Science.gov

Sample records for cell rbc membrane

  1. Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles

    NASA Astrophysics Data System (ADS)

    Luk, Brian T.; Jack Hu, Che-Ming; Fang, Ronnie H.; Dehaini, Diana; Carpenter, Cody; Gao, Weiwei; Zhang, Liangfang

    2014-02-01

    The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of membrane coverage, membrane sidedness upon coating, and the effects of polymeric particles' surface charge and surface curvature on the membrane cloaking process. The study shows that RBC membranes completely cover negatively charged polymeric nanoparticles in a right-side-out manner and enhance the particles' colloidal stability. The membrane cloaking process is applicable to particle substrates with a diameter ranging from 65 to 340 nm. Additionally, the study reveals that both surface glycans on RBC membranes and the substrate properties play a significant role in driving and directing the membrane-particle assembly. These findings further the understanding of the dynamics between cellular membranes and nanoscale substrates and provide valuable information toward future development and characterization of cellular membrane-cloaked nanodevices.The unique structural features and stealth properties of a recently developed red blood cell membrane-cloaked nanoparticle (RBC-NP) platform raise curiosity over the interfacial interactions between natural cellular membranes and polymeric nanoparticle substrates. Herein, several interfacial aspects of the RBC-NPs are examined, including completeness of membrane coverage, membrane sidedness upon coating, and the effects of polymeric particles' surface charge and surface curvature on the membrane cloaking process. The study shows that RBC membranes completely cover negatively charged polymeric nanoparticles in a right-side-out manner and enhance the particles' colloidal stability. The membrane cloaking process is applicable to particle substrates with a diameter ranging from

  2. Canine RBC osmotic tolerance and membrane permeability.

    PubMed

    Liu, J; Christian, J A; Critser, J K

    2002-06-01

    The objective of this study was to determine the cryobiological characteristics of canine red blood cells (RBC). These included the hydraulic conductivity (L(p)), the permeability coefficients (P(s)) of common cryoprotectant agents (CPAs), the associated reflection coefficient (sigma), the activation energies (E(a)) of L(p) and P(s) and the osmotic tolerance limits. By using a stopped-flow apparatus, the changes of fluorescence intensity emitted by intracellularly entrapped 5-carboxyfluorescein diacetate (CFDA) were recorded when cells were experiencing osmotic volume changes. After the determination of the relationship between fluorescence intensity and cell volume, cell volume changes were calculated. These volume changes were used in three-parameter fitting calculations to determine the values of L(p), P(s), and sigma for common CPAs. These volume measurements and data analyses were repeated at three different temperatures (22, 14, 7 degrees C). Using the Arrhenius equation, the activation energies of L(p) and P(s) in the presence of CPAs were determined. The osmotic tolerance limits for canine RBC were determined by measuring the percentage of free hemoglobin in NaCl solutions with various osmolalities compared to that released by RBC incubated in double distilled water. The upper and lower osmotic tolerance limits were found to be 150mOsm (1.67V(iso)) and 1200mOsm (0.45V(iso)), respectively. These parameters were then used to calculate the amount of non-permeating solute needed to keep cell volume excursions within the osmotic tolerance limits during CPA addition and removal.

  3. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics.

    PubMed

    Craiem, Damian; Magin, Richard L

    2010-01-20

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.

  4. Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics

    PubMed Central

    Craiem, Damian; Magin, Richard L

    2011-01-01

    New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such ‘spring-pots’ exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress–strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues. PMID:20090192

  5. [Effect of dietary VE on the contents of salivary acid and MDA in RBC membrane].

    PubMed

    Wang, F; Dong, Z; Zhang, Y; Chen, Y

    1997-05-01

    Vitamin E can protect membrane from the damage of lipid peroxidation, Salivary acid is the residual of carbohydrate on the membrane. To evaluate the effect of dietary VE on salivary acid, the contents of MDA and salivary acid of erythrocyte (RBC) membrane of rats were measured. The rats were fed with different amounts of dietary VE and stayed at different temperatures. The results revealed that the content of salivary acid of RBC membrane reduced markly (P < 0.01) and the content of MDA of RBC membrane was stable (P > 0.05) after the rats were exposed to cold for 10 days. High dietary VE intake increased the content of salivary acid of RBC membrane (P < 0.01). There was no correlation between the content of salivary acid and MDA of RBC membrane. It suggested that dietary VE could raise the content of salivary acid in RBC membrane, but it can not be explained by the reduction of LPO.

  6. RBC membrane damage and decreased band 3 phospho-tyrosine phosphatase activity are markers of COPD progression.

    PubMed

    Torres-Ramos, Yessica Dorin; Guzman-Grenfell, Alberto Martin; Montoya-Estrada, Araceli; Ramirez-Venegas, Alejandra; Martinez, Raul Sansores; Flores-Trujillo, Fernando; Ochoa-Cautino, Leticia; Hicks, Juan Jose

    2010-06-01

    Injury to red blood cell (RBC) membrane by oxidative stress is of clinical importance in chronic obstructive pulmonary disease (COPD) which leads to oxidative stress (OE) during disease progression. Here, we studied the impact of this stress on injury to RBC membrane. Blood samples from both healthy volunteers (HV, n = 11) and controlled COPD patients (n=43) were divided according to their GOLD disease stage (I=7, II=21, III=10, IV=5). Plasma levels of paraoxonase (PON) activity, protein carbonyls (PC), conjugate dienes, lipohydroperoxides (LPH) and malondialdehyde (MDA) were determined and the PTPase, and the oxidative parameters were measured in RBC ghosts. Plasma from patients with COPD showed an increased oxidation of lipids and proteins, that correlated with the disease progression. PON activity decreased from GOLD stages II to IV and correlated with an increase in LPH (p less than 0.0001, r = -0.8115). There was evidence of an increase in the oxidative biomarkers in RBCs, while the PTPase activity was diminished in stage III and IV of COPD. In conclusion, OE-induced injury associated with COPD is associated with an oxidative damage to the RBC membrane, with a concomitant decrease in the PTPase activity and altered function of anionic exchanger (AE1).

  7. Choroideremia Is a Systemic Disease With Lymphocyte Crystals and Plasma Lipid and RBC Membrane Abnormalities

    PubMed Central

    Zhang, Alice Yang; Mysore, Naveen; Vali, Hojatollah; Koenekoop, Jamie; Cao, Sang Ni; Li, Shen; Ren, Huanan; Keser, Vafa; Lopez-Solache, Irma; Siddiqui, Sorath Noorani; Khan, Ayesha; Mui, Jeannie; Sears, Kelly; Dixon, Jim; Schwartzentruber, Jeremy; Majewski, Jacek; Braverman, Nancy; Koenekoop, Robert K.

    2015-01-01

    Purpose Photoreceptor neuronal degenerations are common, incurable causes of human blindness affecting 1 in 2000 patients worldwide. Only half of all patients are associated with known mutations in over 250 disease genes, prompting our research program to identify the remaining new genes. Most retinal degenerations are restricted to the retina, but photoreceptor degenerations can also be found in a wide variety of systemic diseases. We identified an X-linked family from Sri Lanka with a severe choroidal degeneration and postulated a new disease entity. Because of phenotypic overlaps with Bietti's crystalline dystrophy, which was recently found to have systemic features, we hypothesized that a systemic disease may be present in this new disease as well. Methods For phenotyping, we performed detailed eye exams with in vivo retinal imaging by optical coherence tomography. For genotyping, we performed whole exome sequencing, followed by Sanger sequencing confirmations and cosegregation. Systemic investigations included electron microscopy studies of peripheral blood cells in patients and in normal controls and detailed fatty acid profiles (both plasma and red blood cell [RBC] membranes). Fatty acid levels were compared to normal controls, and only values two standard deviations above or below normal controls were further evaluated. Results The family segregated a REP1 mutation, suggesting choroideremia (CHM). We then found crystals in peripheral blood lymphocytes and discovered significant plasma fatty acid abnormalities and RBC membrane abnormalities (i.e., elevated plasmalogens). To replicate our discoveries, we expanded the cohort to nine CHM patients, genotyped them for REP1 mutations, and found the same abnormalities (crystals and fatty acid abnormalities) in all patients. Conclusions Previously, CHM was thought to be restricted to the retina. We show, to our knowledge for the first time, that CHM is a systemic condition with prominent crystals in lymphocytes and

  8. RBC count

    MedlinePlus

    ... marrow disease that causes abnormal increase in RBCs ( polycythemia vera ) Your RBC count will increase for several ... Multiple myeloma Myelofibrosis Paroxysmal nocturnal hemoglobinuria (PNH) Peripheral Polycythemia vera Renal cell carcinoma Splenomegaly Transfusion reaction - hemolytic ...

  9. RBC aggregation: more important than RBC adhesion to endothelial cells as a determinant of in vivo blood flow in health and disease.

    PubMed

    Baskurt, Oguz K; Meiselman, Herbert J

    2008-10-01

    Although the shear-dependent and reversible phenomenon of red blood cell (RBC) aggregation has been studied for decades, its role as a determinant of in vivo blood flow in both health and disease has not yet been fully documented. In this brief review, we present compelling arguments, supported by literature evidence, that in vivo flow dynamics are more affected by RBC aggregation than by RBC adhesion to endothelial cells (ECs). A companion article (i.e., a "counter-point") published in this issue of the journal argues that in disease states, RBC-EC adhesion is the more important determinant.

  10. Red Blood Cell Membrane-Cloaked Nanoparticles For Drug Delivery

    NASA Astrophysics Data System (ADS)

    Carpenter, Cody Westcott

    Herein we describe the development of the Red Blood Cell coated nanoparticle, RBC-NP. Purified natural erythrocyte membrane is used to coat drug-loaded poly(lacticco-glycolic acid) (PLGA). Synthetic PLGA co-polymer is biocompatible and biodegradable and has already received US FDA approval for drug-delivery and diagnostics. This work looks specifically at the retention of immunosuppressive proteins on RBC-NPs, right-sidedness of natural RBC membranes interfacing with synthetic polymer nanoparticles, sustained and retarded drug release of RBC-NPs as well as further surface modification of RBC-NPs for increased targeting of model cancer cell lines.

  11. Diagnostic tool for red blood cell membrane disorders: Assessment of a new generation ektacytometer.

    PubMed

    Da Costa, Lydie; Suner, Ludovic; Galimand, Julie; Bonnel, Amandine; Pascreau, Tiffany; Couque, Nathalie; Fenneteau, Odile; Mohandas, Narla

    2016-01-01

    Inherited red blood cell (RBC) membrane disorders, such as hereditary spherocytosis, elliptocytosis and hereditary ovalocytosis, result from mutations in genes encoding various RBC membrane and skeletal proteins. The RBC membrane, a composite structure composed of a lipid bilayer linked to a spectrin/actin-based membrane skeleton, confers upon the RBC unique features of deformability and mechanical stability. The disease severity is primarily dependent on the extent of membrane surface area loss. RBC membrane disorders can be readily diagnosed by various laboratory approaches that include RBC cytology, flow cytometry, ektacytometry, electrophoresis of RBC membrane proteins and genetics. The reference technique for diagnosis of RBC membrane disorders is the osmotic gradient ektacytometry. However, in spite of its recognition as the reference technique, this technique is rarely used as a routine diagnosis tool for RBC membrane disorders due to its limited availability. This may soon change as a new generation of ektacytometer has been recently engineered. In this review, we describe the workflow of the samples shipped to our Hematology laboratory for RBC membrane disorder analysis and the data obtained for a large cohort of French patients presenting with RBC membrane disorders using a newly available version of the ektacytomer.

  12. RBC Antibody Screen

    MedlinePlus

    ... Cell Antibody Screen Related tests: Direct Antiglobulin Test ; Blood Typing ; RBC Antibody Identification ; Type and Screen; Crossmatch All content on Lab Tests Online has been reviewed and approved by our Editorial Review Board . At a ... screen is used to screen an individual's blood for antibodies directed against red blood cell (RBC) ...

  13. Measurement of RBC agglutination with microscopic cell image analysis in a microchannel chip.

    PubMed

    Cho, Chi Hyun; Kim, Ju Yeon; Nyeck, Agnes E; Lim, Chae Seung; Hur, Dae Sung; Chung, Chanil; Chang, Jun Keun; An, Seong Soo A; Shin, Sehyun

    2014-01-01

    Since Landsteiner's discovery of ABO blood groups, RBC agglutination has been one of the most important immunohematologic techniques for ABO and RhD blood groupings. The conventional RBC agglutination grading system for RhD blood typings relies on macroscopic reading, followed by the assignment of a grade ranging from (-) to (4+) to the degree of red blood cells clumping. However, with the new scoring method introduced in this report, microscopically captured cell images of agglutinated RBCs, placed in a microchannel chip, are used for analysis. Indeed, the cell images' pixel number first allows the differentiation of agglutinated and non-agglutinated red blood cells. Finally, the ratio of agglutinated RBCs per total RBC counts (CRAT) from 90 captured images is then calculated. During the trial, it was observed that the agglutinated group's CRAT was significantly higher (3.77-0.003) than that of the normal control (0). Based on these facts, it was established that the microchannel method was more suitable for the discrimination between agglutinated RBCs and non-agglutinated RhD negative, and thus more reliable for the grading of RBCs agglutination than the conventional method.

  14. Safe and Immunocompatible Nanocarriers Cloaked in RBC Membranes for Drug Delivery to Treat Solid Tumors

    PubMed Central

    Luk, Brian T.; Fang, Ronnie H.; Hu, Che-Ming J.; Copp, Jonathan A.; Thamphiwatana, Soracha; Dehaini, Diana; Gao, Weiwei; Zhang, Kang; Li, Shulin; Zhang, Liangfang

    2016-01-01

    The therapeutic potential of nanoparticle-based drug carriers depends largely on their ability to evade the host immune system while delivering their cargo safely to the site of action. Of particular interest are simple strategies for the functionalization of nanoparticle surfaces that are both inherently safe and can also bestow immunoevasive properties, allowing for extended blood circulation times. Here, we evaluated a recently reported cell membrane-coated nanoparticle platform as a drug delivery vehicle for the treatment of a murine model of lymphoma. These biomimetic nanoparticles, consisting of a biodegradable polymeric material cloaked with natural red blood cell membrane, were shown to efficiently deliver a model chemotherapeutic, doxorubicin, to solid tumor sites for significantly increased tumor growth inhibition compared with conventional free drug treatment. Importantly, the nanoparticles also showed excellent immunocompatibility as well as an advantageous safety profile compared with the free drug, making them attractive for potential translation. This study demonstrates the promise of using a biomembrane-coating approach as the basis for the design of functional, safe, and immunocompatible nanocarriers for cancer drug delivery. PMID:27217833

  15. Detection and characterization of red blood cell (RBC) aggregation with photoacoustics

    NASA Astrophysics Data System (ADS)

    Hysi, Eno; Saha, Ratan K.; Rui, Min; Kolios, Michael C.

    2012-02-01

    Red blood cells (RBCs) aggregate in the presence of increased plasma fibrinogen and low shear forces during blood flow. RBC aggregation has been observed in deep vein thrombosis, sepsis and diabetes. We propose using photoacoustics (PA) as a non-invasive imaging modality to detect RBC aggregation. The theoretical and experimental feasibility of PA for detecting and characterizing aggregation was assessed. A simulation study was performed to generate PA signals from non-aggregated and aggregated RBCs using a frequency domain approach and to study the PA signals' dependence on hematocrit and aggregate size. The effect of the finite bandwidth nature of transducers on the PA power spectra was also investigated. Experimental confirmation of theoretical results was conducted using porcine RBC samples exposed to 1064 nm optical wavelength using the Imagio Small Animal PA imaging system (Seno Medical Instruments, Inc., San Antonio, TX). Aggregation was induced with Dextran-70 (Sigma-Aldrich, St. Louis, MO) and the effect of hematocrit and aggregation level was investigated. The theoretical and experimental PA signal amplitude increased linearly with increasing hematocrit. The theoretical dominant frequency content of PA signals shifted towards lower frequencies (<30 MHz) and 9 dB enhancements in spectral power were observed as the size of aggregates increased compared to non-aggregating RBCs. Calibration of the PA spectra with the transducer response obtained from a 200 nm gold film was performed to remove system dependencies. Analysis of the spectral parameters from the calibrated spectra suggested that PA can assess the degree of aggregation at multiple hematocrit and aggregation levels.

  16. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    PubMed Central

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains. PMID:28045119

  17. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes.

    PubMed

    Himbert, Sebastian; Alsop, Richard J; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M; Verschoor, Chris P; Bowdish, Dawn M E; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C

    2017-01-03

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  18. The Molecular Structure of Human Red Blood Cell Membranes from Highly Oriented, Solid Supported Multi-Lamellar Membranes

    NASA Astrophysics Data System (ADS)

    Himbert, Sebastian; Alsop, Richard J.; Rose, Markus; Hertz, Laura; Dhaliwal, Alexander; Moran-Mirabal, Jose M.; Verschoor, Chris P.; Bowdish, Dawn M. E.; Kaestner, Lars; Wagner, Christian; Rheinstädter, Maikel C.

    2017-01-01

    We prepared highly oriented, multi-lamellar stacks of human red blood cell (RBC) membranes applied on silicon wafers. RBC ghosts were prepared by hemolysis and applied onto functionalized silicon chips and annealed into multi-lamellar RBC membranes. High resolution X-ray diffraction was used to determine the molecular structure of the stacked membranes. We present direct experimental evidence that these RBC membranes consist of nanometer sized domains of integral coiled-coil peptides, as well as liquid ordered (lo) and liquid disordered (ld) lipids. Lamellar spacings, membrane and hydration water layer thicknesses, areas per lipid tail and domain sizes were determined. The common drug aspirin was added to the RBC membranes and found to interact with RBC membranes and preferably partition in the head group region of the lo domain leading to a fluidification of the membranes, i.e., a thinning of the bilayers and an increase in lipid tail spacing. Our results further support current models of RBC membranes as patchy structures and provide unprecedented structural details of the molecular organization in the different domains.

  19. Interaction of injectable neurotropic drugs with the red cell membrane.

    PubMed

    Reinhart, Walter H; Lubszky, Szabina; Thöny, Sandra; Schulzki, Thomas

    2014-10-01

    The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes.

  20. Red blood cell metallothionein as an indicator of zinc status during pregnancy RBC metallothionein, zinc status and pregnancy

    PubMed Central

    Caulfield, Laura E.; Donangelo, Carmen M.; Chen, Ping; Junco, Jorge; Merialdi, Mario; Zavaleta, Nelly

    2008-01-01

    Objective to describe the levels and patterns of change in red blood cell (RBC) metallothionein (MT) during pregnancy and the neonate, and relate RBCMT to other indicators of zinc and iron status. Research Methods & Procedures As part of a double-masked controlled trial of prenatal zinc supplementation among 242 Peruvian pregnant women, we determined RBCMT at enrollment (10–16 wk), 28 and 36 wk gestation, and in the cord blood at delivery in 158 women (86 who received daily supplements containing 60 mg iron and 250 ug folic acid, and 72 whose supplements also contained 25 mg zinc). In addition we measured plasma and urinary zinc concentrations, and hemoglobin and serum ferritin, and on a limited sample, we measured RBC zinc and placental MT. Results RBCMT increased during pregnancy, and levels in the cord blood approximated maternal values at 36 wk. Only RBC zinc at 36 wk differed by supplement type (P <0.05). Increases in RBCMT over pregnancy were however, related to early pregnancy RBC zinc and inversely with the decline in plasma zinc from baseline to 36 weeks gestation. Conclusion Changes in RBCMT throughout pregnancy were consistent with the hypothesized role of MT in regulating zinc homeostasis. RBCMT appears to not be responsive during pregnancy to changes in zinc status achieved with supplements. PMID:18602250

  1. Changes in Band 3 oligomeric state precede cell membrane phospholipid loss during blood bank storage of red blood cells

    PubMed Central

    Karon, Brad S.; Hoyer, James D.; Stubbs, James R.; Thomas, David D.

    2013-01-01

    BACKGROUND Lipid loss in the form of vesicles contributes to the red blood cell (RBC) storage lesion, and this loss of lipid is correlated with changes in membrane protein function. Sensitive spectroscopic techniques were used to measure changes in Band 3 oligomeric state during storage of RBCs, compared to metabolic changes and phospholipid loss. The aim of the study was to determine whether changes in the macromolecular organization of membrane proteins occur before, coincident with, or after lipid loss during RBC storage. STUDY DESIGN AND METHODS Five RBC units were collected from normal volunteers and stored under standard blood bank conditions, and both metabolic changes and lipid loss were measured by multiple assays. Band 3 oligomeric state was assessed by time-resolved phosphorescence anisotropy and fluorescence resonance energy transfer of eosin-5-maleimide–labeled RBC ghosts. RESULTS Extracellular pH decreased and extracellular potassium increased rapidly during cold storage of blood. Band 3 on the RBC membrane exhibited a shift from small to large oligomers early in the storage period and before detectable loss of phospholipid from the RBC membrane. The immobilized fraction of Band 3, that which is tethered to the cytoskeletal network via spectrin and ankyrin, did not change during cold storage. CONCLUSION Our results demonstrate that changes in the macromolecular organization of membrane proteins on the RBC occur early in storage, and these changes may induce phospholipid loss, irreversible morphologic changes, and loss of function during RBC storage. PMID:19389033

  2. How malaria merozoites reduce the deformability of infected RBC

    NASA Astrophysics Data System (ADS)

    Hosseini, Majid; Feng, James

    2011-11-01

    This talk presents a three-dimensional particle-based model for the red blood cell (RBC), and uses it to explore the changes in the deformability of RBC due to presence of malaria parasite. The cell membrane is represented by a set of discrete particles connected by nonlinear springs that represent shear and bending elasticity. The cytoplasm and the external liquid are modeled as homogeneous Newtonian fluids, and discretized by particles as in standard smoothed-particle-hydrodynamics models. The merozoite is modeled as an aggregate of particles constrained to rigid-body motion. The fluid flow and membrane deformation are computed, via the particle motion, by a two-step explicit scheme, with model parameters determined from experiments. The stretching of healthy and infected RBC by optical tweezers has been simulated to investigate the contribution of rigid merozoites to the decrease in deformability. Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada.

  3. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects.

    PubMed

    Zhao, Yannan; Sun, Xiaoxing; Zhang, Guannan; Trewyn, Brian G; Slowing, Igor I; Lin, Victor S-Y

    2011-02-22

    The interactions of mesoporous silica nanoparticles (MSNs) of different particle sizes and surface properties with human red blood cell (RBC) membranes were investigated by membrane filtration, flow cytometry, and various microscopic techniques. Small MCM-41-type MSNs (∼100 nm) were found to adsorb to the surface of RBCs without disturbing the membrane or morphology. In contrast, adsorption of large SBA-15-type MSNs (∼600 nm) to RBCs induced a strong local membrane deformation leading to spiculation of RBCs, internalization of the particles, and eventual hemolysis. In addition, the relationship between the degree of MSN surface functionalization and the degree of its interaction with RBC, as well as the effect of RBC-MSN interaction on cellular deformability, were investigated. The results presented here provide a better understanding of the mechanisms of RBC-MSN interaction and the hemolytic activity of MSNs and will assist in the rational design of hemocompatible MSNs for intravenous drug delivery and in vivo imaging.

  4. The study on RBC characteristic in paroxysmal nocturnal hemoglobinuria (PNH) patients using common path interferometric quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Park, Byung Jun; Won, Youngjae; Kim, Byungyeon; Lee, Seungrag

    2016-03-01

    We have studied the RBC membrane properties between a normal RBC and a RBC in Paroxysrnal nocturnal hemoglobinuria (PNH) patient using common path interferometric quantitative phase microscopy (CPIQPM). CPIQPM system has provided the subnanometer optical path length sensitivity on a millisecond. We have measured the dynamic thickness fluctuations of a normal RBC membrane and a RBC membrane in PNH patient over the whole cell surface with CPIQPM. PNH is a rare and serious disease of blood featured by destruction of red blood cells (RBCs). This destruction happens since RBCs show the defect of protein which protects RBCs from the immune system. We have applied CPIQPM to study the characteristic of RBC membrane in PNH patient. We have shown the morphological shape, volume, and projected surface for both different RBC types. The results have showed both RBCs had the similar shape with donut, but membrane fluctuations in PNH patient was shown to reveal the difference of temporal properties compared with a normal RBC. In order to demonstrate the practical tool of the CPIQPM technique, we have also obtained the time series thickness fluctuation outside a cell.

  5. Symmetry recovery of cell-free layer after bifurcations of small arterioles in reduced flow conditions: effect of RBC aggregation.

    PubMed

    Ng, Yan Cheng; Namgung, Bumseok; Tien, Sim Leng; Leo, Hwa Liang; Kim, Sangho

    2016-08-01

    Heterogeneous distribution of red blood cells (RBCs) in downstream vessels of arteriolar bifurcations can be promoted by an asymmetric formation of cell-free layer (CFL) in upstream vessels. Consequently, the CFL widths in subsequent downstream vessels become an important determinant for tissue oxygenation (O2) and vascular tone change by varying nitric oxide (NO) availability. To extend our previous understanding on the formation of CFL in arteriolar bifurcations, this study investigated the formation of CFL widths from 2 to 6 vessel-diameter (2D-6D) downstream of arteriolar bifurcations in the rat cremaster muscle (D = 51.5 ± 1.3 μm). As the CFL widths are highly influenced by RBC aggregation, the degree of aggregation was adjusted to simulate levels seen during physiological and pathological states. Our in vivo experimental results showed that the asymmetry of CFL widths persists along downstream vessels up to 6D from the bifurcating point. Moreover, elevated levels of RBC aggregation appeared to retard the recovery of CFL width symmetry. The required length of complete symmetry recovery was estimated to be greater than 11D under reduced flow conditions, which is relatively longer than interbifurcation distances of arterioles for vessel diameter of ∼50 μm. In addition, our numerical prediction showed that the persistent asymmetry of CFL widths could potentially result in a heterogeneous vasoactivity over the entire arteriolar network in such abnormal flow conditions.

  6. RBC nuclear scan

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003835.htm RBC nuclear scan To use the sharing features on this page, please enable JavaScript. An RBC nuclear scan uses small amounts of radioactive material to ...

  7. Composite fuel cell membranes

    DOEpatents

    Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

    1997-08-05

    A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  8. Composite fuel cell membranes

    DOEpatents

    Plowman, Keith R.; Rehg, Timothy J.; Davis, Larry W.; Carl, William P.; Cisar, Alan J.; Eastland, Charles S.

    1997-01-01

    A bilayer or trilayer composite ion exchange membrane suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

  9. Transformation of membrane nanosurface of red blood cells under hemin action

    NASA Astrophysics Data System (ADS)

    Kozlova, Elena; Chernysh, Alexander; Moroz, Victor; Gudkova, Olga; Sergunova, Victoria; Kuzovlev, Artem

    2014-08-01

    Hemin is the product of hemoglobin oxidation. Some diseases may lead to a formation of hemin. The accumulation of hemin causes destruction of red blood cells (RBC) membranes. In this study the process of development of topological defects of RBC membranes within the size range from nanoscale to microscale levels is shown. The formation of the grain-like structures in the membrane (``grains'') with typical sizes of 120-200 nm was experimentally shown. The process of formation of ``grains'' was dependent on the hemin concentration and incubation time. The possible mechanism of membrane nanostructure alterations is proposed. The kinetic equations of formation and transformation of small and medium topological defects were analyzed. This research can be used to study the cell intoxication and analyze the action of various agents on RBC membranes.

  10. Mechanical clearance of red blood cells by the human spleen: Potential therapeutic applications of a biomimetic RBC filtration method.

    PubMed

    Duez, J; Holleran, J P; Ndour, P A; Pionneau, C; Diakité, S; Roussel, C; Dussiot, M; Amireault, P; Avery, V M; Buffet, P A

    2015-08-01

    During their lifespan, circulating RBC are frequently checked for their deformability. This mechanical quality control operates essentially in the human spleen. RBC unable to squeeze though narrow splenic slits are retained and cleared from the blood circulation. Under physiological conditions this prevents microvessels from being clogged by senescent, rigid RBC. Retention of poorly deformable RBC is an important determinant of pathogenesis in malaria and may also impact the clinical benefit of transfusion. Modulating the splenic retention of RBC has already been proposed to support therapeutic approaches in these research fields. To this aim, the development of microplates for high throughput filtration of RBC through microsphere layers (microplate-based microsphiltration) has been undertaken. This review focuses on potential therapeutic applications provided by this technology in malaria chemotherapy and transfusion.

  11. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells.

    PubMed

    Kats, Lev M; Proellocks, Nicholas I; Buckingham, Donna W; Blanc, Lionel; Hale, John; Guo, Xinhua; Pei, Xinhong; Herrmann, Susann; Hanssen, Eric G; Coppel, Ross L; Mohandas, Narla; An, Xiuli; Cooke, Brian M

    2015-07-01

    During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.

  12. Investigation of membrane mechanics using spring networks: application to red-blood-cell modelling.

    PubMed

    Chen, Mingzhu; Boyle, Fergal J

    2014-10-01

    In recent years a number of red-blood-cell (RBC) models have been proposed using spring networks to represent the RBC membrane. Some results predicted by these models agree well with experimental measurements. However, the suitability of these membrane models has been questioned. The RBC membrane, like a continuum membrane, is mechanically isotropic throughout its surface, but the mechanical properties of a spring network vary on the network surface and change with deformation. In this work spring-network mechanics are investigated in large deformation for the first time via an assessment of the effect of network parameters, i.e. network mesh, spring type and surface constraint. It is found that a spring network is conditionally equivalent to a continuum membrane. In addition, spring networks are employed for RBC modelling to replicate the optical tweezers test. It is found that a spring network is sufficient for modelling the RBC membrane but strain-hardening springs are required. Moreover, the deformation profile of a spring network is presented for the first time via the degree of shear. It is found that spring-network deformation approaches continuous as the mesh density increases.

  13. Membrane in cancer cells

    SciTech Connect

    Galeotti, T.; Cittadini, A.; Neri, G.; Scarpa, A.

    1988-01-01

    This book contains papers presented at a conference on membranes in cancer cells. Topics covered include Oncogenies, hormones, and free-radical processes in malignant transformation in vitro and Superoxide onion may trigger DNA strand breaks in human granulorytes by acting as a membrane target.

  14. Red blood cell membrane viscoelasticity, agglutination and zeta potential measurements with double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; de Ysasa Pozzo, Liliana; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-02-01

    The red blood cell (RBC) viscoelastic membrane contains proteins and glycolproteins embedded in, or attached, to a fluid lipid bilayer and are negatively charged, which creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. There are techniques, however, to decrease the zeta potential to allow cell agglutination which are the basis of most of the tests of antigen-antibody interactions in blood banks. This report shows the use of a double optical tweezers to measure RBC membrane viscosity, agglutination and zeta potential. In our technique one of the optical tweezers trap a silica bead that binds strongly to a RBC at the end of a RBCs rouleaux and, at the same time, acts as a pico-Newton force transducer, after calibration through its displacement from the equilibrium position. The other optical tweezers trap the RBC at the other end. To measure the membrane viscosity the optical force is measured as a function of the velocity between the RBCs. To measure the adhesion the tweezers are slowly displaced apart until the RBCs disagglutination happens. The RBC zeta potential is measured in two complimentary ways, by the force on the silica bead attached to a single RBC in response to an applied electric field, and the conventional way, by the measurement of terminal velocity of the RBC after released from the optical trap. These two measurements provide information about the RBC charges and, also, electrolytic solution properties. We believe this can improve the methods of diagnosis in blood banks.

  15. Rheological properties of RBC in the microcirculation of mammalian skeletal muscle. [red blood cells

    NASA Technical Reports Server (NTRS)

    Ehrenberg, M. H.

    1974-01-01

    In the investigation the established technique of direct microscopic viewing was combined with the use of a closed circuit television system and cinematography. The red cell flow patterns in all capillaries were found to be oscillatory with characteristic cycle frequencies and amplitudes for all concentrations of inspired oxygen greater than 8%. Generally, there was a transient decrease in mean flow rate with increasing severity of hypoxia, with a gradual return toward control values. Red cell flow patterns are discussed along with questions of red cell configuration.

  16. Modeling of band-3 protein diffusion in the normal and defective red blood cell membrane.

    PubMed

    Li, He; Zhang, Yihao; Ha, Vi; Lykotrafitis, George

    2016-04-21

    We employ a two-component red blood cell (RBC) membrane model to simulate lateral diffusion of band-3 proteins in the normal RBC and in the RBC with defective membrane proteins. The defects reduce the connectivity between the lipid bilayer and the membrane skeleton (vertical connectivity), or the connectivity of the membrane skeleton itself (horizontal connectivity), and are associated with the blood disorders of hereditary spherocytosis (HS) and hereditary elliptocytosis (HE) respectively. Initially, we demonstrate that the cytoskeleton limits band-3 lateral mobility by measuring the band-3 macroscopic diffusion coefficients in the normal RBC membrane and in a lipid bilayer without the cytoskeleton. Then, we study band-3 diffusion in the defective RBC membrane and quantify the relation between band-3 diffusion coefficients and percentage of protein defects in HE RBCs. In addition, we illustrate that at low spectrin network connectivity (horizontal connectivity) band-3 subdiffusion can be approximated as anomalous diffusion, while at high horizontal connectivity band-3 diffusion is characterized as confined diffusion. Our simulations show that the band-3 anomalous diffusion exponent depends on the percentage of protein defects in the membrane cytoskeleton. We also confirm that the introduction of attraction between the lipid bilayer and the spectrin network reduces band-3 diffusion, but we show that this reduction is lower than predicted by the percolation theory. Furthermore, we predict that the attractive force between the spectrin filament and the lipid bilayer is at least 20 times smaller than the binding forces at band-3 and glycophorin C, the two major membrane binding sites. Finally, we explore diffusion of band-3 particles in the RBC membrane with defects related to vertical connectivity. We demonstrate that in this case band-3 diffusion can be approximated as confined diffusion for all attraction levels between the spectrin network and the lipid bilayer

  17. [Role of protein kinases of human red cell membrane in deformability and aggregation changes].

    PubMed

    Murav'ev, A V; Maĭmistova, A A; Tikhomirova, I A; Bulaeva, S V; Mikhaĭlov, P V; Murav'ev, A A

    2012-01-01

    The proteomic analysis has showed that red cell membrane contains several kinases and phosphatases. Therefore the aim of this study was to investigate the role of protein kinases of human red cell membrane in deformability and aggregation changes. Exposure of red blood cells (RBCs) to some chemical compounds led to change in the RBC microrheological properties. When forskolin (10 microM), an adenylyl cyclase (AC) and a protein kinase A (PKA) stimulator was added to RBC suspension, the RBC deformability (RBCD) was increased by 20% (p < 0.05). Somewhat more significant deformability rise appeared after RBC incubation with dB-AMP (by 26%; p < 0.01). Red cell aggregation (RBCA) was significantly decreased under these conditions (p < 0.01). Markedly less changes of deformability was found after RBC incubation with protein kinase stimulator C (PKC)--phorbol 12-myristate 13-acetate (PMA). This drug reduced red cell aggregation only slightly. It was inhibited red cell tyrosine phosphotase activity by N-vanadat and was obtained a significant RBCD rise and RBCA lowering. The similar effect was found when cells were incubated with cisplatin as a tyrosine protein kinase (TPK) activator. It is important to note that a selective TPK inhibitor--lavendustin eliminated the above mention effects. On the whole the total data clearly show that the red cell aggregation and deformation changes were connected with an activation of the different intracellular signaling pathways.

  18. Membrane Cells for Brine Electrolysis.

    ERIC Educational Resources Information Center

    Tingle, M.

    1982-01-01

    Membrane cells were developed as alternatives to mercury and diaphragm cells for the electrolysis of brine. Compares the three types of cells, focusing on the advantages and disadvantages of membrane cells. (JN)

  19. Cyclosporin A-associated changes in red blood cell membrane composition, deformability, blood and plasma viscosity in rats.

    PubMed

    Ademoglu, Evin; Tamer, Sule; Albeniz, Isil; Gokkusu, Cahide; Tanrikulu, Sevda

    2004-01-01

    Most of the studies concerning the effects of cyclosporin A (Cs A) on red blood cell (RBC) rheology were carried out in human transplant recipients who may still have residual insufficiency and concomitant administration of other immunosuppressive and antihypertensive drugs. The aim of this study is to evaluate the effects of Cs A on red cell rheology and membrane composition in nontransplant healthy rats. Female Wistar albino rats were divided into two groups of 10 animals each. Rats received 10 mg/kg Cs A, i.p. or saline for 4 weeks. Cs A administration significantly increased the RBC deformability, and plasma and blood viscosity (p < 0.001, p < 0.01 and p < 0.01, respectively). Cs A administration to the rats increased RBC membrane cholesterol (CHO) levels and the CHO/phospholipid (PL) ratio significantly (p < 0.01 and p < 0.05, respectively) but did not change RBC membrane proteins and membrane PL levels. These results suggest that Cs A changes the rheological functions of RBC and lipid content of RBC membrane in healthy rats and thereby it may play an important role in the regulation of microcirculation.

  20. Antigens protected functional red blood cells by the membrane grafting of compact hyperbranched polyglycerols.

    PubMed

    Chapanian, Rafi; Constantinescu, Iren; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran

    2013-01-02

    Red blood cell (RBC) transfusion is vital for the treatment of a number of acute and chronic medical problems such as thalassemia major and sickle cell anemia. Due to the presence of multitude of antigens on the RBC surface (~308 known antigens), patients in the chronic blood transfusion therapy develop alloantibodies due to the miss match of minor antigens on transfused RBCs. Grafting of hydrophilic polymers such as polyethylene glycol (PEG) and hyperbranched polyglycerol (HPG) forms an exclusion layer on RBC membrane that prevents the interaction of antibodies with surface antigens without affecting the passage of small molecules such as oxygen, glucose, and ions. At present no method is available for the generation of universal red blood donor cells in part because of the daunting challenge presented by the presence of large number of antigens (protein and carbohydrate based) on the RBC surface and the development of such methods will significantly improve transfusion safety, and dramatically improve the availability and use of RBCs. In this report, the experiments that are used to develop antigen protected functional RBCs by the membrane grafting of HPG and their characterization are presented. HPGs are highly biocompatible compact polymers, and are expected to be located within the cell glycocalyx that surrounds the lipid membrane and mask RBC surface antigens.

  1. Fuel cell membrane humidification

    DOEpatents

    Wilson, Mahlon S.

    1999-01-01

    A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

  2. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    SciTech Connect

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.; Masouredis, S.P. )

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.

  3. Red blood cell shape and deformability in the context of the functional evolution of its membrane structure.

    PubMed

    Svetina, Saša

    2012-06-01

    It is proposed that it is possible to identify some of the problems that had to be solved in the course of evolution for the red blood cell (RBC) to achieve its present day effectiveness, by studying the behavior of systems featuring different, partial characteristics of its membrane. The appropriateness of the RBC volume to membrane area ratio for its circulation in the blood is interpreted on the basis of an analysis of the shape behavior of phospholipid vesicles. The role of the membrane skeleton is associated with preventing an RBC from transforming into a budded shape, which could form in its absence due to curvature-dependent transmembrane protein-membrane interaction. It is shown that, by causing the formation of echinocytes, the skeleton also acts protectively when, in vesicles with a bilayer membrane, the budded shapes would form due to increasing difference between the areas of their outer and inner layers.

  4. Biological Fuel Cells and Membranes.

    PubMed

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-17

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  5. Biological Fuel Cells and Membranes

    PubMed Central

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-01

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells. PMID:28106711

  6. The First Cell Membranes

    NASA Astrophysics Data System (ADS)

    Deamer, David; Dworkin, Jason P.; Sandford, Scott A.; Bernstein, Max P.; Allamandola, Louis J.

    2002-12-01

    Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous species. Some of these compounds are amphiphilic, having polar and nonpolar groups on the same molecule. Amphiphilic compounds spontaneously self-assemble into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to have been produced from amphiphilic compounds on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. The goal of future investigations will be to fabricate artificial cells as models of the origin of life.

  7. The First Cell Membranes

    NASA Technical Reports Server (NTRS)

    Deamer, David; Dworkin, Jason P.; Sandford, Scott A.; Bernstein, Max P.; Allamandola, Louis J.

    2004-01-01

    Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous organic mixtures. Some of these compounds are amphiphilic, having polar and non-polar groups on the same molecule. Amphiphilic compounds spontaneously self-assembly into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to be available on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. A goal of future investigations is to fabricate artificial cells as models of the origin of life.

  8. RBC aggregation: laboratory data and models.

    PubMed

    Meiselman, H J; Neu, B; Rampling, M W; Baskurt, O K

    2007-01-01

    The reversible aggregation of red blood cells (RBC) into linear and three-dimensional structures continues to be of basic science and clinical interest: RBC aggregation affects low shear blood viscosity and microvascular flow dynamics, and can be markedly enhanced in several clinical states. Until fairly recently, most research efforts were focused on relations between suspending medium composition (i.e., protein levels, polymer type and concentration) and aggregate formation. However, there is now an increasing amount of experimental evidence indicating that RBC cellular properties can markedly affect aggregation, with the term "RBC aggregability" coined to describe the cell's intrinsic tendency to aggregate. Variations of aggregability can be large, with some changes of aggregation substantially greater than those resulting from pathologic states. The present review provides a brief overview of this topic, and includes such areas as donor-to-donor variations, polymer-plasma correlations, effects of RBC age, effects of enzymatic treatment, and current developments related to the mechanisms involved in RBC aggregation.

  9. Cell Membrane Softening in Cancer Cells

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Händel, Chris; Käs, Josef

    Biomechanical properties are useful characteristics and regulators of the cell's state. Current research connects mechanical properties of the cytoskeleton to many cellular processes but does not investigate the biomechanics of the plasma membrane. We evaluated thermal fluctuations of giant plasma membrane vesicles, directly derived from the plasma membranes of primary breast and cervical cells and observed a lowered rigidity in the plasma membrane of malignant cells compared to non-malignant cells. To investigate the specific role of membrane rigidity changes, we treated two cell lines with the Acetyl-CoA carboxylase inhibitor Soraphen A. It changed the lipidome of cells and drastically increased membrane stiffness by up regulating short chained membrane lipids. These altered cells had a decreased motility in Boyden chamber assays. Our results indicate that the thermal fluctuations of the membrane, which are much smaller than the fluctuations driven by the cytoskeleton, can be modulated by the cell and have an impact on adhesion and motility.

  10. Inhibition of membrane Na(+)-K+ Atpase of the brain, liver and RBC in rats administered di(2-ethyl hexyl) phthalate (DEHP) a plasticizer used in polyvinyl chloride (PVC) blood storage bags.

    PubMed

    Dhanya, C R; Indu, A R; Deepadevi, K V; Kurup, P A

    2003-08-01

    Significant amounts of di(2-ethylhexyl) phthalate (DEHP) leach out into blood stored in DEHP plasticized polyvinyl chloride (PVC) bags resulting in the exposure of recipients of blood transfusion to this compound. The aim of this study was to find out whether DEHP at these low levels has any effect on the activity of membrane Na(+)-K+ ATPase, since a decrease in this enzyme activity has been reported to take place in a number of disorders like neurodegenerative and psychiatric disorders, coronary artery disease and stroke, syndrome-X, tumours etc. DEHP was administered (ip) at a low dose of 750 microg/100 g body weight to rats and the activity of membrane Na(+)-K+ ATPase in liver, brain and RBC was estimated. Histopathology of brain, activity of HMG CoA reductase (a major rate limiting enzyme in the isoprenoid pathway of which digoxin, the physiological inhibitor of Na(+)-K+ ATPase is a product), intracellular concentration of Ca2+ and Mg2+ in RBC (which is altered as a result of inhibition of Na(+)-K+ ATPase) were also studied. (In the light of the observation of increase of intracellular Ca2+ load and intracellular depletion of Mg2+ when Na(+)-K+ ATPase is inhibited). Histopathology of brain revealed areas of degeneration in the rats administered DEHP. There was significant inhibition of membrane Na(+)-K+ ATPase in brain, liver and RBC. Intracellular Ca2+ increased in the RBC while intracellular Mg2+ decreased. However activity of hepatic HMG CoA reductase decreased. Activity of Na(+)-K+ ATPase and HMG CoA reductase, however returned to normal levels within 7 days of stopping administration of DEHP. The inhibition of membrane Na(+)-K+ ATPase activity by DEHP may indicate the possibility of predisposing recipients of transfusion of blood or hemodialysis to the various disorders mentioned above. However since this effect is reversed when DEHP administration is stopped, it may not be a serious problem in the case of a few transfusion; but in patients receiving

  11. Spectrin-ankyrin interaction mechanics: A key force balance factor in the red blood cell membrane skeleton.

    PubMed

    Saito, Masakazu; Watanabe-Nakayama, Takahiro; Machida, Shinichi; Osada, Toshiya; Afrin, Rehana; Ikai, Atsushi

    2015-01-01

    As major components of red blood cell (RBC) cytoskeleton, spectrin and F-actin form a network that covers the entire cytoplasmic surface of the plasma membrane. The cross-linked two layered structure, called the membrane skeleton, keeps the structural integrity of RBC under drastically changing mechanical environment during circulation. We performed force spectroscopy experiments on the atomic force microscope (AFM) as a means to clarify the mechanical characteristics of spectrin-ankyrin interaction, a key factor in the force balance of the RBC cytoskeletal structure. An AFM tip was functionalized with ANK1-62k and used to probe spectrin crosslinked to mica surface. A force spectroscopy study gave a mean unbinding force of ~30 pN under our experimental conditions. Two energy barriers were identified in the unbinding process. The result was related to the well-known flexibility of spectrin tetramer and participation of ankyrin 1-spectrin interaction in the overall balance of membrane skeleton dynamics.

  12. Fuel cell with ionization membrane

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    2007-01-01

    A fuel cell is disclosed comprising an ionization membrane having at least one area through which gas is passed, and which ionizes the gas passing therethrough, and a cathode for receiving the ions generated by the ionization membrane. The ionization membrane may include one or more openings in the membrane with electrodes that are located closer than a mean free path of molecules within the gas to be ionized. Methods of manufacture are also provided.

  13. Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates.

    PubMed

    Blair, Harry C; Sepulveda, Jorge; Papachristou, Dionysios J

    2016-03-01

    Macrophages recycle components of dead cells, including cell membranes. When quantities of lipids from cell membranes of dead cells exceed processing capacity, phospholipid and cholesterol debris accumulate as atheromas. Plasma lipid profiles, particularly HDL and LDL cholesterol, are important tools to monitor atherosclerosis risk. Membrane lipids are exported, as triglycerides or phospholipids, or as cholesterol or cholesterol esters, via lipoproteins for disposal, for re-use in cell membranes, or for fat storage. Alternative assays evaluate other aspects of lipid pathology. A key process underlying atherosclerosis is backup of macrophage fatty acid catabolism. This can be quantified by accumulation of acylcarnitine intermediates in extracellular fluid, a direct assay of adequacy of β-oxidation to deal with membrane fatty acid recycling. Further, membranes of somatic cells, such as red blood cells (RBC), incorporate fatty acids that reflect dietary intake. Changes in RBC lipid composition occur within days of ingesting modified fats. Since diets with high saturated fat content or artificial trans-fatty acids promote atherosclerosis, RBC lipid content shifts occur with atherosclerosis, and can show cellular adaptation to pathologically stiff membranes by increased long-chain doubly unsaturated fatty acid production. Additional metabolic changes with atherosclerosis of potential utility include inflammatory cytokine production, modified macrophage signaling pathways, and altered lipid-handling enzymes. Even after atherosclerotic lesions appear, approaches to minimize macrophage overload by reducing rate of fat metabolism are promising. These include preventive measures, and drugs including statins and the newer PCSK9 inhibitors. New cell-based biochemical and cytokine assays provide data to prevent or monitor atherosclerosis progression.

  14. RBC micromotors carrying multiple cargos towards potential theranostic applications

    NASA Astrophysics Data System (ADS)

    Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph

    2015-08-01

    Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic

  15. The Molecules of the Cell Membrane.

    ERIC Educational Resources Information Center

    Bretscher, Mark S.

    1985-01-01

    Cell membrane molecules form a simple, two-dimensional liquid controlling what enters and leaves the cell. Discusses cell membrane molecular architecture, plasma membranes, epithelial cells, cycles of endocytosis and exocytosis, and other topics. Indicates that some cells internalize, then recycle, membrane area equivalent to their entire surface…

  16. Extraction methods of red blood cell membrane proteins for Multidimensional Protein Identification Technology (MudPIT) analysis.

    PubMed

    De Palma, Antonella; Roveri, Antonella; Zaccarin, Mattia; Benazzi, Louise; Daminelli, Simone; Pantano, Giorgia; Buttarello, Mauro; Ursini, Fulvio; Gion, Massimo; Mauri, Pier Luigi

    2010-08-13

    Since red blood cells (RBCs) lack nuclei and organelles, cell membrane is their main load-bearing component and, according to a dynamic interaction with the cytoskeleton compartment, plays a pivotal role in their functioning. Even if erythrocyte membranes are available in large quantities, the low abundance and the hydrophobic nature of cell membrane proteins complicate their purification and detection by conventional 2D gel-based proteomic approaches. So, in order to increase the efficiency of RBC membrane proteome identification, here we took advantage of a simple and reproducible membrane sub-fractionation method coupled to Multidimensional Protein Identification Technology (MudPIT). In addition, the adoption of a stringent RBC filtration strategy from the whole blood, permitted to remove exhaustively contaminants, such as platelets and white blood cells, and to identify a total of 275 proteins in the three RBC membrane fractions collected and analysed. Finally, by means of software for the elaboration of the great quantity of data obtained and programs for statistical analysis and protein classification, it was possible to determine the validity of the entire system workflow and to assign the proper sub-cellular localization and function for the greatest number of the identified proteins.

  17. Preliminary Evidence for Cell Membrane Amelioration in Children with Cystic Fibrosis by 5-MTHF and Vitamin B12 Supplementation: A Single Arm Trial

    PubMed Central

    Scambi, Cinzia; De Franceschi, Lucia; Guarini, Patrizia; Poli, Fabio; Siciliano, Angela; Pattini, Patrizia; Biondani, Andrea; La Verde, Valentina; Bortolami, Oscar; Turrini, Francesco; Carta, Franco; D'Orazio, Ciro; Assael, Baroukh M.; Faccini, Giovanni; Bambara, Lisa M.

    2009-01-01

    Background Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis. Methodology and Principal Findings A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K+ content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association. Conclusion and Significance 5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF. Trial Registration ClinicalTrials.gov NCT00730509 PMID:19277125

  18. Erythrocyte oxidative stress is associated with cell deformability in patients with retinal vein occlusion.

    PubMed

    Becatti, M; Marcucci, R; Gori, A M; Mannini, L; Grifoni, E; Alessandrello Liotta, A; Sodi, A; Tartaro, R; Taddei, N; Rizzo, S; Prisco, D; Abbate, R; Fiorillo, C

    2016-11-01

    Essentials Retinal vein occlusion (RVO), characterized by blood hyperviscosity, has an unclear pathogenesis. We aimed to find out if hemorheological profile is altered by oxidative stress in RVO patients. Red blood cell (RBC) oxidative stress is associated to whole blood viscosity and RBC deformability. Reactive oxygen species alter RBC membrane rigidity, playing a key role in RVO pathogenesis.

  19. Corrugated Membrane Fuel Cell Structures

    SciTech Connect

    Grot, Stephen

    2013-09-30

    One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

  20. Marathon Running Fails to Influence RBC Survival Rates in Iron-Replete Women.

    ERIC Educational Resources Information Center

    Steenkamp, Irene; And Others

    1986-01-01

    This study used radiolabeling to measure red blood cell (RBC) survival rates in six iron-replete female marathon runners, and urinary tests were conducted to search for secondary evidence of RBC damage. The hypothesized RBC fragmentation was not disclosed. (Author/MT)

  1. RBC micromotors carrying multiple cargos towards potential theranostic applications.

    PubMed

    Wu, Zhiguang; Esteban-Fernández de Ávila, Berta; Martín, Aída; Christianson, Caleb; Gao, Weiwei; Thamphiwatana, Soracha Kun; Escarpa, Alberto; He, Qiang; Zhang, Liangfang; Wang, Joseph

    2015-08-28

    Red blood cell (RBC)-based micromotors containing both therapeutic and diagnostic modalities are described as a means for potential theranostic applications. In this natural RBC-based multicargo-loaded micromotor system, quantum dots (QDs), anti-cancer drug doxorubicin (DOX), and magnetic nanoparticles (MNPs), were co-encapsulated into RBC micromotors. The fluorescent emission of both QDs and DOX provides direct visualization of their loading inside the RBC motors at two distinct wavelengths. The presence of MNPs within the RBCs allows for efficient magnetic guidance under ultrasound propulsion along with providing the potential for magnetic resonance imaging. The simultaneous encapsulation of the imaging nanoparticles and therapeutic payloads within the same RBC micromotor has a minimal effect upon its propulsion behavior. The ability of the RBC micromotors to transport imaging and therapeutic agents at high speed and spatial precision through a complex microchannel network is also demonstrated. Such ability to load and transport diagnostic imaging agents and therapeutic drugs within a single cell-based motor, in addition to a lower toxicity observed once the drug is encapsulated within the multicargo RBC motor, opens the door to the development of theranostic micromotors that may simultaneously treat and monitor diseases.

  2. Dicarboxylic acids with limited numbers of hydrocarbons stabilize cell membrane and increase osmotic resistance in rat erythrocytes.

    PubMed

    Mineo, Hitoshi; Amita, Nozomi; Kawawake, Megumi; Higuchi, Ayaka

    2013-11-01

    We examined the effect of dicarboxylic acids having 0 to 6 hydrocarbons and their corresponding monocarboxylic or tricarboxylic acids in changing the osmotic fragility (OF) in rat red blood cells (RBCs). Malonic, succinic, glutaric and adipic acids, which are dicarboxylic acids with 1, 2, 3 and 4 straight hydrocarbons located between two carboxylic groups, decreased the OF in a concentration-dependent manner. Other long-chain dicarboxylic acids did not change the OF in rat RBCs. The benzoic acid derivatives, isophthalic and terephthalic acids, but not phthalic acid, decreased the OF in a concentration-dependent manner. Benzene-1,2,3-tricarboxylic acid, but not benzene-1,3,5-tricarboxylic acid, also decreased the OF in rat RBCs. On the other hand, monocarboxylic acids possessing 2 to 7 straight hydrocarbons and benzoic acid increased the OF in rat RBCs. In short-chain dicarboxylic acids, a limited number of hydrocarbons between the two carboxylic groups are thought to form a V- or U-shaped structure and interact with phospholipids in the RBC membrane. In benzene dicarboxylic and tricarboxylic acids, a part of benzene nucleus between the two carboxylic groups is thought to enter the plasma membrane and act on acyl-chain in phospholipids in the RBC membrane. For dicarboxylic and tricarboxylic acids, limited numbers of hydrocarbons in molecules are speculated to enter the RBC membrane with the hydrophilic carboxylic groups remaining outside, stabilizing the structure of the cell membrane and resulting in an increase in osmotic resistance in rat RBCs.

  3. RBC urine test

    MedlinePlus

    ... tract problems, such as infection, tumor , or stones Kidney injury Prostate problems Bladder or kidney cancer Risks There ... Read More Acute tubular necrosis Alport syndrome Glomerulonephritis Injury - kidney and ureter Interstitial nephritis Kidney stones Renal cell ...

  4. Role of the membrane in the formation of heme degradation products in red blood cells

    PubMed Central

    Nagababu, Enika; Mohanty, Joy G.; Bhamidipaty, Surya; Ostera, Graciela R.; Rifkind, Joseph M.

    2010-01-01

    Aims Red blood cells (RBCs) have an extensive antioxidant system designed to eliminate the formation of reactive oxygen species (ROS). Nevertheless, RBC oxidant stress has been demonstrated by the formation of a fluorescent heme degradation product (ex.321 nm, em 465 nm) both in vitro and in vivo. We investigated the possibility that the observed heme degradation results from ROS generated on the membrane surface that are relatively inaccessible to the cellular antioxidants. Main Methods Membrane and cytosol were separated by centrifugation and the fluorescence intensity and emission maximum was measured. The effect on the maximum emission of adding oxidized and reduced hemoglobin to the fluorescent product formed when hemin is degraded by H2O2 was studied. Key findings 90% of the fluorescent heme degradation products in hemolysates are found on the membrane. Furthermore, these products are not transferred from the cytosol to the membrane and must, therefore, be formed on the membrane. We also showed that the elevated level of heme degradation in HbCC cells that is attributed to increased oxidative stress was found on the membrane. Significance These results suggest that, although ROS generated in the cytosol are neutralized by antioxidant enzymes, H2O2 generated by the membrane bound hemoglobin is not accessible to the cytostolic antioxidants and reacts to generate fluorescent heme degradation products. The formation of H2O2 on the membrane surface can explain the release of ROS from the RBC to other tissues and ROS damage to the membrane that can alter red cell function and lead to the removal of RBCs from circulation by macrophages. PMID:19958781

  5. Effects of chitooligosaccharides on human red blood cell morphology and membrane protein structure.

    PubMed

    Fernandes, João C; Eaton, Peter; Nascimento, Henrique; Belo, Luís; Rocha, Susana; Vitorino, Rui; Amado, Francisco; Gomes, Joana; Santos-Silva, Alice; Pintado, Manuela E; Malcata, F Xavier

    2008-12-01

    Recent studies of chitosan have increased the interest in its conversion to chitooligosaccharides (COSs) because these compounds are water-soluble and have potential use in several biomedical applications. Furthermore, such oligomers may be more advantageous than chitosans because of their much higher absorption profiles at the intestinal level, which permit their facilitated access to systemic circulation and potential distribution throughout the entire human body. In that perspective, it is important to clarify their effect on blood further, namely, on human red blood cells (RBCs). The aim of this work was thus to study the effect of two COS mixtures with different molecular weight (MW) ranges, <3 and <5 kDa, at various concentrations (5.0-0.005 mg/mL) on human RBCs. The interactions of these two mixtures with RBC membrane proteins and with hemoglobin were assessed, and the RBC morphology and surface structure were analyzed by optical microscopy (OM) and atomic force microscopy (AFM). In the presence of either COS mixture, no significant hemolysis was observed; however, at COS concentrations >0.1 mg/mL, changes in membrane binding hemoglobin were observed. Membrane protein changes were also observed with increasing COS concentration, including a reduction in both alpha- and beta-spectrin and in band 3 protein, and the development of three new protein bands: peroxiredoxin 2, calmodulin, and hemoglobin chains. Morphologic evaluation by OM showed that at high concentrations COSs interact with RBCs, leading to RBC adhesion, aggregation, or both. An increase in the roughness of the RBC surface with increasing COS concentration was observed by AFM. Overall, these findings suggest that COS damage to RBCs was dependent on the COS MW and concentration, and significant damage resulted from either a higher MW or a greater concentration (>0.1 mg/mL).

  6. Multifractal characterization of morphology of human red blood cells membrane skeleton.

    PubMed

    Ţălu, Ş; Stach, S; Kaczmarska, M; Fornal, M; Grodzicki, T; Pohorecki, W; Burda, K

    2016-04-01

    The purpose of this paper is to show applicability of multifractal analysis in investigations of the morphological changes of ultra-structures of red blood cells (RBCs) membrane skeleton measured using atomic force microscopy (AFM). Human RBCs obtained from healthy and hypertensive donors as well as healthy erythrocytes irradiated with neutrons (45 μGy) were studied. The membrane skeleton of the cells was imaged using AFM in a contact mode. Morphological characterization of the three-dimensional RBC surfaces was realized by a multifractal method. The nanometre scale study of human RBCs surface morphology revealed a multifractal geometry. The generalized dimensions Dq and the singularity spectrum f(α) provided quantitative values that characterize the local scale properties of their membrane skeleton organization. Surface characterization was made using areal ISO 25178-2: 2012 topography parameters in combination with AFM topography measurement. The surface structure of human RBCs is complex with hierarchical substructures resulting from the organization of the erythrocyte membrane skeleton. The analysed AFM images confirm a multifractal nature of the surface that could be useful in histology to quantify human RBC architectural changes associated with different disease states. In case of very precise measurements when the red cell surface is not wrinkled even very fine differences can be uncovered as was shown for the erythrocytes treated with a very low dose of ionizing radiation.

  7. Influence of a hyperlipidic diet on the composition of the non-membrane lipid pool of red blood cells of male and female rats

    PubMed Central

    Remesar, Xavier; Antelo, Arantxa; Llivina, Clàudia; Albà, Emma; Berdié, Lourdes; Agnelli, Silvia; Arriarán, Sofía; Fernández-López, José Antonio

    2015-01-01

    Background and objectives. Red blood cells (RBC) are continuously exposed to oxidative agents, affecting their membrane lipid function. However, the amount of lipid in RBCs is higher than the lipids of the cell membrane, and includes triacylglycerols, which are no membrane components. We assumed that the extra lipids originated from lipoproteins attached to the cell surface, and we intended to analyse whether the size and composition of this lipid pool were affected by sex or diet. Experimental design. Adult male and female Wistar rats were fed control or cafeteria diets. Packed blood cells and plasma lipids were extracted and analysed for fatty acids by methylation and GC-MS, taking care of not extracting membrane lipids. Results. The absence of ω3-PUFA in RBC extracts (but not in plasma) suggest that the lipids extracted were essentially those in the postulated lipid surface pool and not those in cell membrane. In cells’ extracts, there was a marked depletion of PUFA (and, in general, of insaturation). Fatty acid patterns were similar for all groups studied, with limited effects of sex and no effects of diet in RBC (but not in plasma) fatty acids. Presence of trans fatty acids was small but higher in RBC lipids, and could not be justified by dietary sources. Conclusions. The presence of a small layer of lipid on the RBC surface may limit oxidative damage to the cell outer structures, and help explain its role in the transport of lipophilic compounds. However, there may be other, so far uncovered, additional functions for this lipid pool. PMID:26213652

  8. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet.

    PubMed

    Oliva, Laia; Baron, Cristian; Fernández-López, José-Antonio; Remesar, Xavier; Alemany, Marià

    2015-01-01

    Background and Objectives. Glucose, an aldose, spontaneously reacts with protein amino acids yielding glycosylated proteins. The compounds may reorganize to produce advanced glycosylation products, which regulatory importance is increasingly being recognized. Protein glycosylation is produced without the direct intervention of enzymes and results in the loss of function. Glycosylated plasma albumin, and glycosylated haemoglobin are currently used as index of mean plasma glucose levels, since higher glucose availability results in higher glycosylation rates. In this study we intended to detect the early changes in blood protein glycosylation elicited by an obesogenic diet. Experimental Design. Since albumin is in constant direct contact with plasma glucose, as are the red blood cell (RBC) membranes, we analyzed their degree or glycosylation in female and male rats, either fed a standard diet or subjected to a hyper-energetic self-selected cafeteria diet for 30 days. This model produces a small increase in basal glycaemia and a significant increase in body fat, leaving the animals in the initial stages of development of metabolic syndrome. We also measured the degree of glycosylation of hemoglobin, and the concentration of glucose in contact with this protein, that within the RBC. Glycosylation was measured by colorimetric estimation of the hydroxymethylfurfural liberated from glycosyl residues by incubation with oxalate. Results. Plasma glucose was higher in cafeteria diet and in male rats, both independent effects. However, there were no significant differences induced by sex or diet in either hemoglobin or plasma proteins. Purified RBC membranes showed a marked effect of diet: higher glycosylation in cafeteria rats, which was more marked in females (not in controls). In any case, the number of glycosyl residues per molecule were higher in hemoglobin than in plasma proteins (after correction for molecular weight). The detected levels of glucose in RBC were lower

  9. Dietary supplementation with docosahexanoic acid (DHA) increases red blood cell membrane flexibility in mice with sickle cell disease.

    PubMed

    Wandersee, Nancy J; Maciaszek, Jamie L; Giger, Katie M; Hanson, Madelyn S; Zheng, Suilan; Guo, YiHe; Mickelson, Barbara; Hillery, Cheryl A; Lykotrafitis, George; Low, Philip S; Hogg, Neil

    2015-02-01

    Humans and mice with sickle cell disease (SCD) have rigid red blood cells (RBCs). Omega-3 fatty acids, such as docosahexanoic acid (DHA), may influence RBC deformability via incorporation into the RBC membrane. In this study, sickle cell (SS) mice were fed natural ingredient rodent diets supplemented with 3% DHA (DHA diet) or a control diet matched in total fat (CTRL diet). After 8weeks of feeding, we examined the RBCs for: 1) stiffness, as measured by atomic force microscopy; 2) deformability, as measured by ektacytometry; and 3) percent irreversibly sickled RBCs on peripheral blood smears. Using atomic force microscopy, it is found that stiffness is increased and deformability decreased in RBCs from SS mice fed CTRL diet compared to wild-type mice. In contrast, RBCs from SS mice fed DHA diet had markedly decreased stiffness and increased deformability compared to RBCs from SS mice fed CTRL diet. Furthermore, examination of peripheral blood smears revealed less irreversibly sickled RBCs in SS mice fed DHA diet as compared to CTRL diet. In summary, our findings indicate that DHA supplementation improves RBC flexibility and reduces irreversibly sickled cells by 40% in SS mice. These results point to potential therapeutic benefits of dietary omega-3 fatty acids in SCD.

  10. Prolongation of RBC survival in the hypophysectomized rat.

    NASA Technical Reports Server (NTRS)

    Landaw, S. A.; Bristol, S. K.

    1971-01-01

    Red blood cell (RBC) survival was prolonged in hypophysectomized rats. While the rate of random hemolysis was decreased in some hypophysectomized hosts, in all directly injected and cross-transfused hypophysectomized rat hosts, there was a significant prolongation of the phase of senescent death. In contrast, RBCs from hypophysectomized donors survived normally in normal hosts. These experiments are further evidence of a relationship between RBC aging and metabolic rate, and suggest an intimate involvement with the calorigenic hormones.

  11. Strategies for cell membrane functionalization

    PubMed Central

    Armstrong, James PK

    2016-01-01

    The ability to rationally manipulate and augment the cytoplasmic membrane can be used to overcome many of the challenges faced by conventional cellular therapies and provide innovative opportunities when combined with new biotechnologies. The focus of this review is on emerging strategies used in cell functionalization, highlighting both pioneering approaches and recent developments. These will be discussed within the context of future directions in this rapidly evolving field. PMID:27229904

  12. Theoretical and experimental analysis of the sedimentation kinetics of concentrated red cell suspensions in a centrifugal field: determination of the aggregation and deformation of RBC by flux density and viscosity functions.

    PubMed

    Lerche, D; Frömer, D

    2001-01-01

    The flow properties of blood are mostly determined using various viscometric approaches, and described in terms of a shear rate or shear stress dependent apparent viscosity. The interpretation of results are rather difficult, especially at low shear rates when particle sedimentation and migration within the viscometer gap are significant. By contrast, analysing the separation process in concentrated RBC suspensions in a centrifugal field also yields information about the viscosity function, including particle-particle interaction and deformation parameters. In this paper, the sedimentation process is approached by means of the theory of kinematic waves and theoretically described by solving the corresponding one-dimensional quasi-linear partial differential equation based on viscosity/flow function as a function of volume concentration. The sedimentation kinetics of rigid spherical RBC suspended in saline and normal RBC suspended in Dx-saline solutions were investigated by means of a separation analyser (LUMiFuge 114). The instrument detects the light transmission over the total length of the cell containing the suspension. During centrifugation the analyser automatically determines the position of the particle free fluid/suspension interface or the sediment by means of a special algorithm. The data obtained with sedimentation of rigid spherical RBC at different volume concentrations demonstrate that, in the case of suspensions rotated in containers of constant cross section, there is good agreement between the theory of kinematic waves developed by Anestis and Schneider (1983) and the results of the experiments. Such good agreement was obtained even though a restrictive one-dimensional model was used to obtain the theoretically derived sedimentation time course. In addition, we describe an algorithm enabling the experimental determination of the viscosity and related flux density function to be made for any suspension. Through this approach, we investigated in

  13. Red blood cell membrane-facilitated release of nitrite-derived nitric oxide bioactivity.

    PubMed

    Salgado, Maria T; Cao, Zeling; Nagababu, Enika; Mohanty, Joy G; Rifkind, Joseph M

    2015-11-10

    The reduction of nitrite by deoxyhemoglobin to nitric oxide (NO) has been proposed as a mechanism for the transfer of NO bioactivity from the red blood cell (RBC) to the vasculature. This transfer can increase vascular dilatation. The major challenge to this hypothesis is the very efficient scavenging of NO by hemoglobin, which prevents the release of NO from RBCs. Previous studies indicate that the reaction of nitrite with deoxyhemoglobin produces two metastable intermediates involving nitrite bound to deoxyhemoglobin and a hybrid intermediate [Hb(II)NO(+) ↔ Hb(III)NO] where the nitrite is reduced, but unavailable to react with hemoglobin. We have now shown how unique properties of these intermediates provide a pathway for the release of NO bioactivity from RBCs. The high membrane affinity of these intermediates (>100-fold greater than that of deoxyhemoglobin) places these intermediates on the membrane. Furthermore, membrane-induced conformational changes of the nitrite-reacted intermediates facilitate the release of NO from the hybrid intermediate and nitrite from the nitrite-bound intermediate. Increased membrane affinity, coupled with facilitated dissociation of NO and nitrite from the membrane-bound intermediates, provides the first realistic mechanism for the potential release of NO and nitrite from the RBC and their potential transfer to the vasculature.

  14. Plasma dependent reduction in red blood cell aggregation after dextran sulfate low-density lipoprotein apheresis--implications for rheological studies.

    PubMed

    Schechner, Vered; Ben-Ami, Ronen; Hershcovici, Tiberiu; Yedgar, Shaul; Beigel, Ytzhak; Shapira, Itzhak; Berliner, Shlomo; Barsthein, Gershon

    2005-10-01

    Red blood cell (RBC) aggregation is increased in familial hypercholesterolemia, and is reduced significantly after low density lipoprotein (LDL) apheresis. The purpose of the present study was to clarify whether this reduction depends on changes in plasma composition, RBC membrane properties, or both. RBC aggregation was determined in a computerized cell flow-properties analyzer, before and after LDL apheresis. We compared RBC aggregation in autologous plasma with aggregation in a plasma-free standard solution (0.5% of dextran 500 kDa) to define the separate contributions of plasma and cellular properties to the observed RBC aggregation. RBC aggregation in autologous plasma was reduced by 35.5% after LDL apheresis (P=0.01) but was not significantly affected when measured in dextran 500. This suggests that LDL apheresis attenuated RBC aggregation by altering plasma composition rather than RBC membrane properties. These results are relevant to the understanding of hemorheological changes which follow therapeutic apheresis in hypercholesterolemic patients.

  15. Membrane-permeabilizing activities of cyclic lipodepsipeptides, syringopeptin 22A and syringomycin E from Pseudomonas syringae pv. syringae in human red blood cells and in bilayer lipid membranes.

    PubMed

    Agner, G; Kaulin, Y A; Gurnev, P A; Szabo, Z; Schagina, L V; Takemoto, J Y; Blasko, K

    2000-12-01

    The pore-forming activities of cyclic lipodepsipeptides (CLPs), syringopeptin 22A (SP22A) and syringomycin E (SRE) were compared on the human red blood cell (RBC) membrane and on bilayer lipid membranes (BLMs). SP22A above a concentration of 4 x 10(5) molecules/cell significantly increased the RBC membrane permeability for 86Rb. With electric current measurements on BLM, it was proved that like SRE, the SP22A formed two types of ion channels in the membrane, small and large, the latter having six times larger conductance and longer dwell time. Both CLPs formed clusters consisting of six small channels, and the channel-forming activity of SP22A is about one order of magnitude higher than that of SRE. A Hill coefficient of 2-3 estimated from the concentration dependence of these CLPs-induced lysis gave a proof of the pore oligomerization on RBCs. Transport kinetic data also confirmed that SP22A pores were oligomers of at least three monomers. While SRE pores were inactivated in time, no pore inactivation was observed with SP22A. The 86Rb efflux through SP22A-treated RBCs approached the tracer equilibrium distribution with a constant rate; a constant integral current was measured on the BLM for as long as 2.5 h as well. The partition coefficient (Kp = 2 x 10(4) l/mol) between the RBC membrane and the extracellular space was estimated for SRE to be at least six times higher than that for SP22A. This finding suggested that the higher ion permeability of the SP22A-treated cells compared to that of SRE was the result of the higher pore-forming activity of SP22A.

  16. Defected red blood cell membranes and direct correlation with the uraemic milieu: the connection with the decreased red blood cell lifespan observed in haemodialysis patients

    NASA Astrophysics Data System (ADS)

    Stamopoulos, D.; Grapsa, E.; Manios, E.; Gogola, V.; Bakirtzi, N.

    2012-12-01

    Together with impaired production of erythropoietin and iron deficiency, the decreased lifespan of red blood cells (RBCs) is a main factor contributing to the chronic anaemia observed in haemodialysis (HD) patients. Atomic force microscopy is employed in this work to thoroughly survey the membrane of intact RBCs (iRBCs) of HD patients in comparison to those of healthy donors, aiming to obtain direct information on the structural status of RBCs that can be related to their decreased lifespan. We observed that the iRBC membrane of the HD patients is overpopulated with extended circular defects, termed ‘orifices’, that have typical dimension ranging between 0.2 and 1.0 μm. The ‘orifice’ index—that is, the mean population of ‘orifices’ per top membrane surface—exhibits a pronounced relative increase of order 54 ± 12% for the HD patients as compared to healthy donors. Interestingly, for the HD patients, the ‘orifice’ index, which relates to the structural status of the RBC membrane, correlates strongly with urea concentration, which is a basic index of the uraemic milieu. Thus, these results indicate that the uraemic milieu downgrades the structural status of the RBC membrane, possibly triggering biochemical processes that result in their premature elimination from the circulation. This process could decrease the lifespan of RBCs, as observed in HD patients.

  17. Lateral organization of membranes and cell shapes.

    PubMed Central

    Markin, V S

    1981-01-01

    The relations among membrane structure, mechanical properties, and cell shape have been investigated. The fluid mosaic membrane models used contains several components that move freely in the membrane plane. These components interact with each other and determine properties of the membrane such as curvature and elasticity. A free energy equation is postulated for such a multicomponent membrane and the condition of free energy minimum is used to obtain differential equations relating the distribution of membrane components and the local membrane curvature. The force that moves membrane components along the membrane in a variable curvature field is calculated. A change in the intramembrane interactions can bring about phase separation or particle clustering. This, in turn, may strongly affect the local curvature. The numerical solution of the set of equations for the two dimensional case allows determination of the cell shape and the component distribution along the membrane. The model has been applied to describe certain erythrocytes shape transformations. PMID:7284547

  18. Fuel-Cell Structure Prevents Membrane Drying

    NASA Technical Reports Server (NTRS)

    Mcelroy, J.

    1986-01-01

    Embossed plates direct flows of reactants and coolant. Membrane-type fuel-cell battery has improved reactant flow and heat removal. Compact, lightweight battery produces high current and power without drying of membranes.

  19. Following-up changes in red blood cell deformability and membrane stability in the presence of PTFE graft implanted into the femoral artery in a canine model

    NASA Astrophysics Data System (ADS)

    Toth, Csaba; Kiss, Ferenc; Klarik, Zoltan; Gergely, Eszter; Toth, Eniko; Peto, Katalin; Vanyolos, Erzsebet; Miko, Iren; Nemeth, Norbert

    2014-05-01

    It is known that a moderate mechanical stress can even improve the red blood cells' (RBC) micro-rheological characteristics, however, a more significant stress causes deterioration in the deformability. In this study, we aimed to investigate the effect of the presence of artificial graft on the RBC deformability and membrane stability in beagles. In the Control group only anesthesia was induced and in the postoperative (p.o.) period blood samplings were carried out. In the Grafted group under general anesthesia, the left femoral artery was isolated, from which a 3.5 cm segment was resected and a PTFE graft (O.D.: 3 mm) of equal in length was implanted into the gap. On the 1st, 3rd, 5th, 7th and 14th p.o. days blood was collected the cephalic veins and RBC deformability was determined ektacytometry (LoRRca MaxSis Osmoscan). Membrane stability test consisted of two deformability measurements before and after the cells were being exposed to mechanical stress (60 or 100 Pa for 300 seconds). Compared to the Control group and the baseline values the red blood cell deformability showed significant deterioration on the 3rd, 5th and mainly on the 7th postoperative day after the graft implantation. The membrane stability of erythrocyte revealed marked inter-group difference on the 3rd, 5th and 7th day: in the Grafted group the deformability decreased and during the membrane stability test smaller difference was observed between the states before and after shearing. We concluded that the presence of a PTFE graft in the femoral artery may cause changes in RBC deformability in the first p.o. week. RBC membrane stability investigation shows a lower elongation index profile for the grafted group and a narrowed alteration in the deformability curves due to mechanical stress.

  20. Actinide transport across cell membranes.

    PubMed

    Bulman, R A; Griffin, R J

    1980-01-01

    Protactinium uptake into the normal liver does not exceed 3%, but when the phospholipid levels in the liver are elevated by administration of thioacetamide this uptake increases to 31%. Phosphatidic acid, which is absent from the normal liver, has been shown to extract protactinium into organic solvents. However, phosphatidylserine, a component of normal liver cell membranes, does not extract protactinium. It might be conjectured that this is why so little protactinium is taken up by the normal liver. The hypothesis is advanced that phosphatidylserine, which is known to complex plutonium, americium and curium, may regulate the uptake of these elements by liver.

  1. Chemical degradation mechanisms of membranes for alkaline membrane fuel cells

    SciTech Connect

    Choe, Yoong-Kee; Henson, Neil J.; Kim, Yu Seung

    2015-12-31

    Chemical degradation mechanisms of membranes for alkaline membrane fuel cells have been investigated using density functional theory (DFT). We have elucidated that the aryl-ether moiety of membranes is one of the weakest site against attack of hydroxide ions. The results of DFT calculations for hydroxide initiated aryl-ether cleavage indicated that the aryl-ether cleavage occurred prior to degradation of cationic functional group. Such a weak nature of the aryl-ether group arises from the electron deficiency of the aryl group as well as the low bond dissociation energy. The DFT results suggests that removal of the aryl-ether group in the membrane should enhance the stability of membranes under alkaline conditions. In fact, an ether fee poly(phenylene) membrane exhibits excellent stability against the attack from hydroxide ions.

  2. In-membrane micro fuel cell

    DOEpatents

    Omosebi, Ayokunle; Besser, Ronald

    2016-09-06

    An in-membrane micro fuel cell comprises an electrically-insulating membrane that is permissive to the flow of cations, such as protons, and a pair of electrodes deposited on channels formed in the membrane. The channels are arranged as conduits for fluids, and define a membrane ridge between the channels. The electrodes are porous and include catalysts for promoting the liberation of a proton and an electron from a chemical species and/or or the recombination of a proton and an electron with a chemical specie. The fuel cell may be provided a biosensor, an electrochemical sensor, a microfluidic device, or other microscale devices fabricated in the fuel cell membrane.

  3. Membrane tether formation from blebbing cells.

    PubMed Central

    Dai, J; Sheetz, M P

    1999-01-01

    Membrane tension has been proposed to be important in regulating cell functions such as endocytosis and cell motility. The apparent membrane tension has been calculated from tether forces measured with laser tweezers. Both membrane-cytoskeleton adhesion and membrane tension contribute to the tether force. Separation of the plasma membrane from the cytoskeleton occurs in membrane blebs, which could remove the membrane-cytoskeleton adhesion term. In renal epithelial cells, tether forces are significantly lower on blebs than on membranes that are supported by cytoskeleton. Furthermore, the tether forces are equal on apical and basolateral blebs. In contrast, tether forces from membranes supported by the cytoskeleton are greater in apical than in basolateral regions, which is consistent with the greater apparent cytoskeletal density in the apical region. We suggest that the tether force on blebs primarily contains only the membrane tension term and that the membrane tension may be uniform over the cell surface. Additional support for this hypothesis comes from observations of melanoma cells that spontaneously bleb. In melanoma cells, tether forces on blebs are proportional to the radius of the bleb, and as large blebs form, there are spikes in the tether force in other cell regions. We suggest that an internal osmotic pressure inflates the blebs, and the pressure calculated from the Law of Laplace is similar to independent measurements of intracellular pressures. When the membrane tension term is subtracted from the apparent membrane tension over the cytoskeleton, the membrane-cytoskeleton adhesion term can be estimated. In both cell systems, membrane-cytoskeleton adhesion was the major factor in generating the tether force. PMID:10585959

  4. Preparation and characterization of micro-cell membrane chromatographic column with silica-based porous layer open tubular capillary as cellular membrane carrier.

    PubMed

    Zhang, Fugeng; Zhao, Xinchao; Xu, Bei; Cheng, Shuai; Tang, Cheng; Duan, Hongquan; Xiao, Xuefeng; Du, Wuxun; Xu, Liang

    2016-04-01

    Cell membrane chromatography (CMC) is a powerful tool to study membrane protein interactions and to screen active compounds extracted from natural products. Unfortunately, a large amount of cells are typically required for column preparation in order to carry out analyses in an efficient manner. Micro-CMC (mCMC) has recently been developed by using a silica capillary as a membrane carrier. However, a reduced retention of analytes is generally associated with mCMC mostly due to a low ligand (cellular membrane) capacity. To solve this common problem, in this work a silica-based porous layer open tubular (PLOT) capillary was fabricated and, to the best of our knowledge, for the first time applied to mCMC. The mCMC column was prepared by physical adsorption of rabbit red blood cell (rRBC) membranes onto the inner surface of the PLOT capillary. The effects of the PLOT capillaries fabricated by different feed compositions, on the immobilization amount of cellular membranes (represented by the fluorescence intensity of the capillary immobilized with fluorescein isothiocyanate isomer-labeled cellular membranes) and on the dynamic binding capacity (DBC) of verapamil (VP, a widely used calcium antagonist which specific interacts with L-type calcium channel proteins located on cellular membrane of rRBC) have been systematically investigated. The fluorescence intensity of the mCMC column when combined with the PLOT capillary was found to be more than five times higher than the intensity using a bare capillary. This intriguing result indicates that the PLOT capillary exhibits a higher cellular membrane capacity. The DBC of VP in the PLOT column was found to be more than nine times higher than that in the bare capillary. An rRBC/CMC column was also prepared for comparative studies. As a result, mCMC provides similar chromatographic retention factors and stability with common CMC; however, the cellular membrane consumption for mCMC was found to be more than 460 times lower than

  5. A membrane reservoir at the cell surface

    PubMed Central

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change. PMID:24844289

  6. Interactions of chrysotile and crocidolite asbestos with red blood cell membranes. Chrysotile binds to sialic acid.

    PubMed

    Brody, A R; George, G; Hill, L H

    1983-10-01

    Chrysotile and crocidolite are commonly used forms of asbestos. Hemolysis has been widely used as a test of membrane injury, and it has been shown previously that chrysotile causes rapid breakdown of red blood cells (RBCs), whereas crocidolite is only weakly hemolytic. A reasonable hypothesis set forth to explain the cytotoxic effects of chrysotile maintains that positively charged chrysotile fibers bind to negatively charged sialic acid residues on RBC membranes causing clustering of membrane proteins and increased cell permeability to Na and K ions. Our studies presented here provide two lines of evidence in direct support of this hypothesis. (a) Morphologic--Ultrastructural techniques showed that both chrysotile and crocidolite asbestos bind to and distort more than 85% of RBCs treated for 15 minutes. The distorting effects of chrysotile, but not crocidolite, were almost totally ablated by pretreating the cells with neuraminidase. In addition, gold-conjugated wheat germ agglutinin was used to label the distribution of sialic acid groups on RBC membranes. Pretreatment of the RBCs with chrysotile, but not crocidolite, reduced the number of gold-conjugated wheat germ agglutinin-labeled sites to less than 30% of the control level. (b) Biochemical--The thiobarbituric acid assay was used to determine the percentage of sialic acid that remained with the cell pellet after neuraminidase and/or asbestos treatment. Asbestos treatment alone caused no release of sialic acid from the cells. Neuraminidase treatment for 3.5 hours removed more than 80% of the sialic acid from cell surfaces. Chrysotile, but not crocidolite, asbestos prevented neuraminidase-mediated removal of sialic acid from RBCs. In addition, x-ray energy spectrometry of freeze-dried cells showed that RBCs distorted by chrysotile, but not by crocidolite, exhibited significant alterations in intracellular Na:K ratios. The morphologic and biochemical data strongly support the hypothesis that chrysotile asbestos

  7. Dynamics of Interaction of RBC with optical tweezers

    NASA Astrophysics Data System (ADS)

    Mohanty, Samarendra K.; Mohanty, Khyati S.; Gupta, Pradeep Kumar

    2005-06-01

    It has recently been shown that a red blood cell (RBC) can be used as optically driven motor. The mechanism for rotation is however not fully understood. While the dependence on osmolarity of the buffer led us to conclude that the osmolarity dependent changes in shape of the cell are responsible for the observed rotation, role of ion gradients and folding of RBC to a rod shape has been invoked by Dharmadhikari et al to explain their observations. In this paper we report results of studies undertaken to understand the dynamics of a RBC when it is optically tweezed. The results obtained support our earlier conjecture that osmolarity dependent changes in shape of the cell are responsible for the observed rotation.

  8. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2000-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  9. Polymer electrolyte membrane assembly for fuel cells

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Kindler, Andrew (Inventor); Yavrouian, Andre (Inventor); Halpert, Gerald (Inventor)

    2002-01-01

    An electrolyte membrane for use in a fuel cell can contain sulfonated polyphenylether sulfones. The membrane can contain a first sulfonated polyphenylether sulfone and a second sulfonated polyphenylether sulfone, wherein the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone have equivalent weights greater than about 560, and the first sulfonated polyphenylether and the second sulfonated polyphenylether sulfone also have different equivalent weights. Also, a membrane for use in a fuel cell can contain a sulfonated polyphenylether sulfone and an unsulfonated polyphenylether sulfone. Methods for manufacturing a membrane electrode assemblies for use in fuel cells can include roughening a membrane surface. Electrodes and methods for fabricating such electrodes for use in a chemical fuel cell can include sintering an electrode. Such membranes and electrodes can be assembled into chemical fuel cells.

  10. [Germ cell membrane lipids in spermatogenesis].

    PubMed

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  11. Microfluidic Electroporation-Facilitated Synthesis of Erythrocyte Membrane-Coated Magnetic Nanoparticles for Enhanced Imaging-Guided Cancer Therapy.

    PubMed

    Rao, Lang; Cai, Bo; Bu, Lin-Lin; Liao, Qing-Quan; Guo, Shi-Shang; Zhao, Xing-Zhong; Dong, Wen-Fei; Liu, Wei

    2017-03-13

    Biomimetic cell membrane-coated nanoparticles (CM-NPs) with superior biochemical properties have been broadly utilized for various biomedical applications. Currently, researchers primarily focus on using ultrasonic treatment and mechanical extrusion to improve the synthesis of CM-NPs. In this work, we demonstrate that microfluidic electroporation can effectively facilitate the synthesis of CM-NPs. To test it, Fe3O4 magnetic nanoparticles (MNs) and red blood cell membrane-derived vesicles (RBC-vesicles) are infused into a microfluidic device. When the mixture of MNs and RBC-vesicles flow through the electroporation zone, the electric pulses can effectively promote the entry of MNs into RBC-vesicles. After that, the resulting RBC membrane-capped MNs (RBC-MNs) are collected from the chip and injected into experimental animals to test the in vivo performance. Owing to the superior magnetic and photothermal properties of the MN cores and the long blood circulation characteristic of the RBC membrane shells, core-shell RBC-MNs were used for enhanced tumor magnetic resonance imaging (MRI) and photothermal therapy (PTT). Due to the completer cell membrane coating, RBC-MNs prepared by microfluidic electroporation strategy exhibit significantly better treatment effect than the one fabricated by conventional extrusion. We believe the combination of microfluidic electroporation and CM-NPs provides an insight into the synthesis of bioinpired nanoparticles to improve cancer diagnosis and therapy.

  12. Competition between Na + and Li + for Unsealed and Cytoskeleton-Depleted Human Red Blood Cell Membrane: A 23Na Multiple Quantum Filtered and 7Li NMR Relaxation Study

    NASA Astrophysics Data System (ADS)

    Srinivasan, Chandra; Minadeo, Nicole; Toon, Jason; Graham, Daniel; Mota de Freitas, Duarte; Geraldes, Carlos F. G. C.

    1999-09-01

    Evidence for competition between Li+ and Na+ for binding sites of human unsealed and cytoskeleton-depleted human red blood cell (csdRBC) membranes was obtained from the effect of added Li+ upon the 23Na double quantum filtered (DQF) and triple quantum filtered (TQF) NMR signals of Na+-containing red blood cell (RBC) membrane suspensions. We found that, at low ionic strength, the observed quenching effect of Li+ on the 23Na TQF and DQF signal intensity probed Li+/Na+ competition for isotropic binding sites only. Membrane cytoskeleton depletion significantly decreased the isotropic signal intensity, strongly affecting the binding of Na+ to isotropic membrane sites, but had no effect on Li+/Na+ competition for those sites. Through the observed 23Na DQF NMR spectra, which allow probing of both isotropic and anisotropic Na+ motion, we found anisotropic membrane binding sites for Na+ when the total ionic strength was higher than 40 mM. This is a consequence of ionic strength effects on the conformation of the cytoskeleton, in particular on the dimer-tetramer equilibrium of spectrin. The determinant involvement of the cytoskeleton in the anisotropy of Na+ motion at the membrane surface was demonstrated by the isotropy of the DQF spectra of csdRBC membranes even at high ionic strength. Li+ addition initially quenched the isotropic signal the most, indicating preferential Li+/Na+ competition for the isotropic membrane sites. High ionic strength also increased the intensity of the anisotropic signal, due to its effect on the restructuring of the membrane cytoskeleton. Further Li+ addition competed with Na+ for those sites, quenching the anisotropic signal. 7Li T1 relaxation data for Li+-containing suspensions of unsealed and csdRBC membranes, in the absence and presence of Na+ at low ionic strength, showed that cytoskeleton depletion does not affect the affinity of Na+ for the RBC membrane, but increases the affinity of Li+ by 50%. This clearly indicates that cytoskeleton

  13. Fuel cell ion-exchange membrane investigation

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1972-01-01

    The present deficiencies in the fluorocarbon sulfonic acid membrane used as the solid polymer electrolyte in the H2/O2 fuel cell are studied. Considered are: Adhesives selection, elastomeric formulations, scavenger exploration, and membrane characterization. The significant data are interpreted and recommendations are given for both short and long range further investigations in two of the four major areas: membrane adhesives and membrane stabilization.

  14. Fuel cell and membrane therefore

    SciTech Connect

    Aindow, Tai-Tsui

    2016-08-09

    A fuel cell includes first and second flow field plates, and an anode electrode and a cathode electrode between the flow field plates. A polymer electrolyte membrane (PEM) is arranged between the electrodes. At least one of the flow field plates influences, at least in part, an in-plane anisotropic physical condition of the PEM that varies in magnitude between a high value direction and a low value direction. The PEM has an in-plane physical property that varies in magnitude between a high value direction and a low value direction. The PEM is oriented with its high value direction substantially aligned with the high value direction of the flow field plate.

  15. Incorporation of fluorescein conjugated function-spacer-lipid constructs into the red blood cell membrane facilitates detection of labeled cells for the duration of ex-vivo storage.

    PubMed

    Ki, Katrina K; Flower, Robert L; Faddy, Helen M; Dean, Melinda M

    2016-02-01

    The contribution of ex-vivo storage duration of packed red blood cells (PRBC) to patient outcomes and transfusion-related immunomodulation (TRIM) remains a broadly debated area in transfusion medicine. Kode™ Technology with fluorescein conjugated function-spacer-lipid (FSL-FLRO4) constructs is a tool that can aid in-vitro visualization and tracking of red blood cells (RBC) during routine storage. FSL-FLRO4 is incorporated into the RBC membrane without altering cell function. In this study, we explore the suitability of this technology to label clinical grade PRBC and to determine if the label would be retained during ex-vivo storage. Firstly, to confirm feasibility and assess the limit of detection of FSL-FLRO4 on PRBC at date of expiry (42 days post-collection), we tracked the binding of FSL-FLRO4 on PRBC at weekly intervals during routine storage. Over the time course, all cells remained labelled with FSL-FLRO4, although a decrease in the intensity of labelling was observed (P<0.0001). We then further investigated differences in FSL-FLRO4 labelling during RBC storage by labelling separated light-young and dense-old RBC from the same PRBC unit. There were no differences in the capacity of FSL-FLRO4 to label these different RBC subsets. Together, these data demonstrate that FSL-FLRO4 is a suitable reagent for labelling PRBC at any point during routine storage. This technology will facilitate the development of immunoassays and transfusion models focused on addressing the mechanisms involved in TRIM.

  16. Proton Exchange Membranes for Fuel Cells

    SciTech Connect

    Devanathan, Ramaswami

    2010-11-01

    Proton exchange membrane, also known as polymer electrolyte membrane, fuel cells (PEMFCs) offer the promise of efficient conversion of chemical energy of fuel, such as hydrogen or methanol, into electricity with minimal pollution. Their widespread use to power zero-emission automobiles as part of a hydrogen economy can contribute to enhanced energy security and reduction in greenhouse gas emissions. However, the commercial viability of PEMFC technology is hindered by high cost associated with the membrane electrode assembly (MEA) and poor membrane durability under prolonged operation at elevated temperature. Membranes for automotive fuel cell applications need to perform well over a period comparable to the life of an automotive engine and under heavy load cycling including start-stop cycling under sub-freezing conditions. The combination of elevated temperature, changes in humidity levels, physical stresses and harsh chemical environment contribute to membrane degradation. Perfluorinated sulfonic acid (PFSA)-based membranes, such as Nafion®, have been the mainstay of PEMFC technology. Their limitations, in terms of cost and poor conductivity at low hydration, have led to continuing research into membranes that have good proton conductivity at elevated temperatures above 120 °C and under low humidity conditions. Such membranes have the potential to avoid catalyst poisoning, simplify fuel cell design and reduce the cost of fuel cells. Hydrocarbon-based membranes are being developed as alternatives to PFSA membranes, but concerns about chemical and mechanical stability and durability remain. Novel anhydrous membranes based on polymer gels infused with protic ionic liquids have also been recently proposed, but considerable fundamental research is needed to understand proton transport in novel membranes and evaluate durability under fuel cell operating conditions. In order to advance this promising technology, it is essential to rationally design the next generation

  17. A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation.

    PubMed

    Svetina, Saša; Kokot, Gašper; Kebe, Tjaša Švelc; Žekš, Boštjan; Waugh, Richard E

    2016-06-01

    Red blood cell (RBC) membrane skeleton is a closed two-dimensional elastic network of spectrin tetramers with nodes formed by short actin filaments. Its three-dimensional shape conforms to the shape of the bilayer, to which it is connected through vertical linkages to integral membrane proteins. Numerous methods have been devised over the years to predict the response of the RBC membrane to applied forces and determine the corresponding increase in the skeleton elastic energy arising either directly from continuum descriptions of its deformation, or seeking to relate the macroscopic behavior of the membrane to its molecular constituents. In the current work, we present a novel continuum formulation rooted in the molecular structure of the membrane and apply it to analyze model deformations similar to those that occur during aspiration of RBCs into micropipettes. The microscopic elastic properties of the skeleton are derived by treating spectrin tetramers as simple linear springs. For a given local deformation of the skeleton, we determine the average bond energy and define the corresponding strain energy function and stress-strain relationships. The lateral redistribution of the skeleton is determined variationally to correspond to the minimum of its total energy. The predicted dependence of the length of the aspirated tongue on the aspiration pressure is shown to describe the experimentally observed system behavior in a quantitative manner by taking into account in addition to the skeleton energy an energy of attraction between RBC membrane and the micropipette surface.

  18. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  19. Computational analysis on the mechanical interaction between a thrombus and red blood cells: possible causes of membrane damage of red blood cells at microvessels.

    PubMed

    Kamada, Hiroki; Imai, Yohsuke; Nakamura, Masanori; Ishikawa, Takuji; Yamaguchi, Takami

    2012-12-01

    Previous studies investigating thrombus formation have not focused on the physical interaction between red blood cells (RBCs) and thrombus, although they have been speculated that some pathological conditions such as microangiopathic hemolytic anemia (MAHA) stem from interactions between RBCs and thrombi. In this study, we investigated the mechanical influence of RBCs on primary thrombi during hemostasis. We also explored the mechanics and aggravating factors of intravascular hemolysis. Computer simulations of primary thrombogenesis in the presence and the absence of RBCs demonstrated that RBCs are unlikely to affect the thrombus height and coverage, although their presence may change microvessel hemodynamics and platelet transportation to the injured wall. Our results suggest that intravascular hemolysis owing to RBC membrane damage would be promoted by three hemodynamic factors: (1) dispersibility of platelet thrombi, because more frequent spatial thrombus formation decreases the time available for an RBC to recover its shape and enforces more severe deformation; (2) platelet thrombus stiffness, because a stiffer thrombus increases the degree of RBC deformation upon collision; and (3) vessel size and hemocyte density, because a smaller vessel diameter and higher hemocyte density decrease the room for RBCs to escape as they come closer to a thrombus, thereby enhancing thrombus-RBC interactions.

  20. Specific binding of Thiobacillus ferrooxidans RbcR to the intergenic sequence between the rbc operon and the rbcR gene.

    PubMed Central

    Kusano, T; Sugawara, K

    1993-01-01

    The presence of two sets (rbcL1-rbcS1 and rbcL2-rbcS2) of rbc operons has been demonstrated in Thiobacillus ferrooxidans Fe1 (T. Kusano, T. Takeshima, C. Inoue, and K. Sugawara, J. Bacteriol. 173:7313-7323, 1991). A possible regulatory gene, rbcR, 930 bp long and possibly translated into a 309-amino-acid protein, was found upstream from the rbcL1 gene as a single copy. The gene is located divergently to rbcL1 with a 144-bp intergenic sequence. As in the cases of the Chromatium vinosum RbcR and Alcaligenes eutrophus CfxR, T. ferrooxidans RbcR is thought to be a new member of the LysR family, and these proteins share 46.5 and 42.8% identity, respectively. Gel mobility shift assays showed that T. ferrooxidans RbcR, produced in Escherichia coli, binds specifically to the intergenic sequence between rbcL1 and rbcR. Footprinting and site-directed mutagenesis experiments further demonstrated that RbcR binds to overlapping promoter elements of the rbcR and rbcL1 genes. The above data strongly support the participation of RbcR in regulation of the rbcL1-rbcS1 operon and the rbcR gene in T. ferrooxidans. Images PMID:8432695

  1. Menin localization in cell membrane compartment

    PubMed Central

    He, Xin; Wang, Lei; Yan, Jizhou; Yuan, Chaoxing; Witze, Eric S.; Hua, Xianxin

    2016-01-01

    ABSTRACT Menin is encoded by the MEN1 gene, which is mutated in an inherited human syndrome, multiple endocrine neoplasia type 1(MEN1). Menin is primarily nuclear protein, acting as a tumor suppressor in endocrine organs, but as an oncogenic factor in the mixed lineage leukemia, in a tissue-specific manner. Recently, the crystal structures of menin with different binding partners reveal menin as a key scaffold protein that functionally interacts with various partners to regulate gene transcription in the nucleus. However, outside the nucleus, menin also regulates multiple signaling pathways that traverse the cell surface membrane. The precise nature regarding to how menin associates with the membrane fraction is poorly understood. Here we show that a small fraction of menin associates with the cell membrane fraction likely via serine palmitoylation. Moreover, the majority of the membrane-associated menin may reside inside membrane vesicles, as menin is protected from trypsin-mediated proteolysis, but disruption of the membrane fraction using detergent abolishes the detection. Consistently, cellular staining for menin also reveals the distribution of menin in the cell membrane and the punctate-like cell organelles. Our findings suggest that part of intracellular menin associates with the cell membrane peripherally as well as resides within the membrane vesicles. PMID:26560942

  2. Red cell membrane: past, present, and future

    PubMed Central

    Gallagher, Patrick G.

    2008-01-01

    As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types. PMID:18988878

  3. Red cell membrane: past, present, and future.

    PubMed

    Mohandas, Narla; Gallagher, Patrick G

    2008-11-15

    As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types.

  4. Membrane Stability during Biopreservation of Blood Cells

    PubMed Central

    Stoll, Christoph; Wolkers, Willem F.

    2011-01-01

    Summary Storage methods, which can be taken into consideration for red blood cells and platelets, include liquid storage, cryopreservation and freeze-drying. Red blood cells can be hypothermically stored at refrigerated temperatures, whereas platelets are chilling sensitive and therefore cannot be stored at temperatures below 20 °C. Here we give an overview of available cryopreservation and freeze-drying procedures for blood cells and discuss the effects of these procedures on cells, particularly on cellular membranes. Cryopreservation and freeze-drying may result in chemical and structural modifications of cellular membranes. Membranes undergo phase and permeability changes during freezing and drying. Cryo- and lyoprotective agents prevent membrane damage by different mechanisms. Cryoprotective agents are preferentially excluded from membrane surfaces. They decrease the activation energy for water transport during freezing and control the rate of cellular dehydration. Lyoprotectants are thought to stabilize membranes during drying by forming direct hydrogen bonding interactions with phospholipid head groups. In addition, lyoprotectants can form a glassy state at room temperature. Recently liposomes have been investigated to stabilize blood cells during freezing and freeze-drying. Liposomes modify the composition of cellular membranes by lipid and cholesterol transfer, which can stabilize or destabilize the low temperature response of cells. PMID:21566710

  5. Proton conducting membrane for fuel cells

    DOEpatents

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2005-12-20

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  6. Proton conducting membrane for fuel cells

    DOEpatents

    Colombo, Daniel G.; Krumpelt, Michael; Myers, Deborah J.; Kopasz, John P.

    2007-03-27

    An ion conducting membrane comprising dendrimeric polymers covalently linked into a network structure. The dendrimeric polymers have acid functional terminal groups and may be covalently linked via linking compounds, cross-coupling reactions, or copolymerization reactions. The ion conducting membranes may be produced by various methods and used in fuel cells.

  7. Urban PM2.5 induces ROS generation and RBC damage in COPD patients.

    PubMed

    Torres-Ramos, Yessica D; Montoya-Estrada, Araceli; Guzman-Grenfell, Alberto M; Mancilla-Ramirez, Javier; Cardenas-Gonzalez, Beatriz; Blanco-Jimenez, Salvador; Sepulveda-Sanchez, Jose D; Ramirez-Venegas, Alejandra; Hicks, Juan J

    2011-06-01

    Particulate matters (PM) produce adverse effects on the respiratory system and cause COPD. These effects are thought to involve intrinsic generation of ROS which are present in ambient PM (transition metals and aromatic organic compounds). Here, we examined the chemical composition and ultra-microscopic structure of PM2.5. The effect of this PM was studied in red blood cell (RBC) membranes (ghosts) from healthy volunteers (n = 11) and COPD patients (n = 43). These effects were compared with that produced by a Fenton metal-catalytic ROS generator. Oxidative biomarkers and cell damage were singificantly increased in presence of PM2.5 or ROS generator in RBC of COPD patients as compared with those in cells from healthy volunteers. In contrast, total SH groups, band 3 phospho-tyrosine phosphatase (PTPase) and glucose-6 phosphate dehydrogenase (G6PD) activities were all diminished in cells from COPD patients. In conclusion, PM2.5 increases damage to RBCs from COPD patients, decreases the activity of PTPase and G6PD, and alters the function of the anionic exchanger (AE1) and the antioxidant response by decreasing SH groups.

  8. Membrane elastic properties and cell function.

    PubMed

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C; Romão, Luciana F; Amaral, Racκele F; Salgado, Leonardo T; Lima, Flavia R; Farina, Marcos; Viana, Nathan B; Moura-Neto, Vivaldo; Nussenzveig, H Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  9. Membrane Elastic Properties and Cell Function

    PubMed Central

    Pontes, Bruno; Ayala, Yareni; Fonseca, Anna Carolina C.; Romão, Luciana F.; Amaral, Racκele F.; Salgado, Leonardo T.; Lima, Flavia R.; Farina, Marcos; Viana, Nathan B.; Moura-Neto, Vivaldo; Nussenzveig, H. Moysés

    2013-01-01

    Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function. PMID:23844071

  10. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S

    2014-02-25

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  11. Advanced membrane electrode assemblies for fuel cells

    SciTech Connect

    Kim, Yu Seung; Pivovar, Bryan S.

    2012-07-24

    A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.

  12. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy.

    PubMed

    Moon, Inkyu; Yi, Faliu; Rappaz, Benjamin

    2016-01-20

    Red blood cell (RBC) phase images that are numerically reconstructed by digital holographic microscopy (DHM) can describe the cell structure and dynamics information beneficial for a quantitative analysis of RBCs. However, RBCs investigated with time-lapse DHM undergo temporal displacements when their membranes are loosely attached to the substrate during sedimentation on a glass surface or due to the microscope drift. Therefore, we need to develop a tracking algorithm to localize the same RBC among RBC image sequences and dynamically monitor its biophysical cell parameters; this information is helpful for studies on RBC-related diseases and drug tests. Here, we propose a method, which is a combination of the mean-shift algorithm and Kalman filter, to track a single RBC and demonstrate that the optical path length of the single RBC can be continually extracted from the tracked RBC. The Kalman filter is utilized to predict the target RBC position in the next frame. Then, the mean-shift algorithm starts execution from the predicted location, and a robust kernel, which is adaptive to changes in the RBC scale, shape, and direction, is designed to improve the accuracy of the tracking. Finally, the tracked RBC is segmented and parameters such as the RBC location are extracted to update the Kalman filter and the kernel function for mean-shift tracking; the characteristics of the target RBC are dynamically observed. Experimental results show the feasibility of the proposed algorithm.

  13. A novel bioactive membrane by cell electrospinning.

    PubMed

    Chen, Haiping; Liu, Yuanyuan; Hu, Qingxi

    2015-11-01

    Electrospinning permits fabrication of biodegradable matrices that can resemble the both scale and mechanical behavior of the native extracellular matrix. However, achieving high-cellular density and infiltration of cells within matrices with traditional technique remain challenging and time consuming. The cell electrospinning technique presented in this paper can mitigate the problems associated with these limitations. Cells encapsulated by the material in the cell electrospinning technique survived well and distributed homogenously within the nanofibrous membrane, and their vitality was improved to 133% after being cultured for 28 days. The electrospun nanofibrous membrane has a certain degradation property and favorable cell-membrane interaction that supports the active biocompatibility of the membrane. Its properties are helpful for supporting cell attachment and growth, maintaining phenotypic shape, and secreting an ample amount of extracellular matrix (ECM). This novel membrane may be a potential application within the field of tissue engineering. The ability of cell electrospinning to microintegrate cells into a biodegradable fibrous matrix embodies a novel tissue engineering approach that could be applied to fabricate a high cell density elastic tissue mimetic.

  14. Cell-cell adhesion interface: rise of the lateral membrane

    PubMed Central

    Tang, Vivian

    2017-01-01

    The lateral membrane plays an important role in the mechanical stability of epithelial cell sheet in steady state. In addition, the lateral membrane is continuously remodeled during dynamic processes such as cell extrusion, cytokinesis, and intercellular cell movement. In wound healing, the lateral membrane must be built from flat and spread cells that had crawled into the area of the wound. Thus, forming the lateral membrane is a phenomenon that occurs not only in development but also during homeostatic maintenance and regeneration of differentiated epithelial tissues. PMID:28357057

  15. A membrane reservoir at the cell surface: unfolding the plasma membrane to fuel cell shape change.

    PubMed

    Figard, Lauren; Sokac, Anna Marie

    2014-01-01

    Cell surface expansion is a necessary part of cell shape change. One long-standing hypothesis proposes that membrane for this expansion comes from the flattening out of cell surface projections such as microvilli and membrane folds. Correlative EM data of cells undergoing phagocytosis, cytokinesis, and morphogenesis has hinted at the existence of such an unfolding mechanism for decades; but unfolding has only recently been confirmed using live-cell imaging and biophysical approaches. Considering the wide range of cells in which plasma membrane unfolding has now been reported, it likely represents a fundamental mechanism of cell shape change.

  16. Durability of PEM Fuel Cell Membranes

    NASA Astrophysics Data System (ADS)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  17. Activated Membrane Patches Guide Chemotactic Cell Motility

    PubMed Central

    Hecht, Inbal; Skoge, Monica L.; Charest, Pascale G.; Ben-Jacob, Eshel; Firtel, Richard A.; Loomis, William F.; Levine, Herbert; Rappel, Wouter-Jan

    2011-01-01

    Many eukaryotic cells are able to crawl on surfaces and guide their motility based on environmental cues. These cues are interpreted by signaling systems which couple to cell mechanics; indeed membrane protrusions in crawling cells are often accompanied by activated membrane patches, which are localized areas of increased concentration of one or more signaling components. To determine how these patches are related to cell motion, we examine the spatial localization of RasGTP in chemotaxing Dictyostelium discoideum cells under conditions where the vertical extent of the cell was restricted. Quantitative analyses of the data reveal a high degree of spatial correlation between patches of activated Ras and membrane protrusions. Based on these findings, we formulate a model for amoeboid cell motion that consists of two coupled modules. The first module utilizes a recently developed two-component reaction diffusion model that generates transient and localized areas of elevated concentration of one of the components along the membrane. The activated patches determine the location of membrane protrusions (and overall cell motion) that are computed in the second module, which also takes into account the cortical tension and the availability of protrusion resources. We show that our model is able to produce realistic amoeboid-like motion and that our numerical results are consistent with experimentally observed pseudopod dynamics. Specifically, we show that the commonly observed splitting of pseudopods can result directly from the dynamics of the signaling patches. PMID:21738453

  18. Vesicle trafficking and cell surface membrane patchiness.

    PubMed Central

    Tang, Q; Edidin, M

    2001-01-01

    Membrane proteins and lipids often appear to be distributed in patches on the cell surface. These patches are often assumed to be membrane domains, arising from specific molecular associations. However, a computer simulation (Gheber and Edidin, 1999) shows that membrane patchiness may result from a combination of vesicle trafficking and dynamic barriers to lateral mobility. The simulation predicts that the steady-state patches of proteins and lipids seen on the cell surface will decay if vesicle trafficking is inhibited. To test this prediction, we compared the apparent sizes and intensities of patches of class I HLA molecules, integral membrane proteins, before and after inhibiting endocytic vesicle traffic from the cell surface, either by incubation in hypertonic medium or by expression of a dominant-negative mutant dynamin. As predicted by the simulation, the apparent sizes of HLA patches increased, whereas their intensities decreased after endocytosis and vesicle trafficking were inhibited. PMID:11423406

  19. Chronic kidney disease predicts impaired membrane microviscosity of red blood cells in hypertensive and normotensive subjects.

    PubMed

    Tsuda, Kazushi

    2013-01-01

    Current evidence indicates that abnormalities in physical properties of the cell membranes may be strongly linked to hypertension and other circulatory disorders. Recent studies have shown that chronic kidney disease (CKD) might be a risk factor for cardiovascular and cerebrovascular outcomes. The purpose of the present study was to examine the possible relationship between kidney function and membrane fluidity (a reciprocal value of membrane microviscosity) of red blood cells (RBCs) in hypertensive and normotensive subjects using an electron spin resonance (ESR) and spin-labeling method. The order parameter (S) for the ESR spin-label agent (5-nitroxide stearate) in RBC membranes was significantly higher in hypertensive subjects than in normotensive subjects, indicating that membrane fluidity was decreased in hypertension. The order parameter (S) of RBCs was inversely correlated with estimated glomerular filtration rate (eGFR), suggesting that a decreased eGFR value might be associated with reduced membrane fluidity of RBCs. Multivariate regression analysis also demonstrated that, after adjustment for general risk factors, eGFR might be a significant predictor of membrane fluidity of RBCs. The reduced levels of both membrane fluidity of RBCs and eGFR were associated with increased plasma 8-iso-prostaglandin F2α (an index of oxidative stress) and decreased plasma nitric oxide (NO)-metabolites, suggesting that kidney function could be a determinant of membrane microviscosity of RBCs, at least in part, via oxidative stress- and NO-dependent mechanisms. The ESR study suggests that CKD might have a close correlation with impaired rheologic behavior of RBCs and microcirculatory disorders in hypertensive subjects.

  20. Stretching micropatterned cells on a PDMS membrane.

    PubMed

    Carpi, Nicolas; Piel, Matthieu

    2014-01-22

    Mechanical forces exerted on cells and/or tissues play a major role in numerous processes. We have developed a device to stretch cells plated on a PolyDiMethylSiloxane (PDMS) membrane, compatible with imaging. This technique is reproducible and versatile. The PDMS membrane can be micropatterned in order to confine cells or tissues to a specific geometry. The first step is to print micropatterns onto the PDMS membrane with a deep UV technique. The PDMS membrane is then mounted on a mechanical stretcher. A chamber is bound on top of the membrane with biocompatible grease to allow gliding during the stretch. The cells are seeded and allowed to spread for several hours on the micropatterns. The sample can be stretched and unstretched multiple times with the use of a micrometric screw. It takes less than a minute to apply the stretch to its full extent (around 30%). The technique presented here does not include a motorized device, which is necessary for applying repeated stretch cycles quickly and/or computer controlled stretching, but this can be implemented. Stretching of cells or tissue can be of interest for questions related to cell forces, cell response to mechanical stress or tissue morphogenesis. This video presentation will show how to avoid typical problems that might arise when doing this type of seemingly simple experiment.

  1. Effects of Poloxamer 188 on red blood cell membrane properties in sickle cell anaemia.

    PubMed

    Sandor, Barbara; Marin, Mickaël; Lapoumeroulie, Claudine; Rabaï, Miklos; Lefevre, Sophie D; Lemonne, Nathalie; El Nemer, Wassim; Mozar, Anaïs; Français, Olivier; Le Pioufle, Bruno; Connes, Philippe; Le Van Kim, Caroline

    2016-04-01

    Vaso-occlusive crisis (VOC) is the main acute complication in sickle cell anaemia (SS) and several clinical trials are investigating different drugs to improve the clinical severity of SS patients. A phase III study is currently exploring the profit of Velopoloxamer in SS during VOCs. We analysed, in-vitro, the effect of poloxamer (P188) on red blood cell (RBC) properties by investigating haemorheology, mechanical and adhesion functions using ektacytometry, microfluidics and dynamic adhesion approaches, respectively. We show that poloxamer significantly reduces blood viscosity, RBC aggregation and adhesion to endothelial cells, supporting the beneficial use of this molecule in SS therapy.

  2. Contribution of the flow effect caused by shear-dependent RBC aggregation to NIR spectroscopic signals.

    PubMed

    Tomita, Minoru; Ohtomo, Manabu; Suzuki, Norihiro

    2006-10-15

    Near-infrared spectroscopy (NIRS) is widely used to record activation-related blood oxygenation changes in human brain tissue. However, the changes in the NIRS signal upon increased flow are influenced not only by the hemoglobin and oxyhemoglobin concentrations but also by changes in light scattering by various brain constituents. This paper points out the large contribution of flow-dependent red blood cell (RBC) aggregation as a cause of this altered light scattering, a phenomenon which has not previously been considered in the theoretical analysis of NIRS signals. Here, we show that RBCs, which constitute a major chromophore in the tissue, not only absorb light at hemoglobin molecules but also scatter it strongly at the cell membranes of aggregated RBCs, and that the blood optical density per se changes greatly with the size of the plasma gap, which varies according to flow. When local blood flow increases by 50%, the amount of the optical attenuation due to RBC dispersion/disaggregation (the flow effect) can reach 90% of the NIRS signal change for venous blood. The reasons why the optical signal due to blood oxygenation alone can be amount to less than 10% of the total are because the near-infrared lies in the most unfavorable range in the hemoglobin absorption spectrum for determining blood oxygenation, while the flow effect in the NIR range is large. We conclude that reported activation-related changes in brain blood oxygenation, at least in the peripheral region around the activation focus, based on NIRS can be mainly ascribed to the flow effect arising from RBC dispersion/disaggregation with increased flow in the venous system.

  3. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J.; Pierpont, Daniel M.; Yandrasits, Michael A.; Hamrock, Steven J.; Obradovich, Stephan J.; Peterson, Donald G.

    2016-03-01

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  4. Fuel cell subassemblies incorporating subgasketed thrifted membranes

    DOEpatents

    Iverson, Eric J; Pierpont, Daniel M; Yandrasits, Michael A; Hamrock, Steven J; Obradovich, Stephan J; Peterson, Donald G

    2014-01-28

    A fuel cell roll good subassembly is described that includes a plurality of individual electrolyte membranes. One or more first subgaskets are attached to the individual electrolyte membranes. Each of the first subgaskets has at least one aperture and the first subgaskets are arranged so the center regions of the individual electrolyte membranes are exposed through the apertures of the first subgaskets. A second subgasket comprises a web having a plurality of apertures. The second subgasket web is attached to the one or more first subgaskets so the center regions of the individual electrolyte membranes are exposed through the apertures of the second subgasket web. The second subgasket web may have little or no adhesive on the subgasket surface facing the electrolyte membrane.

  5. Mechanical tension drives cell membrane fusion.

    PubMed

    Kim, Ji Hoon; Ren, Yixin; Ng, Win Pin; Li, Shuo; Son, Sungmin; Kee, Yee-Seir; Zhang, Shiliang; Zhang, Guofeng; Fletcher, Daniel A; Robinson, Douglas N; Chen, Elizabeth H

    2015-03-09

    Membrane fusion is an energy-consuming process that requires tight juxtaposition of two lipid bilayers. Little is known about how cells overcome energy barriers to bring their membranes together for fusion. Previously, we have shown that cell-cell fusion is an asymmetric process in which an "attacking" cell drills finger-like protrusions into the "receiving" cell to promote cell fusion. Here, we show that the receiving cell mounts a Myosin II (MyoII)-mediated mechanosensory response to its invasive fusion partner. MyoII acts as a mechanosensor, which directs its force-induced recruitment to the fusion site, and the mechanosensory response of MyoII is amplified by chemical signaling initiated by cell adhesion molecules. The accumulated MyoII, in turn, increases cortical tension and promotes fusion pore formation. We propose that the protrusive and resisting forces from fusion partners put the fusogenic synapse under high mechanical tension, which helps to overcome energy barriers for membrane apposition and drives cell membrane fusion.

  6. Cell membrane softening in human breast and cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Händel, Chris; Schmidt, B. U. Sebastian; Schiller, Jürgen; Dietrich, Undine; Möhn, Till; Kießling, Tobias R.; Pawlizak, Steve; Fritsch, Anatol W.; Horn, Lars-Christian; Briest, Susanne; Höckel, Michael; Zink, Mareike; Käs, Josef A.

    2015-08-01

    Biomechanical properties are key to many cellular functions such as cell division and cell motility and thus are crucial in the development and understanding of several diseases, for instance cancer. The mechanics of the cellular cytoskeleton have been extensively characterized in cells and artificial systems. The rigidity of the plasma membrane, with the exception of red blood cells, is unknown and membrane rigidity measurements only exist for vesicles composed of a few synthetic lipids. In this study, thermal fluctuations of giant plasma membrane vesicles (GPMVs) directly derived from the plasma membranes of primary breast and cervical cells, as well as breast cell lines, are analyzed. Cell blebs or GPMVs were studied via thermal membrane fluctuations and mass spectrometry. It will be shown that cancer cell membranes are significantly softer than their non-malignant counterparts. This can be attributed to a loss of fluid raft forming lipids in malignant cells. These results indicate that the reduction of membrane rigidity promotes aggressive blebbing motion in invasive cancer cells.

  7. Basement Membranes: Cell Scaffoldings and Signaling Platforms

    PubMed Central

    Yurchenco, Peter D.

    2011-01-01

    Basement membranes are widely distributed extracellular matrices that coat the basal aspect of epithelial and endothelial cells and surround muscle, fat, and Schwann cells. These extracellular matrices, first expressed in early embryogenesis, are self-assembled on competent cell surfaces through binding interactions among laminins, type IV collagens, nidogens, and proteoglycans. They form stabilizing extensions of the plasma membrane that provide cell adhesion and that act as solid-phase agonists. Basement membranes play a role in tissue and organ morphogenesis and help maintain function in the adult. Mutations adversely affecting expression of the different structural components are associated with developmental arrest at different stages as well as postnatal diseases of muscle, nerve, brain, eye, skin, vasculature, and kidney. PMID:21421915

  8. Graded alterations of RBC aggregation influence in vivo blood flow resistance.

    PubMed

    Yalcin, Ozlem; Uyuklu, Murat; Armstrong, Jonathan K; Meiselman, Herbert J; Baskurt, Oguz K

    2004-12-01

    Although the effects of red blood cell (RBC) aggregation on low-shear rate blood viscosity are well known, the effects on in vivo flow resistance are still not fully resolved. The present study was designed to explore the in vivo effects of RBC aggregation on flow resistance using a novel technique to enhance aggregation: cells are covalently coated with a block copolymer (Pluronic F-98) and then suspended in unaltered plasma. RBC aggregation was increased in graded steps by varying the Pluronic concentration during cell coating and was verified by microscopy and erythrocyte sedimentation rate (ESR), which increased by 200% at the highest Pluronic level. RBC suspensions were perfused through an isolated in situ guinea pig hindlimb preparation while the arterial perfusion pressure was held constant at 100 mmHg via a pressure servo-controlled pump. No significant effects of enhanced RBC aggregation were observed when studies were conducted in preparations with intact vascular control mechanisms. However, after inhibition of smooth muscle tone (using 10(-4) M papaverin), a significant change in flow resistance was observed in a RBC suspension with a 97% increase of ESR. Additional enhancements of RBC aggregation (i.e., 136 and 162% increases of ESR) decreased flow resistance almost to control values. This was followed by another significant increase in flow resistance during perfusion with RBC suspensions with a 200% increase of ESR. This triphasic effect of graded increases of RBC aggregation is most likely explained by an interplay of several hemodynamic mechanisms that are triggered by enhanced RBC aggregation.

  9. Time dependent light transmission through blood (in vivo) and RBC suspensions (in vitro) accompanied by RBC Aggregation.

    NASA Astrophysics Data System (ADS)

    Fine, Ilya; Fikhte, Boris; Shvartsman, L. D.

    2000-03-01

    Optical transmission of tissue in vivo and model red blood cells (RBC) suspensions in vitro have been measured in red and near infrared region targeting the better understanding of the nature of pulsatile signals. Two groups of experiments have been performed: the first one investigating the nature of correlation between pulsatile blood flow and pulsatile fluctuations of optical transmission of tissue. These fluctuations are the basis of nearly all major optical non-invasive blood measurements as pulse oximetry, etc., and it is customized to attribute them to the volumetric changes of blood contain in the exposed portion of tissue.This standard volumetric model is the subject of critical analysis in the present work. It is shown experimentally (both in vitro and in vivo) that the pulse signal results at least partially not from the volumetric changes but from the light scattering fluctuations. These fluctuations are caused by change of average size of RBC aggregates resulting from blood flow changes. Dependencies of the pulsatile signal on aggregates geometry, refraction indexes fluctuations, aggregates orientation, etc. are studied.Even more clearly aggregation assisted optical phenomena are seen in the second group of experiments where the pulsatile flow was ceased and RBC aggregation became continuous. We achieved the excellent correspondence between in vitro and in vivo results in both groups of experiments. Experimental factors favoring this correspondence supply the very clear indications of particular geometries of RBC aggregates.

  10. Temporal sequence of major biochemical events during Blood Bank storage of packed red blood cells

    PubMed Central

    Karon, Brad S.; van Buskirk, Camille M.; Jaben, Elizabeth A.; Hoyer, James D.; Thomas, David D.

    2012-01-01

    Background. We used sensitive spectroscopic techniques to measure changes in Band 3 oligomeric state during storage of packed red blood cells (RBC); these changes were compared to metabolic changes, RBC morphology, cholesterol and membrane protein loss, phospholipid reorganisation of the RBC membrane, and peroxidation of membrane lipid. The aim of the study was to temporally sequence major biochemical events occurring during cold storage, in order to determine which changes may underlie the structural defects in stored RBC. Materials and methods. Fifteen RBC units were collected from normal volunteers and stored under standard blood bank conditions; both metabolic changes and lipid parameters were measured by multiple novel assays including a new mass spectrometric measurement of isoprostane (lipid peroxidation) and flow cytometric assessment of CD47 expression. Band 3 oligomeric state was assessed by time-resolved phosphorescence anisotropy, and RBC morphology by microscopy of glutaraldehyde-fixed RBC. Results. Extracellular pH decreased and extracellular potassium increased rapidly during cold storage. Band 3 on the RBC membrane aggregated into large oligomers early in the storage period and coincident with changes in RBC morphology. Membrane lipid changes, including loss of unesterified cholesterol, lipid peroxidation and expression of CD47, also changed early during the storage period. In contrast loss of acetylcholinesterase activity and haemolysis of RBC occurred late during storage. Discussion. Our results demonstrate that changes in the macromolecular organisation of membrane proteins on the RBC occur early in storage and suggest that lipid peroxidation and/or oxidative damage to the membrane are responsible for irreversible morphological changes and loss of function during red cell storage. PMID:22507860

  11. Aggregation of red blood cells in patients with Gaucher disease.

    PubMed

    Adar, Tomer; Ben-Ami, Ronen; Elstein, Deborah; Zimran, Ari; Berliner, Shlomo; Yedgar, Saul; Barshtein, Gershon

    2006-08-01

    Gaucher disease is associated with increased red blood cell (RBC) aggregation, but the pathophysiological significance of this phenomenon and its correlation with disease manifestations are unclear. RBC aggregation was evaluated in 43 patients with Gaucher disease and 53 healthy controls. Dynamic RBC aggregation was examined in a narrow-gap flow chamber at varying shear stress. Compared with the controls, RBC aggregation in Gaucher disease was increased by 25%. Comparison of RBC aggregation in autologous plasma and in dextran (500 kDa) showed an increase both in plasma-dependent (extrinsic) and -independent (intrinsic) RBC aggregation. Subgroup analysis revealed that increased RBC aggregation was limited to patients with an intact spleen. RBC aggregation in patients did not correlate with plasma fibrinogen concentration, disease severity, enzyme replacement therapy or genotype. We conclude that RBC aggregation is increased in patients with Gaucher disease and an intact spleen, possibly reflecting the accumulation of glucocerebroside and other substances in the plasma and RBC membranes of these patients. Our results do not support a role for RBC aggregation in the pathogenesis of vascular complications of Gaucher disease.

  12. Alternate Fuel Cell Membranes for Energy Independence

    SciTech Connect

    Storey, Robson, F.; Mauritz, Kenneth, A.; Patton, Derek, L.; Savin, Daniel, A.

    2012-12-18

    The overall objective of this project was the development and evaluation of novel hydrocarbon fuel cell (FC) membranes that possess high temperature performance and long term chemical/mechanical durability in proton exchange membrane (PEM) fuel cells (FC). The major research theme was synthesis of aromatic hydrocarbon polymers of the poly(arylene ether sulfone) (PAES) type containing sulfonic acid groups tethered to the backbone via perfluorinated alkylene linkages and in some cases also directly attached to the phenylene groups along the backbone. Other research themes were the use of nitrogen-based heterocyclics instead of acid groups for proton conduction, which provides high temperature, low relative humidity membranes with high mechanical/thermal/chemical stability and pendant moieties that exhibit high proton conductivities in the absence of water, and synthesis of block copolymers consisting of a proton conducting block coupled to poly(perfluorinated propylene oxide) (PFPO) blocks. Accomplishments of the project were as follows: 1) establishment of a vertically integrated program of synthesis, characterization, and evaluation of FC membranes, 2) establishment of benchmark membrane performance data based on Nafion for comparison to experimental membrane performance, 3) development of a new perfluoroalkyl sulfonate monomer, N,N-diisopropylethylammonium 2,2-bis(p-hydroxyphenyl) pentafluoropropanesulfonate (HPPS), 4) synthesis of random and block copolymer membranes from HPPS, 5) synthesis of block copolymer membranes containing high-acid-concentration hydrophilic blocks consisting of HPPS and 3,3'-disulfonate-4,4'-dichlorodiphenylsulfone (sDCDPS), 6) development of synthetic routes to aromatic polymer backbones containing pendent 1H-1,2,3-triazole moieties, 7) development of coupling strategies to create phase-separated block copolymers between hydrophilic sulfonated prepolymers and commodity polymers such as PFPO, 8) establishment of basic performance

  13. Modification and evaluation of fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Nalawade, Amol Prataprao

    The primary goals of this study were modification of existing NafionRTM membranes and characterization of newly developed hydrocarbon-based membranes for high temperature fuel cell applications. Various NafionRTM/silicate nanocomposites were formulated via in situ sol-gel reactions for tetraethylorthosilicate. Different silicate composition profiles generated across membrane cross-sections were investigated by EDAX/ESEM. Composite water uptake, proton conductivity and fuel cell performance were comparable to that of unmodified Nafion RTM. Tafel analysis showed better electrode kinetics for composites having more silicate in the middle and less or no silicate at electrolyte-electrode interfaces. All composites showed reduced fuel cross-over and superior mechanical as well as chemical durability than unmodified NafionRTM. Poly(cyclohexadiene) (PCHD) materials were characterized in the interest of developing alternative low-cost proton exchange membranes. All cross-linked sulfonated (xsPCHD) membranes showed significantly higher water uptake at 80 °C and higher proton conductivity at 120 °C at all relative humidities (RH), compared to the current benchmark membrane, NafionRTM. A xsPCHD-poly(ethylene glycol) (PEG) copolymer and a xsPCHD-PEG blend surpassed the DOE target by exhibiting proton conductivities of 141.44 and 322.40 mS/cm, respectively, at 50 % RH. Although the PCHD-based PEMs exhibited thermal stability up to 150 °C, they showed poor mechanical properties which would cause poor membrane durability during fuel cell operation. Atomic force microscopy studies demonstrated nanophase separated morphology of xsPCHD having a higher degree of connectedness of hydrophilic domains in the copolymer and blends relative to the xsPCHD homopolymer. Broadband dielectric spectroscopy (BDS) was used to study sub-Tg relaxations in annealed poly(2,5-benzimidazole) (ABPBI) fuel cell precursor materials. A trend in degree of connectivity of charge migration pathways and

  14. Hereditary spherocytosis, elliptocytosis, and other red cell membrane disorders.

    PubMed

    Da Costa, Lydie; Galimand, Julie; Fenneteau, Odile; Mohandas, Narla

    2013-07-01

    Hereditary spherocytosis and elliptocytosis are the two most common inherited red cell membrane disorders resulting from mutations in genes encoding various red cell membrane and skeletal proteins. Red cell membrane, a composite structure composed of lipid bilayer linked to spectrin-based membrane skeleton is responsible for the unique features of flexibility and mechanical stability of the cell. Defects in various proteins involved in linking the lipid bilayer to membrane skeleton result in loss in membrane cohesion leading to surface area loss and hereditary spherocytosis while defects in proteins involved in lateral interactions of the spectrin-based skeleton lead to decreased mechanical stability, membrane fragmentation and hereditary elliptocytosis. The disease severity is primarily dependent on the extent of membrane surface area loss. Both these diseases can be readily diagnosed by various laboratory approaches that include red blood cell cytology, flow cytometry, ektacytometry, electrophoresis of the red cell membrane proteins, and mutational analysis of gene encoding red cell membrane proteins.

  15. Membrane fluidity sensoring microbial fuel cell.

    PubMed

    Choi, Youngjin; Jung, Eunkyoung; Kim, Sunghyun; Jung, Seunho

    2003-04-01

    A study has been performed to examine the effect of temperature and ethanolic stresses on the coulombic efficiency of a microbial fuel cell. The conventional-type fuel cell containing Gram-negative bacteria, Proteus vulgaris, was investigated as a model system. From current output measurements, it was found that the coulombic yields were altered by environmental stresses such as temperature shock or ethanol treatment to the bacteria. While high-temperature or ethanolic shock led to a remarkable decrement in coulombic output, the low-temperature shock induced a slight increase in microbial fuel cell efficiency. These results indicate that the membrane fluidity is affected considerably by environmental stress, which in turn affects the electron transfer process through the bacterial cell membrane to and from the electrode. This interpretation was confirmed by the cyclic voltammetric study of a mediator on an electrode surface modified with the lipids extracted from the membrane of P. vulgaris under the given stress. Markedly different electrochemical behaviors were observed depending on the environmental stress. A reciprocal relationship between coulomb output and the ratio of saturation/unsaturation of fatty acids has been observed. This is the first report, to our knowledge, that the structural adaptation of membrane fatty acids in response to the environmental shock can regulate the coulombic efficiency of a microbial fuel cell.

  16. Pattern formation in cell membrane adhesion

    NASA Astrophysics Data System (ADS)

    Discher, Dennis; Hategan, A.; Sengupta, K.; Sackmann, E.

    2004-03-01

    Strong adhesion of highly active cells often nucleates focal adhesions or related structures that are, over time, reinforced by cytoskeleton (actin, etc.). Red cells lack such complex adhesion systems, but they are shown here to also exhibit complex spatial patterns within an adhesive contact zone. While strong adhesion and spreading of the red cell to a dense poly-L-lysine surface appears complete in < 1 s by reflective interference microscopy, over longer times of 10-15 min or more distinct patterns in fluorescently labeled membrane components emerge. The fluorescent lipid Fl-PE (fluorescein phosphoethanolamine), in particular, is seen to diffuse and reorganize (eg. worm-like domains of <500 nm) within the contact zone, independent of whether the cell is intact or ruptured. Lipid patterns are accompanied by visible perturbations in band 3 distribution and weaker perturbations in membrane skeleton actin. Although fluorescent poly-L-lysine is shown to be uniform under cells, pressing down on the membrane quenches the lipid patterns and reveals the topographical basis for pattern formation. Regions of strong contact are thus separated by regions where the membrane is more distant from the surface.

  17. Erythrocyte membrane is an alternative coating to polyethylene glycol for prolonging the circulation lifetime of gold nanocages for photothermal therapy.

    PubMed

    Piao, Ji-Gang; Wang, Limin; Gao, Feng; You, Ye-Zi; Xiong, Yujie; Yang, Lihua

    2014-10-28

    Gold nanocages (AuNCs), which have tunable near-infrared (NIR) absorption and intrinsically high photothermal conversion efficiency, have been actively investigated as photothermal conversion agents for photothermal therapy (PTT). The short blood circulation lifetime of AuNCs, however, limits their tumor uptake and thus in vivo applications. Here we show that such a limitation can be overcome by cloaking AuNCs with red blood cell (RBC) membranes, a natural stealth coating. The fusion of RBC membranes over AuNC surface does not alter the unique porous and hollow structures of AuNCs, and the resulting RBC-membrane-coated AuNCs (RBC-AuNCs) exhibit good colloidal stability. Upon NIR laser irradiation, the RBC-AuNCs demonstrate in vitro photothermal effects and selectively ablate cancerous cells within the irradiation zone as do the pristine biopolymer-stealth-coated AuNCs. Moreover, the RBC-AuNCs exhibit significantly enhanced in vivo blood retention and circulation lifetime compared to the biopolymer-stealth-coated counterparts, as demonstrated using a mouse model. With integrated advantages of photothermal effects from AuNCs and long blood circulation lifetime from RBCs, the RBC-AuNCs demonstrate drastically enhanced tumor uptake when administered systematically, and mice that received PPT cancer treatment modulated by RBC-AuNCs achieve 100% survival over a span of 45 days. Taken together, our results indicate that the long circulating RBC-AuNCs may facilitate the in vivo applications of AuNCs, and the RBC-membrane stealth coating technique may pave the way to improved efficacy of PPT modulated by noble metal nanoparticles.

  18. Cell or Cell Membrane-Based Drug Delivery Systems

    PubMed Central

    Tan, Songwei; Wu, Tingting; Zhang, Dan; Zhang, Zhiping

    2015-01-01

    Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications. PMID:26000058

  19. Change dynamics of RBC morphology after injection glucose for diabetes by diffraction phase microscope

    NASA Astrophysics Data System (ADS)

    Talaykova, N. A.; Kalyanov, A. L.; Lychagov, V. V.; Ryabukho, V. P.; Malinova, L. I.

    2013-11-01

    Experimental setup of diffraction phase microscope (DPM) with double low-coherence lighting system is presented in the paper. Algorithm of interference picture processing and optical thickness, height, volume and mean cells volume (MCV) of RBC calculating is shown. We demonstrate results of experiments with blood smears and ability of the method to calculate 3D model of the biological cells shape. Investigation change dynamics of RBC morphology after injection glucose for diabetes by DPM is shown in the paper.

  20. Membrane electrode assembly for a fuel cell

    NASA Technical Reports Server (NTRS)

    Prakash, Surya (Inventor); Narayanan, Sekharipuram R. (Inventor); Atti, Anthony (Inventor); Olah, George (Inventor); Smart, Marshall C. (Inventor)

    2006-01-01

    A catalyst ink for a fuel cell including a catalytic material and poly(vinylidene fluoride). The ink may be applied to a substrate to form an electrode, or bonded with other electrode layers to form a membrane electrode assembly (MEA).

  1. Inhibition of phagocytic recognition of anti‐D opsonized Rh D+ RBC by polymer‐mediated immunocamouflage

    PubMed Central

    Li, Li; Noumsi, Ghislain T.; Kwok, Yin Yu Eunice; Moulds, Joann M.

    2015-01-01

    The Rh D antigen posed both a significant clinical risk and inventory supply issue in transfusion medicine. The successful development of the immunocamouflaged RBC has the potential to address both the risk of acute anti‐D transfusion reactions and to improve D− blood inventory in geographic locations where D− blood is rare (e.g., China). The immunocamouflage of RBC was mediated by the covalent grafting of methoxy(polyethylene glycol) to the cell membrane thereby obscuring the D protein from the immune system. To determine the potential efficacy of mPEG‐D+ RBC in D− recipients, anti‐D alloantibodies from previously alloimmunized individuals were utilized. The effects of polymer chain size (2–30 kDa) and grafting concentration (0–4 mM) on antibody binding and erythrophagocytosis were determined using the clinically validated monocyte monolayer assay (MMA) and flow cytometry. The immunocamouflage of D was polymer size and grafting concentration dependent as determined using human anti‐D alloantibodies (both pooled [RhoGAM] and single donors). Importantly, the 20 kDa polymer provided excellent immunocamouflage of D and reached a clinically significant level of protection, as measured by the MMA, at grafting concentrations of ≥1.5 mM. These findings further support the potential use of immunocamouflaged RBC to reduce the risk of acute transfusion reactions following administration of D+ blood to D− recipients in situations where D− units are unavailable or supply is geographically constrained. Am. J. Hematol. 90:1165–1170, 2015. © 2015 Wiley Periodicals, Inc. PMID:26440218

  2. Hyperaemic changes in forearm skin perfusion and RBC concentration after increasing occlusion times.

    PubMed

    Farnebo, Simon; Thorfinn, Johan; Henricson, Joakim; Tesselaar, Erik

    2010-12-01

    Tissue occlusion and the hyperaemic response upon reperfusion can be used as a tool to assess microvascular function in various vascular diseases. Currently, laser Doppler flowmetry (LDF) is applied most often to measure hyperaemic responses. In this study, we have applied tissue viability imaging (TiVi) and LDF to measure the change in red blood cell concentration and perfusion in the skin after occlusions of the forearm with increasing duration. We have found that there is a strong correlation between the changes in perfusion and red blood cell (RBC) concentration during post-occlusive hyperaemia (perfusion: r=0.80; RBC concentration: r=0.94). This correlation increases with longer occlusion durations (1, 5 and 10min). Furthermore, for both perfusion and RBC concentration, the maximum responses (perfusion: r(2)=0.59; RBC concentration: r(2)=0.78) and the recovery times (perfusion: r(2)=0.62; RBC concentration: r(2)=0.91) increase linearly with the duration of the occlusion. Maximum responses and recovery times were more reproducible for RBC concentration (as measured with TiVi) than for perfusion (as measured with LDF). These results show that perfusion and RBC concentration are related during post-occlusive hyperaemia and that TiVi can be used as a tool in the assessment of hyperaemic responses that has advantages in terms of reproducibility, sensitivity and ease of use.

  3. Artificial Red Cells with Polyhemoglobin Membranes.

    DTIC Science & Technology

    1981-09-01

    preparing emulsions and ejecting cells from the oil phase. IX. REFERENCES 1. Wallace, H. W., Asher, W. J., and Li, N. N. Liquid - liquid oxygenation: a...1S. KEY WORDS (Continue, an reverse side if naceoay mnd identify by block number) Artificial Blood, Hemoglobin, Polyhemoglobin, Biotonometry Liquid ...cell-size microdroplets containing 30% of hemoglobin were held in liquid membrane capsules and treated with glutaralddhyde that cross linked the

  4. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.

    PubMed

    Antonova, N; Riha, P; Ivanov, I

    2010-01-01

    Mechanical and electrical properties of red blood cells (RBC) suspensions in dextran 70 (Dx70), dextran 150 (Dx150), dextran 500 (Dx500) and polyethileneglycol (PEG) 35,000 with different concentrations were evaluated through apparent viscosity and conductivity measurements under steady and unsteady flow conditions. RBCs suspensions of the washed RBS in PBS (control) and Dx70, Dx150, Dx500 and PEG in PBS with different concentrations, adjusted to the same hematocrit of 40% were used for the experiments. Conductivity time and shear rate dependences in parallel with the rheological properties of the samples were studied under transient flow regimes at different local structure of the uniform Couette flow. Their relationships on dextrans and PEG concentrations were evaluated too. Low shear viscosity increased and conductivity decreased of RBC suspensions, compared to non-aggregating suspensions, depending on dextrans and PEG concentrations. A time course of blood conductivity recorded under different flow conditions provides experimental description of RBC aggregation-disaggregation processes and other cell-cell interactions. The results show that the blood conductivity is strongly dependent on the considered blood factors and is influenced by flow, shear rates and concentration of dextran and PEG solutions.

  5. The mechanism of facilitated cell membrane resealing.

    PubMed

    Togo, T; Alderton, J M; Bi, G Q; Steinhardt, R A

    1999-03-01

    Disruption of the plasma membrane evokes an exocytotic response that is required for rapid membrane resealing. We show here in Swiss 3T3 fibroblasts that a second disruption at the same site reseals more rapidly than the initial wound. This facilitated response of resealing was inhibited by both low external Ca2+ concentration and specific protein kinase C (PKC) inhibitors, bisindolylmaleimide I (BIS) and Gö-6976. In addition, activation of PKC by phorbol ester facilitated the resealing of a first wound. BIS and Gö-6976 suppressed the effect of phorbol ester on resealing rate. Fluorescent dye loss from a FM1-43 pre-labeled endocytotic compartment was used to investigate the relationship between exocytosis, resealing and the facilitation of resealing. Exocytosis of endocytotic compartments near the wounding site was correlated with successful resealing. The destaining did not occur when exocytosis and resealing were inhibited by low external Ca2+ concentration or by injected tetanus toxin. When the dye loaded cells were wounded twice, FM1-43 destaining at the second wound was less than at the first wound. Less destaining was also observed in cells pre-treated with phorbol ester, suggesting newly formed vesicles, which were FM1-43 unlabeled, were exocytosed in the resealing at repeated woundings. Facilitation was also blocked by brefeldin A (BFA), a fungal metabolite that inhibits vesicle formation at the Golgi apparatus. Lowering the temperature below 20 degrees C also blocked facilitation as expected from a block of Golgi function. BFA had no effect on the resealing rate of an initial wound. The facilitation of the resealing by phorbol ester was blocked by pre-treatment with BFA. These results suggest that at first wounding the cell used the endocytotic compartment to add membrane necessary for resealing. At a second wounding, PKC, activated by Ca2+ entry at the first wound, stimulated vesicle formation from the Golgi apparatus, resulting in more rapid resealing

  6. Selectivity of Direct Methanol Fuel Cell Membranes.

    PubMed

    Aricò, Antonino S; Sebastian, David; Schuster, Michael; Bauer, Bernd; D'Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-11-24

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion(®) were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate-PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion(®) 115-based MEA (77 mW·cm(-2) vs. 64 mW·cm(-2)). This result was due to a lower methanol crossover (47 mA·cm(-2) equivalent current density for s-PEEK vs. 120 mA·cm(-2) for Nafion(®) 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm² for s-PEEK vs. 0.22 Ohm cm² for Nafion(®) 115).

  7. Selectivity of Direct Methanol Fuel Cell Membranes

    PubMed Central

    Aricò, Antonino S.; Sebastian, David; Schuster, Michael; Bauer, Bernd; D’Urso, Claudia; Lufrano, Francesco; Baglio, Vincenzo

    2015-01-01

    Sulfonic acid-functionalized polymer electrolyte membranes alternative to Nafion® were developed. These were hydrocarbon systems, such as blend sulfonated polyetheretherketone (s-PEEK), new generation perfluorosulfonic acid (PFSA) systems, and composite zirconium phosphate–PFSA polymers. The membranes varied in terms of composition, equivalent weight, thickness, and filler and were investigated with regard to their methanol permeation characteristics and proton conductivity for application in direct methanol fuel cells. The behavior of the membrane electrode assemblies (MEA) was investigated in fuel cell with the aim to individuate a correlation between membrane characteristics and their performance in a direct methanol fuel cell (DMFC). The power density of the DMFC at 60 °C increased according to a square root-like function of the membrane selectivity. This was defined as the reciprocal of the product between area specific resistance and crossover. The power density achieved at 60 °C for the most promising s-PEEK-based membrane-electrode assembly (MEA) was higher than the benchmark Nafion® 115-based MEA (77 mW·cm−2 vs. 64 mW·cm−2). This result was due to a lower methanol crossover (47 mA·cm−2 equivalent current density for s-PEEK vs. 120 mA·cm−2 for Nafion® 115 at 60 °C as recorded at OCV with 2 M methanol) and a suitable area specific resistance (0.15 Ohm cm2 for s-PEEK vs. 0.22 Ohm cm2 for Nafion® 115). PMID:26610582

  8. Nanodefects of membranes cause destruction of packed red blood cells during long-term storage

    SciTech Connect

    Kozlova, Elena; Chernysh, Aleksandr; Moroz, Victor; Sergunova, Victoria; Gudkova, Olga; Kuzovlev, Artem

    2015-10-01

    Packed red blood cells (PRBC) are used for blood transfusion. PRBC were stored for 30 days under 4 °C in hermetic blood bags with CPD anticoagulant-preservative solution. Hematocrit was 50–55%. The distortions of PRBC membranes nanostructure and cells morphology during storage were studied by atomic force microscopy. Basic measurements were performed at the day 2, 6, 9, 16, 23 and 30 of storage and additionally 2–3 days after it. Topological defects occurred on RBC membranes by day 9. They appeared as domains with grain-like structures (“grains”) sized up to 200 nm. These domains were appeared in almost all cells. Later these domains merged and formed large defects on cells. It was the formation of domains with the “grains” which was onset process leading eventually to destruction of PRBC. Possible mechanisms of transformation of PRBC and their membrane are related to the alterations of spectrin cytoskeleton. During this storage period potassium ions and lactat concentrations increased, pH decreased, intracellular concentration of reduced glutathione diminished in the preservative solution. Changes of PRBC morphology were detected within the entire period of PRBC storage. Discocytes predominated at the days 1 and 2. By day 30 PRBC transformed into irreversible echinocytes and spheroechinocytes. Study of defects of membranes nanostructure may form the basis of assessing the quality of the stored PRBC. This method may allow to work out the best recommendations for blood transfusion. - Highlights: • Domains with “grains” are formed on membranes surface on 9–16 days of PRBC storage. • The development of domains is the reason of irreversible changes of PRBC structure. • The origin of domains is the consequence of alterations of spectrin cytoskeleton. • Study of nanostructure may form basis of assessing the quality of the stored PRBC.

  9. Quantitative imaging of RBC suspensions in bifurcating microchannels

    NASA Astrophysics Data System (ADS)

    Sherwood, Joseph; Holmes, David; Kaliviotis, Efstathios; Balabani, Stavroula

    2014-11-01

    The local velocity and concentration characteristics of both red blood cells (RBCs) and suspending medium flowing in a bifurcating microchannel were measured simultaneously. An imaging technique involving alternate bright field and laser light illumination was employed to capture both RBC and fluorescent PIV images of human healthy blood, flowing through a sequentially bifurcating 50 micrometer square PDMS microchannel. The acquired images were further processed using PIV algorithms to yield the velocity distribution of RBCs and suspending medium while the brightfield images also provided data on hematocrit distribution and cell-depleted layer. Various flow rates, aggregation states and proportions of flow entering each branch were considered. Asymmetric hematocrit distributions were quantified around the bifurcations and found to be enhanced by aggregation. The data were compared with computational fluid dynamics studies of continuous Newtonian and Non-Newtonian fluids in order to elucidate the impact of the two-phase nature of the flow, particularly RBC aggregation. The work is currently being extended to examine the role of RBC properties on microhemodynamics and the implications for disease. Department of Bioengineering.

  10. Spectrum of Changes in RBC Indices and Histograms in Blood from Subjects with Cold Antibodies

    PubMed Central

    Kannan, Aarthi

    2016-01-01

    Cold antibodies are mostly immunoglobulin M, which interact with red cell antigens at lower temperatures (<37°C). The analysis of samples from subjects with cold antibodies in automated haematology analysers may show abnormal Red Blood Corpuscles (RBC) indices and changes in histogram. High Mean Corpuscular Haemoglobin (MCH) and Mean Haemoglobin Concentration (MCHC) along with plateau effect beyond 110fl at Upper Discriminator (RU) end of RBC histogram are good indicators of presence of cold antibodies in plasma. Cold antibodies in plasma must be considered while reporting the peripheral smear in presence of plateau effect beyond 110fl at RU end of RBC histogram. PMID:28050381

  11. Catalytic membranes for fuel cells

    SciTech Connect

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2011-04-19

    A fuel cell of the present invention comprises a cathode and an anode, one or both of the anode and the cathode including a catalyst comprising a bundle of longitudinally aligned graphitic carbon nanotubes including a catalytically active transition metal incorporated longitudinally and atomically distributed throughout the graphitic carbon walls of said nanotubes. The nanotubes also include nitrogen atoms and/or ions chemically bonded to the graphitic carbon and to the transition metal. Preferably, the transition metal comprises at least one metal selected from the group consisting of Fe, Co, Ni, Mn, and Cr.

  12. Microfluidic microbial fuel cells: from membrane to membrane free

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2016-08-01

    Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.

  13. Effects of shape and size on red blood cell deformability: a static bending analysis.

    PubMed

    Engström, G; Täljedal, I B

    1985-12-01

    When flowing down a tapered tube, such as a narrow capillary, red blood cells (RBCs) are subject to deformation, the first event of which is folding in a pancake manner. The RBC deformability is reduced during cell ageing, a phenomenon that may reflect alterations in intracellular viscosity, membrane rigidity or RBC shape. Age related shape changes and their importance for increased RBC rigidity were theoretically analysed. The average empirically observed RBC profile is shown to offer little resistance to bending as compared to other, theoretically possible profiles of the same membrane area and RBC volume. Because of a decrease in projected area (diameter size), and therefore in pressure load, the pressure needed to initiate folding of an old RBC is between 20 and 55% higher than that required to fold a young one if, during RBC ageing, membrane area to cell volume ratio is constant as empirically observed. This difference exists whether the RBC is mathematically treated as a solid body or as a membrane shell.

  14. Capillo-venous flow in the brain: significance of intravascular RBC aggregation for venous flow regulation.

    PubMed

    Tomita, Minoru; Tanahashi, Norio; Takeda, Hidetaka; Schiszler, Istvan; Osada, Takashi; Unekawa, Miyuki; Suzuki, Norihiro

    2006-01-01

    Despite numerous reports on the regulation of cerebral arterial blood flow, little work has been done on that of the capillary and venous system. We have examined capillo-venous blood flow in the rat intraparenchymal cerebral cortex, employing a high-speed video confocal fluorescence microscope and our own software (KEIOIS-2) to track individual RBCs and to document velocity changes in single capillaries and veins. We found temporal and spatial heterogeneous changes in capillary RBC density (hematocrit), RBC recruitment, oscillation of capillary flow or vasomotion, and capillary density unrelated to arteriolar diametric changes. In veins, blood flow was also quite variable in time and space, and at a high frame rate venous blood per se was observed as a moving column of amorphous RBC aggregates with irregular edges; we believe this is the first report of such an observation under physiological conditions. The formation of such intravascular RBC aggregates would enforce slowing of blood flow and vice versa: RBC aggregation was in turn entirely flow-dependent. In rapid venous flow, RBCs appeared as a straight gathering of individually separated and dispersed cells. At capillo-venous junctions, an "RBC pouring" process appeared to occur, with RBCs either being sucked up from the capillary, merging, or being held back in the capillary. Changes in venous blood viscosity due to RBC aggregation are likely to be involved in this process. These findings suggest that the capillo-venous junction somehow participates in the regulation of appropriate tissue capillary flow in toto.

  15. Interaction of peptides with cell membranes: insights from molecular modeling

    NASA Astrophysics Data System (ADS)

    Li, Zhen-lu; Ding, Hong-ming; Ma, Yu-qiang

    2016-03-01

    The investigation of the interaction of peptides with cell membranes is the focus of active research. It can enhance the understanding of basic membrane functions such as membrane transport, fusion, and signaling processes, and it may shed light on potential applications of peptides in biomedicine. In this review, we will present current advances in computational studies on the interaction of different types of peptides with the cell membrane. Depending on the properties of the peptide, membrane, and external environment, the peptide-membrane interaction shows a variety of different forms. Here, on the basis of recent computational progress, we will discuss how different peptides could initiate membrane pores, translocate across the membrane, induce membrane endocytosis, produce membrane curvature, form fibrils on the membrane surface, as well as interact with functional membrane proteins. Finally, we will present a conclusion summarizing recent progress and providing some specific insights into future developments in this field.

  16. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  17. Fuel cell membranes and crossover prevention

    DOEpatents

    Masel, Richard I.; York, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2009-08-04

    A membrane electrode assembly for use with a direct organic fuel cell containing a formic acid fuel includes a solid polymer electrolyte having first and second surfaces, an anode on the first surface and a cathode on the second surface and electrically linked to the anode. The solid polymer electrolyte has a thickness t:.gtoreq..times..times..times..times. ##EQU00001## where C.sub.f is the formic acid fuel concentration over the anode, D.sub.f is the effective diffusivity of the fuel in the solid polymer electrolyte, K.sub.f is the equilibrium constant for partition coefficient for the fuel into the solid polymer electrolyte membrane, I is Faraday's constant n.sub.f is the number of electrons released when 1 molecule of the fuel is oxidized, and j.sub.f.sup.c is an empirically determined crossover rate of fuel above which the fuel cell does not operate.

  18. Interaction of Inorganic Nanoparticles With Cell Membranes

    DTIC Science & Technology

    2008-10-20

    explain the change in the Zeta-potential of the beads we studied the adsorption of protein on Chitosan coated SPIONs. The particles were incubated in...protein adsorption which enables us understand better the pathway of our particles through the membrane and inside the cell. Combined with...investigation regarding the protein adsorption and their influence on the colloidal stability we have now the tools to investigate and perhaps to understand

  19. Virus-Mimetic Fusogenic Exosomes for Direct Delivery of Integral Membrane Proteins to Target Cell Membranes.

    PubMed

    Yang, Yoosoo; Hong, Yeonsun; Nam, Gi-Hoon; Chung, Jin Hwa; Koh, Eunee; Kim, In-San

    2017-02-06

    An efficient system for direct delivery of integral membrane proteins is successfully developed using a new biocompatible exosome-based platform. Fusogenic exosomes harboring viral fusogen, vascular stomatitis virus (VSV)-G protein, can fuse with and modify plasma membranes in a process called "membrane editing." This can facilitate the transfer of biologically active membrane proteins into the target cell membranes both in vitro and in vivo.

  20. Membrane catalyst layer for fuel cells

    DOEpatents

    Wilson, Mahlon S.

    1993-01-01

    A gas reaction fuel cell incorporates a thin catalyst layer between a solid polymer electrolyte (SPE) membrane and a porous electrode backing. The catalyst layer is preferably less than about 10 .mu.m in thickness with a carbon supported platinum catalyst loading less than about 0.35 mgPt/cm.sup.2. The film is formed as an ink that is spread and cured on a film release blank. The cured film is then transferred to the SPE membrane and hot pressed into the surface to form a catalyst layer having a controlled thickness and catalyst distribution. Alternatively, the catalyst layer is formed by applying a Na.sup.+ form of a perfluorosulfonate ionomer directly to the membrane, drying the film at a high temperature, and then converting the film back to the protonated form of the ionomer. The layer has adequate gas permeability so that cell performance is not affected and has a density and particle distribution effective to optimize proton access to the catalyst and electronic continuity for electron flow from the half-cell reaction occurring at the catalyst.

  1. A review of radiation-grafted polymer electrolyte membranes for alkaline polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhou, Tianchi; Shao, Rong; Chen, Song; He, Xuemei; Qiao, Jinli; Zhang, Jiujun

    2015-10-01

    The past two decades have witnessed many efforts to develop radiation-grafted alkaline membranes for alkaline PEM fuel cell applications, as such membranes have certain advantages over other kinds of alkaline membranes, including well-controlled composition, functionality, and other promising properties. To facilitate research and development in this area, the present paper reviews radiation-grafted alkaline membranes. We examine their synthesis/fabrication/characterization, membrane material selection, and theoretical approaches for fundamental understanding. We also present detailed examinations of their application in fuel cell in terms of the working principles of the radiation grafting process, the fabrication of MEAs using radiation-grafted membranes, the membranes' corresponding performance in alkaline PEM fuel cells, as well as performance optimization. The paper also summarizes the challenges and mitigation strategies for radiation-grafted alkaline membranes and their application in PEM fuel cells, presenting an overall picture of the technology as it presently stands.

  2. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  3. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  4. Membrane Purification Cell for Aluminum Recycling

    SciTech Connect

    David DeYoung; James Wiswall; Cong Wang

    2011-11-29

    Recycling mixed aluminum scrap usually requires adding primary aluminum to the scrap stream as a diluent to reduce the concentration of non-aluminum constituents used in aluminum alloys. Since primary aluminum production requires approximately 10 times more energy than melting scrap, the bulk of the energy and carbon dioxide emissions for recycling are associated with using primary aluminum as a diluent. Eliminating the need for using primary aluminum as a diluent would dramatically reduce energy requirements, decrease carbon dioxide emissions, and increase scrap utilization in recycling. Electrorefining can be used to extract pure aluminum from mixed scrap. Some example applications include producing primary grade aluminum from specific scrap streams such as consumer packaging and mixed alloy saw chips, and recycling multi-alloy products such as brazing sheet. Electrorefining can also be used to extract valuable alloying elements such as Li from Al-Li mixed scrap. This project was aimed at developing an electrorefining process for purifying aluminum to reduce energy consumption and emissions by 75% compared to conventional technology. An electrolytic molten aluminum purification process, utilizing a horizontal membrane cell anode, was designed, constructed, operated and validated. The electrorefining technology could also be used to produce ultra-high purity aluminum for advanced materials applications. The technical objectives for this project were to: - Validate the membrane cell concept with a lab-scale electrorefining cell; - Determine if previously identified voltage increase issue for chloride electrolytes holds for a fluoride-based electrolyte system; - Assess the probability that voltage change issues can be solved; and - Conduct a market and economic analysis to assess commercial feasibility. The process was tested using three different binary alloy compositions (Al-2.0 wt.% Cu, Al-4.7 wt.% Si, Al-0.6 wt.% Fe) and a brazing sheet scrap composition (Al-2

  5. The quality assessment of stored red blood cells probed using atomic-force microscopy.

    PubMed

    Lamzin, I M; Khayrullin, R M

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane's stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion.

  6. The Quality Assessment of Stored Red Blood Cells Probed Using Atomic-Force Microscopy

    PubMed Central

    Lamzin, I. M.; Khayrullin, R. M.

    2014-01-01

    At the moment the suitability of stored red blood cells (sRBC) for transfusion is checked by routine methods such as haemoglobin estimation and the level of haemolysis. These methods cannot characterize directly the quality of the membranes of sRBC. The aim of this work is to assess the quality of sRBC based on such criteria as the membrane's stiffness and the size and the form of sRBC. Materials and Methods. We have investigated 5 series of dry cytosmears of the sRBC which had been kept in blood bank in a period from 1 to 35 days. After AFM imaging, in every specimen, 5 RBC were chosen at random; the diameter, the height, and the stiffness were measured on each of them. Results. The present study shows high increase of the mean values of YM and height of RBC after 35 days of storage and decrease of the mean values of their diameter. Conclusion. Statistically significant high increase of the mean values of YM indicates the decrease of the elasticity of the cells in the course of storing of the RBC. This parameter along with the morphological characteristics can be used as criterion for assessment of applicability of the sRBC for blood transfusion. PMID:25610651

  7. Polymer synthesis toward fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Rebeck, Nathaniel T.

    Fuel cells are a promising technology that will be part of the future energy landscape. New membranes for alkaline and proton exchange membrane fuel cells are needed to improve the performance, simplify the system, and reduce cost. Polymer chemistry can be applied to develop new polymers and to assemble polymers into improved membranes that need less water, have increased performance and are less expensive, thereby removing the deficiencies of current membranes. Nucleophilic aromatic substitution polymerization typically produces thermally stable engineering polymers that can be easily functionalized. New functional monomers were developed to explore new routes to novel functional polymers. Sulfonamides were discovered as new activating groups for polymerization of high molecular weight thermooxidatively stable materials with sulfonic acid latent functionality. While the sulfonamide functional polymers could be produced, the sulfonamide group proved to be too stable to convert into a sulfonic acid after reaction. The reactivity of 2-aminophenol was investigated to search for a new class of ion conducting polymer materials. Both the amine and the phenol groups are found to be reactive in a nucleophilic aromatic substitution, however not to the extent to allow the formation of high molecular weight polymer materials. Layer-by-layer films were assembled from aqueous solutions of poly(styrene sulfonate) and trimethylammonium functionalized poly(phenylene oxide). The deposition conditions were adjusted to increase the free charge carrier content, and chloride conductivites reached almost 30 mS/cm for the best films. Block and random poly(phenylene oxide) copolymers were produced from 2,6-dimethylphenol and 2,6-diphenylphenol and the methyl substituted repeat units were functionalized with trimethylammonium bromide. The block copolymers displayed bromide conductivities up to 26 mS/cm and outperformed the random copolymers, indicating that morphology has an effect on ion

  8. Different activities of the reovirus FAST proteins and influenza hemagglutinin in cell-cell fusion assays and in response to membrane curvature agents

    SciTech Connect

    Clancy, Eileen K.; Barry, Chris; Ciechonska, Marta; Duncan, Roy

    2010-02-05

    The reovirus fusion-associated small transmembrane (FAST) proteins evolved to induce cell-cell, rather than virus-cell, membrane fusion. It is unclear whether the FAST protein fusion reaction proceeds in the same manner as the enveloped virus fusion proteins. We now show that fluorescence-based cell-cell and cell-RBC hemifusion assays are unsuited for detecting lipid mixing in the absence of content mixing during FAST protein-mediated membrane fusion. Furthermore, membrane curvature agents that inhibit hemifusion or promote pore formation mediated by influenza hemagglutinin had no effect on p14-induced cell-cell fusion, even under conditions of limiting p14 concentrations. Standard assays used to detect fusion intermediates induced by enveloped virus fusion proteins are therefore not applicable to the FAST proteins. These results suggest the possibility that the nature of the fusion intermediates or the mechanisms used to transit through the various stages of the fusion reaction may differ between these distinct classes of viral fusogens.

  9. Origin of subdiffusion of water molecules on cell membrane surfaces

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Yasui, Masato; Yasuoka, Kenji

    2014-01-01

    Water molecules play an important role in providing unique environments for biological reactions on cell membranes. It is widely believed that water molecules form bridges that connect lipid molecules and stabilize cell membranes. Using all-atom molecular dynamics simulations, we show that translational and rotational diffusion of water molecules on lipid membrane surfaces exhibit subdiffusion and aging. Moreover, we provide evidence that both divergent mean trapping time (continuous-time random walk) and long-correlated noise (fractional Brownian motion) contribute to this subdiffusion. These results suggest that subdiffusion on cell membranes causes the water retardation, an enhancement of cell membrane stability, and a higher reaction efficiency. PMID:24739933

  10. Microfabrication of High-Resolution Porous Membranes for Cell Culture

    PubMed Central

    Kim, Monica Y.; Li, David Jiang; Pham, Long K.; Wong, Brandon G.

    2014-01-01

    Microporous membranes are widely utilized in cell biology to study cell-cell signaling and cell migration. However, the thickness and low porosity of commercial track-etched membranes limit the quality of cell imaging and the degree of cell-cell contact that can be achieved on such devices. We employ photolithography-based microfabrication to achieve porous membranes with pore diameter as small as 0.9 μm, up to 40% porosity, and less than 5% variation in pore size. Through the use of a soap release layer, membranes as thin as 1 μm can be achieved. The thin membranes minimally disrupt contrast enhancement optics, thus allowing good quality imaging of unlabeled cells under white light, unlike commercial membranes. In addition, the polymer membrane materials display low autofluorescence even after patterning, facilitating high quality fluorescence microscopy. Finally, confocal imaging suggests that substantial cell-cell contact is possible through the pores of these thin membranes. This membrane technology can enhance existing uses of porous membranes in cell biology as well as enable new types of experiments. PMID:24567663

  11. Membrane tension feedback on shape and motility of eukaryotic cells

    NASA Astrophysics Data System (ADS)

    Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko

    2016-04-01

    In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell's two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane's bending energy to the shape and integrity of the cell. As in experiments, we investigate two pertinent observables - the cell's velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.

  12. Polybenzimidazole-multiwall carbon nanotubes composite membranes for polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Guerrero Moreno, Nayibe; Gervasio, Dominic; Godínez García, Andrés; Pérez Robles, Juan Francisco

    2015-12-01

    Polymer membranes are prepared as a composite of polybenzimidazole and non-functionalized multiwall carbon nanotubes (PBI-CNT) and polybenzimidazole (PBI) only. Each is doped with H3PO4 (PA) and used as a proton exchange membrane (PEM) as the electrolyte in a fuel cell. The proton conductivities at 180 °C for the doped PBI membrane (PBIPA) and the doped PBI-CNT membrane (PBICNTPA) are 6.3 × 10-2 and 7.4 × 10-2 Scm-1 respectively. A single fuel cell having these membranes as electrolyte has a Pt catalyzed hydrogen gas fed anode and a similar oxygen cathode without humidification of feed gases; the cell with the PBICNTPA membrane has higher open circuit voltage (0.96 V) than that with a PBIPA membrane (0.8 V) at 180 °C. The mechanical stability of the membrane improves with CNTs addition. The tensile strength of the composite PBI-CNT membrane with 1 wt.% CNTs loading is 32% higher and the Young's Modulus is 147% higher than the values for a membrane of PBI alone. The improvement in conductivity and mechanical properties in the composite membrane due to the CNT addition indicates that a PBI-CNT membrane is a good alternative as a membrane electrolyte in a PEMFC.

  13. Association of resistin with impaired membrane fluidity of red blood cells in hypertensive and normotensive men: an electron paramagnetic resonance study.

    PubMed

    Tsuda, Kazushi

    2016-10-01

    Abnormalities in physical properties of the cell membranes may strongly be linked to hypertension. Recent evidence indicates that resistin may actively participate in the pathophysiology of insulin resistance, diabetes mellitus, hypertension and other circulatory disorders. The present study was undertaken to investigate the possible relationships among plasma resistin, oxidative stress and membrane fluidity (a reciprocal value of membrane microviscosity) in hypertension. We measured the membrane fluidity of red blood cells (RBCs) in hypertensive and normotensive men using an electron paramagnetic resonance (EPR) and spin-labeling method. The order parameter (S) for the spin-label agents (5-nitroxide stearate) in EPR spectra of red blood cell (RBC) membranes was significantly higher in hypertensive men than in normotensive men, indicating that membrane fluidity was decreased in hypertension. Plasma resistin levels were correlated with systolic blood pressure and 8-iso-prostaglandin F2α levels (an index of oxidative stress). Furthermore, the order parameter (S) of RBCs significantly correlated with plasma resistin and plasma 8-isoPG F2α, suggesting that reduced membrane fluidity of RBCs might be associated with hyperresistinemia and increased oxidative stress. Multivariate regression analysis showed that, after adjustment for confounding factors, plasma resistin might be an independent determinant of membrane fluidity of RBCs. The EPR study suggests that resistin might have a close correlation with impaired rheologic behavior of RBCs and microcirculatory dysfunction in hypertension, at least in part, via an oxidative stress-dependent mechanism.

  14. A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum-infected red blood cells.

    PubMed

    Proellocks, Nicholas I; Herrmann, Susann; Buckingham, Donna W; Hanssen, Eric; Hodges, Emma K; Elsworth, Brendan; Morahan, Belinda J; Coppel, Ross L; Cooke, Brian M

    2014-07-01

    The genomes of malaria parasites (Plasmodium spp.) contain a family of genes encoding proteins with a Plasmodium helical interspersed subtelomeric (PHIST) domain, most of which are predicted to be exported into the parasite-infected human red blood cell (iRBC). Here, using transgenic parasites and a combination of cellular, biochemical, and biophysical assays, we have characterized and determined the function of a novel member of the PHIST protein family in Plasmodium falciparum, termed lysine-rich membrane-associated PHISTb (LyMP). LyMP was shown to associate directly with the cytoskeleton of iRBCs where it plays a role in their abnormal ability to adhere to a protein expressed on vascular endothelial cells, resulting in sequestration. Deletion of LyMP dramatically reduced adhesion of iRBCs to CD36 by 55%, which was completely restored to wild-type levels on complementation. Intriguingly, in the absence of LyMP, formation of RBC membrane knobs and the level of surface exposure of the parasites' major cytoadhesive ligand, PfEMP1, were identical to those for the parental parasite line, demonstrating for the first time an additional mechanism that enhances cytoadherence of iRBCs beyond those already recognized. Our findings identify LyMP as a previously unknown RBC cytoskeletal-binding protein that is likely to be of major significance in the complex pathophysiology of falciparum malaria.-Proellocks, N. I., Herrmann, S., Buckingham, D. W., Hanssen, E., Hodges, E. K., Elsworth, B., Morahan, B. J., Coppel, R. L., Cooke, B. M. A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum infected red blood cells.

  15. Impact of temporal resolution on estimating capillary RBC-flux with optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Li, Baoqiang; Wang, Hui; Fu, Buyin; Wang, Ruopeng; Sakadžić, Sava; Boas, David A.

    2017-01-01

    Optical coherence tomography (OCT) has been used to measure capillary red blood cell (RBC) flux. However, one important technical issue is that the accuracy of this method is subject to the temporal resolution (Δt) of the repeated RBC-passage B-scans. A ceiling effect arises due to an insufficient Δt limiting the maximum RBC-flux that can be measured. In this letter, we first present simulations demonstrating that Δt=1.5 ms permits measuring RBC-flux up to 150 RBCs/s with an underestimation of 9%. The simulations further show that measurements with Δt=3 and 4.5 ms provide relatively less accurate estimates for typical physiological fluxes. We provide experimental data confirming the simulation results showing that reduced temporal resolution (i.e., a longer Δt) results in an underestimation of mean flux and compresses the distribution of measured fluxes, which potentially confounds physiological interpretation of the results. The results also apply to RBC-passage measurements made with confocal and two-photon microscopy for estimating capillary RBC-flux.

  16. Focus on membrane differentiation and membrane domains in the prokaryotic cell.

    PubMed

    Boekema, Egbert J; Scheffers, Dirk-Jan; van Bezouwen, Laura S; Bolhuis, Henk; Folea, I Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different cellular processes. Typical membrane domains are found in bacteria where a specific membrane protein is abundantly expressed. Lipid rafts form another example. Despite the rareness of conventional organelles as found in eukaryotes, some bacteria are known to have an intricate internal cell membrane organization. Membrane proliferation can be divided into curvature and invaginations which can lead to internal compartmentalization. This study discusses some of the clearest examples of bacteria with such domains and internal membranes. The need for membrane specialization is highest among the heterogeneous group of bacteria which harvest light energy, such as photosynthetic bacteria and halophilic archaea. Most of the highly specialized membranes and domains, such as the purple membrane, chromatophore and chlorosome, are found in these autotrophic organisms. Otherwise the need for membrane differentiation is lower and variable, except for those structures involved in cell division. Microscopy techniques have given essential insight into bacterial membrane morphology. As microscopy will further contribute to the unraveling of membrane organization in the years to come, past and present technology in electron microscopy and light microscopy is discussed. Electron microscopy was the first to unravel bacterial morphology because it can directly visualize membranes with inserted proteins, which no other technique can do. Electron microscopy techniques developed in the 1950s and perfected in the following decades involve the thin sectioning and freeze fractioning of cells. Several studies from the golden age of these techniques show amazing examples of cell membrane morphology

  17. Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells

    PubMed Central

    Nagarajan, Shunmugan; Raj, Rajendran Kadarkarai; Saravanakumar, Venkatesan; Balaguru, Uma Maheswari; Behera, Jyotirmaya; Rajendran, Vinoth Kumar; Shathya, Yogarajan; Ali, B. Mohammed Jaffar; Sumantran, Venil; Chatterjee, Suvro

    2016-01-01

    Nitric oxide (NO), a vascular signaling molecule, is primarily produced by endothelial NO synthase. Recently, a functional endothelial NO synthase (eNOS) was described in red blood cells (RBC). The RBC-eNOS contributes to the intravascular NO pool and regulates physiological functions. However the regulatory mechanisms and clinical implications of RBC-eNOS are unknown. The present study investigated regulation and functions of RBC-eNOS under mechanical stimulation. This study shows that mechanical stimuli perturb RBC membrane, which triggers a signaling cascade to activate the eNOS. Extracellular NO level, estimated by the 4-Amino-5-Methylamino-2′, 7′-Difluorofluorescein Diacetate probe, was significantly increased under mechanical stimuli. Immunostaining and western blot studies confirmed that the mechanical stimuli phosphorylate the serine 1177 moiety of RBC-eNOS, and activates the enzyme. The NO produced by activation of RBC-eNOS in vortexed RBCs promoted important endothelial functions such as migration and vascular sprouting. We also show that mechanical perturbation facilitates nitrosylation of RBC proteins via eNOS activation. The results of the study confirm that mechanical perturbations sensitize RBC-eNOS to produce NO, which ultimately defines physiological boundaries of RBC structure and functions. Therefore, we propose that mild physical perturbations before, after, or during storage can improve viability of RBCs in blood banks. PMID:27345770

  18. Computational analysis of dynamic interaction of two red blood cells in a capillary.

    PubMed

    Li, Hua; Ye, Ting; Lam, K Y

    2014-07-01

    The dynamic interaction of two red blood cells (RBCs) in a capillary is investigated computationally by the two-fluid model, including their deformable motion and interaction. For characterization of the deformation, the RBC membrane is treated as a curved two-dimensional shell with finite thickness by the shell model, and allowed to undergo the stretching strain and bending deformation. Moreover, a Morse potential is adopted to model the intercellular interaction for the aggregation behavior, which is characterized as the weak attraction at far distance and strong repulsion at near distance. For validation of the present technique, the dynamic interaction of two RBCs in static blood plasma is simulated firstly, where the RBCs aggregate slowly until a balanced configuration is achieved between the deformation and aggregation forces. The balanced configuration is in good agreement with the results reported previously. Three important effects on the dynamic behavior of RBCs are then analyzed, and they are the initial RBC shape, RBC deformability, and the intercellular interaction strength. It is found that the RBC is less deformed into a well-known parachute shape when the initial RBC shape is larger. Similarly, if the elastic shear modulus and bending stiffness of RBC membrane increase, the RBC resistance to deformation becomes higher, such that the RBC is less deformed. The simulation results also demonstrate that the RBC deformability strongly depends on the intercellular interaction strength. The RBCs deform more easily as the intercellular interaction strength increases.

  19. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    PubMed

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation.

  20. The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy.

    PubMed

    Chong, Ketpin; Deng, Yuru

    2012-01-01

    Biological membranes are generally perceived as phospholipid bilayer structures that delineate in a lamellar form the cell surface and intracellular organelles. However, much more complex and highly convoluted membrane organizations are ubiquitously present in many cell types under certain types of stress, states of disease, or in the course of viral infections. Their occurrence under pathological conditions make such three-dimensionally (3D) folded and highly ordered membranes attractive biomarkers. They have also stimulated great biomedical interest in understanding the molecular basis of their formation. Currently, the analysis of such membrane arrangements, which include tubulo-reticular structures (TRS) or cubic membranes of various subtypes, is restricted to electron microscopic methods, including tomography. Preservation of membrane structures during sample preparation is the key to understand their true 3D nature. This chapter discusses methods for appropriate sample preparations to successfully examine and analyze well-preserved highly ordered membranes by electron microscopy. Processing methods and analysis conditions for green algae (Zygnema sp.) and amoeba (Chaos carolinense), mammalian cells in culture and primary tissue cells are described. We also discuss methods to identify cubic membranes by transmission electron microscopy (TEM) with the aid of a direct template matching method and by computer simulation. A 3D analysis of cubic cell membrane topology by electron tomography is described as well as scanning electron microscopy (SEM) to investigate surface contours of isolated mitochondria with cubic membrane arrangement.

  1. Synthesis of Nanogels via Cell Membrane-Templated Polymerization

    PubMed Central

    Zhang, Jianhua; Gao, Weiwei; Fang, Ronnie H.; Dong, Anjie

    2015-01-01

    The synthesis of biomimetic hydrogel nanoparticles coated with natural cell membrane is described. Compared to existing strategy of wrapping cell membrane onto pre-formed nanoparticle substrates, this new approach forms the cell membrane-derived vesicles first, followed by growing nanoparticle cores in situ. It adds significant controllability over the nanoparticle properties and opens unique opportunities for a broad range of biomedical applications. PMID:26044721

  2. Cell Adhesion and Growth on the Anodized Aluminum Oxide Membrane.

    PubMed

    Park, Jeong Su; Moon, Dalnim; Kim, Jin-Seok; Lee, Jin Seok

    2016-03-01

    Nanotopological cues are popular tools for in vivo investigation of the extracellular matrix (ECM) and cellular microenvironments. The ECM is composed of multiple components and generates a complex microenvironment. The development of accurate in vivo methods for the investigation of ECM are important for disease diagnosis and therapy, as well as for studies on cell behavior. Here, we fabricated anodized aluminum oxide (AAO) membranes using sulfuric and oxalic acid under controlled voltage and temperature. The membranes were designed to possess three different pore and interpore sizes, AAO-1, AAO-2, and AAO-3 membranes, respectively. These membranes were used as tools to investigate nanotopology-signal induced cell behavior. Cancerous cells, specifically, the OVCAR-8 cell-line, were cultured on porous AAO membranes and the effects of these membranes on cell shape, proliferation, and viability were studied. AAO-1 membranes bearing small sized pores were found to maintain the spreading shape of the cultured cells. Cells cultured on AAO-2 and AAO-3 membranes, bearing large pore-sized AAO membranes, changed shape from spreading to rounding. Furthermore, cellular area decreased when cells were cultured on all three AAO membranes that confirmed decreased levels of focal adhesion kinase (FAK). Additionally, OVCAR-8 cells exhibited increased proliferation on AAO membranes possessing various pore sizes, indicating the importance of the nanosurface structure in regulating cell behaviors, such as cell proliferation. Our results suggest that porous-AAO membranes induced nanosurface regulated cell behavior as focal adhesion altered the intracellular organization of the cytoskeleton. Our results may find potential applications as tools in in vivo cancer research studies.

  3. Cell membrane modulation as adjuvant in cancer therapy.

    PubMed

    Zalba, Sara; Ten Hagen, Timo L M

    2017-01-01

    Cancer is a complex disease involving numerous biological processes, which can exist in parallel, can be complementary, or are engaged when needed and as such can replace each other. This redundancy in possibilities cancer cells have, are fundamental to failure of therapy. However, intrinsic features of tumor cells and tumors as a whole provide also opportunities for therapy. Here we discuss the unique and specific makeup and arrangement of cell membranes of tumor cells and how these may help treatment. Interestingly, knowledge on cell membranes and associated structures is present already for decades, while application of membrane modification and manipulation as part of cancer therapy is lagging. Recent developments of scientific tools concerning lipids and lipid metabolism, opened new and previously unknown aspects of tumor cells and indicate possible differences in lipid composition and membrane function of tumor cells compared to healthy cells. This field, coined Lipidomics, demonstrates the importance of lipid components in cell membrane in several illnesses. Important alterations in cancer, and specially in resistant cancer cells compared to normal cells, opened the door to new therapeutic strategies. Moreover, the ability to modulate membrane components and/or properties has become a reality. Here, developments in cancer-related Lipidomics and strategies to interfere specifically with cancer cell membranes and how these affect cancer treatment are discussed. We hypothesize that combination of lipid or membrane targeted strategies with available care to improve chemotherapy, radiotherapy and immunotherapy will bring the much needed change in treatment in the years to come.

  4. Three-dimensional analysis of morphological changes in the malaria parasite infected red blood cell by serial block-face scanning electron microscopy.

    PubMed

    Sakaguchi, Miako; Miyazaki, Naoyuki; Fujioka, Hisashi; Kaneko, Osamu; Murata, Kazuyoshi

    2016-03-01

    The human malaria parasite, Plasmodium falciparum, exhibits morphological changes during the blood stage cycle in vertebrate hosts. Here, we used serial block-face scanning electron microscopy (SBF-SEM) to visualize the entire structures of P. falciparum-infected red blood cells (iRBCs) and to examine their morphological and volumetric changes at different stages. During developmental stages, the parasite forms Maurer's clefts and vesicles in the iRBC cytoplasm and knobs on the iRBC surface, and extensively remodels the iRBC structure for proliferation of the parasite. In our observations, the Maurer's clefts and vesicles in the P. falciparum-iRBCs, resembling the so-called tubovesicular network (TVN), were not connected to each other, and continuous membrane networks were not observed between the parasitophorous vacuole membrane (PVM) and the iRBC cytoplasmic membrane. In the volumetric analysis, the iRBC volume initially increased and then decreased to the end of the blood stage cycle. This suggests that it is necessary to absorb a substantial amount of nutrients from outside the iRBC during the initial stage, but to release waste materials from inside the iRBC at the multinucleate stage. Transportation of the materials may be through the iRBC membrane, rather than a special structure formed by the parasite, because there is no direct connection between the iRBC membrane and the parasite. These results provide new insights as to how the malaria parasite grows in the iRBC and remodels iRBC structure during developmental stages; these observation can serve as a baseline for further experiments on the effects of therapeutic agents on malaria.

  5. Changes in red blood cell membrane structure in type 2 diabetes: a scanning electron and atomic force microscopy study.

    PubMed

    Buys, Antoinette V; Van Rooy, Mia-Jean; Soma, Prashilla; Van Papendorp, Dirk; Lipinski, Boguslaw; Pretorius, Etheresia

    2013-01-28

    Red blood cells (RBCs) are highly deformable and possess a robust membrane that can withstand shear force. Previous research showed that in diabetic patients, there is a changed RBC ultrastructure, where these cells are elongated and twist around spontaneously formed fibrin fibers. These changes may impact erythrocyte function. Ultrastructural analysis of RBCs in inflammatory and degenerative diseases can no longer be ignored and should form a fundamental research tool in clinical studies. Consequently, we investigated the membrane roughness and ultrastructural changes in type 2 diabetes. Atomic force microscopy (AFM) was used to study membrane roughness and we correlate this with scanning electron microscopy (SEM) to compare results of both the techniques with the RBCs of healthy individuals. We show that the combined AFM and SEM analyses of RBCs give valuable information about the disease status of patients with diabetes. Effectiveness of treatment regimes on the integrity, cell shape and roughness of RBCs may be tracked, as this cell's health status is crucial to the overall wellness of the diabetic patient.

  6. Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability

    NASA Astrophysics Data System (ADS)

    Lee, Hyejin; Han, Myungseong; Choi, Young-Woo; Bae, Byungchan

    2015-11-01

    Hydrocarbon-based cerium composite membranes were prepared for proton exchange membrane fuel cell applications to increase oxidative stability. Different amounts of cerium ions were impregnated in sulfonated poly(arylene ether sulfone) (SPES) membranes and their physicochemical properties were investigated according to the cerium content. Field-emission scanning electron microscopy and inductively coupled plasma analyses confirmed the presence of cerium ions in the composite membranes and 1H NMR indicated the successful coordination of sulfonic acid groups with the metal ions. Increasing amounts of cerium ions resulted in decreases in the proton conductivity and water uptake, but enhanced oxidative stability. The oxidative stability of the composite membranes was proven via a hydrogen peroxide exposure experiment which mimicked fuel cell operating conditions. In addition, more than 2200 h was achieved with the composite membrane under in situ accelerated open circuit voltage (OCV) durability testing (DOE protocol), whereas the corresponding pristine SPES membrane attained only 670 h.

  7. Impedance study of membrane dehydration and compression in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Le Canut, Jean-Marc; Latham, Ruth; Mérida, Walter; Harrington, David A.

    Electrochemical impedance spectroscopy (EIS) is used to measure drying and rehydration in proton exchange membrane fuel cells running under load. The hysteresis between forward and backward acquisition of polarization curves is shown to be largely due to changes in the membrane resistance. Drying tests are carried out with hydrogen and simulated reformate (hydrogen and carbon dioxide), and quasi-periodic drying and rehydration conditions are studied. The membrane hydration state is clearly linked to the high-frequency arc in the impedance spectrum, which increases in size for dry conditions indicating an increase in membrane resistance. Changes in impedance spectra as external compression is applied to the cell assembly show that EIS can separate membrane and interfacial effects, and that changes in membrane resistance dominate. Reasons for the presence of a capacitance in parallel with the membrane resistance are discussed.

  8. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    SciTech Connect

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-29

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm{sup −1} and 3300 cm{sup −1} respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10{sup −2} S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  9. Development of composite membranes of PVA-TEOS doped KOH for alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Haryadi, Sugianto, D.; Ristopan, E.

    2015-12-01

    Anion exchange membranes (AEMs) play an important role in separating fuel and oxygen (or air) in the Alkaline Membrane Fuel Cells. Preparation of hybrid organic inorganic materials of Polyvinylalcohol (PVA) - Tetraethylorthosilicate (TEOS) composite membrane doped KOH for direct alcohol alkaline fuel cell application has been investigated. The sol-gel method has been used to prepare the composite membrane of PVA-TEOS through crosslinking step and catalyzed by concentrated of hydrochloric acid. The gel solution was cast on the membrane plastic plate to obtain membrane sheets. The dry membranes were then doped by immersing in various concentrations of KOH solutions for about 4 hours. Investigations of the cross-linking process and the presence of hydroxyl group were conducted by FTIR as shown for frequency at about 1600 cm-1 and 3300 cm-1 respectively. The degree of swelling in ethanol decreased as the KOH concentration for membrane soaking process increased. The ion exchange capacity (IEC) of the membrane was 0.25meq/g. This composite membranes display significant ionic conductivity of 3.23 x 10-2 S/cm in deionized water at room temperature. In addition, the morphology observation by scanning electron microscope (SEM) of the membrane indicates that soaking process of membrane in KOH increased thermal resistant.

  10. Nonhumidified High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2005-01-01

    Fuel cells are being considered for a wide variety of aerospace applications. One of the most versatile types of fuel cells is the proton-exchange-membrane (PEM) fuel cell. PEM fuel cells can be easily scaled to meet the power and space requirements of a specific application. For example, small 100-W PEM fuel cells are being considered for personal power for extravehicular activity suit applications, whereas larger PEM fuel cells are being designed for primary power in airplanes and in uninhabited air vehicles. Typically, PEM fuel cells operate at temperatures up to 80 C. To increase the efficiency and power density of the fuel cell system, researchers are pursuing methods to extend the operating temperature of the PEM fuel cell to 180 C. The most widely used membranes in PEM fuel cells are Nafion 112 and Nafion 117--sulfonated perfluorinated polyethers that were developed by DuPont. In addition to their relatively high cost, the properties of these membranes limit their use in a PEM fuel cell to around 80 C. The proton conductivity of Nafion membranes significantly decreases above 80 C because the membrane dehydrates. The useful operating range of Nafion-based PEM fuel cells can be extended to over 100 C if ancillary equipment, such as compressors and humidifiers, is added to maintain moisture levels within the membrane. However, the addition of these components reduces the power density and increases the complexity of the fuel cell system.

  11. Impact of environment on Red Blood Cell ability to withstand mechanical stress.

    PubMed

    Tarasev, M; Chakraborty, S; Light, L; Davenport, R

    2016-11-04

    Susceptibility of red blood cells (RBC) to hemolysis under mechanical stress is represented by RBC mechanical fragility (MF), with different types or intensities of stress potentially emphasizing different perturbations of RBC membranes. RBC membrane mechanics were shown to depend on cell environment, with many details not yet understood. Here, stress was applied to RBC using a bead mill with oscillation up to 50 Hz, over durations up to 50 minutes. MF profiles plot percent lysis upon stresses of progressive durations. Supplementing media with polyethylene glycol (PEG) which interacts with the cell membrane, but not Dextran which does not, resulted in higher resistance to hemolysis. Albumin, and to a lesser extent fibrinogen and globulins (at physiological concentrations), significantly increased cell ability to withstand mechanical stress versus with un-supplemented buffer solution and with PEG. This is partly due to changes in rheology, per tests done including (PEG) and Dextran, but is mostly due to cell-protein interaction, noting the effect of pH on RBC MF with albumin but not with buffer. Presence of lipids reduced RBC resistance to potentially hemolytic stress with lypemic plasma effecting lower "protection" from induced hemolysis than essentially fatty-acid free plasma. This effect was less dependent on incubation than on fatty-acid presence during stressing. The reduced propensity for hemolysis afforded by plasma proteins also depended markedly on the speed of the bead, potentially reflecting changes from a predominantly Von Karman trail at lower frequencies to an increasingly disorganized turbulent wake at higher frequencies.

  12. Graphene-Induced Pore Formation on Cell Membranes

    NASA Astrophysics Data System (ADS)

    Duan, Guangxin; Zhang, Yuanzhao; Luan, Binquan; Weber, Jeffrey K.; Zhou, Royce W.; Yang, Zaixing; Zhao, Lin; Xu, Jiaying; Luo, Judong; Zhou, Ruhong

    2017-02-01

    Examining interactions between nanomaterials and cell membranes can expose underlying mechanisms of nanomaterial cytotoxicity and guide the design of safer nanomedical technologies. Recently, graphene has been shown to exhibit potential toxicity to cells; however, the molecular processes driving its lethal properties have yet to be fully characterized. We here demonstrate that graphene nanosheets (both pristine and oxidized) can produce holes (pores) in the membranes of A549 and Raw264.7 cells, substantially reducing cell viability. Electron micrographs offer clear evidence of pores created on cell membranes. Our molecular dynamics simulations reveal that multiple graphene nanosheets can cooperate to extract large numbers of phospholipids from the membrane bilayer. Strong dispersion interactions between graphene and lipid-tail carbons result in greatly depleted lipid density within confined regions of the membrane, ultimately leading to the formation of water-permeable pores. This cooperative lipid extraction mechanism for membrane perforation represents another distinct process that contributes to the molecular basis of graphene cytotoxicity.

  13. Selective effect of cell membrane on synaptic neurotransmission

    NASA Astrophysics Data System (ADS)

    Postila, Pekka A.; Vattulainen, Ilpo; Róg, Tomasz

    2016-01-01

    Atomistic molecular dynamics simulations were performed with 13 non-peptidic neurotransmitters (NTs) in three different membrane environments. The results provide compelling evidence that NTs are divided into membrane-binding and membrane-nonbinding molecules. NTs adhere to the postsynaptic membrane surface whenever the ligand-binding sites of their synaptic receptors are buried in the lipid bilayer. In contrast, NTs that have extracellular ligand-binding sites do not have a similar tendency to adhere to the membrane surface. This finding is a seemingly simple yet important addition to the paradigm of neurotransmission, essentially dividing it into membrane-independent and membrane-dependent mechanisms. Moreover, the simulations also indicate that the lipid composition especially in terms of charged lipids can affect the membrane partitioning of NTs. The revised paradigm, highlighting the importance of cell membrane and specific lipids for neurotransmission, should to be of interest to neuroscientists, drug industry and the general public alike.

  14. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cells revolve around the development of perfluorosulfonic acid membranes useful as the proton transport medium and separator. Some of the performance characteristics which are typical for such membranes are outlined. The results of tests utilizing a new experimental membrane useful in proton-exchange membrane fuel cells are presented. The high voltage at low current densities can lead to higher system efficiencies while, at the same time, not sacrificing other critical properties pertinent to membrane fuel cell operation. A series of tests to determine response times indicated that on-off cycles are on the order of 80 milliseconds to reach 90 percent of full power. The IR free voltage at 100 amps/sq ft was determined and the results indicating a membrane/electrode package resistance to be .15 ohm-sq cm at 100 amps/sq ft.

  15. Membrane fouling in microfiltration used for cell harvesting

    NASA Astrophysics Data System (ADS)

    Kaghazchi, Tahereh; Zokaee, Farzin; Zare, Abbas

    2001-03-01

    In the present study the membrane fouling in microfiltration used for cell harvesting in a deadend system has been investigated. Experimental results were analysed in terms of existing membrane filtration models and membrane resistances. The cake filtration model (CFM) and standard blocking model (SBM) have been considered in this study. Various membrane resistances were determined at different processing time, feed concentration and stirring speed. Resistances to permeation in this system include filter medium, pore blocking, adsorption, cake layer and concentration polarization.

  16. Interaction of gentamicin polycation with model and cell membranes.

    PubMed

    Kovács, Eugenia; Savopol, Tudor; Iordache, Maria-Minodora; Săplăcan, Lavinia; Sobaru, Iuliana; Istrate, Claudia; Mingeot-Leclercq, Marie-Paule; Moisescu, Mihaela-Georgeta

    2012-10-01

    The interaction of positively-charged antibiotic gentamicin with cell membranes was studied to determine if any changes in membrane organization were induced by the drug. Opossum kidney epithelia (OK) cells were used as models of eukaryotic cells. Two methods were used: laurdan fluorescence spectroscopy and fluorescence anisotropy recordings on 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) labeled cell suspensions. Both methods showed an altered membrane hydration and fluidity of gentamicin treated cells. Liposomes prepared from dimyristoyl-phosphatidylcholine (DMPC) mixed with cardiolipin, which mimics the heterogeneous charge composition of the natural cell membrane, were used to determine the effect of gentamicin on artificial bilayers. The membrane lipid packing as revealed by generalized polarization (GP) and fluorescence anizotropy variation with increasing temperature was studied. It was found that the generalized polarization of liposomal membranes containing a negatively charged lipid (cardiolipin) is higher in the presence of gentamicin; in the membrane of living cell (OK), gentamicin induces, on the contrary, a decrease of general polarization. Considering the role of membrane organization in the function of transmembrane channels and receptors, our findings suggest hypotheses that may explain the permeation of gentamicin through the living cell membrane by using these channels.

  17. BGMUT: NCBI dbRBC database of allelic variations of genes encoding antigens of blood group systems.

    PubMed

    Patnaik, Santosh Kumar; Helmberg, Wolfgang; Blumenfeld, Olga O

    2012-01-01

    Analogous to human leukocyte antigens, blood group antigens are surface markers on the erythrocyte cell membrane whose structures differ among individuals and which can be serologically identified. The Blood Group Antigen Gene Mutation Database (BGMUT) is an online repository of allelic variations in genes that determine the antigens of various human blood group systems. The database is manually curated with allelic information collated from scientific literature and from direct submissions from research laboratories. Currently, the database documents sequence variations of a total of 1251 alleles of all 40 gene loci that together are known to affect antigens of 30 human blood group systems. When available, information on the geographic or ethnic prevalence of an allele is also provided. The BGMUT website also has general information on the human blood group systems and the genes responsible for them. BGMUT is a part of the dbRBC resource of the National Center for Biotechnology Information, USA, and is available online at http://www.ncbi.nlm.nih.gov/projects/gv/rbc/xslcgi.fcgi?cmd=bgmut. The database should be of use to members of the transfusion medicine community, those interested in studies of genetic variation and related topics such as human migrations, and students as well as members of the general public.

  18. RBC AGE AND POTENTIATION OF TRANSFUSION RELATED PATHOLOGY IN TRAUMA PATIENTS

    PubMed Central

    Weinberg, Jordan A.; Barnum, Scott R.; Patel, Rakesh P.

    2011-01-01

    The specific negative clinical manifestations associated with the transfusion of stored red blood cells (RBCs) and the corresponding mechanisms responsible for such phenomena remain poorly defined. Our recent studies document that leukodepleted older RBC units potentiate transfusion-related toxicity in trauma patients. It is our hypothesis that the transfusion of relatively older blood impedes microvascular perfusion. The central mechanisms proposed to mediate this microcirculatory alteration include: i) the loss of RBC-dependent control of nitric oxide mediated homeostasis concerning vasodilation, and ii) immune cell and complement activation. In this review, we outline the background for our hypothesis and detail our current investigations toward the understanding of this pathophysiology. PMID:21496048

  19. Fluorescence and polarization imaging of membrane dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Wagner, M.; Weber, P.; Bruns, T.; Strauss, W. S. L.; Schneckenburger, H.

    2009-02-01

    Methods of wide field fluorescence microscopy for measuring membrane dynamics in living cells are described. These methods are based on laser pulse excitation of the membrane marker 6-dodecanoyl-2-dimethylamino naphthalene (laurdan) whose emission spectra, fluorescence decay kinetics and anisotropies are sensitive to membrane stiffness and fluidity. Plasma membranes are selected by illumination with an evanescent electromagnetic field and distinguished from intracellular membranes assessed by whole cell illumination. While fluorescence spectra of laurdan appeared red-shifted with decreasing membrane stiffness, fluorescence anisotropy and rotational relaxation times were reduced with increasing membrane fluidity. Membrane stiffness was found to increase with decreasing temperature and increasing amounts of cholesterol. In addition, membrane stiffness of the plasma membrane was always higher than that of intracellular membranes. These effects may have some influence on pathogenesis of certain diseases, uptake of pharmaceutical agents or cell aging. Present experiments are limited to fluorescence microscopy with total internal reflection (TIR) or epi-illumination, but corresponding methods can also be used for screening of larger cell collectives, e.g. in microtiter plates.

  20. Conductivity Measurements of Synthesized Heteropoly Acid Membranes for Proton Exchange Membrane Fuel Cells

    SciTech Connect

    Record, K.A.; Haley, B.T.; Turner, J.

    2006-01-01

    Fuel cell technology is receiving attention due to its potential to be a pollution free method of electricity production when using renewably produced hydrogen as fuel. In a Proton Exchange Membrane (PEM) fuel cell H2 and O2 react at separate electrodes, producing electricity, thermal energy, and water. A key component of the PEM fuel cell is the membrane that separates the electrodes. DuPont’s Nafion® is the most commonly used membrane in PEM fuel cells; however, fuel cell dehydration at temperatures near 100°C, resulting in poor conductivity, is a major hindrance to fuel cell performance. Recent studies incorporating heteropoly acids (HPAs) into membranes have shown an increase in conductivity and thus improvement in performance. HPAs are inorganic materials with known high proton conductivities. The primary objective of this work is to measure the conductivity of Nafion, X-Ionomer membranes, and National Renewable Energy Laboratory (NREL) Developed Membranes that are doped with different HPAs at different concentrations. Four-point conductivity measurements using a third generation BekkTech conductivity test cell are used to determine membrane conductivity. The effect of multiple temperature and humidification levels is also examined. While the classic commercial membrane, Nafion, has a conductivity of approximately 0.10 S/cm, measurements for membranes in this study range from 0.0030 – 0.58 S/cm, depending on membrane type, structure of the HPA, and the relative humidity. In general, the X-ionomer with H6P2W21O71 HPA gave the highest conductivity and the Nafion with the 12-phosphotungstic (PW12) HPA gave the lowest. The NREL composite membranes had conductivities on the order of 0.0013 – 0.025 S/cm.

  1. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Keping; McDermid, Scott; Li, Jing; Kremliakova, Natalia; Kozak, Paul; Song, Chaojie; Tang, Yanghua; Zhang, Jianlu; Zhang, Jiujun

    Composite membranes made from Nafion ionomer with nano phosphonic acid-functionalised silica and colloidal silica were prepared and evaluated for proton exchange membrane fuel cells (PEMFCs) operating at elevated temperature and low relative humidity (RH). The phosphonic acid-functionalised silica additive obtained from a sol-gel process was well incorporated into Nafion membrane. The particle size determined using transmission electron microscope (TEM) had a narrow distribution with an average value of approximately 11 nm and a standard deviation of ±4 nm. The phosphonic acid-functionalised silica additive enhanced proton conductivity and water retention by introducing both acidic groups and porous silica. The proton conductivity of the composite membrane with the acid-functionalised silica was 0.026 S cm -1, 24% higher than that of the unmodified Nafion membrane at 85 °C and 50% RH. Compared with the Nafion membrane, the phosphonic acid-functionalised silica (10% loading level) composite membrane exhibited 60 mV higher fuel cell performance at 1 A cm -2, 95 °C and 35% RH, and 80 mV higher at 0.8 A cm -2, 120 °C and 35% RH. The fuel cell performance of composite membrane made with 6% colloidal silica without acidic group was also higher than unmodified Nafion membrane, however, its performance was lower than the acid-functionalised silica additive composite membrane.

  2. Experimental prestorage filtration removes antibodies and decreases lipids in RBC supernatants mitigating TRALI in vivo.

    PubMed

    Silliman, Christopher C; Kelher, Marguerite R; Khan, Samina Y; LaSarre, Monica; West, F Bernadette; Land, Kevin J; Mish, Barbara; Ceriano, Linda; Sowemimo-Coker, Samuel

    2014-05-29

    Transfusion-related acute lung injury (TRALI) remains a significant cause of transfusion-related mortality with red cell transfusion. We hypothesize that prestorage filtration may reduce proinflammatory activity in the red blood cell (RBC) supernatant and prevent TRALI. Filters were manufactured for both small volumes and RBC units. Plasma containing antibodies to human lymphocyte antigen (HLA)-A2 or human neutrophil antigen (HNA)-3a was filtered, and immunoglobulins and specific HNA-3a and HLA-2a neutrophil (PMN) priming activity were measured. Antibodies to OX27 were added to plasma, and filtration was evaluated in a 2-event animal model of TRALI. RBC units from 31 donors known to have antibodies against HLA antigens and from 16 antibody-negative controls were filtered. Furthermore, 4 RBC units were drawn and underwent standard leukoreduction. Immunoglobulins, HLA antibodies, PMN priming activity, and the ability to induce TRALI in an animal model were measured. Small-volume filtration of plasma removed >96% of IgG, antibodies to HLA-A2 and HNA-3a, and their respective priming activity, as well as mitigating antibody-mediated in vivo TRALI. In RBC units, experimental filtration removed antibodies to HLA antigens and inhibited the accumulation of lipid priming activity and lipid-mediated TRALI. We conclude that filtration removes proinflammatory activity and the ability to induce TRALI from RBCs and may represent a TRALI mitigation step.

  3. RBC aggregation in dextran solutions can be measured by flow cytometry.

    PubMed

    Zhao, Lian; Kaewprayoon, Waraporn; Zhou, Hong; Georgieva, Radostina; Bäumler, Hans

    2017-01-01

    The impact of macromolecules on RBC aggregation continues to be of interest, nevertheless present measurements still have limitations and need improvement. We applied flow cytometry to measure RBC aggregation in dextran T500 (Dx500) solution. The samples were fixed in the aggregated state by glutaraldehyde. Fixed RBC exhibit auto fluorescence, which can be detected by flow cytometry. Single cells, doublets, triplets and larger aggregates can be distinguished quantitatively and quickly due to the correlation between auto fluorescence intensity and number of RBC per measured event. With the increase in concentration of Dx500, percentages of all aggregates and bigger aggregates increased significantly at concentration of 2%, 4% and 6%, while decreased when the concentration reached 8% and 10%. The percentage of bigger aggregates in concentration of 4% was higher than that in 2% and 6%. The data of flow cytometry was confirmed by microscopic observation and are in good agreement with the literature. The method provide additional advantages to the conventional measurement of RBC aggregation. It gets the distribution of single cells and aggregates as derived from the microscopic observation with hematocrit of physiological level. It uses sample volume as 1/5∼1/10 as needed in sendimentation and photometricmethods.

  4. Probing Androgen Receptor Signaling in Circulating Tumor Cells in Prostate Cancer

    DTIC Science & Technology

    2014-07-01

    Membrane Microfilter (University of Miami, USA)63 Dielectric field flow fractionation (DFFF) Application of electric field to isolate cells...immunofluorescence for tumour-specific markers ApoStream® (ApoCell, USA)60 Other approaches Fibre-optic array scanning technology (FAST) cytometry RBC lysis...scanning cytometry RBC lysis; immunofluorescence for EpCAM+/CD45– cells Maintrac® (Simfo, Germany)72 Functionalized nanodetector inserted into patient’s

  5. Roles of membrane trafficking in plant cell wall dynamics

    PubMed Central

    Ebine, Kazuo; Ueda, Takashi

    2015-01-01

    The cell wall is one of the characteristic components of plant cells. The cell wall composition differs among cell types and is modified in response to various environmental conditions. To properly generate and modify the cell wall, many proteins are transported to the plasma membrane or extracellular space through membrane trafficking, which is one of the key protein transport mechanisms in eukaryotic cells. Given the diverse composition and functions of the cell wall in plants, the transport of the cell wall components and proteins that are involved in cell wall-related events could be specialized for each cell type, i.e., the machinery for cell wall biogenesis, modification, and maintenance could be transported via different trafficking pathways. In this review, we summarize the recent progress in the current understanding of the roles and mechanisms of membrane trafficking in plant cells and focus on the biogenesis and regulation of the cell wall. PMID:26539200

  6. Physical principles of membrane remodelling during cell mechanoadaptation

    PubMed Central

    Kosmalska, Anita Joanna; Casares, Laura; Elosegui-Artola, Alberto; Thottacherry, Joseph Jose; Moreno-Vicente, Roberto; González-Tarragó, Víctor; del Pozo, Miguel Ángel; Mayor, Satyajit; Arroyo, Marino; Navajas, Daniel; Trepat, Xavier; Gauthier, Nils C.; Roca-Cusachs, Pere

    2015-01-01

    Biological processes in any physiological environment involve changes in cell shape, which must be accommodated by their physical envelope—the bilayer membrane. However, the fundamental biophysical principles by which the cell membrane allows for and responds to shape changes remain unclear. Here we show that the 3D remodelling of the membrane in response to a broad diversity of physiological perturbations can be explained by a purely mechanical process. This process is passive, local, almost instantaneous, before any active remodelling and generates different types of membrane invaginations that can repeatedly store and release large fractions of the cell membrane. We further demonstrate that the shape of those invaginations is determined by the minimum elastic and adhesive energy required to store both membrane area and liquid volume at the cell–substrate interface. Once formed, cells reabsorb the invaginations through an active process with duration of the order of minutes. PMID:26073653

  7. Anatomy of the red cell membrane skeleton: unanswered questions.

    PubMed

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias.

  8. In vivo crossmatching with Tc-99m-RBC's and In-111-oxine-RBC's

    SciTech Connect

    Marcus, C.S.; Myhre, B.A.; Angulo, M.C.; Salk, R.D.; Essex, C.E.

    1984-01-01

    In vitro crossmatching techniques are often inadequate for patients who have received multiple prior transfusions. These patients usually have multiple antibodies to minor blood groups, not all of which are necessarily important to vivo. It becomes increasingly difficult to obtain appropriate units for transfusion, and often units are used with hopes that a minor group antibody will not be significantly active in vivo. If a transfusion reaction occurs, the unit is stopped. The authors have developed and successfully tested a method whereby 1.5 to 3c of potential donor RBC's are labeled with 25-50 ..mu..Ci of Tc-99m using the BNL kits. After injection, samples are drawn at 10, 20, 60, and 120 minutes and the RBC survival is measured. If it is desirable to test 2 units simultaneously, the authors use 400 ..mu..Ci Tc-99m to label an RBC aliquot of one unit and 25 ..mu..Ci In-111-oxine to label the other; both labeled aliquots are injected together. The method is simple and reliable. In addition to assessing compatibility, the authors may also estimate the % viability of transfused, compatible RBC's by starting with 400 ..mu..Ci of Tc-99m and multiplying % survival at 24 hours by 1.2. For 24 hr. survival measurements of IN-111-oxine-RBC's, 25 ..mu..Ci is adequate and no multiplication factor is necessary. The authors have performed 13 in vivo crossmatches, 4 of which were double, in 6 patients. One documented mild transfusion reaction occurred. There were no false positive or false negative results.

  9. A multiscale Cauchy-Born meshfree model for deformability of red blood cells parasitized by Plasmodium falciparum

    NASA Astrophysics Data System (ADS)

    Zhang, L. W.; Ademiloye, A. S.; Liew, K. M.

    In normal physiological and healthy conditions, red blood cells (RBCs) deform readily as they pass through the microcapillaries and the spleen, however, upon invasion by the malaria parasite, the host RBC membrane begins to lose their deformability. In spite of the progress in understanding malaria pathogenesis, the primary mechanism responsible for the loss of deformability remains unclear. In this paper, we examine the effects of Plasmodium falciparum infection and maturation on the deformability of parasitized or infected red blood cells (iRBCs) by means of a three-dimensional (3D) multiscale red blood cell (RBC) framework. This multiscale framework is developed based on the Cauchy-Born rule and the meshfree IMLS-Ritz method. The atomistic scale strain energy density function of the RBC membrane was computed using a selected representative cell based on the membrane spectrin network. The results obtained from our numerical simulations affirm that the presence of malaria infection significantly increases the rigidity of RBC membrane. It was observed that in the trophozoite and schizont infection stages, biconcave cell geometry leads to better prediction than nearly spherical geometry in comparison with experimental studies. Furthermore, we confirm that increase in temperature also results to increased stiffening of the cell membrane. Lastly, the observed decrease in the deformability of iRBC membrane may be primarily due to the structural remodeling and changes in the microstructure of the membrane rather than the change in cell shape.

  10. Electron-beam direct processing on living cell membrane

    SciTech Connect

    Hoshino, Takayuki; Morishima, Keisuke

    2011-10-24

    We demonstrated a direct processing on a living Hep G2 cell membrane in conventional cultivation conditions using an electron beam. Electron beam-induced deposition from liquid precursor 3,4-ethylenedioxythiophene and ablation was performed on the living cells. The 2.5-10 keV electron beam which was irradiated through a 100-nm-thick SiN nanomembrane could induce a deposition pattern and a ablation on a living cell membrane. This electron beam direct processing can provide simple in-situ cell surface modification for an analytical method of living cell membrane dynamic.

  11. Effect of EMP fields on cell membrane potentials

    SciTech Connect

    Gailey, P.C.; Easterly, C.E.

    1993-06-01

    A simple model is presented for cell membrane potentials induced during exposure to electromagnetic pulse (EMP). Using calculated values of internal electric field strength induced during EMP exposure, the model predicts that cell membrane potentials of about 100 mV may be induced for time frames on the order of 10 ns. Possible biological effects of these potentials including electroporation area discussed.

  12. Challenges for red blood cell biomarker discovery through proteomics.

    PubMed

    Barasa, Benjamin; Slijper, Monique

    2014-05-01

    Red blood cells are rather unique body cells, since they have lost all organelles when mature, which results in lack of potential to replace proteins that have lost their function. They maintain only a few pathways for obtaining energy and reducing power for the key functions they need to fulfill. This makes RBCs highly sensitive to any aberration. If so, these RBCs are quickly removed from circulation, but if the RBC levels reduce extremely fast, this results in hemolytic anemia. Several causes of HA exist, and proteome analysis is the most straightforward way to obtain deeper insight into RBC functioning under the stress of disease. This should result in discovery of biomarkers, typical for each source of anemia. In this review, several challenges to generate in-depth RBC proteomes are described, like to obtain pure RBCs, to overcome the wide dynamic range in protein expression, and to establish which of the identified/quantified proteins are active in RBCs. The final challenge is to acquire and validate suited biomarkers unique for the changes that occur for each of the clinical questions; in red blood cell aging (also important for transfusion medicine), for thalassemias or sickle cell disease. Biomarkers for other hemolytic anemias that are caused by dysfunction of RBC membrane proteins (the RBC membrane defects) or RBC cytosolic proteins (the enzymopathies) are sometimes even harder to discover, in particular for the patients with RBC rare diseases with unknown cause. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.

  13. Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability

    NASA Astrophysics Data System (ADS)

    Macauley, Natalia; Wong, Ka Hung; Watson, Mark; Kjeang, Erik

    2015-12-01

    The overall lifetime of polymer electrolyte fuel cells is often determined by the membrane durability. Platinum, which may dissolve from the catalyst layers during fuel cell operation and deposit in the membrane, has been shown to have both positive and negative effects on membrane stability. In the present work, we analyze what specific conditions are required in order to reach a favorable, membrane stabilizing effect with the controlled use of platinum in the membrane. Using accelerated membrane durability testing, field operated membrane samples, and electron microscopy, we demonstrate that a high platinum concentration with specific particle shapes and sizes is essential for enhanced membrane stability. Specifically, star shaped and dendritic particles with high particle density and high surface area are shown to be preferable. These particles contain high levels of Pt(111) and are expected to have high catalytic activity toward peroxide quenching and crossover gas consumption, thereby mitigating chemical membrane degradation. On the other hand, small, dispersed cubic particles are found to have no effect or the opposite, negative effect on membrane stability.

  14. Radiation-Grafted Polymer Electrolyte Membranes for Water Electrolysis Cells: Evaluation of Key Membrane Properties.

    PubMed

    Albert, Albert; Barnett, Alejandro O; Thomassen, Magnus S; Schmidt, Thomas J; Gubler, Lorenz

    2015-10-14

    Radiation-grafted membranes can be considered an alternative to perfluorosulfonic acid (PFSA) membranes, such as Nafion, in a solid polymer electrolyte electrolyzer. Styrene, acrylonitrile, and 1,3-diisopropenylbenzene monomers are cografted into preirradiated 50 μm ethylene tetrafluoroethylene (ETFE) base film, followed by sulfonation to introduce proton exchange sites to the obtained grafted films. The incorporation of grafts throughout the thickness is demonstrated by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analysis of the membrane cross-sections. The membranes are analyzed in terms of grafting kinetics, ion-exchange capacity (IEC), and water uptake. The key properties of radiation-grafted membranes and Nafion, such as gas crossover, area resistance, and mechanical properties, are evaluated and compared. The plot of hydrogen crossover versus area resistance of the membranes results in a property map that indicates the target areas for membrane development for electrolyzer applications. Tensile tests are performed to assess the mechanical properties of the membranes. Finally, these three properties are combined to establish a figure of merit, which indicates that radiation-grafted membranes obtained in the present study are promising candidates with properties superior to those of Nafion membranes. A water electrolysis cell test is performed as proof of principle, including a comparison to a commercial membrane electrode assembly (MEA).

  15. Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Jheng, Li-Cheng; Chang, Wesley Jen-Yang; Hsu, Steve Lien-Chung; Cheng, Po-Yang

    2016-08-01

    Two types of porous polybenzimidazole (PBI) membranes with symmetric and asymmetric morphologies were fabricated by the template-leaching method and characterized by scanning electron microscope (SEM). Their physicochemical properties were compared in terms of acid-doping level, proton conductivity, mechanical strength, and oxidative stability. The durability of fuel cell operation is one of the most challenging for the PBI based membrane electrode assembly (MEA) used in high-temperature proton exchange membrane fuel cells (HT-PEMFCs). In the present work, we carried out a long-term steady-state fuel cell test to compare the effect of membrane structure on the cell voltage degradation. It has also been demonstrated that the asymmetrically porous PBI could bring some notable improvements on the durability of fuel cell operation, the fuel crossover problem, and the phosphoric acid leakage.

  16. Studying the Nucleated Mammalian Cell Membrane by Single Molecule Approaches

    PubMed Central

    Wang, Feng; Wu, Jiazhen; Gao, Jing; Liu, Shuheng; Jiang, Junguang; Jiang, Shibo; Wang, Hongda

    2014-01-01

    The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms. PMID:24806512

  17. The Bo-RBC-SCID mouse model for evaluating the efficacy of anti-theilerial drugs.

    PubMed

    Hagiwara, K; Tsuji, M; Ishihara, C; Tajima, M; Kurosawa, T; Iwai, H; Takahashi, K

    1993-02-01

    We have previously developed a mouse model which allowed the proliferation of Theileria sergenti in severe combined immunodeficiency (SCID) mice with circulating bovine erythrocytes (Bo-RBC). In the present study, this model was utilized to test the efficacy of anti-theilerial drugs. Bo-RBC-SCID mice were created by giving periodic transfusions of T. sergenti-free Bo-RBC, and subsequently infecting with T. sergenti. Three anti-protozoal compounds, Pamaquine (Yamanouchi Pharmaceutical Co. Ltd), Ganaseg (Japan CIBA-GEIGY Ltd) and Buparvaquone (Coopers Animal Health Ltd), were subcutaneously administered into the mice at doses recommended for cattle therapy. Blood examinations demonstrated that all three drugs significantly reduced the level of parasitemia although Ganaseg was effective only at a dose five times higher than that recommended for cattle therapy. Administration of the drugs neither caused any sign of acute toxicity nor changed the rate of Bo-RBC in the SCID mice's circulating blood cells. The results indicate that the Bo-RBC-SCID mouse model may offer a useful in vivo system for evaluating the efficacy of anti-protozoal drugs against T. sergenti.

  18. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  19. Axially resolved polarisation microscopy of membrane dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Wagner, Michael; Weber, Petra; Schneckenburger, Herbert

    2007-07-01

    Membrane dynamics has a large impact on cellular uptake and release of various metabolites or pharmaceutical agents. For a deeper understanding of the cellular processes involved, we used U373-MG human glioblastoma cells as a model system. As conventional microscopy does not permit to investigate individual layers in living cells, we used structured illumination techniques and total internal reflection fluorescence microscopy (TIRFM) to analyse the plasma membrane and intracellular membranes of living cells selectively. Optical image sections provide a high resolution and the possibility of 3D reconstruction. Membranes of living cells were characterized by the membrane marker 6-dodecanoyl-2-dimethylamino naphthalene (laurdan). Due to its spectral and kinetic properties this fluorescence marker appears appropriate for measuring membrane stiffness and fluidity. After excitation with linearly polarized laser pulses, membrane fluidity of human glioblastoma cells was determined by measurements of steady-state and time-resolved fluorescence anisotropy r(t), since with increasing viscosity of the environment, the rotation of an excited molecule is impeded. The corresponding time constant τ r of molecular relaxation decreased with temperature and increased with the amount of cholesterol. In addition, fluorescence anisotropy r(t) values of the plasma membrane were larger than the values of intracellular membranes for all temperatures in the range of 16°C<=T<=41°C.

  20. Empirical membrane lifetime model for heavy duty fuel cell systems

    NASA Astrophysics Data System (ADS)

    Macauley, Natalia; Watson, Mark; Lauritzen, Michael; Knights, Shanna; Wang, G. Gary; Kjeang, Erik

    2016-12-01

    Heavy duty fuel cells used in transportation system applications such as transit buses expose the fuel cell membranes to conditions that can lead to lifetime-limiting membrane failure via combined chemical and mechanical degradation. Highly durable membranes and reliable predictive models are therefore needed in order to achieve the ultimate heavy duty fuel cell lifetime target of 25,000 h. In the present work, an empirical membrane lifetime model was developed based on laboratory data from a suite of accelerated membrane durability tests. The model considers the effects of cell voltage, temperature, oxygen concentration, humidity cycling, humidity level, and platinum in the membrane using inverse power law and exponential relationships within the framework of a general log-linear Weibull life-stress statistical distribution. The obtained model is capable of extrapolating the membrane lifetime from accelerated test conditions to use level conditions during field operation. Based on typical conditions for the Whistler, British Columbia fuel cell transit bus fleet, the model predicts a stack lifetime of 17,500 h and a membrane leak initiation time of 9200 h. Validation performed with the aid of a field operated stack confirmed the initial goal of the model to predict membrane lifetime within 20% of the actual operating time.

  1. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    DOE PAGES

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; ...

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolutionmore » inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. We find our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. Lastly, these observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.« less

  2. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    SciTech Connect

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Urban, Volker S.; Ohl, Michael

    2016-01-21

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. We find our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. Lastly, these observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  3. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    NASA Astrophysics Data System (ADS)

    Stingaciu, Laura-Roxana; O’Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  4. Local RBC aggregation disturbing blood fluidity and causing stasis in microvessels.

    PubMed

    McHedlishvili, George; Varazashvili, Manana; Gobejishvili, Leila

    2002-01-01

    Experiments in rat mesenterium were carried out under conditions when both pressure gradient in the chosen microvessels and their diameters were preserved constant. All details of the hemorheological events were directly visualized and documented by usage of appropriate microscopic video techniques. Intensified RBC aggregation locally produced in individual capillaries, immediately disturbs the normal blood flow structure inside their lumina and deranges the rheological properties of blood flow in the microvessels, which slows down till a full stop. The RBC aggregates gradually grow up due to addition of new cells, which become compressed and appear homogeneous. This usually interferes with restoration of blood flow in capillaries. Further the RBC aggregates can move slowly towards veins, while the flow accelerates immediately as soon as the aggregates reach the larger venules.

  5. Proteomics and Phosphoproteomics Analysis of Human Lens Fiber Cell Membranes

    PubMed Central

    Wang, Zhen; Han, Jun; David, Larry L.; Schey, Kevin L.

    2013-01-01

    Purpose. The human lens fiber cell insoluble membrane fraction contains important membrane proteins, cytoskeletal proteins, and cytosolic proteins that are strongly associated with the membrane. The purpose of this study was to characterize the lens fiber cell membrane proteome and phosphoproteome from human lenses. Methods. HPLC-mass spectrometry–based multidimensional protein identification technology (MudPIT), without or with phosphopeptide enrichment, was applied to study the proteome and phosphoproteome of lens fiber cell membranes, respectively. Results. In total, 951 proteins were identified, including 379 integral membrane and membrane-associated proteins. Enriched gene categories and pathways based on the proteomic analysis include carbohydrate metabolism (glycolysis/gluconeogenesis, pentose phosphate pathway, pyruvate metabolism), proteasome, cell-cell signaling and communication (GTP binding, gap junction, focal adhesion), glutathione metabolism, and actin regulation. The combination of TiO2 phosphopeptide enrichment and MudPIT analysis revealed 855 phosphorylation sites on 271 proteins, including 455 phosphorylation sites that have not been previously identified. PKA, PKC, CKII, p38MAPK, and RSK are predicted as the major kinases for phosphorylation on the sites identified in the human lens membrane fraction. Conclusions. The results presented herein significantly expand the characterized proteome and phosphoproteome of the human lens fiber cell and provide a valuable reference for future research in studies of lens development and disease. PMID:23349431

  6. ISOLATION OF PLASMA MEMBRANE FRAGMENTS FROM HELA CELLS

    PubMed Central

    Boone, Charles W.; Ford, Lincoln E.; Bond, Howard E.; Stuart, Donald C.; Lorenz, Dianne

    1969-01-01

    A method for isolating plasma membrane fragments from HeLa cells is described. The procedure starts with the preparation of cell membrane "ghosts," obtained by gentle rupture of hypotonically swollen cells, evacuation of most of the cell contents by repeated washing, and isolation of the ghosts on a discontinuous sucrose density gradient. The ghosts are then treated by minimal sonication (5 sec) at pH 8.6, which causes the ghost membranes to pinch off into small vesicles but leaves any remaining larger intracellular particulates intact and separable by differential centrifugation. The ghost membrane vesicles are then subjected to isopycnic centrifugation on a 20–50% w/w continuous sucrose gradient in tris-magnesium buffer, pH 8.6. A band of morphologically homogeneous smooth vesicles, derived principally from plasma membrane, is recovered at 30–33% (peak density = 1.137). The plasma membrane fraction contained a Na-K-activated ATPase activity of 1.5 µmole Pi/hr per mg, 3% RNA, and 13.8% of the NADH-cytochrome c reductase activity of a heavier fraction from the same gradient which contained mitochondria and rough endoplasmic vesicles. The plasma membranes of viable HeLa cells were marked with 125I-labeled horse antibody and followed through the isolation procedure. The specific antibody binding of the plasma membrane vesicle fraction was increased 49-fold over that of the original whole cells. PMID:4239370

  7. Detecting Nanodomains in Living Cell Membrane by Fluorescence Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Hai-Tao; Marguet, Didier

    2011-05-01

    Cell membranes actively participate in numerous cellular functions. Inasmuch as bioactivities of cell membranes are known to depend crucially on their lateral organization, much effort has been focused on deciphering this organization on different length scales. Within this context, the concept of lipid rafts has been intensively discussed over recent years. In line with its ability to measure diffusion parameters with great precision, fluorescence correlation spectroscopy (FCS) measurements have been made in association with innovative experimental strategies to monitor modes of molecular lateral diffusion within the plasma membrane of living cells. These investigations have allowed significant progress in the characterization of the cell membrane lateral organization at the suboptical level and have provided compelling evidence for the in vivo existence of raft nanodomains. We review these FCS-based studies and the characteristic structural features of raft nanodomains. We also discuss the findings in regards to the current view of lipid rafts as a general membrane-organizing principle.

  8. Photocatalytic Degradation of Cell Membrane Coatings for Controlled Drug Release.

    PubMed

    Rao, Lang; Meng, Qian-Fang; Huang, Qinqin; Liu, Pei; Bu, Lin-Lin; Kondamareddy, Kiran Kumar; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-06-01

    Biomimetic cell-membrane-camouflaged particles with desirable features have been widely used for various biomedical applications. However, there are few reports on employing these particles for cancer drug delivery due to the failure of the membrane coatings to be efficiently degraded in the tumor microenvironment which hampers the drug release. In this work, core-shell SiO2 @TiO2 nanoparticles with enhanced photocatalytic activity are used for controlled degradation of surface erythrocyte membrane coatings. The antitumor drug docetaxel is encapsulated into nanocarriers to demonstrate the controlled drug release under ultraviolet irradiation, and the drug-loaded nanoparticles are further used for enhanced cancer cell therapy. Here, a simple but practical method for degradation of cell membrane coatings is presented, and a good feasibility of using cell membrane-coated nanocarriers for controlled drug delivery is demonstrated.

  9. Cell Membranes Under Hydrostatic Pressure Subjected to Micro-Injection

    NASA Astrophysics Data System (ADS)

    Vassilev, Vassil M.; Kostadinov, Kostadin G.; Mladenov, Ivaïlo M.; Shulev, Assen A.; Stoilov, Georgi I.; Djondjorov, Peter A.

    2011-04-01

    The work is concerned with the determination of the mechanical behaviour of cell membranes under uniform hydrostatic pressure subject to micro-injections. For that purpose, assuming that the shape of the deformed cell membrane is axisymmetric a variational statement of the problem is developed on the ground of the so-called spontaneous curvature model. In this setting, the cell membrane is regarded as an axisymmetric surface in the three-dimensional Euclidean space providing a stationary value of the shape energy functional under the constraint of fixed total area and fixed enclosed volume. The corresponding Euler-Lagrange equations and natural boundary conditions are derived, analyzed and used to express the forces and moments in the membrane. Several examples of such surfaces representing possible shapes of cell membranes under pressure subjected to micro injection are determined numerically.

  10. Phosphorylation and activation of the plasma membrane Na+/H+ exchanger (NHE1) during osmotic cell shrinkage.

    PubMed

    Rigor, Robert R; Damoc, Catalina; Phinney, Brett S; Cala, Peter M

    2011-01-01

    The Na(+)/H(+)Exchanger isoform 1 (NHE1) is a highly versatile, broadly distributed and precisely controlled transport protein that mediates volume and pH regulation in most cell types. NHE1 phosphorylation contributes to Na(+)/H(+) exchange activity in response to phorbol esters, growth factors or protein phosphatase inhibitors, but has not been observed during activation by osmotic cell shrinkage (OCS). We examined the role of NHE1 phosphorylation during activation by OCS, using an ideal model system, the Amphiuma tridactylum red blood cell (atRBC). Na(+)/H(+) exchange in atRBCs is mediated by an NHE1 homolog (atNHE1) that is 79% identical to human NHE1 at the amino acid level. NHE1 activity in atRBCs is exceptionally robust in that transport activity can increase more than 2 orders of magnitude from rest to full activation. Michaelis-Menten transport kinetics indicates that either OCS or treatment with the phosphatase inhibitor calyculin-A (CLA) increase Na(+) transport capacity without affecting transport affinity (K(m)=44 mM) in atRBCs. CLA and OCS act non-additively to activate atNHE1, indicating convergent, phosphorylation-dependent signaling in atNHE1 activation. In situ(32)P labeling and immunoprecipitation demonstrates that the net phosphorylation of atNHE1 is increased 4-fold during OCS coinciding with a more than 2-order increase in Na(+) transport activity. This is the first reported evidence of increased NHE1 phosphorylation during OCS in any vertebrate cell type. Finally, liquid chromatography and mass spectrometry (LC-MS/MS) analysis of atNHE1 immunoprecipitated from atRBC membranes reveals 9 phosphorylated serine/threonine residues, suggesting that activation of atNHE1 involves multiple phosphorylation and/or dephosphorylation events.

  11. How the antimicrobial peptides destroy bacteria cell membrane: Translocations vs. membrane buckling

    NASA Astrophysics Data System (ADS)

    Golubovic, Leonardo; Gao, Lianghui; Chen, Licui; Fang, Weihai

    2012-02-01

    In this study, coarse grained Dissipative Particle Dynamics simulation with implementation of electrostatic interactions is developed in constant pressure and surface tension ensemble to elucidate how the antimicrobial peptide molecules affect bilayer cell membrane structure and kill bacteria. We find that peptides with different chemical-physical properties exhibit different membrane obstructing mechanisms. Peptide molecules can destroy vital functions of the affected bacteria by translocating across their membranes via worm-holes, or by associating with membrane lipids to form hydrophilic cores trapped inside the hydrophobic domain of the membranes. In the latter scenario, the affected membranes are strongly corrugated (buckled) in accord with very recent experimental observations [G. E. Fantner et al., Nat. Nanotech., 5 (2010), pp. 280-285].

  12. Measurement of red blood cell mechanics during morphological changes.

    PubMed

    Park, YongKeun; Best, Catherine A; Badizadegan, Kamran; Dasari, Ramachandra R; Feld, Michael S; Kuriabova, Tatiana; Henle, Mark L; Levine, Alex J; Popescu, Gabriel

    2010-04-13

    The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell's morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane's shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery.

  13. Exploring the inhibitory effect of membrane tension on cell polarization

    PubMed Central

    Wang, Jing; Yang, Gen; Ouyang, Qi; Wang, Yugang; Zhang, Lei

    2017-01-01

    Cell polarization toward an attractant is influenced by both physical and chemical factors. Most existing mathematical models are based on reaction-diffusion systems and only focus on the chemical process occurring during cell polarization. However, membrane tension has been shown to act as a long-range inhibitor of cell polarization. Here, we present a cell polarization model incorporating the interplay between Rac GTPase, filamentous actin (F-actin), and cell membrane tension. We further test the predictions of this model by performing single cell measurements of the spontaneous polarization of cancer stem cells (CSCs) and non-stem cancer cells (NSCCs), as the former have lower cell membrane tension. Based on both our model and the experimental results, cell polarization is more sensitive to stimuli under low membrane tension, and high membrane tension improves the robustness and stability of cell polarization such that polarization persists under random perturbations. Furthermore, our simulations are the first to recapitulate the experimental results described by Houk et al., revealing that aspiration (elevation of tension) and release (reduction of tension) result in a decrease in and recovery of the activity of Rac-GTP, respectively, and that the relaxation of tension induces new polarity of the cell body when a cell with the pseudopod-neck-body morphology is severed. PMID:28135277

  14. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking.

  15. The Flocculating Cationic Polypetide from Moringa oleifera Seeds Damages Bacterial Cell Membranes by Causing Membrane Fusion.

    PubMed

    Shebek, Kevin; Schantz, Allen B; Sines, Ian; Lauser, Kathleen; Velegol, Stephanie; Kumar, Manish

    2015-04-21

    A cationic protein isolated from the seeds of the Moringa oleifera tree has been extensively studied for use in water treatment in developing countries and has been proposed for use in antimicrobial and therapeutic applications. However, the molecular basis for the antimicrobial action of this peptide, Moringa oleifera cationic protein (MOCP), has not been previously elucidated. We demonstrate here that a dominant mechanism of MOCP antimicrobial activity is membrane fusion. We used a combination of cryogenic electron microscopy (cryo-EM) and fluorescence assays to observe and study the kinetics of fusion of membranes in liposomes representing model microbial cells. We also conducted cryo-EM experiments on E. coli cells where MOCP was seen to fuse the inner and outer membranes. Coarse-grained molecular dynamics simulations of membrane vesicles with MOCP molecules were used to elucidate steps in peptide adsorption, stalk formation, and fusion between membranes.

  16. Membrane curvature in cell biology: An integration of molecular mechanisms.

    PubMed

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  17. Membrane curvature in cell biology: An integration of molecular mechanisms

    PubMed Central

    Daste, Frederic

    2016-01-01

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists. PMID:27528656

  18. Activation of protein kinase C by phorbol ester increases red blood cell scramblase activity and external phosphatidylserine.

    PubMed

    Barber, Latorya A; Palascak, Mary B; Qi, Xiaoyang; Joiner, Clinton H; Franco, Robert S

    2015-11-01

    Externalization of phosphatidylserine (PS) is thought to contribute to sickle cell disease (SCD) pathophysiology. The red blood cell (RBC) aminophospholipid translocase (APLT) mediates the transport of PS from the outer to the inner RBC membrane leaflet to maintain an asymmetric distribution of PL, while phospholipid scramblase (PLSCR) equilibrates PL across the RBC membrane, promoting PS externalization. We previously identified an association between PS externalization level and PLSCR activity in sickle RBC under basal conditions. Other studies showed that activation of protein kinase C (PKC) by PMA (phorbol-12-myristate-13-acetate) causes increased external PS on RBC. Therefore, we hypothesized that PMA-activated PKC stimulates PLSCR activity in RBC and thereby contributes to increased PS externalization. In the current studies, we show that PMA treatment causes immediate and variable PLSCR activation and subsequent PS externalization in control and sickle RBC. While TfR+ sickle reticulocytes display some endogenous PLSCR activity, we observed a robust activation of PLSCR in sickle reticulocytes treated with PMA. The PKC inhibitor, chelerythrine (Chel), significantly inhibited PMA-dependent PLSCR activation and PS externalization. Chel also inhibited endogenous PLSCR activity in sickle reticulocytes. These data provide evidence that PKC mediates PS externalization in RBC through activation of PLSCR.

  19. Fuel cell using novel electrolyte membrane

    SciTech Connect

    Polak, A.J.; Beuhler, A.J.

    1986-06-10

    An apparatus is described for producing electricity from a fuel gas having a gaseous component which is capable, in the presence of a catalytic agent, of dissociating to yield hydrogen ions comprising: (a) a thin film organic-inorganic membrane which comprises a single phase blend from about 1% to about 70% by weight of a heteropoly acid and salts; (b) a membrane housing comprising a fuel gas chamber and an oxidant gas chamber separated by a substantially imporous partition comprising the membrane defined in element (a), the membrane having a first surface in communication with the fuel gas chamber and a second surface in communication with the oxidant gas chamber; (c) two separate portions of catalytic agent effective to promote dissociation and combination, one portion in contact with the first surface of the membrane and one portion in contact with the second surface of the membrane; and, (d) means for forming electrical connection in operative contact with the catalytic agent in contact with the first surface of the membrane and in operative contact with the catalytic agent in contact with the second surface of the membrane.

  20. Fluorescence imaging of cholesterol and temperature dependent cell membrane dynamics

    NASA Astrophysics Data System (ADS)

    Weber, Petra; Wagner, Michael; Strauss, Wolfgang S. L.; Schneckenburger, Herbert

    2007-07-01

    Cholesterol content is an important factor for membrane dynamics of living cells. With well defined protocols of depletion and enrichment the impact of cholesterol on membrane dynamics was examined by fluorescence microscopy. In addition, the intracellular cholesterol content was determined with biochemical methods. Changes of cholesterol amounts in cell membranes have previously been related to specific disease and may have some influence on the uptake of pharmaceutical agents. A combination of conventional and total internal reflection fluorescence microscopy was applied to the fluorescence marker laurdan, a polarity-sensitive probe, whose electronic excitation energy is different in polar and non-polar environment. Once incorporated into cell membranes, the fluorescence of laurdan shows a spectral shift towards longer wavelength when its molecules get into contact with adjacent water molecules, e.g. when a phase transition from the tightly packed gel phase to the liquid crystalline phase of membrane lipids occurs. The generalized polarization (GP, characterizing this spectral shift) as well as the fluorescence lifetime (τ) of laurdan revealed to be appropriate measures for membrane stiffness and fluidity. GP generally decreased with increasing temperature and was always higher for the plasma membrane than for intracellular membranes. Enrichment of cholesterol caused a pronounced increase, whereas depletion of cholesterol caused a decrease of GP. In addition, pronounced changes of the fluorescence lifetime pattern occurred in the subnanosecond range. GP, and τ were determined as integral values of single cells or small cell collectives and were also displayed as microscopic images.

  1. RBC aggregation dynamics in autologous plasma and serum studied with double-channel optical tweezers

    NASA Astrophysics Data System (ADS)

    Lee, Kisung; Danilina, Anna; Potkin, Anton; Kinnunen, Matti; Priezzhev, Alexander; Meglinski, Igor

    2016-04-01

    Red blood cells aggregating and disaggregating forces were measured in the autologous plasma and serum using the double-channeled optical tweezers. A significant, three-fold decrease of the both forces was observed in the serum compared to the plasma. The results of this study help to better assess the RBC aggregation mechanism.

  2. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  3. The application of Dow Chemical's perfluorinated membranes in proton-exchange membrane fuel cells

    NASA Technical Reports Server (NTRS)

    Eisman, G. A.

    1989-01-01

    Dow Chemical's research activities in fuel cell devices revolves around the development and subsequent investigation of the perfluorinated inomeric membrane separator useful in proton-exchange membrane systems. Work is currently focusing on studying the effects of equivalent weight, thickness, water of hydration, pretreatment procedures, as well as the degree of water management required for a given membrane separator in the cell. The presentation will include details of certain aspects of the above as well as some of the requirements for high and low power generation.

  4. Red blood cell membrane camouflaged magnetic nanoclusters for imaging-guided photothermal therapy.

    PubMed

    Ren, Xiaoqing; Zheng, Rui; Fang, Xiaoling; Wang, Xiaofei; Zhang, Xiaoyan; Yang, Wuli; Sha, Xianyi

    2016-06-01

    Along with intrinsic magnetic resonance imaging (MRI) advantages, iron oxide nanomaterials capable of photothermal conversion have been reported very recently and have again raised great interest in their designs among biomedical researchers. However, like other inorganic nanomaterials, high macrophage uptake, short blood retention time and unfavorable biodistributions have strongly hampered their applications in vivo. To solve these problems, a rational design of red blood cell (RBC) membrane camouflaged iron oxide magnetic clusters (MNC@RBCs) is presented in this paper. Our data show that by simply introducing an "ultra-stealth" biomimetic coating to iron oxide magnetic nanoclusters (MNCs), MNC@RBCs maintain the imaging and photothermal functionalities inherited from MNCs cores while achieving much lower nonspecific macrophage uptake and dramatically altered fate in vivo. MNC@RBCs with superior prolonged blood retention time, preferred high tumor accumulation and relatively lowered liver biodistribution are demonstrated when injected intravenously in mice, leading to greatly enhanced photothermal therapeutic efficacy by a single treatment without further magnetic force manipulation. Our study illustrates a well prepared integration of MNCs and RBCs, exploiting advantages of both functionalities within a single unit and suggests a promising future for iron-based nanomaterials application in vivo.

  5. Improved Membrane Materials for PEM Fuel Cell Application

    SciTech Connect

    Kenneth A. Mauritz; Robert B. Moore

    2008-06-30

    The overall goal of this project is to collect and integrate critical structure/property information in order to develop methods that lead to significant improvements in the durability and performance of polymer electrolyte membrane fuel cell (PEMFC) materials. This project is focused on the fundamental improvement of PEMFC membrane materials with respect to chemical, mechanical and morphological durability as well as the development of new inorganically-modified membranes.

  6. Direct measurements of membrane potential and membrane resistance of human red cells

    PubMed Central

    Lassen, U. V.; Sten-Knudsen, O.

    1968-01-01

    1. In order to evaluate the membrane potentials calculated from the distribution of chloride ions in human red cells and plasma, it is desirable to have a direct measurement of the transmembrane potential of these cells. 2. A method has been devised for introducing a capillary micro-electrode into human red cells. The method allows simultaneous measurements of potential and membrane resistance with only one micro-electrode located in the cell. 3. Upon impalement of single cells in plasma, a scatter of membrane potentials and of resistance values was obtained. The potential drop never exceeded -14 mV and the maximum resistances were about 7 Ω. cm2. Positive potentials were obtained on impalement of red cell aggregates. 4. Arguments are given to support the view that it is in these cells which suffer least damage from the impalement that maximum values of membrane potentials and resistances are observed. The errors caused by the change in the liquid junction during the impalement have been estimated. 5. As judged from this study, it seems permissible under normal conditions to calculate the membrane potential of the red cell from the chloride concentrations in plasma and in intracellular water. PMID:5649641

  7. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    SciTech Connect

    Martin, Diana I.; Manaila, Elena N.; Matei, Constantin I.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Margaritescu, Irina D.

    2007-04-23

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed.

  8. Investigating cell membrane structure and dynamics with TCSPC-FLIM

    NASA Astrophysics Data System (ADS)

    Le Marois, Alix; Owen, Dylan M.; Suhling, Klaus

    2015-03-01

    We report the use of Time-Correlated Single Photon Counting (TCSPC) in a polarization-resolved Fluorescence Lifetime Imaging (FLIM) setup for the investigation of cell membrane structural and dynamic properties. This technique allows us to study the orientation and mobility of fluorescent membrane dyes, namely di-4-ANEPPDHQ and DiO, in model bilayers of different lipid compositions. Dipole alignment and extent of rotational motion can be linked to membrane order and fluidity. Comparison of the time-resolved anisotropy decays of the two fluorescent dyes suggests that rotational motion of membrane constituents is restricted in liquid-ordered phases, and appears to be limited to the region of aliphatic tails in liquid-disordered phases. In living cells, understanding the membrane structure provides crucial information on its functional properties, such as exo- and endocytosis, cell mobility and signal transduction.

  9. Automated membrane test cell apparatus and method for so using

    SciTech Connect

    Yeager, H.L.; Malinsky, J.D.

    1984-11-20

    An automated electrolytic membrane test cell apparatus adaptable for the purpose of accurately measuring cationic transport and water transport numbers for membranes used in chlor-alkali cells under operating conditions similar to those used in such cells is disclosed. The apparatus comprises a test cell, said test cell being adapted to hold a permselective membrane sealingly supported therein so as to create separate anode and cathode compartments, each of said compartments having a suitable electrode, and heating electrolyte inlet and outlet means attached thereto. The apparatus further comprises means to select one of a plurality of anolyte and catholyte test solutions and control means adapted to control the electrolysis, circulation and heating of said solutions and the generation of all test samples needed to perform the measurements necessary to calculate said transport numbers. When used in conjunction with radioactive tracer techniques, considerably improvements are possible in the accuracy and ease with which transport phenomena in said membrane can be studied.

  10. Single cell wound generates electric current circuit and cell membrane potential variations that requires calcium influx.

    PubMed

    Luxardi, Guillaume; Reid, Brian; Maillard, Pauline; Zhao, Min

    2014-07-24

    Breaching of the cell membrane is one of the earliest and most common causes of cell injury, tissue damage, and disease. If the compromise in cell membrane is not repaired quickly, irreversible cell damage, cell death and defective organ functions will result. It is therefore fundamentally important to efficiently repair damage to the cell membrane. While the molecular aspects of single cell wound healing are starting to be deciphered, its bio-physical counterpart has been poorly investigated. Using Xenopus laevis oocytes as a model for single cell wound healing, we describe the temporal and spatial dynamics of the wound electric current circuitry and the temporal dynamics of cell membrane potential variation. In addition, we show the role of calcium influx in controlling electric current circuitry and cell membrane potential variations. (i) Upon wounding a single cell: an inward electric current appears at the wound center while an outward electric current is observed at its sides, illustrating the wound electric current circuitry; the cell membrane is depolarized; calcium flows into the cell. (ii) During cell membrane re-sealing: the wound center current density is maintained for a few minutes before decreasing; the cell membrane gradually re-polarizes; calcium flow into the cell drops. (iii) In conclusion, calcium influx is required for the formation and maintenance of the wound electric current circuitry, for cell membrane re-polarization and for wound healing.

  11. Membrane-electrode assemblies for electrochemical cells

    DOEpatents

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  12. Rotating Biological Contractors (RBC's). Instructor's Guide. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This two-lesson unit on rotating biological contactors (RBC's) is designed to be used with students who have had some experience in wastewater treatment and a basic understanding of biological treatment. The first lesson provides information on the concepts and components of RBC treatment systems. The second lesson focuses on design operation and…

  13. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  14. Prism-patterned Nafion membrane for enhanced water transport in polymer electrolyte membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Sang Moon; Kang, Yun Sik; Ahn, Chiyeong; Jang, Segeun; Kim, Minhyoung; Sung, Yung-Eun; Yoo, Sung Jong; Choi, Mansoo

    2016-06-01

    Here, we report a simple and effective strategy to enhance the performance of the polymer electrolyte membrane fuel cell by imprinting prism-patterned arrays onto the Nafion membrane, which provides three combined effects directly related to the device performance. First, a locally thinned membrane via imprinted micro prism-structures lead to reduced membrane resistance, which is confirmed by electrochemical impedance spectroscopy. Second, increments of the geometrical surface area of the prism-patterned Nafion membrane compared to a flat membrane result in the increase in the electrochemical active surface area. Third, the vertically asymmetric geometry of prism structures in the cathode catalyst layer lead to enhanced water transport, which is confirmed by oxygen gain calculation. To explain the enhanced water transport, we propose a simple theoretical model on removal of water droplets existing in the asymmetric catalyst layer. These three combined effects achieved via incorporating prism patterned arrays into the Nafion membrane effectively enhance the performance of the polymer electrolyte membrane fuel cell.

  15. Adaptation of yeast cell membranes to ethanol

    SciTech Connect

    Jimenez, J.; Benitez, T.

    1987-05-01

    A highly ethanol-tolerant Saccharomyces wine strain is able, after growth in the presence of ethanol, to efficiently improve the ethanol tolerance of its membrane. A less-tolerant Saccharomyces laboratory strain, however, is unable to adapt its membrane to ethanol. Furthermore, after growth in the presence of ethanol, the membrane of the latter strain becomes increasingly sensitive, although this is a reversible process. Reversion to a higher tolerance occurs only after the addition of an energy source and does not take place in the presence of cycloheximide.

  16. Catalytic membranes for CO oxidation in fuel cells

    DOEpatents

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  17. Expression of basement membrane antigens in spindle cell melanoma.

    PubMed

    Prieto, V G; Woodruff, J M

    1998-07-01

    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.

  18. Cell-Cell Communication Via Extracellular Membrane Vesicles and Its Role in the Immune Response

    PubMed Central

    Hwang, Inkyu

    2013-01-01

    The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system. PMID:23807045

  19. Monitoring of lung tumour cell growth in artificial membranes.

    PubMed

    Yang, Ying; Sulé-Suso, Josep; El Haj, Alicia J; Hoban, Paul R; Wang, Ruikang

    2004-10-15

    Morbidity of many tumour types is associated with invasion of tumour cells through the basement membrane and subsequent metastasis to vital organs. Tumour invasion is frequently detected late on as many patients present with advanced disease. The method of detecting invasion is through conventional histological staining techniques, which are time consuming and require processing of the sample. This can affect interpretation of the results. In this study, a new imaging technique, optical coherence tomography (OCT), was used to monitor lung tumour cell growth in two artificial membranes composed of either collagen type I or Matrigel. In parallel, standard histological section analysis was performed to validate the accuracy of the monitoring by OCT. Cross-sectional images from OCT revealed that lung tumour cells infiltrated only when low cell seeding density (5 x 10(5)) and low collagen concentration (1.5 mg/ml) were combined. The cells could be easily differentiated from the artificial membranes and appeared as either a brighter layer on the top of the membrane or brighter foci embedded within the darker membrane. These cell-membrane morphologies matched remarkably to the standard histological section images. Our results suggest that OCT has a great potential to become a useful tool for fast and robust imaging of cell growth in vivo and as a potential assessment of cell invasion.

  20. A simple model to understand the role of membrane shear elasticity and stress-free shape on the motion of red blood cells in shear flow

    NASA Astrophysics Data System (ADS)

    Viallat, Annie; Abkarian, Manouk; Dupire, Jules

    2015-11-01

    The analytical model presented by Keller and Skalak on the dynamics of red blood cells in shear flow described the cell as a fluid ellipsoid of fixed shape. It was extended to introduce shear elasticity of the cell membrane. We further extend the model when the cell discoid physiological shape is not a stress-free shape. We show that spheroid stress-free shapes enables fitting experimental data with values of shear elasticity typical to that found with micropipettes and optical tweezers. For moderate shear rates (when RBCs keep their discoid shape) this model enables to quantitatively determine an effective cell viscosity, that combines membrane and hemoglobin viscosities and an effective shear modulus of the membrane that combines shear modulus and stress-free shape. This model allows determining RBC mechanical parameters both in the tanktreading regime for cells suspended in a high viscosity medium, and in the tumbling regime for cells suspended in a low viscosity medium. In this regime,a transition is predicted between a rigid-like tumbling motion and a fluid-like tumbling motion above a critical shear rate, which is directly related to the mechanical parameters of the cell. A*MIDEX (n ANR-11-IDEX-0001-02) funded by the ''Investissements d'Avenir'', Region Languedoc-Roussillon, Labex NUMEV (ANR-10-LABX-20), BPI France project DataDiag.

  1. Sulfated Titania-Silica Reinforced Nafion Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells.

    PubMed

    Abu Sayeed, M D; Kim, Hee Jin; Gopalan, A I; Kim, Young Ho; Lee, Kwang-Pill; Choi, Sang-June

    2015-09-01

    Sulfated titania-silica (SO4(2-)-/TiO2-SiO2) composites were prepared by a sol-gel method with sulfate reaction and characterized by X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS). The nanometric diameter and geometry of the sulfated titania-silica (STS) was investigated by transmission electron microscopy (TEM). A small amount of the STS composite in the range of 0.5-3 wt% was then added as reinforcing into the Nafion membrane by water-assisted solution casting method to prepare STS reinforced Nafion nanocomposite membranes (STS-Nafion nanocomposite membranes). The additional functional groups, sulfate groups, of the nanocomposite membrane having more surface oxygenated groups enhanced the fuel cell membrane properties. The STS-Nafion nanocomposite membranes exhibited improved water uptake compared to that of neat Nafion membranes, whereas methanol uptake values were decreased dramatically improved thermal property of the prepared nanocomposite membranes were measured by thermogravimetric analysis (TGA). Furthermore, increased ion exchange capacity values were obtained by thermoacidic pretreatment of the nanocomposite membranes.

  2. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels.

    PubMed

    Itel, Fabian; Al-Samir, Samer; Öberg, Fredrik; Chami, Mohamed; Kumar, Manish; Supuran, Claudiu T; Deen, Peter M T; Meier, Wolfgang; Hedfalk, Kristina; Gros, Gerolf; Endeward, Volker

    2012-12-01

    Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.

  3. Light-associated and processing-dependent protein binding to 5' regions of rbcL mRNA in the chloroplasts of a C4 plant.

    PubMed

    McCormac, D J; Litz, H; Wang, J; Gollnick, P D; Berry, J O

    2001-02-02

    In amaranth, a C(4) dicotyledonous plant, the plastid rbcL gene (encoding the large subunit of ribulose-1,5-bisphosphate carboxylase) is regulated post-transcriptionally during many developmental processes, including light-mediated development. To identify post-transcriptional regulators of rbcL expression, three types of analyses (polysome heel printing, gel retardation, and UV cross-linking) were utilized. These approaches revealed that multiple proteins interact with 5' regions of rbcL mRNA in light-grown, but not etiolated, amaranth plants. Light-associated binding of a 47-kDa protein (p47), observed by UV cross-linking, was highly specific for the rbcL 5' RNA. Binding of p47 occurred only with RNAs corresponding to mature processed rbcL transcripts (5'-untranslated region (UTR) terminating at -66); transcripts with longer 5'-UTRs did not associate with p47 in vitro. Variations in the length of the rbcL 5'-UTR were found to occur in vivo, and these different 5' termini may prevent or enhance light-associated p47 binding, possibly affecting rbcL expression as well. p47 binding correlates with light-dependent rbcL polysome association of the fully processed transcripts in photosynthetic leaves and cotyledons but not with cell-specific rbcL mRNA accumulation in bundle sheath and mesophyll chloroplasts.

  4. Cell-free system for synthesizing membrane proteins cell free method for synthesizing membrane proteins

    DOEpatents

    Laible, Philip D; Hanson, Deborah K

    2013-06-04

    The invention provides an in vitro method for producing proteins, membrane proteins, membrane-associated proteins, and soluble proteins that interact with membrane-associated proteins for assembly into an oligomeric complex or that require association with a membrane for proper folding. The method comprises, supplying intracytoplasmic membranes from organisms; modifying protein composition of intracytoplasmic membranes from organism by modifying DNA to delete genes encoding functions of the organism not associated with the formation of the intracytoplasmic membranes; generating appropriate DNA or RNA templates that encode the target protein; and mixing the intracytoplasmic membranes with the template and a transcription/translation-competent cellular extract to cause simultaneous production of the membrane proteins and encapsulation of the membrane proteins within the intracytoplasmic membranes.

  5. Low Crossover Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Prakash, G. K. Surya; Smart, Marshall; Atti, Anthony R.; Olah, George A.; Narayanan, S. R.; Valdez, T.; Surampudi, S.

    1996-01-01

    Direct Methanol Fuel Cells (DMFC's) using polymer electrolyte membranes are promising power sources for portable and vehicular applications. State of the art technology using Nafion(R) 117 membranes (Dupont) are limited by high methanol permeability and cost, resulting in reduced fuel cell efficiencies and impractical commercialization. Therefore, much research in the fuel cell field is focused on the preparation and testing of low crossover and cost efficient polymer electrolyte membranes. The University of Southern California in cooperation with the Jet Propulsion Laboratory is focused on development of such materials. Interpenetrating polymer networks are an effective method used to blend polymer systems without forming chemical links. They provide the ability to modify physical and chemical properties of polymers by optimizing blend compositions. We have developed a novel interpenetrating polymer network based on poly (vinyl - difluoride)/cross-linked polystyrenesulfonic acid polymer composites (PVDF PSSA). Sulfonation of polystyrene accounts for protonic conductivity while the non-polar, PVDF backbone provides structural integrity in addition to methanol rejection. Precursor materials were prepared and analyzed to characterize membrane crystallinity, stability and degree of interpenetration. USC JPL PVDF-PSSA membranes were also characterized to determine methanol permeability, protonic conductivity and sulfur distribution. Membranes were fabricated into membrane electrode assemblies (MEA) and tested for single cell performance. Tests include cell performance over a wide range of temperatures (20 C - 90 C) and cathode conditions (ambient Air/O2). Methanol crossover values are measured in situ using an in-line CO2 analyzer.

  6. Selectivity of biopolymer membranes using HepG2 cells.

    PubMed

    Lü, Dongyuan; Gao, Yuxin; Luo, Chunhua; Lü, Shouqian; Wang, Qian; Xu, Xianghong; Sun, Shujin; Wang, Chengzhi; Long, Mian

    2015-03-01

    Bioartificial liver (BAL) system has emerged as an alternative treatment to bridge acute liver failure to either liver transplantation or liver regeneration. One of the main reasons that the efficacy of the current BAL systems was not convincing in clinical trials is attributed to the lack of friendly interface between the membrane and the hepatocytes in liver bioreactor, the core unit of BAL system. Here, we systematically compared the biological responses of hepatosarcoma HepG2 cells seeded on eight, commercially available biocompatible membranes made of acetyl cellulose-nitrocellulose mixed cellulose (CA-NC), acetyl cellulose (CA), nylon (JN), polypropylene (PP), nitrocellulose (NC), polyvinylidene fluoride (PVDF), polycarbonate (PC) and polytetrafluoroethylene (PTFE). Physicochemical analysis and mechanical tests indicated that CA, JN and PP membranes yield high adhesivity and reasonable compressive and/or tensile features with friendly surface topography for cell seeding. Cells prefer to adhere on CA, JN, PP or PTFE membranes with high proliferation rate in spheriod-like shape. Actin, albumin and cytokeratin 18 expressions are favorable for cells on CA or PP membrane, whereas protein filtration is consistent among all the eight membranes. These results further the understandings of cell growth, morphology and spreading, as well as protein filtration on distinct membranes in designing a liver bioreactor.

  7. Drug Delivery via Cell Membrane Fusion Using Lipopeptide Modified Liposomes

    PubMed Central

    2016-01-01

    Efficient delivery of drugs to living cells is still a major challenge. Currently, most methods rely on the endocytotic pathway resulting in low delivery efficiency due to limited endosomal escape and/or degradation in lysosomes. Here, we report a new method for direct drug delivery into the cytosol of live cells in vitro and invivo utilizing targeted membrane fusion between liposomes and live cells. A pair of complementary coiled-coil lipopeptides was embedded in the lipid bilayer of liposomes and cell membranes respectively, resulting in targeted membrane fusion with concomitant release of liposome encapsulated cargo including fluorescent dyes and the cytotoxic drug doxorubicin. Using a wide spectrum of endocytosis inhibitors and endosome trackers, we demonstrate that the major site of cargo release is at the plasma membrane. This method thus allows for the quick and efficient delivery of drugs and is expected to have many invitro, ex vivo, and invivo applications. PMID:27725960

  8. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  9. Apparatus measures swelling of membranes in electrochemical cells

    NASA Technical Reports Server (NTRS)

    Hennigan, T. J.

    1965-01-01

    Apparatus consisting of a pressure plate unit, four springs of known spring constant and a micrometer measures the swelling and force exerted by the polymer membranes of alkaline electrochemical cells.

  10. Predicting dynamics and rheology of blood flow: A comparative study of multiscale and low-dimensional models of red blood cells

    SciTech Connect

    Pan, Wenxiao; Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George E.

    2011-05-27

    In this work we compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shape is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any size vessel but this approach is computationally expensive above 100 microns. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for vessels with sizes comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 microns, the LD-RBC model for arterioles, and the continuum description for

  11. Simulated Red Blood Cell Motion in Microvessel Bifurcations: Effects of Cell-Cell Interactions on Cell Partitioning

    PubMed Central

    Barber, Jared O.; Restrepo, Juan M.; Secomb, Timothy W.

    2013-01-01

    Partitioning of red blood cell (RBC) fluxes between the branches of a diverging microvessel bifurcation is generally not proportional to the flow rates, as RBCs preferentially enter the higher-flow branch. A two-dimensional model for RBC motion and deformation is used to investigate the effects of cell-cell mechanical interactions on RBC partitioning in bifurcations. The RBC membrane and cytoplasm are represented by sets of viscoelastic elements immersed in a low Reynolds number flow. Several types of two-cell interactions that can affect partitioning are found. In the most frequent interactions, a `trade-off' occurs, in which a cell entering one branch causes a following cell to enter the other branch. Other types of interactions include `herding,' where the leading cell is caused to enter the same branch as the following cell, and `following,' where the trailing cell is caused to enter the same branch as the leading cell. The combined effect of these cell-cell interactions is a tendency towards more uniform partitioning, which results from the trade-off effect but is reduced by the herding and following effects. With increasing hematocrit, the frequency of interactions increases, and more uniform partitioning results. This prediction is consistent with experimental observations on how hematocrit affects RBC partitioning. PMID:23555330

  12. Membrane Composition Tunes the Outer Hair Cell Motor

    NASA Astrophysics Data System (ADS)

    Rajagopalan, L.; Sfondouris, J.; Oghalai, J. S.; Pereira, F. A.; Brownell, W. E.

    2009-02-01

    Cholesterol and docosahexaenoic acid (DHA), an ω-3 fatty acid, affect membrane mechanical properties in different ways and modulate the function of membrane proteins. We have probed the functional consequence of altering cholesterol and DHA levels in the membranes of OHCs and prestin expressing HEK cells. Large, dynamic and reversible changes in prestin-associated charge movement and OHC motor activity result from altering the concentration of membrane cholesterol. Increasing membrane cholesterol shifts the q/V function ~ 50 mV in the hyperpolarizing direction, possibly a response related to increases in membrane stiffness. The voltage shift is linearly related to total membrane cholesterol. Increasing cholesterol also decreases the total charge moved in a linear fashion. Decreasing membrane cholesterol shifts the q/V function ~ 50 mV in the depolarizing direction with little or no effect on the amount of charge moved. In vivo increases in membrane cholesterol transiently increase but ultimately lead to decreases in DPOAE. Docosahexaenoic acid shifts the q/V function in the hyperpolarizing direction < 15 mV and increases total charge moved. Tuning of cochlear function by membrane cholesterol contributes to the exquisite temporal and frequency processing of mammalian hearing by optimizing the cochlear amplifier.

  13. Penetration of Cell Membranes and Synthetic Lipid Bilayers by Nanoprobes

    PubMed Central

    Angle, Matthew R.; Wang, Andrew; Thomas, Aman; Schaefer, Andreas T.; Melosh, Nicholas A.

    2014-01-01

    Nanoscale devices have been proposed as tools for measuring and controlling intracellular activity by providing electrical and/or chemical access to the cytosol. Unfortunately, nanostructures with diameters of 50–500 nm do not readily penetrate the cell membrane, and rationally optimizing nanoprobes for cell penetration requires real-time characterization methods that are capable of following the process of membrane penetration with nanometer resolution. Although extensive work has examined the rupture of supported synthetic lipid bilayers, little is known about the applicability of these model systems to living cell membranes with complex lipid compositions, cytoskeletal attachment, and membrane proteins. Here, we describe atomic force microscopy (AFM) membrane penetration experiments in two parallel systems: live HEK293 cells and stacks of synthetic lipid bilayers. By using the same probes in both systems, we were able to clearly identify membrane penetration in synthetic bilayers and compare these events with putative membrane penetration events in cells. We examined membrane penetration forces for three tip geometries and 18 chemical modifications of the probe surface, and in all cases the median forces required to penetrate cellular and synthetic lipid bilayers with nanoprobes were greater than 1 nN. The penetration force was sensitive to the probe's sharpness, but not its surface chemistry, and the force did not depend on cell surface or cytoskeletal properties, with cells and lipid stacks yielding similar forces. This systematic assessment of penetration under various mechanical and chemical conditions provides insights into nanoprobe-cell interactions and informs the design of future intracellular nanoprobes. PMID:25418094

  14. Effect of Chemicals on the Cell Membrane Transport of Nucleosides.

    DTIC Science & Technology

    1983-08-01

    lipid synthesis , a direct inhibition of the purine carrier by PFDA would not be expected. When efflux of AP from L5178Y cells was estimated with PFDA in...turnover of the carrier protein. PFDA may be an inhibitor -of carrier protein synthesis in the cell membrane. Another hypothesis suggests that the...inactive form. The activity level *may be controlled through inhibition of protein synthesis or the interaction 4between the carrier and the membrane

  15. Red blood cell dynamics: from cell deformation to ATP release.

    PubMed

    Wan, Jiandi; Forsyth, Alison M; Stone, Howard A

    2011-10-01

    The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release.

  16. Lattice Boltzmann Simulation of Healthy and Defective Red Blood Cell Settling in Blood Plasma.

    PubMed

    Hashemi, Z; Rahnama, M; Jafari, S

    2016-05-01

    In this paper, an attempt has been made to study sedimentation of a red blood cell (RBC) in a plasma-filled tube numerically. Such behaviors are studied for a healthy and a defective cell which might be created due to human diseases, such as diabetes, sickle-cell anemia, and hereditary spherocytosis. Flow-induced deformation of RBC is obtained using finite-element method (FEM), while flow and fluid-membrane interaction are handled using lattice Boltzmann (LB) and immersed boundary methods (IBMs), respectively. The effects of RBC properties as well as its geometry and orientation on its sedimentation rate are investigated and discussed. The results show that decreasing frontal area of an RBC and/or increasing tube diameter results in a faster settling. Comparison of healthy and diabetic cells reveals that less cell deformability leads to slower settling. The simulation results show that the sicklelike and spherelike RBCs have lower settling velocity as compared with a biconcave discoid cell.

  17. Live cell imaging of membrane/cytoskeleton interactions and membrane topology.

    PubMed

    Chierico, Luca; Joseph, Adrian S; Lewis, Andrew L; Battaglia, Giuseppe

    2014-09-10

    We elucidate the interaction between actin and specific membrane components, using real time live cell imaging, by delivering probes that enable access to components, that cannot be accessed genetically. We initially investigated the close interplay between Phosphatidylinositol 4,5-bisphosphate (PIP2) and the F-actin network. We show that, during the early stage of cell adhesion, PIP2 forms domains within the filopodia membrane. We studied these domains alongside cell spreading and observed that these very closely follow the actin tread-milling. We show that this mechanism is associated with an active transport of PIP2 rich organelles from the cell perinuclear area to the edge, along actin fibers. Finally, mapping other phospholipids and membrane components we observed that the PIP2 domains formation is correlated with sphingosine and cholesterol rafts.

  18. Modelling the structure of the red cell membrane.

    PubMed

    Burton, Nicholas M; Bruce, Lesley J

    2011-04-01

    The red cell membrane has long been the focus of extensive study. The macromolecules embedded within the membrane carry the blood group antigens and perform many functions including the vital task of gas exchange. Links between the intramembrane macromolecules and the underlying cytoskeleton stabilize the biconcave morphology of the red cell and allow deformation during microvascular transit. Much is now known about the proteins of the red cell membrane and how they are organised. In many cases we have an understanding of which proteins are expressed, the number of each protein per cell, their oligomeric state(s), and how they are collected in large multi-protein complexes. However, our typical view of these structures is as cartoon shapes in schematic figures. In this study we have combined knowledge of the red cell membrane with a wealth of protein structure data from crystallography, NMR, and homology modelling to generate the first, tentative models of the complexes which link the membrane to the cytoskeleton. Measurement of the size of these complexes and comparison with known cytoskeletal distance parameters suggests the idea of interaction between the membrane complexes, which may have profound implications for understanding red cell function and deformation.

  19. Controlled permeation of cell membrane by single bubble acoustic cavitation.

    PubMed

    Zhou, Y; Yang, K; Cui, J; Ye, J Y; Deng, C X

    2012-01-10

    Sonoporation is the membrane disruption generated by ultrasound and has been exploited as a non-viral strategy for drug and gene delivery. Acoustic cavitation of microbubbles has been recognized to play an important role in sonoporation. However, due to the lack of adequate techniques for precise control of cavitation activities and real-time assessment of the resulting sub-micron process of sonoporation, limited knowledge has been available regarding the detail processes and correlation of cavitation with membrane disruption at the single cell level. In the current study, we developed a combined approach including optical, acoustical, and electrophysiological techniques to enable synchronized manipulation, imaging, and measurement of cavitation of single bubbles and the resulting cell membrane disruption in real-time. Using a self-focused femtosecond laser and high frequency ultrasound (7.44MHz) pulses, a single microbubble was generated and positioned at a desired distance from the membrane of a Xenopus oocyte. Cavitation of the bubble was achieved by applying a low frequency (1.5MHz) ultrasound pulse (duration 13.3 or 40μs) to induce bubble collapse. Disruption of the cell membrane was assessed by the increase in the transmembrane current (TMC) of the cell under voltage clamp. Simultaneous high-speed bright field imaging of cavitation and measurements of the TMC were obtained to correlate the ultrasound-generated bubble activities with the cell membrane poration. The change in membrane permeability was directly associated with the formation of a sub-micrometer pore from a local membrane rupture generated by bubble collapse or bubble compression depending on ultrasound amplitude and duration. The impact of the bubble collapse on membrane permeation decreased rapidly with increasing distance (D) between the bubble (diameter d) and the cell membrane. The effective range of cavitation impact on membrane poration was determined to be D/d=0.75. The maximum mean

  20. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    NASA Astrophysics Data System (ADS)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  1. Studies on RBC lipid and protein phosphorylation during blood bank storage

    SciTech Connect

    Dumaswala, U.J.; Bryan, D.J.; Greenwalt, T.J.

    1986-05-01

    Recent evidence has suggested that phosphoinositides play a significant role in maintaining membrane structure and function. Their importance during blood bank storage is not understood. They have performed preliminary studies of the phosphoinositide synthetic pathway enzymes of RBC during blood bank storage. At 0 and 35 days of storage leaky ghosts were prepared and incubated with (..gamma..-/sup 32/P)ATP for 5 minutes at 30 C. One aliquot was subjected to acidified solvent extraction and thin layer chromatography. The labeled phosphoinositide -4,5 biphosphate (PIP/sub 2/), phosphoinositide-4 phosphate (PIP) and phosphatidic acid (PA) spots were scraped and counted by liquid scintillation spectrometry. Another aliquot was used for SDS-PAGE and the radioactivity associated with the ..beta..-spectrin was measured. These experiments suggest a decrease in RBC phosphoinositol and PIP-Kinases and ..beta..-spectrin kinase activities during blood bank storage. Further studies are being done to evaluate significance of these observations.

  2. Proton conducting membranes for high temperature fuel cells with solid state water free membranes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2006-01-01

    A water free, proton conducting membrane for use in a fuel cell is fabricated as a highly conducting sheet of converted solid state organic amine salt, such as converted acid salt of triethylenediamine with two quaternized tertiary nitrogen atoms, combined with a nanoparticulate oxide and a stable binder combined with the converted solid state organic amine salt to form a polymeric electrolyte membrane. In one embodiment the membrane is derived from triethylenediamine sulfate, hydrogen phosphate or trifiate, an oxoanion with at least one ionizable hydrogen, organic tertiary amine bisulfate, polymeric quaternized amine bisulfate or phosphate, or polymeric organic compounds with quaternizable nitrogen combined with Nafion to form an intimate network with ionic interactions.

  3. Enhanced Blood Suspensibility and Laser-Activated Tumor-specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes

    PubMed Central

    Su, Jinghan; Sun, Huiping; Meng, Qingshuo; Zhang, Pengcheng; Yin, Qi; Li, Yaping

    2017-01-01

    Mesoporous silica nanoparticles (MSNs), with their large surface area and tunable pore sizes, have been widely applied for anticancer therapeutic cargos delivery with a high loading capacity. However, easy aggregation in saline buffers and limited blood circulation lifetime hinder their delivery efficiency and the anticancer efficacy. Here, new multifunctional MSNs-supported red-blood-cell (RBC)-mimetic theranostic nanoparticles with long blood circulation, deep-red light-activated tumor imaging and drug release were reported. High loading capacities were achieved by camouflaging MSNs with RBC membrane to co-load an anticancer drug doxorubicin (Dox) (39.1 wt%) and a near-infrared photosensitizer chlorin e6 (Ce6) (21.1 wt%). The RBC membrane-coating protected drugs from leakage, and greatly improved the colloidal stability of MSNs, with negligible particle size change over two weeks. Upon an external laser stimuli, the RBC membrane could be destroyed, resulting in 10 times enhancement of Dox release. In a 4T1 breast cancer mouse model, the RBC-mimetic MSNs could realize in vivo tumor imaging with elongated tumor accumulation lifetime for over 24 h, and laser-activated tumor-specific Dox accumulation. The RBC-mimetic MSNs could integrate the Ce6-based photodynamic therapy and Dox-based chemotherapy, completely suppress the primary tumor growth and inhibit metastasis of breast cancer, which could provide a new strategy for optimization of MSNs and efficient anticancer drug delivery. PMID:28255347

  4. Measuring electrical and mechanical properties of red blood cells with a double optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Fernandes, Heloise P.; Barjas-Castro, Maria L.; de Thomaz, André A.; Pozzo, Liliana d. Y.; Barbosa, Luiz C.; Cesar, Carlos L.

    2006-08-01

    The fluid lipid bilayer viscoelastic membrane of red blood cells (RBC) contains antigen glycolproteins and proteins which can interact with antibodies to cause cell agglutination. This is the basis of most of the immunohematologic tests in blood banks and the identification of the antibodies against the erythrocyte antigens is of fundamental importance for transfusional routines. The negative charges of the RBCs creates a repulsive electric (zeta) potential between the cells and prevents their aggregation in the blood stream. The first counterions cloud strongly binded moving together with the RBC is called the compact layer. This report proposes the use of a double optical tweezers for a new procedure for measuring: (1) the apparent membrane viscosity, (2) the cell adhesion, (3) the zeta potential and (4) the compact layer's size of the charges formed around the cell in the electrolytic solution. To measure the membrane viscosity we trapped silica beads strongly attached to agglutinated RBCs and measured the force to slide one RBC over the other as a function of the relative velocity. The RBC adhesion was measured by slowly displacing two RBCs apart until the disagglutination happens. The compact layer's size was measured using the force on the silica bead attached to a single RBC in response to an applied voltage and the zeta potential was obtained by measuring the terminal velocity after releasing the RBC from the optical trap at the last applied voltage. We believe that the methodology here proposed can improve the methods of diagnosis in blood banks.

  5. Catalyst layers for proton exchange membrane fuel cells prepared by electrospray deposition on Nafion membrane

    NASA Astrophysics Data System (ADS)

    Chaparro, A. M.; Ferreira-Aparicio, P.; Folgado, M. A.; Martín, A. J.; Daza, L.

    The electrospray deposition method has been used for preparation of catalyst layers for proton exchange membrane fuel cells (PEMFC) on Nafion membrane. Deposition of Pt/C + ionomer suspensions on Nafion 212 gives rise to layers with a globular morphology, in contrast with the dendritic growth observed for the same layers when deposited on the gas diffusion layer, GDL (microporous carbon black layer on carbon cloth) or on metallic Al foils. Such a change is discussed in the light of the influence of the Nafion substrate on the electrospray deposition process. Nafion, which is a proton conductor and electronic insulator, gives rise to the discharge of particles through proton release and transport towards the counter electrode, compared with the direct electron transfer that takes place when depositing on an electronic conductor. There is also a change in the electric field distribution in the needle to counter-electrode gap due to the presence of Nafion, which may alter conditions for the electrospray effect. If discharging of particles is slow enough, for instances with a low membrane protonic conductivity, the Nafion substrate may be charged positively yielding a change in the electric field profile and, with it, in the properties of the film. Single cell characterization is carried out with Nafion 212 membranes catalyzed by electrospray on the cathode side. It is shown that the internal resistance of the cell decreases with on-membrane deposited cathodic catalyst layers, with respect to the same layers deposited on GDL, giving rise to a considerable improvement in cell performance. The lower internal resistance is due to higher proton conductivity at the catalyst layer-membrane interface resulting from on-membrane deposition. On the other hand, electroactive area and catalyst utilization appear little modified by on-membrane deposition, compared with on-GDL deposition.

  6. The human erythrocyte plasma membrane: a Rosetta Stone for decoding membrane-cytoskeleton structure.

    PubMed

    Fowler, Velia M

    2013-01-01

    The mammalian erythrocyte, or red blood cell (RBC), is a unique experiment of nature: a cell with no intracellular organelles, nucleus or transcellular cytoskeleton, and a plasma membrane with uniform structure across its entire surface. By virtue of these specialized properties, the RBC membrane has provided a template for discovery of the fundamental actin filament network machine of the membrane skeleton, now known to confer mechanical resilience, anchor membrane proteins, and organize membrane domains in all cells. This chapter provides a historical perspective and critical analysis of the biochemistry, structure, and physiological functions of this actin filament network in RBCs. The core units of this network are nodes of ~35-37 nm-long actin filaments, interconnected by long strands of (α1β1)₂-spectrin tetramers, forming a 2D isotropic lattice with quasi-hexagonal symmetry. Actin filament length and stability is critical for network formation, relying upon filament capping at both ends: tropomodulin-1 at pointed ends and αβ-adducin at barbed ends. Tropomodulin-1 capping is essential for precise filament lengths, and is enhanced by tropomyosin, which binds along the short actin filaments. αβ-adducin capping recruits spectrins to sites near barbed ends, promoting network formation. Accessory proteins, 4.1R and dematin, also promote spectrin binding to actin and, with αβ-adducin, link to membrane proteins, targeting actin nodes to the membrane. Dissection of the molecular organization within the RBC membrane skeleton is one of the paramount achievements of cell biological research in the past century. Future studies will reveal the structure and dynamics of actin filament capping, mechanisms of precise length regulation, and spectrin-actin lattice symmetry.

  7. Modeling malaria infected cells in microcirculation

    NASA Astrophysics Data System (ADS)

    Raffiee, Amir Hossein; Dabiri, Sadegh; Motavalizadeh Ardekani, Arezoo

    2016-11-01

    Plasmodim (P.) falciparum is one of the deadliest types of malaria species that invades healthy red blood cells (RBC) in human blood flow. This parasite develops through 48-hour intra-RBC process leading to significant morphological and mechanical (e.g., stiffening) changes in RBC membrane. These changes have remarkable effects on blood circulation such as increase in flow resistance and obstruction in microcirculation. In this work a computational framework is developed to model RBC suspension in blood flow using front-tracking technique. The present study focuses on blood flow behavior under normal and infected circumstances and predicts changes in blood rheology for different levels of parasitemia and hematocrit. This model allows better understanding of blood flow circulation up to a single cell level and provides us with realistic and deep insight into hematologic diseases such as malaria.

  8. A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.

    PubMed

    Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em

    2010-05-19

    Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary.

  9. Membrane protein production in Escherichia coli cell-free lysates.

    PubMed

    Henrich, Erik; Hein, Christopher; Dötsch, Volker; Bernhard, Frank

    2015-07-08

    Cell-free protein production has become a core technology in the rapidly spreading field of synthetic biology. In particular the synthesis of membrane proteins, highly problematic proteins in conventional cellular production systems, is an ideal application for cell-free expression. A large variety of artificial as well as natural environments for the optimal co-translational folding and stabilization of membrane proteins can rationally be designed. The high success rate of cell-free membrane protein production allows to focus on individually selected targets and to modulate their functional and structural properties with appropriate supplements. The efficiency and robustness of lysates from Escherichia coli strains allow a wide diversity of applications and we summarize current strategies for the successful production of high quality membrane protein samples.

  10. Anhydrous Proton-Conducting Membranes for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Yen, Shiao-Pin S.

    2005-01-01

    Polymeric electrolyte membranes that do not depend on water for conduction of protons are undergoing development for use in fuel cells. Prior polymeric electrolyte fuel-cell membranes (e.g., those that contain perfluorosulfonic acid) depend on water and must be limited to operation below a temperature of 125 C because they retain water poorly at higher temperatures. In contrast, the present developmental anhydrous membranes are expected to function well at temperatures up to 200 C. The developmental membranes exploit a hopping-and-reorganization proton- conduction process that can occur in the solid state in organic amine salts and is similar to a proton-conduction process in a liquid. This process was studied during the 1970s, but until now, there has been no report of exploiting organic amine salts for proton conduction in fuel cells.

  11. Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Khazaee, I.; Ghazikhani, M.; Esfahani, M. Nasr

    2012-01-01

    A complete three-dimensional and single phase computational dynamics model for annular proton exchange membrane (PEM) fuel cell is used to investigate the effect of changing gas diffusion layer and membrane properties on the performances, current density and gas concentration. The proposed model is a full cell model, which includes all the parts of the PEM fuel cell, flow channels, gas diffusion electrodes, catalyst layers and the membrane. Coupled transport and electrochemical kinetics equations are solved in a single domain; therefore no interfacial boundary condition is required at the internal boundaries between cell components. This computational fluid dynamics code is used as the direct problem solver, which is used to simulate the two-dimensional mass, momentum and species transport phenomena as well as the electron- and proton-transfer process taking place in a PEMFC that cannot be investigated experimentally. The results show that by increasing the thickness and decreasing the porosity of GDL the performance of the cell enhances that it is different with planner PEM fuel cell. Also the results show that by decreasing the thickness of the membrane the performance of the cell increases.

  12. Protein diffusion in plant cell plasma membranes: the cell-wall corral

    PubMed Central

    Martinière, Alexandre; Runions, John

    2013-01-01

    Studying protein diffusion informs us about how proteins interact with their environment. Work on protein diffusion over the last several decades has illustrated the complex nature of biological lipid bilayers. The plasma membrane contains an array of membrane-spanning proteins or proteins with peripheral membrane associations. Maintenance of plasma membrane microstructure can be via physical features that provide intrinsic ordering such as lipid microdomains, or from membrane-associated structures such as the cytoskeleton. Recent evidence indicates, that in the case of plant cells, the cell wall seems to be a major player in maintaining plasma membrane microstructure. This interconnection / interaction between cell-wall and plasma membrane proteins most likely plays an important role in signal transduction, cell growth, and cell physiological responses to the environment. PMID:24381579

  13. Cytotoxicity of bovine and porcine collagen membranes in mononuclear cells.

    PubMed

    Moura, Camilla Christian Gomes; Soares, Priscilla Barbosa Ferreira; Carneiro, Karine Fernandes; Souza, Maria Aparecida de; Magalhães, Denildo

    2012-01-01

    This study compared the cytotoxicity and the release of nitric oxide induced by collagen membranes in human mononuclear cells. Peripheral blood was collected from each patient and the separation of mononuclear cells was performed by Ficoll. Then, 2x10(5) cells were plated in 48-well culture plates under the membranes in triplicate. The polystyrene surface was used as negative control. Cell viability was assessed by measuring mitochondrial activity (MTT) at 4, 12 and 24 h, with dosage levels of nitrite by the Griess method for the same periods. Data had non-normal distribution and were analyzed by the Kruskal-Wallis test (p<0.05). Statistically significant differences (p<0.05) were observed between the membranes and the control in the experimental period, although there was a significant reduction in viability over time (p<0.01). At 4 and 12 h, the porcine membrane induced a higher release of nitrite compared with the control and bovine membrane, respectively (p<0.01), and this difference was maintained at 24 h (p<0.05). This in vitro study showed that the porcine collagen membrane induces an increased production of proinflammatory mediators by mononuclear cells in the first hours of contact, decreasing with time.

  14. Graphene-Induced Pore Formation on Cell Membranes

    PubMed Central

    Duan, Guangxin; Zhang, Yuanzhao; Luan, Binquan; Weber, Jeffrey K.; Zhou, Royce W.; Yang, Zaixing; Zhao, Lin; Xu, Jiaying; Luo, Judong; Zhou, Ruhong

    2017-01-01

    Examining interactions between nanomaterials and cell membranes can expose underlying mechanisms of nanomaterial cytotoxicity and guide the design of safer nanomedical technologies. Recently, graphene has been shown to exhibit potential toxicity to cells; however, the molecular processes driving its lethal properties have yet to be fully characterized. We here demonstrate that graphene nanosheets (both pristine and oxidized) can produce holes (pores) in the membranes of A549 and Raw264.7 cells, substantially reducing cell viability. Electron micrographs offer clear evidence of pores created on cell membranes. Our molecular dynamics simulations reveal that multiple graphene nanosheets can cooperate to extract large numbers of phospholipids from the membrane bilayer. Strong dispersion interactions between graphene and lipid-tail carbons result in greatly depleted lipid density within confined regions of the membrane, ultimately leading to the formation of water-permeable pores. This cooperative lipid extraction mechanism for membrane perforation represents another distinct process that contributes to the molecular basis of graphene cytotoxicity. PMID:28218295

  15. Membrane Targeting of P-type ATPases in Plant Cells

    SciTech Connect

    Jeffrey F. Harper, Ph.D.

    2004-06-30

    How membrane proteins are targeted to specific subcellular locations is a very complex and poorly understood area of research. Our long-term goal is to use P-type ATPases (ion pumps), in a model plant system Arabidopsis, as a paradigm to understand how members of a family of closely related membrane proteins can be targeted to different subcellular locations. The research is divided into two specific aims. The first aim is focused on determining the targeting destination of all 10 ACA-type calcium pumps (Arabidopsis Calcium ATPase) in Arabidopsis. ACAs represent a plant specific-subfamily of plasma membrane-type calcium pumps. In contrast to animals, the plant homologs have been found in multiple membrane systems, including the ER (ACA2), tonoplast (ACA4) and plasma membrane (ACA8). Their high degree of similarity provides a unique opportunity to use a comparative approach to delineate the membrane specific targeting information for each pump. One hypothesis to be tested is that an endomembrane located ACA can be re-directed to the plasma membrane by including targeting information from a plasma membrane isoform, ACA8. Our approach is to engineer domain swaps between pumps and monitor the targeting of chimeric proteins in plant cells using a Green Fluorescence Protein (GFP) as a tag. The second aim is to test the hypothesis that heterologous transporters can be engineered into plants and targeted to the plasma membrane by fusing them to a plasma membrane proton pump. As a test case we are evaluating the targeting properties of fusions made between a yeast sodium/proton exchanger (Sod2) and a proton pump (AHA2). This fusion may potentially lead to a new strategy for engineering salt resistant plants. Together these aims are designed to provide fundamental insights into the biogenesis and function of plant cell membrane systems.

  16. Polyarylenethioethersulfone Membranes for Fuel Cells (Postprint)

    DTIC Science & Technology

    2007-09-01

    precipitated copolymer was washed several times with deionized water in an attempt to completely remove the salts and then soxhlet - extracted in methanol...mation such as membrane resistance, charge-transfer resistance, and pore resistance was extracted from impedance plots using Nafion- and SPTES-50

  17. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2012-12-04

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  18. Fuel cell electrolyte membrane with basic polymer

    DOEpatents

    Larson, James M.; Pham, Phat T.; Frey, Matthew H.; Hamrock, Steven J.; Haugen, Gregory M.; Lamanna, William M.

    2010-11-23

    The present invention is an electrolyte membrane comprising an acid and a basic polymer, where the acid is a low-volatile acid that is fluorinated and is either oligomeric or non-polymeric, and where the basic polymer is protonated by the acid and is stable to hydrolysis.

  19. A Journey of Cytolethal Distending Toxins through Cell Membranes

    PubMed Central

    Boesze-Battaglia, Kathleen; Alexander, Desiree; Dlakić, Mensur; Shenker, Bruce J.

    2016-01-01

    The multifunctional role of lipids as structural components of membranes, signaling molecules, and metabolic substrates makes them an ideal partner for pathogens to hijack host cell processes for their own survival. The properties and composition of unique membrane micro-domains such as membrane rafts make these regions a natural target for pathogens as it affords them an opportunity to hijack cell signaling and intracellular trafficking pathways. Cytolethal distending toxins (Cdts), members of the AB2 family of toxins are comprised of three subunits, the active, CdtB unit, and the binding, CdtA-CdtC unit. Cdts are cyclomodulins leading to cell cycle arrest and apoptosis in a wide variety of cell types. Cdts from several species share a requirement for membrane rafts, and often cholesterol specifically for cell binding and CdtB mediated cytotoxicity. In this review we focus on how host–cell membrane bilayer organization contributes to the cell surface association, internalization, and action of bacteria derived cytolethal distending toxins (Cdts), with an emphasis on Aggregatibacter actinomycetemcomitans Cdt. PMID:27559534

  20. Gradiently crosslinked polymer electrolyte membranes in fuel cells

    NASA Astrophysics Data System (ADS)

    An, De; Wu, Bin; Zhang, Genlei; Zhang, Wen; Wang, Yuxin

    2016-01-01

    Polymer electrolyte membranes in fuel cells should be high in both ionic conductivity and mechanical strength. However, the two are often exclusive to each other. To solve this conundrum, a novel strategy is proposed in this paper, with extensively researched sulfonated poly (ether ether ketone) (SPEEK) membrane as a paradigm. A SPEEK membrane of high sulfonation degree is simply post-treated with NaBH4 and H2SO4 solution at ambient temperature for a certain time to afford the membrane with a gradient crosslinking structure. Measurements via 1H NMR, ATR-FTIR and SEM-EDS are conducted to verify such structural changes. The gradient crosslinks make practically no damage to proton conductance, but effectively restrain the membrane from over swelling and greatly enhance its tensile strength. A H2-O2 fuel cell with the gradiently crosslinked SPEEK membrane shows a maximal power density of 533 mW cm-2 at 80 °C, whereas the fuel cell with the pristine SPEEK membrane cannot be operated beyond 30 °C.

  1. Direct visualization of membrane architecture of myelinating cells in transgenic mice expressing membrane-anchored EGFP.

    PubMed

    Deng, Yaqi; Kim, BongWoo; He, Xuelian; Kim, Sunja; Lu, Changqing; Wang, Haibo; Cho, Ssang-Goo; Hou, Yiping; Li, Jianrong; Zhao, Xianghui; Lu, Q Richard

    2014-04-01

    Myelinogenesis is a complex process that involves substantial and dynamic changes in plasma membrane architecture and myelin interaction with axons. Highly ramified processes of oligodendrocytes in the central nervous system (CNS) make axonal contact and then extrapolate to wrap around axons and form multilayer compact myelin sheathes. Currently, the mechanisms governing myelin sheath assembly and axon selection by myelinating cells are not fully understood. Here, we generated a transgenic mouse line expressing the membrane-anchored green fluorescent protein (mEGFP) in myelinating cells, which allow live imaging of details of myelinogenesis and cellular behaviors in the nervous systems. mEGFP expression is driven by the promoter of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNP) that is expressed in the myelinating cell lineage. Robust mEGFP signals appear in the membrane processes of oligodendrocytes in the CNS and Schwann cells in the peripheral nervous system (PNS), wherein mEGFP expression defines the inner layers of myelin sheaths and Schmidt-Lanterman incisures in adult sciatic nerves. In addition, mEGFP expression can be used to track the extent of remyelination after demyelinating injury in a toxin-induced demyelination animal model. Taken together, the membrane-anchored mEGFP expression in the new transgenic line would facilitate direct visualization of dynamic myelin membrane formation and assembly during development and process remodeling during remyelination after various demyelinating injuries.

  2. Bacteria May Cope Differently from Similar Membrane Damage Caused by the Australian Tree Frog Antimicrobial Peptide Maculatin 1.1*

    PubMed Central

    Sani, Marc-Antoine; Henriques, Sónia Troeira; Weber, Daniel; Separovic, Frances

    2015-01-01

    Maculatin 1.1 (Mac1) is an antimicrobial peptide from the skin of Australian tree frogs and is known to possess selectivity toward Gram-positive bacteria. Although Mac1 has membrane disrupting activity, it is not known how Mac1 selectively targets Gram-positive over Gram-negative bacteria. The interaction of Mac1 with Escherichia coli, Staphylococcus aureus, and human red blood cells (hRBC) and with their mimetic model membranes is here reported. The peptide showed a 16-fold greater growth inhibition activity against S. aureus (4 μm) than against E. coli (64 μm) and an intermediate cytotoxicity against hRBC (30 μm). Surprisingly, Sytox Green uptake monitored by flow cytometry showed that Mac1 compromised both bacterial membranes with similar efficiency at ∼20-fold lower concentration than the reported minimum inhibition concentration against S. aureus. Mac1 also reduced the negative potential of S. aureus and E. coli membrane with similar efficacy. Furthermore, liposomes mimicking the cell membrane of S. aureus (POPG/TOCL) and E. coli (POPE/POPG) were lysed at similar concentrations, whereas hRBC-like vesicles (POPC/SM/Chol) remained mostly intact in the presence of Mac1. Remarkably, when POPG/TOCL and POPE/POPG liposomes were co-incubated, Mac1 did not induce leakage from POPE/POPG liposomes, suggesting a preference toward POPG/TOCL membranes that was supported by surface plasma resonance assays. Interestingly, circular dichroism spectroscopy showed a similar helical conformation in the presence of the anionic liposomes but not the hRBC mimics. Overall, the study showed that Mac1 disrupts bacterial membranes in a similar fashion before cell death events and would preferentially target S. aureus over E. coli or hRBC membranes. PMID:26100634

  3. Performance of cell-penetrating peptide-linked polymers physically mixed with poorly membrane-permeable molecules on cell membranes.

    PubMed

    Sakuma, Shinji; Suita, Masaya; Yamamoto, Takafumi; Masaoka, Yoshie; Kataoka, Makoto; Yamashita, Shinji; Nakajima, Noriko; Shinkai, Norihiro; Yamauchi, Hitoshi; Hiwatari, Ken-Ichiro; Hashizume, Akio; Tachikawa, Hiroyuki; Kimura, Ryoji; Ishimaru, Yuki; Kasai, Atsushi; Maeda, Sadaaki

    2012-05-01

    We are investigating a new class of penetration enhancers that enable poorly membrane-permeable molecules physically mixed with them to effectively penetrate cell membranes without their concomitant cellular uptake. Since we previously revealed that poly(N-vinylacetamide-co-acrylic acid) modified with d-octaarginine, which is a typical cell-penetrating peptide, significantly enhanced the nasal absorption of insulin, we examined the performance of the polymers on cell membranes. When Caco-2 cells were incubated with 5(6)-carboxyfluorescein (CF) for 30 min, approximately 0.1% of applied CF was internalized into the cells. This poor membrane permeability was dramatically enhanced by d-octaarginine-linked polymers; a 25-fold increase in the cellular uptake of CF was observed when the polymer concentration was adjusted to 0.2mg/mL. None of the individual components, for example, d-octaarginine, had any influence on CF uptake, demonstrating that only d-octaarginine anchored chemically to the polymeric platform enhanced the membrane permeation of CF. The polymer-induced CF uptake was consistently high even when the incubation time was extended to 120 min. Confocal laser scanning microphotographs of cells incubated with d-octaarginine-linked polymers bearing rhodamine red demonstrated that the cell outline was stained with red fluorescence. The polymer-induced CF uptake was significantly suppressed by 5-(N-ethyl-N-isopropyl)amiloride, which is an inhibitor of macropinocytosis. Results indicated that d-octaarginine-linked polymers remained on the cell membrane and poorly membrane-permeable CF was continuously internalized into cells mainly via macropinocytosis repeated for the individual peptidyl branches in the polymer backbone.

  4. Distance Measurement on an Endogenous Membrane Transporter in E. coli Cells and Native Membranes Using EPR Spectroscopy.

    PubMed

    Joseph, Benesh; Sikora, Arthur; Bordignon, Enrica; Jeschke, Gunnar; Cafiso, David S; Prisner, Thomas F

    2015-05-18

    Membrane proteins may be influenced by the environment, and they may be unstable in detergents or fail to crystallize. As a result, approaches to characterize structures in a native environment are highly desirable. Here, we report a novel general strategy for precise distance measurements on outer membrane proteins in whole Escherichia coli cells and isolated outer membranes. The cobalamin transporter BtuB was overexpressed and spin-labeled in whole cells and outer membranes and interspin distances were measured to a spin-labeled cobalamin using pulse EPR spectroscopy. A comparative analysis of the data reveals a similar interspin distance between whole cells, outer membranes, and synthetic vesicles. This approach provides an elegant way to study conformational changes or protein-protein/ligand interactions at surface-exposed sites of membrane protein complexes in whole cells and native membranes, and provides a method to validate outer membrane protein structures in their native environment.

  5. Tight binding of proteins to membranes from older human cells.

    PubMed

    Truscott, Roger J W; Comte-Walters, Susana; Ablonczy, Zsolt; Schwacke, John H; Berry, Yoke; Korlimbinis, Anastasia; Friedrich, Michael G; Schey, Kevin L

    2011-12-01

    The lens is an ideal model system for the study of macromolecular aging and its consequences for cellular function, since there is no turnover of lens fibre cells. To examine biochemical processes that take place in the lens and that may also occur in other long-lived cells, membranes were isolated from defined regions of human lenses that are synthesised at different times during life, and assayed for the presence of tightly bound cytosolic proteins using quantitative iTRAQ proteomics technology. A majority of lens beta crystallins and all gamma crystallins became increasingly membrane bound with age, however, the chaperone proteins alpha A and alpha B crystallin, as well as the thermally-stable protein, βB2 crystallin, did not. Other proteins such as brain-associated signal protein 1 and paralemmin 1 became less tightly bound in the older regions of the lens. It is evident that protein-membrane interactions change significantly with age. Selected proteins that were formerly cytosolic become increasingly tightly bound to cell membranes with age and are not removed even by treatment with 7 M urea. It is likely that such processes reflect polypeptide denaturation over time and the untoward binding of proteins to membranes may alter membrane properties and contribute to impairment of communication between older cells.

  6. 3D visualization of membrane failures in fuel cells

    NASA Astrophysics Data System (ADS)

    Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik

    2017-03-01

    Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.

  7. Synaptic and Golgi membrane recycling in cochlear hair cells.

    PubMed

    Siegel, J H; Brownell, W E

    1986-06-01

    Membrane recycling in the mechanoreceptive sensory cells of the mammalian cochlea was studied by observing membrane-bound horseradish peroxidase (HRP) reaction product following brief in vivo exposure to the enzyme. In the inner hair cell (IHC), peroxidase was taken up into coated vesicles and became incorporated into synaptic vesicles surrounding presynaptic bodies, but much HRP was also transported to the apical zone where reaction product appeared in all components of the Golgi complex. Neither the subsurface cisternae nor a tubular network associated with clusters of mitochondria were labelled. Outer hair cells (OHCs) showed considerably less membrane-bound reaction product than IHCs, indicating less rapid plasmalemmal recycling. Most membrane-bound reaction product was contained in coated vesicles and small vacuoles in the synaptic zone, but was occasionally seen in multivesicular bodies in the most apical zone. No labelled organelles were detected in the large central region of the OHC. A diffuse staining of the cytoplasm, particularly pronounced in OHCs, often interfered with the evaluation of membrane-bound reaction product in OHCs. This staining pattern could be qualitatively reproduced in both IHCs and OHCs by incubating fixed segments of the organ of Corti in oxidized diaminobenzidine. The presence of labelled synaptic vesicles associated with presynaptic bodies of IHCs and OHCs suggests that they are formed from membrane retrieved from the plasmalemma. We found no evidence that the subsurface cisternae of IHCs or the laminated cisternae of OHCs are derived from the cell surface as they never contained reaction product.

  8. Effects of Extracellular Calcium on Cell Membrane Resealing during Sonoporation

    NASA Astrophysics Data System (ADS)

    Zhou, Yun; Cui, Jianmin; Deng, Cheri X.

    2006-05-01

    Sonoporation has been exploited as a novel strategy for intracellular drug and gene delivery. In sonoporation, ultrasound application generates transient pores or openings in the cell membrane that allow entry of extracellular agents normally not permeable to the cell membrane. In order to improve the sonoporation outcome, we seek to obtain improved understanding of the sonoporation mechanism and investigate the factors affecting sonoporation process. We established a voltage clamp technique for real time measurement of sonoporation at single cell level using Xenopus oocytes as a model system. As both cell survival and intracellular delivery efficiency of drug or genes depend on the sonoporation dynamic process, and Calcium plays important roles in cellular processes, we focus on studying of the effect of extracellular Calcium concentration on the formation, extension, and resealing of membrane pores in sonoporation. We obtained experimental results demonstrating that the cell membrane reseals in the order of seconds in the presence of physiological level of extracellular [Ca]. We measured the resealing as function of extracellular [Ca] (0-1.8mM) and observed that the resealing rate decreases as extracellular [Ca] decreases from normal physiological level. No resealing was demonstrated when 1mM EGTA was added in the extracellular medium to chelate the [Ca] extracellularly. Our experimental findings suggest that extracellular Calcium plays an important role in controlling membrane resealing in sonoporation and thus the sonoporation outcome such as cell survival and delivery efficiency.

  9. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  10. The Cytoplasmic Region of Plasmodium falciparum SURFIN4.2 Is Required for Transport from Maurer’s Clefts to the Red Blood Cell Surface

    PubMed Central

    Kagaya, Wataru; Miyazaki, Shinya; Yahata, Kazuhide; Ohta, Nobuo; Kaneko, Osamu

    2015-01-01

    Background: Plasmodium, the causative agent of malaria, exports many proteins to the surface of the infected red blood cell (iRBC) in order to modify it toward a structure more suitable for parasite development and survival. One such exported protein, SURFIN4.2, from the parasite of human malignant malaria, P. falciparum, was identified in the trypsin-cleaved protein fraction from the iRBC surface, and is thereby inferred to be exposed on the iRBC surface. SURFIN4.2 also localize to Maurer’s clefts—parasite-derived membranous structures established in the RBC cytoplasm and tethered to the RBC membrane—and their role in trafficking suggests that they are a pathway for SURFIN4.2 transport to the iRBC surface. It has not been determined the participation of protein domains and motifs within SURFIN4.2 in transport from Maurer’s clefts to the iRBC surface; and herein we examined if the SURFIN4.2 intracellular region containing tryptophan-rich (WR) domain is required for its exposure on the iRBC surface. Results: We generated two transgenic parasite lines which express modified SURFIN4.2, with or without a part of the intracellular region. Both recombinant SURFIN4.2 proteins were exported to Maurer’s clefts. However, only SURFIN4.2 possessing the intracellular region was efficiently cleaved by surface treatment of iRBC with proteinase K. Conclusions: These results indicate that SURFIN4.2 is exposed on the iRBC surface and that the intracellular region containing WR domain plays a role on the transport from Maurer’s clefts to the iRBC membrane. PMID:26865830

  11. Structural Analysis of the Rubisco-Assembly Chaperone RbcX-II from Chlamydomonas reinhardtii

    PubMed Central

    Liu, Cuimin; Hartl, F. Ulrich; Hayer-Hartl, Manajit

    2015-01-01

    The most prevalent form of the Rubisco enzyme is a complex of eight catalytic large subunits (RbcL) and eight regulatory small subunits (RbcS). Rubisco biogenesis depends on the assistance by specific molecular chaperones. The assembly chaperone RbcX stabilizes the RbcL subunits after folding by chaperonin and mediates their assembly to the RbcL8 core complex, from which RbcX is displaced by RbcS to form active holoenzyme. Two isoforms of RbcX are found in eukaryotes, RbcX-I, which is more closely related to cyanobacterial RbcX, and the more distant RbcX-II. The green algae Chlamydomonas reinhardtii contains only RbcX-II isoforms, CrRbcX-IIa and CrRbcX-IIb. Here we solved the crystal structure of CrRbcX-IIa and show that it forms an arc-shaped dimer with a central hydrophobic cleft for binding the C-terminal sequence of RbcL. Like other RbcX proteins, CrRbcX-IIa supports the assembly of cyanobacterial Rubisco in vitro, albeit with reduced activity relative to cyanobacterial RbcX-I. Structural analysis of a fusion protein of CrRbcX-IIa and the C-terminal peptide of RbcL suggests that the peptide binding mode of RbcX-II may differ from that of cyanobacterial RbcX. RbcX homologs appear to have adapted to their cognate Rubisco clients as a result of co-evolution. PMID:26305355

  12. Cell Membrane-Cloaked Nanoparticles for Targeted Therapeutics

    NASA Astrophysics Data System (ADS)

    Luk, Brian Tsengchi

    The advent of nanoparticle-based delivery systems has made a significant impact on clinical patient outcomes. In recent decades, myriad nanoparticle-based therapeutic agents have been developed for the treatment and management of ailments such as cancer, diabetes, pain, bacterial infections, and asthma, among many others. Nanotherapeutics offer many distinct advantages over conventional free drug formulations. For example, nanoparticles are able to accumulate at tumor sites by extravasation through leaky vasculature at tumor sites via the enhanced permeability and retention (EPR) effect; nanoparticles can also be tailored to have desirable characteristics, such as prolonged circulation in the blood stream, improved drug encapsulation, and sustained or triggered drug release. Currently, a growing number of nanoformulations with favorable pharmacological profiles and promising efficacy are being used in clinical trials for the treatment of various cancers. Building on the success of these encouraging clinical results, new engineering strategies have emerged that combine synthetic nanoparticles with natural biomaterials to create nature-inspired biomimetic delivery systems. The work presented in this dissertation focuses on the biointerfacing between synthetic and natural materials, namely in the manifestation of cell membrane-coated nanoparticles. By exploiting the natural functionalities of source cell membranes, cell membrane-cloaked nanoparticles have huge potential in the delivery of therapeutic agents for a variety of applications. The first portion of this thesis will focus on understanding the fundamentals underlying cell membrane coating on synthetic nanoparticles. First introduced in 2011, cell membrane-cloaked nanoparticles showed immediate promise in drug delivery applications, but further understanding was necessary to be able to harness the full potential of the membrane coating platform. The first section provides further insight into the interfacial

  13. Direct Cytoskeleton Forces Cause Membrane Softening in Red Blood Cells

    PubMed Central

    Rodríguez-García, Ruddi; López-Montero, Iván; Mell, Michael; Egea, Gustavo; Gov, Nir S.; Monroy, Francisco

    2015-01-01

    Erythrocytes are flexible cells specialized in the systemic transport of oxygen in vertebrates. This physiological function is connected to their outstanding ability to deform in passing through narrow capillaries. In recent years, there has been an influx of experimental evidence of enhanced cell-shape fluctuations related to metabolically driven activity of the erythroid membrane skeleton. However, no direct observation of the active cytoskeleton forces has yet been reported to our knowledge. Here, we show experimental evidence of the presence of temporally correlated forces superposed over the thermal fluctuations of the erythrocyte membrane. These forces are ATP-dependent and drive enhanced flickering motions in human erythrocytes. Theoretical analyses provide support for a direct force exerted on the membrane by the cytoskeleton nodes as pulses of well-defined average duration. In addition, such metabolically regulated active forces cause global membrane softening, a mechanical attribute related to the functional erythroid deformability. PMID:26083919

  14. A new material concept for the red cell membrane.

    PubMed

    Evans, E A

    1973-09-01

    The proposition is made that the red cell membrane is a two-dimensional, incompressible material and a general stress-strain law is developed for finite deformations. In the linear form, the character of such a material is analogous to a two-dimensional Mooney material (e.g., rubber), indicating that the molecular structure in the plane of the membrane would consist of long chains, randomly kinked and cross-linked in the natural state. The loose network could be provided by the protein component and the lipid phase could exist interstitially as a liquid bilayer, giving the membrane its two-dimensional incompressibility. The material provides the capability of large deformations exhibited by the discocyte and yet the rigidity associated with the osmotic spherocyte state. It is demonstrated that a membrane of this type can form a sphere at constant area. An illustrative example of the application to single cell discocyte-to-osmotic spherocyte transformations is presented.

  15. Attachment of killed Mycoplasma gallisepticum cells and membranes to erythrocytes

    SciTech Connect

    Banai, M.; Kahane, I.; Feldner, J.; Razin, S.

    1981-11-01

    To correlate viability with attachment capacity, Mycoplasma gallisepticum cells harvested at different growth phases and treated by various agents were tested for their capacity to attach to human erythrocytes. The results show that viability per se is not essential for M. gallisepticum attachment to erythrocytes, as cells killed by ultraviolet irradiation and membranes isolated by lysing M. gallisepticum cells by various means retained attachment capacity. However, treatment of the mycoplasmas by protein-denaturing agents, such as heart, glutaraldehyde, or prolonged exposure to low pH, drastically affected or even abolished attachment, supporting the protein nature of the mycoplasma membrane components responsible for specific binding to the sialoglycoprotein receptors on the erythrocytes.

  16. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    NASA Astrophysics Data System (ADS)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  17. Phytosphingosine kills Candida albicans by disrupting its cell membrane.

    PubMed

    Veerman, Enno C I; Valentijn-Benz, Marianne; van't Hof, Wim; Nazmi, Kamran; van Marle, Jan; Amerongen, Arie V Nieuw

    2010-01-01

    The mechanism of action of phytosphingosine (PHS), a member of the sphingosine family which has candidacidal activity when added externally, was investigated. Previously, it has been reported that the fungicidal activity of PHS is based on the induction of caspase-independent apoptosis. In contrast, we found that addition of PHS causes a direct permeabilization of the plasma membrane of yeast, highlighted by the influx of the membrane probe propidium iodide, and the efflux of small molecules (i.e., adenine nucleotides) as well as large cellular constituents such as proteins. Freeze-fracture electron microscopy revealed that PHS treatment causes severe damage of the plasma membrane of the cell, which seems to have lost its integrity completely. We also found that PHS reverts the azide-induced insensitivity to histatin 5 (Hst5) of Candida albicans. In a previous study, we had found that the decreased sensitivity to Hst5 of energy-depleted cells is due to rigidification of the plasma membrane, which could be reverted by the membrane fluidizer benzyl alcohol. In line with the increased membrane permeabilization and ultrastructural damage, this reversal of the azide-induced insensitivity by PHS also points to a direct interaction between PHS and the cytoplasmic membrane of C. albicans.

  18. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  19. Epidermal cells adhere preferentially to type IV (basement membrane) collagen

    PubMed Central

    1979-01-01

    Epidermal cells from adult guinea pig skin attach and differentiate preferentially on substrates of type IV (basement membrane) collagen, compared to those of types I--III collagen. In contrast, guinea pig dermal fibroblasts attach equally well to all four collagen substrates. Fibronectin mediates the attachment of fibroblasts but not of epidermal cells to collagen. PMID:422650

  20. Membrane proteins of dense lysosomes from Chinese hamster ovary cells

    SciTech Connect

    Chance, S.C.

    1987-01-01

    In this work membrane proteins from lysosomes were studied in order to gain more information on the biogenesis and intracellular sorting of this class of membrane proteins. Membrane proteins were isolated from a purified population of lysosomes. These proteins were then examined for various co- and post-translational modifications which could serve as potential intracellular sorting signals. Biochemical analysis using marker enzymatic activities detected no plasma membrane, Golgi, endoplasmic reticulum, peroxisomes, mitochondria, or cytosol. Analysis after incorporation of ({sup 3}H)thymidine or ({sup 3}H)uridine detected no nuclei or ribosomes. A fraction containing integral membrane proteins was obtained from the dense lysosomes by extraction with Triton X-114. Twenty-three polypeptides which incorporated both ({sup 35}S)methionine and ({sup 3}H)leucine were detected by SDS PAGE in this membrane fraction, and ranged in molecular weight from 30-130 kDa. After incorporation by cells of various radioactive metabolic precursors, the membrane fraction from dense lysosomes was examined and was found to be enriched in mannose, galactose, fucose, palmitate, myristate, and sulfate, but was depleted in phosphate. The membrane fraction from dense lysosomes was then analyzed by SDS PAGE to determine the apparent molecular weights of modified polypepties.

  1. VIEW OF RBC (REFINED BICARBONATE) BUILDING LOOKING NORTHEAST. DEMOLITION IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF RBC (REFINED BICARBONATE) BUILDING LOOKING NORTHEAST. DEMOLITION IN PROGRESS. "ARM & HAMMER BAKING SODA WAS MADE HERE FOR OVER 50 YEARS AND THEN SHIPPED ACROSS THE STREET TO THE CHURCH & DWIGHT PLANT ON WILLIS AVE. (ON THE RIGHT IN THIS PHOTO). LAYING ON THE GROUND IN FRONT OF C&D BUILDING IS PART OF AN RBC DRYING TOWER. - Solvay Process Company, Refined Bicarbonate Building, Between Willis & Milton Avenues, Solvay, Onondaga County, NY

  2. Numerical modeling transport phenomena in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Suh, DongMyung

    To study the coupled phenomena occurring in proton exchange membrane fuel cells, a two-phase, one-dimensional, non-isothermal model is developed in the chapter 1. The model includes water phase change, proton transport in the membrane and electro-osmotic effect. The thinnest, but most complex layer in the membrane electrode assembly, catalyst layer, is considered an interfacial boundary between the gas diffusion layer and the membrane. Mass and heat transfer and electro-chemical reaction through the catalyst layer are formulated into equations, which are applied to boundary conditions for the gas diffusion layer and the membrane. Detail accounts of the boundary equations and the numerical solving procedure used in this work are given. The polarization curve is calculated at different oxygen pressures and compared with the experimental results. When the operating condition is changed along the polarization curve, the change of physicochemical variables in the membrane electrode assembly is studied. In particular, the over-potential diagram presents the usage of the electrochemical energy at each layer of the membrane electrode assembly. Humidity in supplying gases is one of the most important factors to consider for improving the performance of PEMFE. Both high and low humidity conditions can result in a deteriorating cell performance. The effect of humidity on the cell performance is studied in the chapter 2. First, a numerical model based on computational fluid dynamics is developed. Second, the cell performances are simulated, when the relative humidity is changed from 0% to 100% in the anode and the cathode channel. The simulation results show how humidity in the reactant gases affects the water content distribution in the membrane, the over-potential at the catalyst layers and eventually the cell performance. In particular, the rapid enhancement in the cell performance caused by self-hydrating membrane is captured by the simulation. Fully humidifying either H2

  3. Scalable nanostructured membranes for solid-oxide fuel cells.

    PubMed

    Tsuchiya, Masaru; Lai, Bo-Kuai; Ramanathan, Shriram

    2011-05-01

    The use of oxide fuel cells and other solid-state ionic devices in energy applications is limited by their requirement for elevated operating temperatures, typically above 800°C (ref. 1). Thin-film membranes allow low-temperature operation by reducing the ohmic resistance of the electrolytes. However, although proof-of-concept thin-film devices have been demonstrated, scaling up remains a significant challenge because large-area membranes less than ~ 100 nm thick are susceptible to mechanical failure. Here, we report that nanoscale yttria-stabilized zirconia membranes with lateral dimensions on the scale of millimetres or centimetres can be made thermomechanically stable by depositing metallic grids on them to function as mechanical supports. We combine such a membrane with a nanostructured dense oxide cathode to make a thin-film solid-oxide fuel cell that can achieve a power density of 155 mW cm⁻² at 510 °C. We also report a total power output of more than 20 mW from a single fuel-cell chip. Our large-area membranes could also be relevant to electrochemical energy applications such as gas separation, hydrogen production and permeation membranes.

  4. Macromolecular depletion as a determinant of RBC adhesive interactions: why blood is thicker than water.

    PubMed

    Neu, Björn; Meiselman, Herbert J

    2014-01-01

    If a surface is in contact with a solution containing macromolecules or proteins, and the loss of configurational entropy of these molecules at the surface is not balanced by adsorption energy, a polymer-poor layer will develop near the surface. If two such layers overlap, an attractive force develops due to the osmotic pressure difference between these depletion zones and the bulk phase. Recent studies have shown that depletion interaction plays a major role in red blood cell (RBC) aggregation and hence it is a major determinate of blood flow stability; depletion interaction also markedly affects RBC adhesion to vascular endothelial cells. Understanding and quantitating factors that regulate depletion in vivo are thus of importance, yet made difficult since only very small changes of the cell surface (e.g., glycocalyx thickness) such as seen during RBC aging can lead to massive changes of depletion interaction and hence cell-cell adhesion. It is suggested that insight into the in vivo relevance of depletion mechanisms may lead to an improved understanding of how and why blood flow is altered in many diseases, and may also provide new biomarkers (e.g., surface properties) that will aid in the development of novel or improved diagnostic and therapeutic tools.

  5. Understanding the transport processes in polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Cheah, May Jean

    Polymer electrolyte membrane (PEM) fuel cells are energy conversion devices suitable for automotive, stationary and portable applications. An engineering challenge that is hindering the widespread use of PEM fuel cells is the water management issue, where either a lack of water (resulting in membrane dehydration) or an excess accumulation of liquid water (resulting in fuel cell flooding) critically reduces the PEM fuel cell performance. The water management issue is addressed by this dissertation through the study of three transport processes occurring in PEM fuel cells. Water transport within the membrane is a combination of water diffusion down the water activity gradient and the dragging of water molecules by protons when there is a proton current, in a phenomenon termed electro-osmotic drag, EOD. The impact of water diffusion and EOD on the water flux across the membrane is reduced due to water transport resistance at the vapor/membrane interface. The redistribution of water inside the membrane by EOD causes an overall increase in the membrane resistance that regulates the current and thus EOD, thereby preventing membrane dehydration. Liquid water transport in the PEM fuel cell flow channel was examined at different gas flow regimes. At low gas Reynolds numbers, drops transitioned into slugs that are subsequently pushed out of the flow channel by the gas flow. The slug volume is dependent on the geometric shape, the surface wettability and the orientation (with respect to gravity) of the flow channel. The differential pressure required for slug motion primarily depends on the interfacial forces acting along the contact lines at the front and the back of the slug. At high gas Reynolds number, water is removed as a film or as drops depending on the flow channel surface wettability. The shape of growing drops at low and high Reynolds number can be described by a simple interfacial energy minimization model. Under flooding conditions, the fuel cell local current

  6. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation.

    PubMed

    Lehle, Karla; Friedl, Lucas; Wilm, Julius; Philipp, Alois; Müller, Thomas; Lubnow, Matthias; Schmid, Christof

    2016-06-01

    Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells.

  7. Corona discharge in electroporation of cell membranes

    NASA Astrophysics Data System (ADS)

    Cramariuc, R.; Tudorache, A.; Popa, M. E.; Branduse, E.; Nisiparu, L.; Mitelut, A.; Turtoi, M. O.; Fotescu, L.

    2008-12-01

    The objective of the present work is to demonstrate that electrical corona discharge is very efficient in cellular membrane electroporation due to current pulses with sharp front (2-5 ns) and to the fact that corona discharge is associated with UV radiation and micro particles emission. A comparison between DC and AC at 800 Hz and a special waveform to corona application is presented. The comparison is analyzed by means of applying all these in the maceration process (electroplasmolysis) of red wine production and in the processes of different types of the microbes.

  8. Evidence that red blood cell protein p55 may participate in the skeleton-membrane linkage that involves protein 4.1 and glycophorin C.

    PubMed

    Alloisio, N; Dalla Venezia, N; Rana, A; Andrabi, K; Texier, P; Gilsanz, F; Cartron, J P; Delaunay, J; Chishti, A H

    1993-08-15

    Human erythrocyte p55 is a peripheral membrane protein that contains three distinct domains in its primary structure: an N-terminal domain, an SH3 motif, and a C-terminal guanylate kinase domain. We used naturally mutated red blood cells (RBCs) with primary genetic defects resulting in the absence of protein 4.1 (4.1[-] hereditary elliptocytosis) or glycophorin C (Leach elliptocytosis). The absence of either protein was associated with the absence of p55. On a stoichiometric basis, the reduction in glycophorin C (about 80%) was concomitant to the lack of p55 in RBCs devoid of protein 4.1. Similarly, the reduction of protein 4.1 (about 20%) was equivalent to the absence of p55 in RBCs devoid of glycophorin C. These correlations suggest that p55 is associated, in precise proportions, with the protein 4.1-glycophorin-C complex, linking the skeleton and the membrane. The protein 4.1-glycophorin-C cross-bridge is known to be critically important for the stability and mechanical properties of human RBC plasma membrane. Because isoforms of protein 4.1, glycophorin C, and p55 exist in many tissues, these results provide evidence of a linkage between the skeleton and the membrane that may have implications in many nonerythroid cells.

  9. Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method

    NASA Astrophysics Data System (ADS)

    Liang, Huagen; Su, Huaneng; Pollet, Bruno G.; Pasupathi, Sivakumar

    2015-08-01

    Membrane electrode assembly (MEA), which contains cathode and anode catalytic layer, gas diffusion layers (GDL) and electrolyte membrane, is the key unit of a PEMFC. An attempt to develop MEA for ABPBI membrane based high temperature (HT) PEMFC is conducted in this work by catalyst coating membrane (CCM) method. The structure and performance of the MEA are examined by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and I-V curve. Effects of the CCM preparation method, Pt loading and binder type are investigated for the optimization of the single cell performance. Under 160 °C and atmospheric pressure, the peak power density of the MEA, with Pt loading of 0.5 mg cm-2 and 0.3 mg cm-2 for the cathode and the anode, can reach 277 mW cm-2, while a current density of 620 A cm-2 is delivered at the working voltage of 0.4 V. The MEA prepared by CCM method shows good stability operating in a short term durability test: the cell voltage maintained at ∼0.45 V without obvious drop when operated at a constant current density of 300 mA cm-2 and 160 °C under ambient pressure for 140 h.

  10. Spring-network-based model of a red blood cell for simulating mesoscopic blood flow.

    PubMed

    Nakamura, Masanori; Bessho, Sadao; Wada, Shigeo

    2013-01-01

    We developed a mechanical model of a red blood cell (RBC) that is capable of expressing its characteristic behaviors in shear flows. The RBC was modeled as a closed shell membrane consisting of spring networks in the framework of the energy minimum concept. The fluid forces acting on RBCs were modeled from Newton's viscosity law and the conservation of momentum. In a steady shear flow, the RBC model exhibited various behaviors, depending on the shear rate; it tumbled, tank-treaded, or both. The transition from tumbling to tank-treading occurred at a shear rate of 20 s( - 1). The simulation of an RBC in steady and unsteady parallel shear flows (Couette flows) showed that the deformation parameters of the RBC were consistent with experimental results. The RBC in Poiseuille flow migrated radially towards the central axis of the flow channel. Axial migration became faster with an increase in the viscosity of the media, qualitatively consistent with experimental results. These results demonstrate that the proposed model satisfies the essential conditions for simulating RBC behavior in blood flow. Finally, a large-scale RBC flow simulation was implemented to show the capability of the proposed model for analyzing the mesoscopic nature of blood flow.

  11. Adenosine deaminase in cell transformation. Biophysical manifestation of membrane dynamics.

    PubMed

    Porat, N; Gill, D; Parola, A H

    1988-10-15

    Cell transformation is associated with a dramatic collapse of a graphic fingerprint characteristic of normal cells, as measured by phase fluorimetry. This is demonstrated on adenosine deaminase (ADA, EC 3.5.4.4), an established malignancy marker. ADA activity is known to decrease markedly in chick embryo fibroblasts (CEF) transformed by Rous sarcoma virus. The high affinity between the catalytic small subunit ADA (SS-ADA) and its membranal complexing protein (ADCP) (which abounds on the plasma membrane of CEF) allowed the hybridization of fluorescent labeled SS-ADA with native ADCP on CEF. Multifrequency differential phase fluorimetry responded remarkably to the state of this hybrid membrane protein. The transformation process is shown to have led to increased membrane fluidity and rotational mobility of ADCP as well as to its reduced availability to SS-ADA binding. The hypothesis of protein vertical sinking into the lipid core of the membrane is now given support by our spectroscopic data. Additional models are considered. A regulatory role is thus suggested for the complexing protein, which may also account for (a) reduced ADA activity in transformed cells and (b) detachment, exclusive to normal cells, upon addition of SS-ADA in excess.

  12. Boron Induces Hyperpolarization of Sunflower Root Cell Membranes and Increases Membrane Permeability to K+1

    PubMed Central

    Schon, Mary K.; Novacky, Anton; Blevins, Dale G.

    1990-01-01

    Although many studies have alluded to a role for boron (B) in membrane function, there is little evidence for a direct effect of B on the plasmalemma of higher plant cells. These studies were conducted to demonstrate, by electrophysiological techniques, a direct effect of B on the membrane potential (Em) of sunflower (Helianthus annuus [L.], cv Mammoth Grey Stripe) root tip cells and to determine if the response to B occurs rapidly enough to account for the previously observed effects of B on ion uptake. By inserting a glass microelectrode into an individual cell in the root tip, the Em of the cell was determined in basal salt medium (BSM), pH 6.0. The perfusion solution surrounding the root tissue was then changed to BSM + 50 micromolar H3BO3, pH 6.0. The exposure to B induced a significant plasmalemma hyperpolarization in sunflower root cells within 20 minutes. After just 3 minutes of exposure to B, the change in Em was already significantly different from the negligible change in Em observed over time in root cells never exposed to B. Membrane hyperpolarization could be caused by a stimulation of the proton pump or by a change in the conductance of one or more permeable ions. Since B has been shown to affect K+ uptake by plants, the electrophysiological techniques described above were used to determine if B has an effect on membrane permeability to K+, and could thereby lead to an increased diffusion potential. When sunflower root tips were pretreated in 50 micromolar B for 2 hours, cell membranes exhibited a significantly greater depolarization with each 10-fold increase in external [K+] than minus-B cells. Subsequent studies demonstrated that the depolarization due to increased external [K+] was also significantly greater when tissue was exposed to B at the same time as the 10-fold increase in [K+], indicating that the effect of B on K+ permeability was immediate. Analysis of sunflower root tips demonstrated that treatment in 50 micromolar B caused a

  13. A membrane bending model of outer hair cell electromotility.

    PubMed Central

    Raphael, R M; Popel, A S; Brownell, W E

    2000-01-01

    We propose a new mechanism for outer hair cell electromotility based on electrically induced localized changes in the curvature of the plasma membrane (flexoelectricity). Electromechanical coupling in the cell's lateral wall is modeled in terms of linear constitutive equations for a flexoelectric membrane and then extended to nonlinear coupling based on the Langevin function. The Langevin function, which describes the fraction of dipoles aligned with an applied electric field, is shown to be capable of predicting the electromotility voltage displacement function. We calculate the electrical and mechanical contributions to the force balance and show that the model is consistent with experimentally measured values for electromechanical properties. The model rationalizes several experimental observations associated with outer hair cell electromotility and provides for constant surface area of the plasma membrane. The model accounts for the isometric force generated by the cell and explains the observation that the disruption of spectrin by diamide reduces force generation in the cell. We discuss the relation of this mechanism to other proposed models of outer hair cell electromotility. Our analysis suggests that rotation of membrane dipoles and the accompanying mechanical deformation may be the molecular mechanism of electromotility. PMID:10827967

  14. Transport parameters in the human red cell membrane: solute-membrane interactions of amides and ureas.

    PubMed

    Toon, M R; Solomon, A K

    1991-04-02

    We have studied the permeability of a series of hydrophilic amides and ureas through the red cell membrane by determining the three phenomenological coefficients which describe solute-membrane interaction: the hydraulic permeability (Lp), the phenomenological permeability coefficient (omega i) and the reflection coefficient (sigma i). In 55 experiments on nine solutes, we have determined that the reflection coefficient (after a small correction for solute permeation by membrane dissolution) is significantly less than 1.0 (P less than 0.003, t-test), which provides very strong evidence that solute and water fluxes are coupled as they cross the red cell membrane. It is proposed that the aqueous channel is a tripartite assembly, comprising H-bond exchange regions at both faces of the membrane, joined by a narrower sieve-specific region which crosses the lipid. The solutes bind to the H-bond exchange regions to exchange their solvation shell with the H-bonds of the channel; the existence of these regions is confirmed by the finding that the permeation of all the amides and ureas requires binding to well-characterized sites with Km values of 0.1-0.5 M. The sieve-specific regions provide the steric restraints which govern the passage of the solutes according to their size; their existence is shown by the findings that: (1) the reflection coefficient (actually the function [1-corrected sigma i]) is linearly dependent upon the solute molecular diameter; and (2) the permeability coefficient is linearly dependent upon solute molar volume. These several observations, taken together, provide strong arguments which lead to the conclusion that the amides and urea cross the red cell membrane in an aqueous pore.

  15. Plasma membrane associated membranes (PAM) from Jurkat cells contain STIM1 protein is PAM involved in the capacitative calcium entry?

    PubMed

    Kozieł, Katarzyna; Lebiedzinska, Magdalena; Szabadkai, Gyorgy; Onopiuk, Marta; Brutkowski, Wojciech; Wierzbicka, Katarzyna; Wilczyński, Grzegorz; Pinton, Paolo; Duszyński, Jerzy; Zabłocki, Krzysztof; Wieckowski, Mariusz R

    2009-12-01

    A proper cooperation between the plasma membrane, the endoplasmic reticulum and the mitochondria seems to be essential for numerous cellular processes involved in Ca(2+) signalling and maintenance of Ca(2+) homeostasis. A presence of microsomal and mitochondrial proteins together with those characteristic for the plasma membrane in the fraction of the plasma membrane associated membranes (PAM) indicates a formation of stabile interactions between these three structures. We isolated the plasma membrane associated membranes from Jurkat cells and found its significant enrichment in the plasma membrane markers including plasma membrane Ca(2+)-ATPase, Na(+), K(+)-ATPase and CD3 as well as sarco/endoplasmic reticulum Ca(2+) ATPase as a marker of the endoplasmic reticulum membranes. In addition, two proteins involved in the store-operated Ca(2+) entry, Orai1 located in the plasma membrane and an endoplasmic reticulum protein STIM1 were found in this fraction. Furthermore, we observed a rearrangement of STIM1-containing protein complexes isolated from Jurkat cells undergoing stimulation by thapsigargin. We suggest that the inter-membrane compartment composed of the plasma membrane and the endoplasmic reticulum, and isolated as a stabile plasma membrane associated membranes fraction, might be involved in the store-operated Ca(2+) entry, and their formation and rebuilding have an important regulatory role in cellular Ca(2+) homeostasis.

  16. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes

    PubMed Central

    Mohamed, Jamaludin; Shing, Saw Wuan; Md Idris, Muhd Hanis; Budin, Siti Balkis; Zainalabidin, Satirah

    2013-01-01

    OBJECTIVES: The aim of this study was to investigate the protective effects of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell (RBC) membrane oxidative stress in rats with streptozotocin-induced diabetes. METHODS: Forty male Sprague-Dawley rats weighing 230-250 g were randomly divided into four groups (n = 10 rats each): control group (N), roselle-treated control group, diabetic group, and roselle-treated diabetic group. Roselle was administered by force-feeding with aqueous extracts of roselle (100 mg/kg body weight) for 28 days. RESULTS: The results demonstrated that the malondialdehyde levels of the red blood cell membranes in the diabetic group were significantly higher than the levels in the roselle-treated control and roselle-treated diabetic groups. The protein carbonyl level was significantly higher in the roselle-treated diabetic group than in the roselle-treated control group but lower than that in the diabetic group. A significant increase in the red blood cell membrane superoxide dismutase enzyme was found in roselle-treated diabetic rats compared with roselle-treated control rats and diabetic rats. The total protein level of the red blood cell membrane, osmotic fragility, and red blood cell morphology were maintained. CONCLUSION: The present study demonstrates that aqueous extracts of roselle possess a protective effect against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. These data suggest that roselle can be used as a natural antioxidative supplement in the prevention of oxidative damage in diabetic patients. PMID:24212844

  17. Membrane Mechanics of Endocytosis in Cells with Turgor

    PubMed Central

    Dmitrieff, Serge; Nédélec, François

    2015-01-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane deformations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck constriction by actin may not be required, while its pulling role is essential. Finally, the theory shows that anisotropic curvature effectors stabilize membrane invaginations, and the loss of crescent-shaped BAR domain proteins such as Rvs167 could therefore trigger membrane scission. PMID:26517669

  18. Membrane Mechanics of Endocytosis in Cells with Turgor.

    PubMed

    Dmitrieff, Serge; Nédélec, François

    2015-10-01

    Endocytosis is an essential process by which cells internalize a piece of plasma membrane and material from the outside. In cells with turgor, pressure opposes membrane deformations, and increases the amount of force that has to be generated by the endocytic machinery. To determine this force, and calculate the shape of the membrane, we used physical theory to model an elastic surface under pressure. Accurate fits of experimental profiles are obtained assuming that the coated membrane is highly rigid and preferentially curved at the endocytic site. The forces required from the actin machinery peaks at the onset of deformation, indicating that once invagination has been initiated, endocytosis is unlikely to stall before completion. Coat proteins do not lower the initiation force but may affect the process by the curvature they induce. In the presence of isotropic curvature inducers, pulling the tip of the invagination can trigger the formation of a neck at the base of the invagination. Hence direct neck constriction by actin may not be required, while its pulling role is essential. Finally, the theory shows that anisotropic curvature effectors stabilize membrane invaginations, and the loss of crescent-shaped BAR domain proteins such as Rvs167 could therefore trigger membrane scission.

  19. Microstructured Electrolyte Membranes to Improve Fuel Cell Performance

    NASA Astrophysics Data System (ADS)

    Wei, Xue

    Fuel cells, with the advantages of high efficiency, low greenhouse gas emission, and long lifetime are a promising technology for both portable power and stationary power sources. The development of efficient electrolyte membranes with high ionic conductivity, good mechanical durability and dense structure at low cost remains a challenge to the commercialization of fuel cells. This thesis focuses on exploring novel composite polymer membranes and ceramic electrolytes with the microstructure engineered to improve performance in direct methanol fuel cells (DMFCs) and solid oxide fuel cells (SOFCs), respectively. Polymer/particle composite membranes hold promise to meet the demands of DMFCs at lower cost. The structure of composite membranes was controlled by aligning proton conducting particles across the membrane thickness under an applied electric field. The field-induced structural changes caused the membranes to display an enhanced water uptake, proton conductivity, and methanol permeability in comparison to membranes prepared without an applied field. Although both methanol permeability and proton conductivity are enhanced by the applied field, the permeability increase is relatively lower than the proton conductivity improvement, which results in enhanced proton/methanol selectivity and improved DMFC performance. Apatite ceramics are a new class of fast ion conductors being studied as alternative SOFC electrolytes in the intermediate temperature range. An electrochemical/hydrothermal deposition method was developed to grow fully dense apatite membranes containing well-developed crystals with c-axis alignment to promote ion conductivity. Hydroxyapatite seed crystals were first deposited onto a metal substrate electrochemically. Subsequent ion substitution during the hydrothermal growth process promoted the formation of dense, fully crystalline films with microstructure optimal for ion transport. The deposition parameters were systematically investigated, such as

  20. New High-Temperature Membranes Developed for Proton Exchange Membrane Fuel Cells

    NASA Technical Reports Server (NTRS)

    Kinder, James D.

    2004-01-01

    Fuel cells are receiving a considerable amount of attention for potential use in a variety of areas, including the automotive industry, commercial power generation, and personal electronics. Research at the NASA Glenn Research Center has focused on the development of fuel cells for use in aerospace power systems for aircraft, unmanned air vehicles, and space transportation systems. These applications require fuel cells with higher power densities and better durability than what is required for nonaerospace uses. In addition, membrane cost is a concern for any fuel cell application. The most widely used membrane materials for proton exchange membrane (PEM) fuel cells are based on sulfonated perfluorinated polyethers, typically Nafion 117, Flemion, or Aciplex. However, these polymers are costly and do not function well at temperatures above 80 C. At higher temperatures, conventional membrane materials dry out and lose their ability to conduct protons, essential for the operation of the fuel cell. Increasing the operating temperature of PEM fuel cells from 80 to 120 C would significantly increase their power densities and enhance their durability by reducing the susceptibility of the electrode catalysts to carbon monoxide poisoning. Glenn's Polymers Branch has focused on developing new, low-cost membranes that can operate at these higher temperatures. A new series of organically modified siloxane (ORMOSIL) polymers were synthesized for use as membrane materials in a high-temperature PEM fuel cell. These polymers have an organic portion that can allow protons to transport through the polymer film and a cross-linked silica network that gives the polymers dimensional stability. These flexible xerogel polymer films are thermally stable, with decomposition onset as high as 380 C. Two types of proton-conducting ORMOSIL films have been produced: (1) NASA-A, which can coordinate many highly acid inorganic salts that facilitate proton conduction and (2) NASA-B, which has been

  1. Highly Water Resistant Anion Exchange Membrane for Fuel Cells.

    PubMed

    Yang, Zhengjin; Hou, Jianqiu; Wang, Xinyu; Wu, Liang; Xu, Tongwen

    2015-07-01

    For anion exchange membranes (AEMs), achieving efficient hydroxide conductivity without excessive hydrophilicity presents a challenge. Hence, new strategies for constructing mechanically strengthened and hydroxide conductive (especially at controlled humidity) membranes are critical for developing better AEMs. Macromolecular modification involving ylide chemistry (Wittig reaction) for the fabrication of novel AEMs with an interpenetrating polymer network structure is reported. The macromolecular modification is cost effective, facile, and based on a one-pot synthesis. AEM water uptake is reduced to 3.6 wt% and a high hydroxide conductivity (69.7 mS cm(-1) , 90 °C) is achieved simultaneously. More importantly, the membrane exhibits similar tensile strength (>35 MPa) and comparable flexibility in both dry and wet states. These AEMs could find further applications within anion exchange membrane fuel cells with low humidity or photoelectric assemblies.

  2. Lactic acid fermentation in cell-recycle membrane bioreactor.

    PubMed

    Choudhury, B; Swaminathan, T

    2006-02-01

    Traditional lactic acid fermentation suffers from low productivity and low product purity. Cell-recycle fermentation has become one of the methods to obtain high cell density, which results in higher productivity. Lactic acid fermentation was investigated in a cell-recycle membrane bioreactor at higher substrate concentrations of 100 and 120 g/dm3. A maximum cell density of 145 g/dm3 and a maximum productivity of 34 g/(dm3.h) were achieved in cell-recycle fermentation. In spite of complete consumption of substrate, there was a continuous increase in cell density in cell-recycle fermentation. Control of cell density in cell-recycle fermentation was attempted by cell bleeding and reduction in yeast extract concentration.

  3. Membrane patterned by pulsed laser micromachining for proton exchange membrane fuel cell with sputtered ultra-low catalyst loadings

    NASA Astrophysics Data System (ADS)

    Cuynet, S.; Caillard, A.; Kaya-Boussougou, S.; Lecas, T.; Semmar, N.; Bigarré, J.; Buvat, P.; Brault, P.

    2015-12-01

    Proton exchange membranes were nano- and micro-patterned on their cathode side by pressing them against stainless steel molds previously irradiated by a Ti:Sapphire femtosecond laser. The membranes were associated to ultra-low loaded thin catalytic layers (25 μgPt cm-2) prepared by plasma magnetron sputtering. The Pt catalyst was sputtered either on the membrane or on the porous electrode. The fuel cell performance in dry conditions were found to be highly dependent on the morphology of the membrane surface. When nanometric ripples covered by a Pt catalyst were introduced on the surface of the membrane, the fuel cell outperformed the conventional one with a flat membrane. By combining nano- and micro-patterns (nanometric ripples and 11-24 μm deep craters), the performance of the cells was clearly enhanced. The maximum power density achieved by the fuel cell was multiplied by a factor of 3.6 (at 50 °C and 3 bar): 438 mW cm-2 vs 122 mW cm-2. This improvement is due to high catalyst utilization with a high membrane conductivity. When Pt is sputtered on the porous electrode (and not on the membrane), the contribution of the patterned membrane to the fuel cell efficiency was less significant, except in the presence of nanometric ripples. This result suggests that the patterning of the membrane must be consistent with the way the catalyst is synthesized, on the membrane or on the porous electrode.

  4. Radiation effects on membranes - 1. Cellular permeability and cell survival

    SciTech Connect

    Khare, S.; Jayakumar, A.; Trivedi, A.; Kesavan, P.C.; Prasad, R.

    1982-05-01

    The effect of various doses of ..gamma.. radiation (5-60 krad) on the membrane permeability and cell survival of Candida albicans, a pathogenic yeast, was investigated. A reduction in the cell survival and in the accumulation of amino acids (proline, glycine, lysine, and glutamic acid) was observed following irradiation. The rate of oxygen uptake, which is often associated with transport, was also reduced. There was no damage to available sulfhydryl groups following the exposure of cells to various doses of ..gamma.. radiation. The membrane lipid composition of C. albicans cells can be altered by growing them in alkanes of varying chain lengths. The effects of such altered lipid composition on radiosensitivity was examined. It was observed that C. albicans cells with altered lipid content acquire resistance to ..gamma.. radiation.

  5. Evidence for Bidirectional Endocannabinoid Transport across Cell Membranes*

    PubMed Central

    Chicca, Andrea; Marazzi, Janine; Nicolussi, Simon; Gertsch, Jürg

    2012-01-01

    Despite extensive research on the trafficking of anandamide (AEA) across cell membranes, little is known about the membrane transport of other endocannabinoids, such as 2-arachidonoylglycerol (2-AG). Previous studies have provided data both in favor and against a cell membrane carrier-mediated transport of endocannabinoids, using different methodological approaches. Because AEA and 2-AG undergo rapid and almost complete intracellular hydrolysis, we employed a combination of radioligand assays and absolute quantification of cellular and extracellular endocannabinoid levels. In human U937 leukemia cells, 100 nm AEA and 1 μm 2-AG were taken up through a fast and saturable process, reaching a plateau after 5 min. Employing differential pharmacological blockage of endocannabinoid uptake, breakdown, and interaction with intracellular binding proteins, we show that eicosanoid endocannabinoids harboring an arachidonoyl chain compete for a common membrane target that regulates their transport, whereas other N-acylethanolamines did not interfere with AEA and 2-AG uptake. By combining fatty acid amide hydrolase or monoacyl glycerol lipase inhibitors with hydrolase-inactive concentrations of the AEA transport inhibitors UCM707 (1 μm) and OMDM-2 (5 μm), a functional synergism on cellular AEA and 2-AG uptake was observed. Intriguingly, structurally unrelated AEA uptake inhibitors also blocked the cellular release of AEA and 2-AG. We show, for the first time, that UCM707 and OMDM-2 inhibit the bidirectional movement of AEA and 2-AG across cell membranes. Our findings suggest that a putative endocannabinoid cell membrane transporter controls the cellular AEA and 2-AG trafficking and metabolism. PMID:22879589

  6. Cell cycle dependent changes in the plasma membrane organization of mammalian cells.

    PubMed

    Denz, Manuela; Chiantia, Salvatore; Herrmann, Andreas; Mueller, Peter; Korte, Thomas; Schwarzer, Roland

    2017-03-01

    Lipid membranes are major structural elements of all eukaryotic and prokaryotic organisms. Although many aspects of their biology have been studied extensively, their dynamics and lateral heterogeneity are still not fully understood. Recently, we observed a cell-to-cell variability in the plasma membrane organization of CHO-K1 cells (Schwarzer et al., 2014). We surmised that cell cycle dependent changes of the individual cells from our unsynchronized cell population account for this phenomenon. In the present study, this hypothesis was tested. To this aim, CHO-K1 cells were arrested in different cell cycle phases by chemical treatments, and the order of their plasma membranes was determined by various fluorescent lipid analogues using fluorescence lifetime imaging microscopy. Our experiments exhibit significant differences in the membrane order of cells arrested in the G2/M or S phase compared to control cells. Our single-cell analysis also enabled the specific selection of mitotic cells, which displayed a significant increase of the membrane order compared to the control. In addition, the lipid raft marker GPImYFP was used to study the lateral organization of cell cycle arrested cells as well as mitotic cells and freely cycling samples. Again, significant differences were found between control and arrested cells and even more pronounced between control and mitotic cells. Our data demonstrate a direct correlation between cell cycle progression and plasma membrane organization, underlining that cell-to-cell heterogeneities of membrane properties have to be taken into account in cellular studies especially at the single-cell level.

  7. Electronic circuit model for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Yu, Dachuan; Yuvarajan, S.

    The proton exchange membrane (PEM) fuel cell is being investigated as an alternate power source for various applications like transportation and emergency power supplies. The paper presents a novel circuit model for a PEM fuel cell that can be used to design and analyze fuel cell power systems. The PSPICE-based model uses bipolar junction transistors (BJTs) and LC elements available in the PSPICE library with some modification. The model includes the phenomena like activation polarization, ohmic polarization, and mass transport effect present in a PEM fuel cell. The static and dynamic characteristics obtained through simulation are compared with experimental results obtained on a commercial fuel cell module.

  8. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization

    PubMed Central

    Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-01

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the “verge of apoptosis”. When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways. PMID:26716897

  9. PIG7 promotes leukemia cell chemosensitivity via lysosomal membrane permeabilization.

    PubMed

    Liu, Jiazhuo; Peng, Leiwen; Niu, Ting; Wu, Yu; Li, Jianjun; Wang, Fangfang; Zheng, Yuhuan; Liu, Ting

    2016-01-26

    PIG7 localizes to lysosomal membrane in leukemia cells. Our previous work has shown that transduction of pig7 into a series of leukemia cell lines did not result in either apoptosis or differentiation of most tested cell lines. Interestingly, it did significantly sensitize these cell lines to chemotherapeutic drugs. Here, we further investigated the mechanism underlying pig7-induced improved sensitivity of acute leukemia cells to chemotherapy. Our results demonstrated that the sensitization effect driven by exogenous pig7 was more effective in drug-resistant leukemia cell lines which had lower endogenous pig7 expression. Overexpression of pig7 did not directly activate the caspase apoptotic pathway, but decreased the lysosomal stability. The expression of pig7 resulted in lysosomal membrane permeabilization (LMP) and lysosomal protease (e.g. cathepsin B, D, L) release. Moreover, we also observed increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential (ΔΨm) induced by pig7. Some autophagy markers such as LC3I/II, ATG5 and Beclin-1, and necroptosis maker MLKL were also stimulated. However, intrinsic antagonism such as serine/cysteine protease inhibitors Spi2A and Cystatin C prevented downstream effectors from triggering leukemia cells, which were only on the "verge of apoptosis". When combined with chemotherapy, LMP increased and more proteases were released. Once this process was beyond the limit of intrinsic antagonism, it induced programmed cell death cooperatively via caspase-independent and caspase-dependent pathways.

  10. Lipids that determine detergent resistance of MDCK cell membrane fractions.

    PubMed

    Manni, Marco M; Cano, Ainara; Alonso, Cristina; Goñi, Félix M

    2015-10-01

    A comparative lipidomic study has been performed of whole Madin-Darby canine kidney epithelial cells and of the detergent-resistant membrane fraction (DRM) obtained after treating the cells with the non-ionic detergent Triton X-100. The DRM were isolated following a standard procedure that is extensively used in cell biology studies. Significant differences were found in the lipid composition of the whole cells and of DRM. The latter were enriched in all the analyzed sphingolipid classes: sphingomyelins, ceramides and hexosylceramides. Diacylglycerols were also preferentially found in DRM. The detergent-resistant fraction was also enriched in saturated over unsaturated fatty acyl chains, and in sn-1 acyl chains containing 16 carbon atoms, over the longer and shorter ones. The glycerophospholipid species phosphatidylethanolamines and phosphatidylinositols, that were mainly unsaturated, did not show a preference for DRM. Phosphatidylcholines were an intermediate case: the saturated, but not the unsaturated species were found preferentially in DRM. The question remains on whether these DRM, recovered from detergent-membrane mixtures by floatation over a sucrose gradient, really correspond to membrane domains existing in the cell membrane prior to detergent treatment.

  11. The role of cell membranes in the regulation of lignification in pine cells

    NASA Technical Reports Server (NTRS)

    Hendrix, D. L.

    1978-01-01

    The identity of pine cell membranes bearing PAL enzyme activity, the isolation of a plasma membrane preparation from pine cells for testing as a regulatory barrier in lignification, and the measurement of the geopotential effect in pine stems are presented. A model to describe and predict the interaction of gravity and lignification of higher plants was developed.

  12. Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same

    NASA Technical Reports Server (NTRS)

    Cisar, Alan J. (Inventor); Gonzalez-Martin, Anuncia (Inventor); Hitchens, G. Duncan (Inventor); Murphy, Oliver J. (Inventor)

    1997-01-01

    The invention provides an improved proton exchange membrane for use in electrochemical cells having internal passages parallel to the membrane surface, an apparatus and process for making the membrane, membrane and electrode assemblies fabricated using the membrane, and the application of the membrane and electrode assemblies to a variety of devices, both electrochemical and otherwise. The passages in the membrane extend from one edge of the membrane to another and allow fluid flow through the membrane and give access directly to the membrane for purposes of hydration.

  13. Macrophages engulf endothelial cell membrane particles preceding pupillary membrane capillary regression.

    PubMed

    Poché, Ross A; Hsu, Chih-Wei; McElwee, Melissa L; Burns, Alan R; Dickinson, Mary E

    2015-07-01

    Programmed capillary regression and remodeling are essential developmental processes. However, the cellular and molecular mechanisms that regulate vessel regression are only the beginning to be understood. Here, using in vivo, dynamic, confocal imaging of mouse transgenic reporters as well as static confocal and electron microscopy, we studied the embryonic development and postnatal regression of the transient mouse pupillary membrane (PM) vasculature. This approach allowed us to directly observe the precise temporal sequence of cellular events preceding and during the elimination of the PM from the mouse eye. Imaging of Tcf/Lef-H2B::GFP Wnt-reporter mice uncovered that, unlike the hyaloid vasculature of the posterior eye, a PM endothelial cell (EC) Wnt/β-catenin response is unlikely to be part of the regression mechanism. Live imaging of EC and macrophage dynamics revealed highly active Csf1r-GFP+ macrophages making direct contact with the Flk1-myr::mCherry+ vessel surface and with membrane protrusions or filopodia extending from the ECs. Flk1-myr::mCherry+ EC membrane particles were observed on and around ECs as well as within macrophages. Electron microscopy studies confirmed that they were in phagosomes within macrophages, indicating that the macrophages engulfed the membrane particles. Interestingly, EC plasma membrane uptake by PM macrophages did not correlate with apoptosis and was found shortly after vessel formation at mid-gestation stages in the embryo; long before vessel regression begins during postnatal development. Additionally, genetic ablation of macrophages showed that EC membrane particles were still shed in the absence of macrophages suggesting that macrophages do not induce the formation or release of EC microparticles. These studies have uncovered a novel event during programmed capillary regression in which resident macrophages scavenge endothelial cell microparticles released from the PM vessels. This finding suggests that there may be an

  14. Durable, Low-cost, Improved Fuel Cell Membranes

    SciTech Connect

    Chris Roger; David Mountz; Wensheng He; Tao Zhang

    2011-03-17

    The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton

  15. Adaptive evolution of rbcL in Conocephalum (Hepaticae, bryophytes).

    PubMed

    Miwa, Hidetsugu; Odrzykoski, Ireneusz J; Matsui, Atsushi; Hasegawa, Masami; Akiyama, Hiroyuki; Jia, Yu; Sabirov, Renat; Takahashi, Hideki; Boufford, David E; Murakami, Noriaki

    2009-07-15

    An excess of nonsynonymous substitutions over synonymous ones has been regarded as an important indicator of adaptive evolution or positive selection at the molecular level. We now report such a case for rbcL sequences among cryptic species in Conocephalum (Hepaticae, Bryophytes). This finding can be regarded as evidence of adaptive evolution in several cryptic species (especially in F and JN types) within the genus. Bryophytes are small land plants with simple morphology. We can therefore expect the existence of several biologically distinct units or cryptic species within each morphological species. In our previous study, we found three rbcL types in Asian Conocephalum japonicum (Thunb.) Grolle and also found evidence strongly suggesting that the three types are reproductively isolated cryptic species. Additionally, we examined rbcL sequence variation in six cryptic species of C. conicum (L.) Dumort. previously recognized by allozyme analyses. As a result, we were able to discriminate the six cryptic species based only on their rbcL sequences. We were able to show that rbcL sequence variation is also useful in finding cryptic species of C. conicum.

  16. Dipole relaxation in erythrocyte membrane: involvement of spectrin skeleton.

    PubMed

    Ivanov, I T; Paarvanova, B; Slavov, T

    2012-12-01

    Polarization of spectrin-actin undermembrane skeleton of red blood cell (RBC) plasma membranes was studied by impedance spectroscopy. Relatedly, dielectric spectra of suspensions that contained RBCs of humans, mammals (bovine, horse, dog, cat) and birds (turkey, pigeon, duck), and human RBC ghost membranes were continuously obtained during heating from 20 to 70°C. Data for the complex admittance and capacitance were used to derive the suspension resistance, R, and capacitance, C, as well as the energy loss as a function of temperature. As in previous studies, two irreversible temperature-induced transitions in the human RBC plasma membrane were detected at 49.5°C and at 60.7°C (at low heating rate). The transition at 49.5°C was evident from the abrupt changes in R, and C and the fall in the energy loss, due to dipole relaxation. For the erythrocytes of indicated species the changes in R and C displayed remarkable and similar frequency profiles within the 0.05-13MHz domain. These changes were subdued after cross-linking of membranes by diamide (0.3-1.3mM) and glutaraldehyde (0.1-0.4%) and at the presence of glycerol (10%). Based on the above results and previous reports, the dielectric changes at 49.5°C were related to dipole relaxation and segmental mobility of spectrin cytoskeleton. The results open the possibility for selective dielectric thermolysis of cell cytoskeleton.

  17. Single cell electric impedance topography: mapping membrane capacitance.

    PubMed

    Dharia, Sameera; Ayliffe, Harold E; Rabbitt, Richard D

    2009-12-07

    Single-cell electric impedance topography (sceTopo), a technique introduced here, maps the spatial distribution of capacitance (i.e. displacement current) associated with the membranes of isolated, living cells. Cells were positioned in the center of a circular recording chamber surrounded by eight electrodes. Electrodes were evenly distributed on the periphery of the recording chamber. Electric impedance measured between adjacent electrode pairs (10 kHz-5 MHz) was used to construct topographical maps of the spatial distribution of membrane capacitance. Xenopus Oocytes were used as a model cell to develop sceTopo because these cells consist of two visually distinguishable hemispheres, each with distinct membrane composition and structure. Results showed significant differences in the imaginary component of the impedance between the two oocyte hemispheres. In addition, the same circumferential array was used to map the size of the extracellular electrical shunt path around the cell, providing a means to estimate the location and shape of the cell in the recording chamber.

  18. Single cell electric impedance topography: Mapping membrane capacitance

    PubMed Central

    Dharia, Sameera; Ayliffe, Harold E.

    2010-01-01

    Single-cell electric impedance topography (sceTopo), a technique introduced here, maps the spatial distribution of capacitance (i.e. displacement current) associated with the membranes of isolated, living cells. Cells were positioned in the center of a circular recording chamber surrounded by eight electrodes. Electrodes were evenly distributed on the periphery of the recording chamber. Electric impedance measured between adjacent electrode pairs (10 kHz–5 MHz) was used to construct topographical maps of the spatial distribution of membrane capacitance. Xenopus Oocytes were used as a model cell to develop sceTopo because these cells consist of two visually distinguishable hemispheres, each with distinct membrane composition and structure. Results showed significant differences in the imaginary component of the impedance between the two oocyte hemispheres. In addition, the same circumferential array was used to map the size of the extracellular electrical shunt path around the cell, providing a means to estimate the location and shape of the cell in the recording chamber. PMID:19904403

  19. Binding of white spot syndrome virus to Artemia sp. cell membranes.

    PubMed

    Feng, Shuying; Li, Guangda; Feng, Wenpo; Huang, Jie

    2013-10-01

    Using differential velocity centrifugation, cell membranes of Artemia sp. were prepared, and their binding to white spot syndrome virus (WSSV) was analyzed in vitro. The results indicated that WSSV can specifically bind to Artemia cell membranes, and that WSSV receptor very likely existed in this membrane, which suggested that Artemia sp. may be a reservoir of WSSV. This study investigated the specific WSSV binding site by performing competitive inhibition experiments using shrimp gill cell membranes to bind WSSV to Artemia cell membranes. The results showed that shrimp gill cell membranes had a distinct inhibition effect on the specific binding of Artemia cell membranes to WSSV. Thus, potentially similar WSSV receptors or binding sites existed on Artemia sp. cell membranes and shrimp gill cell membranes. Taken together, these findings may provide experimental basis for the development of an effective approach to controlling WSSV, and theoretical basis for the study of WSSV receptors.

  20. Facile and green assembly of nanocomposite membranes for fuel cells.

    PubMed

    Quartarone, Eliana; Villa, Davide Carlo; Angioni, Simone; Mustarelli, Piercarlo

    2015-02-04

    We report on a facile spray deposition method, which allows obtaining nanocomposite membranes for high-temperature polymer fuel cells characterized by high homogeneity and excellent proton conductivity. The proposed method is also green, as it requires much smaller amounts of solvents with respect to standard casting.

  1. Sulfonated Nanoplates in Proton Conducting Membranes for Fuel Cells

    SciTech Connect

    Chen, W.F.; Ni’mah, H.; Yu-Cheng Shen, Y.-C.; Kuo, P.-L.

    2011-09-29

    Surface-functionalized nanoplates are synthesized by anchoring sulfonic acid containing siloxanes on zirconium phosphate, and in turn blended with Nafion to fabricate proton conducting membranes. The effects of these sulfonated nanoplates on proton conduction, hydro-characteristics and fuel cell performance are reported.

  2. Hereditary red cell membrane disorders and laboratory diagnostic testing.

    PubMed

    King, M-J; Zanella, A

    2013-06-01

    This overview describes two groups of nonimmune hereditary hemolytic anemias caused by defects in membrane proteins located in distinct layers of the red cell membrane. Hereditary spherocytosis (HS), hereditary elliptocytosis (HE), and hereditary pyropoikilocytosis (HPP) represent disorders of the red cell cytoskeleton. Hereditary stomatocytoses represents disorders of cation permeability in the red cell membrane. The current laboratory screening tests for HS are the osmotic fragility test, acid glycerol lysis time test (AGLT), cryohemolysis test, and eosin-5'-maleimide (EMA)-binding test. For atypical HS, SDS-polyacrylamide gel electrophoresis of erythrocyte membrane proteins is carried out to confirm the diagnosis. The diagnosis of HE/HPP is based on abnormal red cell morphology and the detection of protein 4.1R deficiency or spectrin variants using gel electrophoresis. None of screening tests can detect all HS cases. Some testing centers (a survey of 25 laboratories) use a combination of tests (e.g., AGLT and EMA). No specific screening test for hereditary stomatocytoses is available. The preliminary diagnosis is based on presenting a compensated hemolytic anemia, macrocytosis, and a temperature or time dependent pseudohyperkalemia in some patients. Both the EMA-binding test and the osmotic fragility test may help in differential diagnosis of HS and hereditary stomatocytosis.

  3. Monocyte cell membrane-derived nanoghosts for targeted cancer therapy

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, S.; Gnanasammandhan, M. K.; Xie, C.; Huang, K.; Cui, M. Y.; Chan, J. M.

    2016-03-01

    Core-shell type `nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size <200 nm, and showed good serum stability for 120 h. Doxorubicin-loaded nanoghosts showed greater cellular uptake and cytotoxicity compared to non-coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines.Core-shell type `nanoghosts' were synthesized with a drug-loaded biodegradable PLGA core and a monocyte cell membrane-derived shell. The nanoghosts were monodisperse with an average size <200 nm, and showed good serum stability for 120 h. Doxorubicin-loaded nanoghosts showed greater cellular uptake and cytotoxicity compared to non-coated nanoparticle controls in metastatic MCF-7 breast cancer cell lines. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07588b

  4. Mitochondria and cell death: outer membrane permeabilization and beyond.

    PubMed

    Tait, Stephen W G; Green, Douglas R

    2010-09-01

    Mitochondrial outer membrane permeabilization (MOMP) is often required for activation of the caspase proteases that cause apoptotic cell death. Various intermembrane space (IMS) proteins, such as cytochrome c, promote caspase activation following their mitochondrial release. As a consequence, mitochondrial outer membrane integrity is highly controlled, primarily through interactions between pro- and anti-apoptotic members of the B cell lymphoma 2 (BCL-2) protein family. Following MOMP by pro-apoptotic BCL-2-associated X protein (BAX) or BCL-2 antagonist or killer (BAK), additional regulatory mechanisms govern the mitochondrial release of IMS proteins and caspase activity. MOMP typically leads to cell death irrespective of caspase activity by causing a progressive decline in mitochondrial function, although cells can survive this under certain circumstances, which may have pathophysiological consequences.

  5. How to Evaluate the Electric Noise in a Cell Membrane?

    NASA Astrophysics Data System (ADS)

    Bier, M.

    2006-05-01

    There has been considerable public anxiety about possible health effects of electromagnetic radiation emitted by high voltage power lines. Power frequencies (60 Hz in the US, 50 Hz in many other countries) are sufficiently slow for the associated electric fields to distribute themselves across the highly resistive cell membranes. To assess the ambient power frequency fields, researchers have compared the voltage that these fields induce across cell membranes to the strength of the electric noise that the membranes generate themselves through Brownian motion. However, there has been disagreement among researchers on how to evaluate this equilibrium membrane electric noise. I will review the different approaches and present an {ITALIC ab initio} modeling of membrane electric fields. I will show that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Next, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned and a more meaningful criterion is proposed. Finally, an estimate will be derived of the nonequilibrium noise intensity due to the driven ion traffic through randomly opening and closing ion channels.

  6. A prototype biosensor: artificial cell membrane on porous silicon

    NASA Astrophysics Data System (ADS)

    Retamal, Maria Jose; Cisternas, Marcelo; Busch, Mark; Gutierrez, Sebastian; Huber, Patrick; Perez-Acle, Tomas; Kappl, Michael; Volkmann, Ulrich

    2014-03-01

    Biosensors have been studied in recent years because they are powerful instruments to detect physical or chemical parameters as, e.g., intracellular interactions. What we propose is a prototype biosensor based on an artificial cell membrane (DPPC) on porous silicon. Porous silicon is used as a sponge-like substrate to absorb water by capillarity and keep the membrane hydrated, which is essential for the membrane not to denature when performing temperature cycles. Thus, one can observe the phase changes of the cell membrane with temperature using optical and surface scanning methods. In this research we used the technique of Very High Resolution Ellipsometry (VHRE) to observe changes in the ellipsometric angles during temperature ramps, which are attributed to different lipid phase transitions. Imaging ellipsometry (IE) was used to observe surface changes at the microscopic level and Atomic Force Microscopy (AFM) to observe changes in the topography of the membrane at the nanoscale. This work was supported by Fondecyt 1100882, DAAD-Conicyt PCCI 044, Conicyt Scholarship and Project Anillo ACT 1107.

  7. Renitrosylation of banked human red blood cells improves deformability and reduces adhesivity

    PubMed Central

    Riccio, Daniel A.; Zhu, Hongmei; Foster, Matthew W.; Huang, Brendan; Hofmann, Christina L.; Palmer, Gregory M.; McMahon, Tim J.

    2015-01-01

    Background Transfusion of red blood cells (RBCs) is a frequent healthcare practice. However, unfavorable consequences may occur from transfusions of stored RBCs and are associated with RBC changes during storage. Loss of S-nitrosohemoglobin (SNO-Hb) and other S-nitrosothiols (SNOs) during storage is implicated as a detriment to transfusion efficacy. It was hypothesized that restoring SNOs within banked RBCs would improve RBC functions relevant to successful transfusion outcomes, namely increased deformability and decreased adhesivity. Study Design and Methods Stored human RBCs were incubated with nitric oxide (NO) donors PROLI/NO and DEA/NO (disodium 1-[2-(carboxylato)-pyrrolidin-1-yl]diazen-1-ium-1,2-diolate and diethylammonium (Z)-1-(N,N-diethylamino)diazen-1-ium-1,2-diolate) under different experimental conditions (e.g., aerobic/anaerobic incubation, NO donor to RBC ratio). SNO restoration was evaluated in vitro and in vivo as a means to improve RBC function after storage. Results Incubation of RBCs with the NO donors resulted in tenfold greater levels of SNO-Hb versus untreated control or sham RBCs, with significantly higher Hb-bound NO yields from an NO dose delivered by DEA/NO. RBC incubation with DEA/NO at a stoichiometry of 1:62.5 NO:Hb significantly increased RBC deformabilty and reduced adhesion to cultured endothelial cells. RBC incubation with DEA/NO also increased S-nitrosylation of RBC cytoskeletal and membrane proteins, including the beta spectrin chain. Renitrosylation attenuated both RBC sequestration in the lung and the mild blood oxygen saturation impairments seen with banked RBCs in a mouse model of transfusion. Conclusions RBC renitrosylation using NO donors has promise for correcting deficient properties (e.g., adhesivity, rigidity, and SNO loss) of banked RBCs and in turn improving transfusion outcomes. PMID:26098062

  8. Effect of BCD Plasma on a Bacteria Cell Membrane

    NASA Astrophysics Data System (ADS)

    Nasrin, Navabsafa; Hamid, Ghomi; Maryam, Nikkhah; Soheila, Mohades; Hossein, Dabiri; Saeed, Ghasemi

    2013-07-01

    Abstract Cell membrane rupture is considered to be one of the probable mechanisms for bacterial inactivation using barrier corona discharge (BCD) plasma. In this paper, the effect of the BCD plasma on the Escherichia coli (E. coli) bacteria cell wall was investigated through two analytical methods; Adenosine-5'-triphosphate (ATP) assay and Atomic Force Microscopy (AFM). The ATP assay results indicate an increase in the ATP content of samples which were exposed to the BCD plasma. This implies the bacteria cell rupture. Moreover, AFM images confirm a serious damage of the bacteria cell wall under the influence of the bactericidal agents of the plasma.

  9. Alternative Sources of Adult Stem Cells: Human Amniotic Membrane

    NASA Astrophysics Data System (ADS)

    Wolbank, Susanne; van Griensven, Martijn; Grillari-Voglauer, Regina; Peterbauer-Scherb, Anja

    Human amniotic membrane is a highly promising cell source for tissue engineering. The cells thereof, human amniotic epithelial cells (hAEC) and human amniotic mesenchymal stromal cells (hAMSC), may be immunoprivileged, they represent an early developmental status, and their application is ethically uncontroversial. Cell banking strategies may use freshly isolated cells or involve in vitro expansion to increase cell numbers. Therefore, we have thoroughly characterized the effect of in vitro cultivation on both phenotype and differentiation potential of hAEC. Moreover, we present different strategies to improve expansion including replacement of animal-derived supplements by human platelet products or the introduction of the catalytic subunit of human telomerase to extend the in vitro lifespan of amniotic cells. Characterization of the resulting cultures includes phenotype, growth characteristics, and differentiation potential, as well as immunogenic and immunomodulatory properties.

  10. Chemical Imaging of the Cell Membrane by NanoSIMS

    SciTech Connect

    Weber, P K; Kraft, M L; Frisz, J F; Carpenter, K J; Hutcheon, I D

    2010-02-23

    The existence of lipid microdomains and their role in cell membrane organization are currently topics of great interest and controversy. The cell membrane is composed of a lipid bilayer with embedded proteins that can flow along the two-dimensional surface defined by the membrane. Microdomains, known as lipid rafts, are believed to play a central role in organizing this fluid system, enabling the cell membrane to carry out essential cellular processes, including protein recruitment and signal transduction. Lipid rafts are also implicated in cell invasion by pathogens, as in the case of the HIV. Therefore, understanding the role of lipid rafts in cell membrane organization not only has broad scientific implications, but also has practical implications for medical therapies. One of the major limitations on lipid organization research has been the inability to directly analyze lipid composition without introducing artifacts and at the relevant length-scales of tens to hundreds of nanometers. Fluorescence microscopy is widely used due to its sensitivity and specificity to the labeled species, but only the labeled components can be observed, fluorophores can alter the behavior of the lipids they label, and the length scales relevant to imaging cell membrane domains are between that probed by fluorescence resonance energy transfer (FRET) imaging (<10 nm) and the diffraction limit of light. Topographical features can be imaged on this length scale by atomic force microscopy (AFM), but the chemical composition of the observed structures cannot be determined. Immuno-labeling can be used to study the distribution of membrane proteins at high resolution, but not lipid composition. We are using imaging mass spectrometry by secondary ion mass spectrometry (SIMS) in concert with other high resolution imaging methods to overcome these limitations. The experimental approach of this project is to combine molecule-specific stable isotope labeling with high-resolution SIMS using a

  11. Durability aspects of polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Sethuraman, Vijay Anand

    In order for the successful adoption of proton exchange membrane (PEM) fuel cell technology, it is imperative that durability is understood, quantified and improved. A number of mechanisms are known to contribute to PEMFC membrane electrode assembly (MEA) performance degradation. In this dissertation, we show, via experiments, some of the various processes that degrade the proton exchange membrane in a PEM fuel cell; and catalyst poisoning due to hydrogen sulfide (H2S) and siloxane. The effect of humidity on the chemical stability of two types of membranes, [i.e., perfluorosulfonic acid type (PFSA, NafionRTM 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the MEAs to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of NafionRTM membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed NafionRTM 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, membrane degradation was more pronounced at lower humidities and (ii) at a given relative humidity operation, increasing the cell temperature accelerated membrane degradation. Mechanical stability of these two types of membranes was also studied using relative humidity (RH) cycling. Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane (PEM) fuel cell were estimated by studying the oxygen reduction reaction (ORR) on a rotating ring disc electrode (RRDE). Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration and the acidity levels in HClO4. The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. H 2O2 formation rates showed a linear dependence on oxygen concentration and square dependence on water

  12. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    PubMed

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  13. Red blood cell lifespan, erythropoiesis and hemoglobin control.

    PubMed

    Kruse, Anja; Uehlinger, Dominik E; Gotch, Frank; Kotanko, Peter; Levin, Nathan W

    2008-01-01

    Erythropoietin (EPO) and iron deficiency as causes of anemia in patients with limited renal function or end-stage renal disease are well addressed. The concomitant impairment of red blood cell (RBC) survival has been largely neglected. Properties of the uremic environment like inflammation, increased oxidative stress and uremic toxins seem to be responsible for the premature changes in RBC membrane and cytoskeleton. The exposure of antigenic sites and breakdown of the phosphatidylserine asymmetry promote RBC phagocytosis. While the individual response to treatment with EPO-stimulating agents (ESA) depends on both the RBC's lifespan and the production rate, uniform dosing algorithms do not meet that demand. The clinical use of mathematical models predicting ESA-induced changes in hematocrit might be greatly improved once independent estimates of RBC production rate and/or lifespan become available, thus making the concomitant estimation of both parameters unnecessary. Since heme breakdown by the hemoxygenase pathway results in carbon monoxide (CO) which is exhaled, a simple CO breath test has been used to calculate hemoglobin turnover and therefore RBC survival and lifespan. Future research will have to be done to validate and implement this method in patients with kidney failure. This will result in new insights into RBC kinetics in renal patients. Eventually, these findings are expected to improve our understanding of the hemoglobin variability in response to ESA.

  14. Block copolymers for alkaline fuel cell membrane materials

    NASA Astrophysics Data System (ADS)

    Li, Yifan

    Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC

  15. Reticulated lipid probe fluorescence reveals MDCK cell apical membrane topography.

    PubMed

    Colarusso, Pina; Spring, Kenneth R

    2002-02-01

    High spatial resolution confocal microscopy of young MDCK cells stained with the lipophilic probe 1,1'-dihexadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiIC(16)) revealed a reticulated fluorescence pattern on the apical membrane. DiIC(16) was delivered as crystals to live cells to minimize possible solvent perturbations of the membrane lipids. The ratio of the integrated fluorescence intensities in the bright versus dim regions was 1.6 +/- 0.1 (n = 13). Deconvolved images of the cells were consistent with exclusive plasma membrane staining. Multi-spectral and fluorescence anisotropy microscopy did not reveal differences between bright and dim regions. Bright regions coincided with microvilli and microridges observed by differential interference contrast microscopy and were stable for several minutes. Fluorescence recovery after photobleaching yielded similar diffusion coefficients (pooled D = 1.5 +/- 0.6 x 10(-9) cm(2)/s, n = 40) for both bright and dim regions. Line fluorescence recovery after photobleaching showed that the reticulated pattern was maintained as the fluorescence recovered in the bleached areas. Cytochalasin D did not affect the staining pattern, but the pattern was eliminated by cholesterol depletion with methyl-beta-cyclodextrin. We conclude that the reticulated fluorescence pattern was caused by increased optical path lengths through the microvilli and microridges compared with the flat areas on the apical membrane.

  16. Reticulated lipid probe fluorescence reveals MDCK cell apical membrane topography.

    PubMed Central

    Colarusso, Pina; Spring, Kenneth R

    2002-01-01

    High spatial resolution confocal microscopy of young MDCK cells stained with the lipophilic probe 1,1'-dihexadecyl-3,3,3',3'- tetramethylindocarbocyanine perchlorate (DiIC(16)) revealed a reticulated fluorescence pattern on the apical membrane. DiIC(16) was delivered as crystals to live cells to minimize possible solvent perturbations of the membrane lipids. The ratio of the integrated fluorescence intensities in the bright versus dim regions was 1.6 +/- 0.1 (n = 13). Deconvolved images of the cells were consistent with exclusive plasma membrane staining. Multi-spectral and fluorescence anisotropy microscopy did not reveal differences between bright and dim regions. Bright regions coincided with microvilli and microridges observed by differential interference contrast microscopy and were stable for several minutes. Fluorescence recovery after photobleaching yielded similar diffusion coefficients (pooled D = 1.5 +/- 0.6 x 10(-9) cm(2)/s, n = 40) for both bright and dim regions. Line fluorescence recovery after photobleaching showed that the reticulated pattern was maintained as the fluorescence recovered in the bleached areas. Cytochalasin D did not affect the staining pattern, but the pattern was eliminated by cholesterol depletion with methyl-beta-cyclodextrin. We conclude that the reticulated fluorescence pattern was caused by increased optical path lengths through the microvilli and microridges compared with the flat areas on the apical membrane. PMID:11806917

  17. Capacitance-Voltage Measurement of Transporting Function at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    In this paper, we report the detection of transporting function at cell membrane using capacitance-voltage (CV) measurement. The detection principle of our devices is based on the field-effect of electrostatic interaction between charged species at cell membrane in solution and surface electrons in silicon crystal through the gate insulator of Si3N4/SiO2 thin double-layer. We designed an oocyte-based field-effect capacitor, on which a Xenopus laevis oocyte was fixed. The transporter of human organic anion transporting peptide C (hOATP-C) was expressed at oocyte membrane by induction of cRNA. The electrical phenomena such as ion or molecular charge flux at the interface between cell membrane and gate surface could be detected as the change of flat band voltage in CV characteristics. The flat band voltage shift decreased with incubation time after introduction of substrate into the oocyte-based field-effect capacitor. The electrical signal is due to the change of charge flux from the oocyte at the gate surface inspired by transporter-substrate binding. The platform based on the oocyte-based field-effect capacitor is suitable for a simple and non-invasive detection system in order to analyze function of transporters related to drug efficacy.

  18. Erythrocyte membrane model with explicit description of the lipid bilayer and the spectrin network.

    PubMed

    Li, He; Lykotrafitis, George

    2014-08-05

    The membrane of the red blood cell (RBC) consists of spectrin tetramers connected at actin junctional complexes, forming a two-dimensional (2D) sixfold triangular network anchored to the lipid bilayer. Better understanding of the erythrocyte mechanics in hereditary blood disorders such as spherocytosis, elliptocytosis, and especially, sickle cell disease requires the development of a detailed membrane model. In this study, we introduce a mesoscale implicit-solvent coarse-grained molecular dynamics (CGMD) model of the erythrocyte membrane that explicitly describes the phospholipid bilayer and the cytoskeleton, by extending a previously developed two-component RBC membrane model. We show that the proposed model represents RBC membrane with the appropriate bending stiffness and shear modulus. The timescale and self-consistency of the model are established by comparing our results with experimentally measured viscosity and thermal fluctuations of the RBC membrane. Furthermore, we measure the pressure exerted by the cytoskeleton on the lipid bilayer. We find that defects at the anchoring points of the cytoskeleton to the lipid bilayer (as in spherocytes) cause a reduction in the pressure compared with an intact membrane, whereas defects in the dimer-dimer association of a spectrin filament (as in elliptocytes) cause an even larger decrease in the pressure. We conjecture that this finding may explain why the experimentally measured diffusion coefficients of band-3 proteins are higher in elliptocytes than in spherocytes, and higher than in normal RBCs. Finally, we study the effects that possible attractive forces between the spectrin filaments and the lipid bilayer have on the pressure applied on the lipid bilayer by the filaments. We discover that the attractive forces cause an increase in the pressure as they diminish the effect of membrane protein defects. As this finding contradicts with experimental results, we conclude that the attractive forces are moderate and do

  19. A Novel Unitized Regenerative Proton Exchange Membrane Fuel Cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1996-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel single cell unitized regenerative fuel cell and results obtained on testing it are presented.

  20. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions. PMID:28042492

  1. Mass Spectrometry of Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Johánek, Viktor; Ostroverkh, Anna; Fiala, Roman; Rednyk, Andrii; Matolín, Vladimír

    2016-01-01

    The chemical analysis of processes inside fuel cells under operating conditions in either direct or inverted (electrolysis) mode and their correlation with potentiostatic measurements is a crucial part of understanding fuel cell electrochemistry. We present a relatively simple yet powerful experimental setup for online monitoring of the fuel cell exhaust (of either cathode or anode side) downstream by mass spectrometry. The influence of a variety of parameters (composition of the catalyst, fuel type or its concentration, cell temperature, level of humidification, mass flow rate, power load, cell potential, etc.) on the fuel cell operation can be easily investigated separately or in a combined fashion. We demonstrate the application of this technique on a few examples of low-temperature (70°C herein) polymer electrolyte membrane fuel cells (both alcohol- and hydrogen-fed) subjected to a wide range of conditions.

  2. Morphological features (defects) in fuel cell membrane electrode assemblies

    NASA Astrophysics Data System (ADS)

    Kundu, S.; Fowler, M. W.; Simon, L. C.; Grot, S.

    Reliability and durability issues in fuel cells are becoming more important as the technology and the industry matures. Although research in this area has increased, systematic failure analysis, such as a failure modes and effects analysis (FMEA), are very limited in the literature. This paper presents a categorization scheme of causes, modes, and effects related to fuel cell degradation and failure, with particular focus on the role of component quality, that can be used in FMEAs for polymer electrolyte membrane (PEM) fuel cells. The work also identifies component defects imparted on catalyst-coated membranes (CCM) by manufacturing and proposes mechanisms by which they can influence overall degradation and reliability. Six major defects have been identified on fresh CCM materials, i.e., cracks, orientation, delamination, electrolyte clusters, platinum clusters, and thickness variations.

  3. Gold Nanoparticles-Enhanced Proton Exchange Membrane (PEM) Fuel Cell

    NASA Astrophysics Data System (ADS)

    Li, Hongfei; Pan, Cheng; Liu, Ping; Zhu, Yimei; Adzic, Radoslav; Rafailovich, Miriam

    Proton exchange membrane fuel cells have drawn great attention and been taken as a promising alternated energy source. One of the reasons hamper the wider application of PEM fuel cell is the catalytic poison effect from the impurity of the gas flow. Haruta has predicted that gold nanoparticles that are platelet shaped and have direct contact with the metal oxide substrate to be the perfect catalysts of the CO oxidization, yet the synthesis method is difficult to apply in the Fuel Cell. In our approach, thiol-functionalized gold nanoparticles were synthesized through two-phase method developed by Brust et al. We deposit these Au particles with stepped surface directly onto the Nafion membrane in the PEM fuel cell by Langmuir-Blodgett method, resulting in over 50% enhancement of the efficiency of the fuel cell. DFT calculations were conducted to understand the theory of this kind of enhancement. The results indicated that only when the particles were in direct surface contact with the membrane, where AuNPs attached at the end of the Nafion side chains, it could reduce the energy barrier for the CO oxidation that could happen at T<300K.

  4. Structural and mechanical heterogeneity of the erythrocyte membrane reveals hallmarks of membrane stability.

    PubMed

    Picas, Laura; Rico, Félix; Deforet, Maxime; Scheuring, Simon

    2013-02-26

    The erythrocyte membrane, a metabolically regulated active structure that comprises lipid molecules, junctional complexes, and the spectrin network, enables the cell to undergo large passive deformations when passing through the microvascular system. Here we use atomic force microscopy (AFM) imaging and quantitative mechanical mapping at nanometer resolution to correlate structure and mechanics of key components of the erythrocyte membrane, crucial for cell integrity and function. Our data reveal structural and mechanical heterogeneity modulated by the metabolic state at unprecedented nanometer resolution. ATP-depletion, reducing skeletal junction phosphorylation in RBC cells, leads to membrane stiffening. Analysis of ghosts and shear-force opened erythrocytes show that, in the absence of cytosolic kinases, spectrin phosphorylation results in membrane stiffening at the extracellular face and a reduced junction remodeling in response to loading forces. Topography and mechanical mapping of single components at the cytoplasmic face reveal that, surprisingly, spectrin phosphorylation by ATP softens individual filaments. Our findings suggest that, besides the mechanical signature of each component, the RBC membrane mechanics is regulated by the metabolic state and the assembly of its structural elements.

  5. Importance of Heparin Provocation and SPECT/CT in Detecting Obscure Gastrointestinal Bleeding on 99mTc-RBC Scintigraphy

    PubMed Central

    Haghighatafshar, Mahdi; Gheisari, Farshid; Ghaedian, Tahereh

    2015-01-01

    Abstract We presented a pediatric case with a history of intermittent melena for 3 years because of angiodyplasia of small intestine. The results of frequent upper gastrointestinal endoscopies and colonoscopies as well as both 99mTc-red blood cell (RBC) and Meckel's scintigraphies for several times were negative in detection of bleeding site. However, 99mTc-RBC scintigraphy with single-photon emission computed tomography (SPECT)/computed tomography (CT) after heparin augmentation detected a site of bleeding in the distal ileum which later was confirmed during surgery with final diagnosis of angiodysplasia. It could be stated that heparin provocation of bleeding before 99mTc-RBC scintigraphy accompanied by fused SPECT/CT images should be kept in mind for management of intestinal bleeding especially in difficult cases. PMID:26313771

  6. Experimental evaluation of mechanical and electrical properties of RBC suspensions in Dextran and PEG under flow II. Role of RBC deformability and morphology.

    PubMed

    Antonova, N; Riha, P; Ivanov, I; Gluhcheva, Y

    2011-01-01

    Mechanical and electrical properties of the normal RBCs suspensions and of hardened after treatment with glutaraldehyde (0.01-2.5%) RBCs in isotonic physiological solution and Dextran 70,000 (Dextran 70) and Polyethylene glycol 35,000 (PEG) and adjusted to hematocrit of 40%, were evaluated. Apparent viscosity and conductivity were measured under steady and transient flow regimes at low shear rates and at different local structure of the flow at 37 °C. A time course of conductivity was recorded in parallel with the rheological properties of the RBC suspensions and conductivity and apparent viscosity dependences on shear rates were studied and compared at different concentrations of Dextran 70, PEG and glutaraldehyde. Low shear viscosity decreased after RBCs treatment with glutaraldehyde and at 0.5-2.5% it is constant. Echinocytes are observed at low Dextran 70 and PEG concentrations while spherocytes are found mainly in smears treated with higher concentrations. The results show that the apparent viscosity and conductivity of RBCs suspensions in Dextran 70 and PEG are strongly influenced by flow, shear rates, concentration, cell deformability and morphology and the method is sensitive to study the mechanical and electrical properties of RBC suspension and to provide experimental description of RBCs and other cell-to-cell interactions.

  7. Deoxygenation affects tyrosine phosphoproteome of red cell membrane from patients with sickle cell disease.

    PubMed

    Siciliano, Angela; Turrini, Franco; Bertoldi, Mariarita; Matte, Alessandro; Pantaleo, Antonella; Olivieri, Oliviero; De Franceschi, Lucia

    2010-04-15

    Sickle cell disease (SCD) is a worldwide distributed hereditary red cell disorder related to the production of a defective form of hemoglobin, hemoglobin S (HbS). One of the hallmarks of SCD is the presence of dense, dehydrate highly adhesive sickle red blood cells (RBCs) that result from persistent membrane damage associated with HbS polymerization, abnormal activation of membrane cation transports and generation of distorted and rigid red cells with membrane perturbation and cytoskeleton dysfunction. Although modulation of phosphorylation state of the proteins from membrane and cytoskeleton networks has been proposed to participate in red cell homeostasis, much still remains to be investigated in normal and diseased red cells. Here, we report that tyrosine (Tyr-) phosphoproteome of sickle red cells was different from normal controls and was affected by deoxygenation. We found proteins, p55 and band 4.1, from the junctional complex, differently Tyr-phosphorylated in SCD RBCs compared to normal RBCs under normoxia and modulated by deoxygenation, while band 4.2 was similarly Tyr-phosphorylated in both conditions. In SCD RBCs we identified the phosphopeptides for protein 4.1R located in the protein FERM domain (Tyr-13) and for alpha-spectrin located near or in a linker region (Tyr-422 and Tyr-1498) involving protein areas crucial for their functions in the context of red cell membrane properties, suggesting that Tyr-phosphorylation may be part of the events involved in maintaining membrane mechanical stability in SCD red cells.

  8. Creating Transient Cell Membrane Pores Using a Standard Inkjet Printer

    PubMed Central

    Owczarczak, Alexander B.; Shuford, Stephen O.; Wood, Scott T.; Deitch, Sandra; Dean, Delphine

    2012-01-01

    Bioprinting has a wide range of applications and significance, including tissue engineering, direct cell application therapies, and biosensor microfabrication.1-10 Recently, thermal inkjet printing has also been used for gene transfection.8,9 The thermal inkjet printing process was shown to temporarily disrupt the cell membranes without affecting cell viability. The transient pores in the membrane can be used to introduce molecules, which would otherwise be too large to pass through the membrane, into the cell cytoplasm.8,9,11 The application being demonstrated here is the use of thermal inkjet printing for the incorporation of fluorescently labeled g-actin monomers into cells. The advantage of using thermal ink-jet printing to inject molecules into cells is that the technique is relatively benign to cells.8, 12 Cell viability after printing has been shown to be similar to standard cell plating methods1,8. In addition, inkjet printing can process thousands of cells in minutes, which is much faster than manual microinjection. The pores created by printing have been shown to close within about two hours. However, there is a limit to the size of the pore created (~10 nm) with this printing technique, which limits the technique to injecting cells with small proteins and/or particles. 8,9,11 A standard HP DeskJet 500 printer was modified to allow for cell printing.3, 5, 8 The cover of the printer was removed and the paper feed mechanism was bypassed using a mechanical lever. A stage was created to allow for placement of microscope slides and coverslips directly under the print head. Ink cartridges were opened, the ink was removed and they were cleaned prior to use with cells. The printing pattern was created using standard drawing software, which then controlled the printer through a simple print command. 3T3 fibroblasts were grown to confluence, trypsinized, and then resuspended into phosphate buffered saline with soluble fluorescently labeled g-actin monomers. The

  9. The significant blood resistance to lung nitric oxide transfer lies within the red cell.

    PubMed

    Borland, Colin; Bottrill, Fiona; Jones, Aled; Sparkes, Chris; Vuylsteke, Alain

    2014-01-01

    The lung nitric oxide (NO) diffusing capacity (DlNO) mainly reflects alveolar-capillary membrane conductance (Dm). However, blood resistance has been shown in vitro and in vivo. To explore whether this resistance lies in the plasma, the red blood cell (RBC) membrane, or in the RBC interior, we measured the NO diffusing capacity (Dno) in a membrane oxygenator circuit containing ∼1 liter of horse or human blood exposed to 14 parts per million NO under physiological conditions on 7 separate days. We compared results across a 1,000-fold change in extracellular diffusivity using dextrans, plasma, and physiological salt solution. We halved RBC surface area by comparing horse and human RBCs. We altered the diffusive resistance of the RBC interior by adding sodium nitrite converting oxyhemoglobin to methemoglobin. Neither increased viscosity nor reduced RBC size reduced Dno. Adding sodium nitrite increased methemoglobin and was associated with a steady fall in Dno (P < 0.001). Similar results were obtained at NO concentrations found in vivo. The RBC interior appears to be the site of the blood resistance.

  10. A novel unitized regenerative proton exchange membrane fuel cell

    NASA Technical Reports Server (NTRS)

    Murphy, O. J.; Cisar, A. J.; Gonzalez-Martin, A.; Salinas, C. E.; Simpson, S. F.

    1995-01-01

    A difficulty encountered in designing a unitized regenerative proton exchange membrane (PEM) fuel cell lies in the incompatibility of electrode structures and electrocatalyst materials optimized for either of the two functions (fuel cell or electrolyzer) with the needs of the other function. This difficulty is compounded in previous regenerative fuel cell designs by the fact that water, which is needed for proton conduction in the PEM during both modes of operation, is the reactant supplied to the anode in the electrolyzer mode of operation and the product formed at the cathode in the fuel cell mode. Drawbacks associated with existing regenerative fuel cells have been addressed in work performed at Lynntech. In a first innovation, electrodes function either as oxidation electrodes (hydrogen ionization or oxygen evolution) or as reduction electrodes (oxygen reduction or hydrogen evolution) in the fuel cell and electrolyzer modes, respectively. Control of liquid water within the regenerative fuel cell has been brought about by a second innovation. A novel PEM has been developed with internal channels that permit the direct access of water along the length of the membrane. Lateral diffusion of water along the polymer chains of the PEM provides the water needed at electrode/PEM interfaces. Fabrication of the novel unitized regenerative fuel cell and results obtained on testing it will be presented.

  11. Sodium channels in membrane vesicles from cultured toad bladder cells

    SciTech Connect

    Asher, C.; Moran, A.; Rossier, B.C.; Garty, H. Ben Gurion Univ., Beer-Sheva Institut de Pharmacologie de l'Universite de Lausanne )

    1988-04-01

    Electrical potential-driven {sup 22}Na{sup +} fluxes were measured in membrane vesicles prepared from TBM-18(cl23) cells (a clone of the established cell line TB-M). Fifty to seventy percent of the tracer uptake in vesicles derived from cells that were cultivated on a porous support were blocked by the diuretic amiloride. The amiloride inhibition constant was <0.1 {mu}M, indicating that this flux is mediated by the apical Na{sup +}-specific channels. Vesicles prepared from cells that were not grown on a porous support exhibited much smaller amiloride-sensitive fluxes. Two Ca{sup 2+}-dependent processes that down-regulated the channel conductance and were previously identified in native epithelia were found in the cultured cells as well. Vesicles isolated from cells that were preincubated with 5 {times} 10{sup {minus}7} M aldosterone for 16-20 h exhibited higher amiloride-sensitive conductance than vesicles derived from control, steroid-depleted cells. Thus membrane derived from TBM-18(cl23) cells can be used to characterize the epithelial Na{sup +} channel and its hormonal regulation.

  12. Membrane tether formation from outer hair cells with optical tweezers.

    PubMed Central

    Li, Zhiwei; Anvari, Bahman; Takashima, Masayoshi; Brecht, Peter; Torres, Jorge H; Brownell, William E

    2002-01-01

    Optical tweezers were used to characterize the mechanical properties of the outer hair cell (OHC) plasma membrane by pulling tethers with 4.5-microm polystyrene beads. Tether formation force and tether force were measured in static and dynamic conditions. A greater force was required for tether formations from OHC lateral wall (499 +/- 152 pN) than from OHC basal end (142 +/- 49 pN). The difference in the force required to pull tethers is consistent with an extensive cytoskeletal framework associated with the lateral wall known as the cortical lattice. The apparent plasma membrane stiffness, estimated under the static conditions by measuring tether force at different tether length, was 3.71 pN/microm for OHC lateral wall and 4.57 pN/microm for OHC basal end. The effective membrane viscosity was measured by pulling tethers at different rates while continuously recording the tether force, and estimated in the range of 2.39 to 5.25 pN x s/microm. The viscous force most likely results from the viscous interactions between plasma membrane lipids and the OHC cortical lattice and/or integral membrane proteins. The information these studies provide on the mechanical properties of the OHC lateral wall is important for understanding the mechanism of OHC electromotility. PMID:11867454

  13. Modified SPEEK membranes for direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Maab, Husnul; Nunes, Suzana Pereira

    Membranes with low ethanol crossover were prepared aiming their application for direct ethanol fuel cell (DEFC). They were based on (1) sulfonated poly(ether ether ketone) (SPEEK) coated with carbon molecular sieves (CMS) and (2) on SPEEK/PI homogeneous blends. The membranes were characterized concerning their water and ethanol solution uptake, water and ethanol permeability in pervaporation experiments and their performance in DEFC tests. The ethanol permeabilities for the CMS-coated (180 nm and 400 nm thick layers) SPEEK were 8.5 and 3.1 × 10 -10 kg m s -1 m -2 and for the homogeneous SPEEK/PI blends membranes with 10, 20 and 30 wt.% of PI were 4.4, 1.0 and 0.4 × 10 -10 kg m s -1 m -2 respectively, which is 2- to 50-fold lower than that for plain SPEEK (19 × 10 -10 kg m s -1 m -2). Particularly the SPEEK/PI membranes had substantially better performance than Nafion 117 ® membranes in DEFC tests at 60 °C and 90 °C.

  14. Numerical simulation of transient dynamic behavior of healthy and hardened red blood cells in microcapillary flow.

    PubMed

    Hashemi, Z; Rahnama, M

    2016-11-01

    In a number of human diseases such as diabetes mellitus and sickle cell anemia, variations in mechanical properties of red blood cells (RBCs) occur and cause reduced deformability. Investigating the behavior of such abnormal, hardened RBCs in microcapillary flow is of prime importance because of their effects on oxygen transport process. In the present paper, dynamic response of a RBC to a microcapillary flow is numerically studied at steady and transient conditions, considering the effect of essential parameters including RBC deformability, its initial orientation, velocity, and flow pressure gradient. Simulations are performed using a three-dimensional hybrid method, combining lattice Boltzmann method for plasma flow, finite element method for RBC membrane analysis, and immersed boundary method for their interaction. Quantitative and qualitative validations with the experimental data for different RBC velocities verify the accuracy of applied numerical method. Apart from the initial orientation, RBC experiences a complex shape deformation in which the biconcave discoid shape changes to a parachute-like shape. While deformation index of RBC does not change considerably with RBC deformability at steady state condition, it plays an important role in its shape evolution under transient condition. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Membrane phenotypic studies in B cell lymphoproliferative disorders.

    PubMed Central

    Scott, C S; Limbert, H J; MacKarill, I D; Roberts, B E

    1985-01-01

    A total of 398 cases of B cell lymphoproliferative disease were phenotypically characterised by membrane mouse red blood cell (MRBC) receptor, surface immunoglobulin, common acute lymphoblastic leukaemia (CALLA), and FMC7 and T1 monoclonal antibody studies. Relations between chronic lymphocytic leukaemia (CLL), prolymphocytic leukaemia (PLL), and "prolymphocytoid" CLL variants were examined with particular reference to the expression of FMC7. In addition, the reactivity of TU1 monoclonal antibody with B cell disorders was established. The results suggest that despite some heterogeneity most cases may be characterised by their phenotypic patterns and that these investigations provide a reproducible basis for classification. PMID:2413082

  16. Rigid proteins and softening of biological membranes-with application to HIV-induced cell membrane softening.

    PubMed

    Agrawal, Himani; Zelisko, Matthew; Liu, Liping; Sharma, Pradeep

    2016-05-06

    A key step in the HIV-infection process is the fusion of the virion membrane with the target cell membrane and the concomitant transfer of the viral RNA. Experimental evidence suggests that the fusion is preceded by considerable elastic softening of the cell membranes due to the insertion of fusion peptide in the membrane. What are the mechanisms underpinning the elastic softening of the membrane upon peptide insertion? A broader question may be posed: insertion of rigid proteins in soft membranes ought to stiffen the membranes not soften them. However, experimental observations perplexingly appear to show that rigid proteins may either soften or harden membranes even though conventional wisdom only suggests stiffening. In this work, we argue that regarding proteins as merely non-specific rigid inclusions is flawed, and each protein has a unique mechanical signature dictated by its specific interfacial coupling to the surrounding membrane. Predicated on this hypothesis, we have carried out atomistic simulations to investigate peptide-membrane interactions. Together with a continuum model, we reconcile contrasting experimental data in the literature including the case of HIV-fusion peptide induced softening. We conclude that the structural rearrangements of the lipids around the inclusions cause the softening or stiffening of the biological membranes.

  17. Effect of isosmotic removal of extracellular Na+ on cell volume and membrane potential in muscle cells.

    PubMed

    Peña-Rasgado, C; Summers, J C; McGruder, K D; DeSantiago, J; Rasgado-Flores, H

    1994-09-01

    Isosmotic removal of extracellular Na+ (Nao) is a frequently performed manipulation. With the use of isolated voltage-clamped barnacle muscle cells, the effect of this manipulation on isosmotic cell volume was studied. Replacement of Nao by tris(hydroxymethyl)aminomethane produced membrane depolarization (approximately 20 mV) and cell volume loss (approximately 14%). The membrane depolarization was verapamil insensitive but depended on extracellular Ca2+ (Cao) and was probably due to activation of intracellular Ca2+ (Cai)-dependent nonselective cation channels. The cell volume loss did not require membrane depolarization but depended on Cao. This was probably due to an increase in Cai, mediated by activation of Ca2+ influx via Na+/Ca2+ exchange. Nao replacement by Li+ also promoted membrane depolarization (approximately 20 mV) and cell volume loss (20%). Both effects were reduced (approximately 73%) but were not abolished by Cao removal. Under this condition, the remaining membrane depolarization was probably due to a higher membrane permeability of Li+ over Na+. The remaining cell volume loss was due to membrane depolarization, which probably induced Ca2+ release from intracellular stores.

  18. Vaccinia virus interactions with the cell membrane studied by new chromatic vesicle and cell sensor assays.

    PubMed

    Orynbayeva, Z; Kolusheva, S; Groysman, N; Gavrielov, N; Lobel, L; Jelinek, R

    2007-02-01

    The potential danger of cross-species viral infection points to the significance of understanding the contributions of nonspecific membrane interactions with the viral envelope compared to receptor-mediated uptake as a factor in virus internalization and infection. We present a detailed investigation of the interactions of vaccinia virus particles with lipid bilayers and with epithelial cell membranes using newly developed chromatic biomimetic membrane assays. This analytical platform comprises vesicular particles containing lipids interspersed within reporter polymer units that emit intense fluorescence following viral interactions with the lipid domains. The chromatic vesicles were employed as membrane models in cell-free solutions and were also incorporated into the membranes of epithelial cells, thereby functioning as localized membrane sensors on the cell surface. These experiments provide important insight into membrane interactions with and fusion of virions and the kinetic profiles of these processes. In particular, the data emphasize the significance of cholesterol/sphingomyelin domains (lipid rafts) as a crucial factor promoting bilayer insertion of the viral particles. Our analysis of virus interactions with polymer-labeled living cells exposed the significant role of the epidermal growth factor receptor in vaccinia virus infectivity; however, the data also demonstrated the existence of additional non-receptor-mediated mechanisms contributing to attachment of the virus to the cell surface and its internalization.

  19. Muscarinic receptor size on smooth muscle cells and membranes

    SciTech Connect

    Collins, S.M.; Jung, C.Y.; Grover, A.K.

    1986-08-01

    The loss of (/sup 3/H)quinuclidinyl benzilate ((/sup 3/H)QNB) binding following high-energy radiation was used to compare the muscarinic receptor size on single smooth muscle cells isolated by collagenase digestion from the canine stomach and on plasma membranes derived from intact gastric smooth muscle without exposure to exogenous proteolysis. Radiation inactivation of galactose oxidase (68 kdaltons), yeast alcohol dehydrogenase (160 kdaltons), and pyruvate kinase (224 kdaltons) activities were used as molecular-weight standards. Radiation inactivation of (/sup 3/H)QNB binding to rat brain membranes, which gave a target size of 86 kdaltons, served as an additional control. In isolated smooth muscle cells, the calculated size of the muscarinic receptor was 80 +/- 8 kdaltons. In contrast, in a smooth muscle enriched plasma membrane preparation, muscarinic receptor size was significantly smaller at 45 +/- 3 kdaltons. Larger molecular sizes were obtained either in the presence of protease inhibitors (62 +/- 4 kdaltons) or by using a crude membrane preparation of gastric smooth muscle 86 +/- 7 kdaltons).

  20. The organochlorine herbicide chloridazon interacts with cell membranes.

    PubMed

    Suwalsky, M; Benites, M; Villena, F; Norris, B; Quevedo, L

    1998-07-01

    Chloridazon is a widely used organochlorine herbicide. In order to evaluate its perturbing effect on cell membranes it was made to interact with human erythrocytes, frog adrenergic neuroepithelial synapse and molecular models. These consisted in multilayers of dimyristoylphosphatidylethanolamine (DMPE) and of dimyristoylphosphatidyltidylcholine (DMPC), representative of phospholipid classes located in the inner and outer monolayers of the erythrocyte membrane, respectively. X-ray diffraction showed that chloridazon interacted preferentially with DMPC multilayers. Scanning electron microscopy revealed that 0.1 mM chloridazon induced erythrocyte crenation. According to the bilayer couple hypothesis, this is due to the preferential insertion of chloridazon in the phosphatidylcholine-rich external moiety of the red cell membrane. Electrophysiological measurements showed that nerve stimulation was followed immediately by a transient increase in short-circuit current (SCC) and in the potential difference (PD) of the neuroepithelial synapse. Increasing concentrations of chloridazon caused a dose-dependent and reversible decrease of the responses of both parameters to 76% of their control values. The pesticide induced a similar (28%) significant time-dependent decrease in the basal values of the SCC and of PD. These results are in accordance with a perturbing effect of chloridazon on the phospholipid moiety of the nerve fibre membrane leading to interference with total ion transport across the nerve skin junction.

  1. Membrane electrolytic cell for minimizing hypochlorite and chlorate formation

    SciTech Connect

    Fair, D. L.; Justice, D. D.; Woodard Jr., K. E.

    1985-07-09

    An electrolytic cell for the electrolysis of an alkali metal chloride brine is comprised of an anode compartment and a cathode compartment separated by a cation exchange membrane. The anode is comprised of an unflattened expanded structure of a valve metal selected from the group consisting of titanium, tantalum, niobium, and alloys thereof. At least one side of the anode has as the electrochemically active surface an electrodeposited layer of a valve metal oxide. A plurality of cracks traverse the electrodeposited layer and a coating of a platinum metal group oxide covers the electrodeposited layer and substantially fills the cracks. The cationic exchange membrane is comprised of a laminated structure having a first surface adapted to contact an anolyte in which the ion exchange groups are predominately sulfonic acid groups. The first surface is also in contact with the electrochemically active surface of the anode. A second surface of the cation exchange membrane, adapted to contact a catholyte, has ion exchange groups which are predominately carboxylic acid groups. The cathode positioned in the cathode compartment is spaced apart from the cation exchange membrane. The cell operates with both a low chlorine overvoltage and a low oxygen overvoltage. During electrolysis of alkali metal chloride brines, the formation of hypochlorite and chlorate ions is minimized and the alkali metal hydroxides produced have low chlorate concentrations and are suitable for use without further treatment in chlorate-sensitive applications. Spent brine treatment is simplified and at reduced costs.

  2. Sterol-Rich Membrane Domains Define Fission Yeast Cell Polarity.

    PubMed

    Makushok, Tatyana; Alves, Paulo; Huisman, Stephen Michiel; Kijowski, Adam Rafal; Brunner, Damian

    2016-05-19

    Cell polarization is crucial for the functioning of all organisms. The cytoskeleton is central to the process but its role in symmetry breaking is poorly understood. We study cell polarization when fission yeast cells exit starvation. We show that the basis of polarity generation is de novo sterol biosynthesis, cell surface delivery of sterols, and their recruitment to the cell poles. This involves four phases occurring independent of the polarity factor cdc42p. Initially, multiple, randomly distributed sterol-rich membrane (SRM) domains form at the plasma membrane, independent of the cytoskeleton and cell growth. These domains provide platforms on which the growth and polarity machinery assembles. SRM domains are then polarized by the microtubule-dependent polarity factor tea1p, which prepares for monopolar growth initiation and later switching to bipolar growth. SRM polarization requires F-actin but not the F-actin organizing polarity factors for3p and bud6p. We conclude that SRMs are key to cell polarization.

  3. Proton exchange membrane fuel cell technology for transportation applications

    SciTech Connect

    Swathirajan, S.

    1996-04-01

    Proton Exchange Membrane (PEM) fuel cells are extremely promising as future power plants in the transportation sector to achieve an increase in energy efficiency and eliminate environmental pollution due to vehicles. GM is currently involved in a multiphase program with the US Department of Energy for developing a proof-of-concept hybrid vehicle based on a PEM fuel cell power plant and a methanol fuel processor. Other participants in the program are Los Alamos National Labs, Dow Chemical Co., Ballard Power Systems and DuPont Co., In the just completed phase 1 of the program, a 10 kW PEM fuel cell power plant was built and tested to demonstrate the feasibility of integrating a methanol fuel processor with a PEM fuel cell stack. However, the fuel cell power plant must overcome stiff technical and economic challenges before it can be commercialized for light duty vehicle applications. Progress achieved in phase I on the use of monolithic catalyst reactors in the fuel processor, managing CO impurity in the fuel cell stack, low-cost electrode-membrane assembles, and on the integration of the fuel processor with a Ballard PEM fuel cell stack will be presented.

  4. Voltage- and Tension-Dependent Lipid Mobility in the Outer Hair Cell Plasma Membrane

    NASA Astrophysics Data System (ADS)

    Oghalai, John S.; Zhao, Hong-Bo; Kutz, J. Walter; Brownell, William E.

    2000-01-01

    The mechanism responsible for electromotility of outer hair cells in the ear is unknown but is thought to reside within the plasma membrane. Lipid lateral diffusion in the outer hair cell plasma membrane is a sigmoidal function of transmembrane potential and bathing media osmolality. Cell depolarization or hyposmotic challenge shorten the cell and reduce membrane fluidity by half. Changing the membrane tension with amphipathic drugs results in similar reductions. These dynamic changes in membrane fluidity represent the modulation of membrane tension by lipid-protein interactions. The voltage dependence may be associated with the force-generating motors that contribute to the exquisite sensitivity of mammalian hearing.

  5. A synbiotic containing Lactobacillus gasseri [corrected] CHO-220 and inulin improves irregularity of red blood cells.

    PubMed

    Ooi, L-G; Bhat, R; Rosma, A; Yuen, K-H; Liong, M-T

    2010-10-01

    This randomized, double-blind, placebo-controlled, and parallel-design study was conducted to investigate the effect of a synbiotic product containing Lactobacillus gasseri [corrected] CHO-220 and inulin on the irregularity in shape of red blood cells (RBC) in hypercholesterolemic subjects. The subjects (n=32) were randomly allocated to 2 groups, a treatment group (synbiotic product) and a control group (placebo), and received 4 capsules of either synbiotic or placebo daily for 12 wk. Morphological representation via scanning electron microscopy showed that the occurrence of spur RBC was improved upon supplementation of the synbiotic. In addition, the supplementation of synbiotic reduced the cholesterol:phospholipids ratio of the RBC membrane by 47.02% over 12 wk, whereas the control showed insignificant changes. Our present study also showed that supplementation of the synbiotic reduced the concentration of saturated fatty acids (SFA), increased unsaturated fatty acids (UFA), and increased the ratio of UFA:SFA over 12 wk, whereas the control showed inconspicuous changes. The alteration of RBC membrane was assessed using fluorescence anisotropy (FAn) and fluorescence probes with different affinities for varying sections of the membrane phospholipid bilayer. A noticeable decrease in FAn of three fluorescent probes was observed in the synbiotic group compared with the control over 12 wk, indicative of increased membrane fluidity and reduced cholesterol enrichment in the RBC membrane.

  6. Evaluation of stem cell components in retrocorneal membranes.

    PubMed

    Lee, Seok Hyun; Kim, Kyoung Woo; Kim, Mi Kyung; Chun, Yeoun Sook; Kim, Jae Chan

    2014-06-01

    The purpose of this study was to elucidate the origin and cellular composition of retrocorneal membranes (RCMs) associated with chemical burns using immunohistochemical staining for primitive cell markers. Six cases of RCMs were collected during penetrating keratoplasty. We examined RCMs with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS) staining and immunohistochemical analysis using monoclonal antibodies against hematopoietic stem cells (CD34, CD133, c-kit), mesenchymal stem cells (beta-1-integrin, TGF-β, vimentin, hSTRO-1), fibroblasts (FGF-β, α-smooth muscle actin), and corneal endothelial cells (type IV collagen, CD133, VEGF, VEGFR1). Histologic analysis of RCMs revealed an organized assembly of spindle-shaped cells, pigment-laden cells, and thin collagenous matrix structures. RCMs were positive for markers of mesenchymal stem cells including beta-1-integrin, TGF-β, vimentin, and hSTRO-1. Fibroblast markers were also positive, including FGF-β and α-smooth muscle actin (SMA). In contrast, immunohistochemical staining was negative for hematopoietic stem cell markers including CD34, CD133 and c-kit as well as corneal endothelial cell markers such as type IV collagen, CD133 except VEGF and VEGFR1. Pigment-laden cells did not stain with any antibodies. The results of this study suggest that RCMs consist of a thin collagen matrix and fibroblast-like cells and may be a possible neogenetic structure produced from a lineage of bone marrow-derived mesenchymal stem cells.

  7. Interaction of Boron Nitride Nanosheets with Model Cell Membranes.

    PubMed

    Hilder, Tamsyn A; Gaston, Nicola

    2016-06-03

    Boron nitride nanomaterials have attracted attention for biomedical applications, due to their improved biocompatibility when compared with carbon nanomaterials. Recently, graphene and graphene oxide nanosheets have been shown, both experimentally and computationally, to destructively extract phospholipids from Escherichia coli. Boron nitride nanosheets (BNNSs) have exciting potential biological and environmental applications, for example the ability to remove oil from water. These applications are likely to increase the exposure of prokaryotes and eukaryotes to BNNSs. Yet, despite their promise, the interaction between BNNSs and cell membranes has not yet been investigated. Here, all-atom molecular dynamics simulations were used to demonstrate that BNNSs are spontaneously attracted to the polar headgroups of the lipid bilayer. The BNNSs do not passively cross the lipid bilayer, most likely due to the large forces experienced by the BNNSs. This study provides insight into the interaction of BNNSs with cell membranes and may aid our understanding of their improved biocompatibility.

  8. Collaboration between primitive cell membranes and soluble catalysts.

    PubMed

    Adamala, Katarzyna P; Engelhart, Aaron E; Szostak, Jack W

    2016-03-21

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg(2+), which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg(2+) environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells.

  9. Patterns of Nonelectrolyte Permeability in Human Red Blood Cell Membrane

    PubMed Central

    Naccache, P.; Sha'afi, R. I.

    1973-01-01

    The permeability of human red cell membrane to 90 different molecules has been measured. These solutes cover a wide spectrum of nonelectrolytes with varying chemical structure, chain length, lipid solubility, chemical reactive group, ability to form hydrogen bonds, and other properties. In general, the present study suggests that the permeability of red cell membrane to a large solute is determined by lipid solubility, its molecular size, and its hydrogen-bonding ability. The permeability coefficient increases with increasing lipid solubility and decreasing ability to form hydrogen bonds, whereas it decreases with increasing molecular size. In the case of small solutes, the predominant diffusion factor is steric hindrance augmented by lipid solubility. It is also found that replacement of a hydroxyl group by a carbonyl group or an ether linkage tends to increase permeability. On the other hand, replacement of a hydroxyl group by an amide group tends to decrease the permeability coefficient. PMID:4804758

  10. Quantitative understanding of cell signaling: The importance of membrane organization

    PubMed Central

    Radhakrishnan, Krishnan; Halász, Ádám; Vlachos, Dion; Edwards, Jeremy S.

    2010-01-01

    Systems biology modeling of signal transduction pathways traditionally employs ordinary differential equations, deterministic models based on assumptions of spatial homogeneity. However, this can be a poor approximation for certain aspects of signal transduction, especially its initial steps: the cell membrane exhibits significant spatial organization, with diffusion rates approximately two orders of magnitude slower than those in the cytosol. Thus, to unravel the complexities of signaling pathways, quantitative models must consider spatial organization as an important feature of cell signaling. Furthermore, spatial separation limits the number of molecules that can physically interact, requiring stochastic simulation methods that account for individual molecules. Herein, we discuss the need for mathematical models and experiments that appreciate the importance of spatial organization in the membrane. PMID:20829029

  11. Collaboration between primitive cell membranes and soluble catalysts

    PubMed Central

    Adamala, Katarzyna P.; Engelhart, Aaron E.; Szostak, Jack W.

    2016-01-01

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg2+, which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg2+ environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells. PMID:26996603

  12. Membrane associated qualitative differences in cell ultrastructure of chemically and high pressure cryofixed plant cells.

    PubMed

    Zechmann, Bernd; Müller, Maria; Zellnig, Günther

    2007-06-01

    Membrane contrast can sometimes be poor in biological samples after high pressure freezing (HPF) and freeze substitution (FS). The addition of water to the FS-medium has been shown to improve membrane contrast in animal tissue and yeast. In the present study we tested the effects of 1% and 5% water added to the FS-medium (2% osmium with 0.2% uranyl acetate in anhydrous acetone) on the quality and visibility of membranes in high pressure frozen leaf samples of Cucurbita pepo L. plants and compared them to chemically fixed cells (3% glutaraldehyde post-fixed with 1% osmium tetroxide). The addition of water to the FS-medium drastically decreased the amounts of well preserved cells and did not significantly improve the quality nor visibility of membranes. In samples that were freeze substituted in FS-media containing 1% and 5% water the width of thylakoid membranes was found to be significantly increased of about 20% and the perinuclear space was up to 76% wider in comparison to what was found in samples which were freeze substituted without water. No differences were found in the thickness of membranes between chemically and cryofixed cells that were freeze substituted in the FS-medium without water. Nevertheless, in chemically fixed cells the intrathylakoidal space was about 120% wider than in cryofixed cells that were freeze substituted with or without water. The present results demonstrate that the addition of water to the FS-medium does not improve membrane contrast but changes the width of thylakoid membranes and the perinuclear space in the present plant material. The addition of water to the FS-medium is therefore not as essential for improved membrane contrast in the investigated plant samples as it was observed in cells of animal tissues and yeast cells.

  13. The insecticide DDT decreases membrane potential and cell input resistance of cultured human liver cells.

    PubMed

    Schefczik, K; Buff, K

    1984-10-03

    The resting membrane potential, Em, and the cell input resistance, Rinp, of cultured human Chang liver cells were measured using the single electrode 'double-pulse' current clamp technique, following exposure of the cells to the insecticide DDT (20 microM). In control (unexposed) cells, the mean Em was -24 mV, and the mean Rinp was 30 M omega. Neither parameter was significantly impaired after 1 h of cell exposure to DDT. But after 7 and 48 h, the Em was depolarized by 15 and 25 mV, respectively, in parallel with a decrease of the cell input resistance. The strongly time-delayed effect of DDT on Chang liver cell membranes may indicate a mode of interaction different from excitable membranes.

  14. Do heavy ions cause microlesions in cell membranes?

    NASA Technical Reports Server (NTRS)

    Koniarek, Jan P.; Worgul, Basil V.

    1992-01-01

    The microlesion question is investigated by monitoring the electrical potential difference across the endothelium of rat corneas in vitro before, during, and after irradiation. When the corneas were exposed to 1 Gy of Fe-56 ions (450 and 600 MeV/a.m.u.), no effect was detected on this parameter. These results suggest that direct physical damage to cell membranes, as predicted by the microlesion theory, does not take place.

  15. Interferometric tomography of fuel cells for monitoring membrane water content.

    PubMed

    Waller, Laura; Kim, Jungik; Shao-Horn, Yang; Barbastathis, George

    2009-08-17

    We have developed a system that uses two 1D interferometric phase projections for reconstruction of 2D water content changes over time in situ in a proton exchange membrane (PEM) fuel cell system. By modifying the filtered backprojection tomographic algorithm, we are able to incorporate a priori information about the object distribution into a fast reconstruction algorithm which is suitable for real-time monitoring.

  16. A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium.

    PubMed Central

    Merkel, R; Simson, R; Simson, D A; Hohenadl, M; Boulbitch, A; Wallraff, E; Sackmann, E

    2000-01-01

    We used micropipettes to aspirate leading and trailing edges of wild-type and mutant cells of Dictyostelium discoideum. Mutants were lacking either myosin II or talin, or both proteins simultaneously. Talin is a plasma membrane-associated protein important for the coupling between membrane and actin cortex, whereas myosin II is a cytoplasmic motor protein essential for the locomotion of Dictyostelium cells. Aspiration into the pipette occurred above a threshold pressure only. For all cells containing talin this threshold was significantly lower at the leading edge of an advancing cell as compared to its rear end, whereas we found no such difference in cells lacking talin. Wild-type and talin-deficient cells were able to retract from the pipette against an applied suction pressure. In these cells, retraction was preceded by an accumulation of myosin II in the tip of the aspirated cell lobe. Mutants lacking myosin II could not retract, even if the suction pressures were removed after aspiration. We interpreted the initial instability and the subsequent plastic deformation of the cell surface during aspiration in terms of a fracture between the cell plasma membrane and the cell body, which may involve destruction of part of the cortex. Models are presented that characterize the coupling strength between membrane and cell body by a surface energy sigma. We find sigma approximately 0.6(1.6) mJ/m(2) at the leading (trailing) edge of wild-type cells. PMID:10920005

  17. Polymer Electrolyte Membrane (PEM) Fuel Cells Modeling and Optimization

    NASA Astrophysics Data System (ADS)

    Zhang, Zhuqian; Wang, Xia; Shi, Zhongying; Zhang, Xinxin; Yu, Fan

    2006-11-01

    Performance of polymer electrolyte membrane (PEM) fuel cells is dependent on operating parameters and designing parameters. Operating parameters mainly include temperature, pressure, humidity and the flow rate of the inlet reactants. Designing parameters include reactants distributor patterns and dimensions, electrodes dimensions, and electrodes properties such as porosity, permeability and so on. This work aims to investigate the effects of various designing parameters on the performance of PEM fuel cells, and the optimum values will be determined under a given operating condition.A three-dimensional steady-state electrochemical mathematical model was established where the mass, fluid and thermal transport processes are considered as well as the electrochemical reaction. A Powell multivariable optimization algorithm will be applied to investigate the optimum values of designing parameters. The objective function is defined as the maximum potential of the electrolyte fluid phase at the membrane/cathode interface at a typical value of the cell voltage. The robustness of the optimum design of the fuel cell under different cell potentials will be investigated using a statistical sensitivity analysis. By comparing with the reference case, the results obtained here provide useful tools for a better design of fuel cells.

  18. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription.

    PubMed

    Ido, Ayaka; Iwata, Shinya; Iwata, Yuka; Igarashi, Hisako; Hamada, Takahiro; Sonobe, Seiji; Sugiura, Masahiro; Yukawa, Yasushi

    2016-02-01

    In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin).

  19. Arabidopsis Pol II-Dependent in Vitro Transcription System Reveals Role of Chromatin for Light-Inducible rbcS Gene Transcription1

    PubMed Central

    Ido, Ayaka; Iwata, Shinya; Iwata, Yuka; Igarashi, Hisako; Hamada, Takahiro; Sonobe, Seiji; Sugiura, Masahiro; Yukawa, Yasushi

    2016-01-01

    In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases (Pol I, Pol II, and Pol III). However, it was not suitable to study photosynthetic genes, because BY-2 cells have lost their photosynthetic activity. Therefore, Arabidopsis (Arabidopsis thaliana) in vitro transcription systems were developed from green and etiolated suspension cells. Sufficient in vitro Pol II activity was detected after the minor modification of the nuclear soluble extracts preparation method; removal of vacuoles from protoplasts and L-ascorbic acid supplementation in the extraction buffer were particularly effective. Surprisingly, all four Arabidopsis Rubisco small subunit (rbcS-1A, rbcS-1B, rbcS-2B, and rbcS-3B) gene members were in vitro transcribed from the naked DNA templates without any light-dependent manner. However, clear light-inducible transcriptions were observed using chromatin template of rbcS-1A gene, which was prepared with a human nucleosome assembly protein 1 (hNAP1) and HeLa histones. This suggested that a key determinant of light-dependency through the rbcS gene transcription was a higher order of DNA structure (i.e. chromatin). PMID:26662274

  20. Proton electrolyte membrane properties and direct methanol fuel cell performance. II. Fuel cell performance and membrane properties effects

    NASA Astrophysics Data System (ADS)

    Silva, V. S.; Schirmer, J.; Reissner, R.; Ruffmann, B.; Silva, H.; Mendes, A.; Madeira, L. M.; Nunes, S. P.

    In order to study the relationship between the properties of proton electrolyte membranes (PEMs), obtained through standard characterization methods, and the direct methanol fuel cell (DMFC) performance, inorganic-organic hybrid membranes, modified via in situ hydrolysis, were used in a membrane electrolyte assembly (MEA) for DMFC application. The membranes, the characterization of which was performed in the previous paper of this series, were based on sulfonated poly(ether ether ketone) (sPEEK) with a sulfonation degree (SD) of 87% and were loaded with different amounts of zirconium oxide (5.0, 7.5, 10.0, 12.5 wt.%). The standard characterization methods applied were impedance spectroscopy (proton conductivity), water uptake, and pervaporation (permeability to methanol). The MEAs were characterized investigating the DMFC current-voltage polarization curves, constant voltage current (CV, 35 mV), and open-circuit voltage (OCV). The fuel cell ohmic resistance (null phase angle impedance, NPAI) and CO 2 concentration in the cathode outlet were also measured. The characterization results show that the incorporation of the inorganic oxide in the polymer network decreases the DMFC current density for CV experiments, CO 2 concentration in the cathode outlet for both OCV and CV experiments and, finally, the maximum power density output. The opposite effect was verified in terms of the NPAI (ohmic resistance) for both OCV and CV experiments. A good agreement was found between the studied DMFC performance parameters and the characterization results evaluated by impedance spectroscopy, water uptake and pervaporation experiments.

  1. Latent progenitor cells as potential regulators for tympanic membrane regeneration

    NASA Astrophysics Data System (ADS)

    Kim, Seung Won; Kim, Jangho; Seonwoo, Hoon; Jang, Kyung-Jin; Kim, Yeon Ju; Lim, Hye Jin; Lim, Ki-Taek; Tian, Chunjie; Chung, Jong Hoon; Choung, Yun-Hoon

    2015-06-01

    Tympanic membrane (TM) perforation, in particular chronic otitis media, is one of the most common clinical problems in the world and can present with sensorineural healing loss. Here, we explored an approach for TM regeneration where the latent progenitor or stem cells within TM epithelial layers may play an important regulatory role. We showed that potential TM stem cells present highly positive staining for epithelial stem cell markers in all areas of normal TM tissue. Additionally, they are present at high levels in perforated TMs, especially in proximity to the holes, regardless of acute or chronic status, suggesting that TM stem cells may be a potential factor for TM regeneration. Our study suggests that latent TM stem cells could be potential regulators of regeneration, which provides a new insight into this clinically important process and a potential target for new therapies for chronic otitis media and other eardrum injuries.

  2. MECHANISM OF GLUCOSE TRANSPORT ACROSS THE YEAST CELL MEMBRANE

    PubMed Central

    Cirillo, Vincent P.

    1962-01-01

    Cirillo, Vincent P. (Seton Hall College of Medicine and Dentistry, Jersey City, N.J.). Mechanism of glucose transport across the yeast cell membrane. J. Bacteriol. 84:485–491. 1962.—The kinetics of d-glucose and l-sorbose transport was studied in Saccharomyces cerevisiae inhibited with iodoacetic acid under nitrogen to prevent glucose metabolism. d-Glucose was found to compete with l-sorbose for a common membrane transport system with an apparent affinity greater than 25 times that of sorbose. A comparison of the net rate of glucose and sorbose transport at 50 and 500 mm external concentration showed that glucose transport is greater than that of sorbose from the lower concentration, but sorbose transport is greater than glucose at the higher concentration. This reversal of transport rate of two sugars with markedly different affinities is predicted by the membrane carrier theory. A further prediction of carrier theory was confirmed by the demonstration that the rate of glucose transport into fructose-loaded cells is greater than into unloaded cells. PMID:14021412

  3. Graphene-doped electrospun nanofiber membrane electrodes and proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun

    2016-09-01

    A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.

  4. Quantitative analysis of cell surface membrane proteins using membrane-impermeable chemical probe coupled with 18O labeling.

    PubMed

    Zhang, Haizhen; Brown, Roslyn N; Qian, Wei-Jun; Monroe, Matthew E; Purvine, Samuel O; Moore, Ronald J; Gritsenko, Marina A; Shi, Liang; Romine, Margaret F; Fredrickson, James K; Pasa-Tolić, Ljiljana; Smith, Richard D; Lipton, Mary S

    2010-05-07

    We report a mass spectrometry-based strategy for quantitative analysis of cell surface membrane proteome changes. The strategy includes enrichment of surface membrane proteins using a membrane-impermeable chemical probe followed by stable isotope (18)O labeling and LC-MS analysis. We applied this strategy for enriching membrane proteins expressed by Shewanella oneidensis MR-1, a Gram-negative bacterium with known metal-reduction capability via extracellular electron transfer between outer membrane proteins and extracellular electron receptors. LC/MS/MS analysis resulted in the identification of about 400 proteins with 79% of them being predicted to be membrane localized. Quantitative aspects of the membrane enrichment were shown by peptide level (16)O and (18)O labeling of proteins from wild-type and mutant cells (generated from deletion of a type II secretion protein, GspD) prior to LC-MS analysis. Using a chemical probe labeled pure protein as an internal standard for normalization, the quantitative data revealed reduced abundances in Delta gspD mutant cells of many outer membrane proteins including the outer membrane c-type cytochromes OmcA and MtrC, in agreement with a previous report that these proteins are substrates of the type II secretion system.

  5. A review of polymer electrolyte membranes for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Neburchilov, Vladimir; Martin, Jonathan; Wang, Haijiang; Zhang, Jiujun

    This review describes the polymer electrolyte membranes (PEM) that are both under development and commercialized for direct methanol fuel cells (DMFC). Unlike the membranes for hydrogen fuelled PEM fuel cells, among which perfluorosulfonic acid based membranes show complete domination, the membranes for DMFC have numerous variations, each has its advantages and disadvantages. No single membrane is emerging as absolutely superior to others. This review outlines the prospects of the currently known membranes for DMFC. The membranes are evaluated according to various properties, including: methanol crossover, proton conductivity, durability, thermal stability and maximum power density. Hydrocarbon and composite fluorinated membranes currently show the most potential for low cost membranes with low methanol permeability and high durability. Some of these membranes are already beginning to impact the portable fuel cell market.

  6. Fascin, an Actin-bundling Protein, Induces Membrane Protrusions and Increases Cell Motility of Epithelial Cells

    PubMed Central

    Yamashiro, Shigeko; Yamakita, Yoshihiko; Ono, Shoichiro; Matsumura, Fumio

    1998-01-01

    Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery. PMID:9571235

  7. Production of membrane proteins through the wheat-germ cell-free technology.

    PubMed

    Nozawa, Akira; Nanamiya, Hideaki; Tozawa, Yuzuru

    2010-01-01

    Membrane proteins play crucial roles in various processes. However, biochemical characterization of the membrane proteins remains challenging due to the difficulty in producing membrane proteins in a functional state. Here, we describe a novel method for the production of functional membrane proteins based on a wheat germ cell-free translation system. Using this method, functional membrane proteins are successfully synthesized in the presence of liposomes and a detergent. In addition, the synthesized membrane proteins are easily purified from the cell-free translation mixture as proteoliposomes by sucrose density gradient ultracentrifugation. These advantages over conventional approaches are very helpful for the clarification of the function of membrane proteins.

  8. Self-humidified proton exchange membrane fuel cells: Operation of larger cells and fuel cell stacks

    SciTech Connect

    Dhar, H.P.; Lee, J.H.; Lewinski, K.A.

    1996-12-31

    The PEM fuel cell is promising as the power source for use in mobile and stationary applications primarily because of its high power density, all solid components, and simplicity of operation. For wide acceptability of this power source, its cost has to be competitive with the presently available energy sources. The fuel cell requires continuous humidification during operation as a power source. The humidification unit however, increases fuel cell volume, weight, and therefore decreases its overall power density. Great advantages in terms of further fuel cell simplification can be achieved if the humidification process can be eliminated or minimized. In addition, cost reductions are associated with the case of manufacturing and operation. At BCS Technology we have developed a technology of self-humidified operation of PEM fuel cells based on the mass balance of the reactants and products and the ability of membrane electrode assembly (MEA) to retain water necessary for humidification under the cell operating conditions. The reactants enter the fuel cell chambers without carrying any form of water, whether in liquid or vapor form. Basic principles of self-humidified operation of fuel cells as practiced by BCS Technology, Inc. have been presented previously in literature. Here, we report the operation of larger self-humidified single cells and fuel cell stacks. Fuel cells of areas Up to 100 cm{sup 2} have been operated. We also show the self-humidified operation of fuel cell stacks of 50 and 100 cm{sup 2} electrode areas.

  9. Novel Lipophilic Probe for Detecting Near-Membrane Reactive Oxygen Species Responses and Its Application for Studies of Pancreatic Acinar Cells: Effects of Pyocyanin and L-Ornithine

    PubMed Central

    Chvanov, Michael; Huang, Wei; Jin, Tao; Wen, Li; Armstrong, Jane; Elliot, Vicky; Alston, Ben; Burdyga, Alex; Criddle, David N.; Sutton, Robert

    2015-01-01

    Abstract Aims: The aim of this study was to develop a fluorescent reactive oxygen species (ROS) probe, which is preferentially localized in cellular membranes and displays a strong change in fluorescence upon oxidation. We also aimed to test the performance of this probe for detecting pathophysiologically relevant ROS responses in isolated cells. Results: We introduced a novel lipophilic ROS probe dihydrorhodamine B octadecyl ester (H2RB-C18). We then applied the new probe to characterize the ROS changes triggered by inducers of acute pancreatitis in pancreatic acinar cells. We resolved ROS changes produced by L-ornithine, L-arginine, cholecystokinin-8, acetylcholine, taurolithocholic acid 3-sulfate, palmitoleic acid ethyl ester, and the bacterial toxin pyocyanin. Particularly prominent ROS responses were induced by pyocyanin and L-ornithine. These ROS responses were accompanied by changes in cytosolic Ca2+concentration ([Ca2+]i), mitochondrial membrane potential (ΔΨ), and NAD(P)H concentration. Innovation: The study describes a novel sensitive lipophilic ROS probe. The probe is particularly suitable for detecting ROS in near-membrane regions and therefore for reporting the ROS environment of plasma membrane channels and pumps. Conclusions: In our experimental conditions, the novel probe was more sensitive than 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein (CM-H2DCF) and dihydrorhodamine123 (H2R123) and allowed us to resolve ROS responses to secretagogues, pyocyanin, and L-ornithine. Changes in the fluorescence of the new probe were particularly prominent in the peripheral plasma membrane-associated regions. Our findings suggest that the new probe will be a useful tool in studies of the contribution of ROS to the pathophysiology of exocrine pancreas and other organs/tissues. Antioxid. Redox Signal. 22, 451–464. PMID:24635199

  10. Vesiculation of healthy and defective red blood cells

    NASA Astrophysics Data System (ADS)

    Li, He; Lykotrafitis, George

    2015-07-01

    Vesiculation of mature red blood cells (RBCs) contributes to removal of defective patches of the erythrocyte membrane. In blood disorders, which are related to defects in proteins of the RBC membrane, vesiculation of the plasma membrane is intensified. Several hypotheses have been proposed to explain RBC vesiculation but the exact underlying mechanisms and what determines the sizes of the vesicles are still not completely understood. In this work, we apply a two-component coarse-grained molecular dynamics RBC membrane model to study how RBC vesiculation is controlled by the membrane spontaneous curvature and by lateral compression of the membrane. Our simulation results show that the formation of small homogeneous vesicles with a diameter less than 40 nm can be attributed to a large spontaneous curvature of membrane domains. On the other hand, compression on the membrane can cause the formation of vesicles with heterogeneous composition and with sizes comparable with the size of the cytoskeleton corral. When spontaneous curvature and lateral compression are simultaneously considered, the compression on the membrane tends to facilitate formation of vesicles originating from curved membrane domains. We also simulate vesiculation of RBCs with membrane defects connected to hereditary elliptocytosis (HE) and to hereditary spherocytosis (HS). When the vertical connectivity between the lipid bilayer and the membrane skeleton is elevated, as in normal RBCs, multiple vesicles are shed from the compressed membrane with diameters similar to the cytoskeleton corral size. In HS RBCs, where the connectivity between the lipid bilayer and the cytoskeleton is reduced, larger-size vesicles are released under the same compression ratio as in normal RBCs. Lastly, we find that vesicles released from HE RBCs can contain cytoskeletal filaments due to fragmentation of the membrane skeleton while vesicles released from the HS RBCs are depleted of cytoskeletal filaments.

  11. Yield Strength of Human Erythrocyte Membranes to Impulsive Stretching

    PubMed Central

    Li, Fenfang; Chan, Chon U; Ohl, Claus Dieter

    2013-01-01

    Deformability while remaining viable is an important mechanical property of cells. Red blood cells (RBCs) deform considerably while flowing through small capillaries. The RBC membrane can withstand a finite strain, beyond which it ruptures. The classical yield areal strain of 2–4% for RBCs is generally accepted for a quasi-static strain. It has been noted previously that this threshold strain may be much larger with shorter exposure duration. Here we employ an impulse-like forcing to quantify this yield strain of RBC membranes. In the experiments, RBCs are stretched within tens of microseconds by a strong shear flow generated from a laser-induced cavitation bubble. The deformation of the cells in the strongly confined geometry is captured with a high-speed camera and viability is successively monitored with fluorescence microscopy. We find that the probability of cell survival is strongly dependent on the maximum strain. Above a critical areal strain of ∼40%, permanent membrane damage is observed for 50% of the cells. Interestingly, many of the cells do not rupture immediately and exhibit ghosting, but slowly obtain a round shape before they burst. This observation is explained with structural membrane damage leading to subnanometer-sized pores. The cells finally lyse from the colloidal osmotic pressure imbalance. PMID:23972839

  12. Nanofiber Composite Membranes for Alkaline Fuel Cells: Generation of Compositional, Morphological, and Functional Property Relationships

    DTIC Science & Technology

    2015-12-01

    properties of nanofiber composite anion-exchange membranes for alkaline fuel cells. A new membrane fabrication strategy, utilizing polymer fiber...electrospinning, will be employed to make hydroxide-conducting membranes with an entirely new morphology, where one electrospun polymer provides pathways...for ion conductivity and the second electrospun polymer restricts ionomer swelling and imparts mechanical strength to the membrane. The functional

  13. Proton exchange membrane fuel cells with chromium nitridenanocrystals as electrocatalysts

    SciTech Connect

    Zhong, Hexiang; Chen, Xiaobo; Zhang, Huamin; Wang, Meiri; Mao,Samuel S.

    2007-07-01

    Polymer electrolyte membrane fuel cells (PEMFCs) are energy conversion devices that produce electricity from a supply of fuel, such as hydrogen. One of the major challenges in achieving efficient energy conversion is the development of cost-effective materials that can act as electrocatalysts for PEMFCs. In this letter, we demonstrate that, instead of conventional noble metals, such as platinum, chromium nitride nanocrystals of fcc structure exhibit attractive catalytic activity for PEMFCs. Device testing indicates good stability of nitride nanocrystals in low temperature fuel cell operational environment.

  14. Dynamic analysis of magnetic nanoparticles crossing cell membrane

    NASA Astrophysics Data System (ADS)

    Pedram, Maysam Z.; Shamloo, Amir; Ghafar-Zadeh, Ebrahim; Alasty, Aria

    2017-01-01

    Nowadays, nanoparticles (NPs) are used in a variety of biomedical applications including brain disease diagnostics and subsequent treatments. Among the various types of NPs, magnetic nanoparticles (MNPs) have been implemented by many research groups for an array of life science applications. In this paper, we studied MNPs controlled delivery into the endothelial cells using a magnetic field. Dynamics equations of MNPs were defined in the continuous domain using control theory methods and were applied to crossing the cell membrane. This study, dedicated to clinical and biomedical research applications, offers a guideline for the generation of a magnetic field required for the delivery of MNPs.

  15. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment.

    PubMed

    Malaeb, Lilian; Katuri, Krishna P; Logan, Bruce E; Maab, Husnul; Nunes, S P; Saikaly, Pascal E

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m(2) (6.8 W/m(3)) with the biocathode, compared to 0.82 W/m(2) (14.5 W/m(3)) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration.

  16. Fault tolerance control for proton exchange membrane fuel cell systems

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Zhou, Boyang

    2016-08-01

    Fault diagnosis and controller design are two important aspects to improve proton exchange membrane fuel cell (PEMFC) system durability. However, the two tasks are often separately performed. For example, many pressure and voltage controllers have been successfully built. However, these controllers are designed based on the normal operation of PEMFC. When PEMFC faces problems such as flooding or membrane drying, a controller with a specific design must be used. This paper proposes a unique scheme that simultaneously performs fault diagnosis and tolerance control for the PEMFC system. The proposed control strategy consists of a fault diagnosis, a reconfiguration mechanism and adjustable controllers. Using a back-propagation neural network, a model-based fault detection method is employed to detect the PEMFC current fault type (flooding, membrane drying or normal). According to the diagnosis results, the reconfiguration mechanism determines which backup controllers to be selected. Three nonlinear controllers based on feedback linearization approaches are respectively built to adjust the voltage and pressure difference in the case of normal, membrane drying and flooding conditions. The simulation results illustrate that the proposed fault tolerance control strategy can track the voltage and keep the pressure difference at desired levels in faulty conditions.

  17. Cell Surface and Membrane Engineering: Emerging Technologies and Applications

    PubMed Central

    Saeui, Christopher T.; Mathew, Mohit P.; Liu, Lingshui; Urias, Esteban; Yarema, Kevin J.

    2015-01-01

    Membranes constitute the interface between the basic unit of life—a single cell—and the outside environment and thus in many ways comprise the ultimate “functional biomaterial”. To perform the many and often conflicting functions required in this role, for example to partition intracellular contents from the outside environment while maintaining rapid intake of nutrients and efflux of waste products, biological membranes have evolved tremendous complexity and versatility. This article describes how membranes, mainly in the context of living cells, are increasingly being manipulated for practical purposes with drug discovery, biofuels, and biosensors providing specific, illustrative examples. Attention is also given to biology-inspired, but completely synthetic, membrane-based technologies that are being enabled by emerging methods such as bio-3D printers. The diverse set of applications covered in this article are intended to illustrate how these versatile technologies—as they rapidly mature—hold tremendous promise to benefit human health in numerous ways ranging from the development of new medicines to sensitive and cost-effective environmental monitoring for pathogens and pollutants to replacing hydrocarbon-based fossil fuels. PMID:26096148

  18. Better Proton-Conducting Polymers for Fuel-Cell Membranes

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Reddy, Prakash

    2012-01-01

    Polyoxyphenylene triazole sulfonic acid has been proposed as a basis for development of improved proton-conducting polymeric materials for solid-electrolyte membranes in hydrogen/air fuel cells. Heretofore, the proton-conducting membrane materials of choice have been exemplified by a family of perfluorosulfonic acid-based polymers (Nafion7 or equivalent). These materials are suitable for operation in the temperature of 75 to 85 C, but in order to reduce the sizes and/or increase the energy-conversion efficiencies of fuel-cell systems, it would be desirable to increase temperatures to as high as 120 C for transportation applications, and to as high as 180 C for stationary applications. However, at 120 C and at relative humidity values below 50 percent, the loss of water from perfluorosulfonic acid-based polymer membranes results in fuel-cell power densities too low to be of practical value. Therefore, membrane electrolyte materials that have usefully high proton conductivity in the temperature range of 180 C at low relative humidity and that do not rely on water for proton conduction at 180 C would be desirable. The proposed polyoxyphenylene triazole sulfonic acid-based materials have been conjectured to have these desirable properties. These materials would be free of volatile or mobile acid constituents. The generic molecular structure of these materials is intended to exploit the fact, demonstrated in previous research, that materials that contain ionizable acid and base groups covalently attached to thermally stable polymer backbones exhibit proton conduction even in the anhydrous state.

  19. Mechanical properties of stored red blood cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Fontes, Adriana; Alexandre de Thomaz, Andre; de Ysasa Pozzo, Liliana; de Lourdes Barjas-Castro, Maria; Brandao, Marcelo M.; Saad, Sara T. O.; Barbosa, Luiz Carlos; Cesar, Carlos Lenz

    2005-08-01

    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.

  20. Membrane Cholesterol Modulates LOX-1 Shedding in Endothelial Cells.

    PubMed

    Gioia, Magda; Vindigni, Giulia; Testa, Barbara; Raniolo, Sofia; Fasciglione, Giovanni Francesco; Coletta, Massimiliano; Biocca, Silvia

    2015-01-01

    The lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is a scavenger receptor responsible for ox-LDL recognition, binding and internalization, which is up-regulated during atherogenesis. Its activation triggers endothelium dysfunction and induces inflammation. A soluble form of LOX-1 has been identified in the human blood and its presence considered a biomarker of cardiovascular diseases. We recently showed that cholesterol-lowering drugs inhibit ox-LDL binding and internalization, rescuing the ox-LDL induced apoptotic phenotype in primary endothelial cells. Here we have investigated the molecular bases of human LOX-1 shedding by metalloproteinases and the role of cell membrane cholesterol on the regulation of this event by modulating its level with MβCD and statins. We report that membrane cholesterol affects the release of different forms of LOX-1 in cells transiently and stably expressing human LOX-1 and in a human endothelial cell line (EA.hy926). In particular, our data show that i) cholesterol depletion triggers the release of LOX-1 in exosomes as a full-length transmembrane isoform and as a truncated ectodomain soluble fragment (sLOX-1); ii) endothelial cells secrete a soluble metalloproteinase which induces LOX-1 ectodomain shedding and iii) long term statins treatment enhances sLOX-1 proteolytic shedding.

  1. Membrane currents of spiking cells isolated from turtle retina.

    PubMed

    Lasater, E M; Witkovsky, P

    1990-05-01

    We examined the membrane properties of spiking neurons isolated from the turtle (Pseudemys scripta) retina. The cells were maintained in culture for 1-7 days and were studied with the whole cell patch clamp technique. We utilized cells whose perikaryal diameters were greater than 15 microns since Kolb (1982) reported that ganglion cell perikarya in Pseudemys retina are 13-25 microns, whereas amacrine perikarya are less than 14 microns in diameter. We identified 5 currents in the studied cells: (1) a transient sodium current (INa) blocked by TTX, (2) a sustained calcium current (ICa) blocked by cobalt and enhanced by Bay-K 8644, (3) a calcium-dependent potassium current (IK(Ca)), (4) an A-type transient potassium current (IA) somewhat more sensitive to 4-AP than TEA, (5) a sustained potassium current (IK) more sensitive to TEA than 4-AP. The estimated average input resistance of the cells at -70 mV was 720 +/- 440 M omega. When all active currents were blocked, the membrane resistance between -130 and +20 mV was 2.5 G omega. When examined under current clamp, some cells produced multiple spikes to depolarizing steps of 0.1-0.3 nA, whereas other cells produced only a single spike irrespective of the strength of the current pulse. Most single spikers had an outward current that rose to a peak relatively slowly, whereas multiple spikers tend to have a more rapidly activating outward current. Under current clamp, 4-AP slowed the repolarization phase of the spike thus broadening it, but did not always abolish the ability to produce multiple spikes. TEA induced a depolarized plateau following the initial spike which precluded further spikes. It thus appears that the spiking patterns of the retinal cells are shaped primarily by the kinetics of INa, IK and IA and to a lesser extent by IK(Ca).

  2. Mathematical and Computational Modeling of Polymer Exchange Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Ulusoy, Sehribani

    In this thesis a comprehensive review of fuel cell modeling has been given and based on the review, a general mathematical fuel cell model has been developed in order to understand the physical phenomena governing the fuel cell behavior and in order to contribute to the efforts investigating the optimum performance at different operating conditions as well as with different physical parameters. The steady state, isothermal model presented here accounts for the combined effects of mass and species transfer, momentum conservation, electrical current distribution through the gas channels, the electrodes and the membrane, and the electrochemical kinetics of the reactions in the anode and cathode catalyst layers. One of the important features of the model is that it proposes a simpler modified pseudo-homogeneous/agglomerate catalyst layer model which takes the advantage of the simplicity of pseudo-homogenous modeling while taking into account the effects of the agglomerates in the catalyst layer by using experimental geometric parameters published. The computation of the general mathematical model can be accomplished in 3D, 2D and 1D with the proper assumptions. Mainly, there are two computational domains considered in this thesis. The first modeling domain is a 2D Membrane Electrode Assembly (MEA) model including the modified agglomerate/pseudo-homogeneous catalyst layer modeling with consistent treatment of water transport in the MEA while the second domain presents a 3D model with different flow filed designs: straight, stepped and tapered. COMSOL Multiphysics along with Batteries and Fuel Cell Module have been used for 2D & 3D model computations while ANSYS FLUENT PEMFC Module has been used for only 3D two-phase computation. Both models have been validated with experimental data. With 2D MEA model, the effects of temperature and water content of the membrane as well as the equivalent weight of the membrane on the performance have been addressed. 3D COMSOL simulation

  3. Alkaline direct alcohol fuel cells using an anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Matsuoka, Koji; Iriyama, Yasutoshi; Abe, Takeshi; Matsuoka, Masao; Ogumi, Zempachi

    Alkaline direct alcohol fuel cells using an OH-form anion exchange membrane and polyhydric alcohols were studied. A high open circuit voltage of ca. 800 mV was obtained for a cell using Pt-Ru/C (anode) and Pt/C (cathode) at 323 K, which was about 100-200 mV higher than that for a DMFC using Nafion ®. The maximum power densities were in the order of ethylene glycol > glycerol > methanol > erythritol > xylitol. Silver catalysts were used as a cathode catalyst to fabricate alkaline fuel cells, since silver catalyst is almost inactive in the oxidation of polyhydric alcohols. Alkaline direct ethylene glycol fuel cells using silver as a cathode catalyst gave excellent performance because higher concentrations of fuel could be supplied to the anode.

  4. Dual Split Protein (DSP) Assay to Monitor Cell-Cell Membrane Fusion.

    PubMed

    Nakane, Shuhei; Matsuda, Zene

    2015-01-01

    Fusion between viral and cellular membranes is the essential first step in infection of enveloped viruses. This step is mediated by viral envelope glycoproteins (Env) that recognize cellular receptors. The membrane fusion between the effector cells expressing viral Env and the target cells expressing its receptors can be monitored by several methods. We have recently developed a pair of chimeric reporter protein composed of split Renilla luciferase (RL) and split GFP. We named this reporter dual split protein (DSP), since it recovers both RL and GFP activities upon self reassociation. By using DSP, pore formation and content mixing between the effector and target cells can be monitored upon the recovery of RL and GFP activities after the membrane fusion. This quick assay provides quantitative as well as spatial information about membrane fusion mediated by viral Env.

  5. Membrane potentials of epithelial cells in rat small intestine

    PubMed Central

    Barry, R. J. C.; Eggenton, Jacqueline

    1972-01-01

    1. Stripped sacs of rat jejunum in which the outer muscle layers had been removed were found to maintain substantial transport and electrical activities. 2. Mucosal and serosal membrane potentials of epithelial cells of normal and stripped everted sacs of rat jejunum were recorded in vitro together with the transmural potential difference. 3. The cell interior was negative relative to both serosal and mucosal fluids, the transmural potential being the sum of the two membrane potentials. 4. Changes in the transmural potentials in the presence of actively transferred hexoses and amino acids were entirely due to variations in the serosal potential, the mucosal potential being unchanged. 5. Serosal and transmural potential increases on the addition of galactose were consistent with Michaelis—Menten kinetics, giving apparent Km values of 14·9 and 14·1 mM respectively. 6. Phlorrhizin, ouabain, 2,4-dinitrophenol and sodium fluoroacetate inhibited serosal potential changes in the presence of galactose. 7. Osmotic potentials resulting from transmural osmotic gradients originated from the serosal layers of the tissue. 8. The results are consistent with the concept of a serosally located, electrogenic sodium pump which is stimulated by actively transferred hexoses and amino acids. The sodium-dependent entry mechanism at the mucosal membrane is non-electrogenic. ImagesPlate 1 PMID:4646578

  6. Trans-cis isomerization of lipophilic dyes probing membrane microviscosity in biological membranes and in live cells.

    PubMed

    Chmyrov, Volodymyr; Spielmann, Thiemo; Hevekerl, Heike; Widengren, Jerker

    2015-06-02

    Membrane environment and fluidity can modulate the dynamics and interactions of membrane proteins and can thereby strongly influence the function of cells and organisms in general. In this work, we demonstrate that trans-cis isomerization of lipophilic dyes is a useful parameter to monitor packaging and fluidity of biomembranes. Fluorescence fluctuations, generated by trans-cis isomerization of the thiocarbocyanine dye Merocyanine 540 (MC540), were first analyzed by fluorescence correlation spectroscopy (FCS) in different alcohol solutions. Similar isomerization kinetics of MC540 in lipid vesicles could then also be monitored, and the influence of lipid polarity, membrane curvature, and cholesterol content was investigated. While no influence of membrane curvature and lipid polarity could be observed, a clear decrease in the isomerization rates could be observed with increasing cholesterol contents in the vesicle membranes. Finally, procedures to spatially map photoinduced and thermal isomerization rates on live cells by transient state (TRAST) imaging were established. On the basis of these procedures, MC540 isomerization was studied on live MCF7 cells, and TRAST images of the cells at different temperatures were found to reliably detect differences in the isomerization parameters. Our studies indicate that trans-cis isomerization is a useful parameter for probing membrane dynamics and that the TRAST imaging technique can provide spatial maps of photoinduced isomerization as well as both photoinduced and thermal back-isomerization, resolving differences in local membrane microviscosity in live cells.

  7. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane.

    PubMed

    Nothwehr, S F; Conibear, E; Stevens, T H

    1995-04-01

    The Vps1 protein of Saccharomyces cerevisiae is an 80-kD GTPase associated with the Golgi apparatus. Vps1p appears to play a direct role in the retention of late Golgi membrane proteins, which are mislocalized to the vacuolar membrane in its absence. The pathway by which late Golgi and vacuolar membrane proteins reach the vacuole in vps1 delta mutants was investigated by analyzing transport of these proteins in vps1 delta cells that also contained temperature sensitive mutations in either the SEC4 or END4 genes, which are required for a late step in secretion and the internalization step of endocytosis, respectively. Not only was vacuolar transport of a Golgi membrane protein blocked in the vps1 delta sec4-ts and vps1 delta end4-ts double mutant cells at the non-permissive temperature but vacuolar delivery of the vacuolar membrane protein, alkaline phosphatase was also blocked in these cells. Moreover, both proteins expressed in the vps1 delta end4-ts cells at the elevated temperature could be detected on the plasma membrane by a protease digestion assay indicating that these proteins are transported to the vacuole via the plasma membrane in vps1 mutant cells. These data strongly suggest that a loss of Vps1p function causes all membrane traffic departing from the late Golgi normally destined for the prevacuolar compartment to instead be diverted to the plasma membrane. We propose a model in which Vps1p is required for formation of vesicles from the late Golgi apparatus that carry vacuolar and Golgi membrane proteins bound for the prevacuolar compartment.

  8. Effect of cell culture using chitosan membranes on stemness marker genes in mesenchymal stem cells.

    PubMed

    Li, Zhiqiang; Tian, Xiaojun; Yuan, Yan; Song, Zhixiu; Zhang, Lili; Wang, Xia; Li, Tong

    2013-06-01

    Mesenchymal stem cell (MSC) therapy is a promising treatment for diseases of the nervous system. However, MSCs often lose their stemness and homing abilities when cultured in conventional two‑dimensional (2D) systems. Consequently, it is important to explore novel culture methods for MSC-based therapies in clinical practice. To investigate the effect of a cell culture using chitosan membranes on MSCs, the morphology of MSCs cultured using chitosan membranes was observed and the expression of stemness marker genes was analyzed. We demonstrated that MSCs cultured using chitosan membranes form spheroids. Additionally, the expression of stemness marker genes, including Oct4, Sox2 and Nanog, increased significantly when MSCs were cultured using chitosan membranes compared with 2D culture systems. Finally, MSCs cultured using chitosan membranes were found to have an increased potential to differentiate into nerve cells and chrondrocytes. In conclusion, we demonstrated that MSCs cultured on chitosan membranes maintain their stemness and homing abilities. This finding may be further investigated for the development of novel cell-based therapies for diseases involving neuron-like cells and chondrogenesis.

  9. NREL Develops Technique to Measure Membrane Thickness and Defects in Polymer Electrode Membrane Fuel Cells (Fact Sheet)

    SciTech Connect

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in fuel cell membrane electrode assembly research and development. Work was performed by the Hydrogen Technologies and Systems Center and the National Center for Photovoltaics.

  10. Effects of phloretin on lipid organization in the erythrocyte membrane as measured by EPR

    NASA Astrophysics Data System (ADS)

    Abumrad, Nada A.; Perkins, Ray C.; Dalton, Larry R.; Park, Charles R.; Park, Jane H.

    Phloretin is a lipophilic compound which has been widely studied as a broad spectrum effector of metabolite transport in red blood cells (RBC). Phloretin effects on the organization of lipids in the RBC membrane are investigated using the spin-labeled fatty acids, 5 and 16-nitroxyl stearate (5-NS and 16-NS, respectively). Phloretin at different concentrations produced biphasic effects on the lineshape of the EPR response from 16-NS-labeled RBC. The dependence of these changes on the flat cell orientation with respect to the magnetic field suggested that phloretin promoted lipid order at low concentrations (5 to 40 μ M) and disorder at high concentrations (40 to 250 μ M). The biphasic effects of phloretin occurred at concentrations which parallel its dual actions on metabolite transfer. Phloretin generally inhibits transport (protein-mediated) and stimulates diffusion (lipid-mediated) processes. The spectroscopic effects were best characterized through second-harmonic, in-phase detection. The possible contribution of other factors to the spectroscopic changes is discussed. When RBC were spin labeled with 5-NS, higher concentrations of the probe were required for adequate detection and only monophasic effects of phoretin were observed. The results suggest that membrane lipids are important in phloretin effects on transport and diffusion processes.

  11. Nanocomposite membranes based on polybenzimidazole and ZrO2 for high-temperature proton exchange membrane fuel cells.

    PubMed

    Nawn, Graeme; Pace, Giuseppe; Lavina, Sandra; Vezzù, Keti; Negro, Enrico; Bertasi, Federico; Polizzi, Stefano; Di Noto, Vito

    2015-04-24

    Owing to the numerous benefits obtained when operating proton exchange membrane fuel cells at elevated temperature (>100 °C), the development of thermally stable proton exchange membranes that demonstrate conductivity under anhydrous conditions remains a significant goal for fuel cell technology. This paper presents composite membranes consisting of poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI4N) impregnated with a ZrO2 nanofiller of varying content (ranging from 0 to 22 wt %). The structure-property relationships of the acid-doped and undoped composite membranes have been studied using thermogravimetric analysis, differential scanning calorimetry, dynamic mechanical analysis, wide-angle X-ray scattering, infrared spectroscopy, and broadband electrical spectroscopy. Results indicate that the level of nanofiller has a significant effect on the membrane properties. From 0 to 8 wt %, the acid uptake as well as the thermal and mechanical properties of the membrane increase. As the nanofiller level is increased from 8 to 22 wt % the opposite effect is observed. At 185 °C, the ionic conductivity of [PBI4N(ZrO2 )0.231 ](H3 PO4 )13 is found to be 1.04×10(-1)  S cm(-1) . This renders membranes of this type promising candidates for use in high-temperature proton exchange membrane fuel cells.

  12. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    SciTech Connect

    Ingermann, R.L. )

    1989-09-01

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion.

  13. High temperature polymers for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Einsla, Brian Russel

    Novel proton exchange membranes (PEMs) were investigated that show potential for operating at higher temperatures in both direct methanol (DMFC) and H 2/air PEM fuel cells. The need for thermally stable polymers immediately suggests the possibility of heterocyclic polymers bearing appropriate ion conducting sites. Accordingly, monomers and random disulfonated poly(arylene ether) copolymers containing either naphthalimide, benzoxazole or benzimidazole moieties were synthesized via direct copolymerization. The ion exchange capacity (IEC) was varied by simply changing the ratio of disulfonated monomer to nonsulfonated monomer in the copolymerization step. Water uptake and proton conductivity of cast membranes increased with IEC. The water uptake of these heterocyclic copolymers was lower than that of comparable disulfonated poly(arylene ether) systems, which is a desirable improvement for PEMs. Membrane electrode assemblies were prepared and the initial fuel cell performance of the disulfonated polyimide and polybenzoxazole (PBO) copolymers was very promising at 80°C compared to the state-of-the-art PEM (NafionRTM); nevertheless these membranes became brittle under operating conditions. Several series of poly(arylene ether)s based on disodium-3,3'-disulfonate-4,4 '-dichlorodiphenylsulfone (S-DCDPS) and a benzimidazole-containing bisphenol were synthesized and afforded copolymers with enhanced stability. Selected properties of these membranes were compared to separately prepared miscible blends of disulfonated poly(arylene ether sulfone) copolymers and polybenzimidazole (PBI). Complexation of the sulfonic acid groups with the PBI structure reduced water swelling and proton conductivity. The enhanced proton conductivity of NafionRTM membranes has been proposed to be due to the aggregation of the highly acidic side-chain sulfonic acid sites to form ion channels. A series of side-chain sulfonated poly(arylene ether sulfone) copolymers based on methoxyhydroquinone was

  14. Elastic thickness compressibilty of the red cell membrane.

    PubMed

    Heinrich, V; Ritchie, K; Mohandas, N; Evans, E

    2001-09-01

    We have used an ultrasensitive force probe and optical interferometry to examine the thickness compressibility of the red cell membrane in situ. Pushed into the centers of washed-white red cell ghosts lying on a coverglass, the height of the microsphere-probe tip relative to its closest approach on the adjacent glass surface revealed the apparent material thickness, which began at approximately 90 nm per membrane upon detection of contact (force approximately 1-2 pN). With further impingement, the apparent thickness per membrane diminished over a soft compliant regime that spanned approximately 40 nm and stiffened on approach to approximately 50 nm under forces of approximately 100 pN. The same force-thickness response was obtained on recompression after retraction of the probe, which demonstrated elastic recoverability. Scaled by circumferences of the microspheres, the forces yielded energies of compression per area which exhibited an inverse distance dependence resembling that expected for flexible polymers. Attributed to the spectrin component of the membrane cytoskeleton, the energy density only reached one thermal energy unit (k(B)T) per spectrin tetramer near maximum compression. Hence, we hypothesized that the soft compliant regime probed in the experiments represented the compressibility of the outer region of spectrin loops and that the stiff regime < 50 nm was the response of a compact mesh of spectrin backed by a hardcore structure. To evaluate this hypothesis, we used a random flight theory for the entropic elasticity of polymer loops to model the spectrin network. We also examined the possibility that additional steric repulsion and apparent thickening could arise from membrane thermal-bending excitations. Fixing the energy scale to k(B)T/spectrin tetramer, the combined elastic response of a network of ideal polymer loops plus the membrane steric interaction correlated well with the measured dependence of energy density on distance for a statistical

  15. Molecular phylogeny of cycads inferred from rbcL sequences.

    PubMed

    Treutlein, Jens; Wink, Michael

    2002-05-01

    The chloroplast gene rbcL was sequenced to elucidate the evolution of the gymnosperm plant order Cycadales. In accordance with traditional systematics, the order Cycadales and the corresponding genera cluster as monophyletic clades. Among them, the genus Cycas forms a basal group. The genetic distances within the genus Encephalartos and between the sister groups Encephalartos, Lepidozamia and Macrozamia, are unexpectedly small, suggesting that the extant species are the result of Miocene and Pliocene speciation. Their distribution in Africa or Australia, respectively, may therefore rather be due to long-distance dispersal than to Cretaceous continental drift, as had previously been assumed. The rbcL sequences also indicate that the colonisation of Madagascar by Cycas thouarsii occurred only recently as the sequences of C. thouarsii and Cycas rumphii from Indonesia are identical. In contrast, the divergence of the Cycadaceae and Zamiaceae apparently occurred in the Mesozoic.

  16. Molecular phylogeny of cycads inferred from rbcL sequences

    NASA Astrophysics Data System (ADS)

    Treutlein, Jens; Wink, Michael

    2002-03-01

    The chloroplast gene rbcL was sequenced to elucidate the evolution of the gymnosperm plant order Cycadales. In accordance with traditional systematics, the order Cycadales and the corresponding genera cluster as monophyletic clades. Among them, the genus Cycas forms a basal group. The genetic distances within the genus Encephalartos and between the sister groups Encephalartos, Lepidozamia and Macrozamia, are unexpectedly small, suggesting that the extant species are the result of Miocene and Pliocene speciation. Their distribution in Africa or Australia, respectively, may therefore rather be due to long-distance dispersal than to Cretaceous continental drift, as had previously been assumed. The rbcL sequences also indicate that the colonisation of Madagascar by Cycas thouarsii occurred only recently as the sequences of C. thouarsii and Cycas rumphii from Indonesia are identical. In contrast, the divergence of the Cycadaceae and Zamiaceae apparently occurred in the Mesozoic.

  17. Water free proton conducting membranes based on poly-4-vinylpyridinebisulfate for fuel cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Yen, Shiao-Pin S. (Inventor)

    2007-01-01

    Disclosed are methods for forming a water-free electrolyte membrane useful in fuel cells. Also provided is a water-free electrolyte membrane comprising a quaternized amine salt including poly-4-vinylpyridinebisulfate, a poly-4-vinylpyridinebisulfate silica composite, and a combination thereof and a fuel cell comprising the membrane.

  18. Heat sources in proton exchange membrane (PEM) fuel cells

    NASA Astrophysics Data System (ADS)

    Ramousse, Julien; Lottin, Olivier; Didierjean, Sophie; Maillet, Denis

    In order to model accurately heat transfer in PEM fuel cell, a particular attention had to be paid to the assessment of heat sources in the cell. Although the total amount of heat released is easily computed from its voltage, local heat sources quantification and localization are not simple. This paper is thus a discussion about heat sources/sinks distribution in a single cell, for which many bold assumptions are encountered in the literature. The heat sources or sinks under consideration are: (1) half-reactions entropy, (2) electrochemical activation, (3) water sorption/desorption at the GDL/membrane interfaces, (4) Joule effect in the membrane and (5) water phase change in the GDL. A detailed thermodynamic study leads to the conclusion that the anodic half-reaction is exothermic (Δ Sr ev a = - 226 J mo l-1 K-1) , instead of being athermic as supposed in most of the thermal studies. As a consequence, the cathodic half-reaction is endothermic (Δ Sr ev c = + 62.8 J mo l-1 K-1) , which results in a heat sink at the cathode side, proportional to the current. In the same way, depending on the water flux through the membrane, sorption can create a large heat sink at one electrode and an equivalent heat source at the other. Water phase change in the GDL - condensation/evaporation - results in heat sources/sinks that should also be taken into account. All these issues are addressed in order to properly set the basis of heat transfer modeling in the cell.

  19. The effect of platinum in a Nafion membrane on the durability of the membrane under fuel cell conditions

    NASA Astrophysics Data System (ADS)

    Zhao, D.; Yi, B. L.; Zhang, H. M.; Liu, Meilin

    The effect of platinum on free radical generation and membrane degradation in proton exchange membrane (PEM) fuel cells is investigated using three typical cell configurations. Examinations of the fluoride emission rates (FERs) under different testing conditions indicate that platinum deposited in the membrane plays an important role as a catalytic center for the formation of H 2O 2 and HO rad free radicals, leading to PEM degradation. The chemical durability of the membranes is tested in accelerated Fenton tests. It confirms the formation of free radicals in the presence of platinum in the decomposition of H 2O 2 by colorimetric method with dimethyl sulfoxide (DMSO) as the trapping agent. In addition, structural and morphological changes of the membranes are characterized using FT-IR spectroscopy and scanning electron microscopy (SEM).

  20. Triggering of erythrocyte cell membrane scrambling by salinomycin.

    PubMed

    Bissinger, Rosi; Malik, Abaid; Jilani, Kashif; Lang, Florian

    2014-11-01

    Salinomycin, a polyether ionophore antibiotic effective against a variety of pathogens, has been shown to trigger apoptosis of cancer cells and cancer stem cells. The substance is thus considered for the treatment of malignancy. Salinomycin compromises tumour cell survival at least in part by interference with mitochondrial function. Erythrocytes lack mitochondria but may undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Signalling involved in the triggering of eryptosis includes activation of oxidant-sensitive Ca(2+) permeable cation channels with subsequent increase in cytosolic Ca(2+) activity ([Ca(2+)]i). This study explored whether salinomycin stimulates eryptosis. Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin-V binding, cell volume was estimated from forward scatter, haemolysis determined from haemoglobin release, [Ca(2+)]i quantified utilizing Fluo3-fluorescence and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence in flow cytometry. A 48-hr exposure to salinomycin (5-100 nM) was followed by a significant increase in Fluo3-fluorescence, DCFDA fluorescence and annexin-V binding, as well as a significant decrease in forward scatter (at 5-10 nM, but not at 50 and 100 nM). The annexin-V binding after salinomycin treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+) or in the presence of antioxidant n-acetyl cysteine (1 mM). Salinomycin triggers cell membrane scrambling, an effect at least partially due to oxidative stress and entry of extracellular Ca(2+).

  1. ACME: automated cell morphology extractor for comprehensive reconstruction of cell membranes.

    PubMed

    Mosaliganti, Kishore R; Noche, Ramil R; Xiong, Fengzhu; Swinburne, Ian A; Megason, Sean G

    2012-01-01

    The quantification of cell shape, cell migration, and cell rearrangements is important for addressing classical questions in developmental biology such as patterning and tissue morphogenesis. Time-lapse microscopic imaging of transgenic embryos expressing fluorescent reporters is the method of choice for tracking morphogenetic changes and establishing cell lineages and fate maps in vivo. However, the manual steps involved in curating thousands of putative cell segmentations have been a major bottleneck in the application of these technologies especially for cell membranes. Segmentation of cell membranes while more difficult than nuclear segmentation is necessary for quantifying the relations between changes in cell morphology and morphogenesis. We present a novel and fully automated method to first reconstruct membrane signals and then segment out cells from 3D membrane images even in dense tissues. The approach has three stages: 1) detection of local membrane planes, 2) voting to fill structural gaps, and 3) region segmentation. We demonstrate the superior performance of the algorithms quantitatively on time-lapse confocal and two-photon images of zebrafish neuroectoderm and paraxial mesoderm by comparing its results with those derived from human inspection. We also compared with synthetic microscopic images generated by simulating the process of imaging with fluorescent reporters under varying conditions of noise. Both the over-segmentation and under-segmentation percentages of our method are around 5%. The volume overlap of individual cells, compared to expert manual segmentation, is consistently over 84%. By using our software (ACME) to study somite formation, we were able to segment touching cells with high accuracy and reliably quantify changes in morphogenetic parameters such as cell shape and size, and the arrangement of epithelial and mesenchymal cells. Our software has been developed and tested on Windows, Mac, and Linux platforms and is available

  2. Characteristics of Subfreezing Operation of Polymer Electrolyte Membrane Fuel Cells

    NASA Astrophysics Data System (ADS)

    Mishler, Jeffrey Harris

    Polymer Electrolyte Membrane (PEM) Fuel Cells are capable of high efficiency operation, and are free of NOx, SOx, and CO2 emissions when using hydrogen fuel, and ideally suited for use in transportation applications due to their high power density and low operating temperatures. However, under subfreezing conditions which may be encountered during winter seasons in some areas, product water will freeze within the membrane, cathode side catalyst layer and gas diffusion media, leading to voltage loss and operation failure. Experiments were undertaken in order to characterize the amount and location of water during fuel cell operation. First, in-situ neutron radiography was undertaken on the fuel cells at a normal operating temperature for various operating current densities, inlet relative humidities, and diffusion media hydrophobicities. It was found that more hydrophobic cathode microporous layer (MPL) or hydrophilic anode MPL may result in a larger amount of water transporting back to the anode. The water profiles along the channels were measured and the point of liquid water emergence, where two phase flow begins, was compared to previous models. Secondly, under subfreezing temperatures, neutron imaging showed that water ice product accumulates because of lack of a water removal mechanism. Water was observed under both the lands and channels, and increased almost linearly with time. It is found that most ice exists in the cathode side. With evidence from experimental observation, a cold start model was developed and explained, following existing approaches in the literature. Three stages of cold start are explained: membrane saturation, ice storage in catalyst layer pores, and then ice melting. The voltage losses due to temperature change, increased transport resistance, and reduced electrochemical surface area. The ionic conductivity of the membrane at subfreezing temperatures was modeled. Voltage evolution over time for isothermal cold starts was predicted and

  3. [The sodium-potassium-chloride cotransport of the cell membrane].

    PubMed

    Urazaev, A Kh

    1998-01-01

    Discovery and active exploration of the furosemid-sensitive derived-active co-transport of sodium-potassium-chlorine ions took place in the end of 1970-es-1980-es. This transportation mechanism was discovered in various types of cells, both of plant and of animal origin. This review describes properties of the transportation process, which was most comprehensive explored in experiments with erythrocytes, epithelium cells and muscles. The review covers the following properties: anion and cation selectivity of the chlorine transportation, its sensitivity to the specific blocking agents (furocemid, bumetanid, etc.), stoichiometry of the transportation process, etc. For energy source, the chlorine transportation is based on transmembrane electrochemical gradient for sodium ions. The article provides the most recent results of investigation of the chemical nature of the molecule of the chlorine membrane transport. Based on various studies, the molecule of this protein weighs from 120 to 200 kD, includes about 1200 amino acid residua, and forms long cytoplasmatic NH2 and COOH-termini. The gene encoding the amino acid sequence has been cloned. The article discusses the issues of regulation of the chlorine transportation. Humoral control of intensity of the chlorine transportation has been mostly studied in experiments with plain muscles, the issues related to nervous regulation--with only skeleton muscle fibers. The article provides specific data on the mechanisms of the above types of the physiological regulation of active chlorine transportation. In general, the humoral factors, which increase the intracellular concentration of cAMF stimulate chlorine transportation. On the contrary, the hormones, which increase concentration of cGMF in cytoplasm reduce its activity in plain muscles. The discussion of the mechanisms of the nervous controls of the chlorine transportation in the skeleton muscles includes the original results of the author. These results indicate that the

  4. Major outer membrane proteins unique to reproductive cells of Hyphomonas jannaschiana.

    PubMed Central

    Shen, N; Dagasan, L; Sledjeski, D; Weiner, R M

    1989-01-01

    Separation on the basis of molecular weight resolved three proteins specific to the swarmer cell of Hyphomonas jannaschiana. In the reproductive cell, 4 major proteins were identified as cytoplasmic and 10 were identified as envelope. Of these envelope proteins, one was common to both the inner and outer membranes, four were common to the inner membrane, and five were common to the outer membrane. Four of these outer membrane proteins were specific to the reproductive cell, and two of these proteins, with apparent molecular weights of 116,000 and 29,000, constituted 19% of the total cell protein and 54% of the outer membrane protein. Images PMID:2703471

  5. Process for recycling components of a PEM fuel cell membrane electrode assembly

    DOEpatents

    Shore, Lawrence [Edison, NJ

    2012-02-28

    The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.

  6. Differentiation of membrane IgE+ rat B cells into IgE-secreting cells.

    PubMed Central

    Vanhove, B; Bazin, H

    1993-01-01

    Rat spleen cells were stimulated with pokeweed mitogen (PWM) and the IgM and IgE responses were assessed. An enrichment of the cell suspension with IgE-bearing cells before stimulation resulted in an increase in the number of IgE-secreting cells. A decrease of the number of IgE-secreting cells was found after depletion of IgE- or IgM-bearing cells, but not those bearing IgD molecules on their membranes, before stimulation. Moreover, the stimulation of membrane IgE on B cells with anti-IgE antibodies was shown to increase the number of IgE-secreting cells after PWM-induced differentiation in vitro. In vivo, it was also observed that a single injection of anti-IgE antibodies can induce the differentiation of IgE-secreting cells. These results demonstrate the presence of IgE(+)-IgM (+)-IgD- B cells in the rat that are responsive to PWM-induced differentiation into IgE-secreting cells. They indicate a pre-commitment of these cells at a stage where they still express IgM on their surface. IgE molecules on the cell membranes play a role in their differentiation. PMID:8406582

  7. Quantifying morphological alteration of RBC population from light scattering data.