is hindered by high cost associated with the membrane electrode assembly (MEA) and poor membrane durability under prolonged operation at elevated temperature. Membranes for automotive fuel cell applications need to perform well over a period comparable to the life of an automotive engine and under heavy load cycling including start-stop cycling under sub-freezing conditions. The combination of elevated temperature, changes in humidity levels, physical stresses and harsh chemical environment contribute to membrane degradation. Perfluorinated sulfonic acid (PFSA)-based membranes, such as Nafion®, have been the mainstay of PEMFC technology. Their limitations, in terms of cost and poor conductivity at low hydration, have led to continuing research into membranes that have good proton conductivity at elevated temperatures above 120 °C and under low humidity conditions. Such membranes have the potential to avoid catalyst poisoning, simplify fuel cell design and reduce the cost of fuel cells. Hydrocarbon-based membranes are being developed as alternatives to PFSA membranes, but concerns about chemical and mechanical stability and durability remain. Novel anhydrous membranes based on polymer gels infused with protic ionic liquids have also been recently proposed, but considerable fundamental research is needed to understand proton transport in novel membranes and evaluate durability under fuel cell operating conditions. In order to advance this promising technology, it is essential to rationally design the next generation

  4. Interaction of Defensins with Model Cell Membranes

    NASA Astrophysics Data System (ADS)

    Sanders, Lori K.; Schmidt, Nathan W.; Yang, Lihua; Mishra, Abhijit; Gordon, Vernita D.; Selsted, Michael E.; Wong, Gerard C. L.

    2009-03-01

    Antimicrobial peptides (AMPs) comprise a key component of innate immunity for a wide range of multicellular organisms. For many AMPs, activity comes from their ability to selectively disrupt and lyse bacterial cell membranes. There are a number of proposed models for this action, but the detailed molecular mechanism of selective membrane permeation remains unclear. Theta defensins are circularized peptides with a high degree of selectivity. We investigate the interaction of model bacterial and eukaryotic cell membranes with theta defensins RTD-1, BTD-7, and compare them to protegrin PG-1, a prototypical AMP, using synchrotron small angle x-ray scattering (SAXS). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane phase behavior induced by these different peptides we will discuss the importance of amino acid composition and placement on membrane rearrangement.

  5. Membrane, electrochemical cell, and electrolysis process

    SciTech Connect

    Bissot, Th.C.; Grot, W.G.; Resnick, P.R.

    1984-03-20

    An ion exchange membrane which comprises a layer of fluorinated polymer which has carboxylic functional groups, a second layer of fluorinated polymer which has sulfonic or carboxylic functional groups at a surface layer, and a web of support material therein, and which has channels in the membrane which extend from window areas of the membrane to blind areas of the membrane occluded by members of the support material, is described. Precursor membrane which contains both reinforcement members and sacrificial members, and from which the ion exchange membrane is made, is also described. The ion exchange membrane can be used to separate the compartments of a chloralkali cell, and such a cell operates at low voltage, high current efficiency, and low power consumption.

  6. Does ATP cross the cell plasma membrane.

    PubMed Central

    Chaudry, I. H.

    1982-01-01

    Although there is an abundance of evidence which indicates that ATP is released as well as taken up by cells, the concept that ATP cannot cross the cell membrane has tended to prevail. This article reviews the evidence for the release as well as uptake of ATP by cells. The evidence presented by various investigators clearly indicates that ATP can cross the cell membrane and suggests that the release and uptake of ATP are physiological processes. PMID:7051582

  7. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs. PMID:23770357

  8. Interaction of detergent sclerosants with cell membranes.

    PubMed

    Parsi, Kurosh

    2015-06-01

    Commonly used detergent sclerosants including sodium tetradecyl sulphate (STS) and polidocanol (POL) are clinically used to induce endovascular fibrosis and vessel occlusion. They achieve this by lysing the endothelial lining of target vessels. These agents are surface active (surfactant) molecules that interfere with cell membranes. Surfactants have a striking similarity to the phospholipid molecules of the membrane lipid bilayer. By adsorbing at the cell membrane, surfactants disrupt the normal architecture of the lipid bilayer and reduce the surface tension. The outcome of this interaction is concentration dependent. At high enough concentrations, surfactants solubilise cell membranes resulting in cell lysis. At lower concentrations, these agents can induce a procoagulant negatively charged surface on the external aspect of the cell membrane. The interaction is also influenced by the ionic charge, molecular structure, pH and the chemical nature of the diluent (e.g. saline vs. water). The ionic charge of the surfactant molecule can influence the effect on plasma proteins and the protein contents of cell membranes. STS, an anionic detergent, denatures the tertiary complex of most proteins and in particular the clinically relevant clotting factors. By contrast, POL has no effect on proteins due to its non-ionic structure. These agents therefore exhibit remarkable differences in their interaction with lipid membranes, target cells and circulating proteins with potential implications in a range of clinical applications.

  9. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy.

    PubMed

    Moon, Inkyu; Yi, Faliu; Rappaz, Benjamin

    2016-01-20

    Red blood cell (RBC) phase images that are numerically reconstructed by digital holographic microscopy (DHM) can describe the cell structure and dynamics information beneficial for a quantitative analysis of RBCs. However, RBCs investigated with time-lapse DHM undergo temporal displacements when their membranes are loosely attached to the substrate during sedimentation on a glass surface or due to the microscope drift. Therefore, we need to develop a tracking algorithm to localize the same RBC among RBC image sequences and dynamically monitor its biophysical cell parameters; this information is helpful for studies on RBC-related diseases and drug tests. Here, we propose a method, which is a combination of the mean-shift algorithm and Kalman filter, to track a single RBC and demonstrate that the optical path length of the single RBC can be continually extracted from the tracked RBC. The Kalman filter is utilized to predict the target RBC position in the next frame. Then, the mean-shift algorithm starts execution from the predicted location, and a robust kernel, which is adaptive to changes in the RBC scale, shape, and direction, is designed to improve the accuracy of the tracking. Finally, the tracked RBC is segmented and parameters such as the RBC location are extracted to update the Kalman filter and the kernel function for mean-shift tracking; the characteristics of the target RBC are dynamically observed. Experimental results show the feasibility of the proposed algorithm.

  10. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  11. Red cell membrane: past, present, and future

    PubMed Central

    Gallagher, Patrick G.

    2008-01-01

    As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types. PMID:18988878

  12. Modifications in erythrocyte membrane protein content are not responsible for the alterations in rheology seen in sepsis.

    PubMed

    Piagnerelli, Michael; Cotton, Frederic; Van Nuffelen, Marc; Vincent, Jean-Louis; Gulbis, Beatrice

    2012-01-01

    Red blood cell (RBC) rheology is altered in sepsis and may contribute to the microcirculatory alterations in these patients, but the mechanisms of these changes are not well defined. An increase in the RBC protein band 3/α-spectrin ratio has been observed in a mouse model of septic shock, suggesting a possible alteration in the RBC membrane integral/peripheral protein ratio. This protein modification could contribute to the alterations in RBC rheology observed in sepsis. As there are interspecies differences in membrane composition, these observations need confirmation in humans. We studied RBCs from healthy volunteers (n = 10) and from patients with (n = 15) and without (n = 9) sepsis within 24 h of intensive care unit admission and also on day 3 for the septic patients. Exclusion criteria were recent RBC transfusion, hematologic diseases, cirrhosis, and diabetes mellitus. Procedures included screening for alterations in RBC membrane proteins using cryohemolysis and separation of RBC membrane and skeletal proteins by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The hemogram, including reticulocyte count, was similar between nonseptic and septic patients on day 1. The majority of RBC membrane protein ratios, including band 3/spectrin, were more elevated in critically ill patients (nonseptic and septic) than in volunteers, but RBC membrane skeletal protein content was similar in septic and nonseptic patients. There were no significant differences in cryohemolysis results among groups. Alterations in RBC rheology in sepsis are therefore mainly due to alterations in membrane compounds other than skeletal proteins, like carbohydrates, such as sialic acid and/or lipids.

  13. Nuclear myosin I regulates cell membrane tension.

    PubMed

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-08-02

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension.

  14. Nuclear myosin I regulates cell membrane tension

    PubMed Central

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  15. Nuclear myosin I regulates cell membrane tension.

    PubMed

    Venit, Tomáš; Kalendová, Alžběta; Petr, Martin; Dzijak, Rastislav; Pastorek, Lukáš; Rohožková, Jana; Malohlava, Jakub; Hozák, Pavel

    2016-01-01

    Plasma membrane tension is an important feature that determines the cell shape and influences processes such as cell motility, spreading, endocytosis and exocytosis. Unconventional class 1 myosins are potent regulators of plasma membrane tension because they physically link the plasma membrane with adjacent cytoskeleton. We identified nuclear myosin 1 (NM1) - a putative nuclear isoform of myosin 1c (Myo1c) - as a new player in the field. Although having specific nuclear functions, NM1 localizes predominantly to the plasma membrane. Deletion of NM1 causes more than a 50% increase in the elasticity of the plasma membrane around the actin cytoskeleton as measured by atomic force microscopy. This higher elasticity of NM1 knock-out cells leads to 25% higher resistance to short-term hypotonic environment and rapid cell swelling. In contrast, overexpression of NM1 in wild type cells leads to an additional 30% reduction of their survival. We have shown that NM1 has a direct functional role in the cytoplasm as a dynamic linker between the cell membrane and the underlying cytoskeleton, regulating the degree of effective plasma membrane tension. PMID:27480647

  16. Proton conducting membrane for fuel cells

    DOEpatents

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  17. Proton conducting membrane for fuel cells

    DOEpatents

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2005-12-20

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  18. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  19. Nanodefects of membranes cause destruction of packed red blood cells during long-term storage.

    PubMed

    Kozlova, Еlena; Chernysh, Аleksandr; Moroz, Victor; Sergunova, Victoria; Gudkova, Оlga; Kuzovlev, Аrtem

    2015-10-01

    Packed red blood cells (PRBC) are used for blood transfusion. PRBC were stored for 30 days under 4 °С in hermetic blood bags with CPD anticoagulant-preservative solution. Hematocrit was 50-55%. The distortions of PRBC membranes nanostructure and cells morphology during storage were studied by atomic force microscopy. Basic measurements were performed at the day 2, 6, 9, 16, 23 and 30 of storage and additionally 2-3 days after it. Topological defects occurred on RBC membranes by day 9. They appeared as domains with grain-like structures ("grains") sized up to 200 nm. These domains were appeared in almost all cells. Later these domains merged and formed large defects on cells. It was the formation of domains with the "grains" which was onset process leading eventually to destruction of PRBC. Possible mechanisms of transformation of PRBC and their membrane are related to the alterations of spectrin cytoskeleton. During this storage period potassium ions and lactat concentrations increased, pH decreased, intracellular concentration of reduced glutathione diminished in the preservative solution. Changes of PRBC morphology were detected within the entire period of PRBC storage. Discocytes predominated at the days 1 and 2. By day 30 PRBC transformed into irreversible echinocytes and spheroechinocytes. Study of defects of membranes nanostructure may form the basis of assessing the quality of the stored PRBC. This method may allow to work out the best recommendations for blood transfusion.

  20. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  1. Advanced membrane electrode assemblies for fuel cells

    DOEpatents

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  2. A novel bioactive membrane by cell electrospinning.

    PubMed

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi

    2015-11-01

    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic.

  3. Photothermal nanoblade for patterned cell membrane cutting

    PubMed Central

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A.; Chiou, Pei-Yu

    2010-01-01

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  4. Photothermal nanoblade for patterned cell membrane cutting.

    PubMed

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A; Chiou, Pei-Yu

    2010-10-25

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells. PMID:21164656

  5. Photothermal nanoblade for patterned cell membrane cutting.

    PubMed

    Wu, Ting-Hsiang; Teslaa, Tara; Teitell, Michael A; Chiou, Pei-Yu

    2010-10-25

    We report a photothermal nanoblade that utilizes a metallic nanostructure to harvest short laser pulse energy and convert it into a highly localized and specifically shaped explosive vapor bubble. Rapid bubble expansion and collapse punctures a lightly-contacting cell membrane via high-speed fluidic flows and induced transient shear stress. The membrane cutting pattern is controlled by the metallic nanostructure configuration, laser pulse polarization, and energy. Highly controllable, sub-micron sized circular hole pairs to half moon-like, or cat-door shaped, membrane cuts were realized in glutaraldehyde treated HeLa cells.

  6. Lysophosphatidylcholine cell depolarization: increased membrane permeability for use in the determination of cell membrane potentials

    SciTech Connect

    Gallo, R.L.; Wersto, R.P.; Notter, R.H.; Finkelstein, J.N.

    1984-12-01

    Current techniques for the determination of cellular membrane potentials based on the uptake of a radiolabeled lipophilic cation, (3H)triphenylmethylphosphonium, and the cyanine dye, DiOC5(3), were analyzed in terms of the proportions of these probes which are accumulated due to potential-dependent and potential-independent forces. Measurements were made of probe uptake in two model systems: rabbit type II pneumocytes and human promyelocytic HL60 cells. For both cell types, the membrane potential-independent component of triphenylmethylphosphonium uptake was found to be a function of several variables, including the length of exposure of the cells to the transport facilitator tetraphenylboron, the concentration of tetraphenylboron, and the integrity of the cell membrane. To accurately determine the magnitude of the potential-independent component of probe uptake by type II and HL60 cells, the cell-permeabilizing agent lysophosphatidylcholine was used. The ability of lysophosphatidylcholine to depolarize cell membranes and accurately predict membrane potential-independent accumulation was found to be equal to or superior to several other techniques commonly used to achieve membrane depolarization (e.g. gramicidin, valinomycin plus high external potassium). Lysophosphatidylcholine cell treatment was found to be a simple, rapid, and accurate technique to increase cell membrane permeability and allow equilibration of intra- and extracellular ions. The method is shown to be useful for determining membrane potential-independent accumulation of both radiolabeled and fluorescent probes of membrane potential.

  7. Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia.

    PubMed

    Sandor, Barbara; Marin, Mickaël; Lapoumeroulie, Claudine; Rabaï, Miklos; Lefevre, Sophie D; Lemonne, Nathalie; El Nemer, Wassim; Mozar, Anaïs; Français, Olivier; Le Pioufle, Bruno; Connes, Philippe; Le Van Kim, Caroline

    2016-04-01

    Vaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively. We show that poloxamer significantly reduces blood viscosity, RBC aggregation and adhesion to endothelial cells, supporting the beneficial use of this molecule in SS therapy. PMID:26846309

  8. Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia.

    PubMed

    Sandor, Barbara; Marin, Mickaël; Lapoumeroulie, Claudine; Rabaï, Miklos; Lefevre, Sophie D; Lemonne, Nathalie; El Nemer, Wassim; Mozar, Anaïs; Français, Olivier; Le Pioufle, Bruno; Connes, Philippe; Le Van Kim, Caroline

    2016-04-01

    Vaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively. We show that poloxamer significantly reduces blood viscosity, RBC aggregation and adhesion to endothelial cells, supporting the beneficial use of this molecule in SS therapy.

  9. Vesicle trafficking and cell surface membrane patchiness.

    PubMed

    Tang, Q; Edidin, M

    2001-07-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  10. High electrical field effects on cell membranes.

    PubMed

    Pliquett, U; Joshi, R P; Sridhara, V; Schoenbach, K H

    2007-05-01

    Electrical charging of lipid membranes causes electroporation with sharp membrane conductance increases. Several recent observations, especially at very high field strength, are not compatible with the simple electroporation picture. Here we present several relevant experiments on cell electrical responses to very high external voltages. We hypothesize that, not only are aqueous pores created within the lipid membranes, but that nanoscale membrane fragmentation occurs, possibly with micelle formation. This effect would produce conductivity increases beyond simple electroporation and display a relatively fast turn-off with external voltage. In addition, material loss can be expected at the anode side of cells, in agreement with published experimental reports at high fields. Our hypothesis is qualitatively supported by molecular dynamics simulations. Finally, such cellular responses might temporarily inactivate voltage-gated and ion-pump activity, while not necessarily causing cell death. This hypothesis also supports observations on electrofusion.

  11. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2013-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  12. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J; Pierpont, Daniel M; Yandrasits, Michael A; Hamrock, Steven J; Obradovich, Stephan J; Peterson, Donald G

    2014-01-28

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  13. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  14. Membrane lipid alterations in hemoglobinopathies.

    PubMed

    Kuypers, Frans A

    2007-01-01

    The red blood cell (RBC) membrane is a complex mixture of lipids and proteins. Hundreds of phospholipid molecular species spontaneously arrange themselves in a lipid bilayer and move rapidly in the plane as well as across the bilayer in a dynamic but highly organized fashion. Areas enriched in certain lipids determine proper protein function. Phospholipids are asymmetrically distributed across the lipid bilayer with phosphatidylserine (PS) exclusively on the inside. Both the composition and organization of the RBC membrane is well maintained. Alterations lead to apoptosis during erythropoiesis or early demise of the cell in the circulation. The mechanisms that govern the maintenance of the lipid bilayer are only recently being unraveled at the individual protein level. Oxidized lipids are rapidly repaired using fatty acids taken up from plasma to maintain membrane integrity. Several isoforms of a RBC acyl-Coenzyme A (CoA) synthase have been reported, as well as the first member of a family of lysophospholipid acylCoA acyltransferases. Phospholipid asymmetry is maintained by the recently identified RBC amino-phospholipid translocase. These enzymes, essential in maintaining membrane lipid organization, are affected by oxidant stress or an increase in cytosolic calcium. Normal lipid composition and organization is lost in subpopulations of RBC in hemoglobinopathies such as sickle cell disease and thalassemia. Despite elaborate antioxidant systems, lipids and membrane proteins, including those that maintain lipid organization, are damaged in these cells. This in turn leads to improper repair of damaged RBC membranes and altered interactions of RBCs with other blood cells and plasma components that play a role in the pathology that defines these disorders. The altered lipid bilayer in RBCs in hemoglobinopathies leads to premature removal (anemia) and imbalance in hemostasis, and plays a role in vaso-occlusive crisis in sickle cell disease. Lipid breakdown products of PS

  15. An approach to measuring RBC haemolysis and profiling RBC mechanical fragility.

    PubMed

    Alfano, Kenneth M; Tarasev, Michael; Meines, Steven; Parunak, Gene

    2016-01-01

    Red blood cells (RBC) can be damaged by medical products, from storage or from disease. Haemolysis (cell rupture and haemoglobin release) is often a key indicator, with mechanical fragility (MF) offering the potential to assess sub-haemolytic damage as well. This article reports on a unique approach to measuring haemolysis, without the need for centrifugation or other sample separation. It also reports on employing that in measuring blood fragility (susceptibility to haemolysis) under shear stress, utilising an electromagnet to cause a bead to oscillate within a cartridge that contains the sample. Cycling between stressing and optical measurement of induced haemolysis at progressively increasing durations of stress provides a fragility profile. Sub-system-level testing shows high accuracy for the haemolysis measurements and fair consistency for MF profiling. Improving accuracy and precision of profiling is a current focus and a fully integrated and automated version of this system is under development.

  16. Thermoelasticity of red blood cell membrane.

    PubMed Central

    Waugh, R; Evans, E A

    1979-01-01

    The elastic properties of the human red blood cell membrane have been measured as functions of temperature. The area compressibility modulus and the elastic shear modulus, which together characterize the surface elastic behavior of the membrane, have been measured over the temperature range of 2-50 degrees C with micropipette aspiration of flaccid and osmotically swollen red cells. In addition, the fractional increase in membrane surface area from 2-50 degrees C has been measured to give a value for the thermal area expansivity. The value of the elastic shear modulus at 25 degrees C was measured to be 6.6 X 10(-3) dyne/cm. The change in the elastic shear modulus with temperature was -6 X 10(-5) dyne/cm degrees C. Fractional forces were shown to be only on the order of 10-15%. The area compressibility modulus at 25 degrees C was measured to be 450 dyne/cm. The change in the area compressibility modulus with temperature was -6 dyne/cm degrees C. The thermal area expansivity for red cell membrane was measured to be 1.2 X 10(-3)/degrees C. With this data and thermoelastic relations the heat of expansion is determined to be 110-200 ergs/cm2; the heat of extension is 2 X 10(-2) ergs/cm2 for unit extension of the red cell membrane. The heat of expansion is of the order anticipated for a lipid bilayer idealized as twice the behavior of a monolayer at an oil-water interface. The observation that the heat of extension is positive demonstrates that the entropy of the material increases with extension, and that the dominant mechanism of elastic energy storage is energetic. Assuming that the red cell membrane shear rigidity is associated with "spectrin," unit extension of the membrane increases the configurational entropy of spectrin by 500 cal/mol. Images FIGURE 3 PMID:262408

  17. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy.

    PubMed

    Piao, Ji-Gang; Wang, Limin; Gao, Feng; You, Ye-Zi; Xiong, Yujie; Yang, Lihua

    2014-10-28

    Gold nanocages (AuNCs), which have tunable near-infrared (NIR) absorption and intrinsically high photothermal conversion efficiency, have been actively investigated as photothermal conversion agents for photothermal therapy (PTT). The short blood circulation lifetime of AuNCs, however, limits their tumor uptake and thus in vivo applications. Here we show that such a limitation can be overcome by cloaking AuNCs with red blood cell (RBC) membranes, a natural stealth coating. The fusion of RBC membranes over AuNC surface does not alter the unique porous and hollow structures of AuNCs, and the resulting RBC-membrane-coated AuNCs (RBC-AuNCs) exhibit good colloidal stability. Upon NIR laser irradiation, the RBC-AuNCs demonstrate in vitro photothermal effects and selectively ablate cancerous cells within the irradiation zone as do the pristine biopolymer-stealth-coated AuNCs. Moreover, the RBC-AuNCs exhibit significantly enhanced in vivo blood retention and circulation lifetime compared to the biopolymer-stealth-coated counterparts, as demonstrated using a mouse model. With integrated advantages of photothermal effects from AuNCs and long blood circulation lifetime from RBCs, the RBC-AuNCs demonstrate drastically enhanced tumor uptake when administered systematically, and mice that received PPT cancer treatment modulated by RBC-AuNCs achieve 100% survival over a span of 45 days. Taken together, our results indicate that the long circulating RBC-AuNCs may facilitate the in vivo applications of AuNCs, and the RBC-membrane stealth coating technique may pave the way to improved efficacy of PPT modulated by noble metal nanoparticles.

  18. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy.

    PubMed

    Piao, Ji-Gang; Wang, Limin; Gao, Feng; You, Ye-Zi; Xiong, Yujie; Yang, Lihua

    2014-10-28

    Gold nanocages (AuNCs), which have tunable near-infrared (NIR) absorption and intrinsically high photothermal conversion efficiency, have been actively investigated as photothermal conversion agents for photothermal therapy (PTT). The short blood circulation lifetime of AuNCs, however, limits their tumor uptake and thus in vivo applications. Here we show that such a limitation can be overcome by cloaking AuNCs with red blood cell (RBC) membranes, a natural stealth coating. The fusion of RBC membranes over AuNC surface does not alter the unique porous and hollow structures of AuNCs, and the resulting RBC-membrane-coated AuNCs (RBC-AuNCs) exhibit good colloidal stability. Upon NIR laser irradiation, the RBC-AuNCs demonstrate in vitro photothermal effects and selectively ablate cancerous cells within the irradiation zone as do the pristine biopolymer-stealth-coated AuNCs. Moreover, the RBC-AuNCs exhibit significantly enhanced in vivo blood retention and circulation lifetime compared to the biopolymer-stealth-coated counterparts, as demonstrated using a mouse model. With integrated advantages of photothermal effects from AuNCs and long blood circulation lifetime from RBCs, the RBC-AuNCs demonstrate drastically enhanced tumor uptake when administered systematically, and mice that received PPT cancer treatment modulated by RBC-AuNCs achieve 100% survival over a span of 45 days. Taken together, our results indicate that the long circulating RBC-AuNCs may facilitate the in vivo applications of AuNCs, and the RBC-membrane stealth coating technique may pave the way to improved efficacy of PPT modulated by noble metal nanoparticles. PMID:25286086

  19. The binding of Aβ1-42 to lipid rafts of RBC is enhanced by dietary docosahexaenoic acid in rats: Implicates to Alzheimer's disease.

    PubMed

    Hashimoto, Michio; Hossain, Shahdat; Katakura, Masanori; Al Mamun, Abdullah; Shido, Osamu

    2015-06-01

    Once amyloid β peptides (Aβs) of the Alzheimer's disease build up in blood circulation, they are capable of binding to red blood cell (RBC) and inducing hemolysis of RBC. The mechanisms of the interactions between RBC and Aβ are largely unknown; however, it is very important for the therapeutic target of Aβ-induced hemolysis. In the present study, we investigated whether Aβ1-42 interacts with caveolin-1-containing detergent-resistant membranes (DRMs) of RBC and whether the interaction could be modulated by dietary pre-administration of docosahexaenoic acid (DHA). DHA pre-administration to rats inhibited hemolysis by Aβ1-42. This activity was accompanied by increased DHA levels and membrane fluidity and decreased cholesterol level, lipid peroxidation, and reactive oxygen species in the RBCs of the DHA-pretreated rats, suggesting that the antioxidative property of DHA may rescue RBCs from oxidative damage by Aβ1-42. The level of caveolin-1 was augmented in the DRMs of DHA-pretreated rats. Binding between Aβ1-42 and DRMs of RBC significantly increased in DHA-rats. When fluorescently labeled Aβ1-42 (TAMRA-Aβ1-42) was directly infused into the bloodstream, it again occupied the caveolin-1-containing DRMs of the RBCs from the DHA-rats to a greater extent, indicating that circulating Aβs interact with the caveolin-1-rich lipid rafts of DRMs and the interaction is stronger in the DHA-enriched RBCs. The levels of TAMRA-Aβ1-42 also increased in liver DRMs, whereas it decreased in plasma of DHA-pretreated rats. DHA might help clearance of circulating Aβs by increased lipid raft-dependent degradation pathways and implicate to therapies in Alzheimer's disease.

  20. Cell migration does not produce membrane flow

    PubMed Central

    1990-01-01

    We have previously reported that rearward migration of surface particles on slowly moving cells is not driven by membrane flow (Sheetz, M. P., S. Turney, H. Qian, and E. L. Elson. 1989. Nature (Lond.). 340:284-288) and recent photobleaching measurements have ruled out any rapid rearward lipid flow (Lee, J., M. Gustafsson, D. E. Magnussen, and K. Jacobson. 1990. Science (Wash. DC.) 247:1229-1233). It was not possible, however, to conclude from those studies that a slower or tank-tread membrane lipid flow does not occur. Therefore, we have used the technology of single particle tracking to examine the movements of diffusing particles on rapidly locomoting fish keratocytes where the membrane current is likely to be greatest. The keratocytes had a smooth lamellipodial surface on which bound Con A-coated gold particles were observed either to track toward the nuclear region (velocity of 0.35 +/- 0.15 micron/s) or to diffuse randomly (apparent diffusion coefficient of [3.5 +/- 2.0] x 10(-10) cm2/s). We detected no systematic drift relative to the cell edge of particles undergoing random diffusion even after the cell had moved many micrometers. The average net particle displacement was 0.01 +/- 2.7% of the cell displacement. These results strongly suggest that neither the motions of membrane proteins driven by the cytoskeleton nor other possible factors produce a bulk flow of membrane lipid. PMID:2211827

  1. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance

  2. Red cell membrane lipids in hemoglobinopathies.

    PubMed

    Kuypers, Frans A

    2008-11-01

    The complex mixture of lipids and proteins of the red blood cell membrane is well maintained during the life of the cell. Lipid analysis of the red cell reveals hundreds of phospholipid molecular species and cholesterol that differ with respect to their (polar) head group, and (apolar) side chains. These molecules move rapidly in the plane, as well as across the lipid bilayer. This dynamic movement is highly organized. In the plane of the bilayer, areas enriched in certain lipids accommodate protein structure and modulate function. While lipids move across the bilayer, the organization is highly asymmetric. Amino phospholipids are mainly found on the inside and choline containing phospholipids on the outside. Both the composition and organization of the red cell membrane is maintained throughout the life of the red cell by an intricate mechanism that involves enzymes, transporters and cytosolic factors. Key proteins that maintain red blood cell lipid organization have recently been identified. Alterations in these mechanisms, as the result of the globin mutations in sickle cell disease or thalassemia will lead to loss of membrane viability, apoptosis during erythropoiesis, early demise of the cell in the circulation, and when these cells are not removed appropriately their presence has pathologic consequences.

  3. Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton.

    PubMed Central

    Lenormand, G; Hénon, S; Richert, A; Siméon, J; Gallet, F

    2001-01-01

    The area expansion and the shear moduli of the free spectrin skeleton, freshly extracted from the membrane of a human red blood cell (RBC), are measured by using optical tweezers micromanipulation. An RBC is trapped by three silica beads bound to its membrane. After extraction, the skeleton is deformed by applying calibrated forces to the beads. The area expansion modulus K(C) and shear modulus mu(C) of the two-dimensional spectrin network are inferred from the deformations measured as functions of the applied stress. In low hypotonic buffer (25 mOsm/kg), one finds K(C) = 4.8 +/- 2.7 microN/m, mu(C) = 2.4 +/- 0.7 microN/m, and K(C)/mu(C) = 1.9 +/- 1.0. In isotonic buffer, one measures higher values for K(C), mu(C), and K(C)/mu(C), partly because the skeleton collapses in a high-ionic-strength environment. Some data concerning the time evolution of the mechanical properties of the skeleton after extraction and the influence of ATP are also reported. In the Discussion, it is shown that the measured values are consistent with estimates deduced from experiments carried out on the intact membrane and agree with theoretical and numerical predictions concerning two-dimensional networks of entropic springs. PMID:11423393

  4. Modification and evaluation of fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Nalawade, Amol Prataprao

    The primary goals of this study were modification of existing NafionRTM membranes and characterization of newly developed hydrocarbon-based membranes for high temperature fuel cell applications. Various NafionRTM/silicate nanocomposites were formulated via in situ sol-gel reactions for tetraethylorthosilicate. Different silicate composition profiles generated across membrane cross-sections were investigated by EDAX/ESEM. Composite water uptake, proton conductivity and fuel cell performance were comparable to that of unmodified Nafion RTM. Tafel analysis showed better electrode kinetics for composites having more silicate in the middle and less or no silicate at electrolyte-electrode interfaces. All composites showed reduced fuel cross-over and superior mechanical as well as chemical durability than unmodified NafionRTM. Poly(cyclohexadiene) (PCHD) materials were characterized in the interest of developing alternative low-cost proton exchange membranes. All cross-linked sulfonated (xsPCHD) membranes showed significantly higher water uptake at 80 °C and higher proton conductivity at 120 °C at all relative humidities (RH), compared to the current benchmark membrane, NafionRTM. A xsPCHD-poly(ethylene glycol) (PEG) copolymer and a xsPCHD-PEG blend surpassed the DOE target by exhibiting proton conductivities of 141.44 and 322.40 mS/cm, respectively, at 50 % RH. Although the PCHD-based PEMs exhibited thermal stability up to 150 °C, they showed poor mechanical properties which would cause poor membrane durability during fuel cell operation. Atomic force microscopy studies demonstrated nanophase separated morphology of xsPCHD having a higher degree of connectedness of hydrophilic domains in the copolymer and blends relative to the xsPCHD homopolymer. Broadband dielectric spectroscopy (BDS) was used to study sub-Tg relaxations in annealed poly(2,5-benzimidazole) (ABPBI) fuel cell precursor materials. A trend in degree of connectivity of charge migration pathways and

  5. Cell or Cell Membrane-Based Drug Delivery Systems

    PubMed Central

    Tan, Songwei; Wu, Tingting; Zhang, Dan; Zhang, Zhiping

    2015-01-01

    Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications. PMID:26000058

  6. Inhibition of phagocytic recognition of anti‐D opsonized Rh D+ RBC by polymer‐mediated immunocamouflage

    PubMed Central

    Li, Li; Noumsi, Ghislain T.; Kwok, Yin Yu Eunice; Moulds, Joann M.

    2015-01-01

    The Rh D antigen posed both a significant clinical risk and inventory supply issue in transfusion medicine. The successful development of the immunocamouflaged RBC has the potential to address both the risk of acute anti‐D transfusion reactions and to improve D− blood inventory in geographic locations where D− blood is rare (e.g., China). The immunocamouflage of RBC was mediated by the covalent grafting of methoxy(polyethylene glycol) to the cell membrane thereby obscuring the D protein from the immune system. To determine the potential efficacy of mPEG‐D+ RBC in D− recipients, anti‐D alloantibodies from previously alloimmunized individuals were utilized. The effects of polymer chain size (2–30 kDa) and grafting concentration (0–4 mM) on antibody binding and erythrophagocytosis were determined using the clinically validated monocyte monolayer assay (MMA) and flow cytometry. The immunocamouflage of D was polymer size and grafting concentration dependent as determined using human anti‐D alloantibodies (both pooled [RhoGAM] and single donors). Importantly, the 20 kDa polymer provided excellent immunocamouflage of D and reached a clinically significant level of protection, as measured by the MMA, at grafting concentrations of ≥1.5 mM. These findings further support the potential use of immunocamouflaged RBC to reduce the risk of acute transfusion reactions following administration of D+ blood to D− recipients in situations where D− units are unavailable or supply is geographically constrained. Am. J. Hematol. 90:1165–1170, 2015. © 2015 Wiley Periodicals, Inc. PMID:26440218

  7. Studies in erythropoiesis: the influence of the glycocalyx of the red cell membrane

    SciTech Connect

    Franco, M.W.

    1980-01-01

    The possible existence of a correlation between the removal from the circulation of aged cells and the production of new RBCs was investigated. An erythropoietic influence was found to be associated with the glycocalyx of the erythrocyte membrane. The influencing factor, presumably a desialated glycopeptide, asialoglycophorin, appeared to be masked on the young RBC by an amino ketosugar, sialic acid. Ostensibly during the aging process, an increasing amount of sialic acid becomes removed from the membrane to expose the underlying erythropoietic message. Sialic acid was removed enzymatically in vitro from the membranes of erythrocytes by incubation with neuraminidase from Clostridium Perfringens. Erythropoietic activity was assayed by measuring iron-59 uptake after injection or transfusion of test material into exhypoxic mice. The amount of erythropoietic activity was found to be directly related to the number of desialated erythrocytes transfused and to the degree of desialation of the transfused erythrocytes. Asialoglycophorin was shown to be an erythrocyte stimulating factor following its isolation from the membrane and subsequent injection into test mice. Both mouse and human asialoglycophorin were found to be stimulatory.

  8. Hypercompliant Apical Membranes of Bladder Umbrella Cells

    PubMed Central

    Mathai, John C.; Zhou, Enhua H.; Yu, Weiqun; Kim, Jae Hun; Zhou, Ge; Liao, Yi; Sun, Tung-Tien; Fredberg, Jeffrey J.; Zeidel, Mark L.

    2014-01-01

    Urinary bladder undergoes dramatic volume changes during filling and voiding cycles. In the bladder the luminal surface of terminally differentiated urothelial umbrella cells is almost completely covered by plaques. These plaques (500 to 1000 nm) are made of a family of proteins called uroplakins that are known to form a tight barrier to prevent leakage of water and solutes. Electron micrographs from previous studies show these plaques to be interconnected by hinge regions to form structures that appear rigid, but these same structures must accommodate large changes in cell shape during voiding and filling cycles. To resolve this paradox, we measured the stiffness of the intact, living urothelial apical membrane and found it to be highly deformable, even more so than the red blood cell membrane. The intermediate cells underlying the umbrella cells do not have uroplakins but their membranes are an order of magnitude stiffer. Using uroplakin knockout mouse models we show that cell compliance is conferred by uroplakins. This hypercompliance may be essential for the maintenance of barrier function under dramatic cell deformation during filling and voiding of the bladder. PMID:25229135

  9. At the border: the plasma membrane-cell wall continuum.

    PubMed

    Liu, Zengyu; Persson, Staffan; Sánchez-Rodríguez, Clara

    2015-03-01

    Plant cells rely on their cell walls for directed growth and environmental adaptation. Synthesis and remodelling of the cell walls are membrane-related processes. During cell growth and exposure to external stimuli, there is a constant exchange of lipids, proteins, and other cell wall components between the cytosol and the plasma membrane/apoplast. This exchange of material and the localization of cell wall proteins at certain spots in the plasma membrane seem to rely on a particular membrane composition. In addition, sensors at the plasma membrane detect changes in the cell wall architecture, and activate cytoplasmic signalling schemes and ultimately cell wall remodelling. The apoplastic polysaccharide matrix is, on the other hand, crucial for preventing proteins diffusing uncontrollably in the membrane. Therefore, the cell wall-plasma membrane link is essential for plant development and responses to external stimuli. This review focuses on the relationship between the cell wall and plasma membrane, and its importance for plant tissue organization.

  10. Membrane electrode assembly for a fuel cell

    NASA Technical Reports Server (NTRS)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  11. Cu2+ ions interact with cell membranes.

    PubMed

    Suwalsky, M; Ungerer, B; Quevedo, L; Aguilar, F; Sotomayor, C P

    1998-07-01

    The influence of Cu2+ ions on the physical properties of resealed human erythrocyte membranes was studied by fluorescence spectroscopy. A net ordering effect was observed at the hydrophobic-hydrophilic interface both in the bulk as well as in the lipid-protein boundary. The explanation for this result was found by X-ray diffraction performed in multilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), representative of phospholipid classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. Cu2+ did not significantly affect the structure of DMPE; however, DMPC polar head and hydrocarbon chain arrangements were perturbed at low but reordered at high Cu2+ concentrations. These effects were respectively explained in terms of a limited and extended interaction between Cu2+ ions and DMPC PO4 groups. Thus, the ordering effect in the erythrocyte membrane could be based on the interaction of this cation with phosphatidylcholine phosphate groups located in its outer leaflet. This binding, besides producing a decrease of membrane fluidity, might also induce a change in its electric field. These two effects should affect the activity of membrane proteins, particularly of ion channels. In fact, it was found that increasing concentrations of Cu2+ ions applied to either the mucosal or serosal surface of the isolated toad skin elicited a dose-dependent decrease of the short-circuit current (SCC) and of the potential difference (PD). These results lead to the conclusion that Cu2+ ions inhibited Na+ transport across the epithelial cell membranes. PMID:9720309

  12. Nanodefects of membranes cause destruction of packed red blood cells during long-term storage

    SciTech Connect

    Kozlova, Elena; Chernysh, Aleksandr; Moroz, Victor; Sergunova, Victoria; Gudkova, Olga; Kuzovlev, Artem

    2015-10-01

    Packed red blood cells (PRBC) are used for blood transfusion. PRBC were stored for 30 days under 4 °C in hermetic blood bags with CPD anticoagulant-preservative solution. Hematocrit was 50–55%. The distortions of PRBC membranes nanostructure and cells morphology during storage were studied by atomic force microscopy. Basic measurements were performed at the day 2, 6, 9, 16, 23 and 30 of storage and additionally 2–3 days after it. Topological defects occurred on RBC membranes by day 9. They appeared as domains with grain-like structures (“grains”) sized up to 200 nm. These domains were appeared in almost all cells. Later these domains merged and formed large defects on cells. It was the formation of domains with the “grains” which was onset process leading eventually to destruction of PRBC. Possible mechanisms of transformation of PRBC and their membrane are related to the alterations of spectrin cytoskeleton. During this storage period potassium ions and lactat concentrations increased, pH decreased, intracellular concentration of reduced glutathione diminished in the preservative solution. Changes of PRBC morphology were detected within the entire period of PRBC storage. Discocytes predominated at the days 1 and 2. By day 30 PRBC transformed into irreversible echinocytes and spheroechinocytes. Study of defects of membranes nanostructure may form the basis of assessing the quality of the stored PRBC. This method may allow to work out the best recommendations for blood transfusion. - Highlights: • Domains with “grains” are formed on membranes surface on 9–16 days of PRBC storage. • The development of domains is the reason of irreversible changes of PRBC structure. • The origin of domains is the consequence of alterations of spectrin cytoskeleton. • Study of nanostructure may form basis of assessing the quality of the stored PRBC.

  13. Selectivity of Direct Methanol Fuel Cell Membranes.

    PubMed

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  14. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  15. Collective charge excitations along cell membranes

    NASA Astrophysics Data System (ADS)

    Manousakis, E.

    2005-07-01

    A significant part of the thin layers of counter-ions adjacent to the exterior and interior surfaces of a cell membrane form quasi-two-dimensional (2D) layers of mobile charge. Collective charge density oscillations, known as plasmon modes, in these 2D charged systems of counter-ions are predicted in the present paper. This is based on a calculation of the self-consistent response of this system to a fast electric field fluctuation. The possibility that the membrane channels might be using these excitations to carry out fast communication is suggested and experiments are proposed to reveal the existence of such excitations.

  16. Aging of cell membranes: facts and theories.

    PubMed

    Zs-Nagy, Imre

    2014-01-01

    This chapter is intended to outline the main results of a research trend realized by the author during the last 45 years, focused on the main role played by the cell membrane in the aging process. It is a very wide field; therefore, the reader cannot expect in this limited space a detailed description, but will be given a wide, interdisciplinary insight into the main facts and theories regarding cellular aging. The central idea described here is the concept called the membrane hypothesis of aging (MHA). The history, the chemical roots, physicochemical facts, biophysical processes, as well as the obligatory biochemical consequences are all touched in by indicating the most important sources of detailed knowledge for those who are more interested in the basic biology of the aging process. This chapter covers also the available anti-aging interventions on the cell membrane by means of the centrophenoxine treatment based on the MHA. It also briefly interprets the possibilities of a just developing anti-aging method by using the recombinant human growth hormone, essential basis of which is the species specificity, and the general presence of receptors of this hormone in the plasma membrane of all types of cells.

  17. Catalytic membranes for fuel cells

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  18. TIR fluorescence screening of cell membranes

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Strauss, Wolfgang S.; Sailer, Reinhard; Wagner, Michael; Schneckenburger, Herbert

    2005-03-01

    A novel setup for fluorescence measurements of surfaces of biological samples, in particular cell membranes, is described. The method is based on multiple total internal reflection (TIR) of a laser beam on the surface of a multi-well plate, such that 96 individual samples are excited simultaneously. Main prerequisites are an appropriate thickness and high transmission of the glass bottom, a non-cytotoxic adhesive, and appropriate glass rods for TIR illumination. Fluorescence from cell surface is detected simultaneously using an integrating CCD camera and appropriate optical filters. For validation of the system, transfected cells expressing a fluorescent membrane protein are used. In addition, intracellular translocation of green fluorescent protein kinase c upon stimulation is examined. The method appears well suitable for high throughput screening (HTS), since neither washing of the samples nor any re-adjustment of the equipment after changing of individual plates are necessary.

  19. Microfluidic microbial fuel cells: from membrane to membrane free

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2016-08-01

    Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.

  20. Interaction of peptides with cell membranes: insights from molecular modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.

  1. Full-length CD4 electroinserted in the erythrocyte membrane as a long-lived inhibitor of infection by human immunodeficiency virus

    SciTech Connect

    Zeira, M.; Volsky, D.J. ); Tosi, P.F.; Mouneimne, Y.; Lazarte, J.; Sneed, L.; Nicolau, C. )

    1991-05-15

    Recombinant full-length CD4 expressed in Spodoptera frugiperda 9 cells with the baculovirus system was electroinserted in erythrocyte (RBC) membranes. Of the inserted CD4, 70% was correctly oriented as shown by fluorescence quenching experiments with fluorescein-labeled CD4. The inserted CD4 displayed the same epitopes as the naturally occurring CD4 in human T4 cells. Double-labeling experiments ({sup 125}I-CD4 and {sup 51}Cr-RBC) showed that the half-life of CD4 electroinserted in RBC membrane in rabbits was approximately 7 days. Using the fluorescence dequenching technique with octadecylrhodamine B-labeled human immunodeficiency virus (HIV)-1, the authors showed fusion of the HIV envelope with the plasma membrane of RBC-CD4, whereas no such fusion could be detected with RBC. The dequenching efficiency of RBC-CD4 is the same as that of CEM cells. Exposure to anti-CD4 monoclonal antibody OKT4A, which binds to the CD4 region that attaches to envelope glycoprotein gp120, caused a significant decrease in the dequenching of fluorescence. In vitro infectivity studies showed that preincubation of HIV-1 with RBC-CD4 reduced by 80-90% the appearance of HIV antigens in target cells, the amount of viral reverse transcriptase, and the amount of p24 core antigen produced by the target cells. RBC-CD4, but not RBCs, aggregated with chronically HIV-1-infected T cells and caused formation of giant cells. These data show that the RBC-CD4 reagent is relatively long lived in circulation and efficient in attaching to HIV-1 and HIV-infected cells, and thus it may have value as a therapeutic agent against AIDS.

  2. Interactions of Model Cell Membranes with Nanoparticles

    NASA Astrophysics Data System (ADS)

    D'Angelo, S. M.; Camesano, T. A.; Nagarajan, R.

    2011-12-01

    The same properties that give nanoparticles their enhanced function, such as high surface area, small size, and better conductivity, can also alter the cytotoxicity of nanomaterials. Ultimately, many of these nanomaterials will be released into the environment, and can cause cytotoxic effects to environmental bacteria, aquatic organisms, and humans. Previous results from our laboratory suggest that nanoparticles can have a detrimental effect on cells, depending on nanoparticle size. It is our goal to characterize the properties of nanomaterials that can result in membrane destabilization. We tested the effects of nanoparticle size and chemical functionalization on nanoparticle-membrane interactions. Gold nanoparticles at 2, 5,10, and 80 nm were investigated, with a concentration of 1.1x1010 particles/mL. Model cell membranes were constructed of of L-α-phosphatidylcholine (egg PC), which has negatively charged lipid headgroups. A quartz crystal microbalance with dissipation (QCM-D) was used to measure frequency changes at different overtones, which were related to mass changes corresponding to nanoparticle interaction with the model membrane. In QCM-D, a lipid bilayer is constructed on a silicon dioxide crystal. The crystals, oscillate at different harmonic frequencies depending upon changes in mass or energy dissipation. When mass is added to the crystal surface, such as through addition of a lipid vesicle solution, the frequency change decreases. By monitoring the frequency and dissipation, we could verify that a supported lipid bilayer (SLB) formed on the silica surface. After formation of the SLB, the nanoparticles can be added to the system, and the changes in frequency and dissipation are monitored in order to build a mechanistic understanding of nanoparticle-cell membrane interactions. For all of the smaller nanoparticles (2, 5, and 10 nm), nanoparticle addition caused a loss of mass from the lipid bilayer, which appears to be due to the formation of holes

  3. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  4. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  5. Syringotoxin pore formation and inactivation in human red blood cell and model bilayer lipid membranes.

    PubMed

    Szabó, Zsófia; Gróf, Pál; Schagina, Ludmila V; Gurnev, Philip A; Takemoto, Jon Y; Mátyus, Edit; Blaskó, Katalin

    2002-12-23

    The effect of syringotoxin (ST), a member of the cyclic lipodepsipeptides family (CLPs) produced by Pseudomonas syringae pv. syringae on the membrane permeability of human red blood cells (RBCs) and model bilayer lipid membranes (BLMs) was studied and compared to that of two recently investigated CLPs, syringomycin E (SRE) and syringopeptin 22A (SP22A) [Biochim. Biophys. Acta 1466 (2000) 79 and Bioelectrochemistry 52 (2000) 161]. The permeability-increasing effect of ST on RBCs was the least among the three CLPs. A time-dependent ST pore inactivation was observed on RBCs at 20 and 37 degrees C but not at 8 degrees C. From the kinetic model worked out parameters as permeability coefficient of RBC membrane for 86Rb(+) and pores mean lifetime were calculated. A shorter pores mean lifetime was calculated at 37 degrees C then at 20 degrees C, which gave us an explanation for the unusual slower rate of tracer efflux measured at 37 degrees C then that at 20 degrees C. The results obtained on BLM showed that the pore inactivation was due to a decrease in the number of pores but not to a change of their dwell time or conductance.

  6. Rapid Rather than Gradual Weight Reduction Impairs Hemorheological Parameters of Taekwondo Athletes through Reduction in RBC-NOS Activation

    PubMed Central

    Yang, Woo Hwi; Heine, Oliver; Pauly, Sebastian; Kim, Pilsang; Bloch, Wilhelm; Mester, Joachim; Grau, Marijke

    2015-01-01

    Purpose Rapid weight reduction is part of the pre-competition routine and has been shown to negatively affect psychological and physiological performance of Taekwondo (TKD) athletes. This is caused by a reduction of the body water and an electrolyte imbalance. So far, it is unknown whether weight reduction also affects hemorheological properties and hemorheology-influencing nitric oxide (NO) signaling, important for oxygen supply to the muscles and organs. Methods For this purpose, ten male TKD athletes reduced their body weight by 5% within four days (rapid weight reduction, RWR). After a recovery phase, athletes reduced body weight by 5% within four weeks (gradual weight reduction, GWR). Each intervention was preceded by two baseline measurements and followed by a simulated competition. Basal blood parameters (red blood cell (RBC) count, hemoglobin concentration, hematocrit, mean corpuscular volume, mean cellular hemoglobin and mean cellular hemoglobin concentration), RBC-NO synthase activation, RBC nitrite as marker for NO synthesis, RBC deformability and aggregation parameters were determined on a total of eight investigation days. Results Basal blood parameters were not affected by the two interventions. In contrast to GWR, RWR decreased activation of RBC-NO synthase, RBC nitrite, respective NO concentration and RBC deformability. Additionally, RWR increased RBC aggregation and disaggregation threshold. Conclusion The results point out that a rapid weight reduction negatively affects hemorheological parameters and NO signaling in RBC which might limit performance capacity. Thus, GWR should be preferred to achieve the desired weight prior to a competition to avoid these negative effects. PMID:25875585

  7. Correlation of cell membrane dynamics and cell motility

    PubMed Central

    2011-01-01

    Background Essential events of cell development and homeostasis are revealed by the associated changes of cell morphology and therefore have been widely used as a key indicator of physiological states and molecular pathways affecting various cellular functions via cytoskeleton. Cell motility is a complex phenomenon primarily driven by the actin network, which plays an important role in shaping the morphology of the cells. Most of the morphology based features are approximated from cell periphery but its dynamics have received none to scant attention. We aim to bridge the gap between membrane dynamics and cell states from the perspective of whole cell movement by identifying cell edge patterns and its correlation with cell dynamics. Results We present a systematic study to extract, classify, and compare cell dynamics in terms of cell motility and edge activity. Cell motility features extracted by fitting a persistent random walk were used to identify the initial set of cell subpopulations. We propose algorithms to extract edge features along the entire cell periphery such as protrusion and retraction velocity. These constitute a unique set of multivariate time-lapse edge features that are then used to profile subclasses of cell dynamics by unsupervised clustering. Conclusions By comparing membrane dynamic patterns exhibited by each subclass of cells, correlated trends of edge and cell movements were identified. Our findings are consistent with published literature and we also identified that motility patterns are influenced by edge features from initial time points compared to later sampling intervals. PMID:22372978

  8. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  9. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  10. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.

    PubMed

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2014-01-01

    We examined the deformation behavior of a red blood cell (RBC) in various flow fields to determine whether the extent of RBC deformation is correlated with the shear stress used as a hemolysis index. The RBC model was introduced to a simple shear flow (Couette flow) and to slightly complex flows (unsteady shear flows and stenosed flows). The RBC deformation was assessed by the maximum first principal strain over the RBC membrane and compared with the shear stress. Although the results were consistent under steady Couette flow, this was not the case under unsteady Couette flow or stenosed flow due to the viscoelastic nature of the RBC deformation caused by fluid forces. These results suggest that there is a limitation in accurately estimating the mechanical damage of RBCs solely from a macroscopic flow field, indicating the necessity of taking into account the dynamic deformation of RBCs to provide a better estimation of hemolysis.

  11. Hemoglobin s polymerization and red cell membrane changes.

    PubMed

    Kuypers, Frans A

    2014-04-01

    Different pathways lead from the simple point mutation in hemoglobin to the membrane changes that characterize the altered interaction of the sickle red blood cell with its environment, including endothelial cells, white blood cells, and platelets. Polymerization and oxidation-induced damage to both lipid and protein components of the red cell membrane, as well as the generation of bioreactive membrane material (microparticles), has a profound effect on all tissues and organs, and defines the vasculopathy of the patient with sickle cell disease.

  12. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  13. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  14. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  15. Cell membrane-camouflaged nanoparticles for drug delivery.

    PubMed

    Luk, Brian T; Zhang, Liangfang

    2015-12-28

    Nanoparticles can preferentially accumulate at sites of action and hold great promise to improve the therapeutic index of many drugs. While conventional methods of nanocarrier-mediated drug delivery have focused on primarily synthetic approaches, engineering strategies that combine synthetic nanoparticles with natural biomaterials have recently gained much attention. In particular, cell membrane-camouflaged nanoparticles are a new class of biomimetic nanoparticles that combine the unique functionalities of cellular membranes and engineering versatility of synthetic nanomaterials for effective delivery of therapeutic agents. Herein, we report on the recent progress on cell membrane-coated nanoparticles for drug delivery. In particular, we highlight three areas: (i) prolonging systemic circulation via cell membrane coating, (ii) cell-specific targeting via cell membrane coating, and (iii) applications of cell membrane coating for drug delivery. The cell membrane-camouflaged nanoparticle platform has emerged as a novel delivery strategy with the potential to improve the therapeutic efficacy for the treatment of a variety of diseases.

  16. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  17. Polymer synthesis toward fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Rebeck, Nathaniel T.

    Fuel cells are a promising technology that will be part of the future energy landscape. New membranes for alkaline and proton exchange membrane fuel cells are needed to improve the performance, simplify the system, and reduce cost. Polymer chemistry can be applied to develop new polymers and to assemble polymers into improved membranes that need less water, have increased performance and are less expensive, thereby removing the deficiencies of current membranes. Nucleophilic aromatic substitution polymerization typically produces thermally stable engineering polymers that can be easily functionalized. New functional monomers were developed to explore new routes to novel functional polymers. Sulfonamides were discovered as new activating groups for polymerization of high molecular weight thermooxidatively stable materials with sulfonic acid latent functionality. While the sulfonamide functional polymers could be produced, the sulfonamide group proved to be too stable to convert into a sulfonic acid after reaction. The reactivity of 2-aminophenol was investigated to search for a new class of ion conducting polymer materials. Both the amine and the phenol groups are found to be reactive in a nucleophilic aromatic substitution, however not to the extent to allow the formation of high molecular weight polymer materials. Layer-by-layer films were assembled from aqueous solutions of poly(styrene sulfonate) and trimethylammonium functionalized poly(phenylene oxide). The deposition conditions were adjusted to increase the free charge carrier content, and chloride conductivites reached almost 30 mS/cm for the best films. Block and random poly(phenylene oxide) copolymers were produced from 2,6-dimethylphenol and 2,6-diphenylphenol and the methyl substituted repeat units were functionalized with trimethylammonium bromide. The block copolymers displayed bromide conductivities up to 26 mS/cm and outperformed the random copolymers, indicating that morphology has an effect on ion

  18. Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells

    PubMed Central

    Nagarajan, Shunmugan; Raj, Rajendran Kadarkarai; Saravanakumar, Venkatesan; Balaguru, Uma Maheswari; Behera, Jyotirmaya; Rajendran, Vinoth Kumar; Shathya, Yogarajan; Ali, B. Mohammed Jaffar; Sumantran, Venil; Chatterjee, Suvro

    2016-01-01

    Nitric oxide (NO), a vascular signaling molecule, is primarily produced by endothelial NO synthase. Recently, a functional endothelial NO synthase (eNOS) was described in red blood cells (RBC). The RBC-eNOS contributes to the intravascular NO pool and regulates physiological functions. However the regulatory mechanisms and clinical implications of RBC-eNOS are unknown. The present study investigated regulation and functions of RBC-eNOS under mechanical stimulation. This study shows that mechanical stimuli perturb RBC membrane, which triggers a signaling cascade to activate the eNOS. Extracellular NO level, estimated by the 4-Amino-5-Methylamino-2′, 7′-Difluorofluorescein Diacetate probe, was significantly increased under mechanical stimuli. Immunostaining and western blot studies confirmed that the mechanical stimuli phosphorylate the serine 1177 moiety of RBC-eNOS, and activates the enzyme. The NO produced by activation of RBC-eNOS in vortexed RBCs promoted important endothelial functions such as migration and vascular sprouting. We also show that mechanical perturbation facilitates nitrosylation of RBC proteins via eNOS activation. The results of the study confirm that mechanical perturbations sensitize RBC-eNOS to produce NO, which ultimately defines physiological boundaries of RBC structure and functions. Therefore, we propose that mild physical perturbations before, after, or during storage can improve viability of RBCs in blood banks. PMID:27345770

  19. Microfabrication of High-Resolution Porous Membranes for Cell Culture

    PubMed Central

    Kim, Monica Y.; Li, David Jiang; Pham, Long K.; Wong, Brandon G.

    2014-01-01

    Microporous membranes are widely utilized in cell biology to study cell-cell signaling and cell migration. However, the thickness and low porosity of commercial track-etched membranes limit the quality of cell imaging and the degree of cell-cell contact that can be achieved on such devices. We employ photolithography-based microfabrication to achieve porous membranes with pore diameter as small as 0.9 μm, up to 40% porosity, and less than 5% variation in pore size. Through the use of a soap release layer, membranes as thin as 1 μm can be achieved. The thin membranes minimally disrupt contrast enhancement optics, thus allowing good quality imaging of unlabeled cells under white light, unlike commercial membranes. In addition, the polymer membrane materials display low autofluorescence even after patterning, facilitating high quality fluorescence microscopy. Finally, confocal imaging suggests that substantial cell-cell contact is possible through the pores of these thin membranes. This membrane technology can enhance existing uses of porous membranes in cell biology as well as enable new types of experiments. PMID:24567663

  20. Membrane tension feedback on shape and motility of eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  1. Osmolyte channel regulation by ionic strength in skate RBC.

    PubMed

    Wittels, K A; Hubert, E M; Musch, M W; Goldstein, L

    2000-07-01

    The aim of this study was to determine whether the opening of the osmolyte channel in skate red blood cells (RBC) is regulated by intracellular electrolyte concentration and conductivity. Consistent with previous studies, experiments with hyperosmotic preincubation before cell swelling or swelling with an isosmotic electrolyte (e.g., ammonium chloride) showed that an increase in ionic strength inhibits the opening of the taurine channel. However, a decrease in intracellular ionic strength did not always stimulate taurine efflux to the same degree. Whereas hyposmotic swelling caused a large increase in taurine efflux, swelling induced by treatment with isosmotic nonelectrolytes produced much smaller stimulation. Results with assays for band 3 phosphorylating enzymes were consistent with those from the taurine efflux studies; stimulation of enzyme activity was lower in cells that were swollen with isosmotic nonelectrolyte media than in cells swollen in hyposmotic media. These results indicate that a decrease in ionic strength is not the only signal for the opening of the taurine channel in skate RBC. Ionic strength does affect channel activity, but there must also be some other regulator. PMID:10896866

  2. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godínez García, Andrés; Pérez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180 °C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3 × 10-2 and 7.4 × 10-2 Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96 V) than that with a PBIPA membrane (0.8 V) at 180 °C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1 wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  3. Membrane thickness is an important variable in membrane scaffolds: Influence of chitosan membrane structure on the behavior of cells

    PubMed Central

    Uygun, Basak E.; Bou-Akl, Therese; Albanna, Mohammad

    2009-01-01

    Cell and tissue responses to polymeric materials are orchestrated in part by the conformations of adsorbed plasma proteins. Thus, the chemical properties of a polymer membrane that govern protein adsorption behaviour can play an important role in determining the biological properties of tissue engineered scaffolds derived from that polymer. In this study, we explored the role of membrane thickness as a factor influencing cell adhesion and proliferation on chitosan membranes with and without covalently-attached glycosaminoglycans. Rat mesenchymal stem cells cultured on chitosan membranes of various thicknesses demonstrated significantly improved cell adhesion, spreading and proliferation as membrane thickness was increased. Hepatocytes displayed increased spreading on the substrate with increasing membrane thickness similar to MSCs. Increased thickness reduced the overall crystallinity of the membrane, and the data indicate that the improved cellular responses were likely due to enhanced adsorption of serum vitronectin, presumably due to reduced membrane crystallinity. These results demonstrate that membrane thickness is an important design variable that can be manipulated in chitosan-based scaffolds to achieve enhanced cell spreading, proliferation and function. PMID:19925888

  4. Kinetics and mechanism of cell membrane electrofusion.

    PubMed Central

    Abidor, I G; Sowers, A E

    1992-01-01

    A new quantitative approach to study cell membrane electrofusion has been developed. Erythrocyte ghosts were brought into close contact using dielectrophoresis and then treated with one square or even exponentially decaying fusogenic pulse. Individual fusion events were followed by lateral diffusion of the fluorescent lipid analogue 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) from originally labeled to unlabeled adjacent ghosts. It was found that ghost fusion can be described as a first-order rate process with corresponding rate constants; a true fusion rate constant, k(f), for the square waveform pulse and an effective fusion rate constant, k(ef), for the exponential pulse. Compared with the fusion yield, the fusion rate constants are more fundamental characteristics of the fusion process and have implications for its mechanisms. Values of k(f) for rabbit and human erythrocyte ghosts were obtained at different electric field strength and temperatures. Arrhenius k(f) plots revealed that the activation energy of ghost electrofusion is in the range of 6-10 kT. Measurements were also made with the rabbit erythrocyte ghosts exposed to 42 degrees C for 10 min (to disrupt the spectrin network) or 0.1-1.0 mM uranyl acetate (to stabilize the bilayer lipid matrix of membranes). A correlation between the dependence of the fusion and previously published pore-formation rate constants for all experimental conditions suggests that the cell membrane electrofusion process involve pores formed during reversible electrical breakdown. A statistical analysis of fusion products (a) further supports the idea that electrofusion is a stochastic process and (b) shows that the probability of ghost electrofusion is independent of the presence of Dil as a label as well as the number of fused ghosts. PMID:1617138

  5. The relevance of membrane models to understand nanoparticles-cell membrane interactions

    NASA Astrophysics Data System (ADS)

    Rascol, Estelle; Devoisselle, Jean-Marie; Chopineau, Joël

    2016-02-01

    Over the past two decades, numerous types of nanoparticles (NPs) have been developed for medical applications; however only a few nanomedicines are actually available on the market. One reason is the lack of understanding and data concerning the NP fate and their behavior upon contact with biological media and cell membranes. Biomimetic membrane models are interesting tools to approach and understand NPs-cell membrane interactions. The use of these models permits one to control physical and chemical parameters and to rapidly compare membrane types and the influence of different media conditions. The interactions between NPs and cell membranes can be qualified and quantified using analytical and modeling methods. In this review, the major studies concerning NPs-cell membrane models and associated methods are described. The advantages and drawbacks for each method are compared for the different models. The key mechanisms of interactions between NPs and cell membranes are revealed using cell membrane models and are interrogated in comparison with the NP behavior in cellulo or in vivo. Investigating the interactions between NPs and cell membrane models is now proposed as an intermediate step between physicochemical characterization of NPs and biological assays.

  6. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    PubMed

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  7. The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy.

    PubMed

    Chong, Ketpin; Deng, Yuru

    2012-01-01

    Biological membranes are generally perceived as phospholipid bilayer structures that delineate in a lamellar form the cell surface and intracellular organelles. However, much more complex and highly convoluted membrane organizations are ubiquitously present in many cell types under certain types of stress, states of disease, or in the course of viral infections. Their occurrence under pathological conditions make such three-dimensionally (3D) folded and highly ordered membranes attractive biomarkers. They have also stimulated great biomedical interest in understanding the molecular basis of their formation. Currently, the analysis of such membrane arrangements, which include tubulo-reticular structures (TRS) or cubic membranes of various subtypes, is restricted to electron microscopic methods, including tomography. Preservation of membrane structures during sample preparation is the key to understand their true 3D nature. This chapter discusses methods for appropriate sample preparations to successfully examine and analyze well-preserved highly ordered membranes by electron microscopy. Processing methods and analysis conditions for green algae (Zygnema sp.) and amoeba (Chaos carolinense), mammalian cells in culture and primary tissue cells are described. We also discuss methods to identify cubic membranes by transmission electron microscopy (TEM) with the aid of a direct template matching method and by computer simulation. A 3D analysis of cubic cell membrane topology by electron tomography is described as well as scanning electron microscopy (SEM) to investigate surface contours of isolated mitochondria with cubic membrane arrangement.

  8. The membrane proteome of the mouse lens fiber cell

    PubMed Central

    Wilmarth, Phillip A.; David, Larry L.

    2009-01-01

    Purpose Fiber cells of the ocular lens are bounded by a highly specialized plasma membrane. Despite the pivotal role that membrane proteins play in the physiology and pathophysiology of the lens, our knowledge of the structure and composition of the fiber cell plasma membrane remains fragmentary. In the current study, we utilized mass spectrometry-based shotgun proteomics to provide a comprehensive survey of the mouse lens fiber cell membrane proteome. Methods Membranes were purified from young mouse lenses and subjected to MudPIT (Multidimensional protein identification technology) analysis. The resulting proteomic data were analyzed further by reference to publically available microarray databases. Results More than 200 membrane proteins were identified by MudPIT, including Type I, Type II, Type III (multi-pass), lipid-anchored, and GPI-anchored membrane proteins, in addition to membrane-associated cytoskeletal elements and extracellular matrix components. The membrane proteins of highest apparent abundance included Mip, Lim2, and the lens-specific connexin proteins Gja3, Gja8, and Gje1. Significantly, many proteins previously unsuspected in the lens were also detected, including proteins with roles in cell adhesion, solute transport, and cell signaling. Conclusions The MudPIT technique constitutes a powerful technique for the analysis of the lens membrane proteome and provides valuable insights into the composition of the lens fiber cell unit membrane. PMID:19956408

  9. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles.

    PubMed

    Kettisen, Karin; Bülow, Leif; Sakai, Hiromi

    2015-04-15

    Developing a functional blood substitute as an alternative to donated blood for clinical use is believed to relieve present and future blood shortages, and to reduce the risks of infection and blood type mismatching. Hemoglobin vesicle (HbV) encapsulates a purified and concentrated human-derived Hb solution in a phospholipid vesicle (liposome). The in vivo safety and efficacy of HbV as a transfusion alternative have been clarified. Auto-oxidation of ferrous Hb in HbV gradually increases the level of ferric methemoglobin (metHb) and impairs the oxygen transport capabilities. The extension of the functional half-life of HbV has recently been proposed using an electron mediator, methylene blue (MB), which acts as a shuttle between red blood cells (RBC) and HbV. MB transfers electron energies of NAD(P)H, produced by RBC glycolysis, to metHb in HbV. Work presented here focuses on screening of 15 potential electron mediators, with appropriate redox potential and water solubility, for electron transfer from RBC to HbV. The results are assessed with regard to the chemical properties of the candidates. The compounds examined in this study were dimethyl methylene blue (DMB), methylene green, azure A, azure B, azure C, toluidine blue (TDB), thionin acetate, phenazine methosulfate, brilliant cresyl blue, cresyl violet, gallocyanine, toluylene blue, indigo carmine, indigotetrasulfonate, and MB. Six candidates were found to be unsuitable because of their insufficient diffusion across membranes, or overly high or nonexistent reactivity with relevant biomolecules. However, 9 displayed favorable metHb reduction. Among the suitable candidates, phenothiazines DMB and TDB exhibited effectiveness like MB did. In comparison to MB, they showed faster reduction by electron-donating NAD(P)H, coupled with showing a lower rate of reoxidation in the presence of molecular oxygen. Ascertaining the best electron mediator can provide a pathway for extending the lifetime and efficiency of

  10. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies. PMID:27280255

  11. Synthesis of Nanogels via Cell Membrane-Templated Polymerization.

    PubMed

    Zhang, Jianhua; Gao, Weiwei; Fang, Ronnie H; Dong, Anjie; Zhang, Liangfang

    2015-09-01

    The synthesis of biomimetic hydrogel nanoparticles coated with a natural cell membrane is described. Compared to the existing strategy of wrapping cell membranes onto pre-formed nanoparticle substrates, this new approach forms the cell membrane-derived vesicles first, followed by growing nanoparticle cores in situ. It adds significant controllability over the nanoparticle properties and opens unique opportunities for a broad range of biomedical applications. PMID:26044721

  12. Synthesis of Nanogels via Cell Membrane-Templated Polymerization

    PubMed Central

    Zhang, Jianhua; Gao, Weiwei; Fang, Ronnie H.; Dong, Anjie

    2015-01-01

    The synthesis of biomimetic hydrogel nanoparticles coated with natural cell membrane is described. Compared to existing strategy of wrapping cell membrane onto pre-formed nanoparticle substrates, this new approach forms the cell membrane-derived vesicles first, followed by growing nanoparticle cores in situ. It adds significant controllability over the nanoparticle properties and opens unique opportunities for a broad range of biomedical applications. PMID:26044721

  13. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies.

  14. Reassessing ecdysteroidogenic cells from the cell membrane receptors' perspective.

    PubMed

    Alexandratos, Alexandros; Moulos, Panagiotis; Nellas, Ioannis; Mavridis, Konstantinos; Dedos, Skarlatos G

    2016-01-01

    Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We characterised the molecular nature and developmental profiles of cell membrane receptors in PG cells of Bombyx mori during the final larval stage and determined what receptors decode nutritional, developmental and physiological signals. Through iterative approaches we identified a complex repertoire of cell membrane receptors that are expressed in intricate patterns and activate previously unidentified signal transduction cascades in PG cells. The expression patterns of some of these receptors explain precisely the mechanisms that are known to control ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and wingless signalling pathways and the expression of innate immunity-related receptors such as phagocytosis receptors, receptors for microbial ligands and Toll-like receptors call for a re-evaluation of the role these cells play in insects. PMID:26847502

  15. Reassessing ecdysteroidogenic cells from the cell membrane receptors’ perspective

    PubMed Central

    Alexandratos, Alexandros; Moulos, Panagiotis; Nellas, Ioannis; Mavridis, Konstantinos; Dedos, Skarlatos G.

    2016-01-01

    Ecdysteroids secreted by the prothoracic gland (PG) cells of insects control the developmental timing of their immature life stages. These cells have been historically considered as carrying out a single function in insects, namely the biochemical conversion of cholesterol to ecdysteroids and their secretion. A growing body of evidence shows that PG cells receive multiple cues during insect development so we tested the hypothesis that they carry out more than just one function in insects. We characterised the molecular nature and developmental profiles of cell membrane receptors in PG cells of Bombyx mori during the final larval stage and determined what receptors decode nutritional, developmental and physiological signals. Through iterative approaches we identified a complex repertoire of cell membrane receptors that are expressed in intricate patterns and activate previously unidentified signal transduction cascades in PG cells. The expression patterns of some of these receptors explain precisely the mechanisms that are known to control ecdysteroidogenesis. However, the presence of receptors for the notch, hedgehog and wingless signalling pathways and the expression of innate immunity-related receptors such as phagocytosis receptors, receptors for microbial ligands and Toll-like receptors call for a re-evaluation of the role these cells play in insects. PMID:26847502

  16. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  17. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Le Canut, Jean-Marc; Latham, Ruth; Mérida, Walter; Harrington, David A.

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed.

  18. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  19. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  20. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  1. Selective effect of cell membrane on synaptic neurotransmission

    NASA Astrophysics Data System (ADS)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.

  2. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cells revolve around the development of perfluorosulfonic acid membranes useful as the proton transport medium and separator. Some of the performance characteristics which are typical for such membranes are outlined. The results of tests utilizing a new experimental membrane useful in proton-exchange membrane fuel cells are presented. The high voltage at low current densities can lead to higher system efficiencies while, at the same time, not sacrificing other critical properties pertinent to membrane fuel cell operation. A series of tests to determine response times indicated that on-off cycles are on the order of 80 milliseconds to reach 90 percent of full power. The IR free voltage at 100 amps/sq ft was determined and the results indicating a membrane/electrode package resistance to be .15 ohm-sq cm at 100 amps/sq ft.

  3. Interaction of gentamicin polycation with model and cell membranes.

    PubMed

    Kovács, Eugenia; Savopol, Tudor; Iordache, Maria-Minodora; Săplăcan, Lavinia; Sobaru, Iuliana; Istrate, Claudia; Mingeot-Leclercq, Marie-Paule; Moisescu, Mihaela-Georgeta

    2012-10-01

    The interaction of positively-charged antibiotic gentamicin with cell membranes was studied to determine if any changes in membrane organization were induced by the drug. Opossum kidney epithelia (OK) cells were used as models of eukaryotic cells. Two methods were used: laurdan fluorescence spectroscopy and fluorescence anisotropy recordings on 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) labeled cell suspensions. Both methods showed an altered membrane hydration and fluidity of gentamicin treated cells. Liposomes prepared from dimyristoyl-phosphatidylcholine (DMPC) mixed with cardiolipin, which mimics the heterogeneous charge composition of the natural cell membrane, were used to determine the effect of gentamicin on artificial bilayers. The membrane lipid packing as revealed by generalized polarization (GP) and fluorescence anizotropy variation with increasing temperature was studied. It was found that the generalized polarization of liposomal membranes containing a negatively charged lipid (cardiolipin) is higher in the presence of gentamicin; in the membrane of living cell (OK), gentamicin induces, on the contrary, a decrease of general polarization. Considering the role of membrane organization in the function of transmembrane channels and receptors, our findings suggest hypotheses that may explain the permeation of gentamicin through the living cell membrane by using these channels.

  4. Effect of temperature on the formation and inactivation of syringomycin E pores in human red blood cells and bimolecular lipid membranes.

    PubMed

    Agner, G; Kaulin, Y A; Schagina, L V; Takemoto, J Y; Blasko, K

    2000-06-01

    The effects of temperature on the formation and inactivation of syringomycin E (SRE) pores were investigated with human red blood cells (RBCs) and lipid bilayer membranes (BLMs). SRE enhanced the RBC membrane permeability of 86Rb and monomeric hemoglobin in a temperature dependent manner. The kinetics of 86Rb and hemoglobin effluxes were measured at different temperatures and pore formation was found to be only slightly affected, while inactivation was strongly influenced by temperature. At 37 degrees C, SRE pore inactivation began 15 min after and at 20 degrees C, 40 min after SRE addition. At 6 degrees C, below the phase transition temperature of the major lipid components of the RBC membrane, no inactivation occurred for as long as 90 min. With BLMs, SRE induced a large current that remained stable at 14 degrees C, but at 23 degrees C it decreased over time while the single channel conductance and dwell time did not change. The results show that the temperature dependent inactivation of SRE pores is due to a decrease in the number of open pores.

  5. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  6. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  7. Effect of Processing and Storage on RBC function in vivo

    PubMed Central

    Doctor, Allan; Spinella, Phil

    2012-01-01

    Red Blood Cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage, in a fashion that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiologic changes in RBC function arising from storage are termed the ‘storage lesion’; many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period1 and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid (DPG) and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune and vascular signaling systems. Herein we review key features of the ‘storage lesion’. Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O2 consumption by regulating the bioavailability of key vasoactive mediators in plasma, as well as discuss how processing and storage disturbs this key signaling function and impairs transfusion efficacy. PMID:22818545

  8. Physical principles of membrane remodelling during cell mechanoadaptation

    PubMed Central

    Kosmalska, Anita Joanna; Casares, Laura; Elosegui-Artola, Alberto; Thottacherry, Joseph Jose; Moreno-Vicente, Roberto; González-Tarragó, Víctor; del Pozo, Miguel Ángel; Mayor, Satyajit; Arroyo, Marino; Navajas, Daniel; Trepat, Xavier; Gauthier, Nils C.; Roca-Cusachs, Pere

    2015-01-01

    Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope—the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cell–substrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes. PMID:26073653

  9. Exo70 Generates Membrane Curvature for Morphogenesis and Cell Migration

    PubMed Central

    Zhao, Yuting; Liu, Jianglan; Yang, Changsong; Capraro, Benjamin R.; Baumgart, Tobias; Bradley, Ryan P.; Ramakrishnan, N.; Xu, Xiaowei; Radhakrishnan, Ravi; Svitkina, Tatyana; Guo, Wei

    2013-01-01

    Dynamic shape changes of the plasma membrane are fundamental to many processes ranging from morphogenesis and cell migration to phagocytosis and viral propagation. Here we demonstrate that Exo70, a component of the exocyst complex, induces tubular membrane invaginations towards the lumen of synthetic vesicles in vitro and generates protrusions on the surface of cells. Biochemical analyses using Exo70 mutants and independent molecular dynamics simulations based on Exo70 structure demonstrate that Exo70 generates negative membrane curvature through an oligomerization-based mechanism. In cells, the membrane-deformation function of Exo70 is required for protrusion formation and directional cell migration. Exo70 thus represents a membrane-bending protein that may couple actin dynamics and plasma membrane remodeling for morphogenesis. PMID:23948253

  10. Engineered nanoparticles mimicking cell membranes for toxin neutralization.

    PubMed

    Fang, Ronnie H; Luk, Brian T; Hu, Che-Ming J; Zhang, Liangfang

    2015-08-01

    Protein toxins secreted from pathogenic bacteria and venomous animals rely on multiple mechanisms to overcome the cell membrane barrier to inflict their virulence effect. A promising therapeutic concept toward developing a broadly applicable anti-toxin platform is to administer cell membrane mimics as decoys to sequester these virulence factors. As such, lipid membrane-based nanoparticulates are an ideal candidate given their structural similarity to cellular membranes. This article reviews the virulence mechanisms employed by toxins at the cell membrane interface and highlights the application of cell-membrane mimicking nanoparticles as toxin decoys for systemic detoxification. In addition, the implication of particle/toxin nanocomplexes in the development of toxoid vaccines is discussed.

  11. Membrane tension and cytoskeleton organization in cell motility

    NASA Astrophysics Data System (ADS)

    Sens, Pierre; Plastino, Julie

    2015-07-01

    Cell membrane shape changes are important for many aspects of normal biological function, such as tissue development, wound healing and cell division and motility. Various disease states are associated with deregulation of how cells move and change shape, including notably tumor initiation and cancer cell metastasis. Cell motility is powered, in large part, by the controlled assembly and disassembly of the actin cytoskeleton. Much of this dynamic happens in close proximity to the plasma membrane due to the fact that actin assembly factors are membrane-bound, and thus actin filaments are generally oriented such that their growth occurs against or near the membrane. For a long time, the membrane was viewed as a relatively passive scaffold for signaling. However, results from the last five years show that this is not the whole picture, and that the dynamics of the actin cytoskeleton are intimately linked to the mechanics of the cell membrane. In this review, we summarize recent findings concerning the role of plasma membrane mechanics in cell cytoskeleton dynamics and architecture, showing that the cell membrane is not just an envelope or a barrier for actin assembly, but is a master regulator controlling cytoskeleton dynamics and cell polarity.

  12. Anatomy of the red cell membrane skeleton: unanswered questions.

    PubMed

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias.

  13. The role of red blood cell deformability and Na,K-ATPase function in selected risk factors of cardiovascular diseases in humans: focus on hypertension, diabetes mellitus and hypercholesterolemia.

    PubMed

    Radosinska, J; Vrbjar, N

    2016-09-19

    Deformability of red blood cells (RBC) is the ability of RBC to change their shape in order to pass through narrow capillaries in circulation. Deterioration in deformability of RBC contributes to alterations in microcirculatory blood flow and delivery of oxygen to tissues. Several factors are responsible for maintenance of RBC deformability. One of them is the Na,K-ATPase known as crucial enzyme in maintenance of intracellular ionic homeostasis affecting thus regulation of cellular volume and consequently RBC deformability. Decreased deformability of RBC has been found to be the marker of adverse outcomes in cardiovascular diseases (CVD) and the presence of cardiovascular risk factors influences rheological properties of the blood. This review summarizes knowledge concerning the RBC deformability in connection with selected risk factors of CVD, including hypertension, hyperlipidemia, and diabetes mellitus, based exclusively on papers from human studies. We attempted to provide an update on important issues regarding the role of Na,K-ATPase in RBC deformability. In patients suffering from hypertension as well as diabetes mellitus the Na,K-ATPase appears to be responsible for the changes leading to alterations in RBC deformability. The triggering factor for changes of RBC deformability during hypercholesterolemia seems to be the increased content of cholesterol in erythrocyte membranes. PMID:27643939

  14. Effect of EMP fields on cell membrane potentials

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1993-06-01

    A simple model is presented for cell membrane potentials induced during exposure to electromagnetic pulse (EMP). Using calculated values of internal electric field strength induced during EMP exposure, the model predicts that cell membrane potentials of about 100 mV may be induced for time frames on the order of 10 ns. Possible biological effects of these potentials including electroporation area discussed.

  15. Live-cell imaging of receptors around postsynaptic membranes.

    PubMed

    Tanaka, Hiromitsu; Fujii, Shumpei; Hirano, Tomoo

    2014-01-01

    This protocol describes how to image the trafficking of glutamate receptors around excitatory postsynaptic membrane formed on an adhesion protein-coated glass surface. The protocol was developed to clarify how receptors move during the induction of synaptic plasticity. Dissociated neurons are cultured on a coverslip coated with neurexin, which induces the formation of postsynaptic membrane-like structures on the glass surface. A glutamate receptor tagged with a fluorescent protein is then transfected into neurons, and it is observed with total internal reflection fluorescence microscopy. The whole process takes about 3 weeks. Changes in the amount of cell-surface receptors caused by neuronal activities can be quantified, and individual exocytosis events of receptors can be clearly observed around the pseudo-postsynaptic membrane. This protocol has potential applications for studies of movements of membrane proteins around other specialized regions of the cell membrane, such as the inhibitory postsynaptic membrane, the presynaptic membrane or the immunological synapses.

  16. Membrane nanowaves in single and collective cell migration.

    PubMed

    Zouani, Omar F; Gocheva, Veronika; Durrieu, Marie-Christine

    2014-01-01

    We report the characterization of three-dimensional membrane waves for migrating single and collective cells and describe their propagation using wide-field optical profiling technique with nanometer resolution. We reveal the existence of small and large membrane waves the amplitudes of which are in the range of ∼ 3-7 nm to ∼ 16-25 nm respectively, through the cell. For migrating single-cells, the amplitude of these waves is about 30 nm near the cell edge. Two or more different directions of propagation of the membrane nanowaves inside the same cell can be observed. After increasing the migration velocity by BMP-2 treatment, only one wave direction of propagation exists with an increase in the average amplitude (more than 80 nm near the cell edge). Furthermore for collective-cell migration, these membrane nanowaves are attenuated on the leader cells and poor transmission of these nanowaves to follower cells was observed. After BMP-2 treatment, the membrane nanowaves are transmitted from the leader cell to several rows of follower cells. Surprisingly, the vast majority of the observed membrane nanowaves is shared between the adjacent cells. These results give a new view on how single and collective-cells modulate their motility. This work has significant implications for the therapeutic use of BMPs for the regeneration of skin tissue. PMID:24846182

  17. Cell membrane thermal gradients induced by electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Garner, Allen L.; Deminsky, Maxim; Bogdan Neculaes, V.; Chashihin, V.; Knizhnik, Andrey; Potapkin, Boris

    2013-06-01

    While electromagnetic fields induce structural changes in cell membranes, particularly electroporation, much remains to be understood about membrane level temperature gradients. For instance, microwaves induce cell membrane temperature gradients (∇T) and bioeffects with little bulk temperature change. Recent calculations suggest that nanosecond pulsed electric fields (nsPEFs) may also induce such gradients that may additionally impact the electroporation threshold. Here, we analytically and numerically calculate the induced ∇T as a function of pulse duration and pulse repetition rate. We relate ∇T to the thermally induced cell membrane electric field (Em) by assuming the membrane behaves as a thermoelectric such that Em ˜ ∇T. Focusing initially on applying nsPEFs to a uniform membrane, we show that reducing pulse duration and increasing pulse repetition rate (or using higher frequency for alternating current (AC) fields) maximizes the magnitude and duration of ∇T and, concomitantly, Em. The maximum ∇T initially occurs at the interface between the cell membrane and extracellular fluid before becoming uniform across the membrane, potentially enabling initial molecular penetration and subsequent transport across the membrane. These results, which are equally applicable to AC fields, motivate further studies to elucidate thermoelectric behavior in a model membrane system and the coupling of the Em induced by ∇T with that created directly by the applied field.

  18. Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability

    NASA Astrophysics Data System (ADS)

    Macauley, Natalia; Wong, Ka Hung; Watson, Mark; Kjeang, Erik

    2015-12-01

    The overall lifetime of polymer electrolyte fuel cells is often determined by the membrane durability. Platinum, which may dissolve from the catalyst layers during fuel cell operation and deposit in the membrane, has been shown to have both positive and negative effects on membrane stability. In the present work, we analyze what specific conditions are required in order to reach a favorable, membrane stabilizing effect with the controlled use of platinum in the membrane. Using accelerated membrane durability testing, field operated membrane samples, and electron microscopy, we demonstrate that a high platinum concentration with specific particle shapes and sizes is essential for enhanced membrane stability. Specifically, star shaped and dendritic particles with high particle density and high surface area are shown to be preferable. These particles contain high levels of Pt(111) and are expected to have high catalytic activity toward peroxide quenching and crossover gas consumption, thereby mitigating chemical membrane degradation. On the other hand, small, dispersed cubic particles are found to have no effect or the opposite, negative effect on membrane stability.

  19. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    PubMed Central

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  20. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    PubMed

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress. PMID:22366811

  1. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  2. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    PubMed

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).

  3. Label-free cell profiling.

    PubMed

    Schasfoort, Richard B M; Bentlage, Arthur E H; Stojanovic, Ivan; van der Kooi, Alex; van der Schoot, Ellen; Terstappen, Leon W M M; Vidarsson, Gestur

    2013-08-01

    A surface plasmon resonance (SPR) array imaging method is outlined for label-free cell profiling. Red blood cells (RBCs) were injected into a flow chamber on top of a spotted sensor surface. Spots contained antibodies to various RBC membrane antigens. A typical sensorgram showed an initial response corresponding to cell sedimentation (S) followed by a specific upward response (T) corresponding to specific binding of cells during a critical wash step. The full analysis cycle for RBC profiling was less than 6 min. The sensor surface could be regenerated at least 100 times, allowing the determination of a cell surface antigen profile of RBCs.

  4. Phosphorylation and activation of the plasma membrane Na+/H+ exchanger (NHE1) during osmotic cell shrinkage.

    PubMed

    Rigor, Robert R; Damoc, Catalina; Phinney, Brett S; Cala, Peter M

    2011-01-01

    The Na(+)/H(+)Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na(+)/H(+) exchange activity in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na(+)/H(+) exchange in atRBCs is mediated by an NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation. Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA) increase Na(+) transport capacity without affecting transport affinity (K(m)=44 mM) in atRBCs. CLA and OCS act non-additively to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ(32)P labeling and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding with a more than 2-order increase in Na(+) transport activity. This is the first reported evidence of increased NHE1 phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS) analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues, suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events. PMID:22216214

  5. Cell membrane potentials induced during exposure to EMP fields

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1994-09-01

    Internal current densities and electric fields induced in the human body during exposure to EMP fields are reviewed and used to predict resulting cell membrane potentials. Using several different approaches, membrane potentials of about 100 mV are predicted. These values are comparable to the static membrane potentials maintained by cells as a part of normal physiological function, but the EMP-induced potentials persist for only about 10 ns. Possible biological implications of EMP-induced membrane potentials including conformational changes and electroporation are discussed.

  6. [Research progress of corneal epithelial basal cells and basement membrane].

    PubMed

    Qu, J H; Sun, X G

    2016-09-11

    The cylinder cells at the bottom of corneal epithelial cells are basal cells. Their cytoplasm contains keratin intermediate filament which is important in secretion of basement membrane. Corneal epithelial dysfunction due to diabetes or ocular surgery is intimately related with basal cell abnormality. Corneal epithelial basement membrane is a highly specific extracellular matrix which is made up of lamina lucida and lamina densa. It plays an extremely important role in renewal and restoration. Many ocular abnormalities and diseases have been described to relate to the corneal epithelial basement membrane, such as traumatic recurrent corneal erosion, corneal dystrophy and keratoconus. (Chin J Ophthalmol, 2016, 52: 703-707). PMID:27647251

  7. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  8. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    DOE PAGES

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolutionmore » inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. We find our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. Lastly, these observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.« less

  9. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    PubMed Central

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture. PMID:26790980

  10. Proteomics and Phosphoproteomics Analysis of Human Lens Fiber Cell Membranes

    PubMed Central

    Wang, Zhen; Han, Jun; David, Larry L.; Schey, Kevin L.

    2013-01-01

    Purpose. The human lens fiber cell insoluble membrane fraction contains important membrane proteins, cytoskeletal proteins, and cytosolic proteins that are strongly associated with the membrane. The purpose of this study was to characterize the lens fiber cell membrane proteome and phosphoproteome from human lenses. Methods. HPLC-mass spectrometry–based multidimensional protein identification technology (MudPIT), without or with phosphopeptide enrichment, was applied to study the proteome and phosphoproteome of lens fiber cell membranes, respectively. Results. In total, 951 proteins were identified, including 379 integral membrane and membrane-associated proteins. Enriched gene categories and pathways based on the proteomic analysis include carbohydrate metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway, pyruvate metabolism), proteasome, cell-cell signaling and communication (GTP binding, gap junction, focal adhesion), glutathione metabolism, and actin regulation. The combination of TiO2 phosphopeptide enrichment and MudPIT analysis revealed 855 phosphorylation sites on 271 proteins, including 455 phosphorylation sites that have not been previously identified. PKA, PKC, CKII, p38MAPK, and RSK are predicted as the major kinases for phosphorylation on the sites identified in the human lens membrane fraction. Conclusions. The results presented herein significantly expand the characterized proteome and phosphoproteome of the human lens fiber cell and provide a valuable reference for future research in studies of lens development and disease. PMID:23349431

  11. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  12. Cell Membranes Under Hydrostatic Pressure Subjected to Micro-Injection

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil M.; Kostadinov, Kostadin G.; Mladenov, Ivaïlo M.; Shulev, Assen A.; Stoilov, Georgi I.; Djondjorov, Peter A.

    2011-04-01

    The work is concerned with the determination of the mechanical behaviour of cell membranes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming that the shape of the deformed cell membrane is axisymmetric a variational statement of the problem is developed on the ground of the so-called spontaneous curvature model. In this setting, the cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space providing a stationary value of the shape energy functional under the constraint of fixed total area and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary conditions are derived, analyzed and used to express the forces and moments in the membrane. Several examples of such surfaces representing possible shapes of cell membranes under pressure subjected to micro injection are determined numerically.

  13. Toxic effects of Litsea elliptica Blume essential oil on red blood cells of Sprague-Dawley rats*

    PubMed Central

    Taib, Izatus Shima; Budin, Siti Balkis; Siti Nor Ain, Seri Maseran; Mohamed, Jamaludin; Louis, Santhana Raj; Das, Srijit; Sallehudin, Sulaiman; Rajab, Nor Fadilah; Hidayatulfathi, Othman

    2009-01-01

    Litsea elliptica Blume leaves have been traditionally used as medicinal herbs because of its antimutagenicity, chemopreventative and insecticidal properties. In this study, the toxic effects of L. elliptica essential oil against Sprague-Dawley rat’s red blood cells (RBCs) were evaluated. L. elliptica essential oil was given by oral gavage 5 times per week for 3 treated groups in the doses of 125, 250, and 500 mg/(kg body weight), respectively, and the control group received distilled water. Full blood count, RBC osmotic fragility, RBC morphological changes, and RBC membrane lipid were analyzed 28 d after the treatment. Although L. elliptica essential oil administration had significantly different effects on hemoglobin (Hb), mean cell hemoglobin concentration (MCHC), mean cell volume (MCV), and mean cell hemoglobin (MCH) in the experimental groups as compared to the control group (P<0.05), the values were still within the normal range. L. elliptica induced morphological changes of RBC into the form of echinocyte. The percentage of echinocyte increased significantly among the treated groups in a dose-response manner (P<0.001). The concentrations of RBC membrane phospholipids and cholesterol of all treated groups were significantly lower than those of control group (P<0.001). However, the RBC membrane osmotic fragility and total proteins of RBC membrane findings did not differ significantly between control and treated groups (P>0.05). It is concluded that structural changes in the RBC membrane due to L. elliptica essential oil administration did not cause severe membrane damage. PMID:19882755

  14. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy.

    PubMed

    Ren, Xiaoqing; Zheng, Rui; Fang, Xiaoling; Wang, Xiaofei; Zhang, Xiaoyan; Yang, Wuli; Sha, Xianyi

    2016-06-01

    Along with intrinsic magnetic resonance imaging (MRI) advantages, iron oxide nanomaterials capable of photothermal conversion have been reported very recently and have again raised great interest in their designs among biomedical researchers. However, like other inorganic nanomaterials, high macrophage uptake, short blood retention time and unfavorable biodistributions have strongly hampered their applications in vivo. To solve these problems, a rational design of red blood cell (RBC) membrane camouflaged iron oxide magnetic clusters (MNC@RBCs) is presented in this paper. Our data show that by simply introducing an "ultra-stealth" biomimetic coating to iron oxide magnetic nanoclusters (MNCs), MNC@RBCs maintain the imaging and photothermal functionalities inherited from MNCs cores while achieving much lower nonspecific macrophage uptake and dramatically altered fate in vivo. MNC@RBCs with superior prolonged blood retention time, preferred high tumor accumulation and relatively lowered liver biodistribution are demonstrated when injected intravenously in mice, leading to greatly enhanced photothermal therapeutic efficacy by a single treatment without further magnetic force manipulation. Our study illustrates a well prepared integration of MNCs and RBCs, exploiting advantages of both functionalities within a single unit and suggests a promising future for iron-based nanomaterials application in vivo. PMID:27031929

  15. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  16. RBC aggregation dynamics in autologous plasma and serum studied with double-channel optical tweezers

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Danilina, Anna; Potkin, Anton; Kinnunen, Matti; Priezzhev, Alexander; Meglinski, Igor

    2016-04-01

    Red blood cells aggregating and disaggregating forces were measured in the autologous plasma and serum using the double-channeled optical tweezers. A significant, three-fold decrease of the both forces was observed in the serum compared to the plasma. The results of this study help to better assess the RBC aggregation mechanism.

  17. Time-resolved molecular transport across living cell membranes.

    PubMed

    Zeng, Jia; Eckenrode, Heather M; Dounce, Susan M; Dai, Hai-Lung

    2013-01-01

    It is shown that the nonlinear optical phenomenon known as second-harmonic generation can be used for label-free, time-resolved study of the transport of molecules through living cell membranes. The adsorption and transport of a 300-Da molecular-mass hydrophobic ion at the Escherichia coli membrane is observed. Remarkably, at low ion concentrations, the second-harmonic generation technique clearly exposes a multistep molecular transport process: Transport of the molecular ion across the outer and cytoplasmic membranes of the Gram-negative bacteria is recorded, in sequence, in time. Fitting of the data to a multiprocess kinematic model reveals that the transport of this hydrophobic ion through the outer membrane is much faster than through the cytoplasmic membrane, likely reflecting the effectiveness of ion transport porins. The observations illustrate an experimental means for studying the interactions of small molecules with cell membranes.

  18. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  19. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656

  20. Cholesterol depletion increases membrane stiffness of aortic endothelial cells.

    PubMed

    Byfield, Fitzroy J; Aranda-Espinoza, Helim; Romanenko, Victor G; Rothblat, George H; Levitan, Irena

    2004-11-01

    This study has investigated the effect of cellular cholesterol on membrane deformability of bovine aortic endothelial cells. Cellular cholesterol content was depleted by exposing the cells to methyl-beta-cyclodextrin or enriched by exposing the cells to methyl-beta-cyclodextrin saturated with cholesterol. Control cells were treated with methyl-beta-cyclodextrin-cholesterol at a molar ratio that had no effect on the level of cellular cholesterol. Mechanical properties of the cells with different cholesterol contents were compared by measuring the degree of membrane deformation in response to a step in negative pressure applied to the membrane by a micropipette. The experiments were performed on substrate-attached cells that maintained normal morphology. The data were analyzed using a standard linear elastic half-space model to calculate Young elastic modulus. Our observations show that, in contrast to the known effect of cholesterol on membrane stiffness of lipid bilayers, cholesterol depletion of bovine aortic endothelial cells resulted in a significant decrease in membrane deformability and a corresponding increase in the value of the elastic coefficient of the membrane, indicating that cholesterol-depleted cells are stiffer than control cells. Repleting the cells with cholesterol reversed the effect. An increase in cellular cholesterol to a level higher than that of normal cells, however, had no effect on the elastic properties of bovine aortic endothelial cells. We also show that although cholesterol depletion had no apparent effect on the intensity of F-actin-specific fluorescence, disrupting F-actin with latrunculin A abrogated the stiffening effect. We suggest that cholesterol depletion increases the stiffness of the membrane by altering the properties of the submembrane F-actin and/or its attachment to the membrane.

  1. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    PubMed

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  2. Human hepatocytes and endothelial cells in organotypic membrane systems.

    PubMed

    Salerno, Simona; Campana, Carla; Morelli, Sabrina; Drioli, Enrico; De Bartolo, Loredana

    2011-12-01

    The realization of organotypic liver model that exhibits stable phenotype is a major challenge in the field of liver tissue engineering. In this study we developed liver organotypic co-culture systems by using synthetic and biodegradable membranes with primary human hepatocytes and human umbilical vein endothelial cells (HUVEC). Synthetic membranes prepared by a polymeric blend constituted of modified polyetheretherketone (PEEK-WC) and polyurethane (PU) and biodegradable chitosan membranes were developed by phase inversion technique and used in homotypic and organotypic culture systems. The morphological and functional characteristics of cells in the organotypic co-culture membrane systems were evaluated in comparison with homotypic cultures and traditional systems. Hepatocytes in the organotypic co-culture systems exhibit compact polyhedral cells with round nuclei and well demarcated cell-cell borders like in vivo, as a result of heterotypic interaction with HUVECs. In addition HUVECs formed tube-like structures directly through the interactions with the membranes and hepatocytes and indirectly through the secretion of ECM proteins which secretion improved in the organotypic co-culture membrane systems. The heterotypic cell-cell contacts have beneficial effect on the hepatocyte albumin production, urea synthesis and drug biotransformation. The developed organotypic co-culture membrane systems elicit liver specific functions in vitro and could be applied for the realization of engineered liver tissues to be used in tissue engineering, drug metabolism studies and bioartificial liver devices. PMID:21871658

  3. Coating nanoparticles with cell membranes for targeted drug delivery.

    PubMed

    Gao, Weiwei; Zhang, Liangfang

    2015-01-01

    Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.

  4. Alkaline polymer electrolyte membranes for fuel cell applications.

    PubMed

    Wang, Yan-Jie; Qiao, Jinli; Baker, Ryan; Zhang, Jiujun

    2013-07-01

    In this review, we examine the most recent progress and research trends in the area of alkaline polymer electrolyte membrane (PEM) development in terms of material selection, synthesis, characterization, and theoretical approach, as well as their fabrication into alkaline PEM-based membrane electrode assemblies (MEAs) and the corresponding performance/durability in alkaline polymer electrolyte membrane fuel cells (PEMFCs). Respective advantages and challenges are also reviewed. To overcome challenges hindering alkaline PEM technology advancement and commercialization, several research directions are then proposed.

  5. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  6. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cell devices revolves around the development and subsequent investigation of the perfluorinated inomeric membrane separator useful in proton-exchange membrane systems. Work is currently focusing on studying the effects of equivalent weight, thickness, water of hydration, pretreatment procedures, as well as the degree of water management required for a given membrane separator in the cell. The presentation will include details of certain aspects of the above as well as some of the requirements for high and low power generation.

  7. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells

    SciTech Connect

    Pan, Wenxiao; Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George E.

    2011-05-27

    In this work we compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shape is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any size vessel but this approach is computationally expensive above 100 microns. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for vessels with sizes comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 microns, the LD-RBC model for arterioles, and the continuum description for

  8. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells

    PubMed Central

    Pan, Wenxiao; Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2011-01-01

    We compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shape is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any vessel size but this approach is computationally expensive for vessel diameters above 100 microns. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for small-size vessels comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 microns, the LD-RBC model for arterioles, and the continuum description for

  9. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    NASA Astrophysics Data System (ADS)

    Martin, Diana I.; Manaila, Elena N.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Matei, Constantin I.; Margaritescu, Irina D.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.

    2007-04-01

    This transient permeabilized state of the cell membrane, named the ``cell electroporation'' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.

  10. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    SciTech Connect

    Martin, Diana I.; Manaila, Elena N.; Matei, Constantin I.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Margaritescu, Irina D.

    2007-04-23

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.

  11. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    PubMed

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  12. Investigating cell membrane structure and dynamics with TCSPC-FLIM

    NASA Astrophysics Data System (ADS)

    Le Marois, Alix; Owen, Dylan M.; Suhling, Klaus

    2015-03-01

    We report the use of Time-Correlated Single Photon Counting (TCSPC) in a polarization-resolved Fluorescence Lifetime Imaging (FLIM) setup for the investigation of cell membrane structural and dynamic properties. This technique allows us to study the orientation and mobility of fluorescent membrane dyes, namely di-4-ANEPPDHQ and DiO, in model bilayers of different lipid compositions. Dipole alignment and extent of rotational motion can be linked to membrane order and fluidity. Comparison of the time-resolved anisotropy decays of the two fluorescent dyes suggests that rotational motion of membrane constituents is restricted in liquid-ordered phases, and appears to be limited to the region of aliphatic tails in liquid-disordered phases. In living cells, understanding the membrane structure provides crucial information on its functional properties, such as exo- and endocytosis, cell mobility and signal transduction.

  13. Automated membrane test cell apparatus and method for so using

    SciTech Connect

    Yeager, H.L.; Malinsky, J.D.

    1984-11-20

    An automated electrolytic membrane test cell apparatus adaptable for the purpose of accurately measuring cationic transport and water transport numbers for membranes used in chlor-alkali cells under operating conditions similar to those used in such cells is disclosed. The apparatus comprises a test cell, said test cell being adapted to hold a permselective membrane sealingly supported therein so as to create separate anode and cathode compartments, each of said compartments having a suitable electrode, and heating electrolyte inlet and outlet means attached thereto. The apparatus further comprises means to select one of a plurality of anolyte and catholyte test solutions and control means adapted to control the electrolysis, circulation and heating of said solutions and the generation of all test samples needed to perform the measurements necessary to calculate said transport numbers. When used in conjunction with radioactive tracer techniques, considerably improvements are possible in the accuracy and ease with which transport phenomena in said membrane can be studied.

  14. Red Blood Cell Antibody Identification

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Identification Share this page: Was this page helpful? Also known as: Alloantibody Identification; Antibody ID, RBC; RBC Ab ID Formal name: Red Blood Cell ...

  15. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  16. Rotating Biological Contractors (RBC's). Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This two-lesson unit on rotating biological contactors (RBC's) is designed to be used with students who have had some experience in wastewater treatment and a basic understanding of biological treatment. The first lesson provides information on the concepts and components of RBC treatment systems. The second lesson focuses on design operation and…

  17. Membrane-electrode assemblies for electrochemical cells

    DOEpatents

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  18. Catalytic membranes for CO oxidation in fuel cells

    DOEpatents

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  19. Measuring electrical and mechanical properties of red blood cells with a double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; Pozzo, Liliana d. Y.; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-08-01

    The fluid lipid bilayer viscoelastic membrane of red blood cells (RBC) contains antigen glycolproteins and proteins which can interact with antibodies to cause cell agglutination. This is the basis of most of the immunohematologic tests in blood banks and the identification of the antibodies against the erythrocyte antigens is of fundamental importance for transfusional routines. The negative charges of the RBCs creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The first counterions cloud strongly binded moving together with the RBC is called the compact layer. This report proposes the use of a double optical tweezers for a new procedure for measuring: (1) the apparent membrane viscosity, (2) the cell adhesion, (3) the zeta potential and (4) the compact layer's size of the charges formed around the cell in the electrolytic solution. To measure the membrane viscosity we trapped silica beads strongly attached to agglutinated RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. The RBC adhesion was measured by slowly displacing two RBCs apart until the disagglutination happens. The compact layer's size was measured using the force on the silica bead attached to a single RBC in response to an applied voltage and the zeta potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. We believe that the methodology here proposed can improve the methods of diagnosis in blood banks.

  20. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  1. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes.

  2. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels.

    PubMed

    Itel, Fabian; Al-Samir, Samer; Öberg, Fredrik; Chami, Mohamed; Kumar, Manish; Supuran, Claudiu T; Deen, Peter M T; Meier, Wolfgang; Hedfalk, Kristina; Gros, Gerolf; Endeward, Volker

    2012-12-01

    Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.

  3. Polymer-supported membranes as models of the cell surface

    NASA Astrophysics Data System (ADS)

    Tanaka, Motomu; Sackmann, Erich

    2005-09-01

    Lipid-bilayer membranes supported on solid substrates are widely used as cell-surface models that connect biological and artificial materials. They can be placed either directly on solids or on ultrathin polymer supports that mimic the generic role of the extracellular matrix. The tools of modern genetic engineering and bioorganic chemistry make it possible to couple many types of biomolecule to supported membranes. This results in sophisticated interfaces that can be used to control, organize and study the properties and function of membranes and membrane-associated proteins. Particularly exciting opportunities arise when these systems are coupled with advanced semiconductor technology.

  4. Cd and Hg ions stimulate cell membrane potassium conductance

    SciTech Connect

    Jungwirth, A.; Paulmichl, M.; Lang, F. )

    1989-02-09

    Intracellular microelectrodes have been applied to study the effect of cadmium (Cd) and mercury (Hg) ions on cultured renal epitheloid Madin Darby Canine Kidney (MDCK) cells. Within 10 seconds Cd and within 50 seconds Hg hyperpolarize the cell membrane from - 53 {plus minus} 1 mV to - 68 {plus minus} 1 mV and - 67 {plus minus} 1 mV, resp., increase the potassium selectivity of the cell membrane (tk) from 0.33 {plus minus} 0.02 to 0.64 {plus minus} 0.03 and 0.77 {plus minus} 0.02, resp., and reduce the apparent cell membrane resistance from 40 {plus minus} 2 MOhm to 27 {plus minus} 2 MOhm and 22 {plus minus} 2 MOhm, resp.. Thus, both, Cd and Hg hyperpolarize the cell membrane by enhancement of the potassium conductance. The concentration required to elicit half maximal hyperpolarization is some 400 nmol/1 for either, Cd or Hg. Barium (1 mmol/1) depolarizes the cell membrane to - 34 {plus minus} 1 mV and virtually abolishes tk in the absence of Cd and Hg. In the presence of barium Cd leads to a transient, Hg to a sustained reappearance of tk and hyperpolarization. Thus, the Cd induced potassium conductance is blocked by barium with delay, the Hg induced potassium conductance is insensitive to barium. Quinidine (1 mmol/1) depolarizes the cell membrane to - 3 {plus minus}1 mV and abolishes the effect of both, Cd and Hg. In the nominal absence of extracellular calcium Cd leads to transient, Hg to sustained increase of tk and hyperpolarization of the cell membrane. In conclusion, both, CD and Hg at the low concentrations encountered during Cd and Hg intoxication enhance potassium conductance of MDCK cell membranes. However, the channels activated apparently differ.

  5. Selectivity of biopolymer membranes using HepG2 cells

    PubMed Central

    Lü, Dongyuan; Gao, Yuxin; Luo, Chunhua; Lü, Shouqian; Wang, Qian; Xu, Xianghong; Sun, Shujin; Wang, Chengzhi; Long, Mian

    2015-01-01

    Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose-nitrocellulose mixed cellulose (CA-NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE). Physicochemical analysis and mechanical tests indicated that CA, JN and PP membranes yield high adhesivity and reasonable compressive and/or tensile features with friendly surface topography for cell seeding. Cells prefer to adhere on CA, JN, PP or PTFE membranes with high proliferation rate in spheriod-like shape. Actin, albumin and cytokeratin 18 expressions are favorable for cells on CA or PP membrane, whereas protein filtration is consistent among all the eight membranes. These results further the understandings of cell growth, morphology and spreading, as well as protein filtration on distinct membranes in designing a liver bioreactor. PMID:26816630

  6. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  7. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  8. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2010-05-19

    Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.

  9. A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics

    PubMed Central

    Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em

    2010-01-01

    Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330

  10. Numerical and Experimental Study on the Development of Electric Sensor as for Measurement of Red Blood Cell Deformability in Microchannels

    PubMed Central

    Tatsumi, Kazuya; Katsumoto, Yoichi; Fujiwara, Ryoji; Nakabe, Kazuyoshi

    2012-01-01

    A microsensor that can continuously measure the deformability of a single red blood cell (RBC) in its microchannels using microelectrodes is described in this paper. The time series of the electric resistance is measured using an AC current vs. voltage method as the RBC passes between counter-electrode-type micro-membrane sensors attached to the bottom wall of the microchannel. The RBC is deformed by the shear flow created in the microchannel; the degree of deformation depends on the elastic modulus of the RBC. The resistance distribution, which is unique to the shape of the RBC, is analyzed to obtain the deformability of each cell. First, a numerical simulation of the electric field around the electrodes and RBC is carried out to evaluate the influences of the RBC height position, channel height, distance between the electrodes, electrode width, and RBC shape on the sensor sensitivity. Then, a microsensor was designed and fabricated on the basis of the numerical results. Resistance measurement was carried out using samples of normal RBCs and rigidified (Ca2+–A23186 treated) RBCs. Visualization measurement of the cells' behavior was carried out using a high-speed camera, and the results were compared with those obtained above to evaluate the performance of the sensor. PMID:23112616

  11. Erythrocyte membrane proteins reactive with human (warm-reacting) anti-red cell autoantibodies.

    PubMed Central

    Leddy, J P; Falany, J L; Kissel, G E; Passador, S T; Rosenfeld, S I

    1993-01-01

    Immunoglobulin G (IgG) autoantibodies of 20 patients with autoimmune hemolytic anemia (AHA) were used in immunoaffinity assays with surface-radioiodinated human red blood cells (RBCs), and detergent-solubilized products were analyzed by SDS-PAGE/autoradiography. Four membrane proteins were identified as candidate autoantigens: a nonglycosylated polypeptide with an apparent molecular mass of 34 kD (p34) that was expressed in all available RBC phenotypes except Rhnull but differed consistently in apparent molecular mass from the 32-kD Rh(D) polypeptide co-isolated by IgG allo-anti-D; a heterogenous 37-55-kD glycoprotein, also deficient in Rhnull RBCs, which disappeared after deglycosylation by N-glycanase, with the appearance of a sharp, new approximately 31-kD band distinct from p34 and from Rh(D) polypeptide; a approximately 100-kD major membrane glycoprotein identified by immunoblotting as the band 3 anion transporter; and glycophorin A (GPA), also confirmed by immunoblotting. GP37-55 was not seen in the absence of p34, and both proteins are likely to be members of the Rh family. Indeed, a 34-kD polypeptide band and 37-55-kD poly-disperse "smear," isolated concurrently from the same labeled RBCs by IgG allo-anti-e, were indistinguishable from their autoantibody-isolated counterparts and may well be the same protein identified at different epitopes by the auto- and allo-antibodies. Individual AHA patients' autoantibodies isolated p34 and gp37-55, alone or in combination with band 3 (nine cases); strong band 3 alone (five cases); and combinations of band 3 with GPA (six cases). The autoantibodies of three additional patients whose AHA had been induced by alpha-methyldopa also isolated p34 and gp37-55. Images PMID:8473510

  12. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes

    PubMed Central

    2016-01-01

    Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications. PMID:27725960

  13. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  14. Apparatus measures swelling of membranes in electrochemical cells

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1965-01-01

    Apparatus consisting of a pressure plate unit, four springs of known spring constant and a micrometer measures the swelling and force exerted by the polymer membranes of alkaline electrochemical cells.

  15. Subnanosecond electric pulses cause membrane permeabilization and cell death.

    PubMed

    Xiao, Shu; Guo, Siqi; Nesin, Vasyl; Heller, Richard; Schoenbach, Karl H

    2011-05-01

    Subnanosecond electric pulses (200 ps) at electric field intensities on the order of 20 kV/cm cause the death of B16.F10 murine melanoma cells when applied for minutes with a pulse repetition rate of 10 kHz. The lethal effect of the ultrashort pulses is found to be caused by a combination of thermal effects and electrical effects. Studies on the cellular level show increased transport across the membrane at much lower exposure times or number of pulses. Exposed to 2000 pulses, NG108 cells exhibit an increase in membrane conductance, but only allow transmembrane currents to flow, if the medium is positively biased with respect to the cell interior. This means that the cell membrane behaves like a rectifying diode. This increase in membrane conductance is a nonthermal process, since the temperature rise due to the pulsing is negligible.

  16. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    PubMed

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  17. Membrane Protein Mobility and Orientation Preserved in Supported Bilayers Created Directly from Cell Plasma Membrane Blebs.

    PubMed

    Richards, Mark J; Hsia, Chih-Yun; Singh, Rohit R; Haider, Huma; Kumpf, Julia; Kawate, Toshimitsu; Daniel, Susan

    2016-03-29

    Membrane protein interactions with lipids are crucial for their native biological behavior, yet traditional characterization methods are often carried out on purified protein in the absence of lipids. We present a simple method to transfer membrane proteins expressed in mammalian cells to an assay-friendly, cushioned, supported lipid bilayer platform using cell blebs as an intermediate. Cell blebs, expressing either GPI-linked yellow fluorescent proteins or neon-green fused transmembrane P2X2 receptors, were induced to rupture on glass surfaces using PEGylated lipid vesicles, which resulted in planar supported membranes with over 50% mobility for multipass transmembrane proteins and over 90% for GPI-linked proteins. Fluorescent proteins were tracked, and their diffusion in supported bilayers characterized, using single molecule tracking and moment scaling spectrum (MSS) analysis. Diffusion was characterized for individual proteins as either free or confined, revealing details of the local lipid membrane heterogeneity surrounding the protein. A particularly useful result of our bilayer formation process is the protein orientation in the supported planar bilayer. For both the GPI-linked and transmembrane proteins used here, an enzymatic assay revealed that protein orientation in the planar bilayer results in the extracellular domains facing toward the bulk, and that the dominant mode of bleb rupture is via the "parachute" mechanism. Mobility, orientation, and preservation of the native lipid environment of the proteins using cell blebs offers advantages over proteoliposome reconstitution or disrupted cell membrane preparations, which necessarily result in significant scrambling of protein orientation and typically immobilized membrane proteins in SLBs. The bleb-based bilayer platform presented here is an important step toward integrating membrane proteomic studies on chip, especially for future studies aimed at understanding fundamental effects of lipid interactions

  18. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  19. Modeling of interactions between nanoparticles and cell membranes

    NASA Astrophysics Data System (ADS)

    Ban, Young-Min

    containing the nanoparticles exhibit localized perturbation around the nanoparticle. The nanoparticles are not likely to affect membrane protein function by the weak perturbation of the internal stress in the membrane. Due to the short-ranged interactions between the nanoparticles, the nanoparticles would not form aggregates inside membranes. The effect of lipid peroxidation on cell membrane deformation is assessed. The peroxidized lipids introduce a perturbation to the internal structure of the membrane leading to higher amplitude of the membrane fluctuations. Higher concentration of the peroxidized lipids induces more significant perturbation. Cumulative effects of lipid peroxidation caused by nanoparticles are examined for the first time. The considered amphiphilic particle appears to reduce the perturbation of the membrane structure at its equilibrium position inside the peroxidized membrane. This suggests a possibility of antioxidant effect of the nanoparticle.

  20. Penetration of Cell Membranes and Synthetic Lipid Bilayers by Nanoprobes

    PubMed Central

    Angle, Matthew R.; Wang, Andrew; Thomas, Aman; Schaefer, Andreas T.; Melosh, Nicholas A.

    2014-01-01

    Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes. PMID:25418094

  1. The influence of membrane bound proteins on phase separation and coarsening in cell membranes.

    PubMed

    Witkowski, Thomas; Backofen, Rainer; Voigt, Axel

    2012-11-14

    A theoretical explanation of the existence of lipid rafts in cell membranes remains a topic of lively debate. Large, micrometer sized rafts are readily observed in artificial membranes and can be explained using thermodynamic models for phase separation and coarsening. In live cells such domains are not observed and various models are proposed to describe why the systems do not coarsen. We review these attempts critically and show within a phase field approach that membrane bound proteins have the potential to explain the different behaviour observed in vitro and in vivo. Large scale simulations are performed to compute scaling laws and size distribution functions under the influence of membrane bound proteins and to observe a significant slow down of the domain coarsening at longer times and a breakdown of the self-similarity of the size-distribution function.

  2. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    NASA Astrophysics Data System (ADS)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  3. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  4. Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1*

    PubMed Central

    Sani, Marc-Antoine; Henriques, Sónia Troeira; Weber, Daniel; Separovic, Frances

    2015-01-01

    Maculatin 1.1 (Mac1) is an antimicrobial peptide from the skin of Australian tree frogs and is known to possess selectivity toward Gram-positive bacteria. Although Mac1 has membrane disrupting activity, it is not known how Mac1 selectively targets Gram-positive over Gram-negative bacteria. The interaction of Mac1 with Escherichia coli, Staphylococcus aureus, and human red blood cells (hRBC) and with their mimetic model membranes is here reported. The peptide showed a 16-fold greater growth inhibition activity against S. aureus (4 μm) than against E. coli (64 μm) and an intermediate cytotoxicity against hRBC (30 μm). Surprisingly, Sytox Green uptake monitored by flow cytometry showed that Mac1 compromised both bacterial membranes with similar efficiency at ∼20-fold lower concentration than the reported minimum inhibition concentration against S. aureus. Mac1 also reduced the negative potential of S. aureus and E. coli membrane with similar efficacy. Furthermore, liposomes mimicking the cell membrane of S. aureus (POPG/TOCL) and E. coli (POPE/POPG) were lysed at similar concentrations, whereas hRBC-like vesicles (POPC/SM/Chol) remained mostly intact in the presence of Mac1. Remarkably, when POPG/TOCL and POPE/POPG liposomes were co-incubated, Mac1 did not induce leakage from POPE/POPG liposomes, suggesting a preference toward POPG/TOCL membranes that was supported by surface plasma resonance assays. Interestingly, circular dichroism spectroscopy showed a similar helical conformation in the presence of the anionic liposomes but not the hRBC mimics. Overall, the study showed that Mac1 disrupts bacterial membranes in a similar fashion before cell death events and would preferentially target S. aureus over E. coli or hRBC membranes. PMID:26100634

  5. Hydrodynamic extrusion of membrane nanotubes: the role of the cytoskeleton

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine; Borghi, Nicolas; Kremer, Séastien; Buguin, Axel; Brochard, Françise

    2007-03-01

    We have investigated membrane-cytoskeleton adhesion properties by extrusion of tubes from tethered vesicles and cells using hydrodynamic flows. Our experimental results show that impermeable membranes (giant vesicles) act as entropic springs, i.e. the extruded tubes reach a stationary length, whereas porous membranes (vesicles decorated with pores) lead to tubes, which extrude at constant velocity without reaching a stationary length. On the other hand, experiments on red blood cells (RBC) suggest that the dynamics of extruded tubes is dominated by the detachment of the membrane from the cytoskeleton and the flow of lipids through the binding membrane proteins. We have estimated the membrane-cytoskeleton binding energy and the viscosity of the membrane for RBC-s. Tube extrusion from other cell types (S180, MDCK, BON) show phenomena such as healing time for the membrane-cytoskeleton rebinding, and cell aging (breakage of the tube after a few consecutive extrusions). We will discuss how these phenomena depend on the properties of the cytoskeleton and on the presence of cell adhesion molecules.

  6. Fibronectin coating of oxygenator membranes enhances endothelial cell attachment

    PubMed Central

    2013-01-01

    Background Extracorporeal membrane oxygenation (ECMO) can replace the lungs’ gas exchange capacity in refractory lung failure. However, its limited hemocompatibility, the activation of the coagulation and complement system as well as plasma leakage and protein deposition hamper mid- to long-term use and have constrained the development of an implantable lung assist device. In a tissue engineering approach, lining the blood contact surfaces of the ECMO device with endothelial cells might overcome these limitations. As a first step towards this aim, we hypothesized that coating the oxygenator’s gas exchange membrane with proteins might positively influence the attachment and proliferation of arterial endothelial cells. Methods Sheets of polypropylene (PP), polyoxymethylpentene (TPX) and polydimethylsiloxane (PDMS), typical material used for oxygenator gas exchange membranes, were coated with collagen, fibrinogen, gelatin or fibronectin. Tissue culture treated well plates served as controls. Endothelial cell attachment and proliferation were analyzed for a period of 4 days by microscopic examination and computer assisted cell counting. Results Endothelial cell seeding efficiency is within range of tissue culture treated controls for fibronectin treated surfaces only. Uncoated membranes as well as all other coatings lead to lower cell attachment. A confluent endothelial cell layer develops on fibronectin coated PDMS and the control surface only. Conclusions Fibronectin increases endothelial cells’ seeding efficiency on different oxygenator membrane material. PDMS coated with fibronectin shows sustained cell attachment for a period of four days in static culture conditions. PMID:23356939

  7. Anhydrous Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin S.

    2005-01-01

    Polymeric electrolyte membranes that do not depend on water for conduction of protons are undergoing development for use in fuel cells. Prior polymeric electrolyte fuel-cell membranes (e.g., those that contain perfluorosulfonic acid) depend on water and must be limited to operation below a temperature of 125 C because they retain water poorly at higher temperatures. In contrast, the present developmental anhydrous membranes are expected to function well at temperatures up to 200 C. The developmental membranes exploit a hopping-and-reorganization proton- conduction process that can occur in the solid state in organic amine salts and is similar to a proton-conduction process in a liquid. This process was studied during the 1970s, but until now, there has been no report of exploiting organic amine salts for proton conduction in fuel cells.

  8. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  9. A Journey of Cytolethal Distending Toxins through Cell Membranes

    PubMed Central

    Boesze-Battaglia, Kathleen; Alexander, Desiree; Dlakić, Mensur; Shenker, Bruce J.

    2016-01-01

    The multifunctional role of lipids as structural components of membranes, signaling molecules, and metabolic substrates makes them an ideal partner for pathogens to hijack host cell processes for their own survival. The properties and composition of unique membrane micro-domains such as membrane rafts make these regions a natural target for pathogens as it affords them an opportunity to hijack cell signaling and intracellular trafficking pathways. Cytolethal distending toxins (Cdts), members of the AB2 family of toxins are comprised of three subunits, the active, CdtB unit, and the binding, CdtA-CdtC unit. Cdts are cyclomodulins leading to cell cycle arrest and apoptosis in a wide variety of cell types. Cdts from several species share a requirement for membrane rafts, and often cholesterol specifically for cell binding and CdtB mediated cytotoxicity. In this review we focus on how host–cell membrane bilayer organization contributes to the cell surface association, internalization, and action of bacteria derived cytolethal distending toxins (Cdts), with an emphasis on Aggregatibacter actinomycetemcomitans Cdt. PMID:27559534

  10. A new class of partially fluorinated fuel cell membranes

    SciTech Connect

    Buechi, F.N.; Gupta, B.; Halim, J.; Haas, O.; Scherer, G.G.

    1994-12-31

    A series of differently crosslinked FEP-g-polystyrene proton exchange membranes has been synthesized by the pre-irradiation grafting method. Divinylbenzene (DVB) and/or triallyl cyanurate (TAC) were used as crosslinkers in the membranes. It was found, that the physical properties of the membranes, such as water-uptake and specific resistance are strongly influenced by the nature of the crosslinker. Generally it can be stated, that DVB decreases water-uptake and increases specific resistance, on the other hand TAC increases swelling and decreases specific resistance to values as low as 5.0 {Omega}cm at 60 C. The membranes were tested in H{sub 2}/O{sub 2} fuel cells for stability and performance. It was found, that thick (170 {mu}m) DBV crosslinked membranes showed stable operation for 1,400 hours at temperatures up to 80 C. The highest power density in the fuel cell was found for the DVB and TAC double crosslinked membrane, it exceeded the value of a cell with a Nafion{reg_sign} 117 membrane by more than 60%.

  11. Gradiently crosslinked polymer electrolyte membranes in fuel cells

    NASA Astrophysics Data System (ADS)

    An, De; Wu, Bin; Zhang, Genlei; Zhang, Wen; Wang, Yuxin

    2016-01-01

    Polymer electrolyte membranes in fuel cells should be high in both ionic conductivity and mechanical strength. However, the two are often exclusive to each other. To solve this conundrum, a novel strategy is proposed in this paper, with extensively researched sulfonated poly (ether ether ketone) (SPEEK) membrane as a paradigm. A SPEEK membrane of high sulfonation degree is simply post-treated with NaBH4 and H2SO4 solution at ambient temperature for a certain time to afford the membrane with a gradient crosslinking structure. Measurements via 1H NMR, ATR-FTIR and SEM-EDS are conducted to verify such structural changes. The gradient crosslinks make practically no damage to proton conductance, but effectively restrain the membrane from over swelling and greatly enhance its tensile strength. A H2-O2 fuel cell with the gradiently crosslinked SPEEK membrane shows a maximal power density of 533 mW cm-2 at 80 °C, whereas the fuel cell with the pristine SPEEK membrane cannot be operated beyond 30 °C.

  12. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  13. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  14. Deformation of a single red blood cell in bounded Poiseuille flows

    NASA Astrophysics Data System (ADS)

    Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2012-11-01

    An immersed boundary method (IBM) combined with the elastic spring model is applied to investigate the deformation of a single red blood cell (RBC) in two-dimensional bounded Poiseuille flows. The equilibrium shape of the cell under flow depends on the swelling ratio ((s*)), the initial angle of the long axis of the cell at the centerline (ϕ), the maximum velocity of the flow (umax), the membrane bending stiffness of the RBC (kb), and the height of the microchannel(H). Two motions of oscillation and vacillating breathing of the RBC are observed in narrow channel considered here. The strength of the vacillating-breathing motion depends on degree of confinement and umax. For the different kb, the RBC obtains the same equilibrium shape for the same capillary number. Parachute shape and bullet-like shape, depending on the angle ϕ, coexist for the elliptic shape cell with lower umax in a narrower channel. NSF Grant No. DMS-0914788.

  15. Performance of cell-penetrating peptide-linked polymers physically mixed with poorly membrane-permeable molecules on cell membranes.

    PubMed

    Sakuma, Shinji; Suita, Masaya; Yamamoto, Takafumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Nakajima, Noriko; Shinkai, Norihiro; Yamauchi, Hitoshi; Hiwatari, Ken-Ichiro; Hashizume, Akio; Tachikawa, Hiroyuki; Kimura, Ryoji; Ishimaru, Yuki; Kasai, Atsushi; Maeda, Sadaaki

    2012-05-01

    We are investigating a new class of penetration enhancers that enable poorly membrane-permeable molecules physically mixed with them to effectively penetrate cell membranes without their concomitant cellular uptake. Since we previously revealed that poly(N-vinylacetamide-co-acrylic acid) modified with d-octaarginine, which is a typical cell-penetrating peptide, significantly enhanced the nasal absorption of insulin, we examined the performance of the polymers on cell membranes. When Caco-2 cells were incubated with 5(6)-carboxyfluorescein (CF) for 30 min, approximately 0.1% of applied CF was internalized into the cells. This poor membrane permeability was dramatically enhanced by d-octaarginine-linked polymers; a 25-fold increase in the cellular uptake of CF was observed when the polymer concentration was adjusted to 0.2mg/mL. None of the individual components, for example, d-octaarginine, had any influence on CF uptake, demonstrating that only d-octaarginine anchored chemically to the polymeric platform enhanced the membrane permeation of CF. The polymer-induced CF uptake was consistently high even when the incubation time was extended to 120 min. Confocal laser scanning microphotographs of cells incubated with d-octaarginine-linked polymers bearing rhodamine red demonstrated that the cell outline was stained with red fluorescence. The polymer-induced CF uptake was significantly suppressed by 5-(N-ethyl-N-isopropyl)amiloride, which is an inhibitor of macropinocytosis. Results indicated that d-octaarginine-linked polymers remained on the cell membrane and poorly membrane-permeable CF was continuously internalized into cells mainly via macropinocytosis repeated for the individual peptidyl branches in the polymer backbone.

  16. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment.

  17. In vitro and in vivo study of hazardous effects of Ag nanoparticles and Arginine-treated multi walled carbon nanotubes on blood cells: application in hemodialysis membranes.

    PubMed

    Zare-Zardini, Hadi; Amiri, Ahmad; Shanbedi, Mehdi; Taheri-Kafrani, Asghar; Kazi, S N; Chew, B T; Razmjou, Amir

    2015-09-01

    One of the novel applications of the nanostructures is the modification and development of membranes for hemocompatibility of hemodialysis. The toxicity and hemocompatibility of Ag nanoparticles and arginine-treated multiwalled carbon nanotubes (MWNT-Arg) and possibility of their application in membrane technology are investigated here. MWNT-Arg is prepared by amidation reactions, followed by characterization by FTIR spectroscopy, Raman spectroscopy, and thermogravimetric analysis. The results showed a good hemocompatibility and the hemolytic rates in the presence of both MWNT-Arg and Ag nanoparticles. The hemolytic rate of Ag nanoparticles was lower than that of MWNT-Arg. In vivo study revealed that Ag nanoparticle and MWNT-Arg decreased Hematocrit and mean number of red blood cells (RBC) statistically at concentration of 100 µg mL(-1) . The mean decrease of RBC and Hematocrit for Ag nanoparticles (18% for Hematocrit and 5.8 × 1,000,000/µL) was more than MWNT-Arg (20% for Hematocrit and 6 × 1000000/µL). In addition, MWNT-Arg and Ag nanoparticles had a direct influence on the White Blood Cell (WBC) drop. Regarding both nanostructures, although the number of WBC increased in initial concentration, it decreased significantly at the concentration of 100 µg mL(-1) . It is worth mentioning that the toxicity of Ag nanoparticle on WBC was higher than that of MWNT-Arg. Because of potent antimicrobial activity and relative hemocompatibility, MWNT-Arg could be considered as a new candidate for biomedical applications in the future especially for hemodialysis membranes.

  18. With or without rafts? Alternative views on cell membranes.

    PubMed

    Sevcsik, Eva; Schütz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity.

  19. Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii

    PubMed Central

    Liu, Cuimin; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large subunits (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8 core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution. PMID:26305355

  20. Depletion of membrane skeleton in red blood cell vesicles.

    PubMed Central

    Iglic, A; Svetina, S; Zeks, B

    1995-01-01

    A possible physical interpretation of the partial detachment of the membrane skeleton in the budding region of the cell membrane and consequent depletion of the membrane skeleton in red blood cell vesicles is given. The red blood cell membrane is considered to consist of the bilayer part and the membrane skeleton. The skeleton is, under normal conditions, bound to the bilayer over its whole area. It is shown that, when in such conditions it is in the expanded state, some cell shape changes can induce its partial detachment. The partial detachment of the skeleton from the bilayer is energetically favorable if the consequent decrease of the skeleton expansion energy is larger than the corresponding increase of the bilayer-skeleton binding energy. The effect of shape on the skeleton detachment is analyzed theoretically for a series of the pear class shapes, having decreasing neck diameter and ending with a parent-daughter pair of spheres. The partial detachment of the skeleton is promoted by narrowing of the cell neck, by increasing the lateral tension in the skeleton and its area expansivity modulus, and by diminishing the attraction forces between the skeleton and the bilayer. If the radius of the daughter vesicle is sufficiently small relative to the radius of the parent cell, the daughter vesicle can exist either completely underlaid with the skeleton or completely depleted of the skeleton. PMID:7669905

  1. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function.

    PubMed

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T; Fang, Ronnie H; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-21

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications. PMID:27139582

  2. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    NASA Astrophysics Data System (ADS)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  3. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  4. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  5. Composite polymer membranes for proton exchange membrane fuel cells operating at elevated temperatures and reduced humidities

    NASA Astrophysics Data System (ADS)

    Zhang, Tao

    Proton Exchange Membrane Fuel Cells (PEMFCs) are the leading candidate in the fuel cell technology due to the high power density, solid electrolyte, and low operational temperature. However, PEMFCs operating in the normal temperature range (60-80°C) face problems including poor carbon monoxide tolerance and heat rejection. The poisoning effect can be significantly relieved by operating the fuel cell at elevated temperature, which also improves the heat rejection and electrochemical kinetics. Low relative humidity (RH) operation is also desirable to simplify the reactant humidification system. However, at elevated temperatures, reduced RH PEMFC performance is seriously impaired due to irreversible water loss from presently employed state-of-the-art polymer membrane, Nafion. This thesis focuses on developing polymer electrolyte membranes with high water retention ability for operation in elevated temperature (110-150°C), reduced humidity (˜50%RH) PEMFCs. One approach is to alter Nafion by adding inorganic particles such as TiO2, SiO2, Zr(HPO 4)2, etc. While the presence of these materials in Nafion has proven beneficial, a reduction or no improvement in the PEMFC performance of Nafion/TiO2 and Nafion/Zr(HPO4)2 membranes is observed with reduced particle sizes or increased particle loadings in Nafion. It is concluded that the PEMFC performance enhancement associated with addition of these inorganic particles was not due to the particle hydrophilicity. Rather, the particle, partially located in the hydrophobic region of the membrane, benefits the cell performance by altering the membrane structure. Water transport properties of some Nafion composite membranes were investigated by NMR methods including pulsed field gradient spin echo diffusion, spin-lattice relaxation, and spectral measurements. Compared to unmodified Nafion, composite membranes materials exhibit longer longitudinal relaxation time constant T1. In addition to the Nafion material, sulfonated styrene

  6. Nonlinear electro-mechanobiological behavior of cell membrane during electroporation

    NASA Astrophysics Data System (ADS)

    Deng, Peigang; Lee, Yi-Kuen; Lin, Ran; Zhang, Tong-Yi

    2012-07-01

    A nonlinear electroporation (EP) model is proposed to study the electro-mechanobiological behavior of cell membrane during EP, by taking the nonlinear large deformation of the membrane into account. The proposed model predicts the critical transmembrane potential and the activation energy for EP, the equilibrium pore size, and the resealing process of the pore. Single-cell EP experiments using a micro EP chip were conducted on chicken red blood cells at different temperatures to determine the activation energy and the critical transmembrane potential for EP. The experimental results are in good agreement with the theoretical predictions.

  7. Aluminum chloride and membrane potentials of barley root cells

    SciTech Connect

    Etherton, B.; Shane, M.

    1986-04-01

    Aluminum chloride at pH 4 hyperpolarizes the membrane potentials of barley root epidermal cells. The authors tested to see whether this hyperpolarization could be caused by an aluminum induced alteration of the permeability of the membrane to potassium or sodium ions by measuring the effect of .04 mM aluminum ions (the Ca/sup + +/ conc. was 0.1 mM) on the membrane potential changes induced by changing the potassium or sodium concentrations in the medium bathing the roots. Aluminum ions did not change the magnitude of potassium or sodium induced changes in membrane potentials but significantly altered the rates of potassium and sodium induced changes of the potential. The results indicate that aluminum ions did not change sodium or potassium ion permeabilities of barley root cells.

  8. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    PubMed Central

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  9. Mapping correlated membrane pulsations and fluctuations in human cells.

    PubMed

    Pelling, Andrew E; Veraitch, Farlan S; Pui-Kei Chu, Carol; Nicholls, Brian M; Hemsley, Alexandra L; Mason, Chris; Horton, Michael A

    2007-01-01

    The cell membrane and cytoskeleton are dynamic structures that are strongly influenced by the thermo-mechanical background in addition to biologically driven mechanical processes. We used atomic force microscopy (AFM) to measure the local membrane motion of human foreskin fibroblasts (HFFs) which were found to be governed by random and non-random correlated mechanical processes. Interphase cells displayed distinct membrane pulsations in which the membrane was observed to slowly contract upwards followed by a recovery to its initial position. These pulsations occurred one to three times per minute with variable amplitudes (20-100 pN) separated by periods of random baseline fluctuations with amplitudes of <20 pN. Cells were exposed to actin and microtubule (MT) destabilizing drugs and induced into early apoptosis. Mechanical pulsations (20-80 pN) were not prevented by actin or MT depolymerization but were prevented in early apoptotic cells which only displayed small amplitude baseline fluctuations (<20 pN). Correlation analysis revealed that the cell membrane motion is largely random; however several non-random processes, with time constants varying between approximately 2 and 35 s are present. Results were compared to measured cardiomyocyte motion which was well defined and highly correlated. Employing automated positioning of the AFM tip, interphase HFF correlation time constants were also mapped over a 10 microm2 area above the nucleus providing some insights into the spatial variability of membrane correlations. Here, we are able to show that membrane pulsations and fluctuations can be linked to physiological state and cytoskeletal dynamics through distinct sets of correlation time constants in human cells.

  10. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  11. Transient disruptions of aortic endothelial cell plasma membranes.

    PubMed Central

    Yu, Q. C.; McNeil, P. L.

    1992-01-01

    Cells of gut, skin, and muscle frequently suffer transient survivable plasma membrane disruptions ("wounds") under physiological conditions, but it is not known whether endothelial cells of the aorta, which are constantly exposed to hemodynamically generated mechanical forces, similarly are injured in vivo. We have used serum albumin as a molecular probe for identifying endothelial cells of the rat aorta that incurred and survived transient plasma membrane wounds in vivo. Such wounded endothelial cells were in fact observed in the aortas of all rats examined. However, the percentage of wounded cells in the total aortic endothelial population varied remarkably between individuals ranging from 1.4% to 17.9% with a mean of 6.5% (+/- 4.6% SD). Wounded endothelial cells were heterogeneously distributed, being found in distinct clusters often in the shape of streaks aligned with the long axis of the vessel, or in the shape of partial or complete rims surrounding bifurcation openings, such as the ostia of the intercostal arteries. Physical exercise (running) did not increase the frequency of aortic endothelial cell membrane wounding, nor did spontaneous hypertension. Surprisingly, 80% of mitotic endothelial cell figures were identified as wounded. This article identified a previously unrecognized form of endothelial cell injury, survivable disruptions of the plasma membrane, and shows that injury to the endothelial cells of the normal aorta is far more commonplace than previously suspected. Plasma membrane wounding of endothelial cells could be linked to the initiation of atherosclerosis. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 11 Figure 6 Figure 8 PMID:1466399

  12. A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Mamlouk, M.; Scott, K.

    2015-07-01

    A composite membrane based on a non-stoichiometric composition of BPO4 with excess of PO4 (BPOx) was synthesised and characterised for medium temperature fuel cell use (120-180 °C). The electrolyte was characterised by FTIR, SS-NMR, TGA and XRD and showed that the B-O is tetrahedral, in agreement with reports in the literature that boron phosphorus oxide compounds at B:P < 1 are exclusively built of borate and phosphate tetrahedra. Platinum micro electrodes were used to study the electrolyte compatibility and stability towards oxygen reduction at 150 °C and to obtain kinetic and mass transport parameters. The conductivities of the pure BPOx membrane electrolyte and a Polybenzimidazole (PBI)-4BPOx composite membrane were 7.9 × 10-2 S cm-1 and 4.5 × 10-2 S cm-1 respectively at 150 °C, 5%RH. Fuel cell tests showed a significant enhancement in performance of BPOx over that of typical 5.6H3PO4-PBI membrane electrolyte. The enhancement is due to the improved ionic conductivity (3×), a higher exchange current density of the oxygen reduction (30×) and a lower membrane gas permeability (10×). Fuel cell current densities at 0.6 V were 706 and 425 mA cm-2 for BPOx and 5.6H3PO4-PBI, respectively, at 150 °C with O2 (atm).

  13. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  14. Nanodomain stabilization dynamics in plasma membranes of biological cells

    NASA Astrophysics Data System (ADS)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  15. VIEW OF RBC (REFINED BICARBONATE) BUILDING LOOKING NORTHEAST. DEMOLITION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF RBC (REFINED BICARBONATE) BUILDING LOOKING NORTHEAST. DEMOLITION IN PROGRESS. "ARM & HAMMER BAKING SODA WAS MADE HERE FOR OVER 50 YEARS AND THEN SHIPPED ACROSS THE STREET TO THE CHURCH & DWIGHT PLANT ON WILLIS AVE. (ON THE RIGHT IN THIS PHOTO). LAYING ON THE GROUND IN FRONT OF C&D BUILDING IS PART OF AN RBC DRYING TOWER. - Solvay Process Company, Refined Bicarbonate Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  16. Adaptations to pressure in the RBC metabolism of diving mammals.

    PubMed

    Castellini, M A; Castellini, J M; Rivera, P M

    2001-07-01

    Marine mammals are known to dive up to 2000 m and, therefore, tolerate as much as 200 atm. of hydrostatic pressure. To examine possible metabolic adaptations to these elevated pressures, fresh blood samples from marine and terrestrial mammals were incubated for 2 h at 37 degrees C under 136 atm (2000 psi) of hydrostatic pressure. The consumption of plasma glucose and the production of lactate over the 2-h period were used to assess glycolytic flux in the red cells. The results indicate that glycolytic flux as measured by lactate production under pressure can be significantly depressed in most terrestrial mammals and either not altered or accelerated in marine mammals. The data also suggest that there is a significant shift in the ratio of lactate produced to glucose consumed under pressure. Interestingly, human and dolphin blood do not react to pressure. These combined data imply a metabolic adaptation to pressure in marine mammal RBC that may not be necessary in human or dolphin cells due to their unique patterns of glucose metabolism.

  17. Scalable nanostructured membranes for solid-oxide fuel cells.

    PubMed

    Tsuchiya, Masaru; Lai, Bo-Kuai; Ramanathan, Shriram

    2011-05-01

    The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800°C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes. However, although proof-of-concept thin-film devices have been demonstrated, scaling up remains a significant challenge because large-area membranes less than ~ 100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm⁻² at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

  18. Overexpression of membrane proteins in mammalian cells for structural studies

    PubMed Central

    Andréll, Juni

    2013-01-01

    The number of structures of integral membrane proteins from higher eukaryotes is steadily increasing due to a number of innovative protein engineering and crystallization strategies devised over the last few years. However, it is sobering to reflect that these structures represent only a tiny proportion of the total number of membrane proteins encoded by a mammalian genome. In addition, the structures determined to date are of the most tractable membrane proteins, i.e., those that are expressed functionally and to high levels in yeast or in insect cells using the baculovirus expression system. However, some membrane proteins that are expressed inefficiently in these systems can be produced at sufficiently high levels in mammalian cells to allow structure determination. Mammalian expression systems are an under-used resource in structural biology and represent an effective way to produce fully functional membrane proteins for structural studies. This review will discuss examples of vertebrate membrane protein overexpression in mammalian cells using a variety of viral, constitutive or inducible expression systems. PMID:22963530

  19. Scalable nanostructured membranes for solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Masaru; Lai, Bo-Kuai; Ramanathan, Shriram

    2011-05-01

    The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800 °C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes. However, although proof-of-concept thin-film devices have been demonstrated, scaling up remains a significant challenge because large-area membranes less than ~100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm-2 at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

  20. Effects of p-chloromercuribenzene sulfonate on water transport across the marsupial erythrocyte membrane.

    PubMed

    Benga, G; Chapman, B E; Matei, H V; Gallagher, C; Blyde, D; Kuchel, P W

    2002-08-01

    The effects of exposure of red blood cells (RBC) of three species of marsupial to a mercury-containing sulfhydryl-modifying reagent, p-chloromercuribenzene sulfonate (PCMBS), on the water diffusional permeability ( P (d)) of their membranes were monitored by using an Mn(2+)-doping (1)H nuclear magnetic resonance (NMR) technique at 400 MHz. For koala ( Phascolarctos cinereus), RBC the maximal inhibition was reached at 37 degrees C in 60 min with 1 mmol.l(-1) PCMBS or in 15-30 min with 2 mmol. l(-1) PCMBS. In contrast, in the case of red kangaroo ( Macropus rufus) or swamp wallaby ( Wallabia bicolor) RBC, maximal inhibition required an incubation of 90 min at 37 degrees C with 2 mmol.l(-1) PCMBS. For the RBC of all three species the value of maximal inhibition was very high, being 50-70% when measured at 25 degrees C, 60-80% at 30 degrees C and 60-70% at 37 degrees C. The lowest values of P (d) appeared to be around 2 x 10(-3)-3 x 10(-3) cm.s(-1) in the temperature range of 25-37 degrees C. The mean value of the activation energy of water diffusion ( E (a,d)) was approximately 20-25 kJ.mol(-1) for control and approximately 40 kJ.mol(-1) for PCMBS-inhibited RBCs. These results show that marsupial RBC have a basal permeability to water similar to that previously reported for human RBC, but a higher value of the PCMBS-inhibitable water permeability. This indicates that the higher water permeability of marsupial RBC compared with human RBC is associated with a higher fraction of protein-mediated water permeability.

  1. The Anti-angiogenic Peptide Anginex Disrupts the Cell Membrane

    PubMed Central

    Pilch, Jan; Franzin, Carla M.; Knowles, Lynn M.; Ferrer, Fernando J.; Marassi, Francesca M.; Ruoslahti, Erkki

    2010-01-01

    Anginex is a synthetic beta-sheet peptide with anti-angiogenic and anti-tumor activity. When added to cultured endothelial cells at concentrations ranging from 2.5 μM to 25 μM, anginex induced cell death, which was reflected by a strong increase of subdiploid cells and fragments, loss of cellular ATP, and LDH release. Cytotoxicity remained the same whether cells were treated with anginex at 4 °C or at 37 °C. At low temperatures, fluorescein-conjugated anginex accumulated on the endothelial surface, but did not reach into the cytoplasm, indicating that the cell membrane is the primary target for the peptide. Within minutes of treatment, anginex caused endothelial cells to take up propidium iodide and undergo depolarization, both parameters characteristic for permeabilization of the cell membrane. This process was amplified when cells were activated with hydrogen peroxide. Red blood cell membranes were essentially unaffected by anginex. Anginex bound lipid bilayers with high affinity and with a clear preference for anionic over zwitterionic phospholipids. Structural studies by circular dichroism and solid-state nuclear magnetic resonance showed that anginex forms a beta-sheet and adopts a unique and highly ordered conformation upon binding to lipid membranes. This is consistent with lipid micellization or the formation of pore-forming beta-barrels. The data suggest that the cytotoxicity of anginex stems from its ability to target and disrupt the endothelial cell membrane, providing a possible explanation for the angiostatic activity of the peptide. PMID:16403516

  2. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  3. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation.

    PubMed

    Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof

    2016-06-01

    Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells.

  4. Membrane potential genesis in Nitella cells, mitochondria, and thylakoids.

    PubMed

    Kitasato, Hiroshi

    2003-10-01

    The resting membrane potential of Nitella cells shifts in parallel with the change in H+ equilibrium potential, but is not equal to the H+ equilibrium potential. The deviation of the membrane potential from the H+ equilibrium potential depends on the extrusion rate of H+ by the electrogenic H+-pump. The activity of the electrogenic H+-pump was formulated in terms of the change in the free energy of ATP hydrolysis. The deviation of membrane potential from the H+ equilibrium potential induces a passive H+ flow. The passive inward H+ current may be coupled with Cl- uptake. The coupling rate of H+,Cl- co-transport was discussed. The membrane potential of mitochondria was electrochemically formulated in terms of oxidation-reduction H2/H+ half-cells spontaneously formed at the inner and outer boundaries of each trans-membrane electron-conducting pathway. The membrane potential formed by a pair of H2/H+ redox cells is pH-sensitive in its nature, but deviates from the H+ equilibrium potential to an extent that depends on the logarithm of the ratio of H2 concentrations at the inner and outer boundaries. The membrane potential of thylakoids is considered to be primarily due to the electromotive force of photocells embedded in the thylakoid membrane, as far as the anode and cathode of each photocell are in contact with the inner and outer solutions, respectively. The light-induced electronic current yields oxygen at the inner boundary and causes an increase in the H2 pool at the outer boundary of the electron-conducting pathway, which has no shunting plastoquinone chain between these two boundaries.

  5. Effects of chronic kidney disease on blood cells membrane properties.

    PubMed

    Kaderjakova, Z; Lajdova, I; Horvathova, M; Morvova, M; Sikurova, L

    2012-10-01

    Chronic kidney disease (CKD) is progressive loss of renal function associated among others with increased intracellular calcium concentration. The purpose of this study was to identify the effects of CKD on cell membrane properties such as human red blood cell Ca(2+) ATPase activity, lymphocyte plasma membrane P2X(7) receptor expression and function. This could help us in elucidating the origin of increased calcium concentration in blood cells. We found out Ca(2+) ATPase activity is decreased in early stage CKD patients resulting in altered calcium removal from cytoplasm. By means of flow cytometry we assessed that P2X(7) receptor expression on lymphocyte membrane is 1.5 fold increased for CKD patients. Moreover, we detected an increased uptake of ethidium bromide through this receptor in CKD at basal conditions. It means CKD lymphocyte membranes contain more receptors which are more permeable thus allowing increased calcium influx from extracellular milieu. Finally, we can state alterations in blood cell membranes are closely linked to CKD and may be responsible for intracellular calcium accumulation.

  6. Determination of apical membrane polarity in mammary epithelial cell cultures: The role of cell-cell, cell-substratum, and membrane-cytoskeleton interactions

    SciTech Connect

    Parry, G.; Beck, J.C.; Moss, L.; Bartley, J. ); Ojakian, G.K. )

    1990-06-01

    The membrane glycoprotein, PAS-O, is a major differentiation antigen on mammary epithelial cells and is located exclusively in the apical domain of the plasma membrane. The authors have used 734B cultured human mammary carcinoma cells as a model system to study the role of tight junctions, cell-substratum contacts, and submembranous cytoskeletal elements in restricting PAS-O to the apical membrane. Immunofluorescence and immunoelectronmicroscopy experiments demonstrated that while tight junctions demarcate PAS-O distribution in confluent cultures, apical polarity could be established at low culture densities when cells could not form tight junctions with neighboring cells. They suggest, then, that interactions between vitronectin and its receptor, are responsible for establishment of membrane domains in the absence of tight junctions. The role of cytoskeletal elements in restricting PAS-O distribution was examined by treating cultures with cytochalasin D, colchicine, or acrylamide. Cytochalasin D led to a redistribution of PAS0O while colchicine and acrylamide did not. They hypothesize that PAS-O is restricted to the apical membrane by interactions with a microfilament network and that the cytoskeletal organization is dependent upon cell-cell and cell-substratum interactions.

  7. Membrane Mechanics of Endocytosis in Cells with Turgor.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2015-10-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane deformations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck constriction by actin may not be required, while its pulling role is essential. Finally, the theory shows that anisotropic curvature effectors stabilize membrane invaginations, and the loss of crescent-shaped BAR domain proteins such as Rvs167 could therefore trigger membrane scission.

  8. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  9. Coarse-Grained Models for Protein-Cell Membrane Interactions

    PubMed Central

    Bradley, Ryan; Radhakrishnan, Ravi

    2015-01-01

    The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes. PMID:26613047

  10. [Studies on potassium transport through glial cell membranes (author's transl)].

    PubMed

    Coles, J A; Gardner-Medwin, A R; Tsacopoulos, M

    1980-04-01

    The retina of the honeybee drone is used as a model for the study of ion movements across the membranes of the glial cells caused by changes in the extracellular potassium concentration. The values found for changes in extracellular potential suggest that at least some of the potassium that enters glial cells in an active region of tissue is associated with an efflux of potassium from parts of the glial syncytium not affected by an increase in extracellular potassium concentration. In addition, it appears that ions other than K+ cross the glial membrane.

  11. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  12. Once upon a time the cell membranes: 175 years of cell boundary research.

    PubMed

    Lombard, Jonathan

    2014-12-19

    All modern cells are bounded by cell membranes best described by the fluid mosaic model. This statement is so widely accepted by biologists that little attention is generally given to the theoretical importance of cell membranes in describing the cell. This has not always been the case. When the Cell Theory was first formulated in the XIX(th) century, almost nothing was known about the cell membranes. It was not until well into the XX(th) century that the existence of the plasma membrane was broadly accepted and, even then, the fluid mosaic model did not prevail until the 1970s. How were the cell boundaries considered between the articulation of the Cell Theory around 1839 and the formulation of the fluid mosaic model that has described the cell membranes since 1972? In this review I will summarize the major historical discoveries and theories that tackled the existence and structure of membranes and I will analyze how these theories impacted the understanding of the cell. Apart from its purely historical relevance, this account can provide a starting point for considering the theoretical significance of membranes to the definition of the cell and could have implications for research on early life.

  13. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.

    PubMed

    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen

    2015-07-01

    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies.

  14. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.

    PubMed

    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen

    2015-07-01

    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies. PMID:25962480

  15. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  16. Lactic acid fermentation in cell-recycle membrane bioreactor.

    PubMed

    Choudhury, B; Swaminathan, T

    2006-02-01

    Traditional lactic acid fermentation suffers from low productivity and low product purity. Cell-recycle fermentation has become one of the methods to obtain high cell density, which results in higher productivity. Lactic acid fermentation was investigated in a cell-recycle membrane bioreactor at higher substrate concentrations of 100 and 120 g/dm3. A maximum cell density of 145 g/dm3 and a maximum productivity of 34 g/(dm3.h) were achieved in cell-recycle fermentation. In spite of complete consumption of substrate, there was a continuous increase in cell density in cell-recycle fermentation. Control of cell density in cell-recycle fermentation was attempted by cell bleeding and reduction in yeast extract concentration.

  17. Dipole relaxation in erythrocyte membrane: involvement of spectrin skeleton.

    PubMed

    Ivanov, I T; Paarvanova, B; Slavov, T

    2012-12-01

    Polarization of spectrin-actin undermembrane skeleton of red blood cell (RBC) plasma membranes was studied by impedance spectroscopy. Relatedly, dielectric spectra of suspensions that contained RBCs of humans, mammals (bovine, horse, dog, cat) and birds (turkey, pigeon, duck), and human RBC ghost membranes were continuously obtained during heating from 20 to 70°C. Data for the complex admittance and capacitance were used to derive the suspension resistance, R, and capacitance, C, as well as the energy loss as a function of temperature. As in previous studies, two irreversible temperature-induced transitions in the human RBC plasma membrane were detected at 49.5°C and at 60.7°C (at low heating rate). The transition at 49.5°C was evident from the abrupt changes in R, and C and the fall in the energy loss, due to dipole relaxation. For the erythrocytes of indicated species the changes in R and C displayed remarkable and similar frequency profiles within the 0.05-13MHz domain. These changes were subdued after cross-linking of membranes by diamide (0.3-1.3mM) and glutaraldehyde (0.1-0.4%) and at the presence of glycerol (10%). Based on the above results and previous reports, the dielectric changes at 49.5°C were related to dipole relaxation and segmental mobility of spectrin cytoskeleton. The results open the possibility for selective dielectric thermolysis of cell cytoskeleton.

  18. The role of cell membranes in the regulation of lignification in pine cells

    NASA Technical Reports Server (NTRS)

    Hendrix, D. L.

    1978-01-01

    The identity of pine cell membranes bearing PAL enzyme activity, the isolation of a plasma membrane preparation from pine cells for testing as a regulatory barrier in lignification, and the measurement of the geopotential effect in pine stems are presented. A model to describe and predict the interaction of gravity and lignification of higher plants was developed.

  19. Helicobacter pylori Disrupts Host Cell Membranes, Initiating a Repair Response and Cell Proliferation

    PubMed Central

    Lin, Li-Ling; Huang, Hsuan-Cheng; Ogihara, Satoshi; Wang, Jin-Town; Wu, Meng-Chuan; McNeil, Paul L.; Chen, Chiung-Nien; Juan, Hsueh-Fen

    2012-01-01

    Helicobacter pylori (H. pylori), the human stomach pathogen, lives on the inner surface of the stomach and causes chronic gastritis, peptic ulcer, and gastric cancer. Plasma membrane repair response is a matter of life and death for human cells against physical and biological damage. We here test the hypothesis that H. pylori also causes plasma membrane disruption injury, and that not only a membrane repair response but also a cell proliferation response are thereby activated. Vacuolating cytotoxin A (VacA) and cytotoxin-associated gene A (CagA) have been considered to be major H. pylori virulence factors. Gastric cancer cells were infected with H. pylori wild type (vacA+/cagA+), single mutant (ΔvacA or ΔcagA) or double mutant (ΔvacA/ΔcagA) strains and plasma membrane disruption events and consequent activation of membrane repair components monitored. H. pylori disrupts the host cell plasma membrane, allowing localized dye and extracellular Ca2+ influx. Ca2+-triggered members of the annexin family, A1 and A4, translocate, in response to injury, to the plasma membrane, and cell surface expression of an exocytotic maker of repair, LAMP-2, increases. Additional forms of plasma membrane disruption, unrelated to H. pylori exposure, also promote host cell proliferation. We propose that H. pylori activation of a plasma membrane repair is pro-proliferative. This study might therefore provide new insight into potential mechanisms of H. pylori-induced gastric carcinogenesis. PMID:22949854

  20. Simultaneous imaging of cell and mitochondrial membrane potentials.

    PubMed Central

    Farkas, D L; Wei, M D; Febbroriello, P; Carson, J H; Loew, L M

    1989-01-01

    The distribution of charged membrane-permeable molecular probes between intracellular organelles, the cytoplasm, and the outside medium is governed by the relative membrane electrical potentials of these regions through coupled equilibria described by the Nernst equation. A series of highly fluorescent cationic dyes of low membrane binding and toxicity (Ehrenberg, B., V. Montana, M.-D. Wei, J. P. Wuskell, and L. M. Loew, 1988. Biophys. J. 53:785-794) allows the monitoring of these equilibria through digital imaging video microscopy. We employ this combination of technologies to assess, simultaneously, the membrane potentials of cells and of their organelles in situ. We describe the methodology and optimal conditions for such measurements, and apply the technique to concomitantly follow, with good time resolution, the mitochondrial and plasma membrane potentials in several cultured cell lines. The time course of variations induced by chemical agents (ionophores, uncouplers, electron transport, and energy transfer inhibitors) in either or both these potentials is easily quantitated, and in accordance with mechanistic expectations. The methodology should therefore be applicable to the study of more subtle and specific, biologically induced potential changes in cells. Images FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 PMID:2611324

  1. Nanoporous membrane-sealed microfluidic devices for improved cell viability.

    PubMed

    Masand, Shirley N; Mignone, Lindsay; Zahn, Jeffrey D; Shreiber, David I

    2011-12-01

    Cell-laden microfluidic devices have broad potential in various biomedical applications, including tissue engineering and drug discovery. However, multiple difficulties encountered while culturing cells within devices affecting cell viability, proliferation, and behavior has complicated their use. While active perfusion systems have been used to overcome the diffusive limitations associated with nutrient delivery into microchannels to support longer culture times, these systems can result in non-uniform oxygen and nutrient delivery and subject cells to shear stresses, which can affect cell behavior. Additionally, histological analysis of cell cultures within devices is generally laborious and yields inconsistent results due to difficulties in delivering labeling agents in microchannels. Herein, we describe a simple, cost-effective approach to preserve cell viability and simplify labeling within microfluidic networks without the need for active perfusion. Instead of bonding a microfluidic network to glass, PDMS, or other solid substrate, the network is bonded to a semi-permeable nanoporous membrane. The membrane-sealed devices allow free exchange of proteins, nutrients, buffers, and labeling reagents between the microfluidic channels and culture media in static culture plates under sterile conditions. The use of the semi-permeable membrane dramatically simplifies microniche cell culturing while avoiding many of the complications which arise from perfusion systems.

  2. Lipids that determine detergent resistance of MDCK cell membrane fractions.

    PubMed

    Manni, Marco M; Cano, Ainara; Alonso, Cristina; Goñi, Félix M

    2015-10-01

    A comparative lipidomic study has been performed of whole Madin-Darby canine kidney epithelial cells and of the detergent-resistant membrane fraction (DRM) obtained after treating the cells with the non-ionic detergent Triton X-100. The DRM were isolated following a standard procedure that is extensively used in cell biology studies. Significant differences were found in the lipid composition of the whole cells and of DRM. The latter were enriched in all the analyzed sphingolipid classes: sphingomyelins, ceramides and hexosylceramides. Diacylglycerols were also preferentially found in DRM. The detergent-resistant fraction was also enriched in saturated over unsaturated fatty acyl chains, and in sn-1 acyl chains containing 16 carbon atoms, over the longer and shorter ones. The glycerophospholipid species phosphatidylethanolamines and phosphatidylinositols, that were mainly unsaturated, did not show a preference for DRM. Phosphatidylcholines were an intermediate case: the saturated, but not the unsaturated species were found preferentially in DRM. The question remains on whether these DRM, recovered from detergent-membrane mixtures by floatation over a sucrose gradient, really correspond to membrane domains existing in the cell membrane prior to detergent treatment.

  3. Lipids that determine detergent resistance of MDCK cell membrane fractions.

    PubMed

    Manni, Marco M; Cano, Ainara; Alonso, Cristina; Goñi, Félix M

    2015-10-01

    A comparative lipidomic study has been performed of whole Madin-Darby canine kidney epithelial cells and of the detergent-resistant membrane fraction (DRM) obtained after treating the cells with the non-ionic detergent Triton X-100. The DRM were isolated following a standard procedure that is extensively used in cell biology studies. Significant differences were found in the lipid composition of the whole cells and of DRM. The latter were enriched in all the analyzed sphingolipid classes: sphingomyelins, ceramides and hexosylceramides. Diacylglycerols were also preferentially found in DRM. The detergent-resistant fraction was also enriched in saturated over unsaturated fatty acyl chains, and in sn-1 acyl chains containing 16 carbon atoms, over the longer and shorter ones. The glycerophospholipid species phosphatidylethanolamines and phosphatidylinositols, that were mainly unsaturated, did not show a preference for DRM. Phosphatidylcholines were an intermediate case: the saturated, but not the unsaturated species were found preferentially in DRM. The question remains on whether these DRM, recovered from detergent-membrane mixtures by floatation over a sucrose gradient, really correspond to membrane domains existing in the cell membrane prior to detergent treatment. PMID:26320877

  4. Transient changes in neuronal cell membrane permeability after blast exposure.

    PubMed

    Arun, Peethambaran; Abu-Taleb, Rania; Valiyaveettil, Manojkumar; Wang, Ying; Long, Joseph B; Nambiar, Madhusoodana P

    2012-04-18

    The biochemical mechanisms of explosive blast-induced traumatic brain injury and the subsequent long-term neurobehavioral abnormalities are still not completely understood. We studied the biochemical mechanism of blast traumatic brain injury using our recently reported in-vitro model system with a shock tube. Primary blast exposure of in-vitro models leads to neurobiological changes in an overpressure dose-dependent and time-dependent manner. Lactate dehydrogenase was released significantly into the extracellular medium without cell death after blast exposure, indicating compromised cell membrane integrity. We further explored the integrity of cell membrane after blast exposure by fluorescent dye uptake/release techniques in SH-SY5Y human neuroblastoma cells. Our data indicate that blast exposure leads to an overpressure-dependent transient increase in the release of preloaded calcein AM into the culture medium with proportional intracellular decrease. Uptake of an extracellular nucleic acid-binding dye TO-PRO-3 iodide was also increased significantly after blast exposure, indicating that the increased molecular transport is bidirectional and nuclear membrane integrity is also affected by blast exposure. These results suggest that blast exposure perturbs the integrity of the neuronal cell membrane, leading to increased bidirectional transport of molecules--a potential mechanism that can lead to traumatic brain injury.

  5. Membrane and MEA Development in Polymer Electrolyte Fuel Cells

    NASA Astrophysics Data System (ADS)

    Trogadas, Panagiotis; Ramani, Vijay

    The polymer electrolyte fuel cell (PEFC) is based on Nafion polymer membranes operating at a temperature of 80°C. The main characteristics (structure and properties) and problems of Nafion-based PEFC technology are discussed. The primary drawbacks of Nafion membranes are poor conductivity at low relative humidities (and consequently at temperatures >100°C and ambient pressure) and large crossover of methanol in direct methanol fuel cell (DMFC) applications. These drawbacks have prompted an extensive effort to improve the properties of Nafion and identify alternate materials to replace Nafion. Polymer electrolyte membranes (PEMs) are classified in modified Nafion, membranes based on functionalized non-fluorinated backbones and acid-base polymer systems. Perhaps the most widely employed approach is the addition of inorganic additives to Nafion membranes to yield organic/inorganic composite membranes. Four major types of inorganic additives that have been studied (zirconium phosphates, heteropolyacids, metal hydrogen sulfates, and metal oxides) are reviewed in the following. DMFC and H2/O2 (air) cells based on modified Nafion membranes have been successfully operated at temperatures up to 120°C under ambient pressure and up to 150°C under 3-5 atm. Membranes based on functionalized non-fluorinated backbones are potentially promising for high-temperature operation. High conductivities have been obtained at temperatures up to 180°C. The final category of polymeric PEMs comprises non-functionalized polymers with basic character doped with proton-conducting acids such as phosphoric acid. The advanced features include high CO tolerance and thermal management. The advances made in the fabrication of electrodes for PEM fuel cells from the PTFE-bound catalyst layers of almost 20 years ago to the present technology are briefly discussed. There are two widely employed electrode designs: (1) PTFE-bound, and (2) thin-film electrodes. Emerging methods include those featuring

  6. Cell membrane interaction of Bacillus thuringiensis subsp. israelensis cytolytic toxins.

    PubMed

    Gill, S S; Singh, G J; Hornung, J M

    1987-05-01

    Two toxic polypeptides of 24 and 25 kilodaltons (kDa) were purified from parasporal proteinaceous crystals of Bacillus thuringiensis subsp. israelensis. Both of these polypeptides, which are antigenically similar and have identical N terminals, lysed human erythrocytes and cultured mosquito cells. Although the 24-kDa peptide was more toxic than the 25-kDa peptide, both were less toxic than the crude alkali-solubilized crystal toxin. However, a 1:1 mixture of these 24- and 25-kDa proteins was more toxic than either of these polypeptides individually, indicating a possible interaction between these proteins at the cell membrane. Both the 24- and the 25-kDa proteins were inactivated by aqueous suspensions of dioleolylphosphatidylcholine, indicating the involvement of phospholipids in the cytotoxic action of these toxins. Thus the role of cell membrane phospholipids in mediating the toxin action was studied by using phospholipases as probes. Treatment of erythrocytes with high levels of phospholipase D increased their susceptibility to the toxin; however, phospholipase A2-treated erythrocytes were less susceptible to the toxin. These erythrocytes also bound less 125I-labeled 25-kDa toxin. These results support the role of fatty acyl residues at the syn-2 position of membrane phospholipids in toxin action. The cytolytic toxin of B. thuringiensis subsp. israelensis is thought to damage cell membranes in a detergentlike manner. However, there was a difference between the cytolytic action of this toxin and that of a nonionic detergent such as Triton X-100 because phospholipase A2-treated erythrocytes were more susceptible to Triton X-100, whereas such erythrocytes were less sensitive to the toxin. Thus, the cytolytic toxin apparently did not act as a nonspecific detergent, but rather interacted with phospholipid receptors on the cell membrane. Such an interaction of the toxin with phospholipid receptors probably results in the increased cell permeability, thereby causing

  7. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  8. Experimental erythrocyte autoantibodies. V. Induction and suppression of red blood cell autoantibodies in mice injected with rat bromelain-treated red blood cells.

    PubMed

    Cox, K O; McAuliffe, A

    1983-10-01

    Mice injected with rat red blood cells (RBC), or rat bromelain-treated (brom) RBC, produce RBC autoantibodies and suppressor cells that specifically inhibit the autoimmune response without inhibiting the net production of antibodies against rat RBC. It has been investigated whether suppressor cells induced by injections of rat RBC are effective in preventing autoantibody production induced by rat brom RBC and vice versa. Autoantibodies were induced in C3H mice by weekly ip injections, each 0.2 ml, of a 6% suspension of rat RBC or rat brom RBC. Autoantibody production was assayed using Coombs' test. Suppressor cells were present in the spleens of mice positive in Coombs' tests and were shown by intravenous injections of 40 X 10(6) viable cells per mouse into untreated syngeneic mice 18 hr before the first injection of rat RBC or rat brom RBC. Autoantibodies eluted from mice positive in Coombs' tests after injections of rat RBC or brom RBC were absorbed by either type of rat RBC but not by RBC from sheep. This suggests that rat RBC and rat brom RBC display antigens that are similar, if not identical, to autoantigens on the mouse RBC. Spleen cells from mice injected with rat RBC suppressed autoantibodies induced by both rat RBC and rat brom RBC. In contrast, spleen cells from mice injected with rat brom RBC suppressed autoantibodies induced by rat brom RBC but not those induced by unmodified rat RBC. This differential suppression may be due to the removal from rat RBC, by bromelain, of a suppressor site and/or autoantigens of some specificities. Thus rat brom RBC may not induce the total range of specificities of autoantibodies, and of suppressor cells, induced by rat RBC.

  9. Nanoceramic oxide hybrid electrolyte membranes for proton exchange membrane fuel cells.

    PubMed

    Xu, Feng; Mu, Shichun

    2014-02-01

    This review reports on the functions and applications of nanoceramic oxides in proton exchange membrane fuel cells (PEMFCs). Such materials are mainly used as fillers to enhance the water uptake and proton conductivity of polymeric matrices at high temperatures under low relative humidity. To further enhance the mechanical property of proton exchange membranes (PEMs), the functionalized ceramic oxides with organic groups are introduced. Furthermore, the inorganic PEMs are developed to improve their proton conductivities at elevated temperatures. Due to the inherent disadvantages of polymeric PEMs, it is believed that the inorganic PEMs based on porous ceramic oxides are a promising new candidate as solid electrolyte membranes in PEMFCs at high temperatures and with low relative humidity.

  10. Resealing dynamics of a cell membrane after electroporation

    NASA Astrophysics Data System (ADS)

    Bier, Martin; Chen, Wei; Gowrishankar, T. R.; Astumian, R. Dean; Lee, Raphael C.

    2002-12-01

    The membrane of a living cell consists of a bilayer of amphipolar lipid molecules as well as much larger proteins. Transmembrane potentials of up to 120 mV are physiologic and well tolerated, but when the potential is more than 300 mV, this lipid bilayer is unstable. Pores are then formed through which measurable flow of ions can occur. We follow currents through frog muscle cell membranes under 4-ms pulses of up to 440 mV. We present a theory that allows us to describe the relaxation of the current back to zero after the pulse in terms of membrane parameters. We obtain a line tension of 3.6×10-6 N, which is similar to that found in artificial lipid bilayers.

  11. Durable, Low-cost, Improved Fuel Cell Membranes

    SciTech Connect

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  12. Macrophages engulf endothelial cell membrane particles preceding pupillary membrane capillary regression

    PubMed Central

    Poché, Ross A.; Hsu, Chih-Wei; McElwee, Melissa L.; Burns, Alan R.; Dickinson, Mary E.

    2015-01-01

    Programmed capillary regression and remodeling are essential developmental processes. However, the cellular and molecular mechanisms that regulate vessel regression are only beginning to be understood. Here, using in vivo, dynamic, confocal imaging of mouse transgenic reporters as well as static confocal and electron microscopy, we studied the embryonic development and postnatal regression of the transient mouse pupillary membrane (PM) vasculature. This approach allowed us to directly observe the precise temporal sequence of cellular events preceding and during the elimination of the PM from the mouse eye. Imaging of Tcf/Lef-H2B::GFP Wnt-reporter mice uncovered that, unlike the hyaloid vasculature of the posterior eye, a PM endothelial cell (EC) Wnt/β-catenin response is unlikely to be part of the regression mechanism. Live imaging of EC and macrophage dynamics revealed highly active Csf1r-GFP+ macrophages making direct contact with the Flk1-myr::mCherry+ vessel surface and with membrane protrusions or filopodia extending from the ECs. Flk1-myr::mCherry+ EC membrane particles were observed on and around ECs as well as within macrophages. Electron microscopy studies confirmed that they were in phagosomes within macrophages, indicating that the macrophages engulfed the membrane particles. Interestingly, EC plasma membrane uptake by PM macrophages did not correlate with apoptosis and was found shortly after vessel formation at mid-gestation stages in the embryo; long before vessel regression begins during postnatal development. Additionally, genetic ablation of macrophages showed that EC membrane particles were still shed in the absence of macrophages suggesting that macrophages do not induce the formation or release of EC microparticles. These studies have uncovered a novel event during programmed capillary regression in which resident macrophages scavenge endothelial cell microparticles released from the PM vessels. This finding suggests that there may be an

  13. Polarized protein membrane for high cell seeding efficiency.

    PubMed

    Atthoff, Björn; Aulin, Cecilia; Adelöw, Catharina; Hilborn, Jöns

    2007-11-01

    A new type of scaffold for tissue engineering was developed to give enhanced cell seeding in three dimensions. A gradient of either collagen or fibrin protein was prepared, supported by a knitted poly(ethylene terephtalate) PET fabric. The membranes were, after hydrolysis and acetic acid wash, submerged in a protein solution for adsorption followed by immersion into a gelling agent. The immediate contact between the protein solution held by the fabric and the gelling agent resulted in a dense, fibrous protein network with pore sizes around 0.5 microm at the surface, and larger pores of 10-50 microm size throughout the interior of the fabric as observed by scanning electron microscopy. By separating the fabric double layers holding this network, a gradient porosity membrane was produced. To evaluate the fractions of cells trapped in the matrix upon seeding, i.e. the seeding efficiency, 500 microl 3T3 fibroblasts cell suspension containing one million cells was seeded by filtering through the gradient protein membrane. For both the collagen and fibrin membranes, the seeding efficiency was approximately 93%, which was significantly higher than that of 28% from the corresponding PET fabric without protein immobilization. Attempt to seed cells from the dense side of the protein networks resulted in no cell penetration into the scaffold. Histology on subsequent culture of the cells in the scaffold demonstrated viability and proliferation in three dimensions throughout the scaffold. This new and simple way of producing scaffolds play an important role when the cells are precious or scarce and cell seeding in three dimensions is important. PMID:17443668

  14. Red Cell Membrane Permeability Deduced from Bulk Diffusion Coefficients

    PubMed Central

    Redwood, W. R.; Rall, E.; Perl, W.

    1974-01-01

    The permeability coefficients of dog red cell membrane to tritiated water and to a series of[14C]amides have been deduced from bulk diffusion measurements through a "tissue" composed of packed red cells. Red cells were packed by centrifugation inside polyethylene tubing. The red cell column was pulsed at one end with radiolabeled solute and diffusion was allowed to proceed for several hours. The distribution of radioactivity along the red cell column was measured by sequential slicing and counting, and the diffusion coefficient was determined by a simple plotting technique, assuming a one-dimensional diffusional model. In order to derive the red cell membrane permeability coefficient from the bulk diffusion coefficient, the red cells were assumed to be packed in a regular manner approximating closely spaced parallelopipeds. The local steady-state diffusional flux was idealized as a one-dimensional intracellular pathway in parallel with a one-dimensional extracellular pathway with solute exchange occurring within the series pathway and between the pathways. The diffusion coefficients in the intracellular and extracellular pathways were estimated from bulk diffusion measurements through concentrated hemoglobin solutions and plasma, respectively; while the volume of the extracellular pathway was determined using radiolabeled sucrose. The membrane permeability coefficients were in satisfactory agreement with the data of Sha'afi, R. I., C. M. Gary-Bobo, and A. K. Solomon (1971. J. Gen. Physiol. 58:238) obtained by a rapid-reaction technique. The method is simple and particularly well suited for rapidly permeating solutes. PMID:4443795

  15. Electrospun fiber membranes enable proliferation of genetically modified cells

    PubMed Central

    Borjigin, Mandula; Eskridge, Chris; Niamat, Rohina; Strouse, Bryan; Bialk, Pawel; Kmiec, Eric B

    2013-01-01

    Polycaprolactone (PCL) and its blended composites (chitosan, gelatin, and lecithin) are well-established biomaterials that can enrich cell growth and enable tissue engineering. However, their application in the recovery and proliferation of genetically modified cells has not been studied. In the study reported here, we fabricated PCL-biomaterial blended fiber membranes, characterized them using physicochemical techniques, and used them as templates for the growth of genetically modified HCT116-19 colon cancer cells. Our data show that the blended polymers are highly miscible and form homogenous electrospun fiber membranes of uniform texture. The aligned PCL nanofibers support robust cell growth, yielding a 2.5-fold higher proliferation rate than cells plated on standard plastic plate surfaces. PCL-lecithin fiber membranes yielded a 2.7-fold higher rate of proliferation, while PCL-chitosan supported a more modest growth rate (1.5-fold higher). Surprisingly, PCL-gelatin did not enhance cell proliferation when compared to the rate of cell growth on plastic surfaces. PMID:23467983

  16. Adaptive evolution of rbcL in Conocephalum (Hepaticae, bryophytes).

    PubMed

    Miwa, Hidetsugu; Odrzykoski, Ireneusz J; Matsui, Atsushi; Hasegawa, Masami; Akiyama, Hiroyuki; Jia, Yu; Sabirov, Renat; Takahashi, Hideki; Boufford, David E; Murakami, Noriaki

    2009-07-15

    An excess of nonsynonymous substitutions over synonymous ones has been regarded as an important indicator of adaptive evolution or positive selection at the molecular level. We now report such a case for rbcL sequences among cryptic species in Conocephalum (Hepaticae, Bryophytes). This finding can be regarded as evidence of adaptive evolution in several cryptic species (especially in F and JN types) within the genus. Bryophytes are small land plants with simple morphology. We can therefore expect the existence of several biologically distinct units or cryptic species within each morphological species. In our previous study, we found three rbcL types in Asian Conocephalum japonicum (Thunb.) Grolle and also found evidence strongly suggesting that the three types are reproductively isolated cryptic species. Additionally, we examined rbcL sequence variation in six cryptic species of C. conicum (L.) Dumort. previously recognized by allozyme analyses. As a result, we were able to discriminate the six cryptic species based only on their rbcL sequences. We were able to show that rbcL sequence variation is also useful in finding cryptic species of C. conicum.

  17. Purified oxygen scavenging cell membrane fragments and use of same

    SciTech Connect

    Jacobson, K.B.; Adler, H.I.

    1988-10-18

    A process for purifying oxygen scavenging cell membrane fragments (OSCMF) and the use of same are disclosed. The novel purifying process involves salt precipitation and molecular exclusion chromatography. The unique feature of purified OSCMF is its ability to remove oxygen from organic reaction media and organic preparations without contaminating them to any substantial degree. 1 ref., 2 figs.

  18. Sulfonated Nanoplates in Proton Conducting Membranes for Fuel Cells

    SciTech Connect

    Chen, W.F.; Ni’mah, H.; Yu-Cheng Shen, Y.-C.; Kuo, P.-L.

    2011-09-29

    Surface-functionalized nanoplates are synthesized by anchoring sulfonic acid containing siloxanes on zirconium phosphate, and in turn blended with Nafion to fabricate proton conducting membranes. The effects of these sulfonated nanoplates on proton conduction, hydro-characteristics and fuel cell performance are reported.

  19. Membranous glomerulonephritis after haematopoietic cell transplantation for multiple myeloma.

    PubMed

    Rossi, L; Cardarelli, F; Vampa, M L; Buzio, C; Olivetti, G

    2001-07-01

    Renal involvement during graft-versus-host disease following haematopoietic cell transplantation for multiple myeloma has never been described. We report a case of a recipient who developed nephrotic syndrome and membranous glomerulonephritis 22 months after the graft and 6 months after cyclosporine withdrawal. Symptoms resolved when immunosuppressive therapy was reinstituted.

  20. Lipid signalling dynamics at the β-cell plasma membrane.

    PubMed

    Wuttke, Anne

    2015-04-01

    Pancreatic β-cells are clustered in islets of Langerhans and secrete insulin in response to increased concentrations of circulating glucose. Insulin in turn acts on liver, muscle and fat tissue to store energy and normalize the blood glucose level. Inappropriate insulin release may lead to impaired glucose tolerance and diabetes. In addition to glucose, other nutrients, neural stimuli and hormonal stimuli control insulin secretion. Many of these signals are perceived at the plasma membrane, which is also the site where insulin granules undergo exocytosis. Therefore, it is not surprising that membrane lipids play an important role in the regulation of insulin secretion. β-cells release insulin in a pulsatile fashion. Signalling lipids integrate the nutrient and neurohormonal inputs to fine-tune, shape and co-ordinate the pulsatility. An important group of signalling lipids are phosphoinositides and their downstream messengers. This MiniReview will discuss new insights into lipid signalling dynamics in β-cells obtained from live-cell imaging experiments with fluorescent translocation biosensors. The plasma membrane concentration of several phosphoinositides and of their downstream messengers changes rapidly upon nutrient or neurohormonal stimulation. Glucose induces the most complex spatio-temporal patterns, typically involving oscillations of messenger concentrations, which sometimes are locally restricted. The tightly controlled levels of lipid messengers can mediate specific binding of downstream effectors to the plasma membrane, contributing to the appropriate regulation of insulin secretion.

  1. Cell outer membrane mimetic chitosan nanoparticles: preparation, characterization and cytotoxicity.

    PubMed

    Zhao, Jing; Liang, Fei; Kong, Lingheng; Zheng, Lina; Fan, Tao

    2015-01-01

    A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects.

  2. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, S.; Gnanasammandhan, M. K.; Xie, C.; Huang, K.; Cui, M. Y.; Chan, J. M.

    2016-03-01

    Core-shell type `nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size <200 nm, and showed good serum stability for 120 h. Doxorubicin-loaded nanoghosts showed greater cellular uptake and cytotoxicity compared to non-coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines.Core-shell type `nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size <200 nm, and showed good serum stability for 120 h. Doxorubicin-loaded nanoghosts showed greater cellular uptake and cytotoxicity compared to non-coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07588b

  3. TIR fluorescence reader for selective detection of cell membranes

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Strauss, Wolfgang S. L.; Sailer, Reinhard; Wagner, Michael; Schneckenburger, Herbert

    2005-08-01

    A novel setup for fluorescence measurements of surfaces of biological samples, in particular cell membranes, is described. The method is based on multiple total internal reflections (TIR) of a laser beam at the surface of a multi-well plate, such that 96 individual samples are excited simultaneously. Main prerequisites are an appropriate thickness and high transmission of the glass bottom, a non-cytotoxic adhesive, and appropriate glass rods for TIR illumination. Fluorescence from the cell surface is detected simultaneously using an integrating CCD camera and appropriate optical filters. For validation of the system, cells incubated with the fluorescence marker NBD as well as transfected cells expressing a fluorescent membrane protein are used. In addition, intracellular translocation of a fluorescent protein kinase c fusion protein upon stimulation is examined. The method appears well suitable for high throughput screening (HTS), since neither washing of the samples nor any readjustment of the equipment after changing of individual plates are necessary.

  4. An adhesion-based method for plasma membrane isolation: evaluating cholesterol extraction from cells and their membranes.

    PubMed

    Bezrukov, Ludmila; Blank, Paul S; Polozov, Ivan V; Zimmerberg, Joshua

    2009-11-15

    A method to isolate large quantities of directly accessible plasma membrane from attached cells is presented. The method is based on the adhesion of cells to an adsorbed layer of polylysine on glass plates, followed by hypotonic lysis with ice-cold distilled water and subsequent washing steps. Optimal conditions for coating glass plates and time for cell attachment were established. No additional chemical or mechanical treatments were used. Contamination of the isolated plasma membrane by cell organelles was less than 5%. The method uses inexpensive, commercially available polylysine and reusable glass plates. Plasma membrane preparations can be made in 15 min. Using this method, we determined that methyl-beta-cyclodextrin differentially extracts cholesterol from fibroblast cells and their plasma membranes and that these differences are temperature dependent. Determination of the cholesterol/phospholipid ratio from intact cells does not reflect methyl-beta-cyclodextrin plasma membrane extraction properties.

  5. Erythrocyte Membrane Model with Explicit Description of the Lipid Bilayer and the Spectrin Network

    PubMed Central

    Li, He; Lykotrafitis, George

    2014-01-01

    The membrane of the red blood cell (RBC) consists of spectrin tetramers connected at actin junctional complexes, forming a two-dimensional (2D) sixfold triangular network anchored to the lipid bilayer. Better understanding of the erythrocyte mechanics in hereditary blood disorders such as spherocytosis, elliptocytosis, and especially, sickle cell disease requires the development of a detailed membrane model. In this study, we introduce a mesoscale implicit-solvent coarse-grained molecular dynamics (CGMD) model of the erythrocyte membrane that explicitly describes the phospholipid bilayer and the cytoskeleton, by extending a previously developed two-component RBC membrane model. We show that the proposed model represents RBC membrane with the appropriate bending stiffness and shear modulus. The timescale and self-consistency of the model are established by comparing our results with experimentally measured viscosity and thermal fluctuations of the RBC membrane. Furthermore, we measure the pressure exerted by the cytoskeleton on the lipid bilayer. We find that defects at the anchoring points of the cytoskeleton to the lipid bilayer (as in spherocytes) cause a reduction in the pressure compared with an intact membrane, whereas defects in the dimer-dimer association of a spectrin filament (as in elliptocytes) cause an even larger decrease in the pressure. We conjecture that this finding may explain why the experimentally measured diffusion coefficients of band-3 proteins are higher in elliptocytes than in spherocytes, and higher than in normal RBCs. Finally, we study the effects that possible attractive forces between the spectrin filaments and the lipid bilayer have on the pressure applied on the lipid bilayer by the filaments. We discover that the attractive forces cause an increase in the pressure as they diminish the effect of membrane protein defects. As this finding contradicts with experimental results, we conclude that the attractive forces are moderate and do

  6. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.

    PubMed

    Li, He; Lykotrafitis, George

    2014-08-01

    The membrane of the red blood cell (RBC) consists of spectrin tetramers connected at actin junctional complexes, forming a two-dimensional (2D) sixfold triangular network anchored to the lipid bilayer. Better understanding of the erythrocyte mechanics in hereditary blood disorders such as spherocytosis, elliptocytosis, and especially, sickle cell disease requires the development of a detailed membrane model. In this study, we introduce a mesoscale implicit-solvent coarse-grained molecular dynamics (CGMD) model of the erythrocyte membrane that explicitly describes the phospholipid bilayer and the cytoskeleton, by extending a previously developed two-component RBC membrane model. We show that the proposed model represents RBC membrane with the appropriate bending stiffness and shear modulus. The timescale and self-consistency of the model are established by comparing our results with experimentally measured viscosity and thermal fluctuations of the RBC membrane. Furthermore, we measure the pressure exerted by the cytoskeleton on the lipid bilayer. We find that defects at the anchoring points of the cytoskeleton to the lipid bilayer (as in spherocytes) cause a reduction in the pressure compared with an intact membrane, whereas defects in the dimer-dimer association of a spectrin filament (as in elliptocytes) cause an even larger decrease in the pressure. We conjecture that this finding may explain why the experimentally measured diffusion coefficients of band-3 proteins are higher in elliptocytes than in spherocytes, and higher than in normal RBCs. Finally, we study the effects that possible attractive forces between the spectrin filaments and the lipid bilayer have on the pressure applied on the lipid bilayer by the filaments. We discover that the attractive forces cause an increase in the pressure as they diminish the effect of membrane protein defects. As this finding contradicts with experimental results, we conclude that the attractive forces are moderate and do

  7. The significant blood resistance to lung nitric oxide transfer lies within the red cell.

    PubMed

    Borland, Colin; Bottrill, Fiona; Jones, Aled; Sparkes, Chris; Vuylsteke, Alain

    2014-01-01

    The lung nitric oxide (NO) diffusing capacity (DlNO) mainly reflects alveolar-capillary membrane conductance (Dm). However, blood resistance has been shown in vitro and in vivo. To explore whether this resistance lies in the plasma, the red blood cell (RBC) membrane, or in the RBC interior, we measured the NO diffusing capacity (Dno) in a membrane oxygenator circuit containing ∼1 liter of horse or human blood exposed to 14 parts per million NO under physiological conditions on 7 separate days. We compared results across a 1,000-fold change in extracellular diffusivity using dextrans, plasma, and physiological salt solution. We halved RBC surface area by comparing horse and human RBCs. We altered the diffusive resistance of the RBC interior by adding sodium nitrite converting oxyhemoglobin to methemoglobin. Neither increased viscosity nor reduced RBC size reduced Dno. Adding sodium nitrite increased methemoglobin and was associated with a steady fall in Dno (P < 0.001). Similar results were obtained at NO concentrations found in vivo. The RBC interior appears to be the site of the blood resistance.

  8. How to Evaluate the Electric Noise in a Cell Membrane?

    NASA Astrophysics Data System (ADS)

    Bier, M.

    2006-05-01

    There has been considerable public anxiety about possible health effects of electromagnetic radiation emitted by high voltage power lines. Power frequencies (60 Hz in the US, 50 Hz in many other countries) are sufficiently slow for the associated electric fields to distribute themselves across the highly resistive cell membranes. To assess the ambient power frequency fields, researchers have compared the voltage that these fields induce across cell membranes to the strength of the electric noise that the membranes generate themselves through Brownian motion. However, there has been disagreement among researchers on how to evaluate this equilibrium membrane electric noise. I will review the different approaches and present an {ITALIC ab initio} modeling of membrane electric fields. I will show that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Next, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned and a more meaningful criterion is proposed. Finally, an estimate will be derived of the nonequilibrium noise intensity due to the driven ion traffic through randomly opening and closing ion channels.

  9. Performance of non-aqueous galvanic cells using porous membranes

    SciTech Connect

    Purser, G.H.; Nimmo, M.R.

    1995-12-01

    A solution concentration difference can be exploited to do useful electrical work. If the solutions at the two electrodes of an electrochemical cell differ only in solute concentration, then useful work can be done without a net consumption of raw materials. Such systems may have applications where availability of raw materials is limited. An evaluation of the performance of galvanic cells under a variety of conditions will be presented. In all cases, the cells use a non-aqueous solvent and a porous membrane. A discussion of the cell performances with respect to electrolyte mobility is presented.

  10. Antiepileptic carbamazepine drug treatment induces alteration of membrane in red blood cells: possible positive effects on metabolism and oxidative stress.

    PubMed

    Ficarra, Silvana; Misiti, Francesco; Russo, Annamaria; Carelli-Alinovi, Cristiana; Bellocco, Ersilia; Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Toscano, Giovanni; Giardina, Bruno; Galtieri, Antonio; Tellone, Ester

    2013-04-01

    Carbamazepine (CBZ) is an iminostilbene derivative commonly used for treatment of neuralgic pain and bipolar affective disorders. CBZ blood levels of treated patients are within the range of micromolar concentrations and therefore, significant interactions of this drug with erythrocytes are very likely. Moreover, the lipid domains of the cell membrane are believed to be one of the sites where iminostilbene derivatives exert their effects. The present study aimed to deeply characterize CBZ effects on erythrocytes, in order to identify extra and/or cytosolic cell targets. Our results indicate that erythrocyte morphological changes promoted by the drug, may be triggered by an alteration in band 3 functionality i.e. at the level of anionic flux. In addition, from a metabolic point of view this perturbation could be considered, at least in part, as a beneficial event because it could favour the CO2 elimination. Since lipid peroxidation, superoxide and free radical scavenging activities, caspase 3 activity and hemoglobin (Hb) functionality were not modified within the CBZ treated red blood cell (RBC), band 3 protein (B3) may well be a specific membrane target for CBZ and responsible for CBZ-induced toxic effects in erythrocytes. However some beneficial effects of this drug have been evidenced; among them an increased release of ATP and nitric oxide (NO) derived metabolites from erythrocytes to lumen, leading to an increased NO pool in the vasculature. In conclusion, these results indicate that CBZ, though considered responsible for toxic effects on erythrocytes, can also exhibit effects that at least in some conditions may be seen as beneficial.

  11. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  12. The effect of liposome treatment on the quality of hypothermically stored red blood cells.

    PubMed

    Stadnick, Hart; Stoll, Cristoph; Wolkers, Wim F; Acker, Jason Paul; Holovati, Jelena Lecak

    2011-12-01

    Recent studies have demonstrated that liposome treatment of red blood cells (RBCs) leads to improved recovery and membrane integrity following cryopreservation protocols. However, the effect of liposome treatment on hypothermically stored RBCs has not been previously investigated. The current study has investigated whether liposome treatment could modify the membrane quality and deformability of hypothermically stored RBCs. Unilamellar liposomes were synthesized using an extrusion protocol. Three lipid bilayer compositions were investigated: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC):PE:PS (8:1:1); 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC):PE:PS (8:1:1); and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC):PE:PS (8:1:1). RBCs were treated with liposomes and subsequently stored for 42 days in HEPES-NaCl buffer and saline-adenine-glucose-mannitol. RBC quality was assessed by percent hemolysis, mean corpuscular volume (MCV), and RBC deformability (ektacytometry). DOPC and DMPC liposome treatment resulted in destabilization of the RBC membrane. Percent hemolysis values for DMPC-treated RBCs were higher than untreated controls throughout storage (P<0.05). DOPC-treated RBCs showed elevated levels of hemolysis compared to controls from day 21 of storage onward (P<0.05). In addition, DOPC and DMPC-treated RBCs were less deformable than untreated controls from days 21(P=0.02) and 14 (P<0.001) of storage onward respectively. [We suggest that these changes in RBC hemolysis and deformability are due to cholesterol extraction from the RBC membrane into the liposome fraction.] In contrast, DPPC-treated RBCs maintained hemolysis, MCV, and deformability values comparable to untreated controls. Future research addressing the optimal liposome composition for stabilizing the RBC membrane at cold temperatures could lead to effective strategies to combat the RBC membrane hypothermic storage lesion and ultimately improve the quality of hypothermically preserved blood.

  13. Cell-mediated immunity in idiopathic autoimmune haemolytic disease.

    PubMed Central

    Slavin, S; Aker, M; Plesser, Y M; Rachmilewitz, E A

    1975-01-01

    Membrane antigens from autologous and from allogeneic red blood cells (RBC) induced migration inhibition of splenic leucocytes and transformation of peripheral blood lymphocytes from a patient with idiopathic autoimmune haemolytic disease (AHD). No migration inhibition occurred following stimulation of splenic leucocytes obtained during splenectomy from a patient with beta-thalassaemia major. Lymphocyte transformation did not occur when normal lymphocytes were stimulated by similar RBC membrane preparations. These findings indicate that autosensitization in AHD may be a function of both humoral and cellular immune mechanisms. PMID:1204245

  14. The amniotic membrane as a source of stem cells.

    PubMed

    Insausti, Carmen L; Blanquer, Miguel; Bleda, Patricia; Iniesta, Paqui; Majado, María J; Castellanos, Gregorio; Moraleda, José M

    2010-01-01

    Cellular therapy has emerged as a new potential tool for curing a wide range of degenerative diseases and tissue necrosis. Embryonic stem cells possess potential for differentiation into a wide range of cell lineages, but the ethical issues associated with establishment of this human cell line have to be resolved prior to any use. The bone marrow (BM) is the usual source of adult stem cells for hematopoietic stem cell transplants and cellular therapy, but the BM harvest is a surgical procedure that requires general anesthesia or sedation, and there seems to be a reduction of the proliferative potential and differentiation capacity of the marrow mesenchymal stem cells in older donors. For these reasons there is an increasing interest in other sources of stem cells from adult and fetal tissues. The amniotic membrane (AM) or amnion is a tissue of particular interest because its cells possess characteristics of stem cells with multipotent differentiation ability, and because of low immunogenicity and easy procurement from the placenta, which is a discarded tissue after parturition, thus avoiding the current controversies associated with the use of human embryonic stem cells. Therefore, amniotic membrane has been proposed as a good candidate to be used in cellular therapy and regenerative medicine.

  15. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  16. Identification of glycan structure alterations on cell membrane proteins in desoxyepothilone B resistant leukemia cells.

    PubMed

    Nakano, Miyako; Saldanha, Rohit; Göbel, Anja; Kavallaris, Maria; Packer, Nicolle H

    2011-11-01

    Resistance to tubulin-binding agents used in cancer is often multifactorial and can include changes in drug accumulation and modified expression of tubulin isotypes. Glycans on cell membrane proteins play important roles in many cellular processes such as recognition and apoptosis, and this study investigated whether changes to the glycan structures on cell membrane proteins occur when cells become resistant to drugs. Specifically, we investigated the alteration of glycan structures on the cell membrane proteins of human T-cell acute lymphoblastic leukemia (CEM) cells that were selected for resistance to desoxyepothilone B (CEM/dEpoB). The glycan profile of the cell membrane glycoproteins was obtained by sequential release of N- and O-glycans from cell membrane fraction dotted onto polyvinylidene difluoride membrane with PNGase F and β-elimination respectively. The released glycan alditols were analyzed by liquid chromatography (graphitized carbon)-electrospray ionization tandem MS. The major N-glycan on CEM cell was the core fucosylated α2-6 monosialo-biantennary structure. Resistant CEM/dEpoB cells had a significant decrease of α2-6 linked sialic acid on N-glycans. The lower α2-6 sialylation was caused by a decrease in activity of β-galactoside α2-6 sialyltransferase (ST6Gal), and decreased expression of the mRNA. It is clear that the membrane glycosylation of leukemia cells changes during acquired resistance to dEpoB drugs and that this change occurs globally on all cell membrane glycoproteins. This is the first identification of a specific glycan modification on the surface of drug resistant cells and the mechanism of this downstream effect on microtubule targeting drugs may offer a route to new interventions to overcome drug resistance.

  17. Chemical Imaging of the Cell Membrane by NanoSIMS

    SciTech Connect

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  18. Durability aspects of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  19. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability.

    PubMed

    Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon

    2013-02-26

    The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.

  20. Clustering of T cell ligands on artificial APC membranes influences T cell activation and protein kinase C theta translocation to the T cell plasma membrane.

    PubMed

    Giannoni, Francesca; Barnett, Joellen; Bi, Kun; Samodal, Rodrigo; Lanza, Paola; Marchese, Patrizia; Billetta, Rosario; Vita, Randi; Klein, Mark R; Prakken, Berent; Kwok, William W; Sercarz, Eli; Altman, Amnon; Albani, Salvatore

    2005-03-15

    T cell activation is associated with active clustering of relevant molecules in membrane microdomains defined as the supramolecular activation cluster. The contact area between these regions on the surface of T cells and APC is defined as the immunological synapse. It has been recently shown that preclustering of MHC-peptide complexes in membrane microdomains on the APC surface affects the efficiency of immune synapse formation and the related T cell activation. Disruption of such clusters may reduce the efficiency of stimulation. We describe here an entirely artificial system for Ag-specific, ex vivo stimulation of human polyclonal T cells (artificial APC (aAPC)). aAPC are based on artificial membrane bilayers containing discrete membrane microdomains encompassing T cell ligands (i.e., appropriate MHC-peptide complexes in association with costimulatory molecules). We show here that preclustering of T cell ligands triggered a degree of T cell activation significantly higher than the one achieved when we used either soluble tetramers or aAPC in which MHC-peptide complexes were uniformly distributed within artificial bilayer membranes. This increased efficiency in stimulation was mirrored by increased translocation from the cytoplasm to the membrane of protein kinase theta, a T cell signaling molecule that colocalizes with the TCR within the supramolecular activation cluster, thus indicating efficient engagement of T cell activation pathways. Engineered aAPC may have immediate application for basic and clinical immunology studies pertaining to modulation of T cells ex vivo.

  1. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    PubMed

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  2. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  3. Importance of Heparin Provocation and SPECT/CT in Detecting Obscure Gastrointestinal Bleeding on 99mTc-RBC Scintigraphy

    PubMed Central

    Haghighatafshar, Mahdi; Gheisari, Farshid; Ghaedian, Tahereh

    2015-01-01

    Abstract We presented a pediatric case with a history of intermittent melena for 3 years because of angiodyplasia of small intestine. The results of frequent upper gastrointestinal endoscopies and colonoscopies as well as both 99mTc-red blood cell (RBC) and Meckel's scintigraphies for several times were negative in detection of bleeding site. However, 99mTc-RBC scintigraphy with single-photon emission computed tomography (SPECT)/computed tomography (CT) after heparin augmentation detected a site of bleeding in the distal ileum which later was confirmed during surgery with final diagnosis of angiodysplasia. It could be stated that heparin provocation of bleeding before 99mTc-RBC scintigraphy accompanied by fused SPECT/CT images should be kept in mind for management of intestinal bleeding especially in difficult cases. PMID:26313771

  4. Phosphoinositide phosphorylation and hydrolysis in pancreatic islet cell membrane

    SciTech Connect

    Dunlop, M.E.; Malaisse, W.J.

    1986-02-01

    Membranes were isolated from dispersed rat pancreatic islet cells by attachment to Sephadex beads. When these membranes were exposed to (gamma-32P)ATP, formation of 32P-labeled phosphatidate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate was observed. Carbamylcholine, added 10 s prior to lipid extraction, caused a dose-related fall in 32P-labeled phospholipids. The effect of the cholinergic agent was suppressed by atropine, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, and verapamil, and simulated, in part, by an increase in Ca2+ concentration. When the membranes were derived from islet cells prelabeled with (U-14C)arachidonate, carbamylcholine stimulation, in addition to decreasing labeled polyphosphoinositides, was accompanied by an increased production of labeled diacylglycerol, without a concomitant increase in labeled phosphatidylinositol. These results indicate that activation of a plasma membrane-associated phospholipase C directed against polyphosphoinositides represents a primary event in the functional response of the pancreatic beta cell to cholinergic agents.

  5. Macroporous thin membranes for cell transplant in regenerative medicine.

    PubMed

    Antolinos-Turpín, C M; Morales Román, R M; Rodenas-Rochina, J; Gómez Ribelles, J L; Gómez-Tejedor, J A

    2015-10-01

    The aim of this paper is to present a method to produce macroporous thin membranes made of poly (ethyl acrylate-co-hydroxyethyl acrylate) copolymer network with varying cross-linking density for cell transplantation and prosthesis fabrication. The manufacture process is based on template techniques and anisotropic pore collapse. Pore collapse was produced by swelling the membrane in acetone and subsequently drying and changing the solvent by water to produce 100 microns thick porous membranes. These very thin membranes are porous enough to hold cells to be transplanted to the organism or to be colonized by ingrowth from neighboring tissues in the organism, and they present sufficient tearing stress to be sutured with surgical thread. The obtained pore morphology was observed by Scanning Electron Microscope, and confocal laser microscopy. Mechanical properties were characterized by stress-strain experiments in tension and tearing strength measurements. Morphology and mechanical properties were related to the different initial thickness of the scaffold and the cross-linking density of the polymer network. Seeding efficiency and proliferation of mesenchymal stem cells inside the pore structure were determined at 2 h, 1, 7, 14 and 21 days from seeding.

  6. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  7. Human T Cell Crosstalk Is Induced by Tumor Membrane Transfer

    PubMed Central

    Uzana, Ronny; Eisenberg, Galit; Merims, Sharon; Frankenburg, Shoshana; Pato, Aviad; Yefenof, Eitan; Engelstein, Roni; Peretz, Tamar

    2015-01-01

    Trogocytosis is a contact-dependent unidirectional transfer of membrane fragments between immune effector cells and their targets, initially detected in T cells following interaction with professional antigen presenting cells (APC). Previously, we have demonstrated that trogocytosis also takes place between melanoma-specific cytotoxic T lymphocytes (CTLs) and their cognate tumors. In the present study, we took this finding a step further, focusing on the ability of melanoma membrane-imprinted CD8+ T cells to act as APCs (CD8+T-APCs). We demonstrate that, following trogocytosis, CD8+T-APCs directly present a variety of melanoma derived peptides to fraternal T cells with the same TCR specificity or to T cells with different TCRs. The resulting T cell-T cell immune synapse leads to (1) Activation of effector CTLs, as determined by proliferation, cytokine secretion and degranulation; (2) Fratricide (killing) of CD8+T-APCs by the activated CTLs. Thus, trogocytosis enables cross-reactivity among CD8+ T cells with interchanging roles of effectors and APCs. This dual function of tumor-reactive CTLs may hint at their ability to amplify or restrict reactivity against the tumor and participate in modulation of the anti-cancer immune response. PMID:25671577

  8. Membrane permeabilization and cell damage by ultrashort electric field shocks.

    PubMed

    Pakhomov, Andrei G; Shevin, Rachael; White, Jody A; Kolb, Juergen F; Pakhomova, Olga N; Joshi, Ravindra P; Schoenbach, Karl H

    2007-09-01

    Mammalian cells exposed to electric field pulses of nanosecond duration (nsPEF; 60-ns, 12 kV/cm) experienced a profound and long-lasting increase in passive electrical conductance (G(m)) of the cell membrane, probably caused by opening of stable conductance pores (CPs). The CPs were permeable to Cl(-) and alkali metal cations, but not to larger molecules such as propidium iodide (PI). CPs gradually resealed; the process took minutes and could be observed even in dialyzed cells and in ATP- and glucose-free solutions. Cells subjected to long nsPEF trains (up to 200 pulses) underwent severe and immediate necrotic transformation (cell swelling, blebbing, cytoplasm granulation), but remained impermeable to PI for at least 30-60 min after the exposure. Both G(m) increase after short nsPEF trains and necrotic changes after long nsPEF trains were cell type-dependent: they were much weaker in HeLa than in GH3 cells. La(3+) and Gd(3+) ions significantly inhibited the nsPEF-induced G(m) increase (probably by blocking the CPs), and effectively protected intensely exposed cells from developing necrosis. We conclude that plasma membrane permeabilization is the principal cause of necrotic transformation in nsPEF-exposed cells and probably contributes to other known nsPEF bioeffects.

  9. A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Chenxi; Liu, Xiaoteng; Cheng, Jigui; Scott, Keith

    2015-01-01

    Graphite oxide is successfully functionalised by 3-aminopropyltriethoxysilane ionic liquid and used as a filler material in a polybenzimidazole (PBI) membrane for high temperature proton exchange membrane fuel cells. The ionic-liquid-graphite-oxide/polybenzimidazole (ILGO/PBI) composite membrane exhibits an appropriate level of proton conductivity when imbibed with phosphoric acid at low phosphoric acid loading, which promotes its use in fuel cells by avoiding acid leakage and materials corrosion. The ionic conductivities of the ILGO/PBI membranes at 175 °C are 0.035 S cm-1 and 0.025 S cm-1 at per repeat units of 3.5 and 2.0, respectively. The fuel cell performance of ILGO/PBI membranes exhibits a maximum power density of 320 mW cm-2 at 175 °C, which is higher than that of a pristine PBI membrane.

  10. Oxytocin binding by myoepithelial cell membranes from involuted mammary tissue.

    PubMed

    Ruberti, A; Olins, G M; Eakle, K A; Bremel, R D

    1983-04-29

    Oxytocin binding activity of myoepithelial cell membranes from mammary tissue was measured under a variety of different experimental conditions. Mammary tissue from non-lactating rats bound oxytocin with a Kd of 9.2 +/- 1.6 nM (+/- S.E.) and indicates that receptors are retained by the myoepithelial cells in a non-lactating state. Ovariectomy of non-lactating rats did not depress the binding activity of the membranes. Administration of the estrogenic compounds estradiol-17 beta and diethylstibestrol at doses which affect uterine weight and are known to increase uterine oxytocin binding did not influence the binding activity of the myoepithelial cells. This indicates that the oxytocin receptors of the mammary gland are not under the same endocrine control as the uterine receptors. PMID:6303330

  11. THE SIZE OF SONOPORATION PORES ON THE CELL MEMBRANE

    PubMed Central

    Zhou, Yun; Kumon, Ronald E.; Cui, Jianmin; Deng, Cheri X.

    2009-01-01

    Sonoporation uses ultrasound (US) to generate transient non-selective pores on the cell membrane and has been exploited as a non-viral intracellular drug and gene delivery strategy. The pore size determines the size of agents that can be delivered into the cytoplasm using the technique. However, measurements of the dynamic, submicron-scale pores have not been readily available. Electron microscopy or atomic force microscopy has been used to gauge pore size but such techniques are intrinsically limited to post US measurements that may not accurately reveal the relevant information. As previously demonstrated, changes of the transmembrane current (TMC) of a single cell under voltage clamp can be used for monitoring sonoporation in real time. Because the TMC is related to the diffusion of ions through the pores on the membrane, it can potentially provide information of the pore size generated in sonoporation. Using Xenopus laevis oocytes as the model system, the TMC of single cells under voltage clamp was measured in real time to assess formation of pores on the membrane in sonoporation. The cells were exposed to US (0.2 s, 0.3 MPa, 1.075 MHz) in the presence of Definity™ microbubbles. Experiments were designed to obtain the TMC corresponding to a single pore on the membrane. The size of the pores was estimated from an electro-diffusion model that relates the TMC with pore size from the ion transport through the pores on the membrane. The mean radius of single pores was determined to be 110 nm with standard deviation of 40 nm. This study reports the first results of pore size from the TMC measured using the voltage clamp technique. PMID:19647924

  12. Membrane-wall attachments in plasmolysed plant cells.

    PubMed

    Lang, I; Barton, D A; Overall, R L

    2004-12-01

    Field emission scanning electron microscopy of plasmolysed Tradescantia virginiana leaf epidermal cells gave novel insights into the three-dimensional architecture of Hechtian strands, Hechtian reticulum, and the inner surface of the cell wall without the need for extraction. At high magnification, we observed fibres that pin the plasma membrane to the cell wall after plasmolysis. Treatment with cellulase caused these connecting fibres to be lost and the pinned out plasma membrane of the Hechtian reticulum to disintegrate into vesicles with diameters of 100-250 nm. This suggests that the fibres may be cellulose. After 4 h of plasmolysis, a fibrous meshwork that labelled with anti-callose antibodies was observed within the space between the plasmolysed protoplast and the cell wall by field emission scanning electron microscopy. Interestingly, macerase-pectinase treatment resulted in the loss of this meshwork, suggesting that it was stabilised by pectins. We suggest that cellulose microfibrils extending from strands of the Hechtian reticulum and entwining into the cell wall matrix act as anchors for the plasma membrane as it moves away from the wall during plasmolysis.

  13. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  14. Platelet membranes induce airway smooth muscle cell proliferation.

    PubMed

    Svensson Holm, Ann-Charlotte B; Bengtsson, Torbjörn; Grenegård, Magnus; Lindström, Eva G

    2011-01-01

    The role of platelets in airway disease is poorly understood although they have been suggested to influence on proliferation of airway smooth muscle cells (ASMC). Platelets have been found localized in the airways in autopsy material from asthmatic patients and have been implicated in airway remodeling. The aim of the present study was to investigate the effects of various platelet fractions on proliferation of ASMC obtained from guinea pigs (GP-ASMC) and humans (H-ASMC). Proliferation of ASMC was measured by the MTS assay and the results confirmed by measurements of the DNA content. A key observation was that the platelet membrane preparations induced a significant increase in the proliferation of both GP-ASMC (129.9 ± 3.0 %) and H-ASMC (144.8 ± 12.2). However, neither supernatants from lysed or filtrated thrombin stimulated platelets induced ASMC proliferation to the same extent as the membrane preparation. We have previously shown that platelet-induced proliferation is dependent on 5-lipoxygenase (5-LOX) and reactive oxygen species (ROS) pathways. In the present work we established that platelet membrane-induced ASMC proliferation was reduced in the presence of the NADPH oxidase inhibitor DPI and the 5-LOX inhibitor AA-861. In conclusion, our results showed that platelet membranes significantly induced ASMC proliferation, demonstrating that the mitogenic effect of platelets and platelet membranes on ASMC is mainly due to membrane-associated factors. The effects of platelet membranes were evident on both GP-ASMC and H-ASMC and involved 5-LOX and ROS. These new findings are of importance in understanding the mechanisms contributing to airway remodeling and may contribute to the development of new pharmacological tools in the treatment of inflammatory airway diseases.

  15. Creating Transient Cell Membrane Pores Using a Standard Inkjet Printer

    PubMed Central

    Owczarczak, Alexander B.; Shuford, Stephen O.; Wood, Scott T.; Deitch, Sandra; Dean, Delphine

    2012-01-01

    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication.1-10 Recently, thermal inkjet printing has also been used for gene transfection.8,9 The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm.8,9,11 The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells.8, 12 Cell viability after printing has been shown to be similar to standard cell plating methods1,8. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. 8,9,11 A standard HP DeskJet 500 printer was modified to allow for cell printing.3, 5, 8 The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The

  16. Creating transient cell membrane pores using a standard inkjet printer.

    PubMed

    Owczarczak, Alexander B; Shuford, Stephen O; Wood, Scott T; Deitch, Sandra; Dean, Delphine

    2012-03-16

    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication. Recently, thermal inkjet printing has also been used for gene transfection. The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm. The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells. Cell viability after printing has been shown to be similar to standard cell plating methods. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. A standard HP DeskJet 500 printer was modified to allow for cell printing. The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The cell suspension was pipetted into the

  17. A novel unitized regenerative proton exchange membrane fuel cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1995-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.

  18. Sodium channels in membrane vesicles from cultured toad bladder cells

    SciTech Connect

    Asher, C.; Moran, A.; Rossier, B.C.; Garty, H. Ben Gurion Univ., Beer-Sheva Institut de Pharmacologie de l'Universite de Lausanne )

    1988-04-01

    Electrical potential-driven {sup 22}Na{sup +} fluxes were measured in membrane vesicles prepared from TBM-18(cl23) cells (a clone of the established cell line TB-M). Fifty to seventy percent of the tracer uptake in vesicles derived from cells that were cultivated on a porous support were blocked by the diuretic amiloride. The amiloride inhibition constant was <0.1 {mu}M, indicating that this flux is mediated by the apical Na{sup +}-specific channels. Vesicles prepared from cells that were not grown on a porous support exhibited much smaller amiloride-sensitive fluxes. Two Ca{sup 2+}-dependent processes that down-regulated the channel conductance and were previously identified in native epithelia were found in the cultured cells as well. Vesicles isolated from cells that were preincubated with 5 {times} 10{sup {minus}7} M aldosterone for 16-20 h exhibited higher amiloride-sensitive conductance than vesicles derived from control, steroid-depleted cells. Thus membrane derived from TBM-18(cl23) cells can be used to characterize the epithelial Na{sup +} channel and its hormonal regulation.

  19. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed Central

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-01-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  20. Buffalo (Bubalus bubalis) term amniotic-membrane-derived cells exhibited mesenchymal stem cells characteristics in vitro.

    PubMed

    Ghosh, Kaushalya; Kumar, Rajesh; Singh, Jarnail; Gahlawat, S K; Kumar, Dharmendra; Selokar, Naresh Lalaji; Yadav, S P; Gulati, B R; Yadav, P S

    2015-10-01

    Recent studies suggested that placentae amniotic membrane is a valuable source of stem cells in human as well as in livestock species. Advantages of amnion over other sources of stem cells included abundant availability, ethically non-objectionable and non-invasive source. The aim of the present study was the isolation, culture and characterization of amniotic-membrane-derived mesenchymal stem cells from term placentae collected postpartum in buffalo. We have observed that both presumptive epithelial-like and fibroblast-like cells were cultured and maintained from term amnion. These cells were shown the positive expression of pluripotency markers (OCT-4, SOX-2, NANOG, TERT), mesenchymal stem cell markers (CD29, CD44, CD105) and negative for haematopoietic marker (CD34) genes at different passages. In addition, these cells were also positive for alkaline phosphatase staining. Stem-ness potential of any stem cells is determined by their potential to differentiate into specific lineages of cell type. In the present study, we have successfully differentiated the amniotic-membrane-derived cells into adipogenic, chondrogenic and osteogenic lineages of cells in vitro. In conclusion, the results of this study demonstrate that amniotic-membrane-derived cells expressed pluripotent and mesenchymal stem cells markers and have propensity to differentiate into cells of mesenchymal lineage cell type upon directed differentiation in vitro.

  1. Higher RBC EPA + DHA corresponds with larger total brain and hippocampal volumes

    PubMed Central

    Yaffe, Kristine; Robinson, Jennifer G.; Espeland, Mark A.; Wallace, Robert; Harris, William S.

    2014-01-01

    Objective: To test whether red blood cell (RBC) levels of marine omega-3 fatty acids measured in the Women's Health Initiative Memory Study were related to MRI brain volumes measured 8 years later. Methods: RBC eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and MRI brain volumes were assessed in 1,111 postmenopausal women from the Women's Health Initiative Memory Study. The endpoints were total brain volume and anatomical regions. Linear mixed models included multiple imputations of fatty acids and were adjusted for hormone therapy, time since randomization, demographics, intracranial volume, and cardiovascular disease risk factors. Results: In fully adjusted models, a 1 SD greater RBC EPA + DHA (omega-3 index) level was correlated with 2.1 cm3 larger brain volume (p = 0.048). DHA was marginally correlated (p = 0.063) with total brain volume while EPA was less so (p = 0.11). There were no correlations between ischemic lesion volumes and EPA, DHA, or EPA + DHA. A 1 SD greater omega-3 index was correlated with greater hippocampal volume (50 mm3, p = 0.036) in fully adjusted models. Comparing the fourth quartile vs the first quartile of the omega-3 index confirmed greater hippocampal volume (159 mm3, p = 0.034). Conclusion: A higher omega-3 index was correlated with larger total normal brain volume and hippocampal volume in postmenopausal women measured 8 years later. While normal aging results in overall brain atrophy, lower omega-3 index may signal increased risk of hippocampal atrophy. Future studies should examine whether maintaining higher RBC EPA + DHA levels slows the rate of hippocampal or overall brain atrophy. PMID:24453077

  2. Myosin-X facilitates Shigella-induced membrane protrusions and cell-to-cell spread

    PubMed Central

    Li, Wei; Dhillon, Jess; Bohil, Aparna B.; Cheney, Richard E.; Hartwig, John H.; Southwick, Frederick S.

    2014-01-01

    Summary The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin-X (Myo10) localizes to Shigella. Electron micrographs of immunogold-labelled Shigella-infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time-lapse video microscopy shows that a full-length Myo10 GFP-construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock-down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock-down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full-length Myo10 nearly doubles Shigella-induced protrusion length, and lengthening requires the head domain, as well as the tail-PH domain, but not the FERM domain. The GFP-Myo10-HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP-Myo10-PH domain localizes to host cell membranes. We conclude that Myo10 generates the force to enhance bacterial-induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane. PMID:23083060

  3. Lipid Membranes Facilitate Conformational Changes Required for Reovirus Cell Entry

    PubMed Central

    Snyder, Anthony J.

    2015-01-01

    ABSTRACT Cellular entry of nonenveloped and enveloped viruses is often accompanied by dramatic conformational changes within viral structural proteins. These rearrangements are triggered by a variety of mechanisms, such as low pH, virus-receptor interactions, and virus-host chaperone interactions. Reoviruses, a model system for entry of nonenveloped viruses, undergo a series of disassembly steps within the host endosome. One of these steps, infectious subviral particle (ISVP)-to-ISVP* conversion, is necessary for delivering the genome-containing viral core into host cells, but the physiological trigger that mediates ISVP-to-ISVP* conversion during cell entry is unknown. Structural studies of the reovirus membrane penetration protein, μ1, predict that interactions between μ1 and negatively charged lipid head groups may promote ISVP* formation; however, experimental evidence for this idea is lacking. Here, we show that the presence of polyanions (SO42− and HPO42−) or lipids in the form of liposomes facilitates ISVP-to-ISVP* conversion. The requirement for charged lipids appears to be selective, since phosphatidylcholine and phosphatidylethanolamine promoted ISVP* formation, whereas other lipids, such as sphingomyelin and sulfatide, either did not affect ISVP* formation or prevented ISVP* formation. Thus, our work provides evidence that interactions with membranes can function as a trigger for a nonenveloped virus to gain entry into host cells. IMPORTANCE Cell entry, a critical stage in the virus life cycle, concludes with the delivery of the viral genetic material across host membranes. Regulated structural transitions within nonenveloped and enveloped viruses are necessary for accomplishing this step; these conformational changes are predominantly triggered by low pH and/or interactions with host proteins. In this work, we describe a previously unknown trigger, interactions with lipid membranes, which can induce the structural rearrangements required for cell

  4. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening.

    PubMed

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-06

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  5. Multi-layer graphene membrane based memory cell

    NASA Astrophysics Data System (ADS)

    Siahlo, Andrei I.; Popov, Andrey M.; Poklonski, Nikolai A.; Lozovik, Yurii E.; Vyrko, Sergey A.; Ratkevich, Sergey V.

    2016-10-01

    The scheme and operational principles of the nanoelectromechanical memory cell based on the bending of a multi-layer graphene membrane by the electrostatic force are proposed. An analysis of the memory cell total energy as a function of the memory cell sizes is used to determine the sizes corresponding to a bistable memory cell with the conducting ON and non-conducting OFF states and to calculate the switching voltage between the OFF and ON states. It is shown that a potential barrier between the OFF and ON states is huge for practically all sizes of a bistable memory cell which excludes spontaneous switching and allows the proposed memory cell to be used for long-term archival storage.

  6. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model

    PubMed Central

    Li, Xuejin; Peng, Zhangli; Lei, Huan; Dao, Ming; Karniadakis, George Em

    2014-01-01

    This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer–cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model. PMID:24982252

  7. Probing red blood cell mechanics, rheology and dynamics with a two-component multi-scale model.

    PubMed

    Li, Xuejin; Peng, Zhangli; Lei, Huan; Dao, Ming; Karniadakis, George Em

    2014-08-01

    This study is partially motivated by the validation of a new two-component multi-scale cell model we developed recently that treats the lipid bilayer and the cytoskeleton as two distinct components. Here, the whole cell model is validated and compared against several available experiments that examine red blood cell (RBC) mechanics, rheology and dynamics. First, we investigated RBC deformability in a microfluidic channel with a very small cross-sectional area and quantified the mechanical properties of the RBC membrane. Second, we simulated twisting torque cytometry and compared predicted rheological properties of the RBC membrane with experimental measurements. Finally, we modelled the tank-treading (TT) motion of a RBC in a shear flow and explored the effect of channel width variation on the TT frequency. We also investigated the effects of bilayer-cytoskeletal interactions on these experiments and our simulations clearly indicated that they play key roles in the determination of cell membrane mechanical, rheological and dynamical properties. These simulations serve as validation tests and moreover reveal the capabilities and limitations of the new whole cell model.

  8. Cell Surface and Membrane Engineering: Emerging Technologies and Applications.

    PubMed

    Saeui, Christopher T; Mathew, Mohit P; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J

    2015-01-01

    Membranes constitute the interface between the basic unit of life-a single cell-and the outside environment and thus in many ways comprise the ultimate "functional biomaterial". To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies-as they rapidly mature-hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels.

  9. The organochlorine herbicide chloridazon interacts with cell membranes.

    PubMed

    Suwalsky, M; Benites, M; Villena, F; Norris, B; Quevedo, L

    1998-07-01

    Chloridazon is a widely used organochlorine herbicide. In order to evaluate its perturbing effect on cell membranes it was made to interact with human erythrocytes, frog adrenergic neuroepithelial synapse and molecular models. These consisted in multilayers of dimyristoylphosphatidylethanolamine (DMPE) and of dimyristoylphosphatidyltidylcholine (DMPC), representative of phospholipid classes located in the inner and outer monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that chloridazon interacted preferentially with DMPC multilayers. Scanning electron microscopy revealed that 0.1 mM chloridazon induced erythrocyte crenation. According to the bilayer couple hypothesis, this is due to the preferential insertion of chloridazon in the phosphatidylcholine-rich external moiety of the red cell membrane. Electrophysiological measurements showed that nerve stimulation was followed immediately by a transient increase in short-circuit current (SCC) and in the potential difference (PD) of the neuroepithelial synapse. Increasing concentrations of chloridazon caused a dose-dependent and reversible decrease of the responses of both parameters to 76% of their control values. The pesticide induced a similar (28%) significant time-dependent decrease in the basal values of the SCC and of PD. These results are in accordance with a perturbing effect of chloridazon on the phospholipid moiety of the nerve fibre membrane leading to interference with total ion transport across the nerve skin junction. PMID:9827013

  10. Toxic effects of the fungicide benomyl on cell membranes.

    PubMed

    Suwalsky, M; Benites, M; Norris, B; Sotomayor, P

    2000-01-01

    This paper examines the toxicity of the fungicide benomyl towards cell membranes. Approaches to this aim were the study of its acute effects on the stimulatory response of a frog neuroepithelial synapse and on membrane models. The latter consisted of large unilamellar vesicles of dimyristoylphosphatidylcholine (DMPC) and phospholipid multilayers built-up of DMPC and dimyristoylphosphatidylethanolamine (DMPE). Results showed that benomyl at concentrations as low as 10 microM decreased the stimulatory response of the potential difference (PD) and the short-circuit current (SCC) of the frog sympathetic junction. It is concluded that benomyl caused a dose-dependent reduction in the response of a sympathetic junction of the frog to stimulation leading to Cl(-) channel perturbation. This finding might be explained from those obtained from fluorescence spectroscopy and X-ray diffraction studies on membrane models. In fact, similar (0.01-1.0 mM) concentrations induced structural perturbations in DMPC large unilamellar vesicles and multilayers, respectively. Although it is still premature to define the precise molecular mechanism of benomyl toxicity, the experimental results confirm the important role played by the phospholipid bilayers in the interaction of the pesticide with cell membranes. PMID:11790335

  11. Membrane electrolytic cell for minimizing hypochlorite and chlorate formation

    SciTech Connect

    Fair, D. L.; Justice, D. D.; Woodard Jr., K. E.

    1985-07-09

    An electrolytic cell for the electrolysis of an alkali metal chloride brine is comprised of an anode compartment and a cathode compartment separated by a cation exchange membrane. The anode is comprised of an unflattened expanded structure of a valve metal selected from the group consisting of titanium, tantalum, niobium, and alloys thereof. At least one side of the anode has as the electrochemically active surface an electrodeposited layer of a valve metal oxide. A plurality of cracks traverse the electrodeposited layer and a coating of a platinum metal group oxide covers the electrodeposited layer and substantially fills the cracks. The cationic exchange membrane is comprised of a laminated structure having a first surface adapted to contact an anolyte in which the ion exchange groups are predominately sulfonic acid groups. The first surface is also in contact with the electrochemically active surface of the anode. A second surface of the cation exchange membrane, adapted to contact a catholyte, has ion exchange groups which are predominately carboxylic acid groups. The cathode positioned in the cathode compartment is spaced apart from the cation exchange membrane. The cell operates with both a low chlorine overvoltage and a low oxygen overvoltage. During electrolysis of alkali metal chloride brines, the formation of hypochlorite and chlorate ions is minimized and the alkali metal hydroxides produced have low chlorate concentrations and are suitable for use without further treatment in chlorate-sensitive applications. Spent brine treatment is simplified and at reduced costs.

  12. Vesiculation of healthy and defective red blood cells

    NASA Astrophysics Data System (ADS)

    Li, He; Lykotrafitis, George

    2015-07-01

    Vesiculation of mature red blood cells (RBCs) contributes to removal of defective patches of the erythrocyte membrane. In blood disorders, which are related to defects in proteins of the RBC membrane, vesiculation of the plasma membrane is intensified. Several hypotheses have been proposed to explain RBC vesiculation but the exact underlying mechanisms and what determines the sizes of the vesicles are still not completely understood. In this work, we apply a two-component coarse-grained molecular dynamics RBC membrane model to study how RBC vesiculation is controlled by the membrane spontaneous curvature and by lateral compression of the membrane. Our simulation results show that the formation of small homogeneous vesicles with a diameter less than 40 nm can be attributed to a large spontaneous curvature of membrane domains. On the other hand, compression on the membrane can cause the formation of vesicles with heterogeneous composition and with sizes comparable with the size of the cytoskeleton corral. When spontaneous curvature and lateral compression are simultaneously considered, the compression on the membrane tends to facilitate formation of vesicles originating from curved membrane domains. We also simulate vesiculation of RBCs with membrane defects connected to hereditary elliptocytosis (HE) and to hereditary spherocytosis (HS). When the vertical connectivity between the lipid bilayer and the membrane skeleton is elevated, as in normal RBCs, multiple vesicles are shed from the compressed membrane with diameters similar to the cytoskeleton corral size. In HS RBCs, where the connectivity between the lipid bilayer and the cytoskeleton is reduced, larger-size vesicles are released under the same compression ratio as in normal RBCs. Lastly, we find that vesicles released from HE RBCs can contain cytoskeletal filaments due to fragmentation of the membrane skeleton while vesicles released from the HS RBCs are depleted of cytoskeletal filaments.

  13. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization. PMID:27180904

  14. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  15. Proton exchange membrane fuel cell technology for transportation applications

    SciTech Connect

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  16. Mechanical properties of stored red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  17. Incorporation of sunflower oil or linseed oil in equine compound feedstuff: 1 Effects on haematology and on fatty acids profiles in the red blood cells membranes.

    PubMed

    Patoux, S; Istasse, L

    2016-10-01

    Eight trained horses (6 mares - 2 geldings, 6 Selle Français, 2 Trotteur Français, 12 ± 5.8 years old, 538 ± 72.5 kg) were offered three diets to potentially affect haematology and the fatty acids (FA) profiles in red blood cells (RBC) membranes. The control diet was composed of 50% hay and 50% concentrate containing mainly rolled barley (48%) and whole spelt (48%). In the case of sunflower oil diet, sunflower oil (62.0% of α-linoleic acid, LA) was incorporated at a rate of 8% and substituted by an equal proportion of barley. In the linseed oil diet, first cold-pressed linseed oil (56.0% of α-linolenic acid, ALA) was utilised at a similar incorporation rate of 8%. The experimental design consisted of three 3 × 3 latin squares with one being incomplete. Each period lasted 8 weeks. On average, the total feed intake (straw excluded) was 6.2 kg/day and the oil intake 0.278 kg/day. The oils significantly increased the concentrations of RBC, haemoglobin and haematocrit. The oils had no significant impact on the haematology profiles except that platelets tended to decrease in both oil-based diets. The most abundant FA in the RBC membranes of the control diet samples were in the decreasing order LA, C18:1n9-7, C18:0, C16:0 and the arachidonic acid (ARA) respectively. The sunflower oil supplementation slightly increased the amount of LA (36.23 vs. 34.72 mg/dl, p = 0.55) and C22:4n-6 (0.21 vs. 0.09 mg/dl, p = 0.22), while the decrease was observed in case of other FA (C16:1n-7, 1.08 vs. 1.42 mg/dl, p = 0.03), C20:3n-6 (0.22 vs. 0.31 mg/dl, p = 0.02), and ARA (1.17 vs. 1.63 mg/dl, p = 0.08). Linseed oil induced similar effects in the n-6 series FA profiles. In the context of practical applications, our results show that linseed oil incorporation in the diet could improve the haematology and the n-3 FA profiles potentially leading to an increased performance.

  18. Study of the effect of membrane thickness on microcapsule strength, permeability, and cell proliferation.

    PubMed

    Ma, Ying; Zhang, Ying; Wang, Yu; Wang, Qiuyan; Tan, Mingqian; Liu, Yang; Chen, Li; Li, Na; Yu, Weiting; Ma, Xiaojun

    2013-04-01

    Cell microencapsulation is one of the promising strategies for in vitro production of proteins or in vivo delivery of therapeutic products. Membrane thickness controls microcapsule strength and permeability, which may in return affect cell growth and metabolism. In this study, the strength, permeability, and encapsulated Chinese hamster ovary cell proliferation and metabolism of four groups of microcapsules with different membrane thicknesses were investigated. It was found that increasing membrane thickness increases microcapsule strength, whereas decreases membrane permeability. During the first 6 days, cells within microcapsules with 10 μm thickness membrane proliferated fast and could reach a cell density of 1.9 × 10(7) cells/mL microcapsule with 92% cell density. A cell density of 5.5 × 10(7) cells/mL microcapsule with >85% cell density was achieved within microcapsules with 15 μm membrane thickness and these microcapsules kept over 88% integrity ratio after 11 days, which was much higher than that of microcapsules with 10 μm membrane thickness. Membrane with more than 20 μm thickness was not suited for encapsulated cell culture owing to low-protein diffusion rate. These results indicated that cells survived shortly within the thinnest membrane thickness. There was a specific membrane thickness more suitable for cell growth for a long-time culture. These findings will be useful for preparing microcapsules with the desired membrane thickness for microencapsulated cell culture dependent on various purposes.

  19. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription.

    PubMed

    Ido, Ayaka; Iwata, Shinya; Iwata, Yuka; Igarashi, Hisako; Hamada, Takahiro; Sonobe, Seiji; Sugiura, Masahiro; Yukawa, Yasushi

    2016-02-01

    In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin). PMID:26662274

  20. Development of structured polymer electrolyte membranes for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gasa, Jeffrey

    The objective of this research was to explore structure-property relationships to develop the understanding needed for introduction of superior PEM materials. Polymer electrolyte membranes based on sulfonated poly(ether ketone ketone) (SPEKK) were fabricated using N-methyl pyrrolidone as casting solvent. The membranes were characterized in terms of properties that were relevant to fuel cell applications, such as proton conductivity, methanol permeability, and swelling properties, among others. It was found in this study that the proton conductivity of neat SPEKK membranes could reach the conductivity of commercial membranes such as NafionRTM. However, when the conductivity of SPEKK was comparable to NafionRTM, the swelling of SPEKK in water was quite excessive. The swelling problem was remedied by modifying the microstructure of SPEKK using different techniques. One of them involved blending of lightly sulfonated PEKK with highly acidic particles (sulfonated crosslinked polystyrene-SXLPS). Low sulfonation level of SPEKK was used to reduce the swelling of the membrane in water and the role of the highly acidic particles was to enhance the proton conductivity of the membrane. Because of the residual crystallinity in SPEKK with low sulfonation levels (IEC < 1 meq/g), the composite membranes exhibited excellent dimensional stability in water at elevated temperatures (30-90 °C). Also, the resistance to swelling of these composite membranes in methanol-water mixtures was far better than NafionRTM, and so was the methanol permeability. Another technique explored was blending with non-conductive polymers (poly(ether imide) and poly(ether sulfone)) to act as mechanical reinforcement. It was found that miscibility behavior of the blends had a significant impact on the transport and swelling properties of these blends, which could be explained by the blend microstructure. The miscibility behavior was found to be strongly dependent on the sulfonation level of SPEKK. The

  1. Functional disturbance of the cell membrane in hypertension.

    PubMed

    Swales, J D

    1990-12-01

    Hypertension is associated with a variety of disturbances of cell membrane function. These associations have been attributed to changes in vascular smooth muscle sodium, calcium or PH, although direct evidence is conflicting in this context. While observations have been confounded by poor matching of the populations and technical shortcomings, it seems likely that genuine associations do exist. It is suggested that their significance can only be established by identifying the tissue abnormality responsible for elevated blood pressure. Evidence is cited that this abnormality is a structural increase in the resistance wall: lumen ratio, secondary to increased autonomic activity. A cell membrane disturbance could therefore give rise to hypertension, either through increased trophic responsiveness of the resistance vasculature or increased sympathetic drive to the resistance vessels. There is more direct evidence for the latter than the former.

  2. Airborne elements, cell membranes, and chlorophyll in transplanted lichens

    SciTech Connect

    Garty, J.; Cohen, Y.; Kloog, N.

    1998-07-01

    The objective of the present study was to test the concentration of airborne mineral elements in the lichen Ramalina lacera (with.) J.R. Laund. in comparison with its physiological status. Thalli of Ramalina lacera were collected in a remote unpolluted site and transplanted in a polluted region for 10 mo. An analysis of 20 elements in addition to an analysis of the status of cell membranes and the integrity of chlorophyll was performed after this period of transplantation. The lichen manifested a great potential for the accumulation of Pb, V, Ni, Zn, and Cu. Potassium and P were found to leach out. High concentrations of Ni, Mg, and B coincided with damage caused to cell membranes. The integrity of chlorophyll correlated with the concentration of K and correlated inversely with the concentration of Cr, Fe, Mn, Ni, Pb, and B.

  3. Collaboration between primitive cell membranes and soluble catalysts

    PubMed Central

    Adamala, Katarzyna P.; Engelhart, Aaron E.; Szostak, Jack W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg2+ environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells. PMID:26996603

  4. Collaboration between primitive cell membranes and soluble catalysts.

    PubMed

    Adamala, Katarzyna P; Engelhart, Aaron E; Szostak, Jack W

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg(2+), which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg(2+) environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells. PMID:26996603

  5. Binding of /sup 18/F by cell membranes and cell walls of Streptococcus mutans

    SciTech Connect

    Yotis, W.W.; Zeb, M.; McNulty, J.; Kirchner, F.; Reilly, C.; Glendenin, L.

    1983-07-01

    The binding of /sup 18/F to isolated cell membranes and cell walls of Streptococcus mutans GS-5 or other bacteria was assayed. The attachment of /sup 18/F to these cell envelopes proceeded slowly and reached equilibrium within 60 min. /sup 18/F binding was stimulated by Ca/sup 2 +/ (1 mM). The binding of /sup 18/F to cellular components was dependent upon the pH, as well as the amount of /sup 18/F and dose of the binder employed. The binding of /sup 18/F by cell walls prepared from fluoride-sensitive and fluoride-resistant cells of S. salivarius and S. mutans did not differ significantly. The pretreatment of cell walls or cell membranes for 60 min at 30 degrees C with 1 mg of RNase, DNase, or trypsin per ml did not influence the binding of /sup 18/F by the walls and membranes of S. mutans GS-5. However, prior exposure of cell membranes to sodium dodecyl sulfate caused a significant reduction in the number of /sup 18/F atoms bound by the membranes. In saturated assay systems, cell membranes of S. mutans GS-5 bound 10(15) to 10(16) atoms of /sup 18/F per mg (dry weight), whereas cell walls from S. mutans GS-5, FA-1, and HS-6 or Actinomyces viscosus T14V and T14AV bound 10(12) to 10(13) atoms of /sup 18/F per mg (dry weight). /sup 18/F in this quantity (10(12) to 10(13) atoms) cannot be detected with the fluoride electrode. The data provide, for the first time, a demonstration of /sup 18/F binding by cell membranes and walls of oral flora.

  6. Do heavy ions cause microlesions in cell membranes?

    NASA Technical Reports Server (NTRS)

    Koniarek, Jan P.; Worgul, Basil V.

    1992-01-01

    The microlesion question is investigated by monitoring the electrical potential difference across the endothelium of rat corneas in vitro before, during, and after irradiation. When the corneas were exposed to 1 Gy of Fe-56 ions (450 and 600 MeV/a.m.u.), no effect was detected on this parameter. These results suggest that direct physical damage to cell membranes, as predicted by the microlesion theory, does not take place.

  7. Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine

    PubMed Central

    Chvanov, Michael; Huang, Wei; Jin, Tao; Wen, Li; Armstrong, Jane; Elliot, Vicky; Alston, Ben; Burdyga, Alex; Criddle, David N.; Sutton, Robert

    2015-01-01

    Abstract Aims: The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. Results: We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca2+concentration ([Ca2+]i), mitochondrial membrane potential (ΔΨ), and NAD(P)H concentration. Innovation: The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. Conclusions: In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues. Antioxid. Redox Signal. 22, 451–464. PMID:24635199

  8. Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis

    PubMed Central

    Ellenberg, Jan; Siggia, Eric D.; Moreira, Jorge E.; Smith, Carolyn L.; Presley, John F.; Worman, Howard J.; Lippincott-Schwartz, Jennifer

    1997-01-01

    The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR–GFP). Photobleaching techniques revealed the majority of LBR–GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR–GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0.41 ± 0.1 μm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR–GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR–GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR–GFP in ER elements at contact sites with chromatin. LBR–GFP–containing ER membranes then wrapped around chromatin over the course of 2–3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30–80 min. Thus, selective changes in lateral mobility of LBR–GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis. PMID:9298976

  9. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks

    SciTech Connect

    Dhar, H.P.; Lee, J.H.; Lewinski, K.A.

    1996-12-31

    The PEM fuel cell is promising as the power source for use in mobile and stationary applications primarily because of its high power density, all solid components, and simplicity of operation. For wide acceptability of this power source, its cost has to be competitive with the presently available energy sources. The fuel cell requires continuous humidification during operation as a power source. The humidification unit however, increases fuel cell volume, weight, and therefore decreases its overall power density. Great advantages in terms of further fuel cell simplification can be achieved if the humidification process can be eliminated or minimized. In addition, cost reductions are associated with the case of manufacturing and operation. At BCS Technology we have developed a technology of self-humidified operation of PEM fuel cells based on the mass balance of the reactants and products and the ability of membrane electrode assembly (MEA) to retain water necessary for humidification under the cell operating conditions. The reactants enter the fuel cell chambers without carrying any form of water, whether in liquid or vapor form. Basic principles of self-humidified operation of fuel cells as practiced by BCS Technology, Inc. have been presented previously in literature. Here, we report the operation of larger self-humidified single cells and fuel cell stacks. Fuel cells of areas Up to 100 cm{sup 2} have been operated. We also show the self-humidified operation of fuel cell stacks of 50 and 100 cm{sup 2} electrode areas.

  10. A comparative study of water uptake by and transport through ionomeric fuel cell membranes

    SciTech Connect

    Zawodzinski, T.A.Jr.; Springer, T.E.; Davey, J.; Jestel, R.; Lopez, C.; Valerio, J.; Gottesfeld, S. . Electronics Materials and Device Research)

    1993-07-01

    Water uptake and transport parameters measured at 30 C for several available perfluorosulfonic acid membranes are compared. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and protonic conductivity were determined for Nafion 117, Membrane C, and Dow XUS 13204.10 developmental fuel cell membrane. The diffusion coefficient and conductivity of each of these membranes were determined as functions of membrane water content. Experimental determination of transport parameters, enables one to compare membranes without the skewing effects of extensive features such as membrane thickness which contributes in a nonlinear fashion to performance in polymer electrolyte fuel cells.

  11. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling

    PubMed Central

    Zhang, Haizhen; Brown, Roslyn N.; Qian, Wei-Jun; Monroe, Matthew E.; Purvine, Samuel O.; Moore, Ronald J.; Gritsenko, Marina A.; Shi, Liang; Romine, Margaret F; Fredrickson, James K.; Paša-Tolić, Ljiljana; Smith, Richard D.; Lipton, Mary S.

    2010-01-01

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope 18O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level 16O and 18O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in ΔgspD mutant cells of many outer membrane proteins including the outer membrane c-cype cytochromes OmcA and MtrC, in agreement with previously investigation demonstrating that these proteins are substrates of the type II secretion system. PMID:20380418

  12. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  13. Ambidextrous binding of cell and membrane bilayers by soluble matrix metalloproteinase-12.

    PubMed

    Koppisetti, Rama K; Fulcher, Yan G; Jurkevich, Alexander; Prior, Stephen H; Xu, Jia; Lenoir, Marc; Overduin, Michael; Van Doren, Steven R

    2014-11-21

    Matrix metalloproteinases (MMPs) regulate tissue remodelling, inflammation and disease progression. Some soluble MMPs are inexplicably active near cell surfaces. Here we demonstrate the binding of MMP-12 directly to bilayers and cellular membranes using paramagnetic NMR and fluorescence. Opposing sides of the catalytic domain engage spin-labelled membrane mimics. Loops project from the β-sheet interface to contact the phospholipid bilayer with basic and hydrophobic residues. The distal membrane interface comprises loops on the other side of the catalytic cleft. Both interfaces mediate MMP-12 association with vesicles and cell membranes. MMP-12 binds plasma membranes and is internalized to hydrophobic perinuclear features, the nuclear membrane and inside the nucleus within minutes. While binding of TIMP-2 to MMP-12 hinders membrane interactions beside the active site, TIMP-2-inhibited MMP-12 binds vesicles and cells, suggesting compensatory rotation of its membrane approaches. MMP-12 association with diverse cell membranes may target its activities to modulate innate immune responses and inflammation.

  14. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    PubMed Central

    Saeui, Christopher T.; Mathew, Mohit P.; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J.

    2015-01-01

    Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels. PMID:26096148

  15. Fault tolerance control for proton exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  16. [Effects of abnormal Hb on red cell membranes].

    PubMed

    Ideguchi, H

    1999-03-01

    Unstable hemoglobin disorders are due to substitutions or deletions of amino acids which alter the normal tertiary structure of hemoglobin and/or decrease heme-binding to globin. These changes result in enhanced oxidation to methemoglobin, rapid conversion of methemoglobin to hemichrome and sometimes heme loss, which leads to denaturation and precipitation as Heinz bodies. This process is associated with marked oxidative membrane damage, such as crosslinking of membrane proteins, membrane lipid peroxidation, hemin-induced destabilization of cytoskeletal protein interactions, and increased permeability to potassium ions. The damaged erythrocytes are sequestered in the spleen, where Heinz bodies are "pitted" or the entire cell is phagocytized by macrophages. The precise mechanisms leading to hemolysis are not fully understood. However, one hypothesis involves hemichrome binding to the cytoplasmic domain of band 3, leading to clustering of band 3 in the membrane and immunologic recognition of the redistributed band 3 by autologous senescent antibodies. This theory is based on immunologic findings rather than deformability changes, and it is consistent with many features of unstable hemoglobins.

  17. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.

    PubMed

    Malaeb, Lilian; Katuri, Krishna P; Logan, Bruce E; Maab, Husnul; Nunes, S P; Saikaly, Pascal E

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m(2) (6.8 W/m(3)) with the biocathode, compared to 0.82 W/m(2) (14.5 W/m(3)) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. PMID:24016059

  18. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.

    PubMed

    Malaeb, Lilian; Katuri, Krishna P; Logan, Bruce E; Maab, Husnul; Nunes, S P; Saikaly, Pascal E

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m(2) (6.8 W/m(3)) with the biocathode, compared to 0.82 W/m(2) (14.5 W/m(3)) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration.

  19. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  20. Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells.

    PubMed

    Gioia, Magda; Vindigni, Giulia; Testa, Barbara; Raniolo, Sofia; Fasciglione, Giovanni Francesco; Coletta, Massimiliano; Biocca, Silvia

    2015-01-01

    The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor responsible for ox-LDL recognition, binding and internalization, which is up-regulated during atherogenesis. Its activation triggers endothelium dysfunction and induces inflammation. A soluble form of LOX-1 has been identified in the human blood and its presence considered a biomarker of cardiovascular diseases. We recently showed that cholesterol-lowering drugs inhibit ox-LDL binding and internalization, rescuing the ox-LDL induced apoptotic phenotype in primary endothelial cells. Here we have investigated the molecular bases of human LOX-1 shedding by metalloproteinases and the role of cell membrane cholesterol on the regulation of this event by modulating its level with MβCD and statins. We report that membrane cholesterol affects the release of different forms of LOX-1 in cells transiently and stably expressing human LOX-1 and in a human endothelial cell line (EA.hy926). In particular, our data show that i) cholesterol depletion triggers the release of LOX-1 in exosomes as a full-length transmembrane isoform and as a truncated ectodomain soluble fragment (sLOX-1); ii) endothelial cells secrete a soluble metalloproteinase which induces LOX-1 ectodomain shedding and iii) long term statins treatment enhances sLOX-1 proteolytic shedding. PMID:26495844

  1. Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells

    PubMed Central

    Testa, Barbara; Raniolo, Sofia; Fasciglione, Giovanni Francesco; Coletta, Massimiliano; Biocca, Silvia

    2015-01-01

    The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor responsible for ox-LDL recognition, binding and internalization, which is up-regulated during atherogenesis. Its activation triggers endothelium dysfunction and induces inflammation. A soluble form of LOX-1 has been identified in the human blood and its presence considered a biomarker of cardiovascular diseases. We recently showed that cholesterol-lowering drugs inhibit ox-LDL binding and internalization, rescuing the ox-LDL induced apoptotic phenotype in primary endothelial cells. Here we have investigated the molecular bases of human LOX-1 shedding by metalloproteinases and the role of cell membrane cholesterol on the regulation of this event by modulating its level with MβCD and statins. We report that membrane cholesterol affects the release of different forms of LOX-1 in cells transiently and stably expressing human LOX-1 and in a human endothelial cell line (EA.hy926). In particular, our data show that i) cholesterol depletion triggers the release of LOX-1 in exosomes as a full-length transmembrane isoform and as a truncated ectodomain soluble fragment (sLOX-1); ii) endothelial cells secrete a soluble metalloproteinase which induces LOX-1 ectodomain shedding and iii) long term statins treatment enhances sLOX-1 proteolytic shedding. PMID:26495844

  2. Immunochemical studies of streptococcal cell membrane antigens immunologically related to glomerular basement membrane.

    PubMed

    Zelman, M E; Lange, C F

    1995-12-01

    Pursuing an autoimmune model for the etiology of poststreptococcal glomerulonephritis, protein antigens isolated from the cytoplasmic membrane of nephritogenic group A Type 12 Streptococcus pyogenes were immunochemically characterized using antistreptococcal cell membrane (SCM) monoclonal antibody (MAb) cross-reactive with glomerular basement membrane (GBM). Low molecular weight (9.2, 7.0, 4.7, 2.3 kDa) HPLC-purified SCM polypeptide antigens were characterized by competitive inhibition and equilibrium dialysis. Competitive inhibition of the MAb, by different sized SCM polypeptide antigens showed an inverse relationship between the size of these antigens and the molar amount required to obtain 50% inhibition of the MAb, confirming previous observations that suggested that these SCM antigens exhibit increasing epitope concentration with increasing size, that is constant epitope density. The observed changes in epitope concentration correlated with differences in the valence and affinity of the MAb as determined by equilibrium dialysis. The Kds of the MAb for 9.2-, 7.0-, 4.7-, and 2.3-kDa SCM antigens ranged from 7.42 x 10(-7) to 1.15 x 10(-5). The experimentally determined MAb valence for these antigens was 2 for the 9.2-kDa antigen and approached 10 for the smaller antigens. Finally, the similarity of these SCM antigens was reflected in similar amino acid compositions; of note, these data agreed with the compositions previously reported for sized GBM antigens. Concentrations of Asp, Thr, Ser, Glu, Gly, Ala, Val, Ile, and Leu paralleled increasing epitope concentration. Apparent N-terminal blocking prevented sequencing of these peptides, but these immunochemical data suggest that intact SCM antigen recognized by the anti-SCM MAb consists of repeating epitopes, an observation consistent with the cytoplasmic membrane source of the antigen.

  3. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  4. Trans-cis isomerization of lipophilic dyes probing membrane microviscosity in biological membranes and in live cells.

    PubMed

    Chmyrov, Volodymyr; Spielmann, Thiemo; Hevekerl, Heike; Widengren, Jerker

    2015-06-01

    Membrane environment and fluidity can modulate the dynamics and interactions of membrane proteins and can thereby strongly influence the function of cells and organisms in general. In this work, we demonstrate that trans-cis isomerization of lipophilic dyes is a useful parameter to monitor packaging and fluidity of biomembranes. Fluorescence fluctuations, generated by trans-cis isomerization of the thiocarbocyanine dye Merocyanine 540 (MC540), were first analyzed by fluorescence correlation spectroscopy (FCS) in different alcohol solutions. Similar isomerization kinetics of MC540 in lipid vesicles could then also be monitored, and the influence of lipid polarity, membrane curvature, and cholesterol content was investigated. While no influence of membrane curvature and lipid polarity could be observed, a clear decrease in the isomerization rates could be observed with increasing cholesterol contents in the vesicle membranes. Finally, procedures to spatially map photoinduced and thermal isomerization rates on live cells by transient state (TRAST) imaging were established. On the basis of these procedures, MC540 isomerization was studied on live MCF7 cells, and TRAST images of the cells at different temperatures were found to reliably detect differences in the isomerization parameters. Our studies indicate that trans-cis isomerization is a useful parameter for probing membrane dynamics and that the TRAST imaging technique can provide spatial maps of photoinduced isomerization as well as both photoinduced and thermal back-isomerization, resolving differences in local membrane microviscosity in live cells.

  5. Molecular modeling of membrane responses to the adsorption of rotating nanoparticles: promoted cell uptake and mechanical membrane rupture.

    PubMed

    Yue, Tongtao; Zhang, Xianren; Huang, Fang

    2015-01-21

    Recently, a unique dynamic magnetic field was developed to induce the rotational movement of superparamagnetic iron oxide nanoparticles. This technique has been applied to remotely control both cellular internalization and apoptosis. Therefore, a thorough understanding of how a lipid membrane responds to the introduction of rotating NPs is quite important to promote the applications of this technique in a variety of biomedical area. Here, we performed Dissipative Particle Dynamics (DPD) simulations to systematically investigate the interaction mechanism between lipid membranes and rotating NPs. Two kinds of membrane responses are observed. One is the promoted cell uptake and the other is the mechanical membrane rupture. The promoting effect of NP rotation on the cell uptake is ascribed to the enhanced membrane monolayer protrusion, which can wrap the NP from the top side. Meanwhile, the rotating NP exerts a shearing force on the membrane. Accordingly, the membrane undergoes a local distortion around the NP. If the shearing force exceeds a critical value, the local membrane distortion develops into a mechanical rupture. A number of factors, like NP size, NP shape, ligand density and rotation speed, are critical in both of the above membrane responses. PMID:25388826

  6. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

  7. Targeting cholesterol in a liquid-disordered environment by theonellamides modulates cell membrane order and cell shape.

    PubMed

    Arita, Yuko; Nishimura, Shinichi; Ishitsuka, Reiko; Kishimoto, Takuma; Ikenouchi, Junichi; Ishii, Kumiko; Umeda, Masato; Matsunaga, Shigeki; Kobayashi, Toshihide; Yoshida, Minoru

    2015-05-21

    Roles of lipids in the cell membrane are poorly understood. This is partially due to the lack of methodologies, for example, tool chemicals that bind to specific membrane lipids and modulate membrane function. Theonellamides (TNMs), marine sponge-derived peptides, recognize 3β-hydroxysterols in lipid membranes and induce major morphological changes in cultured mammalian cells through as yet unknown mechanisms. Here, we show that TNMs recognize cholesterol-containing liquid-disordered domains and induce phase separation in model lipid membranes. Modulation of membrane order was also observed in living cells following treatment with TNM-A, in which cells shrank considerably in a cholesterol-, cytoskeleton-, and energy-dependent manner. These findings present a previously unrecognized mode of action of membrane-targeting natural products. Meanwhile, we demonstrated the importance of membrane order, which is maintained by cholesterol, for proper cell morphogenesis.

  8. Water free proton conducting membranes based on poly-4-vinylpyridinebisulfate for fuel cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2007-01-01

    Disclosed are methods for forming a water-free electrolyte membrane useful in fuel cells. Also provided is a water-free electrolyte membrane comprising a quaternized amine salt including poly-4-vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica composite, and a combination thereof and a fuel cell comprising the membrane.

  9. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    SciTech Connect

    Ingermann, R.L. )

    1989-09-01

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion.

  10. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    PubMed

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.

  11. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  12. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells.

    PubMed

    Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M

    2010-03-23

    Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells.

  13. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    SciTech Connect

    L.G. Marianowski

    2001-12-21

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at

  14. Membrane-Bound TRAIL Supplements Natural Killer Cell Cytotoxicity Against Neuroblastoma Cells

    PubMed Central

    Sheard, Michael A.; Asgharzadeh, Shahab; Liu, Yin; Lin, Tsen-Yin; Wu, Hong-Wei; Ji, Lingyun; Groshen, Susan; Lee, Dean A.; Seeger, Robert C.

    2013-01-01

    Neuroblastoma cells have been reported to be resistant to death induced by soluble, recombinant forms of TRAIL (CD253/TNFSF10) due to low or absent expression of caspase-8 and/or TRAIL-receptor 2 (TRAIL-R2/DR5/CD262/TNFRSF10b). However, their sensitivity to membrane-bound TRAIL on natural killer (NK) cells is not known. Comparing microarray gene expression and response to NK cell-mediated cytotoxicity, we observed a correlation between TRAIL-R2 expression and the sensitivity of fourteen neuroblastoma cell lines to the cytotoxicity of NK cells activated with IL-2 plus IL-15. Even though most NK cytotoxicity was dependent upon perforin, the cytotoxicity was supplemented by TRAIL in fourteen of seventeen (82%) neuroblastoma cell lines as demonstrated using an anti-TRAIL neutralizing antibody. Similarly, a recently developed NK cell expansion system employing IL-2 plus lethally irradiated K562 feeder cells constitutively expressing membrane-bound IL-21 (K562 clone 9.mbIL21) resulted in activated NK cells derived from normal healthy donors and neuroblastoma patients that also utilized TRAIL to supplement cytotoxicity. Exogenous IFNγ up-regulated expression of caspase-8 in three of four neuroblastoma cell lines and increased the contribution of TRAIL to NK cytotoxicity against two of the three lines; however, relatively little inhibition of cytotoxicity was observed when activated NK cells were treated with an anti-IFNγ neutralizing antibody. Constraining the binding of anti-TRAIL neutralizing antibody to membrane-bound TRAIL but not soluble TRAIL indicated that membrane-bound TRAIL alone was responsible for essentially all of the supplemental cytotoxicity. Together, these findings support a role for membrane-bound TRAIL in the cytotoxicity of NK cells against neuroblastoma cells. PMID:23719242

  15. Molecular phylogeny of cycads inferred from rbcL sequences.

    PubMed

    Treutlein, Jens; Wink, Michael

    2002-05-01

    The chloroplast gene rbcL was sequenced to elucidate the evolution of the gymnosperm plant order Cycadales. In accordance with traditional systematics, the order Cycadales and the corresponding genera cluster as monophyletic clades. Among them, the genus Cycas forms a basal group. The genetic distances within the genus Encephalartos and between the sister groups Encephalartos, Lepidozamia and Macrozamia, are unexpectedly small, suggesting that the extant species are the result of Miocene and Pliocene speciation. Their distribution in Africa or Australia, respectively, may therefore rather be due to long-distance dispersal than to Cretaceous continental drift, as had previously been assumed. The rbcL sequences also indicate that the colonisation of Madagascar by Cycas thouarsii occurred only recently as the sequences of C. thouarsii and Cycas rumphii from Indonesia are identical. In contrast, the divergence of the Cycadaceae and Zamiaceae apparently occurred in the Mesozoic.

  16. Molecular phylogeny of cycads inferred from rbcL sequences

    NASA Astrophysics Data System (ADS)

    Treutlein, Jens; Wink, Michael

    2002-03-01

    The chloroplast gene rbcL was sequenced to elucidate the evolution of the gymnosperm plant order Cycadales. In accordance with traditional systematics, the order Cycadales and the corresponding genera cluster as monophyletic clades. Among them, the genus Cycas forms a basal group. The genetic distances within the genus Encephalartos and between the sister groups Encephalartos, Lepidozamia and Macrozamia, are unexpectedly small, suggesting that the extant species are the result of Miocene and Pliocene speciation. Their distribution in Africa or Australia, respectively, may therefore rather be due to long-distance dispersal than to Cretaceous continental drift, as had previously been assumed. The rbcL sequences also indicate that the colonisation of Madagascar by Cycas thouarsii occurred only recently as the sequences of C. thouarsii and Cycas rumphii from Indonesia are identical. In contrast, the divergence of the Cycadaceae and Zamiaceae apparently occurred in the Mesozoic.

  17. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  18. [The sodium-potassium-chloride cotransport of the cell membrane].

    PubMed

    Urazaev, A Kh

    1998-01-01

    Discovery and active exploration of the furosemid-sensitive derived-active co-transport of sodium-potassium-chlorine ions took place in the end of 1970-es-1980-es. This transportation mechanism was discovered in various types of cells, both of plant and of animal origin. This review describes properties of the transportation process, which was most comprehensive explored in experiments with erythrocytes, epithelium cells and muscles. The review covers the following properties: anion and cation selectivity of the chlorine transportation, its sensitivity to the specific blocking agents (furocemid, bumetanid, etc.), stoichiometry of the transportation process, etc. For energy source, the chlorine transportation is based on transmembrane electrochemical gradient for sodium ions. The article provides the most recent results of investigation of the chemical nature of the molecule of the chlorine membrane transport. Based on various studies, the molecule of this protein weighs from 120 to 200 kD, includes about 1200 amino acid residua, and forms long cytoplasmatic NH2 and COOH-termini. The gene encoding the amino acid sequence has been cloned. The article discusses the issues of regulation of the chlorine transportation. Humoral control of intensity of the chlorine transportation has been mostly studied in experiments with plain muscles, the issues related to nervous regulation--with only skeleton muscle fibers. The article provides specific data on the mechanisms of the above types of the physiological regulation of active chlorine transportation. In general, the humoral factors, which increase the intracellular concentration of cAMF stimulate chlorine transportation. On the contrary, the hormones, which increase concentration of cGMF in cytoplasm reduce its activity in plain muscles. The discussion of the mechanisms of the nervous controls of the chlorine transportation in the skeleton muscles includes the original results of the author. These results indicate that the

  19. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  20. Regulation of Cell Contraction and Membrane Ruffling by Distinct Signals in Migratory Cells

    PubMed Central

    Cheresh, David A.; Leng, Jie; Klemke, Richard L.

    1999-01-01

    Cell migration and wound contraction requires assembly of actin into a functional myosin motor unit capable of generating force. However, cell migration also involves formation of actin-containing membrane ruffles. Evidence is provided that actin-myosin assembly and membrane ruffling are regulated by distinct signaling pathways in the migratory cell. Interaction of cells with extracellular matrix proteins or cytokines promote cell migration through activation of the MAP kinases ERK1 and ERK2 as well as the molecular coupling of the adaptor proteins p130CAS and c-CrkII. ERK signaling is independent of CAS/Crk coupling and regulates myosin light chain phosphorylation leading to actin-myosin assembly during cell migration and cell-mediated contraction of a collagen matrix. In contrast, membrane ruffling, but not cell contraction, requires Rac GTPase activity and the formation of a CAS/Crk complex that functions in the context of the Rac activating protein DOCK180. Thus, during cell migration ERK and CAS/Crk coupling operate as components of distinct signaling pathways that control actin assembly into myosin motors and membrane ruffles, respectively. PMID:10477763

  1. [LIGHT-DEPENDENT SYNTHESIS OF CELL MEMBRANES IN THE Brc-1 MUTANT OF CHLAMYDOMONAS REINHARDTII].

    PubMed

    Semenova, G A; Chekunova, E M; Ladygin, V G

    2015-01-01

    The structural organization of cells of the Brc-1 mutant of the unicellular green algae Chlamydomonas reinhardtii grown in the light and in the dark has been studied. The Brc-1 mutant contains the brc-1 mutation in the nucleus gene LTS3. In the light, all membrane structures in mutant cells form normally and are well developed. In the dark under heterotrophic conditions, the mutant cells grew and divided well, however, all its cell membranes: plasmalemma, tonoplast, mitochondrial membranes, membranes of the nucleus shell and chloroplast, thylakoids, and the membranes of dictiosomes of the Golgi apparatus were not detected. In the dark under heterotrophic conditions, mutant cells well grow and divide. It were shown that a short-term (1-10 min) exposure of Brc-1 mutant cells to light leads to the restoration of all above-mentioned membrane structures. Possible reasons for the alterations of membrane structures are discussed.

  2. [LIGHT-DEPENDENT SYNTHESIS OF CELL MEMBRANES IN THE Brc-1 MUTANT OF CHLAMYDOMONAS REINHARDTII].

    PubMed

    Semenova, G A; Chekunova, E M; Ladygin, V G

    2015-01-01

    The structural organization of cells of the Brc-1 mutant of the unicellular green algae Chlamydomonas reinhardtii grown in the light and in the dark has been studied. The Brc-1 mutant contains the brc-1 mutation in the nucleus gene LTS3. In the light, all membrane structures in mutant cells form normally and are well developed. In the dark under heterotrophic conditions, the mutant cells grew and divided well, however, all its cell membranes: plasmalemma, tonoplast, mitochondrial membranes, membranes of the nucleus shell and chloroplast, thylakoids, and the membranes of dictiosomes of the Golgi apparatus were not detected. In the dark under heterotrophic conditions, mutant cells well grow and divide. It were shown that a short-term (1-10 min) exposure of Brc-1 mutant cells to light leads to the restoration of all above-mentioned membrane structures. Possible reasons for the alterations of membrane structures are discussed. PMID:26281212

  3. Spleen Uptake on Bone Scan After Frequent Platelet and RBC Transfusions.

    PubMed

    De Marini, Pierre; Laplace, Annegret; Matuszak, Julien; Fornecker, Luc-Matthieu; Namer, Izzie Jacques

    2016-10-01

    A 21-year-old man, allogeneic hematopoietic stem cell transplantation recipient, was referred to our nuclear medicine department for a suspicion of knee osteonecrosis. Bone scan with Tc-HMDP did not show abnormal bone uptake but an intense spleen accumulation. F-FDG PET/CT performed on the same day showed no pathological spleen uptake. The patient had secondary hemochromatosis resulting from frequent transfusions in the setting of a chronic graft versus host disease with hemolysis and thrombocytopenia. The last RBC and platelet transfusions were performed 9 and 2 days before the examination, respectively. Secondary hemochromatosis and recent transfusions may explain our findings.

  4. Gallbladder visualization during technetium-99m RBC blood pool imaging. Case report and literature review

    SciTech Connect

    Kotlyarov, E.V.; Mattay, V.S.; Reba, R.C.

    1988-07-01

    Gallbladder visualization occurred after a Tc-99m red blood cell (RBC) cardiac gated blood pool scan. To date, seven cases of gallbladder visualization after the intravenous injection of Tc-99m RBCs have been reported. In the previous six patients the gallbladder was visualized incidentally during a search for gastrointestinal (GI) bleeding. All of the patients were anemic, six of seven had chronic renal failure, and five of seven had received multiple blood transfusions. When interpreting GI bleeding scans in patients with anemia and renal failure, awareness of the possibility of gallbladder visualization in the delayed images is important to avoid false-positive results. 3 references.

  5. Alloantibodies to a paternally derived RBC KEL antigen lead to hemolytic disease of the fetus/newborn in a murine model

    PubMed Central

    Stowell, Sean R.; Henry, Kate L.; Smith, Nicole H.; Hudson, Krystalyn E.; Halverson, Greg R.; Park, Jaekeun C.; Bennett, Ashley M.; Girard-Pierce, Kathryn R.; Arthur, C. Maridith; Bunting, Silvia T.; Zimring, James C.

    2013-01-01

    Exposure to nonself red blood cell (RBC) antigens, either from transfusion or pregnancy, may result in alloimmunization and incompatible RBC clearance. First described as a pregnancy complication 80 years ago, hemolytic disease of the fetus and newborn (HDFN) is caused by alloimmunization to paternally derived RBC antigens. Despite the morbidity/mortality of HDFN, women at risk for RBC alloimmunization have few therapeutic options. Given that alloantibodies to antigens in the KEL family are among the most clinically significant, we developed a murine model with RBC-specific expression of the human KEL antigen to evaluate the impact of maternal/fetal KEL incompatibility. After exposure to fetal KEL RBCs during successive pregnancies with KEL-positive males, 21 of 21 wild-type female mice developed anti-KEL alloantibodies; intrauterine fetal anemia and/or demise occurred in a subset of KEL-positive pups born to wild type, but not agammaglobulinemic mothers. Similar to previous observations in humans, pregnancy-associated alloantibodies were detrimental in a transfusion setting, and transfusion-associated alloantibodies were detrimental in a pregnancy setting. This is the first pregnancy-associated HDFN model described to date, which will serve as a platform to develop targeted therapies to prevent and/or mitigate the dangers of RBC alloantibodies to fetuses and newborns. PMID:23801629

  6. Aluminum and temperature alteration of cell membrane permeability of Quercus rubra

    SciTech Connect

    Junping Chen; Sucoff, E.I.; Stadelmann, E.J. )

    1991-06-01

    Al toxicity is the major factor limiting plant growth in acid soils. This report extends research on Al-induced changes in membrane behavior of intact root cortex cells of Northern red oak (Quercus rubra). Membrane permeability was determined by the plasmometric method for individual intact cells at temperatures from 2 or 4 to 35 C. Al (0.37 millimolar) significantly increased membrane permeability to urea and monoethyl urea and decreased permeability to water. Al significantly altered the activation energy required to transport water (+ 32%), urea (+ 9%), and monoethyl urea ({minus}7%) across cell membranes. Above 9 C, Al increased the lipid partiality of the cell membranes; below 7 C, Al decreased it. Al narrowed by 6 C the temperature range over which plasmolysis occurred without membrane damage. These changes in membrane behavior are explainable if Al reduced membrane lipid fluidity and kink frequency and increases packing density and the occurrence of straight lipid chains.

  7. Direct liquid-feed fuel cell with membrane electrolyte and manufacturing thereof

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram (Inventor); Surampudi, Subbarao (Inventor); Halpert, Gerald (Inventor)

    1999-01-01

    An improved direct liquid-feed fuel cell having a solid membrane electrolyte for electrochemical reactions of an organic fuel. Improvements in interfacing of the catalyst layer and the membrane and activating catalyst materials are disclosed.

  8. Demonstrating Cell Traction--Using Hens' Egg Vitelline Membrane as Substratum.

    ERIC Educational Resources Information Center

    Downie, Roger

    1987-01-01

    Suggests ways in which hens' egg vitelline membranes can be used to demonstrate cell traction effects. Reviews procedures for using and culturing the membranes and identifies topic areas for student projects. (ML)

  9. Ionic Liquids and New Proton Exchange Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Belieres, Jean-Philippe

    2004-01-01

    There is currently a great surge of activity in fuel cell research as laboratories across the world seek to take advantage of the high energy capacity provided by &el cells relative to those of other portable electrochemical power systems. Much of this activity is aimed at high temperature fie1 cells, and a vital component of such &el cells must be the availability of a high temperature stable proton-permeable membrane. NASA Glenn Research Center is greatly involved in developing this technology. Other approaches to the high temperature fuel cell involve the use of single- component or almost-single-component electrolytes that provide a path for protons through the cell. A heavily researched case is the phosphoric acid fuel cell, in which the electrolyte is almost pure phosphoric acid and the cathode reaction produces water directly. The phosphoric acid fie1 cell delivers an open circuit voltage of 0.9 V falling to about 0.7 V under operating conditions at 170 C. The proton transport mechanism is mainly vehicular in character according to the viscosity/conductance relation. Here we describe some Proton Transfer Ionic Liquids (PTILs) with low vapor pressure and high temperature stability that have conductivities of unprecedented magnitude for non-aqueous systems. The first requirement of an ionic liquid is that, contrary to experience with most liquids consisting of ions, it must have a melting point that is not much above room temperature. The limit commonly suggested is 100 C. PTILs constitute an interesting class of non-corrosive proton-exchange electrolyte, which can serve well in high temperature (T = 100 - 250 C) fuel cell applications. We will present cell performance data showing that the open circuit voltage output, and the performance of a simple H2(g)Pt/PTIL/Pt/O2(g) fuel cell may be superior to those of the equivalent phosphoric acid electrolyte fuel cell both at ambient temperature and temperatures up to and above 200 C. My work at NASA Glenn Research

  10. Percolation in a Proton Exchange Membrane Fuel Cell Catalyst Layer

    SciTech Connect

    Stacy, Stephen; Allen, Jeffrey

    2012-07-01

    Water management in the catalyst layers of proton exchange membrane fuel cells (PEMFC) is confronted by two issues, flooding and dry out, both of which result in improper functioning of the fuel cell and lead to poor performance and degradation. At the present time, the data that has been reported about water percolation and wettability within a fuel cell catalyst layer is limited. A method and apparatus for measuring the percolation pressure in the catalyst layer has been developed based upon an experimental apparatus used to test water percolation in porous transport layers (PTL). The experimental setup uses a pseudo Hele-Shaw type testing where samples are compressed and a fluid is injected into the sample. Testing the samples gives percolation pressure plots which show trends in increasing percolation pressure with an increase in flow rate. A decrease in pressure was seen as percolation occurred in one sample, however the pressure only had a rising effect in the other sample.

  11. Biochemical stabilization enhances red blood cell recovery and stability following cryopreservation.

    PubMed

    Wagner, Christopher T; Martowicz, Melissa L; Livesey, Stephen A; Connor, Jerome

    2002-10-01

    Glycerolized red blood cells (RBC) are approved for long-term cryopreservation. However, the need to remove the glycerol cryoprotectant prior to transfusion has limited the usefulness of this cryopreservation method. This report describes using non-cryoprotectant biochemical stabilization techniques to substitute for the standard glycerol cryoprotectant. The glycerolized RBC method was compared to a newly developed LC-V method that combines transfusable cryoprotectants (hydroxyethyl starch and dextran) and specific non-cryoprotectant biochemical stabilizers (nicotinamide, nifedipine, and flurbiprofen). Results demonstrate that the biochemical stabilizers significantly reduce cryopreservation-induced hemolysis compared to cryopreservation in their absence and that thaw hemolysis levels approach those of standard 40% (w/v) glycerolized RBC (3.1+/-0.2% for 40% glycerol compared to 8.7+/-0.9% for the LC-V protocol). Furthermore, LC-V cryopreserved RBC exhibit a significantly enhanced post-thaw stability compared to glycerolized RBC as determined by osmotic fragility index (0.557+/-0.034 for 40% glycerol compared to 0.478+/-0.016 for the LC-V protocol). Analysis of biochemically stabilized RBC proteins revealed a transient translocation of carbonic anhydrase to the membrane fraction. However, the enhanced RBC recovery and stability could not be attributed to this event. Finally, DSC analysis demonstrated that the biochemical stabilizers of the LC-V process were not functioning as surrogate cryoprotectants in that they did not affect the quantity or quality of ice formed. Overall, this work demonstrates that cryopreservation-induced RBC damage may be corrected or prevented through specific biochemical stabilization and represents a significant step toward a directly transfusable cryopreserved RBC product.

  12. Cytotopographical specialization of enzymatically isolated rabbit retinal Müller (glial) cells: K+ conductivity of the cell membrane.

    PubMed

    Reichenbach, A; Eberhardt, W

    1988-01-01

    Müller (radial glial) cells were isolated from rabbit retinae by means of papaine and mechanical dissociation. Regional membrane properties of these cells were studied by intracellular microelectrode recordings of potential responses to local application of high K+ solutions. When different parts of the cell membrane were exposed to high K+, the amplitude of the depolarizing responses varied greatly, indicating a strong regional specialization of the membrane properties. Using morphometrical data of isolated rabbit Müller cells, and a simple circuit model, we calculated the endfoot membrane to constitute more than 80% of the total K+ conductance of the cell; the specific resistivity of the endfoot membrane was about 400 omega cm2, i.e., more than 40 times less than that of the membrane of the vitread process, which is immediately adjacent. This kind of regional membrane specialization seems to be optimized in respect to the Müller cells' ability to carry spatial buffering K+ currents.

  13. T cell glycolipid-enriched membrane domains are constitutively assembled as membrane patches that translocate to immune synapses.

    PubMed

    Jordan, Stephen; Rodgers, William

    2003-07-01

    In T cells, glycolipid-enriched membrane (GEM) domains, or lipid rafts, are assembled into immune synapses in response to Ag presentation. However, the properties of T cell GEM domains in the absence of stimulatory signals, such as their size and distribution in the plasma membrane, are less clear. To address this question, we used confocal microscopy to measure GEM domains in unstimulated T cells expressing a GEM-targeted green fluorescent protein molecule. Our experiments showed that the GEM domains were assembled into membrane patches that were micrometers in size, as evidenced by a specific enrichment of GEM-associated molecules and resistance of the patches to extraction by Triton X-100. However, treatment of cells with latrunculin B disrupted the patching of the GEM domains and their resistance to Triton X-100. Similarly, the patches were coenriched with F-actin, and actin occurred in the detergent-resistant GEM fraction of T cells. Live-cell imaging showed that the patches were mobile and underwent translocation in the plasma membrane to immune synapses in stimulated T cells. Targeting of GEM domains to immune synapses was found to be actin-dependent, and required phosphatidylinositol 3-kinase activity and myosin motor proteins. We conclude from our results that T cell GEM domains are constitutively assembled by the actin cytoskeleton into micrometer-sized membrane patches, and that GEM domains and the GEM-enriched patches can function as a vehicle for targeting molecules to immune synapses.

  14. A simple alkaline method for decellularizing human amniotic membrane for cell culture.

    PubMed

    Saghizadeh, Mehrnoosh; Winkler, Michael A; Kramerov, Andrei A; Hemmati, David M; Ghiam, Chantelle A; Dimitrijevich, Slobodan D; Sareen, Dhruv; Ornelas, Loren; Ghiasi, Homayon; Brunken, William J; Maguen, Ezra; Rabinowitz, Yaron S; Svendsen, Clive N; Jirsova, Katerina; Ljubimov, Alexander V

    2013-01-01

    Human amniotic membrane is a standard substratum used to culture limbal epithelial stem cells for transplantation to patients with limbal stem cell deficiency. Various methods were developed to decellularize amniotic membrane, because denuded membrane is poorly immunogenic and better supports repopulation by dissociated limbal epithelial cells. Amniotic membrane denuding usually involves treatment with EDTA and/or proteolytic enzymes; in many cases additional mechanical scraping is required. Although ensuring limbal cell proliferation, these methods are not standardized, require relatively long treatment times and can result in membrane damage. We propose to use 0.5 M NaOH to reliably remove amniotic cells from the membrane. This method was used before to lyse cells for DNA isolation and radioactivity counting. Gently rubbing a cotton swab soaked in NaOH over the epithelial side of amniotic membrane leads to nearly complete and easy removal of adherent cells in less than a minute. The denuded membrane is subsequently washed in a neutral buffer. Cell removal was more thorough and uniform than with EDTA, or EDTA plus mechanical scraping with an electric toothbrush, or n-heptanol plus EDTA treatment. NaOH-denuded amniotic membrane did not show any perforations compared with mechanical or thermolysin denuding, and showed excellent preservation of immunoreactivity for major basement membrane components including laminin α2, γ1-γ3 chains, α1/α2 and α6 type IV collagen chains, fibronectin, nidogen-2, and perlecan. Sodium hydroxide treatment was efficient with fresh or cryopreserved (10% dimethyl sulfoxide or 50% glycerol) amniotic membrane. The latter method is a common way of membrane storage for subsequent grafting in the European Union. NaOH-denuded amniotic membrane supported growth of human limbal epithelial cells, immortalized corneal epithelial cells, and induced pluripotent stem cells. This simple, fast and reliable method can be used to standardize

  15. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    NASA Astrophysics Data System (ADS)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-02-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.

  16. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake.

    PubMed

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-02-26

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle 'stealth'. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.

  17. Alterations of red cell membrane properties in neuroacanthocytosis.

    PubMed