Science.gov

Sample records for cell regulatory function

  1. Mechanisms of T regulatory cell function.

    PubMed

    Askenasy, Nadir; Kaminitz, Ayelet; Yarkoni, Shai

    2008-05-01

    Regulatory T cells (Treg) play a pivotal role in tolerance to self-antigens and tissue grafts, and suppression of autoimmune reactions. These cells modulate the intensity and quality of immune reactions through attenuation of the cytolytic activities of reactive immune cells. Treg cells operate primarily at the site of inflammation where they modulate the immune reaction through three major mechanisms: a) direct killing of cytotoxic cells through cell-to-cell contact, b) inhibition of cytokine production by cytotoxic cells, in particular interleukin-2, c) direct secretion of immunomodulatory cytokines, in particular TGF-beta and interleukin-10. In addition to differential contributions of these mechanisms under variable inflammatory conditions, mechanistic complexity and diversity evolves from the diverse tasks performed by various Treg cell subsets in different stages of the immune reaction. Here we attempt to integrate the current experimental evidence to delineate the major suppressive pathways of Treg cells.

  2. Regulatory Functions of Natural Killer Cells in Multiple Sclerosis

    PubMed Central

    Gross, Catharina C.; Schulte-Mecklenbeck, Andreas; Wiendl, Heinz; Marcenaro, Emanuela; Kerlero de Rosbo, Nicole; Uccelli, Antonio; Laroni, Alice

    2016-01-01

    There is increasing evidence that natural killer (NK) cells exhibit regulatory features. Among them, CD56bright NK cells have been suggested to play a major role in controlling T cell responses and maintaining homeostasis. Dysfunction in NK cell-mediated regulatory features has been recently described in untreated multiple sclerosis (MS), suggesting a contribution to MS pathogenesis. Moreover, biological disease-modifying treatments effective in MS apparently enhance the frequencies and/or regulatory function of NK cells, further pointing toward an immunoprotective role of NK cells in MS. Here, we summarize the current knowledge on the regulatory functions of NK cells, based on their interactions with other cells belonging to the innate compartment, as well as with adaptive effector cells. We review the more recent data reporting disruption of NK cell/T cell interactions in MS and discuss how disease-modifying treatments for MS affect NK cells. PMID:28066417

  3. Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function

    PubMed Central

    Campbell, Pearl A.; Perez-Iratxeta, Carolina; Andrade-Navarro, Miguel A.; Rudnicki, Michael A.

    2007-01-01

    Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain ‘ES’ have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer. PMID:17579724

  4. Negative transcriptional regulatory element that functions in embryonal carcinoma cells.

    PubMed Central

    Ariizumi, K; Takahashi, H; Nakamura, M; Ariga, H

    1989-01-01

    We have cloned the polyomavirus mutant fPyF9, which persists in an episomal state in F9 embryonal carcinoma cells (K. Ariizumi and H. Ariga, Mol. Cell. Biol. 6:3920-3927, 1986). fPyF9 carries three copies of exogenous sequences, the prototype of which is a 21-base-pair repeat (box DNA), in the region of the enhancer B domain of wild-type polyomavirus DNA. The consensus sequence, GCATTCCATTGTT, is 13 base pairs long. The box DNA inserted into fPyF9 appeared to come from a cellular sequence and was present in many kinds of DNAs, including F9 chromosomal DNA. The biological function of box DNA was analyzed by chloramphenicol acetyltransferase expression assays, using chimeric plasmids containing box DNA conjugated with simian virus 40 promoter elements. The results showed that box DNA repressed the activities both of the simian virus 40 promoter and enhancer only in transfected undifferentiated F9 cells and not in differentiated LTK- cells. Box DNA functioned independently of orientation and position with respect to the promoter in an enhancerlike manner, although the effect of box DNA was opposite that of the enhancer. The XhoI linker insertion into the consensus sequences of box DNA abolished the repression activity, and the protein(s) recognizing the consensus sequences was identified only in F9 cells, not in L cells. These analyses suggest that box DNA may be a negative regulatory element that functions in undifferentiated cells. Images PMID:2550812

  5. Development and function of Foxp3(+) regulatory T cells.

    PubMed

    Wang, Yuan Min; Ghali, Joanna; Zhang, Geoff Yu; Hu, Min; Wang, Ya; Sawyer, Andrew; Zhou, Jimmy Jianheng; Hapudeniya, Dhanushka A; Wang, Yiping; Cao, Qi; Zheng, Guoping; Harris, David C; Alexander, Stephen I

    2016-02-01

    Regulatory T cells (Tregs) have been recognized as having a major role in maintaining peripheral tolerance and preventing and limiting autoimmune and chronic inflammatory diseases. Tregs derive from the thymus and also develop peripherally. In this review, we discuss recent progress in our understanding of the basic mechanisms involved in Treg development and function in protecting against autoimmunity in the periphery, including thymic selection, peripheral induction and the many mechanisms of Treg suppression. Specifically in kidney disease, Tregs have been shown to play a role in limiting injury and may potentially have a therapeutic role.

  6. T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function

    PubMed Central

    Li, Ming O.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074

  7. Control of Regulatory T Cell Migration, Function, and Homeostasis.

    PubMed

    Campbell, Daniel J

    2015-09-15

    Foxp3(+) regulatory T cells (Tregs) are essential for preventing autoimmunity and uncontrolled inflammation, and they modulate immune responses during infection and the development of cancer. Accomplishing these tasks requires the widespread distribution of Tregs in both lymphoid and nonlymphoid tissues, and the selective recruitment of Tregs to different tissue sites has emerged as a key checkpoint that controls tissue inflammation in autoimmunity, infection, and cancer development, as well as in the context of allograft acceptance or rejection. Additionally, Tregs are functionally diverse, and it has become clear that some of this diversity segregates with Treg localization to particular tissue sites. In this article, I review the progress in understanding the mechanisms of Treg trafficking and discuss factors controlling their homeostatic maintenance and function in distinct tissue sites.

  8. Regulatory T cells require TCR signaling for their suppressive function.

    PubMed

    Schmidt, Amanda M; Lu, Wen; Sindhava, Vishal J; Huang, Yanping; Burkhardt, Janis K; Yang, Enjun; Riese, Matthew J; Maltzman, Jonathan S; Jordan, Martha S; Kambayashi, Taku

    2015-05-01

    Regulatory T cells (Tregs) are a subset of CD4(+) T cells that maintain immune tolerance in part by their ability to inhibit the proliferation of conventional CD4(+) T cells (Tconvs). The role of the TCR and the downstream signaling pathways required for this suppressive function of Tregs are not fully understood. To yield insight into how TCR-mediated signals influence Treg suppressive function, we assessed the ability of Tregs with altered TCR-mediated signaling capacity to inhibit Tconv proliferation. Mature Tregs deficient in Src homology 2 domain containing leukocyte protein of 76 kDa (SLP-76), an adaptor protein that nucleates the proximal signaling complex downstream of the TCR, were unable to inhibit Tconv proliferation, suggesting that TCR signaling is required for Treg suppressive function. Moreover, Tregs with defective phospholipase C γ (PLCγ) activation due to a Y145F mutation of SLP-76 were also defective in their suppressive function. Conversely, enhancement of diacylglycerol-mediated signaling downstream of PLCγ by genetic ablation of a negative regulator of diacylglycerol kinase ζ increased the suppressive ability of Tregs. Because SLP-76 is also important for integrin activation and signaling, we tested the role of integrin activation in Treg-mediated suppression. Tregs lacking the adaptor proteins adhesion and degranulation promoting adapter protein or CT10 regulator of kinase/CT10 regulator of kinase-like, which are required for TCR-mediated integrin activation, inhibited Tconv proliferation to a similar extent as wild-type Tregs. Together, these data suggest that TCR-mediated PLCγ activation, but not integrin activation, is required for Tregs to inhibit Tconv proliferation.

  9. Introduction: characterization and functions of human T regulatory cells.

    PubMed

    Romagnani, Sergio

    2005-06-01

    The field of human T regulatory (Treg) cells is a rapidly progressing, but still confused field of immunology. The effects of dendritic cell (DC) manipulation in Treg generation and the main features of human "natural" Treg cells, as well as of different populations of adaptive Treg subsets, are still partially unclear. However, it is clear that Treg cells play an important role in human diseases, such as autoimmune disorders, allergy, HIV infection, tumors and graft-versus-host disease.

  10. Regulatory immune cells and functions in autoimmunity and transplantation immunology.

    PubMed

    Papp, Gabor; Boros, Peter; Nakken, Britt; Szodoray, Peter; Zeher, Margit

    2017-03-07

    In physiological circumstances, various tolerogenic mechanisms support the protection of self-structures during immune responses. However, quantitative and/or qualitative changes in regulatory immune cells and mediators can evoke auto-reactive immune responses, and upon susceptible genetic background, along with the presence of other concomitant etiological factors, autoimmune disease may develop. In transplant immunology, tolerogenic mechanisms are also critical, since the balance between of alloantigen-reactive effector cells and the regulatory immune cells will ultimately determine whether a graft is accepted or rejected. Better understanding of the immunological tolerance and the potential modulations of immune regulatory processes are crucial for developing effective therapies in autoimmune diseases as well as in organ transplantation. In this review, we focus on the novel insights regarding the impaired immune regulation and other relevant factors contributing to the development of auto-reactive and graft-reactive immune responses in autoimmune diseases and transplant rejection, respectively. We also address some promising approaches for modification of immune-regulatory processes and tolerogenic mechanisms in autoimmunity and solid organ transplantation, which may be beneficial in future therapeutic strategies.

  11. Generation and Function of Induced Regulatory T Cells

    PubMed Central

    Schmitt, Erica G.; Williams, Calvin B.

    2013-01-01

    CD4+ CD25+ Foxp3+ regulatory T (Treg) cells are essential to the balance between pro- and anti-inflammatory responses. There are two major subsets of Treg cells, “natural” Treg (nTreg) cells that develop in the thymus, and “induced” Treg (iTreg) cells that arise in the periphery from CD4+ Foxp3− conventional T cells and can be generated in vitro. Previous work has established that both subsets are required for immunological tolerance. Additionally, in vitro-derived iTreg cells can reestablish tolerance in situations where Treg cells are decreased or defective. This review will focus on iTreg cells, drawing comparisons to nTreg cells when possible. We discuss the molecular mechanisms of iTreg cell induction, both in vivo and in vitro, review the Foxp3-dependent and -independent transcriptional landscape of iTreg cells, and examine the proposed suppressive mechanisms utilized by each Treg cell subset. We also compare the T cell receptor repertoire of the Treg cell subsets, discuss inflammatory conditions where iTreg cells are generated or have been used for treatment, and address the issue of iTreg cell stability. PMID:23801990

  12. Diverse Gene Expression in Human Regulatory T Cell Subsets Uncovers Connection between Regulatory T Cell Genes and Suppressive Function.

    PubMed

    Hua, Jing; Davis, Scott P; Hill, Jonathan A; Yamagata, Tetsuya

    2015-10-15

    Regulatory T (Treg) cells have a critical role in the control of immunity, and their diverse subpopulations may allow adaptation to different types of immune responses. In this study, we analyzed human Treg cell subpopulations in the peripheral blood by performing genome-wide expression profiling of 40 Treg cell subsets from healthy donors. We found that the human peripheral blood Treg cell population is comprised of five major genomic subgroups, represented by 16 tractable subsets with a particular cell surface phenotype. These subsets possess a range of suppressive function and cytokine secretion and can exert a genomic footprint on target effector T (Teff) cells. Correlation analysis of variability in gene expression in the subsets identified several cell surface molecules associated with Treg suppressive function, and pharmacological interrogation revealed a set of genes having causative effect. The five genomic subgroups of Treg cells imposed a preserved pattern of gene expression on Teff cells, with a varying degree of genes being suppressed or induced. Notably, there was a cluster of genes induced by Treg cells that bolstered an autoinhibitory effect in Teff cells, and this induction appears to be governed by a different set of genes than ones involved in counteracting Teff activation. Our work shows an example of exploiting the diversity within human Treg cell subpopulations to dissect Treg cell biology.

  13. Regulatory Roles of Fluctuation-Driven Mechanotransduction in Cell Function.

    PubMed

    Suki, Béla; Parameswaran, Harikrishnan; Imsirovic, Jasmin; Bartolák-Suki, Erzsébet

    2016-09-01

    Cells in the body are exposed to irregular mechanical stimuli. Here, we review the so-called fluctuation-driven mechanotransduction in which stresses stretching cells vary on a cycle-by-cycle basis. We argue that such mechanotransduction is an emergent network phenomenon and offer several potential mechanisms of how it regulates cell function. Several examples from the vasculature, the lung, and tissue engineering are discussed. We conclude with a list of important open questions.

  14. B Cells with Regulatory Function in Animal Models of Autoimmune and Non-Autoimmune Diseases.

    PubMed

    Lin, Mei; Wang, Zuomin; Han, Xiaozhe

    2015-03-01

    Although the identification of B cell subsets with negative regulatory functions and the definition of their mechanisms of action are recent events, the important negative regulatory roles of B cells in immune responses are now broadly recognized. There is an emerging appreciation for the pivotal role played by B cells in several areas of human diseases including autoimmune diseases and non-autoimmune diseases such as parasite infections and cancer. The recent research advancement of regulatory B cells in human disease coincides with the vastly accelerated pace of research on the bridging of innate and adaptive immune system. Current study and our continued research may provide better understanding of the mechanisms that promote regulatory B10 cell function to counteract exaggerated immune activation in autoimmune as well as non-autoimmune conditions. This review is focused on the current knowledge of BREG functions studied in animal models of autoimmune and non-autoimmune diseases.

  15. Accumulation of peripheral autoreactive B cells in the absence of functional human regulatory T cells

    PubMed Central

    Kinnunen, Tuure; Chamberlain, Nicolas; Morbach, Henner; Choi, Jinyoung; Kim, Sangtaek; Craft, Joseph; Mayer, Lloyd; Cancrini, Caterina; Passerini, Laura; Bacchetta, Rosa; Ochs, Hans D.; Torgerson, Troy R.

    2013-01-01

    Regulatory T cells (Tregs) play an essential role in preventing autoimmunity. Mutations in the forkhead box protein 3 (FOXP3) gene, which encodes a transcription factor critical for Treg function, result in a severe autoimmune disorder and the production of various autoantibodies in mice and in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked) patients. However, it is unknown whether Tregs normally suppress autoreactive B cells. To investigate a role for Tregs in maintaining human B-cell tolerance, we tested the reactivity of recombinant antibodies isolated from single B cells isolated from IPEX patients. Characteristics and reactivity of antibodies expressed by new emigrant/transitional B cells from IPEX patients were similar to those from healthy donors, demonstrating that defective Treg function does not impact central B-cell tolerance. In contrast, mature naive B cells from IPEX patients often expressed autoreactive antibodies, suggesting an important role for Tregs in maintaining peripheral B-cell tolerance. T cells displayed an activated phenotype in IPEX patients, including their Treg-like cells, and showed up-regulation of CD40L, PD-1, and inducibl T-cell costimulator (ICOS), which may favor the accumulation of autoreactive mature naive B cells in these patients. Hence, our data demonstrate an essential role for Tregs in the establishment and the maintenance of peripheral B-cell tolerance in humans. PMID:23223361

  16. Regulatory T cell memory

    PubMed Central

    Rosenblum, Michael D.; Way, Sing Sing; Abbas, Abul K.

    2016-01-01

    Memory for antigen is a defining feature of adaptive immunity. Antigen-specific lymphocyte populations show an increase in number and function after antigen encounter and more rapidly re-expand upon subsequent antigen exposure. Studies of immune memory have primarily focused on effector B cells and T cells with microbial specificity, using prime challenge models of infection. However, recent work has also identified persistently expanded populations of antigen-specific regulatory T cells that protect against aberrant immune responses. In this Review, we consider the parallels between memory effector T cells and memory regulatory T cells, along with the functional implications of regulatory memory in autoimmunity, antimicrobial host defence and maternal fetal tolerance. In addition, we discuss emerging evidence for regulatory T cell memory in humans and key unanswered questions in this rapidly evolving field. PMID:26688349

  17. Multiple sclerosis associated genetic variants of CD226 impair regulatory T cell function.

    PubMed

    Piédavent-Salomon, Melanie; Willing, Anne; Engler, Jan Broder; Steinbach, Karin; Bauer, Simone; Eggert, Britta; Ufer, Friederike; Kursawe, Nina; Wehrmann, Sabine; Jäger, Jan; Reinhardt, Stefanie; Friese, Manuel A

    2015-11-01

    Recent association studies have linked numerous genetic variants with an increased risk for multiple sclerosis, although their functional relevance remains largely unknown. Here we investigated phenotypical and functional consequences of a genetic variant in the CD226 gene that, among other autoimmune diseases, predisposes to multiple sclerosis. Phenotypically, effector and regulatory CD4(+) memory T cells of healthy individuals carrying the predisposing CD226 genetic variant showed, in comparison to carriers of the protective variant, reduced surface expression of CD226 and an impaired induction of CD226 after stimulation. This haplotype-dependent reduction in CD226 expression on memory T cells was abrogated in patients with multiple sclerosis, as CD226 expression was comparable to healthy risk haplotype carriers irrespective of genetic variant. Functionally, FOXP3-positive regulatory T cells from healthy carriers of the genetic protective variant showed superior suppressive capacity, which was again abrogated in multiple sclerosis patients. Mimicking the phenotype of human CD226 genetic risk variant carriers, regulatory T cells derived from Cd226-deficient mice showed similarly reduced inhibitory activity, eventually resulting in an exacerbated disease course of experimental autoimmune encephalomyelitis, the animal model of multiple sclerosis. Therefore, by combining human and mouse analyses we show that CD226 exhibits an important role in the activation of regulatory T cells, with its genetically imposed dysregulation impairing regulatory T cell function.

  18. An essential role for IL-2 receptor in regulatory T cell function

    PubMed Central

    Levine, Andrew G; Fan, Xiying; Klein, Ulf; Zheng, Ye; Gasteiger, Georg; Feng, Yongqiang; Fontenot, Jason D.; Rudensky, Alexander Y.

    2016-01-01

    Regulatory T (Treg) cells, expressing abundant amounts of the IL-2 receptor (IL-2R), are reliant on IL-2 produced by activated T cells. This feature implied a key role for a simple network based on IL-2 consumption by Treg cells in their suppressor function. However, congenital deficiency in IL-2R results in reduced expression of the Treg cell lineage specification factor Foxp3, confounding experimental efforts to understand the role of IL-2R expression and signaling in Treg suppressor function. Using genetic gain and loss of function approaches, we demonstrate that IL-2 capture is dispensable for control of CD4+ T cells, but is important for limiting CD8+ T cell activation, and that IL-2R dependent STAT5 transcription factor activation plays an essential role in Treg cell suppressor function separable from T cell receptor signaling. PMID:27595233

  19. Affinity for self antigen selects regulatory T cells with distinct functional properties

    PubMed Central

    Wyss, Lena; Stadinski, Brian D.; King, Carolyn G.; Schallenberg, Sonja; McCarthy, Nicholas I.; Lee, Jun Young; Kretschmer, Karsten; Terracciano, Luigi M.; Anderson, Graham; Surh, Charles D.; Huseby, Eric S.; Palmer, Ed

    2016-01-01

    How regulatory T cells (Treg cell) control lymphocyte homeostasis is not fully understood. Here we identify two Treg cell populations with differing degrees of self-reactivity and distinct regulatory functions. Triplehi (GITRhiPD-1hiCD25hi) Treg cell are highly self-reactive and control lympho-proliferation in peripheral lymph nodes. Triplelo (GITRloPD-1loCD25lo) Treg cells are less self-reactive and limit development of colitis by promoting conversion of CD4+ Tconv cells into induced Treg cells (iTreg cells). Although Foxp3-deficient (scurfy) mice lack Treg cells, they contain Triplehi-like and Triplelo-like CD4+ T cells with distinct pathological properties. Scurfy TriplehiCD4+T cells infiltrate the skin whereas scurfy TripleloCD4+T cells induce colitis and wasting disease. These findings indicate that T cell receptor affinity for self-antigens drives the differentiation of Tregs into distinct subsets with non-overlapping regulatory activities. PMID:27478940

  20. Loss of B cell regulatory function is associated with delayed healing in patients with tibia fracture.

    PubMed

    Yang, Shufeng; Ding, Wei; Feng, Dapeng; Gong, Haiyang; Zhu, Dongmei; Chen, Bin; Chen, Jianmin

    2015-11-01

    The process of bone regeneration after fracture is a complex and well-orchestrated process usually requiring 3-12 weeks. A subset of patients, however, exhibit delayed healing time and even incomplete restoration of the normal bone structure. Although the precise mechanism is unknown, studies have shown that smurf1 may play a role during the process. Here, we sought to determine the involvement of the immune system in impaired bone healing. We found that immediately after fracture, the B-cell composition was shifted toward increased frequency of plasmablasts and decreased frequency of naïve B cells, reflecting higher inflammatory status. The percentage of CD19(+) CD24(+) CD38(+) regulatory B cells was also upregulated in response to bone fracture. The production of IL-10, a pivotal cytokine in regulatory B-cell function, was upregulated in all patients. Interestingly, the increase in IL-10 production was only sustained throughout the healing course in normal healing patients but not in delayed healing patients. Rather, delayed healing patients downregulated B-cell IL-10 secretion early and had reduced level of regulatory B-cell activity. Together, these data revealed a role of regulatory B cells in the endogenous bone regeneration process and an alternation in B-cell-mediated regulation in delayed healing patients.

  1. Inflammation-associated genes: risks and benefits to Foxp3+ regulatory T-cell function.

    PubMed

    O'Connor, Richard A; Anderton, Stephen M

    2015-10-01

    Foxp3(+) regulatory T (Treg) cells prevent the development of autoimmunity and immunopathology, as well as maintaining homeostasis and tolerance to commensal microorganisms. The suppressive activity of Treg cells is their defining characteristic, generating great interest in their therapeutic potential. However, suppressive and effector functions are not entirely exclusive. Considerable evidence points to the ability of supposedly anti-inflammatory Foxp3-expressing Treg cells to also express transcription factors that have been characterized as cardinal drivers of T effector cell function. We will consider the mounting evidence that Treg cells can function in non-suppressive capacities and review the impetus for this functional change, its relevance to developing immune and autoimmune responses and its significance to the development of Treg-based therapies.

  2. TRAF3 regulates the effector function of regulatory T cells and humoral immune responses

    PubMed Central

    Chang, Jae-Hoon; Hu, Hongbo; Jin, Jin; Puebla-Osorio, Nahum; Xiao, Yichuan; Gilbert, Brian E.; Brink, Robert; Ullrich, Stephen E.

    2014-01-01

    Regulatory T cells (Treg cells) control different aspects of immune responses, but how the effector functions of Treg cells are regulated is incompletely understood. Here we identified TNF receptor–associated factor 3 (TRAF3) as a regulator of Treg cell function. Treg cell–specific ablation of TRAF3 impaired CD4 T cell homeostasis, characterized by an increase in the Th1 type of effector/memory T cells. Moreover, the ablation of TRAF3 in Treg cells resulted in increased antigen-stimulated activation of follicular T helper cells (TFH cells), coupled with heightened formation of germinal centers and production of high-affinity IgG antibodies. Although the loss of TRAF3 did not reduce the overall frequency of Treg cells, it attenuated the antigen-stimulated production of follicular Treg cells (TFR cells). TRAF3 signaling in Treg cells was required to maintain high level expression of inducible co-stimulator (ICOS), which in turn was required for TFR cell generation and inhibition of antibody responses. These findings establish TRAF3 as a mediator of Treg cell function in the regulation of antibody responses and suggest a role for TRAF3 in mediating ICOS expression in Treg cells. PMID:24378539

  3. LFA-1 is critical for regulatory T cell homeostasis and function.

    PubMed

    Wohler, Jillian; Bullard, Dan; Schoeb, Trent; Barnum, Scott

    2009-07-01

    Cellular adhesion molecules involved in cell-to-cell mediated suppression by Tregs are not well characterized. We found that the majority of Tregs expressed LFA-1 but most strikingly that the frequency of Tregs in LFA-1(-/-) mice was significantly lower (approximately 50%) in the spleen, lymph nodes, and Peyer's patches compared to wild type controls. The reduction in LFA-1(-/-) Treg cells appears due in part to a reduced capacity of LFA-1(-/-) CD4(+)CD25(-) cells to be induced to become Tregs in the lymph nodes. Importantly, we found that LFA-1(-/-) Tregs fail to suppress T cell responses in vitro and have reduced function in vivo. Treg-mediated suppression does not depend on LFA-1 interactions with ICAM-1 on the surface of responder cells. Our data demonstrate that LFA-1 plays a critical role in regulatory T cell homeostasis and function.

  4. Azacytidine Treatment Inhibits the Progression of Herpes Stromal Keratitis by Enhancing Regulatory T Cell Function.

    PubMed

    Varanasi, Siva Karthik; Reddy, Pradeep B J; Bhela, Siddheshvar; Jaggi, Ujjaldeep; Gimenez, Fernanda; Rouse, Barry T

    2017-04-01

    Ocular infection with herpes simplex virus 1 (HSV-1) sets off an inflammatory reaction in the cornea which leads to both virus clearance and chronic lesions that are orchestrated by CD4 T cells. Approaches that enhance the function of regulatory T cells (Treg) and dampen effector T cells can be effective to limit stromal keratitis (SK) lesion severity. In this report, we explore the novel approach of inhibiting DNA methyltransferase activity using 5-azacytidine (Aza; a cytosine analog) to limit HSV-1-induced ocular lesions. We show that therapy begun after infection when virus was no longer actively replicating resulted in a pronounced reduction in lesion severity, with markedly diminished numbers of T cells and nonlymphoid inflammatory cells, along with reduced cytokine mediators. The remaining inflammatory reactions had a change in the ratio of CD4 Foxp3(+) Treg to effector Th1 CD4 T cells in ocular lesions and lymphoid tissues, with Treg becoming predominant over the effectors. In addition, compared to those from control mice, Treg from Aza-treated mice showed more suppressor activity in vitro and expressed higher levels of activation molecules. Additionally, cells induced in vitro in the presence of Aza showed epigenetic differences in the Treg-specific demethylated region (TSDR) of Foxp3 and were more stable when exposed to inflammatory cytokines. Our results show that therapy with Aza is an effective means of controlling a virus-induced inflammatory reaction and may act mainly by the effects on Treg.IMPORTANCE HSV-1 infection has been shown to initiate an inflammatory reaction in the cornea that leads to tissue damage and loss of vision. The inflammatory reaction is orchestrated by gamma interferon (IFN-γ)-secreting Th1 cells, and regulatory T cells play a protective role. Hence, novel therapeutics that can rebalance the ratio of regulatory T cells to effectors are a relevant issue. This study opens up a new avenue in treating HSV-induced SK lesions by

  5. Notch signalling suppresses regulatory T-cell function in murine experimental autoimmune uveitis.

    PubMed

    Rong, Hua; Shen, Hongjie; Xu, Yueli; Yang, Hai

    2016-12-01

    Autoimmune uveitis is an intraocular inflammatory disorder in developed countries. Understanding the mechanisms underlying the development and modulation of immune reaction in uveitic eyes is critical for designing therapeutic interventions. Here we investigated the role of Notch signalling in regulatory T-cell (Treg cell) function during experimental autoimmune uveitis (EAU). Using the Foxp3-GFP reporter mouse strain, the significance of Notch signalling for the function of infiltrating Treg cells was characterized in an EAU model. We found that infiltrating Treg cells substantially expressed Notch-1, Notch-2, JAG1 and DLL1 in uveitic eyes. Activation of Notch signalling, represented by expression of HES1 and HES5, was enhanced in infiltrating Treg cells. Treatment with JAG1 and DLL1 down-regulated Foxp3 expression and immunosuppressive activity of isolated infiltrating Treg cells in vitro, whereas neutralizing antibodies against JAG1 and DLL1 diminished Notch ligand-mediated negative effects on Treg cells. To investigate the significance of Notch signalling for Treg cell function in vivo, lentivirus-derived Notch short hairpin RNAs were transduced into in vitro expanded Treg cells before adoptive transfer of Treg cells into EAU mice. Transfer of Notch-1-deficient Treg cells remarkably reduced pro-inflammatory cytokine production and inflammatory cell infiltration in uveitic eyes. Taken together, Notch signalling negatively modulates the immunosuppressive function of infiltrating Treg cells in mouse EAU.

  6. Haspin has Multiple Functions in the Plant Cell Division Regulatory Network.

    PubMed

    Kozgunova, Elena; Suzuki, Takamasa; Ito, Masaki; Higashiyama, Tetsuya; Kurihara, Daisuke

    2016-04-01

    Progression of cell division is controlled by various mitotic kinases. In animal cells, phosphorylation of histone H3 at Thr3 by the kinase Haspin (haploid germ cell-specific nuclear protein kinase) promotes centromeric Aurora B localization to regulate chromosome segregation. However, less is known about the function of Haspin in regulatory networks in plant cells. Here, we show that inhibition of Haspin with 5-iodotubercidin (5-ITu) in Bright Yellow-2 (BY-2) cells delayed chromosome alignment. Haspin inhibition also prevented the centromeric localization of Aurora3 kinase (AUR3) and disrupted its function. This suggested that Haspin plays a role in the specific positioning of AUR3 on chromosomes in plant cells, a function conserved in animals. The results also indicated that Haspin and AUR3 are involved in the same pathway, which regulates chromosome alignment during prometaphase/metaphase. Remarkably, Haspin inhibition by 5-ITu also led to a severe cytokinesis defect, resulting in binuclear cells with a partially formed cell plate. The 5-ITu treatment did not affect microtubules, AUR1/2 or the NACK-PQR pathway; however, it did alter the distribution of actin filaments on the cell plate. Together, these results suggested that Haspin has several functions in regulating cell division in plant cells: in the localization of AUR3 on centromeres and in regulating late cell plate expansion during cytokinesis.

  7. The role of pregnancy-associated hormones in the development and function of regulatory B cells.

    PubMed

    Muzzio, Damián; Zygmunt, Marek; Jensen, Federico

    2014-01-01

    During mammalian pregnancy, highly specialized mechanisms of immune tolerance are triggered in order to allow the semi-allogeneic fetus to grow within the maternal uterus in harmony with the maternal immune system. Among other mechanisms, changes in the endocrine status have been proposed to be at least part of the machinery responsible for the induction of immune tolerance during pregnancy. Indeed, pregnancy-associated hormones, estradiol, progesterone, and human chorionic gonadotropin are known to confer immune suppressive capacity to innate as well as adaptive immune cells. Regulatory B cells, a subpopulation of B lymphocytes with strong immunosuppressive functions, were shown to expand during pregnancy. Furthermore, it is well-known that some women suffering from multiple sclerosis, significantly improve their symptoms during pregnancy and this was attributed to the effect of female sex hormones. Accordingly, estradiol protects mice from developing experimental autoimmune encephalomyelitis by triggering the expansion and activation of regulatory B cells. In this review, we discuss different mechanisms associated with the development, activation, and function of regulatory B cells with a special focus on those involving pregnancy-associated hormones.

  8. GITR ligand-costimulation activates effector and regulatory functions of CD4{sup +} T cells

    SciTech Connect

    Igarashi, Hanna; Cao, Yujia; Iwai, Hideyuki; Piao, Jinhua; Kamimura, Yosuke; Hashiguchi, Masaaki; Amagasa, Teruo; Azuma, Miyuki

    2008-05-16

    Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25{sup -}CD4{sup +} effector (Teff) and CD25{sup +}CD4{sup +} regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4{sup +} T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4{sup +} T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists.

  9. Regulatory T cells.

    PubMed

    Thompson, Claire; Powrie, Fiona

    2004-08-01

    Regulatory T (TR) cells are a subset of T cells that function to control immune responses. Different populations of TR cells have been described, including thymically derived CD4(+)CD25+ TR cells and Tr1 cells induced in the periphery through exposure to antigen. A transcription factor, Foxp3, has been identified that is essential for CD4(+)CD25+ TR cell development and function. There is now evidence that transforming growth factor-beta might play a role in this pathway. CD4(+)CD25+ TR cells proliferate extensively in vivo in an antigen-specific manner, and can respond to both self and foreign peptides. By suppressing excessive immune responses, TR cells play a key role in the maintenance of self-tolerance, thus preventing autoimmune disease, as well as inhibiting harmful inflammatory diseases such as asthma and inflammatory bowel disease.

  10. Impaired function of regulatory T cells in cord blood of children of allergic mothers.

    PubMed

    Hrdý, J; Kocourková, I; Prokešová, L

    2012-10-01

    Allergy is one of the most common diseases with constantly increasing incidence. The identification of prognostic markers pointing to increased risk of allergy development is of importance. Cord blood represents a suitable source of cells for searching for such prognostic markers. In our previous work, we described the increased reactivity of cord blood cells of newborns of allergic mothers in comparison to newborns of healthy mothers, which raised the question of whether or not this was due to the impaired function of regulatory T cells (T(regs)) in high-risk children. Therefore, the proportion and functional properties of T(regs) in cord blood of children of healthy and allergic mothers were estimated by flow cytometry. The proportion of T(regs) [CD4(+)CD25(high)CD127(low) forkhead box protein 3 (FoxP3(+))] in cord blood of children of allergic mothers tends to be higher while, in contrast, the median of fluorescence intensity of FoxP3 was increased significantly in the healthy group. Intracellular presence of regulatory cytokines interleukin (IL)-10 and transforming growth factor (TGF)-beta was also higher in T(regs) of children of healthy mothers. Although we detected an increased proportion of T(regs) in cord blood of children of allergic mothers, the functional indicators (intracellular presence of regulatory cytokines IL-10 and TGF-beta, median of fluorescence intensity of FoxP3) of those T(regs) were lower in comparison to the healthy group. We can conclude that impaired function of T(regs) in cord blood of children of allergic mothers could be compensated partially by their increased number. Insufficient function of T(regs) could facilitate allergen sensitization in high-risk individuals after subsequent allergen encounter.

  11. PKC-Theta in Regulatory and Effector T-cell Functions

    PubMed Central

    Brezar, Vedran; Tu, Wen Juan; Seddiki, Nabila

    2015-01-01

    One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs. PMID:26528291

  12. Origin and functions of pro-inflammatory cytokine producing Foxp3+ regulatory T cells.

    PubMed

    Pandiyan, Pushpa; Zhu, Jinfang

    2015-11-01

    CD4(+)CD25(+)Foxp3(+) regulatory cells (Tregs) are a special lineage of cells central in the maintenance of immune homeostasis, and are targeted for human immunotherapy. They are conventionally associated with the production of classical anti-inflammatory cytokines such as IL-10, TGF-β and IL-35, consistent to their anti-inflammatory functions. However, emerging evidence show that they also express effector cytokines such as IFN-γ and IL-17A under inflammatory conditions. While some studies reveal that these pro-inflammatory cytokine producing Foxp3(+) regulatory cells retain their suppressive ability, others believe that these cells are dys-regulated and are associated with perpetuation of immunopathology. Therefore the development of these cells may challenge the efficacy of human Treg therapy. Mechanistically, toll-like receptor (TLR) ligands and the pro-inflammatory cytokine milieu have been shown to play important roles in the induction of effector cytokines in Tregs. Here we review the mechanisms of development and the possible functions of pro-inflammatory cytokine producing Foxp3+ Tregs.

  13. Loss of Functionally Redundant p38 Isoforms in T Cells Enhances Regulatory T Cell Induction*

    PubMed Central

    Hayakawa, Morisada; Hayakawa, Hiroko; Petrova, Tsvetana; Ritprajak, Patcharee; Sutavani, Ruhcha V.; Jiménez-Andrade, Guillermina Yanek; Sano, Yasuyo; Choo, Min-Kyung; Seavitt, John; Venigalla, Ram K. C.; Otsu, Kinya; Georgopoulos, Katia; Arthur, J. Simon C.; Park, Jin Mo

    2017-01-01

    The evolutionarily conserved protein kinase p38 mediates innate resistance to environmental stress and microbial infection. Four p38 isoforms exist in mammals and may have been co-opted for new roles in adaptive immunity. Murine T cells deficient in p38α, the ubiquitously expressed p38 isoform, showed no readily apparent cell-autonomous defects while expressing elevated amounts of another isoform, p38β. Mice with T cells simultaneously lacking p38α and p38β displayed lymphoid atrophy and elevated Foxp3+ regulatory T cell frequencies. Double deficiency of p38α and p38β in naïve CD4+ T cells resulted in an attenuation of MAPK-activated protein kinase (MK)-dependent mTOR signaling after T cell receptor engagement, and enhanced their differentiation into regulatory T cells under appropriate inducing conditions. Pharmacological inhibition of the p38-MK-mTOR signaling module produced similar effects, revealing potential for therapeutic applications. PMID:28011639

  14. Hyperlipidemia Alters Regulatory T Cell Function and Promotes Resistance to Tolerance Induction Through Costimulatory Molecule Blockade

    PubMed Central

    Bagley, J.; Yuan, J.; Chandrakar, A.; Iacomini, J.

    2016-01-01

    Recent work from our laboratory has shown that hyperlipidemia promotes accelerated rejection of vascularized cardiac allografts in mice by inducing anti-donor Th17 reactivity and production of IL-17. Here, we show that hyperlipidemia also affects FoxP3+ regulatory T cells (Tregs). Hyperlipidemia promotes the development of Tregs that express low levels of CD25. Hyperlipidemia also promotes a decrease in central Tregs and an increase in effector Tregs that appears to account for the increase in the frequency of CD25low Tregs. Alterations in Treg subsets also appear to lead to alterations in Treg function. The ability of FoxP3+, CD25high, CD4+ Tregs from hyperlipidemic mice to inhibit proliferation of effector T cells stimulated with anti-CD3 and CD28 was reduced when compared with Tregs from control mice. Regulatory T cells isolated from hyperlipidemic recipients exhibit increased activation of Akt, and a reduction in Bim levels that permits the expansion of FoxP3+CD25lowCD4+ T cells. Hyperlipidemic mice were also resistant to tolerance induction using costimulatory molecule blockade consisting of anti-CD154 and CTLA4Ig, a strategy that requires Tregs. Together, our data suggest that hyperlipidemia profoundly affects Treg subsets and function as well as the ability to induce tolerance. PMID:26079467

  15. Interferon Regulatory Factor 4 controls TH1 cell effector function and metabolism

    PubMed Central

    Mahnke, Justus; Schumacher, Valéa; Ahrens, Stefanie; Käding, Nadja; Feldhoff, Lea Marie; Huber, Magdalena; Rupp, Jan; Raczkowski, Friederike; Mittrücker, Hans-Willi

    2016-01-01

    The transcription factor Interferon Regulatory Factor 4 (IRF4) is essential for TH2 and TH17 cell formation and controls peripheral CD8+ T cell differentiation. We used Listeria monocytogenes infection to characterize the function of IRF4 in TH1 responses. IRF4−/− mice generated only marginal numbers of listeria-specific TH1 cells. After transfer into infected mice, IRF4−/− CD4+ T cells failed to differentiate into TH1 cells as indicated by reduced T-bet and IFN-γ expression, and showed limited proliferation. Activated IRF4−/− CD4+ T cells exhibited diminished uptake of the glucose analog 2-NBDG, limited oxidative phosphorylation and strongly reduced aerobic glycolysis. Insufficient metabolic adaptation contributed to the limited proliferation and TH1 differentiation of IRF4−/− CD4+ T cells. Our study identifies IRF4 as central regulator of TH1 responses and cellular metabolism. We propose that this function of IRF4 is fundamental for the initiation and maintenance of all TH cell responses. PMID:27762344

  16. LFA-1 is Critical for Regulatory T cell Homeostasis and Function

    PubMed Central

    Wohler, Jillian; Bullard, Dan; Schoeb, Trent; Barnum, Scott

    2015-01-01

    Cellular adhesion molecules involved in cell-to-cell mediated suppression by Tregs are not well characterized. We found that the majority of Tregs expressed LFA-1 but most strikingly that the frequency of Tregs in LFA-1−/− mice was significantly lower (~50%) in the spleen, lymph nodes, and Peyer’s Patches compared to wild type controls. The reduction in LFA-1−/− Treg cells appears due in part to a reduced capacity of LFA-1−/− CD4+CD25− cells to be induced to become Tregs in the lymph nodes. Importantly, we found that LFA-1−/− Tregs fail to suppress T cell responses in vitro and have reduced function in vivo. Treg mediated-suppression does not depend on LFA-1 interactions with ICAM-1 on the surface of responder cells. Our data demonstrate that LFA-1 plays a critical role in regulatory T cell homeostasis and function. PMID:19428111

  17. Mechanisms of Regulatory B cell Function in Autoimmune and Inflammatory Diseases beyond IL-10

    PubMed Central

    Ray, Avijit; Dittel, Bonnie N.

    2017-01-01

    In the past two decades it has become clear that in addition to antigen presentation and antibody production B cells play prominent roles in immune regulation. While B cell-derived IL-10 has garnered much attention, B cells also effectively regulate inflammation by a variety of IL-10-independent mechanisms. B cell regulation has been studied in both autoimmune and inflammatory diseases. While collectively called regulatory B cells (Breg), no definitive phenotype has emerged for B cells with regulatory potential. This has made their study challenging and thus unique B cell regulatory mechanisms have emerged in a disease-dependent manner. Thus to harness the therapeutic potential of Breg, further studies are needed to understand how they emerge and are induced to evoke their regulatory activities. PMID:28124981

  18. CD4 T Follicular Helper and Regulatory Cell Dynamics and Function in HIV Infection

    PubMed Central

    Miles, Brodie; Miller, Shannon M.; Connick, Elizabeth

    2016-01-01

    T follicular helper cells (TFH) are a specialized subset of CD4 T cells that reside in B cell follicles and promote B cell maturation into plasma cells and long-lived memory B cells. During chronic infection prior to the development of AIDS, HIV-1 (HIV) replication is largely concentrated in TFH. Paradoxically, TFH numbers are increased in early and midstages of disease, thereby promoting HIV replication and disease progression. Despite increased TFH numbers, numerous defects in humoral immunity are detected in HIV-infected individuals, including dysregulation of B cell maturation, impaired somatic hypermutation, and low quality of antibody production despite hypergammaglobulinemia. Clinically, these defects are manifested by increased vulnerability to bacterial infections and impaired vaccine responses, neither of which is fully reversed by antiretroviral therapy (ART). Deficits in TFH function, including reduced HIV-specific IL-21 production and low levels of co-stimulatory receptor expression, have been linked to these immune impairments. Impairments in TFH likely contribute as well to the ability of HIV to persist and evade humoral immunity, particularly the inability to develop broadly neutralizing antibodies. In addition to direct infection of TFH, other mechanisms that have been linked to TFH deficits in HIV infection include upregulation of PD-L1 on germinal center B cells and augmented follicular regulatory T cell responses. Challenges to development of strategies to enhance TFH function in HIV infection include lack of an established phenotype for memory TFH as well as limited understanding of the relationship between peripheral TFH and lymphoid tissue TFH. Interventions to augment TFH function in HIV-infected individuals could enhance immune reconstitution during ART and potentially augment cure strategies. PMID:28082992

  19. The alarmin IL-33 promotes regulatory T-cell function in the intestine.

    PubMed

    Schiering, Chris; Krausgruber, Thomas; Chomka, Agnieszka; Fröhlich, Anja; Adelmann, Krista; Wohlfert, Elizabeth A; Pott, Johanna; Griseri, Thibault; Bollrath, Julia; Hegazy, Ahmed N; Harrison, Oliver J; Owens, Benjamin M J; Löhning, Max; Belkaid, Yasmine; Fallon, Padraic G; Powrie, Fiona

    2014-09-25

    FOXP3(+) regulatory T cells (Treg cells) are abundant in the intestine, where they prevent dysregulated inflammatory responses to self and environmental stimuli. It is now appreciated that Treg cells acquire tissue-specific adaptations that facilitate their survival and function; however, key host factors controlling the Treg response in the intestine are poorly understood. The interleukin (IL)-1 family member IL-33 is constitutively expressed in epithelial cells at barrier sites, where it functions as an endogenous danger signal, or alarmin, in response to tissue damage. Recent studies in humans have described high levels of IL-33 in inflamed lesions of inflammatory bowel disease patients, suggesting a role for this cytokine in disease pathogenesis. In the intestine, both protective and pathological roles for IL-33 have been described in murine models of acute colitis, but its contribution to chronic inflammation remains ill defined. Here we show in mice that the IL-33 receptor ST2 is preferentially expressed on colonic Treg cells, where it promotes Treg function and adaptation to the inflammatory environment. IL-33 signalling in T cells stimulates Treg responses in several ways. First, it enhances transforming growth factor (TGF)-β1-mediated differentiation of Treg cells and, second, it provides a necessary signal for Treg-cell accumulation and maintenance in inflamed tissues. Strikingly, IL-23, a key pro-inflammatory cytokine in the pathogenesis of inflammatory bowel disease, restrained Treg responses through inhibition of IL-33 responsiveness. These results demonstrate a hitherto unrecognized link between an endogenous mediator of tissue damage and a major anti-inflammatory pathway, and suggest that the balance between IL-33 and IL-23 may be a key controller of intestinal immune responses.

  20. THE INITIAL PHASE OF AN IMMUNE RESPONSE FUNCTIONS TO ACTIVATE REGULATORY T CELLS

    PubMed Central

    O’Gorman, William E.; Dooms, Hans; Thorne, Steve H.; Kuswanto, Wilson F.; Simonds, Erin F.; Krutzik, Peter O.; Nolan, Garry P.; Abbas, Abul K.

    2009-01-01

    An early reaction of CD4+ T lymphocytes to antigen is the production of cytokines, notably IL-2. In order to detect cytokine dependent responses, naive antigen-specific T cells were stimulated in vivo and the presence of phosphorylated STAT5 molecules was used to identify the cell populations responding to IL-2. Within hours of T-cell priming, IL-2-dependent STAT5 phosphorylation occurred primarily in Foxp3+ regulatory T cells. In contrast, the antigen-specific T cells received STAT5 signals only after repeated antigen exposure or memory differentiation. Regulatory T cells receiving IL-2 signals proliferated and developed enhanced suppressive activity. These results indicate that one of the earliest events in a T cell response is the activation of endogenous regulatory cells, potentially to prevent autoimmunity. PMID:19542444

  1. Impaired function of regulatory T-cells in patients with chronic obstructive pulmonary disease (COPD).

    PubMed

    Tan, Dino B A; Fernandez, Sonia; Price, Patricia; French, Martyn A; Thompson, Philip J; Moodley, Yuben P

    2014-12-01

    Anti-inflammatory pathways affecting chronic obstructive pulmonary disease (COPD) are poorly understood. Regulatory T-cells (Tregs) are important negative regulators of T-cell activity and hence were investigated in COPD patients in this study. We hypothesised that functional defects in Tregs may promote increased inflammation contributing to the pathogenesis of COPD. Peripheral blood mononuclear cells (PBMC) were isolated from patients with stable COPD and age-matched non-smoking controls. Treg-mediated suppression of memory non-Treg (Foxp3(-)CD45RO(+)) CD4(+) T-cell activation was analysed by comparing PBMC responses to staphylococcal enterotoxin-B (SEB) pre- and post-depletion of Tregs (CD25(+)CD127(low)CD4(+) T-cells) by fluorescence-activated cell sorting (FACS). Activation of T-cells was assessed by HLA-DR expression. Levels of secreted cytokines were measured by ELISA. Depletion of Tregs increased SEB-induced activation of Foxp3(-)CD45RO(+) CD4(+) T-cells in samples from 15/15 healthy controls (demonstrating Treg-mediated suppression) and 9/14 COPD patients (Fisher's test, p=0.017). A screen of clinical data associated a failure of Treg-mediated suppression in the remaining five COPD patients with a higher body mass index (BMI) (33-38 kg/m(2)) compared to patients with unimpaired Treg function (20-32 kg/m(2)). In conclusion, we demonstrate impaired Treg-mediated suppression of CD4(+) T-cell activation in a subset of COPD patients, all of whom had high BMI. Obesity and/or perturbed homeostasis of Treg subsets may explain this defect and therefore contribute to increased inflammation observed in COPD.

  2. Structural and biological features of FOXP3 dimerization relevant to regulatory T cell function

    PubMed Central

    Song, Xiaomin; Li, Bin; Xiao, Yan; Chen, Chunxia; Wang, Qiang; Liu, Yujie; Berezov, Alan; Xu, Chen; Gao, Yayi; Wu, Shiaw-Lin; Zhang, Hongtao; Karger, Barry L.; Hancock, Wayne W.; Wells, Andrew D.; Zhou, Zhaocai; Greene, Mark I.

    2012-01-01

    FOXP3 is a key transcription factor for regulatory T cell function. We report the crystal structure of the FOXP3 coiled coil domain, through which a loose or transient dimeric association is formed and modulated, accounting for the activity variations introduced by disease-causing mutations or posttranslational modifications. Structure-guided mutagenesis revealed that FOXP3 coiled coil mediated homo-dimerization is essential for Treg function in vitro and in vivo. In particular, we identified human FOXP3 K250 and K252 as key residues for the conformational change and stability of the FOXP3 dimer, which can be regulated by protein posttranslational modifications such as reversible lysine acetylation. These studies provide structural and mechanistic explanations for certain disease-causing mutations in the coiled coil domain of FOXP3 that are commonly found in IPEX syndrome. Overall the regulatory machinery involving homo-oligomerization, acetylation, and hetero-association has been dissected, defining atomic insights into the biological and pathological characteristics of the FOXP3 complex. PMID:22813742

  3. Reduced Numbers and Impaired Function of Regulatory T Cells in Peripheral Blood of Ischemic Stroke Patients

    PubMed Central

    Ruhnau, Johanna; Schulze, Juliane; von Sarnowski, Bettina; Heinrich, Marie; Langner, Sönke; Wilden, Anika; Kessler, Christof; Bröker, Barbara M.

    2016-01-01

    Background and Purpose. Regulatory T cells (Tregs) have been suggested to modulate stroke-induced immune responses. However, analyses of Tregs in patients and in experimental stroke have yielded contradictory findings. We performed the current study to assess the regulation and function of Tregs in peripheral blood of stroke patients. Age dependent expression of CD39 on Tregs was quantified in mice and men. Methods. Total FoxP3+ Tregs and CD39+FoxP3+ Tregs were quantified by flow cytometry in controls and stroke patients on admission and on days 1, 3, 5, and 7 thereafter. Treg function was assessed by quantifying the inhibition of activation-induced expression of CD69 and CD154 on T effector cells (Teffs). Results. Total Tregs accounted for 5.0% of CD4+ T cells in controls and <2.8% in stroke patients on admission. They remained below control values until day 7. CD39+ Tregs were most strongly reduced in stroke patients. On day 3 the Treg-mediated inhibition of CD154 upregulation on CD4+ Teff was impaired in stroke patients. CD39 expression on Treg increased with age in peripheral blood of mice and men. Conclusion. We demonstrate a loss of active FoxP3+CD39+ Tregs from stroke patient's peripheral blood. The suppressive Treg function of remaining Tregs is impaired after stroke. PMID:27073295

  4. Regulatory T cell transfer ameliorates lymphedema and promotes lymphatic vessel function

    PubMed Central

    Gousopoulos, Epameinondas; Proulx, Steven T.; Bachmann, Samia B.; Scholl, Jeannette; Dionyssiou, Dimitris; Demiri, Efterpi; Halin, Cornelia; Dieterich, Lothar C.

    2016-01-01

    Secondary lymphedema is a common postcancer treatment complication, but the underlying pathological processes are poorly understood and no curative treatment exists. To investigate lymphedema pathomechanisms, a top-down approach was applied, using genomic data and validating the role of a single target. RNA sequencing of lymphedematous mouse skin indicated upregulation of many T cell–related networks, and indeed depletion of CD4+ cells attenuated lymphedema. The significant upregulation of Foxp3, a transcription factor specifically expressed by regulatory T cells (Tregs), along with other Treg-related genes, implied a potential role of Tregs in lymphedema. Indeed, increased infiltration of Tregs was identified in mouse lymphedematous skin and in human lymphedema specimens. To investigate the role of Tregs during disease progression, loss-of-function and gain-of-function studies were performed. Depletion of Tregs in transgenic mice with Tregs expressing the primate diphtheria toxin receptor and green fluorescent protein (Foxp3-DTR-GFP) mice led to exacerbated edema, concomitant with increased infiltration of immune cells and a mixed TH1/TH2 cytokine profile. Conversely, expansion of Tregs using IL-2/anti–IL-2 mAb complexes significantly reduced lymphedema development. Therapeutic application of adoptively transferred Tregs upon lymphedema establishment reversed all of the major hallmarks of lymphedema, including edema, inflammation, and fibrosis, and also promoted lymphatic drainage function. Collectively, our results reveal that Treg application constitutes a potential new curative treatment modality for lymphedema. PMID:27734032

  5. Ionizing Radiation Selectively Reduces Skin Regulatory T Cells and Alters Immune Function

    PubMed Central

    Zhou, Yu; Ni, Houping; Balint, Klara; Sanzari, Jenine K.; Dentchev, Tzvete; Diffenderfer, Eric S.; Wilson, Jolaine M.; Cengel, Keith A.; Weissman, Drew

    2014-01-01

    The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth’s magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel. PMID:24959865

  6. Monitoring the frequency and function of regulatory T cells and summary of the approaches currently used to inhibit regulatory T cells in cancer patients.

    PubMed

    Camisaschi, Chiara; Tazzari, Marcella; Rivoltini, Licia; Castelli, Chiara

    2014-01-01

    Regulatory T cells (Treg) are a subset of T lymphocytes that in humans represent less than the 10 % of circulating CD4(+) T cells. Treg are specialized in the inhibition of the immune responses and play a crucial role in the maintenance of immunological tolerance. Several lines of evidence clearly documented the role of Treg in restraining antitumor immune responses. For this reason, antitumor immunotherapy approaches have been recently associated with drug treatments aimed at depleting Treg or blocking their functions. A summary of the currently used in vivo approaches to limit Treg expansion in cancer patients is here provided.A comprehensive phenotypic and functional monitoring of Treg is crucial for the precise assessment of the effects that these different drug treatments exert on Treg. In this chapter, we will provide guidelines for an accurate ex vivo identification of human Treg. Due to the phenotypic and functional heterogeneity, intrinsic plasticity, and the lack of a unique marker exclusively expressed by human Treg, the clear-cut identification of this T cell subset requires the expert usage of multiparametric flow cytometry analysis (FACS). In this view, a combination of phenotypic and functional assessment of Treg is mandatory. In this chapter, we will describe the most reliable methods to identify and monitor the modulation of human Treg in patients undergoing immunological or drug-based treatments. Protocols to measure ex vivo the suppressive functions of Treg are also provided.

  7. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function

    PubMed Central

    Boller, Sören; Grosschedl, Rudolf

    2014-01-01

    During the last decades, many studies have investigated the transcriptional and epigenetic regulation of lineage decision in the hematopoietic system. These efforts led to a model in which extrinsic signals and intrinsic cues establish a permissive chromatin context upon which a regulatory network of transcription factors and epigenetic modifiers act to guide the differentiation of hematopoietic lineages. These networks include lineage-specific factors that further modify the epigenetic landscape and promote the generation of specific cell types. The process of B lymphopoiesis requires a set of transcription factors, including Ikaros, PU.1, E2A, and FoxO1 to ‘prime’ cis-regulatory regions for subsequent activation by the B-lineage-specific transcription factors EBF1 and Pax-5. The expression of EBF1 is initiated by the combined action of E2A and FoxO1, and it is further enhanced and maintained by several positive feedback loops that include Pax-5 and IL-7 signaling. EBF1 acts in concert with Ikaros, PU.1, Runx1, E2A, FoxO1, and Pax-5 to establish the B cell-specific transcription profile. EBF1 and Pax-5 also collaborate to repress alternative cell fates and lock cells into the B-lineage fate. In addition to the functions of EBF1 in establishing and maintaining B-cell identity, EBF1 is required to coordinate differentiation with cell proliferation and survival. PMID:25123279

  8. Functional defect of regulatory CD4(+)CD25+ T cells in the thymus of patients with autoimmune myasthenia gravis.

    PubMed

    Balandina, Anna; Lécart, Sandrine; Dartevelle, Philippe; Saoudi, Abdelhadi; Berrih-Aknin, Sonia

    2005-01-15

    Thymus-derived CD4(+)CD25+ regulatory T (Treg) cells are essential for the maintenance of immunologic self-tolerance. Despite their critical role in the active suppression of experimental autoimmune disorders, little is known about their involvement in human autoimmune diseases. Myasthenia gravis (MG) is a CD4+ T cell-dependent autoimmune disease and the thymus is assumed to be the initiation site. To identify possible defects in the Treg cells in MG, we analyzed CD4(+)CD25+ cells in thymi from patients with MG compared to those from healthy subjects. We found a normal CD4(+)CD25+ number but a severe functional defect in their regulatory activity together with a decreased expression of the transcription factor, Foxp3, which is essential for T-cell regulatory function. The phenotypic analysis of CD4(+)CD25+ thymocytes revealed an increased number of activated effector cells with strong Fas expression in patients with MG. However, whatever their level of Fas, CD4(+)CD25+ thymocytes from patients with MG remained unable to suppress the proliferation of responding cells, indicating that the impaired Treg cell function is not due to contamination by activated effector T cells. These data are the first to demonstrate a severe functional impairment of thymic Treg cells in MG, which could contribute to the onset of this autoimmune disease.

  9. Targeting regulatory T cells.

    PubMed

    Ménétrier-Caux, Christine; Curiel, Tyler; Faget, Julien; Manuel, Manuarii; Caux, Christophe; Zou, Weiping

    2012-03-01

    Cancers express tumor-associated antigens that should elicit immune response to antagonize the tumor growth, but spontaneous immune rejection of established cancer is rare, suggesting an immunosuppressive environment hindering host antitumor immunity. Among the specific and active tumor-mediated mechanisms, CD4(+)CD25(high) T regulatory cells (Treg) are important mediators of active immune evasion in cancer. In this review, we will discuss Treg subpopulations and the mechanisms of their suppressive functions. Treg depletion improves endogenous antitumor immunity and the efficacy of active immunotherapy in animal models for cancer, suggesting that inhibiting Treg function could also improve the limited successes of human cancer immunotherapy. We will also discuss specific strategies for devising effective cancer immunotherapy targeting Treg.

  10. Enhanced suppressor function of TIM-3+ FoxP3+ regulatory T cells.

    PubMed

    Gautron, Anne-Sophie; Dominguez-Villar, Margarita; de Marcken, Marine; Hafler, David A

    2014-09-01

    T-cell immunoglobulin and mucin domain 3 (TIM-3) is an Ig-superfamily member expressed on IFN-γ-secreting Th1 and Tc1 cells and was identified as a negative regulator of immune tolerance. TIM-3 is expressed by a subset of activated CD4(+) T cells, and anti-CD3/anti-CD28 stimulation increases both the level of expression and the number of TIM-3(+) T cells. In mice, TIM-3 is constitutively expressed on natural regulatory T (Treg) cells and has been identified as a regulatory molecule of alloimmunity through its ability to modulate CD4(+) T-cell differentiation. Here, we examined TIM-3 expression on human Treg cells to determine its role in T-cell suppression. In contrast to mice, TIM-3 is not expressed on Treg cells ex vivo but is upregulated after activation. While TIM-3(+) Treg cells with increased gene expression of LAG3, CTLA4, and FOXP3 are highly efficient suppressors of effector T (Teff) cells, TIM-3(-) Treg cells poorly suppressed Th17 cells as compared with their suppression of Th1 cells; this decreased suppression ability was associated with decreased STAT-3 expression and phosphorylation and reduced gene expression of IL10, EBI3, GZMB, PRF1, IL1Rα, and CCR6. Thus, our results suggest that TIM-3 expression on Treg cells identifies a population highly effective in inhibiting pathogenic Th1- and Th17-cell responses.

  11. Functional footprinting of regulatory DNA

    PubMed Central

    Vierstra, Jeff; Reik, Andreas; Chang, Kai-Hsin; Stehling-Sun, Sandra; Zhou, Yuan-Yue; Hinkley, Sarah J.; Paschon, David E.; Zhang, L.; Psatha, Nikoletta; Bendana, Yuri R.; O'Neill, Colleen M.; Song, Alex H.; Mich, Andrea; Liu, Pei-Qi; Lee, Gary; Bauer, Daniel E.; Holmes, Michael C.; Orkin, Stuart H.; Papayannopoulou, Thalia; Stamatoyannopoulos, George; Rebar, Edward J.; Gregory, Philip D.; Urnov, Fyodor D.; Stamatoyannopoulos, John A.

    2017-01-01

    Regulatory regions harbor multiple transcription factor recognition sites; however, the contribution of individual sites to regulatory function remains challenging to define. We describe a facile approach that exploits the error-prone nature of genome editing-induced double-strand break repair to map functional elements within regulatory DNA at nucleotide resolution. We demonstrate the approach on a human erythroid enhancer, revealing single TF recognition sites that gate the majority of downstream regulatory function. PMID:26322838

  12. Immunomodulation in host-protective immune response against murine tuberculosis through regulation of the T regulatory cell function.

    PubMed

    Das, Shibali; Halder, Kuntal; Goswami, Avranil; Chowdhury, Bidisha Paul; Pal, Nishith K; Majumdar, Subrata

    2015-11-01

    Tuberculosis, caused by the bacteria Mycobacterium tuberculosis, is characterized by an infection in lung and spleen. In the present study, we have elucidated the mechanism by which Mycobacterium indicus pranii renders protection in in vivo Mycobacterium tuberculosis infection. We observed that Mycobacterium indicus pranii treated infected C57BL/6 mice showed a strong host-protective Th1 immune response along with a marked decrease in immunosuppressive cytokines, TGF-β, and IL-10-secreting CD4(+) T cells. This Mycobacterium indicus pranii mediated decrease in immunosuppressive cytokines was correlated with the reduction in the elevated frequency of CD4(+)CD25(+) T regulatory cells, along with the reduced TGF-β production from these T regulatory cells in tuberculosis-infected mice. This reduction in the T regulatory cell population was a result of effective modulation of STAT4-STAT5 transcription factor counter-regulation by Mycobacterium indicus pranii, which in turn, reduced the immunosuppressive activity of T regulatory cells. Thus, these findings put forward a detailed mechanistic insight into Mycobacterium indicus pranii mediated regulation of the T regulatory cell functioning during experimental murine tuberculosis, which might be helpful in combating Mycobacterium-induced pathogenesis.

  13. Reactive Oxygen Species Prevent Imiquimod-Induced Psoriatic Dermatitis through Enhancing Regulatory T Cell Function

    PubMed Central

    Choi, Eun-Jeong; Hong, Min-Pyo; Kie, Jeong-Hae; Lim, Woosung; Lee, Hyeon Kook; Moon, Byung-In; Seoh, Ju-Young

    2014-01-01

    Psoriasis is a chronic inflammatory skin disease resulting from immune dysregulation. Regulatory T cells (Tregs) are important in the prevention of psoriasis. Traditionally, reactive oxygen species (ROS) are known to be implicated in the progression of inflammatory diseases, including psoriasis, but many recent studies suggested the protective role of ROS in immune-mediated diseases. In particular, severe cases of psoriasis vulgaris have been reported to be successfully treated by hyperbaric oxygen therapy (HBOT), which raises tissue level of ROS. Also it was reported that Treg function was closely associated with ROS level. However, it has been only investigated in lowered levels of ROS so far. Thus, in this study, to clarify the relationship between ROS level and Treg function, as well as their role in the pathogenesis of psoriasis, we investigated imiquimod-induced psoriatic dermatitis (PD) in association with Treg function both in elevated and lowered levels of ROS by using knockout mice, such as glutathione peroxidase-1−/− and neutrophil cytosolic factor-1−/− mice, as well as by using HBOT or chemicals, such as 2,3-dimethoxy-1,4-naphthoquinone and N-acetylcysteine. The results consistently showed Tregs were hyperfunctional in elevated levels of ROS, whereas hypofunctional in lowered levels of ROS. In addition, imiquimod-induced PD was attenuated in elevated levels of ROS, whereas aggravated in lowered levels of ROS. For the molecular mechanism that may link ROS level and Treg function, we investigated the expression of an immunoregulatory enzyme, indoleamine 2,3-dioxygenase (IDO) which is induced by ROS, in PD lesions. Taken together, it was implied that appropriately elevated levels of ROS might prevent psoriasis through enhancing IDO expression and Treg function. PMID:24608112

  14. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation*

    PubMed Central

    Deng, Guoping; Nagai, Yasuhiro; Xiao, Yan; Li, Zhiyuan; Dai, Shujia; Ohtani, Takuya; Banham, Alison; Li, Bin; Wu, Shiaw-Lin; Hancock, Wayne; Samanta, Arabinda; Zhang, Hongtao; Greene, Mark I.

    2015-01-01

    Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4+CD25+Foxp3+ regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses. PMID:25987564

  15. Pim-2 Kinase Influences Regulatory T Cell Function and Stability by Mediating Foxp3 Protein N-terminal Phosphorylation.

    PubMed

    Deng, Guoping; Nagai, Yasuhiro; Xiao, Yan; Li, Zhiyuan; Dai, Shujia; Ohtani, Takuya; Banham, Alison; Li, Bin; Wu, Shiaw-Lin; Hancock, Wayne; Samanta, Arabinda; Zhang, Hongtao; Greene, Mark I

    2015-08-14

    Regulation of the extent of immune responses is a requirement to maintain self-tolerance and limit inflammatory processes. CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells play a role in regulation. The Foxp3 transcription factor is considered a dominant regulator for Treg cell development and function. Foxp3 function itself is directly regulated by multiple posttranslational modifications that occur in response to various external stimuli. The Foxp3 protein is a component of several dynamic macromolecular regulatory complexes. The complexes change constituents over time and through different signals to regulate the development and function of regulatory T cells. Here we identified a mechanism regulating Foxp3 level and activity that operates through discrete phosphorylation. The Pim-2 kinase can phosphorylate Foxp3, leading to decreased suppressive functions of Treg cells. The amino-terminal domain of Foxp3 is modified at several sites by Pim-2 kinase. This modification leads to altered expression of proteins related to Treg cell functions and increased Treg cell lineage stability. Treg cell suppressive function can be up-regulated by either pharmacologically inhibiting Pim-2 kinase activity or by genetically knocking out Pim-2 in rodent Treg cells. Deficiency of Pim-2 activity increases murine host resistance to dextran sodium sulfate-induced colitis in vivo, and a Pim-2 small molecule kinase inhibitor also modified Treg cell functions. Our studies define a pathway for limiting the regulation of Foxp3 function because the Pim-2 kinase represents a potential therapeutic target for modulating the Treg cell suppressive activities in controlling immune responses.

  16. Cells with regulatory function of the innate and adaptive immune system in primary Sjögren's syndrome

    PubMed Central

    Szodoray, P; Papp, G; Horvath, I F; Barath, S; Sipka, S; Nakken, B; Zeher, M

    2009-01-01

    The aim of the present study was to describe subsets of cells with regulatory properties in primary Sjögren's syndrome (pSS), and to correlate these cell populations with clinical symptoms. Among the 32 investigated patients, 23 had extraglandular manifestations (EGMs), while nine had only glandular symptoms. Twenty healthy individuals served as controls. The percentages of natural killer (NK), natural killer T cells (NK T), interleukin (IL)-10 producing T regulatory type 1 (Tr1) cells and CD4+CD25+ regulatory T cells (Treg) cells were determined by flow cytometry and serum cytokine levels of IL-4, IL-6, IL-10, tumour necrosis factor (TNF)-α and interferon (IFN)-γ were evaluated by enzyme-linked immunosorbent assay (ELISA). Functional tests were carried out to assess the suppressor properties of Treg cells in patients and controls. Peripheral NK, NK T and Tr1 cell percentages were elevated in pSS, while CD4+CD25+ Treg cells showed reduced frequencies in patients compared to controls. In pSS, elevated percentages of NK T, Tr1 and CD4+CD25+ Treg cells were observed in patients with EGMs, when compared to patients with sicca symptoms only. CD4+CD25+ Treg cell percentages showed a negative correlation with sialometry values. The in vitro functional assay demonstrated lower suppression activity of CD4+CD25+ Treg cells in patients compared to controls. Serum IL-6 and TNF-α levels were elevated, while IL-10 was decreased in patients compared to controls. Negative correlation was found between IL-10 levels and the percentages of Tr1 cells. Changes in the investigated subsets of regulatory cells in pSS may contribute to the development and progression of the disease. PMID:19664141

  17. Disorders of regulatory T cell function in patients with the Wiskott-Aldrich syndrome.

    PubMed Central

    Zabay, J M; Fontán, G; Campos, A; García-Rodriguez, M C; Pascual-Salcedo, D; Bootello, A; de la Concha, E G

    1984-01-01

    Three patients with the Wiskott-Aldrich syndrome were studied. One of them had no past history of relevant infections. The other two presented different degrees of humoral and cellular immunodeficiency and their T cells in vitro showed a defect in regulatory activity of Ig production in PWM stimulated cultures. This defect was not observed in the third patient. All three had normal numbers of B cells, producing normal amounts of Ig in vitro when co-cultured with normal T cells. It is suggested that the immunoregulatory T cell abnormality might play an important role in the pathogenesis of the humoral immunodeficiency. PMID:6609033

  18. Regulatory myeloid cells in transplantation.

    PubMed

    Rosborough, Brian R; Raïch-Regué, Dàlia; Turnquist, Heth R; Thomson, Angus W

    2014-02-27

    Regulatory myeloid cells (RMC) are emerging as novel targets for immunosuppressive (IS) agents and hold considerable promise as cellular therapeutic agents. Herein, we discuss the ability of regulatory macrophages, regulatory dendritic cells, and myeloid-derived suppressor cells to regulate alloimmunity, their potential as cellular therapeutic agents, and the IS agents that target their function. We consider protocols for the generation of RMC and the selection of donor- or recipient-derived cells for adoptive cell therapy. Additionally, the issues of cell trafficking and antigen (Ag) specificity after RMC transfer are discussed. Improved understanding of the immunobiology of these cells has increased the possibility of moving RMC into the clinic to reduce the burden of current IS agents and to promote Ag-specific tolerance. In the second half of this review, we discuss the influence of established and experimental IS agents on myeloid cell populations. IS agents believed historically to act primarily on T cell activation and proliferation are emerging as important regulators of RMC function. Better insights into the influence of IS agents on RMC will enhance our ability to develop cell therapy protocols to promote the function of these cells. Moreover, novel IS agents may be designed to target RMC in situ to promote Ag-specific immune regulation in transplantation and to usher in a new era of immune modulation exploiting cells of myeloid origin.

  19. Phenotypical and functional alterations of CD8 regulatory T cells in primary biliary cirrhosis

    PubMed Central

    Bernuzzi, Francesca; Fenoglio, Daniela; Battaglia, Florinda; Fravega, Marco; Gershwin, M. Eric; Indiveri, Francesco; Ansari, Aftab A.; Podda, Mauro; Invernizzi, Pietro; Filaci, Gilberto

    2011-01-01

    The mechanisms that lead to loss of tolerance in autoimmune disease have remained both elusive and diverse, including both genetic predisposition and generic dysregulation of critical mononuclear cell subsets. In primary biliary cirrhosis (PBC), patients exhibit a multilineage response to the E2 component of pyruvate dehydrogenase involving antibody as well as autoreactive CD4 and CD8 responses. Recent data from murine models of PBC have suggested that a critical mechanism of biliary destruction is mediated by liver-infiltrating CD8 cells. Further, the number of autoreactive liver-infiltrating CD4 and CD8 cells is significantly higher in liver than blood in patients with PBC. Based on this data, we have studied the frequencies and phenotypic characterization of both CD4 and CD8 regulatory T cell components in both patients with PBC and age–sex matched controls. Our data is striking and indicate that CD8 Treg populations from PBC patients, but not controls, have significant phenotypic alterations, including increased expression of CD127 and reduced CD39. Furthermore, in vitro induction of CD8 Tregs by incubation with IL10 is significantly reduced in PBC patients. Importantly, the frequencies of circulating CD4+CD25+ and CD8+ and CD28− T cell subpopulations are not significantly different between patients and controls. In conclusion, these data identify the CD8 Treg subset as a regulatory T cell subpopulation altered in patients with PBC. PMID:20638239

  20. Expansion and function of Foxp3-expressing T regulatory cells during tuberculosis.

    PubMed

    Scott-Browne, James P; Shafiani, Shahin; Tucker-Heard, Glady's; Ishida-Tsubota, Kumiko; Fontenot, Jason D; Rudensky, Alexander Y; Bevan, Michael J; Urdahl, Kevin B

    2007-09-03

    Mycobacterium tuberculosis (Mtb) frequently establishes persistent infections that may be facilitated by mechanisms that dampen immunity. T regulatory (T reg) cells, a subset of CD4(+) T cells that are essential for preventing autoimmunity, can also suppress antimicrobial immune responses. We use Foxp3-GFP mice to track the activity of T reg cells after aerosol infection with Mtb. We report that during tuberculosis, T reg cells proliferate in the pulmonary lymph nodes (pLNs), change their cell surface phenotype, and accumulate in the pLNs and lung at a rate parallel to the accumulation of effector T cells. In the Mtb-infected lung, T reg cells accumulate in high numbers in all sites where CD4(+) T cells are found, including perivascular/peribronchiolar regions and within lymphoid aggregates of granulomas. To determine the role of T reg cells in the immune response to tuberculosis, we generated mixed bone marrow chimeric mice in which all cells capable of expressing Foxp3 expressed Thy1.1. When T reg cells were depleted by administration of anti-Thy1.1 before aerosol infection with Mtb, we observed approximately 1 log less of colony-forming units of Mtb in the lungs. Thus, after aerosol infection, T reg cells proliferate and accumulate at sites of infection, and have the capacity to suppress immune responses that contribute to the control of Mtb.

  1. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival

    PubMed Central

    Beier, Ulf H.; Angelin, Alessia; Akimova, Tatiana; Wang, Liqing; Liu, Yujie; Xiao, Haiyan; Koike, Maya A.; Hancock, Saege A.; Bhatti, Tricia R.; Han, Rongxiang; Jiao, Jing; Veasey, Sigrid C.; Sims, Carrie A.; Baur, Joseph A.; Wallace, Douglas C.; Hancock, Wayne W.

    2015-01-01

    Conventional T (Tcon) cells and Foxp3+ T-regulatory (Treg) cells are thought to have differing metabolic requirements, but little is known of mitochondrial functions within these cell populations in vivo. In murine studies, we found that activation of both Tcon and Treg cells led to myocyte enhancer factor 2 (Mef2)-induced expression of genes important to oxidative phosphorylation (OXPHOS). Inhibition of OXPHOS impaired both Tcon and Treg cell function compared to wild-type cells but disproportionally affected Treg cells. Deletion of Pgc1α or Sirt3, which are key regulators of OXPHOS, abrogated Treg-dependent suppressive function and impaired allograft survival. Mef2 is inhibited by histone/protein deacetylase-9 (Hdac9), and Hdac9 deletion increased Treg suppressive function. Hdac9−/− Treg showed increased expression of Pgc1α and Sirt3, and improved mitochondrial respiration, compared to wild-type Treg cells. Our data show that key OXPHOS regulators are required for optimal Treg function and Treg-dependent allograft acceptance. These findings provide a novel approach to increase Treg function and give insights into the fundamental mechanisms by which mitochondrial energy metabolism regulates immune cell functions in vivo.—Beier, U. H., Angelin, A., Akimova, T., Wang, L., Liu, Y., Xiao, H., Koike, M. A., Hancock, S. A., Bhatti, T. R., Han, R., Jiao, J., Veasey, S. C., Sims, C. A., Baur, J. A., Wallace, D. C., Hancock, W. W. Essential role of mitochondrial energy metabolism in Foxp3+ T-regulatory cell function and allograft survival. PMID:25681462

  2. Reprint of "Vitamin D deficiency in pregnant women impairs regulatory T cell function".

    PubMed

    Vijayendra Chary, A; Hemalatha, R; Seshacharyulu, M; Vasudeva Murali, M; Jayaprakash, D; Dinesh Kumar, B

    2015-04-01

    Regulatory T cells and IgE receptors (CD23 and CD21) on B cells were assessed in vitamin D deficient pregnant women. For this, 153 pregnant women were recruited from a government hospital and were categorized into three groups based on 25-hydroxyvitamin D3 (25(OH)D3) status. Regulatory T cell population (Treg cells) and CD23/CD21 expression on B cells were quantified by FACS ARIA II in maternal blood at third trimester; and the same parameters were evaluated in cord blood soon after delivery. In addition, TGF β and IL-10 were quantified in maternal and cord blood by using Milliplex kits. In a representative sample of eight women from each group (vitamin D sufficient, insufficient and deficient), placental tissues were processed for mRNA expressions of vitamin D receptor (VDR), retinoic acid receptor (RXR), vitamin D binding protein (VDBP) and vitamin D regulating enzymes. Of the 153 pregnant women, 18 were sufficient (≥30ng/mL), 55 were insufficient (20-29ng/mL) and 80 were deficient (≤19ng/mL) for 25(OH)D3 status. The maternal blood Treg cell population (mean (%)±SE) was lower (p<0.05) in 25(OH)D3 deficient (0.2±0.01) pregnant women compared to insufficient (0.34±0.01) and sufficient (0.45±0.02) pregnant women. Similarly, cord blood Treg cell population (mean (%)±SE) was also lower (p<0.05) in 25(OH)D3 deficient (0.63±0.03) pregnant women when compared to insufficient (1.05±0.04) and sufficient (1.75±0.02) pregnant women. Mean (%)±SE of B cells with CD23 and CD21 in maternal blood was higher (p<0.05) in 25(OH)D3 deficient pregnant women (0.35±0.02; 1.65±0.04) when compared to insufficient (0.22±0.02; 0.55±0.05) and sufficient (0.15±0.02; 0.21±0.01) pregnant women. Similarly, mean (%)±SE of B cell population with CD23 and CD21 in cord blood was also higher (p<0.05) in 25(OH)D3 deficient (0.41±0.02; 1.2±0.03) when compared to insufficient (0.32±0.01; 0.6±0.05) and sufficient (0.2±0.01; 0.4±0.02) pregnant women. Regulatory cytokines, TGF

  3. Regulatory T cells in B-cell-deficient and wild-type mice differ functionally and in expression of cell surface markers

    PubMed Central

    Ellis, Jason S; Braley-Mullen, Helen

    2015-01-01

    NOD.H-2h4 mice develop spontaneous autoimmune thyroiditis (SAT) with chronic inflammation of thyroids by T and B cells. B-cell deficient (B–/–) mice are resistant to SAT but develop SAT if regulatory T (Treg) cells are transiently depleted. We established a transfer model using splenocytes from CD28–/– B–/– mice (effector cells and antigen-presenting cells) cultured with or without sorted Treg cells from Foxp3-GFP wild-type (WT) or B–/– mice. After transfer to mice lacking T cells, mice given Treg cells from B–/– mice had significantly lower SAT severity scores than mice given Treg cells from WT mice, indicating that Treg cells in B–/– mice are more effective suppressors of SAT than Treg cells in WT mice. Treg cells from B–/– mice differ from WT Treg cells in expression of CD27, tumour necrosis factor receptor (TNFR) II p75, and glucocorticoid-induced TNFR-related protein (GITR). After transient depletion using anti-CD25 or diphtheria toxin, the repopulating Treg cells in B–/– mice lack suppressor function, and expression of CD27, GITR and p75 is like that of WT Treg cells. If B–/– Treg cells develop with B cells in bone marrow chimeras, their phenotype is like that of WT Treg cells. Addition of B cells to cultures of B–/– Treg and T effector cells abrogates their suppressive function and their phenotype is like that of WT Treg cells. These results establish for the first time that Treg cells in WT and B–/– mice differ both functionally and in expression of particular cell surface markers. Both properties are altered after transient depletion and repopulation of B–/– Treg cells, and by the presence of B cells during Treg cell development or during interaction with effector T cells. PMID:25318356

  4. Functional implications of regulatory B cells in human IgA nephropathy.

    PubMed

    Wang, Y-Y; Zhang, L; Zhao, P-W; Ma, L; Li, C; Zou, H-B; Jiang, Y-F

    2014-01-01

    IgA nephropathy (IgAN) diagnosis remains largely based upon immunohistologic detection of IgA- and IgG-containing glomerular deposits in renal mesangial cells, and little is known about the underlying pathogenic mechanisms. This study examines the putative contribution of B cell types, including the Breg type, to IgAN pathogenesis. Twenty-four patients with IgAN and proteinuria (Group A: <3.5 g/24 h, n = 13; Group B: >3.5 g/24 h, n = 11) and 10 healthy controls were enrolled. The frequencies of B cell subtypes in venous blood were measured by flow cytometry. Galactose-deficient IgA1 was measurement by ELISA. Needle biopsies were analysed by histology and immunofluorescence microscopy. Correlation between clinical features and B cell subtypes, including the regulatory B (Breg) cells, and Breg cell-derived immunomodulatory cytokine IL-10 was assessed by Spearman's rank correlation test. IgAN patients had significantly higher frequencies of CD27(+) CD19(+) , CD38(+) CD19(+) , CD86(+) CD19(+) and CD5(+) CD19(+) B cells than the healthy controls, but significantly lower levels of Breg cells and intracellular expression of IL-10 protein in the Breg subtype. Serum IgA concentration positively correlated with CD27(+) CD19(+) B cell frequency and negatively correlated with IL-10(+) Breg cell frequency in IgAN patients, and the percentage of CD19(+) CD5(+) CD1d(+) in CD19(+) cells was negatively correlated with the level of serum Gd-IgA1. Furthermore, the frequencies of CD19(+) CD38(+) and CD19(+) CD86(+) in the CD19(+) subpopulation negatively correlated with the estimated glomerular filtration rate of IgAN patients. Several of the CD19(+) B cell subtypes and the IL-10(+) Breg cells are differentially expressed in IgAN patients and may contribute to the disease pathogenesis.

  5. Inhibition of cell adhesion by xARVCF indicates a regulatory function at the plasma membrane.

    PubMed

    Reintsch, Wolfgang E; Mandato, Craig A; McCrea, Pierre D; Fagotto, François

    2008-09-01

    The cytoplasmic tail of cadherins is thought to regulate the strength and dynamics of cell-cell adhesion. Part of its regulatory activity has been attributed to a membrane-proximal region, the juxtamembrane domain (JMD), and its interaction with members of the p120 catenin subfamily. We show that titration of xARVCF, a member of this family, to the plasma membrane disrupts adhesion in the early embryo. Adhesion can be restored by coexpression of constitutively active Rac, suggesting that intracellular signaling is the primary cause in the loss of adhesion phenotype. Our observations suggest that the recruitment of p120 type catenins to the plasma membrane by the cadherin cytoplasmic tail may create protein complexes, which actively modulate the adhesion "status" of embryonic cells.

  6. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells.

  7. Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function.

    PubMed

    Segretti, Mariana C F; Vallerini, Gian Paolo; Brochier, Camille; Langley, Brett; Wang, Liqing; Hancock, Wayne W; Kozikowski, Alan P

    2015-11-12

    Several new mercaptoacetamides were synthesized and studied as HDAC6 inhibitors. One compound, 2b, bearing an aminoquinoline cap group, was found to show 1.3 nM potency at HDAC6, with >3000-fold selectivity over HDAC1. 2b also showed excellent efficacy at increasing tubulin acetylation in rat primary cortical cultures, inducing a 10-fold increase in acetylated tubulin at 1 μM. To assess possible therapeutic effects, compounds were assayed for their ability to increase T-regulatory (Treg) suppressive function. Some but not all of the compounds increased Treg function, and thereby decreased conventional T cell activation and proliferation in vitro.

  8. Thiol-Based Potent and Selective HDAC6 Inhibitors Promote Tubulin Acetylation and T-Regulatory Cell Suppressive Function

    PubMed Central

    2015-01-01

    Several new mercaptoacetamides were synthesized and studied as HDAC6 inhibitors. One compound, 2b, bearing an aminoquinoline cap group, was found to show 1.3 nM potency at HDAC6, with >3000-fold selectivity over HDAC1. 2b also showed excellent efficacy at increasing tubulin acetylation in rat primary cortical cultures, inducing a 10-fold increase in acetylated tubulin at 1 μM. To assess possible therapeutic effects, compounds were assayed for their ability to increase T-regulatory (Treg) suppressive function. Some but not all of the compounds increased Treg function, and thereby decreased conventional T cell activation and proliferation in vitro. PMID:26617971

  9. The core regulatory network in human cells.

    PubMed

    Kim, Man-Sun; Kim, Dongsan; Kang, Nam Sook; Kim, Jeong-Rae

    2017-03-04

    In order to discover the common characteristics of various cell types in the human body, many researches have been conducted to find the set of genes commonly expressed in various cell types and tissues. However, the functional characteristics of a cell is determined by the complex regulatory relationships among the genes rather than by expressed genes themselves. Therefore, it is more important to identify and analyze a core regulatory network where all regulatory relationship between genes are active across all cell types to uncover the common features of various cell types. Here, based on hundreds of tissue-specific gene regulatory networks constructed by recent genome-wide experimental data, we constructed the core regulatory network. Interestingly, we found that the core regulatory network is organized by simple cascade and has few complex regulations such as feedback or feed-forward loops. Moreover, we discovered that the regulatory links from genes in the core regulatory network to genes in the peripheral regulatory network are much more abundant than the reverse direction links. These results suggest that the core regulatory network locates at the top of regulatory network and plays a role as a 'hub' in terms of information flow, and the information that is common to all cells can be modified to achieve the tissue-specific characteristics through various types of feedback and feed-forward loops in the peripheral regulatory networks. We also found that the genes in the core regulatory network are evolutionary conserved, essential and non-disease, non-druggable genes compared to the peripheral genes. Overall, our study provides an insight into how all human cells share a common function and generate tissue-specific functional traits by transmitting and processing information through regulatory network.

  10. Binding of Hepatitis A Virus to its Cellular Receptor 1 Inhibits T-Regulatory Cell Functions in Humans

    PubMed Central

    Manangeeswaran, Mohanraj; Jacques, Jérôme; Tami, Cecilia; Konduru, Krishnamurthy; Amharref, Nadia; Perrella, Oreste; Casasnovas, Jose M.; Umetsu, Dale T.; DeKruyff, Rosemarie H.; Freeman, Gordon J.; Perrella, Alessandro; Kaplan, Gerardo G.

    2012-01-01

    Background & Aims CD4+ T regulatory (Treg) cells suppress immune responses and control self-tolerance and immunity to pathogens, cancer, and alloantigens. Most pathogens activate Treg cells to minimize immune-mediated tissue damage and prevent clearance, which promotes chronic infections. However, hepatitis A virus (HAV) temporarily inhibits Treg-cell functions. We investigated whether the interaction of HAV with its cellular receptor 1 (HAVCR1), a T-cell co-stimulatory molecule, inhibits the function of Treg cells to control HAV infection. Methods We studied the effects of HAV interaction with HAVCR1 on human T cells using binding, signal transduction, apoptosis, activation, suppression, cytokine production, and confocal microscopy analyses. Cytokines were analyzed in sera from 14 patients with HAV infection using bead arrays. Results Human Treg cells constitutively express HAVCR1. Binding of HAV to HAVCR1 blocked phosphorylation of Akt, prevented activation of the T-cell receptor, and inhibited function of Treg cells. At the peak viremia, patients with acute HAV infection had no Treg-cell suppression function, produced low levels of transforming growth factor-β (TGF–β), which limited leukocyte recruitment and survival, and high levels of interleukin-22, which prevented liver damage. Conclusions Interaction between HAV and its receptor HAVCR1 inhibits Treg cell function, resulting in an immune imbalance that allows viral expansion with limited hepatocellular damage during early stages of infection—a characteristic of HAV pathogenesis. The mechanism by which HAV is cleared in the absence of Treg-cell function could be used as a model to develop anti-cancer therapies, modulate autoimmune and allergic responses, and prevent transplant rejection. PMID:22430395

  11. Regulatory B cells in autoimmune diseases

    PubMed Central

    Yang, Min; Rui, Ke; Wang, Shengjun; Lu, Liwei

    2013-01-01

    B cells are generally considered to be positive regulators of the immune response because of their capability to produce antibodies, including autoantibodies. The production of antibodies facilitates optimal CD4+ T-cell activation because B cells serve as antigen-presenting cells and exert other modulatory functions in immune responses. However, certain B cells can also negatively regulate the immune response by producing regulatory cytokines and directly interacting with pathogenic T cells via cell-to-cell contact. These types of B cells are defined as regulatory B (Breg) cells. The regulatory function of Breg cells has been demonstrated in mouse models of inflammation, cancer, transplantation, and particularly in autoimmunity. In this review, we focus on the recent advances that lead to the understanding of the development and function of Breg cells and the implications of B cells in human autoimmune diseases. PMID:23292280

  12. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo.

    PubMed

    Read, Simon; Greenwald, Rebecca; Izcue, Ana; Robinson, Nicholas; Mandelbrot, Didier; Francisco, Loise; Sharpe, Arlene H; Powrie, Fiona

    2006-10-01

    Naturally occurring CD4+ regulatory T cells (T(R)) that express CD25 and the transcription factor FoxP3 play a key role in immune homeostasis, preventing immune pathological responses to self and foreign Ags. CTLA-4 is expressed by a high percentage of these cells, and is often considered as a marker for T(R) in experimental and clinical analysis. However, it has not yet been proven that CTLA-4 has a direct role in T(R) function. In this study, using a T cell-mediated colitis model, we demonstrate that anti-CTLA-4 mAb treatment inhibits T(R) function in vivo via direct effects on CTLA-4-expressing T(R), and not via hyperactivation of colitogenic effector T cells. Although anti-CTLA-4 mAb treatment completely inhibits T(R) function, it does not reduce T(R) numbers or their homing to the GALT, suggesting the Ab mediates its function by blockade of a signal required for T(R) activity. In contrast to the striking effect of the Ab, CTLA-4-deficient mice can produce functional T(R), suggesting that under some circumstances other immune regulatory mechanisms, including the production of IL-10, are able to compensate for the loss of the CTLA-4-mediated pathway. This study provides direct evidence that CTLA-4 has a specific, nonredundant role in the function of normal T(R). This role has to be taken into account when targeting CTLA-4 for therapeutic purposes, as such a strategy will not only boost effector T cell responses, but might also break T(R)-mediated self-tolerance.

  13. IL-15 promotes regulatory T cell function and protects against diabetes development in NK-depleted NOD mice.

    PubMed

    Xia, Jinxing; Liu, Wentao; Hu, Biliang; Tian, Zhigang; Yang, Yongguang

    2010-02-01

    IL-15, an anti-apoptotic cytokine, has been reported to promote the survival and function of NK cells and T cells, including regulatory T cells (Tregs). Here we examined the effect of repeated injections of IL-15 on the development of diabetes in NOD mice. Injection of recombinant murine IL-15, once a day for 2 weeks, neither inhibited nor accelerated diabetes development in untreated NOD mice. However, treatment with IL-15 significantly reduced the incidence and delayed the onset of diabetes in NOD mice that were depleted of NK cells, while NK cell depletion alone had no protection against the disease development. The protective effect in IL-15-treated, NK cell-depleted NOD mice was associated with an increase in immunosuppressive activity of CD4(+)CD25(+) Tregs. IL-15 also enhanced Foxp3 expression in CD4(+)CD25(+) cells in an in vitro culture system, and such an effect of IL-15 was abrogated by IL-15-activated NK cells. Inhibition of IL-15-induced Foxp3 expression by IL-15-activated NK cells likely resulted from their IFN-gamma production, as recombinant IFN-gamma, or the culture supernatant of IL-15-activated wild-type mouse NK cells but not of IL-15-activated IFN-gamma-deficient NK cells, mediated a similar inhibition. IFN-gamma also diminished the stimulatory effect of IL-15 on Treg function in vitro. These results indicate that IL-15 has the potential to promote Treg function and protect against diabetes development in NOD mice, but such an activity can be eliminated by simultaneous activation of NK cells in IL-15-treated mice.

  14. Immunometabolism of regulatory T cells

    PubMed Central

    Newton, Ryan; Priyadharshini, Bhavana; Turka, Laurence A

    2016-01-01

    The bidirectional interaction between the immune system and whole-body metabolism has been well recognized for many years. Via effects on adipocytes and hepatocytes, immune cells can modulate whole-body metabolism (in metabolic syndromes such as type 2 diabetes and obesity) and, reciprocally, host nutrition and commensal-microbiota-derived metabolites modulate immunological homeostasis. Studies demonstrating the metabolic similarities of proliferating immune cells and cancer cells have helped give birth to the new field of immunometabolism, which focuses on how the cell-intrinsic metabolic properties of lymphocytes and macrophages can themselves dictate the fate and function of the cells and eventually shape an immune response. We focus on this aspect here, particularly as it relates to regulatory T cells. PMID:27196520

  15. Vasoactive intestinal peptide (VIP)-mediated expression and function of steroidogenic acute regulatory protein (StAR) in granulosa cells.

    PubMed

    Kowalewski, Mariusz P; Dyson, Matthew T; Boos, Alois; Stocco, Douglas M

    2010-10-26

    VIP is a peptide hormone capable of activating the cAMP/PKA pathway and modifying gonadal steroidogenic capacity. Less is known about the molecular mechanisms of VIP-mediated steroidogenesis and its role in regulating the steroidogenic acute regulatory protein (STAR). We examined the impact of VIP on STAR expression and function in immortalized (KK1) and primary mouse granulosa cells, where VIP strongly upregulated STAR expression and steroidogenesis. Inhibitors of the PKA and PKC pathways suggested that both are activated by VIP. VIP did not efficiently phosphorylate STAR (P-STAR); however, VIP together with cAMP-analogs that activate Type II PKA increased P-STAR and further increased steroidogenesis. Our results suggest that VIP-induced STAR expression and function in granulosa cells result from the preferential activation of Type I PKA. Furthermore, the PKA and PKC pathways appear to converge at regulating VIP-mediated Star transcription and translation.

  16. A multi-functional role of interferon regulatory factor-8 in solid tumor and myeloid cell biology.

    PubMed

    Abrams, Scott I

    2010-03-01

    Understanding mechanisms of tumor escape are critically important not only to improving our knowledge of cancer biology, but also for the overall development of more effective anti-neoplastic therapies. Our laboratory focuses on mechanisms of apoptotic resistance, with emphasis on Fas loss of function as an important determinant of tumor progression. Our work in solid tumor systems has led to the identification of interferon regulatory factor-8 (IRF-8) as a differentially expressed gene important for tumor cell response to cytotoxicity, including Fas-mediated apoptosis and host-anti-tumor immunosurveillance mechanisms. Although IRF-8 was originally identified in the regulation of normal and neoplastic myeloid cell development, these findings revealed a new functional role for IRF-8 in non-hematopoietic malignancies and establish a molecular basis for its potential manipulation during cancer therapy.

  17. Adipocytes as immune regulatory cells

    PubMed Central

    Vielma, Silvana A.; Klein, Richard L.; Levingston, Corinne A.; Young, M. Rita I.

    2013-01-01

    Obesity is a chronic inflammatory state and adipocytes are capable of contributing to this inflammation by their production of inflammatory mediators. The present study used fibroblast-derived adipocytes and normal spleen cells as a model to determine if adipocytes can also serve as immune regulatory cells by modulating the functions of conventional immune cells. Media conditioned by the adipocytes stimulated release of the Th1-type cytokines IL-2, IFN-γ and GM-CSF from cultures of normal spleen cells. The adipocytes also stimulated spleen cell release of inhibitory cytokines, although to varying degrees. This included IL-10, IL-13 and, to a lesser extent, IL-4. Spleen cell production of the inflammatory cytokines IL-6, TNF-α and IL-9 was stimulated by adipocytes, although production of the Th17-derived cytokine, IL-17, was not stimulated. The adipocyte-conditioned medium did not stimulate production of predominantly monocytes-derived chemokines CXCL9, CCL2, CCL3, CCL4, but stimulated production of the predominantly T-cell-derived chemokine CCL5. In all cases where cytokine/chemokine production from spleen cells was stimulated by adipocytes, it was to a far greater level than was produced by the adipocytes themselves. Studies initiated to determine the identity of the adipocyte-derived mediators showed that the spleen cell modulation could not be attributed to solely adiponectin or leptin. Studies to determine the source of some of the cytokines whose production was stimulated by adipocytes showed that expression of the inflammatory cytokine IL-6 was not increased in either CD4+ or CD8+ T-cell. When the splenic T-cells were examined for IFN-γ, the adipocyte stimulation of IFN-γ was within CD8+ T-cells, not CD4+ T-cells. These studies show that adipocytes may be able to serve as immune regulatory cells to stimulate conventional immune cells to release a spectrum of immune mediators. PMID:23587489

  18. Human natural regulatory T cell development, suppressive function and post-thymic maturation in a humanized mouse model

    PubMed Central

    Onoe, Takashi; Kalscheuer, Hannes; Danzl, Nichole; Chittenden, Meredith; Zhao, Guiling; Yang, Yong-Guang; Sykes, Megan

    2011-01-01

    CD4+ regulatory T (Treg) cells control adaptive immune responses and promote self-tolerance. Various humanized mouse models have been developed in efforts to reproduce and study a human immune system. However, in models that require T cell differentiation in the recipient murine thymus, only low numbers of T cells populate the peripheral immune systems. T cells are positively selected by mouse MHC and therefore do not function well in an HLA-restricted manner. In contrast, cotransplantation of human fetal thymus/liver and i.v. injection of CD34+ cells from the same donor achieves multilineage human lymphohematopoietic reconstitution, including dendritic cells (DCs) and formation of secondary lymphoid organs, in NOD/SCID mice. Strong antigen-specific immune responses and homeostatic expansion of human T cells that is dependent on peripheral human APCs occurs. We now demonstrate that FoxP3+ Helios+ “natural” Tregs develop normally in human fetal thymic grafts and are present in peripheral blood, spleen and lymph nodes of these humanized mice. Humanized mice exhibit normal reversal of CD45 isoform expression in association with thymic egress, post-thymic “naïve” to “activated” phenotypic conversion, and suppressive function. These studies demonstrate the utility of this humanized mouse model for the study of human Treg ontogeny, immunobiology and therapy. PMID:21876039

  19. Mechanisms for Development and Function of Foxp3+ Regulatory T Cells

    DTIC Science & Technology

    2008-04-04

    recognize self-antigens that are presented on MHC class II molecules by stromal cells in a process that is known as “altered negative selection”, after...BALB/c and B10D2, but sharing the same H-2d MHC class II haplotype. Differential development of CD4+25hiFoxp3+ T-regs in these mouse strains led to...emphasis on a multifarious genetic control on the thymic differentiation and function of T-reg cells independently of the MHC class II -peptide

  20. Characterization and functional studies of forkhead box protein 3− lymphocyte activation gene 3+ CD4+ regulatory T cells induced by mucosal B cells

    PubMed Central

    Chu, K-H; Chiang, B-L

    2015-01-01

    The induction of mucosal tolerance has been demonstrated to be an effective therapeutic approach for the treatment of allergic diseases. Our previous study demonstrated that Peyer's patch B cells could convert naive T cells into regulatory T cells (so-called Treg-of-B(P) cells); however, it is important to characterize this particular subset of Treg-of-B cells for future applications. This study aimed to investigate the role of lymphocyte activating gene 3 (LAG3) in mediating the regulatory function of Treg-of-B(P) cells induced by mucosal follicular B (FOB) cells. Microarray analysis and real-time polymerase chain reaction (PCR) were used to assess the gene expression pattern of Treg-of-B(P) cells. To evaluate the role of LAG3, the in-vitro suppressive function and the alleviation of airway inflammation in a murine model of asthma was assessed. Our data indicated that FOB cells isolated from Peyer's patches had the ability to generate more suppressive Treg-of-B cells with LAG3 expression, compared with CD23loCD21lo B cells. LAG3 is not only a marker for Treg-of-B(P) cells, but also participate in the suppressive ability. Moreover, CCR4 and CCR6 could be detected on the LAG3+, not LAG3−, Treg-of-B(P) cells and would help cells homing to allergic lung. In the murine model of asthma, the adoptive transfer of LAG3+ Treg-of-B(P) cells was able to sufficiently suppress T helper type 2 (Th2) cytokine production, eosinophil infiltration and alleviate asthmatic symptoms. LAG3 was expressed in Treg-of-B(P) cells and was also involved in the function of Treg-of-B(P) cells. In the future, this particular subset of Treg-of-B cells might be used to alleviate allergic symptoms. PMID:25581421

  1. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function.

    PubMed

    Kubach, Jan; Lutter, Petra; Bopp, Tobias; Stoll, Sabine; Becker, Christian; Huter, Eva; Richter, Christoph; Weingarten, Petra; Warger, Tobias; Knop, Jürgen; Müllner, Stefan; Wijdenes, John; Schild, Hansjörg; Schmitt, Edgar; Jonuleit, Helmut

    2007-09-01

    CD4(+)CD25(+)Foxp3(+) regulatory T cells (CD25(+) Treg cells) direct the maintenance of immunological self-tolerance by active suppression of autoaggressive T-cell populations. However, the molecules mediating the anergic state and regulatory function of CD25(+) Treg cells are still elusive. Using differential proteomics, we identified galectin-10, a member of the lectin family, as constitutively expressed in human CD25(+) Treg cells, while they are nearly absent in resting and activated CD4(+) T cells. These data were confirmed on the mRNA and protein levels. Single-cell staining and flow cytometry showed a strictly intracellular expression of galectin-10 in CD25(+) Treg cells. Specific inhibition of galectin-10 restored the proliferative capacity of CD25(+) Treg cells and abrogated their suppressive function. Notably, first identified here as expressed in human T lymphocytes, galectin-10 is essential for the functional properties of CD25(+) Treg cells.

  2. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells.

    PubMed

    Hernandez, Amanda L; Kitz, Alexandra; Wu, Chuan; Lowther, Daniel E; Rodriguez, Donald M; Vudattu, Nalini; Deng, Songyan; Herold, Kevan C; Kuchroo, Vijay K; Kleinewietfeld, Markus; Hafler, David A

    2015-11-02

    FOXP3+ Tregs are central for the maintenance of self-tolerance and can be defective in autoimmunity. In multiple sclerosis and type-1 diabetes, dysfunctional self-tolerance is partially mediated by a population of IFNγ-secreting Tregs. It was previously reported that increased NaCl concentrations promote the induction of proinflammatory Th17 cells and that high-salt diets exacerbate experimental models of autoimmunity. Here, we have shown that increasing NaCl, either in vitro or in murine models via diet, markedly impairs Treg function. NaCl increased IFNγ secretion in Tregs, and reducing IFNγ - either by neutralization with anti-IFNγ antibodies or shRNA-mediated knockdown - restored suppressive activity in Tregs. The heightened IFNγ secretion and loss of Treg function were mediated by the serum/glucocorticoid-regulated kinase (SGK1). A high-salt diet also impaired human Treg function and was associated with the induction of IFNγ-secreting Tregs in a xenogeneic graft-versus-host disease model and in adoptive transfer models of experimental colitis. Our results demonstrate a putative role for an environmental factor that promotes autoimmunity by inducing proinflammatory responses in CD4 effector cells and Treg pathways.

  3. Systemic lupus erythematosus in the light of the regulatory effects of galectin-1 on T-cell function.

    PubMed

    Hornung, Á; Monostori, É; Kovács, L

    2017-04-01

    Galectin-1 is an endogenous immunoregulatory lectin-type protein. Its most important effects are the inhibition of the differentiation and cytokine production of Th1 and Th17 cells, and the induction of apoptosis of activated T-cells. Galectin-1 has been identified as a key molecule in antitumor immune surveillance, and data are accumulating about the pathogenic role of its deficiency, and the beneficial effects of its administration in various autoimmune disease models. Initial animal and human studies strongly suggest deficiencies in both galectin-1 production and responsiveness in systemic lupus erythematosus (SLE) T-cells. Since lupus features widespread abnormalities in T-cell activation, differentiation and viability, in this review the authors wished to highlight potential points in T-cell signalling processes that may be influenced by galectin-1. These points include GM-1 ganglioside-mediated lipid raft aggregation, early activation signalling steps involving p56Lck, the exchange of the CD3 ζ-ZAP-70 to the FcRγ-Syk pathway, defective mitogen-activated protein kinase pathway activation, impaired regulatory T-cell function, the failure to suppress the activity of interleukin 17 (IL-17) producing T-cells, and decreased suppression of the PI3K-mTOR pathway by phosphatase and tensin homolog (PTEN). These findings place galectin-1 into the group of potential pathogenic molecules in SLE.

  4. The Essential Role of Circulating Thyroglobulin in Maintaining Dominance of Natural Regulatory T Cell Function to Prevent Autoimmune Thyroiditis.

    PubMed

    Kong, Y M; Brown, N K; Morris, G P; Flynn, J C

    2015-09-01

    Several key findings from the late 1960s to mid-1970s regarding thyroid hormone metabolism and circulating thyroglobulin composition converged with studies pertaining to the role of T lymphocytes in autoimmune thyroiditis. These studies cemented the foundation for subsequent investigations into the existence and antigenic specificity of thymus-derived natural regulatory T cells (nTregs). These nTregs prevented the development of autoimmune thyroiditis, despite the ever-present genetic predisposition, autoantigen (thyroglobulin), and thyroglobulin-reactive T cells. Guided by the hypothalamus-pituitary-thyroid axis as a fixed set-point regulator in thyroid hormone metabolism, we used a murine model and compared at key junctures the capacity of circulating thyroglobulin level (raised by thyroid-stimulating hormone or exogenous thyroglobulin administration) to strengthen self-tolerance and resist autoimmune thyroiditis. The findings clearly demonstrated an essential role for raised circulating thyroglobulin levels in maintaining the dominance of nTreg function and inhibiting thyroid autoimmunity. Subsequent identification of thyroglobulin-specific nTregs as CD4(+)CD25(+)Foxp3(+) in the early 2000s enabled the examination of probable mechanisms of nTreg function. We observed that whenever nTreg function was perturbed by immunotherapeutic measures, opportunistic autoimmune disorders invariably surfaced. This review highlights the step-wise progression of applying insights from endocrinologic and immunologic studies to advance our understanding of the clonal balance between natural regulatory and autoreactive T cells. Moreover, we focus on how tilting the balance in favor of maintaining peripheral tolerance could be achieved. Thus, murine autoimmune thyroiditis has served as a unique model capable of closely simulating natural physiologic conditions.

  5. Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4+ T Cells

    PubMed Central

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-01-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4+ Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10–producing Tr1 cell population by transducing human CD4+ T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP+ LV-IL-10–transduced human CD4+ T (CD4LV-IL-10) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4LV-IL-10 T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4LV-IL-10 T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4+ T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells. PMID:22692497

  6. Enforced IL-10 Expression Confers Type 1 Regulatory T Cell (Tr1) Phenotype and Function to Human CD4(+) T Cells.

    PubMed

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-09-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4(+) Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10-producing Tr1 cell population by transducing human CD4(+) T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP(+) LV-IL-10-transduced human CD4(+) T (CD4(LV-IL-10)) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4(LV-IL-10) T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4(LV-IL-10) T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4(+) T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells.

  7. Enforced IL-10 expression confers type 1 regulatory T cell (Tr1) phenotype and function to human CD4(+) T cells.

    PubMed

    Andolfi, Grazia; Fousteri, Georgia; Rossetti, Maura; Magnani, Chiara F; Jofra, Tatiana; Locafaro, Grazia; Bondanza, Attilio; Gregori, Silvia; Roncarolo, Maria-Grazia

    2012-09-01

    Type 1 regulatory T (Tr1) cells are an inducible subset of CD4(+) Tr cells characterized by high levels of interleukin (IL)-10 production and regulatory properties. Several protocols to generate human Tr1 cells have been developed in vitro. However, the resulting population includes a significant fraction of contaminating non-Tr1 cells, representing a major bottleneck for clinical application of Tr1 cell therapy. We generated an homogeneous IL-10-producing Tr1 cell population by transducing human CD4(+) T cells with a bidirectional lentiviral vector (LV) encoding for human IL-10 and the marker gene, green fluorescent protein (GFP), which are independently coexpressed. The resulting GFP(+) LV-IL-10-transduced human CD4(+) T (CD4(LV-IL-10)) cells expressed, upon T-cell receptor (TCR) activation, high levels of IL-10 and concomitant low levels of IL-4, and markers associated with IL-10. Moreover, CD4(LV-IL-10) T cells displayed typical Tr1 features: the anergic phenotype, the IL-10, and transforming growth factor (TGF)-β dependent suppression of allogeneic T-cell responses, and the ability to suppress in a cell-to-cell contact independent manner in vitro. CD4(LV-IL-10) T cells were able to control xeno graft-versus-host disease (GvHD), demonstrating their suppressive function in vivo. These results show that constitutive over-expression of IL-10 in human CD4(+) T cells leads to a stable cell population that recapitulates the phenotype and function of Tr1 cells.

  8. Programmable chemical reaction networks: emulating regulatory functions in living cells using a bottom-up approach.

    PubMed

    van Roekel, Hendrik W H; Rosier, Bas J H M; Meijer, Lenny H H; Hilbers, Peter A J; Markvoort, Albert J; Huck, Wilhelm T S; de Greef, Tom F A

    2015-11-07

    Living cells are able to produce a wide variety of biological responses when subjected to biochemical stimuli. It has become apparent that these biological responses are regulated by complex chemical reaction networks (CRNs). Unravelling the function of these circuits is a key topic of both systems biology and synthetic biology. Recent progress at the interface of chemistry and biology together with the realisation that current experimental tools are insufficient to quantitatively understand the molecular logic of pathways inside living cells has triggered renewed interest in the bottom-up development of CRNs. This builds upon earlier work of physical chemists who extensively studied inorganic CRNs and showed how a system of chemical reactions can give rise to complex spatiotemporal responses such as oscillations and pattern formation. Using purified biochemical components, in vitro synthetic biologists have started to engineer simplified model systems with the goal of mimicking biological responses of intracellular circuits. Emulation and reconstruction of system-level properties of intracellular networks using simplified circuits are able to reveal key design principles and molecular programs that underlie the biological function of interest. In this Tutorial Review, we present an accessible overview of this emerging field starting with key studies on inorganic CRNs followed by a discussion of recent work involving purified biochemical components. Finally, we review recent work showing the versatility of programmable biochemical reaction networks (BRNs) in analytical and diagnostic applications.

  9. Percentage of Peripheral CD19+CD24hiCD38hi Regulatory B Cells in Neonatal Sepsis Patients and Its Functional Implication.

    PubMed

    Pan, Xiao; Ji, Zuoquan; Xue, Jiang

    2016-07-07

    BACKGROUND As a major cause of mortality in neonates, neonatal sepsis is often accompanied by immune dysfunctions, which are frequently caused by dysregulated T cell sub-populations. The role of regulatory B cells in neonatal sepsis, however, remains unknown. Therefore, this study investigated the percentage and functional variation of CD19+CD24hiCD38hi regulatory B cells in peripheral blood of neonatal sepsis patients in an attempt to elucidate the role of these regulatory B cells in pathogenesis of sepsis. MATERIAL AND METHODS Flow cytometry was used to quantify the percentage of CD19+CD24hiCD38hi regulatory B cells from peripheral blood samples. The correlation between B cell percentage and C reactive protein (CRP) level was analyzed. Secretion level of interleukin-10 (IL-10) and effects on the proliferation of naïve CD4+ T cells were further analyzed. RESULTS The percentage of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis patients was significantly higher compared to healthy controls (p<0.05), and was positively correlated with serum CRP level. The percentage of IL-10+ CD19+CD24hiCD38hi regulatory B cells was also higher in sepsis patients, and also had more potent inhibition on naïve CD4+ T cells (p<0.01). CONCLUSIONS The elevation of CD19+CD24hiCD38hi regulatory B cells in neonatal sepsis can inhibit body immune function and thus may participate in the pathogenesis of sepsis.

  10. Toll-like receptor 2 controls expansion and function of regulatory T cells

    PubMed Central

    Sutmuller, Roger P.M.; den Brok, Martijn H.M.G.M.; Kramer, Matthijs; Bennink, Erik J.; Toonen, Liza W.J.; Kullberg, Bart-Jan; Joosten, Leo A.; Akira, Shizuo; Netea, Mihai G.; Adema, Gosse J.

    2006-01-01

    Tregs play a central role in the suppression of immune reactions and prevention of autoimmune responses harmful to the host. During acute infection, however, Tregs might hinder effector T cell activity directed toward the elimination of the pathogenic challenge. Pathogen recognition receptors from the TLR family expressed by innate immune cells are crucial for the generation of effective immunity. We have recently shown the CD4+CD25+ Treg subset in TLR2–/– mice to be significantly reduced in number compared with WT littermate control mice, indicating a link between Tregs and TLR2. Here, we report that the TLR2 ligand Pam3Cys, but not LPS (TLR4) or CpG (TLR9), directly acts on purified Tregs in a MyD88-dependent fashion. Moreover, when combined with TCR stimulation, TLR2 triggering augmented Treg proliferation in vitro and in vivo and resulted in a temporal loss of the suppressive Treg phenotype in vitro by directly affecting Tregs. Importantly, WT Tregs adoptively transferred into TLR2–/– mice were neutralized by systemic administration of TLR2 ligand during the acute phase of a Candida albicans infection, resulting in a 100-fold reduced C. albicans outgrowth. This demonstrates that in vivo TLR2 also controls the function of Tregs and establishes a direct link between TLRs and the control of immune responses through Tregs. PMID:16424940

  11. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila.

    PubMed

    Cattenoz, Pierre B; Popkova, Anna; Southall, Tony D; Aiello, Giuseppe; Brand, Andrea H; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.

  12. Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila

    PubMed Central

    Cattenoz, Pierre B.; Popkova, Anna; Southall, Tony D.; Aiello, Giuseppe; Brand, Andrea H.; Giangrande, Angela

    2016-01-01

    High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain–containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades. PMID:26567182

  13. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants

    PubMed Central

    Tam, Thomas Ho Yuen; Catarino, Bruno; Dolan, Liam

    2015-01-01

    Land plants develop filamentous cells—root hairs, rhizoids, and caulonemata—at the interface with the soil. Members of the group XI basic helix–loop–helix (bHLH) transcription factors encoded by LOTUS JAPONICUS ROOTHAIRLESS1-LIKE (LRL) genes positively regulate the development of root hairs in the angiosperms Lotus japonicus, Arabidopsis thaliana, and rice (Oryza sativa). Here we show that auxin promotes rhizoid and caulonema development by positively regulating the expression of PpLRL1 and PpLRL2, the two LRL genes in the Physcomitrella patens genome. Although the group VIII bHLH proteins, AtROOT HAIR DEFECTIVE6 and AtROOT HAIR DEFECTIVE SIX-LIKE1, promote root-hair development by positively regulating the expression of AtLRL3 in A. thaliana, LRL genes promote rhizoid development independently of PpROOT HAIR DEFECTIVE SIX-LIKE1 and PpROOT HAIR DEFECITVE SIX-LIKE2 (PpRSL1 and PpRSL2) gene function in P. patens. Together, these data demonstrate that both LRL and RSL genes are components of an ancient auxin-regulated gene network that controls the development of tip-growing cells with rooting functions among most extant land plants. Although this network has diverged in the moss and the angiosperm lineages, our data demonstrate that the core network acted in the last common ancestor of the mosses and angiosperms that existed sometime before 420 million years ago. PMID:26150509

  14. Special regulatory T cell review: How I became a T suppressor/regulatory cell maven

    PubMed Central

    Shevach, Ethan M

    2008-01-01

    I have briefly reviewed the factors that motivated me to change my views about the existence and importance of suppressor/regulatory T cells and to devote the majority of my laboratory efforts to this newly revitalized area of immunologic research. I am optimistic that manipulation of regulatory T-cell function will shortly be applicable to the clinic. PMID:18154610

  15. Regulatory T cells and COPD.

    PubMed

    Dancer, Rachel; Sansom, David M

    2013-12-01

    While the innate immune system has long been implicated in the pathogenesis of COPD, a role for the acquired immune system is less well studied. The increasing recognition that COPD shares features with autoimmune disease has led to interest in a potential role for regulatory T cells, which are intimately involved in the control of autoimmunity. The suggestion that regulatory T cell numbers are increased in patients with COPD may indicate their dysfunction or resistance to suppression by target cells. Investigation of regulatory T cells may therefore be of importance in understanding the inflammation and tissue damage that occurs in patients with COPD who cease smoking.

  16. Engagement of TLR2 does not reverse the suppressor function of mouse regulatory T cells, but promotes their survival.

    PubMed

    Chen, Qian; Davidson, Todd S; Huter, Eva N; Shevach, Ethan M

    2009-10-01

    TLRs are a class of conserved pattern recognition receptors that are used by cells of the innate immune system. Recent studies have demonstrated the expression of TLRs on both human and mouse T cells raising the possibility that TLRs play a direct role in adaptive immunity. TLR2 is activated primarily by bacterial wall components including peptidoglycan and lipoproteins. Several studies have shown that mouse regulatory T (Treg) cells express TLR2 and claimed that engagement of TLR2 by synthetic ligands reversed their suppressive function. In contrary, enhancement of Treg function was observed following engagement of TLR2 on human Treg. We have reexamined the expression and function of TLR2 on mouse Treg purified from Foxp3-GFP knock-in mice. TLR2 ligation by TLR2 agonist, the synthetic bacterial lipoprotein Pam3CSK4, enhanced the proliferative responses of both conventional T cells and Treg in response to TLR stimulation in the absence of APC. Treatment of Foxp3+ Treg with Pam3CSK4 did not alter their suppressive function in vitro or in vivo and did not reduce their level of Foxp3 expression. An additional effect of TLR2 stimulation of Treg was induction of Bcl-x(L) resulting in enhanced survival in vitro. Treatment of mice with the TLR2 agonist enhanced the Ag-driven proliferation of Treg in vivo, but did not abolish their ability to suppress the development of experimental autoimmune encephalomyelitis. Development of methods to selectively stimulate TLR2 on Treg may lead to a novel approaches for the treatment of autoimmune diseases.

  17. Attenuation of experimental colitis in glutathione peroxidase 1 and catalase double knockout mice through enhancing regulatory T cell function.

    PubMed

    Kim, Hyung-Ran; Lee, Anbok; Choi, Eun-Jeong; Kie, Jeong-Hae; Lim, Woosung; Lee, Hyeon Kook; Moon, Byung-In; Seoh, Ju-Young

    2014-01-01

    Reactive oxygen species (ROS) have been implicated in the progression of inflammatory diseases including inflammatory bowel diseases (IBD). Meanwhile, several studies suggested the protective role of ROS in immune-mediated inflammatory diseases, and it was recently reported that dextran sodium sulfate (DSS)-induced colitis was attenuated in mice with an elevated level of ROS due to deficiency of peroxiredoxin II. Regulatory T cells (Tregs) are critical in the prevention of IBD and Treg function was reported to be closely associated with ROS level, but it has been investigated only in lowered levels of ROS so far. In the present study, in order to clarify the relationship between ROS level and Treg function, and their role in the pathogenesis of IBD, we investigated mice with an elevated level of ROS due to deficiency of both glutathione peroxidase (GPx)-1 and catalase (Cat) for the susceptibility of DSS-induced colitis in association with Treg function. The results showed that DSS-induced colitis was attenuated and Tregs were hyperfunctional in GPx1-/- × Cat-/- mice. In vivo administration of N-acetylcysteine (NAC) aggravated DSS-induced colitis and decreased Treg function to the level comparable to WT mice. Attenuated Th17 cell differentiation from naïve CD4+ cells as well as impaired production of IL-6 and IL-17A by splenocytes upon stimulation suggested anti-inflammatory tendency of GPx1-/- × Cat-/- mice. Suppression of Stat3 activation in association with enhancement of indoleamine 2,3-dioxygenase and FoxP3 expression might be involved in the immunosuppressive mechanism of GPx1-/- × Cat-/- mice. Taken together, it is implied that ROS level is critical in the regulation of Treg function, and IBD may be attenuated in appropriately elevated levels of ROS.

  18. Anti-regulatory T cells.

    PubMed

    Andersen, Mads Hald

    2017-04-01

    Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells-termed anti-regulatory T cells (anti-Tregs)-that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells, including indoleamine 2,3-dioxygenase (IDO), tryptophan 2,6-dioxygenase (TDO), programmed death-ligand 1 (PD-L1), and forkhead box P3 (Foxp3). These proteins are highly expressed in professional antigen-presenting cells under various physiological conditions, such as inflammation and stress. Therefore, self-reactive T cells that recognize such targets may be activated due to the strong activation signal given by their cognate targets. The current review describes the existing knowledge regarding these self-reactive anti-Tregs, providing examples of antigen-specific anti-Tregs and discussing their possible roles in immune homeostasis and their potential future clinical applications.

  19. Abdominal {gamma}-Radiation Induces an Accumulation of Function-Impaired Regulatory T Cells in the Small Intestine

    SciTech Connect

    Billiard, Fabienne; Buard, Valerie; Benderitter, Marc; Linard, Christine

    2011-07-01

    Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4{sup +}FoxP3{sup +} regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of {gamma}-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4{sup +} effector cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-{beta}, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-{beta}), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3{sup +}CD4{sup +} Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.

  20. Engagement of TLR2 Does not Reverse the Suppressor Function of Mouse Regulatory T Cells, but Promotes Their Survival1

    PubMed Central

    Chen, Qian; Davidson, Todd S.; Huter, Eva N.; Shevach, Ethan M.

    2009-01-01

    TLRs are a class of conserved pattern recognition receptors that are used by cells of the innate immune system. Recent studies have demonstrated the expression of TLRs on both human and mouse T cells raising the possibility that TLRs play a direct role in adaptive immunity. TLR2 is activated primarily by bacterial wall components including peptidoglycan and lipoproteins. Several studies have shown that mouse regulatory T (Treg) express TLR2 and claimed that engagement of TLR2 by synthetic ligands reversed their suppressive function. In contrary, enhancement of Treg function was observed following engagement of TLR2 on human Treg. We have re-examined the expression and function of TLR2 on mouse Treg purified from Foxp3-GFP knock in mice. TLR2 ligation by TLR2 agonist, the synthetic bacterial lipoprotein (BLP) Pam3CSK4, enhanced the proliferative responses of both conventional T cells and Treg in response to TLR stimulation in the absence of APC. Treatment of Foxp3+ Treg with Pam3CSK4 did not alter their suppressive function in vitro or in vivo and did not reduce their level of Foxp3 expression. An additional effect of TLR2 stimulation of Treg was induction of Bcl-xL resulting in enhanced survival in vitro. Treatment of mice with the TLR2 agonist enhanced the antigen-driven proliferation of Treg in vivo, but did not abolish their ability to suppress the development of EAE. Development of methods to selectively stimulate TLR2 on Treg may lead to a novel approaches for the treatment of autoimmune diseases. PMID:19748987

  1. [In vitro amplification of CD4(+) CD25(+) regulatory T cells and identification of amplified T cell immunosuppressive function].

    PubMed

    Weng, Wen-Jun; Pan, Li; Fang, Jian-Pei; Xu, Lv-Hong

    2013-10-01

    This study was purposed to compare the effect of 3 different cell components for expanding CD4(+) CD25(+) Treg in vitro, and identify their immunosuppressive function. CD4(+) T cells, CD4(+) CD25(-)T cells and CD4(+) CD25(+)T cells were isolated from mouse splenocytes by MACS and then expanded in vitro. Phenotype of the T cell lines and expression of the FOXP3 was determined by flow cytometry. The inhibitory effect of expanded CD4(+) CD25(+) T cells on CD4(+) CD25(-)T cells was tested by MLR method. The results showed that the Treg cells from all the three groups were expanded significantly after culture for 2 weeks. In the CD4(+) T cells group, the proliferation rate was (77.8 ± 5.32) folds with a percentage of Treg cells increasing from (6.61 ± 1.00)% to (15.33 ± 1.31)%. The proliferation rate in the CD4(+) CD25(-) T cells group was (95.20 ± 7.67) folds, with the percentage of CD4(+) CD25(+) T cells raising from (0.37 ± 0.13)% to (9.84 ± 0.98)%. The proliferation rate in the CD4(+) CD25(+) T cells group was (41.20 ± 6.92) folds, the proportion of Treg cells decreased from (86.75 ± 1.25)% to (85.32 ± 1.62)%, and the expression of Foxp3 decreased from (76.92 ± 1.72)% to (75.33 ± 2.11)% during the culture, there were not significant differences in the cell purity and the expression of Foxp3, compared with pre-amplification. The inhibitory test showed that the expanded CD4(+) CD25(+) T cells could inhibit the proliferation of CD4(+) CD25(-) T cells in vitro in a cell dose-dependent manner. It is concluded that the amplification of CD4(+) CD25(+) Treg cells is successful in vitro, especially in the CD4(+) CD25(+) T cells group, the cell purity and Foxp3 gene is not obviously changes after amplification.

  2. Interleukin-10 deficiency impairs regulatory T cell-derived neuropilin-1 functions and promotes Th1 and Th17 immunity

    PubMed Central

    Wang, Shimin; Gao, Xiang; Shen, Guobo; Wang, Wei; Li, Jingyu; Zhao, Jingyi; Wei, Yu-Quan; Edwards, Carl K.

    2016-01-01

    Regulatory T cells (Tregs) expand in peripheral lymphoid organs and can produce immunosuppressive cytokines to support tumor growth. IL-10 abrogation efficiently induces Treg formation but dampens tumoral neuropilin-1 (Nrp-1) Treg signaling, which simultaneously augments Th1 and Th17 immunity. These effects are associated with the plasticity and stability of Tregs and effector T cell functions that can limit tumorigenesis. Within the tumor microenvironment, there appears to be a “mutual antagonism” between immunoenhancement and immunosuppression mechanisms, eventually leading to decreased metastasis. In contrast, tumor progression is paralleled by a reduction in Nrp-1-producing Tregs controlled by the IL-10 and TGF-β1 levels. However, Th1, Th17 and Treg immunity is primarily regulated by IL-10 or Nrp-1 and not TGF-β1 except when combined with IL-10. These results emphasize the important implications for the therapeutic use of Tregs. The number of Treg cells must be maintained in a healthy and dynamic homeostatic range to prevent malignant diseases. Moreover, Treg-mediated immunosuppression can be limited by reducing tumor-derived Treg Nrp-1 levels. PMID:27075020

  3. Signal transducer and activator of transcription 5 (STAT5) paralog dose governs T cell effector and regulatory functions

    PubMed Central

    Villarino, Alejandro; Laurence, Arian; Robinson, Gertraud W; Bonelli, Michael; Dema, Barbara; Afzali, Behdad; Shih, Han-Yu; Sun, Hong-Wei; Brooks, Stephen R; Hennighausen, Lothar; Kanno, Yuka; O'Shea, John J

    2016-01-01

    The transcription factor STAT5 is fundamental to the mammalian immune system. However, the relationship between its two paralogs, STAT5A and STAT5B, and the extent to which they are functionally distinct, remain uncertain. Using mouse models of paralog deficiency, we demonstrate that they are not equivalent for CD4+ 'helper' T cells, the principal orchestrators of adaptive immunity. Instead, we find that STAT5B is dominant for both effector and regulatory (Treg) responses and, therefore, uniquely necessary for immunological tolerance. Comparative analysis of genomic distribution and transcriptomic output confirm that STAT5B has fargreater impact but, surprisingly, the data point towards asymmetric expression (i.e. paralog dose), rather than distinct functional properties, as the key distinguishing feature. Thus, we propose a quantitative model of STAT5 paralog activity whereby relative abundance imposes functional specificity (or dominance) in the face of widespread structural homology. DOI: http://dx.doi.org/10.7554/eLife.08384.001 PMID:26999798

  4. MAR binding protein SMAR1 favors IL-10 mediated regulatory T cell function in acute colitis

    SciTech Connect

    Mirlekar, Bhalchandra; Patil, Sachin; Bopanna, Ramanamurthy; Chattopadhyay, Samit

    2015-08-21

    T{sub reg} cells are not only crucial for controlling immune responses to autoantigens but also prevent those directed towards commensal pathogens. Control of effector immune responses by T{sub reg} cells depend on their capacity to accumulate at inflammatory site and accordingly accommodate to inflammatory environment. Till date, the factors associated with maintaining these aspects of T{sub reg} phenotype is not understood properly. Here we have shown that a known nuclear matrix binding protein SMAR1 is selectively expressed more in colonic T{sub reg} cells and is required for their ability to accumulate at inflammatory site and to sustain high levels of Foxp3 and IL-10 expression during acute colitis. Elimination of anti-inflammatory subsets revealed a protective role for IL-10 producing T{sub reg} cells in SMAR1{sup −/−} mice. Moreover, a combined action of Foxp3 and SMAR1 restricts effector cytokine production and enhance the production of IL-10 by colonic T{sub reg} cells that controls acute colitis. This data highlights a critical role of SMAR1 in maintaining T{sub reg} physiology during inflammatory disorders. - Highlights: • SMAR1 is essential to sustain high level of Foxp3 and IL-10 in T{sub reg} cells. • SMAR1{sup −/−} T{sub reg} cells produce pro-inflammatory cytokine IL-17 leads to inflammation. • IL-10 administration can control the inflammation in SMAR1{sup −/−} mice. • Both Foxp3 and SMAR1 maintain T{sub reg} phenotype that controls colitis.

  5. CNS myelin induces regulatory functions of DC-SIGN–expressing, antigen-presenting cells via cognate interaction with MOG

    PubMed Central

    García-Vallejo, J.J.; Ilarregui, J.M.; Kalay, H.; Chamorro, S.; Koning, N.; Unger, W.W.; Ambrosini, M.; Montserrat, V.; Fernandes, R.J.; Bruijns, S.C.M.; van Weering, J.R.T.; Paauw, N.J.; O’Toole, T.; van Horssen, J.; van der Valk, P.; Nazmi, K.; Bolscher, J.G.M.; Bajramovic, J.; Dijkstra, C.D.; ’t Hart, B.A.

    2014-01-01

    Myelin oligodendrocyte glycoprotein (MOG), a constituent of central nervous system myelin, is an important autoantigen in the neuroinflammatory disease multiple sclerosis (MS). However, its function remains unknown. Here, we show that, in healthy human myelin, MOG is decorated with fucosylated N-glycans that support recognition by the C-type lectin receptor (CLR) DC-specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN) on microglia and DCs. The interaction of MOG with DC-SIGN in the context of simultaneous TLR4 activation resulted in enhanced IL-10 secretion and decreased T cell proliferation in a DC-SIGN-, glycosylation-, and Raf1-dependent manner. Exposure of oligodendrocytes to proinflammatory factors resulted in the down-regulation of fucosyltransferase expression, reflected by altered glycosylation at the MS lesion site. Indeed, removal of fucose on myelin reduced DC-SIGN–dependent homeostatic control, and resulted in inflammasome activation, increased T cell proliferation, and differentiation toward a Th17-prone phenotype. These data demonstrate a new role for myelin glycosylation in the control of immune homeostasis in the healthy human brain through the MOG–DC-SIGN homeostatic regulatory axis, which is comprised by inflammatory insults that affect glycosylation. This phenomenon should be considered as a basis to restore immune tolerance in MS. PMID:24935259

  6. Positive and Negative Regulatory Mechanisms for Fine-Tuning Cellularity and Functions of Medullary Thymic Epithelial Cells

    PubMed Central

    Akiyama, Taishin; Tateishi, Ryosuke; Akiyama, Nobuko; Yoshinaga, Riko; Kobayashi, Tetsuya J.

    2015-01-01

    Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell–cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell–cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system. PMID:26441966

  7. Cancer-Associated Myeloid Regulatory Cells

    PubMed Central

    De Vlaeminck, Yannick; González-Rascón, Anna; Goyvaerts, Cleo; Breckpot, Karine

    2016-01-01

    Myeloid cells are critically involved in the pathophysiology of cancers. In the tumor microenvironment (TME), they comprise tumor-associated macrophages (TAMs), neutrophils (TANs), dendritic cells, and myeloid-derived suppressor cells, which are further subdivided into a monocytic subset and a granulocytic subset. Some of these myeloid cells, in particular TAMs and TANs, are divided into type 1 or type 2 cells, according to the paradigm of T helper type 1 or type 2 cells. Type 1-activated cells are generally characterized as cells that aid tumor rejection, while all other myeloid cells are shown to favor tumor progression. Moreover, these cells are often at the basis of resistance to various therapies. Much research has been devoted to study the biology of myeloid cells. This endeavor has proven to be challenging, as the markers used to categorize myeloid cells in the TME are not restricted to particular subsets. Also from a functional and metabolic point of view, myeloid cells share many features. Finally, myeloid cells are endowed with a certain level of plasticity, which further complicates studying them outside their environment. In this article, we challenge the exclusive use of cell markers to unambiguously identify myeloid cell subsets in the TME. We further propose to divide myeloid cells into myeloid regulatory or stimulatory cells according to their pro- or antitumor function, because we contend that for therapeutic purposes it is not targeting the cell subsets but rather targeting their protumor traits; hence, myeloid regulatory cells will push antitumor immunotherapy to the next level. PMID:27065074

  8. Murine Melanoma-Infiltrating Dendritic Cells Are Defective in Antigen Presenting Function Regardless of the Presence of CD4+CD25+ Regulatory T Cells

    PubMed Central

    Ataera, Haley; Hyde, Evelyn; Price, Kylie M.; Stoitzner, Patrizia; Ronchese, Franca

    2011-01-01

    Tumor-infiltrating dendritic cells are often ineffective at presenting tumor-derived antigen in vivo, a defect usually ascribed to the suppressive tumor environment. We investigated the effects of depleting CD4+CD25+ “natural” regulatory T cells (Treg) on the frequency, phenotype and function of total dendritic cell populations in B16.OVA tumors and in tumor-draining lymph nodes. Intraperitoneal injection of the anti-CD25 monoclonal antibody PC61 reduced Treg frequency in blood and tumors, but did not affect the frequency of tumor-infiltrating dendritic cells, or their expression of CD40, CD86 and MHCII. Tumor-infiltrating dendritic cells from PC61-treated or untreated mice induced the proliferation of allogeneic T cells in vitro, but could not induce proliferation of OVA-specific OTI and OTII T cells unless specific peptide antigen was added in culture. Some proliferation of naïve, OVA-specific OTI T cells, but not OTII T cells, was observed in the tumor-draining LN of mice carrying B16.OVA tumors, however, this was not improved by PC61 treatment. Experiments using RAG1−/− hosts adoptively transferred with OTI and CD25-depleted OTII cells also failed to show improved OTI and OTII T cell proliferation in vivo compared to C57BL/6 hosts. We conclude that the defective presentation of B16.OVA tumor antigen by tumor-infiltrating dendritic cells and in the tumor-draining lymph node is not due to the presence of “natural” CD4+CD25+ Treg. PMID:21390236

  9. Interleukin 2 and interleukin 10 function synergistically to promote CD8(+) T cell cytotoxicity, which is suppressed by regulatory T cells in breast cancer.

    PubMed

    Li, Xiaogang; Lu, Ping; Li, Bo; Zhang, Wanfu; Yang, Rong; Chu, Yan; Luo, Kaiyuan

    2017-03-06

    The precise role of interleukin (IL)-10 in breast cancer is not clear. Previous studies suggested a tumor-promoting role of IL-10 in breast cancer, whereas recent discoveries that IL-10 activated and expanded tumor-resident CD8(+) T cells challenged the traditional view. Here, we investigated the role of IL-10 in HLA-A2-positive breast cancer patients with Grade III, Stage IIA or IIB in-situ and invasive ductal carcinoma, and compared it with that of IL-2, the canonical CD8(+) T cell growth factor. We first observed that breast cancer patients presented higher serum levels of IL-2 and IL-10 than healthy controls. Upon prolonged TCR stimulation, peripheral blood CD8(+) T cells from breast cancer patients tended to undergo apoptosis, which could be prevented by the addition of IL-2 and/or IL-10. The cytotoxicity of TCR-activated CD8(+) T cells was also enhanced by exogenous IL-2 and/or IL-10. Interestingly, IL-2 and IL-10 demonstrated synergistic effects, since the enhancement in CD8(+) T cell function when both cytokines were added was greater than the sum of the improvements mediated by each individual cytokine. IL-10 by itself could not promote the proliferation of CD8(+) T cells but could significantly enhance IL-2-mediated promotion of CD8(+) T cell proliferation. In addition, the cytotoxicity of tumor-infiltrating CD8(+) T cells in breast tumor was elevated when both IL-2 and IL-10 were present but not when either one was absent. This synergistic effect was stopped by CD4(+)CD25(+) regulatory T cells (Treg), which depleted IL-2 in a cell number-dependent manner. Together, these results demonstrated that IL-2 and IL-10 could work synergistically to improve the survival, proliferation, and cytotoxicity of activated CD8(+) T cells, an effect suppressible by CD4(+)CD25(+) Treg cells.

  10. The human T-cell leukemia virus type 1 Rex regulatory protein exhibits an impaired functionality in human lymphoblastoid Jurkat T cells.

    PubMed Central

    Hamaia, S; Cassé, H; Gazzolo, L; Duc Dodon, M

    1997-01-01

    The Rex protein of human T-cell leukemia virus type 1 (HTLV-1) intervenes in the posttranscriptional regulation of proviral gene expression. Its binding to the Rex response element (XRE) present in the 3' long terminal repeat ensures the coordinate cytoplasmic accumulation of spliced and unspliced forms of viral messengers. Consequently, synthesis of viral structural and enzymatic proteins is strictly dependent on the Rex posttranscriptional activity. Here we report that synthesis of HTLV-1 envelope glycoproteins by Jurkat T cells could be detected only when they were regulated in a Rex-independent manner. Indeed, Jurkat T cells transfected with a Rex-dependent env expression vector (encompassing both the env and pX open reading frames) do not produce significant levels of envelope glycoproteins despite the production of significant amounts of Rex protein. The analysis of levels and distribution patterns of the unspliced env and of the singly spliced tax/rex transcripts suggests that the failure in envelope glycoprotein synthesis may be ascribed to a deficiency of Rex in mediating the nucleocytoplasmic transport of unspliced env RNAs in these cells. Furthermore, despite the synthesis of regulatory proteins, HTLV-1 structural proteins were not detected in Jurkat T cells transfected with an HTLV-1 infectious provirus. Conversely, and as expected, structural proteins were produced by Jurkat cells transfected by a human immunodeficiency virus type 1 (HIV-1) infectious provirus. This phenotype appeared to be linked to a specific dysfunction of Rex, since the functionally equivalent Rev protein of HIV-1 was shown to be fully efficient in promoting the synthesis of HTLV-1 envelope glycoproteins in Jurkat cells. Therefore, it seems likely that the block to Rex function in these lymphoblastoid T cells is determined by inefficient Rex-XRE interactions. These observations suggest that the acquisition of this Rex-deficient phenotype by in vivo-infected HTLV-1 T cells may

  11. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation.

    PubMed

    Read, S; Malmström, V; Powrie, F

    2000-07-17

    It is now clear that functionally specialized regulatory T (Treg) cells exist as part of the normal immune repertoire, preventing the development of pathogenic responses to both self- and intestinal antigens. Here, we report that the Treg cells that control intestinal inflammation express the same phenotype (CD25(+)CD45RB(low)CD4(+)) as those that control autoimmunity. Previous studies have failed to identify how CD25(+) Treg cells function in vivo. Our studies reveal that the immune-suppressive function of these cells in vivo is dependent on signaling via the negative regulator of T cell activation cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), as well as secretion of the immune-suppressive cytokine transforming growth factor beta. Strikingly, constitutive expression of CTLA-4 among CD4(+) cells was restricted primarily to Treg cells, suggesting that CTLA-4 expression by these cells is involved in their immune-suppressive function. These findings raise the possibility that Treg cell function contributes to the immune suppression characteristic of CTLA-4 signaling. Identification of costimulatory molecules involved in the function of Treg cells may facilitate further characterization of these cells and development of new therapeutic strategies for the treatment of inflammatory diseases.

  12. Functional and Developmental Analysis of CD4+CD25+ Regulatory T Cells under the Influence of Streptococcal M Protein in Rheumatic Heart Disease

    PubMed Central

    Abdul-Auhaimena, Nidhal; Al-Kaabi, Zaman I. L

    2011-01-01

    The purpose of this study was to determine the role of streptococcal M protein in naturally-occurring CD4+CD25+ regulatory T cells (nTregs) function and development in rheumatic heart disease in Iraqi patients. Streptococcus pyogenes was isolated for subsequent M protein extraction. Also, peripheral blood nTregs and CD4+ T cells were isolated by using Magnetic Cell Separation System. Tissue culture for isolated cells was performed in the presence and absence of M protein. Cell count was performed, and tumor necrosis factor alpha (TNF-α) and interleukin-4 (IL-4) were determined in culture supernatant using ELISA system. There was a significant positive correlation (P<0.01) between the number of proliferated nTregs and CD4+ T cells in the presence as well as the absence of streptococcal M protein. Moreover, there was a significant negative correlation between the mean number of nTregs and CD4+ T cells in mixed culture system in the absence of M protein (r=-0.995). There was also a positive, but not significant (P>0.05), association (r=0.353) between the mean number of nTregs and CD4+ T cells in the presence of M protein. The M protein stimulated CD4+ T cells to produce IL-4 in very little amount (<4 pg/ml) in all samples. Compared to the production of IL4, TNF-α was produced in higher concentrations in the culture supernatants. The findings of the study indicate that streptococcal M protein has an important role in increasing the proliferation of D4+CD25+regulatory T cells and CD4+ T cells. However, CD4+CD25+ regulatory T cells have lower suppressive activity against CD4+ T cells in the presence of M protein. PMID:23359747

  13. Similar disturbances in B cell activity and regulatory T cell function in Henoch-Schonlein purpura and systemic lupus erythematosus

    SciTech Connect

    Beale, M.G.; Nash, G.S.; Bertovich, M.J.; MacDermott, R.P.

    1982-01-01

    The immunoglobulin synthesizing activities of peripheral mononuclear cells (MNC) from five patients with Henoch-Schonlein purpura (HSP) and eight patients with active systemic lupus erythematosus (SLE) were compared. Cumulative amounts of IgM, IgG, and IgA synthesized and secreted by unstimulated and PWM-stimulated patient cells over a 12-day period were determied in a solid-phase radioimmunoassay. In unstimulated control cultures mean rates of IgM, IgG, and IgA synthesis were less than 250 ng/ml. The synthetic activities of patient MNC were markedly increased. In HSP cultures IgA was the major immunoglobulin class produced (2810 x/divide 1.33 ng/ml) followed by IgG (1754 x/divide 1.32 ng/ml) and IgM (404 x/divide 1.16 ng/ml). In SLE cultures IgA and IgG syntheses were equally elevated (4427 x/divide 1.20 and 4438 x/divide 1.49 ng/ml, respectively) whereas IgM synthesis averaged 967 x/divide 1.66 ng/ml. PWM stimulation of pateient MNC caused a sharp decline in the synthesis of all three immunoglobulin classes. After T cell depletion B cell-enriched fractions from HSP and SLE patients maintained high levels of IgA and IgG synthesis that were inhibited by PWM and by normal allogeneic but not autologous T cells. In PWM-stimulted co-cultures, patient T cells nonspecifically suppressed the synthetic activities of autologous and control B cells. in contrast patient B cells achieved normal levels of immunoglobulin synthesis when cultured with control T cells plus PWM. In longitudinal studies patient B and T cell disturbances persisted despite clinical improvement.

  14. Selective ORAI1 inhibition ameliorates autoimmune CNS inflammation by suppressing effector but not regulatory T cell function

    PubMed Central

    Kaufmann, Ulrike; Shaw, Patrick J.; Kozhaya, Lina; Subramanian, Raju; Gaida, Kevin; Unutmaz, Derya; McBride, Helen J.; Feske, Stefan

    2015-01-01

    The function of CD4+ T cells is dependent on Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels formed by ORAI proteins. To investigate the role of ORAI1 in pro-inflammatory Th1 and Th17 cells and autoimmune diseases, we genetically and pharmacologically modulated ORAI1 function. Immunization of mice lacking Orai1 in T cells with MOG peptide resulted in attenuated severity of experimental autoimmune encephalomyelitis (EAE). The numbers of T cells and innate immune cells in the CNS of ORAI1-deficient animals were strongly reduced along with almost completely abolished production of IL-17, IFN-γ and GM-CSF despite only partially reduced Ca2+ influx. In Th1 and Th17 cells differentiated in vitro, ORAI1 was required for cytokine production but not the expression of Th1- and Th17-specific transcription factors T-bet and RORγt. The differentiation and function of induced iTreg cells, by contrast, was independent of ORAI1. Importantly, induced genetic deletion of Orai1 in adoptively transferred, MOG-specific T cells was able to halt EAE progression after disease onset. Likewise, treatment of wild-type mice with a selective CRAC channel inhibitor after EAE onset ameliorated disease. Genetic deletion of Orai1 and pharmacological ORAI1 inhibition reduced the leukocyte numbers in the CNS and attenuated Th1/Th17 cell-mediated cytokine production. In human CD4+ T cells, CRAC channel inhibition reduced the expression of IL-17, IFN-γ and other cytokines in a dose-dependent manner. Taken together, these findings support the conclusion that Th1 and Th17 cell function is particularly dependent on CRAC channels, which could be exploited as a therapeutic approach to T cell-mediated autoimmune diseases. PMID:26673135

  15. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T-cell function in decidua and maintenance of normal pregnancy.

    PubMed

    Wang, S-C; Li, Y-H; Piao, H-L; Hong, X-W; Zhang, D; Xu, Y-Y; Tao, Y; Wang, Y; Yuan, M-M; Li, D-J; Du, M-R

    2015-05-07

    CD8+ T cells are critical in the balance between fetal tolerance and antiviral immunity. T-cell immunoglobulin mucin-3 (Tim-3) and programmed cell death-1 (PD-1) are important negative immune regulatory molecules involved in viral persistence and tumor metastasis. Here, we demonstrate that Tim-3+PD-1+CD8+ T cells from decidua greatly outnumbered those from peripheral blood during human early pregnancy. Co-culture of trophoblasts with CD8+ T cells upregulated PD-1+ and/or Tim-3+ immune cells. Furthermore, the population of CD8+ T cells co-expressing PD-1 and Tim-3 was enriched within the intermediate memory subset in decidua. This population exhibited high proliferative activity and Th2-type cytokine producing capacity. Blockade of Tim-3 and PD-1 resulted in decreased in vitro proliferation and Th2-type cytokine production while increased trophoblast killing and IFN-γ producing capacities of CD8+ T cells. Pregnant CBA/J females challenged with Tim-3 and/or PD-1 blocking antibodies were more susceptible to fetal loss, which was associated with CD8+ T-cell dysfunction. Importantly, the number and function of Tim-3+PD-1+CD8+ T cells in decidua were significantly impaired in miscarriage. These findings underline the important roles of Tim-3 and PD-1 pathways in regulating decidual CD8+ T-cell function and maintaining normal pregnancy.

  16. Phenotype and function of B cells and dendritic cells from interferon regulatory factor 5-deficient mice with and without a mutation in DOCK2

    PubMed Central

    2013-01-01

    Interferon regulatory factor 5-deficient (IRF5 −/−) mice have been used for many studies of IRF5 biology. A recent report identifies a mutation in dedicator of cytokinesis 2 (DOCK2) as being responsible for the abnormal B-cell development phenotype observed in the IRF5 −/− line. Both dedicator of cytokinesis 2 (DOCK2) and IRF5 play important roles in immune cell function, raising the issue of whether immune effects previously associated with IRF5 are due to IRF5 or DOCK2. Here, we defined the insertion end-point of the DOCK2 mutation and designed a novel PCR to detect the mutation in genomic DNA. We confirmed the association of the DOCK2 mutation and the abnormal B-cell phenotype in our IRF5 −/− line and also established another IRF5 −/− line without the DOCK2 mutation. These two lines were used to compare the role of IRF5 in dendritic cells (DCs) and B cells in the presence or absence of the DOCK2 mutation. IRF5 deficiency reduces IFN-α, IFN-β and IL-6 production by Toll-like receptor 9 (TLR9)- and TLR7-stimulated DCs and reduces TLR7- and TLR9-induced IL-6 production by B cells to a similar extent in the two lines. Importantly however, IRF5 −/− mice with the DOCK2 mutation have higher serum levels of IgG1 and lower levels of IgG2b, IgG2a/c and IgG3 than IRF5 −/− mice without the DOCK2 mutation, suggesting that the DOCK2 mutation confers additional Th2-type effects. Overall, these studies help clarify the function of IRF5 in B cells and DCs in the absence of the DOCK2 mutation. In addition, the PCR described will be useful for other investigators using the IRF5−/− mouse line. PMID:23291967

  17. Epithelial Expression of Human ABO Blood Group Genes Is Dependent upon a Downstream Regulatory Element Functioning through an Epithelial Cell-specific Transcription Factor, Elf5.

    PubMed

    Sano, Rie; Nakajima, Tamiko; Takahashi, Yoichiro; Kubo, Rieko; Kobayashi, Momoko; Takahashi, Keiko; Takeshita, Haruo; Ogasawara, Kenichi; Kominato, Yoshihiko

    2016-10-21

    The human ABO blood group system is of great importance in blood transfusion and organ transplantation. The ABO system is composed of complex carbohydrate structures that are biosynthesized by A- and B-transferases encoded by the ABO gene. However, the mechanisms regulating ABO gene expression in epithelial cells remain obscure. On the basis of DNase I-hypersensitive sites in and around ABO in epithelial cells, we prepared reporter plasmid constructs including these sites. Subsequent luciferase assays and histone modifications indicated a novel positive regulatory element, designated the +22.6-kb site, downstream from ABO, and this was shown to enhance ABO promoter activity in an epithelial cell-specific manner. Expression of ABO and B-antigen was reduced in gastric cancer KATOIII cells by biallelic deletion of the +22.6-kb site using the CRISPR/Cas9 system. Electrophoretic mobility shift assay and chromatin immunoprecipitation assay demonstrated that the site bound to an epithelial cell-specific transcription factor, Elf5. Mutation of the Ets binding motifs to abrogate binding of this factor reduced the regulatory activity of the +22.6-kb site. Furthermore, ELF5 knockdown with shRNA reduced both endogenous transcription from ABO and B-antigen expression in KATOIII cells. Thus, Elf5 appeared to be involved in the enhancer potential of the +22.6-kb site. These results support the contention that ABO expression is dependent upon a downstream positive regulatory element functioning through a tissue-restricted transcription factor, Elf5, in epithelial cells.

  18. Differential impact of high and low penetrance TNFRSF1A gene mutations on conventional and regulatory CD4+ T cell functions in TNFR1-associated periodic syndrome.

    PubMed

    Pucino, Valentina; Lucherini, Orso Maria; Perna, Francesco; Obici, Laura; Merlini, Giampaolo; Cattalini, Marco; La Torre, Francesco; Maggio, Maria Cristina; Lepore, Maria Teresa; Magnotti, Flora; Galgani, Mario; Galeazzi, Mauro; Marone, Gianni; De Rosa, Veronica; Talarico, Rosaria; Cantarini, Luca; Matarese, Giuseppe

    2016-05-01

    TNFR-associated periodic syndrome is an autoinflammatory disorder caused by autosomal-dominant mutations in TNFRSF1A, the gene encoding for TNFR superfamily 1A. The lack of knowledge in the field of TNFR-associated periodic syndrome biology is clear, particularly in the context of control of immune self-tolerance. We investigated how TNF-α/TNFR superfamily 1A signaling can affect T cell biology, focusing on conventional CD4(+)CD25(-) and regulatory CD4(+)CD25(+) T cell functions in patients with TNFR-associated periodic syndrome carrying either high or low penetrance TNFRSF1A mutations. Specifically, we observed that in high penetrance TNFR-associated periodic syndrome, at the molecular level, these alterations were secondary to a hyperactivation of the ERK1/2, STAT1/3/5, mammalian target of rapamycin, and NF-κB pathways in conventional T cells. In addition, these patients had a lower frequency of peripheral regulatory T cells, which also displayed a defective suppressive phenotype. These alterations were partially found in low penetrance TNFR-associated periodic syndrome, suggesting a specific link between the penetrance of the TNFRSF1A mutation and the observed T cell phenotype. Taken together, our data envision a novel role for adaptive immunity in the pathogenesis of TNFR-associated periodic syndrome involving both CD4(+) conventional T cells and Tregs, suggesting a novel mechanism of inflammation in the context of autoinflammatory disorders.

  19. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions

    PubMed Central

    Nolte-’t Hoen, Esther N. M.; Buermans, Henk P. J.; Waasdorp, Maaike; Stoorvogel, Willem; Wauben, Marca H. M.; ’t Hoen, Peter A. C.

    2012-01-01

    Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used array analysis to establish the presence of microRNAs and mRNA in cell-derived vesicles from many sources. Here, we used an unbiased approach by deep sequencing of small RNA released by immune cells. We found a large variety of small non-coding RNA species representing pervasive transcripts or RNA cleavage products overlapping with protein coding regions, repeat sequences or structural RNAs. Many of these RNAs were enriched relative to cellular RNA, indicating that cells destine specific RNAs for extracellular release. Among the most abundant small RNAs in shuttle RNA were sequences derived from vault RNA, Y-RNA and specific tRNAs. Many of the highly abundant small non-coding transcripts in shuttle RNA are evolutionary well-conserved and have previously been associated to gene regulatory functions. These findings allude to a wider range of biological effects that could be mediated by shuttle RNA than previously expected. Moreover, the data present leads for unraveling how cells modify the function of other cells via transfer of specific non-coding RNA species. PMID:22821563

  20. BDC12-4.1 T-cell receptor transgenic insulin-specific CD4 T cells are resistant to in vitro differentiation into functional Foxp3+ T regulatory cells.

    PubMed

    Sarikonda, Ghanashyam; Fousteri, Georgia; Sachithanantham, Sowbarnika; Miller, Jacqueline F; Dave, Amy; Juntti, Therese; Coppieters, Ken T; von Herrath, Matthias

    2014-01-01

    The infusion of ex vivo-expanded autologous T regulatory (Treg) cells is potentially an effective immunotherapeutic strategy against graft-versus-host disease (GvHD) and several autoimmune diseases, such as type 1 diabetes (T1D). However, in vitro differentiation of antigen-specific T cells into functional and stable Treg (iTreg) cells has proved challenging. As insulin is the major autoantigen leading to T1D, we tested the capacity of insulin-specific T-cell receptor (TCR) transgenic CD4(+) T cells of the BDC12-4.1 clone to convert into Foxp3(+) iTreg cells. We found that in vitro polarization toward Foxp3(+) iTreg was effective with a majority (>70%) of expanded cells expressing Foxp3. However, adoptive transfer of Foxp3(+) BDC12-4.1 cells did not prevent diabetes onset in immunocompetent NOD mice. Thus, in vitro polarization of insulin-specific BDC12-4.1 TCR transgenic CD4(+) T cells toward Foxp3+ cells did not provide dominant tolerance in recipient mice. These results highlight the disconnect between an in vitro acquired Foxp3(+) cell phenotype and its associated in vivo regulatory potential.

  1. Regulatory T cells and autoimmune disease.

    PubMed

    Paust, Silke; Cantor, Harvey

    2005-04-01

    Although T-cell clones bearing T-cell receptors with high affinity for self-peptide major histocompatibility complex (MHC) products are generally eliminated in the thymus (recessive tolerance), the peripheral T-cell repertoire remains strongly biased toward self-peptide MHC complexes and includes autoreactive T cells. A search for peripheral T cells that might exert dominant inhibitory effects on autoreactivity has implicated a subpopulation of CD4(+)CD25(+) T cells called regulatory T cells (Tregs). Here, we discuss the role of cytokines and costimulatory molecules in the generation, maintenance, and function of Tregs. We also summarize evidence for the involvement of Tregs in controlling autoimmune diseases, including type 1 diabetes, experimental autoimmune encephalomyelitis, and inflammatory bowel disease. Last, we discuss our recent definition of the potential role of B7 expressed on activated T-effector cells as a target molecule for Treg-dependent suppression. These observations suggest that the engagement of B7 on effector T cells transmits an inhibitory signal that blocks or attenuates effector T-cell function. We restrict our comments to the suppression mediated by cells within the CD4 lineage; the impact of the cells within the CD8 lineage that may suppress via engagement of Qa-1 on effector T cells is not addressed in this review.

  2. Evaluation of the expression and function of the P2X7 receptor and ART1 in human regulatory T-cell subsets.

    PubMed

    Cortés-Garcia, Juan D; López-López, Cintya; Cortez-Espinosa, Nancy; García-Hernández, Mariana H; Guzmán-Flores, Juan M; Layseca-Espinosa, Esther; Portales-Cervantes, Liliana; Portales-Pérez, Diana P

    2016-01-01

    Regulatory T cells that express CD39 (CD39+ Treg) exhibit specific immunomodulatory properties. Ectonucleotidase CD39 hydrolyses ATP and ADP. ATP is a ligand of the P2X7 receptor and induces the shedding of CD62L and apoptosis. However, the role of ATP in CD39+ Treg cells has not been defined. Furthermore, NAD can activate the P2X7 receptor via ADP-ribosyltransferase (ART) enzymes and cause cell depletion in murine models. We evaluated the expression and function of P2X7 and ART1 in CD39+ Treg and CD39- Treg cells in the presence or absence of ATP and NAD. We isolated peripheral blood mononuclear cells from healthy subjects and purified CD4+ T cells, CD4+ CD25+ T cells and CD4+ CD25+ CD39+ T cells. P2X7 and ART1 expression was assessed by flow cytometry and real-time PCR. Our results showed low P2X7 expression on CD39+ Treg cells and higher levels of ART1 expression in CD4+ CD39+ T cells than the other subtypes studied. Neither shedding of CD62L nor cell death of CD39+ Treg or CD39- Treg cells was observed by 1mM ATP or 60μM NAD. In contrast, P2Xs receptor-dependent proliferation with 300μM ATP, was inhibited by NAD in the different cell types analysed. The NAD proliferation-inhibition was increased with P2Xs and A2a agonist and was reversed with P2Xs and A2a antagonist, therefore NAD inhibits P2Xs-dependent proliferation and A2a activation. In conclusion, our results suggest that the altered function and expression of P2X7 and ART1 in the human CD39+ Treg or CD39- Treg cells could participate in the resistance against cell death induced by ATP or NAD.

  3. CD44 co-stimulation promotes FoxP3+ regulatory T-cell persistence and function via production of IL-2, IL-10 and TGF-beta

    PubMed Central

    Bollyky, Paul L.; Falk, Ben A.; Long, Alice; Preisinger, Anton; Braun, Kathy R.; Wu, Rebecca P.; Evanko, Stephen P.; Buckner, Jane H.; Wight, Thomas N.; Nepom, Gerald T.

    2011-01-01

    Work by our group and others has demonstrated a role for the extracellular matrix receptor CD44 and it's ligand hyaluronan in CD4+CD25+ regulatory T-cell (Treg) function. Herein we explore the mechanistic basis for this observation. Using mouse FoxP3/GFP+ Treg we find that CD44 co-stimulation promotes expression of FoxP3, in part through production of IL-2. This promotion of IL-2 production was also resistant to Cyclosporine A treatment, suggesting that CD44 costimulation may promote IL-2 production through bypassing FoxP3-mediated suppression of NFAT. CD44 co-stimulation increased production of IL-10 in a partially Il-2 dependant manner and also promoted cell-surface TGF-β expression. Consistent with these findings, Treg from CD44 knock-out mice demonstrated impaired regulatory function ex vivo and depressed production of IL-10 and cell-surface TGF-β. These data reveal a novel role for CD44 cross-linking in the production of regulatory cytokines. Similar salutary effects on FoxP3 expression were observed upon co-stimulation with hyaluronan, the primary natural ligand for CD44. This effect is dependent upon CD44 cross-linking; while both high molecular weight hyaluronan (HMW-HA) and plate-bound anti-CD44 Ab promoted FoxP3 expression, neither low-molecular weight HA (LMW-HA) nor soluble anti-CD44 Ab did so. The implication is that intact HMW-HA can cross-link CD44 only in those settings where it predominates over fragmentary LMW-HA, namely in un-inflamed tissue. We propose that intact but not fragmented ECM is capable of cross-linking CD44 and thereby maintains immunologic tolerance in uninjured or healing tissue. PMID:19635906

  4. Hepatic stellate cells increase the immunosuppressive function of natural Foxp3+ regulatory T cells via IDO-induced AhR activation.

    PubMed

    Kumar, Sudhir; Wang, Jiang; Thomson, Angus W; Gandhi, Chandrashekhar R

    2017-02-01

    Immunosuppressive, naturally occurring CD4(+)CD25(+)forkhead box p3(+) (Foxp3(+)) regulatory T cells (nTregs) offer potential for the treatment of immune-mediated inflammatory disorders. However, potential instability of ex vivo-expanded nTregs following their adoptive transfer may be a significant limitation. LPS-stimulated hepatic stellate cells (HSCs) induce expansion and enhance the suppressive function and stability of allogeneic nTregs We aimed to delineate mechanisms underlying HSC-induced expansion and increased potency of nTregs HSCs and nTregs were isolated from mouse livers and spleens, respectively. Following coculture with LPS-pretreated allogeneic HSCs (LPS/HSCs), proliferation of nTregs was measured by CFSE dilution, and Foxp3 expression and acetylation were determined by immunoprecipitation (IP) and Western blotting analysis. Expression of various genes associated with immunologic tolerance was determined by quantitative RT-PCR (qRT-PCR). LPS stimulation increased the expression and activity of the immunoregulatory enzyme IDO1 in HSCs, and LPS/HSCs stimulated aryl hydrocarbon receptor (AhR) signaling in cocultured nTregs Reciprocally, Tregs increased IDO1 expression in HSCs. IDO1(-/-) LPS/HSCs were inferior to WT LPS/HSCs in stimulating nTreg expansion. Pharmacologic inhibition of IDO1 in HSCs by 1-methyltryptophan (1MT) inhibited LPS/HSC-induced AhR signaling in nTregs, which was responsible for their expansion, Foxp3 expression, and stabilization of Foxp3 by increasing acetylation of lysine residues. Finally, HSCs cryopreserved, following 2-3 passages, were as potent as primary-cultured HSCs in expanding nTregs In conclusion, LPS/HSCs expand allogeneic nTregs through an IDO-dependent, AhR-mediated mechanism and increase their stability through lysine-acetylation of Foxp3. nTregs expanded by cryopreserved HSCs may have potential for clinical use.

  5. Foxp3(+) regulatory T cells in tuberculosis.

    PubMed

    Larson, Ryan P; Shafiani, Shahin; Urdahl, Kevin B

    2013-01-01

    The immune response to Mycobacterium tuberculosis (Mtb) must be tightly regulated to mount a sufficient response to limit bacterial growth and dissemination while avoiding excessive inflammation that could damage host tissues. A wide variety of cell types, cell surface molecules, and cytokines are likely to contribute to this regulation, but recent studies have revealed that a subset of CD4 T cells expressing the transcription factor Foxp3, called regulatory T (reg) cells, play a critical role [1-3]. Although the first reports of T reg cells in tuberculosis (TB) occurred only recently (i.e., 2006) [4, 5], we have already gained many insights into their activity during TB. While it is likely that T reg cells do play some beneficial roles by preventing inflammation-mediated damage to host tissues during TB, this aspect of their function has not been well studied to date. What is clear, however, is that during the initial T cell response to Mtb infection, Mtb induces the expansions of T reg cells that delay the onset of adaptive immunity, suggesting that Mtb has hijacked T reg cell-mediated immune suppression to allow it to replicate unabated in the lung until T cells finally arrive [6]. In this chapter, we will first provide an overview of the delayed T cell response to Mtb and a brief introduction to regulatory T cells. We will then review what is known about T reg cells from observations in human populations, discuss mechanistic insights revealed in the mouse model, and speculate about the relevance of this understanding for future efforts to prevent and treat TB.

  6. Interleukin 35-Producing B Cells (i35-Breg): A New Mediator of Regulatory B-Cell Functions in CNS Autoimmune Diseases.

    PubMed

    Egwuagu, Charles E; Yu, Cheng-Rong

    2015-01-01

    Neuroinflammation contributes to neuronal deficits in neurodegenerative CNS (central nervous system) autoimmune diseases, such as multiple sclerosis and uveitis. The major goal of most treatment modalities for CNS autoimmune diseases is to limit inflammatory responses in the CNS; immune-suppressive drugs are the therapy of choice. However, lifelong immunosuppression increases the occurrence of infections, nephrotoxicity, malignancies, cataractogenesis, and glaucoma, which can greatly impair quality of life for the patient. Biologics that target pathogenic T cells is an alternative approach that is gaining wide acceptance as indicated by the popularity of a variety of Food and Drug Administration (FDA)-approved anti-inflammatory compounds and humanized antibodies such as Zenapax, Etanercept, Remicade, anti-ICAM, rapamycin, or tacrolimus. B cells are also potential therapeutic targets because they provide costimulatory signals that activate pathogenic T cells and secrete cytokines that promote autoimmune pathology. B cells also produce autoreactive antibodies implicated in several organ-specific and systemic autoimmune diseases including lupus erythematosus, Graves' disease, and Hashimoto's thyroiditis. On the other hand, recent studies have led to the discovery of several regulatory B-cell (Breg) populations that suppress immune responses and autoimmune diseases. In this review, we present a brief overview of Breg phenotypes and in particular, the newly discovered IL35-producing regulatory B cell (i35-Breg). We discuss the critical roles played by i35-Bregs in regulating autoimmune diseases and the potential use of adoptive Breg therapy in CNS autoimmune diseases.

  7. Enhancement of regulatory T cell-like suppressive function in MT-2 by long-term and low-dose exposure to asbestos.

    PubMed

    Ying, Chen; Maeda, Megumi; Nishimura, Yasumitsu; Kumagai-Takei, Naoko; Hayashi, Hiroaki; Matsuzaki, Hidenori; Lee, Suni; Yoshitome, Kei; Yamamoto, Shoko; Hatayama, Tamayo; Otsuki, Takemi

    2015-12-02

    Asbestos exposure causes lung fibrosis and various malignant tumors such as lung cancer and malignant mesothelioma. The effects of asbestos on immune cells have not been thoroughly investigated, although our previous reports showed that asbestos exposure reduced anti-tumor immunity. The effects of continuous exposure of regulatory T cells (Treg) to asbestos were examined using the HTLV-1 immortalized human T cell line MT-2, which possesses a suppressive function and expresses the Treg marker protein, Foxp3. Sublines were generated by the continuous exposure to low doses of asbestos fibers for more than one year. The sublines exposed to asbestos showed enhanced suppressive Treg function via cell-cell contact, and increased production of soluble factors such as IL-10 and transforming growth factor (TGF)-β1. These results also indicated that asbestos exposure induced the reduction of anti-tumor immunity, and efforts to develop substances to reverse this reduction may be helpful in preventing the occurrence of asbestos-induced tumors.

  8. A Novel Regulatory Function of Sweet Taste-Sensing Receptor in Adipogenic Differentiation of 3T3-L1 Cells

    PubMed Central

    Masubuchi, Yosuke; Nakagawa, Yuko; Ma, Jinhui; Sasaki, Tsutomu; Kitamura, Tadahiro; Yamamoto, Yoritsuna; Kurose, Hitoshi; Kojima, Itaru; Shibata, Hiroshi

    2013-01-01

    Background Sweet taste receptor is expressed not only in taste buds but also in nongustatory organs such as enteroendocrine cells and pancreatic beta-cells, and may play more extensive physiological roles in energy metabolism. Here we examined the expression and function of the sweet taste receptor in 3T3-L1 cells. Methodology/Principal Findings In undifferentiated preadipocytes, both T1R2 and T1R3 were expressed very weakly, whereas the expression of T1R3 but not T1R2 was markedly up-regulated upon induction of differentiation (by 83.0 and 3.8-fold, respectively at Day 6). The α subunits of Gs (Gαs) and G14 (Gα14) but not gustducin were expressed throughout the differentiation process. The addition of sucralose or saccharin during the first 48 hours of differentiation considerably reduced the expression of peroxisome proliferator activated receptor γ (PPARγ and CCAAT/enhancer-binding protein α (C/EBPα at Day 2, the expression of aP2 at Day 4 and triglyceride accumulation at Day 6. These anti-adipogenic effects were attenuated by short hairpin RNA-mediated gene-silencing of T1R3. In addition, overexpression of the dominant-negative mutant of Gαs but not YM-254890, an inhibitor of Gα14, impeded the effects of sweeteners, suggesting a possible coupling of Gs with the putative sweet taste-sensing receptor. In agreement, sucralose and saccharin increased the cyclic AMP concentration in differentiating 3T3-L1 cells and also in HEK293 cells heterologously expressing T1R3. Furthermore, the anti-adipogenic effects of sweeteners were mimicked by Gs activation with cholera toxin but not by adenylate cyclase activation with forskolin, whereas small interfering RNA-mediated knockdown of Gαs had the opposite effects. Conclusions 3T3-L1 cells express a functional sweet taste-sensing receptor presumably as a T1R3 homomer, which mediates the anti-adipogenic signal by a Gs-dependent but cAMP-independent mechanism. PMID:23336004

  9. Harnessing Regulatory T cells to Suppress Asthma

    PubMed Central

    Thorburn, Alison N.; Hansbro, Philip M.

    2010-01-01

    Regulatory T cells (Tregs) play an essential role in maintaining the homeostatic balance of immune responses. Asthma is an inflammatory condition of the airways that is driven by dysregulated immune responses toward normally innocuous antigens. Individuals with asthma have fewer and less functional Tregs, which may lead to uncontrolled effector cell responses and promote proasthmatic responses of T helper type 2, T helper 17, natural killer T, antigen-presenting, and B cells. Tregs have the capacity to either directly or indirectly suppress these responses. Hence, the induced expansion of functional Tregs in predisposed or individuals with asthma is a potential approach for the prevention and treatment of asthma. Infection by a number of micro-organisms has been associated with reduced prevalence of asthma, and many infectious agents have been shown to induce Tregs and reduce allergic airways disease in mouse models. The translation of the regulatory and therapeutic properties of infectious agents for use in asthma requires the identification of key modulatory components and the development and trial of effective immunoregulatory therapies. Further translational and clinical research is required for the induction of Tregs to be harnessed as a therapeutic strategy for asthma. PMID:20097830

  10. Treatment with IP-10 induces host-protective immune response by regulating the T regulatory cell functioning in Leishmania donovani-infected mice.

    PubMed

    Gupta, Gaurav; Majumdar, Saikat; Adhikari, Anupam; Bhattacharya, Parna; Mukherjee, Asok Kumar; Majumdar, Suchandra Bhattacharyya; Majumdar, Subrata

    2011-11-01

    Visceral leishmaniasis (VL), caused by the protozoan parasite, Leishmania donovani, is characterized by an infection in the liver and spleen. The failure of the first-line drugs has led to the development of new strategies for combating VL. Recently, our group has shown that interferon-γ-inducible protein (IP)-10, a CXC chemokine, renders protection against VL. In the present study, we have elucidated the mechanism by which IP-10 renders protection in in vivo L. donovani infection. We observed that IP-10-treated parasitized BALB/c mice showed a strong host-protective T helper cell (Th) 1 immune response along with marked decrease in immunosuppressive cytokines, tumor growth factor (TGF)-β, and interleukin (IL)-10 secreting CD4(+) T cells. This IP-10-mediated decrease in immunosuppressive cytokines was correlated with the reduction in the elevated frequency of CD4(+)CD25(+) T regulatory (Treg) cells along with the reduced TFG-β production from these Treg cells in Leishmania-infected mice. This reduction in TGF-β production was due to effective modulation of TGF-β signaling by IP-10, which reduced the immunosuppressive activity of Treg cells. Thus, these findings put forward a detailed mechanistic insight into IP-10-mediated regulation of the Treg cell functioning during experimental VL, which might be helpful in combating Leishmania-induced pathogenesis.

  11. Regulatory T cells and vasectomy.

    PubMed

    Rival, Claudia; Wheeler, Karen; Jeffrey, Sarah; Qiao, Hui; Luu, Brian; Tewalt, Eric F; Engelhard, Victor H; Tardif, Stephen; Hardy, Daniel; del Rio, Roxana; Teuscher, Cory; Tung, Kenneth

    2013-11-01

    CD4+ CD25+ regulatory T cells (Tregs) strongly influence the early and late autoimmune responses to meiotic germ cell antigens (MGCA) and the gonadal immunopathology in vasectomized mice. This is supported by the published and recently acquired information presented here. Within 24h of unilateral vasectomy (uni-vx) the ipsilateral epididymis undergoes epithelial cell apoptosis followed by necrosis, severe inflammation, and granuloma formation. Unexpectedly, vasectomy alone induced MGCA-specific tolerance. In contrast, uni-vx plus simultaneous Treg depletion resulted in MGCA-specific autoimmune response and bilateral autoimmune orchitis. Both tolerance and autoimmunity were strictly linked to the early epididymal injury. We now discovered that testicular autoimmunity in uni-vx mice did not occur when Treg depletion was delayed by one week. Remarkably, this delayed Treg depletion also prevented tolerance induction. Therefore, tolerance depends on a rapid de novo Treg response to MGCA exposed after vasectomy. Moreover, tolerance was blunted in mice genetically deficient in PD-1 ligand, suggesting the involvement of induced Treg. We conclude that pre-existing natural Treg prevents post-vasectomy autoimmunity, whereas vasectomy-induced Treg maintains post-vasectomy tolerance. We further discovered that vasectomized mice were still resistant to autoimmune orchitis induction for at least 12-16 months; thus, tolerance is long-lasting. Although significant sperm autoantibodies of low titers became detectable in uni-vx mice at 7 months, the antibody titers fluctuated over time, suggesting a dynamic "balance" between the autoimmune and tolerance states. Finally, we observed severe epididymal fibrosis and hypo-spermatogenesis at 12 months after uni-vx: findings of highly critical clinical significance.

  12. Ribavirin exerts differential effects on functions of Cd4+ Th1, Th2, and regulatory T cell clones in hepatitis C.

    PubMed

    Langhans, Bettina; Nischalke, Hans Dieter; Arndt, Simone; Braunschweiger, Ingrid; Nattermann, Jacob; Sauerbruch, Tilman; Spengler, Ulrich

    2012-01-01

    Ribavirin improves outcomes of therapy in chronic hepatitis C but its mode of action has still remained unclear. Since ribavirin has been proposed to modulate the host's T cell responses, we studied its direct effects on CD4(+) T cell clones with diverse functional polarization which had been generated from patients with chronic hepatitis C. We analysed in vitro proliferation ([(3)H] thymidine uptake) and cytokine responses (IL-10, IFN-gamma) at varying concentrations of ribavirin (0-10 µg/ml) in 8, 9 and 7 CD4(+) TH1, TH2 and regulatory T cell (Treg) clones, respectively. In co-culture experiments, we further determined effects of ribarivin on inhibition of TH1 and TH2 effector cells by Treg clones. All clones had been generated from peripheral blood of patients with chronic hepatitis C in the presence of HCV core protein. Ribavirin enhanced proliferation of T effector cells and increased production of IFN-gamma in TH1 clones, but had only little effect on IL-10 secretion in TH2 clones. However, ribavirin markedly inhibited IL-10 release in Treg clones in a dose dependent fashion. These Treg clones suppressed proliferation of T effector clones by their IL-10 secretion, and in co-culture assays ribavirin reversed Treg-mediated suppression of T effector cells. Our in vitro data suggest that--in addition to its immunostimulatory effects on TH1 cells--ribavirin can inhibit functions of HCV-specific Tregs and thus reverses Treg-mediated suppression of T effector cells in chronic hepatitis C.

  13. Cord blood CD4(+)CD25(+) regulatory T cells fail to inhibit cord blood NK cell functions due to insufficient production and expression of TGF-beta1.

    PubMed

    Xu, Liqing; Tanaka, Shigeki; Bonno, Motoki; Ido, Masaru; Kawai, Masatoshi; Yamamoto, Hatsumi; Komada, Yoshihiro

    2014-07-01

    Although CD4(+)CD25(+) Treg (Treg) cells are known to modulate NK cell functions, the modulation mechanism of these cells in cord blood has not been fully clarified. The purpose of this study was to clarify the mechanism whereby cord blood Treg cells modulate cord NK cells. By performing various cultures of purified NK cells with or without autologous Treg cells, diminished inhibitory effects of cord Treg cells towards cord NK cell functions, including activation, cytokine production, and cytotoxicity, were observed. We also observed lower secretion of sTGF-beta1 and lower expression of mTGF-beta1 by cord Treg cells than by adult Treg cells. These data revealed the capability of adult Treg cells to suppress rhIL-2-stimulated NK cell function by TGF-beta1, both membrane-bound and soluble types. The reduced inhibitory capabilities of cord Treg cells compared with adult Treg cells is thought to be due to insufficient expression of TGF-beta1.

  14. Functional Characterization of Rpn3 Uncovers a Distinct 19S Proteasomal Subunit Requirement for Ubiquitin-Dependent Proteolysis of Cell Cycle Regulatory Proteins in Budding Yeast

    PubMed Central

    Bailly, Eric; Reed, Steven I.

    1999-01-01

    By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G1/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G1-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G1 arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible Rpn3

  15. Growth Arrest-Specific 6 Enhances the Suppressive Function of CD4+CD25+ Regulatory T Cells Mainly through Axl Receptor

    PubMed Central

    Zhao, Guang-ju; Zheng, Jia-yi; Bian, Jia-lan; Chen, Long-wang; Dong, Ning; Yu, Yan; Hong, Guang-liang; Chandoo, Arvine

    2017-01-01

    Background. Growth arrest-specific (Gas) 6 is one of the endogenous ligands of TAM receptors (Tyro3, Axl, and Mertk), and its role as an immune modulator has been recently emphasized. Naturally occurring CD4+CD25+ regulatory T cells (Tregs) are essential for the active suppression of autoimmunity. The present study was designed to investigate whether Tregs express TAM receptors and the potential role of Gas6-TAM signal in regulating the suppressive function of Tregs. Methods. The protein and mRNA levels of TAM receptors were determined by using Western blot, immunofluorescence, flow cytometry, and RT-PCR. Then, TAM receptors were silenced using targeted siRNA or blocked with specific antibody. The suppressive function of Tregs was assessed by using a CFSE-based T cell proliferation assay. Flow cytometry was used to determine the expression of Foxp3 and CTLA4 whereas cytokines secretion levels were measured by ELISA assay. Results. Tregs express both Axl and Mertk receptors. Gas6 increases the suppressive function of Tregs in vitro and in mice. Both Foxp3 and CTLA-4 expression on Tregs are enhanced after Gas6 stimulation. Gas6 enhances the suppressive activity of Tregs mainly through Axl receptor. Conclusion. Gas6 has a direct effect on the functions of CD4+CD25+Tregs mainly through its interaction with Axl receptor. PMID:28270700

  16. The Spatiotemporal Pattern of Glis3 Expression Indicates a Regulatory Function in Bipotent and Endocrine Progenitors during Early Pancreatic Development and in Beta, PP and Ductal Cells

    PubMed Central

    Kang, Hong Soon; Takeda, Yukimasa; Jeon, Kilsoo

    2016-01-01

    The transcription factor Glis-similar 3 (Glis3) has been implicated in the development of neonatal, type 1 and type 2 diabetes. In this study, we examined the spatiotemporal expression of Glis3 protein during embryonic and neonatal pancreas development as well as its function in PP cells. To obtain greater insights into the functions of Glis3 in pancreas development, we examined the spatiotemporal expression of Glis3 protein in a knockin mouse strain expressing a Glis3-EGFP fusion protein. Immunohistochemistry showed that Glis3-EGFP was not detectable during early pancreatic development (E11.5 and E12.5) and at E13.5 and 15.5 was not expressed in Ptf1a+ cells in the tip domains indicating that Glis3 is not expressed in multipotent pancreatic progenitors. Glis3 was first detectable at E13.5 in the nucleus of bipotent progenitors in the trunk domains, where it co-localized with Sox9, Hnf6, and Pdx1. It remained expressed in preductal and Ngn3+ endocrine progenitors and at later stages becomes restricted to the nucleus of pancreatic beta and PP cells as well as ductal cells. Glis3-deficiency greatly reduced, whereas exogenous Glis3, induced Ppy expression, as reported for insulin. Collectively, our study demonstrates that Glis3 protein exhibits a temporal and cell type-specific pattern of expression during embryonic and neonatal pancreas development that is consistent with a regulatory role for Glis3 in promoting endocrine progenitor generation, regulating insulin and Ppy expression in beta and PP cells, respectively, and duct morphogenesis. PMID:27270601

  17. Regulatory T Cells and Their Role in Animal Disease.

    PubMed

    Veiga-Parga, T

    2016-07-01

    In humans and mouse models, Foxp3(+) regulatory T cells are known to control all aspects of immune responses. However, only limited information exists on these cells' role in diseases of other animals. In this review, we cover the most important features and different types of regulatory T cells, which include those that are thymus-derived and peripherally induced, the mechanisms by which they control immune responses by targeting effector T cells and antigen-presenting cells, and most important, their role in animal health and diseases including cancer, infections, and other conditions such as hypersensitivities and autoimmunity. Although the literature regarding regulatory T cells in domestic animal species is still limited, multiple articles have recently emerged and are discussed. Moreover, we also discuss the evidence suggesting that regulatory T cells might limit the magnitude of effector responses, which can have either a positive or negative result, depending on the context of animal and human disease. In addition, the issue of plasticity is discussed because plasticity in regulatory T cells can result in the loss of their protective function in some microenvironments during disease. Lastly, the manipulation of regulatory T cells is discussed in assessing the possibility of their use as a treatment in the future.

  18. Histone Deacetylases 6 and 9 and Sirtuin-1 Control Foxp3+ Regulatory T Cell Function Through Shared and Isotype-Specific Mechanisms

    PubMed Central

    Beier, Ulf H.; Wang, Liqing; Han, Rongxiang; Akimova, Tatiana; Liu, Yujie; Hancock, Wayne W.

    2013-01-01

    Therapeutic targeting of histone/protein deacetylase 6 (HDAC6), HDAC9, or the sirtuin-1 (Sirt1) augments the suppressive functions of regulatory T cells (Tregs) that contain the transcription factor Foxp3. However, it is unclear whether distinct mechanisms are involved or whether combined inhibition of these targets would be more beneficial. We compared the suppressive functions of Tregs from wild-type C57BL/6 mice with those from mice with either global (HDAC6−/−, HDAC9−/−, and HDAC6−/−HDAC9−/−), or conditional (fl-Sirt1/CD4-Cre or fl-Sirt1/Foxp3-Cre) HDAC deletion, as well as treatment with isoform-selective HDAC inhibitors. We found that the heat shock response was important for the improvement of Treg suppressive function mediated by HDAC6 inhibition, but not Sirt1 inhibition. Furthermore, although HDAC6, HDAC9, and Sirt1 all deacetylated Foxp3, each protein had diverse effects on transcription factors controlling Foxp3 gene expression. For example, loss of HDAC9 was associated with stabilization of the acetylation of signal transducer and activator of transcription 5 (STAT5) and of its transcriptional activity. Hence, targeting different HDACs increased Treg function by multiple and additive mechanisms, which indicates the therapeutic potential for combinations of HDAC inhibitors in the management of autoimmunity and organ transplantation. PMID:22715468

  19. Soluble OX40L and JAG1 Induce Selective Proliferation of Functional Regulatory T-Cells Independent of canonical TCR signaling

    PubMed Central

    Kumar, Prabhakaran; Alharshawi, Khaled; Bhattacharya, Palash; Marinelarena, Alejandra; Haddad, Christine; Sun, Zuoming; Chiba, Shigeru; Epstein, Alan L.; Prabhakar, Bellur S.

    2017-01-01

    Regulatory T-cells (Tregs) play a pivotal role in maintaining peripheral tolerance. Increasing Treg numbers/functions has been shown to ameliorate autoimmune diseases. However, common Treg expansion approaches use T-Cell Receptor (TCR)-mediated stimulation which also causes proliferation of effector T-cells (Teff). To overcome this limitation, purified patient-specific Tregs are expanded ex vivo and transfused. Although promising, this approach is not suitable for routine clinical use. Therefore, an alternative approach to selectively expand functional Tregs in vivo is highly desired. We report a novel TCR-independent strategy for the selective proliferation of Foxp3+Tregs (without Teff proliferation), by co-culturing CD4+ T-cells with OX40 L+Jagged(JAG)-1+ bone marrow-derived DCs differentiated with GM-CSF or treating them with soluble OX40 L and JAG1 in the presence of exogenous IL-2. Tregs expanded using soluble OX40 L and JAG1 were of suppressive phenotype and delayed the onset of diabetes in NOD mice. Ligation of OX40 L and JAG1 with their cognate-receptors OX40 and Notch3, preferentially expressed on Tregs but not on Teff cells, was required for selective Treg proliferation. Soluble OX40L-JAG1-induced NF-κB activation as well as IL-2-induced STAT5 activation were essential for the proliferation of Tregs with sustained Foxp3 expression. Altogether, these findings demonstrate the utility of soluble OX40 L and JAG1 to induce TCR-independent Treg proliferation. PMID:28045060

  20. Higher frequencies of GARP(+)CTLA-4(+)Foxp3(+) T regulatory cells and myeloid-derived suppressor cells in hepatocellular carcinoma patients are associated with impaired T-cell functionality.

    PubMed

    Kalathil, Suresh; Lugade, Amit A; Miller, Austin; Iyer, Renuka; Thanavala, Yasmin

    2013-04-15

    The extent to which T-cell-mediated immune surveillance is impaired in human cancer remains a question of major importance, given its potential impact on the development of generalized treatments of advanced disease where the highest degree of heterogeneity exists. Here, we report the first global analysis of immune dysfunction in patients with advanced hepatocellular carcinoma (HCC). Using multi-parameter fluorescence-activated cell sorting analysis, we quantified the cumulative frequency of regulatory T cells (Treg), exhausted CD4(+) helper T cells, and myeloid-derived suppressor cells (MDSC) to gain concurrent views on the overall level of immune dysfunction in these inoperable patients. We documented augmented numbers of Tregs, MDSC, PD-1(+)-exhausted T cells, and increased levels of immunosuppressive cytokines in patients with HCC, compared with normal controls, revealing a network of potential mechanisms of immune dysregulation in patients with HCC. In dampening T-cell-mediated antitumor immunity, we hypothesized that these processes may facilitate HCC progression and thwart the efficacy of immunotherapeutic interventions. In testing this hypothesis, we showed that combined regimens to deplete Tregs, MDSC, and PD-1(+) T cells in patients with advanced HCC restored production of granzyme B by CD8(+) T cells, reaching levels observed in normal controls and also modestly increased the number of IFN-γ producing CD4(+) T cells. These clinical findings encourage efforts to restore T-cell function in patients with advanced stage disease by highlighting combined approaches to deplete endogenous suppressor cell populations that can also expand effector T-cell populations.

  1. CD25 signaling regulates the function and stability of peripheral Foxp3+ regulatory T cells derived from the spleen and lymph nodes of mice.

    PubMed

    Wang, Kunpeng; Gu, Jian; Ni, Xuhao; Ding, Zheng; Wang, Qi; Zhou, Haoming; Zheng, SongGuo; Li, Bin; Lu, Ling

    2016-08-01

    Regulatory T cells (Tregs) play a critical role in sustaining immune tolerance and maintaining immune balance to alloantigen after transplatation. However, the functions of peripheral Tregs in different organs have not been fully characterized. Here, we showed that spleen-derived Tregs exhibited higher expression of Foxp3, greater suppressive capacity, and lower levels of IL-17A secretion than lymph node-derived Tregs in vitro in the presence or absence of inflammatory cytokines, such as IL-6. We found a higher percentage of CD25(bright) Tregs among spleen-derived Tregs than among lymph node-derived Tregs. Additionally, in vivo experiments demonstrated that adoptive transfer of spleen-derived Tregs, but not lymph node-derived Tregs, alleviated ischemia-reperfusion injury. These results reveal novel functions of Tregs derived from peripheral organs. In particular, spleen-derived Tregs, primarily consisting of CD25(bright) cells, may provide a more significant contribution to the suppression of immune-mediated autoimmune and inflammatory disease.

  2. Invariant and Noninvariant Natural Killer T Cells Exert Opposite Regulatory Functions on the Immune Response during Murine Schistosomiasis▿

    PubMed Central

    Mallevaey, Thierry; Fontaine, Josette; Breuilh, Laetitia; Paget, Christophe; Castro-Keller, Alexandre; Vendeville, Catherine; Capron, Monique; Leite-de-Moraes, Maria; Trottein, François; Faveeuw, Christelle

    2007-01-01

    CD1d-restricted natural killer T (NKT) cells represent a heterogeneous population of innate memory immune cells expressing both NK and T-cell markers distributed into two major subsets, i.e., invariant NKT (iNKT) cells, which express exclusively an invariant T-cell receptor (TCR) α chain (Vα14Jα18 in mice), and non-iNKT cells, which express more diverse TCRs. NKT cells quickly produce Th1- and/or Th2-type cytokines following stimulation with glycolipid antigen (Ag) and, through this property, play potent immunoregulatory roles in autoimmune diseases, cancer, and infection. No study has addressed the role of NKT cells in metazoan parasite infections so far. We show that during murine schistosomiasis, the apparent frequency of both iNKT cells and non-iNKT cells decreased in the spleen as early as 3 weeks postinfection (p.i.) and that both populations expressed a greater amount of the activation marker CD69 at 6 weeks p.i., suggesting an activated phenotype. Two different NKT-cell-deficient mouse models, namely, TCR Jα18−/− (exclusively deficient in iNKT cells) and CD1d−/− (deficient in both iNKT and non-iNKT cells) mice, were used to explore the implication of these subsets in infection. We show that whereas both iNKT and non-iNKT cells do not have a major impact on the immune response during the early phase (1 and 4 weeks) of infection, they exert important, although opposite, effects on the immune response during the acute phase of the disease (7 and 12 weeks), after schistosome egg production. Indeed, iNKT cells contribute to Th1 cell differentiation whereas non-iNKT cells might be mostly implicated in Th2 cell differentiation in response to parasite Ag. Our findings suggest, for the first time, that helminths activate both iNKT and non-iNKT cells in vivo, enabling them to differentially influence the Th1/Th2 balance of the immune response. PMID:17353286

  3. The molecular makeup and function of regulatory and effector synapses.

    PubMed

    Reichardt, Peter; Dornbach, Bastian; Gunzer, Matthias

    2007-08-01

    Physical interactions between T cells and antigen-presenting cells (APCs) form the basis of any specific immune response. Upon cognate contacts, a multimolecular assembly of receptors and adhesion molecules on both cells is created, termed the immunological synapse (IS). Very diverse structures of ISs have been described, yet the functional importance for T-cell differentiation is largely unclear. Here we discuss the principal structure and function of ISs. We then focus on two characteristic T-cell-APC pairs, namely T cells contacting dendritic cells (DCs) or naive B cells, for which extremely different patterns of the IS have been observed as well as fundamentally different effects on the function of the activated T cells. We provide a model on how differences in signaling and the involvement of adhesion molecules might lead to diverse interaction kinetics and, eventually, diverse T-cell differentiation. We hypothesize that the preferred activation of the adhesion molecule leukocyte function-associated antigen-1 (LFA-1) and of the negative regulator for T-cell activation, cytotoxic T-lymphocyte antigen-4 (CTLA-4), through contact with naive B cells, lead to prolonged cell-cell contacts and the generation of T cells with regulatory capacity. In contrast, DCs might have evolved mechanisms to avoid LFA-1 overactivation and CTLA-4 triggering, thereby promoting more dynamic contacts that lead to the preferential generation of effector cells.

  4. Generation of regulatory dendritic cells after treatment with paeoniflorin.

    PubMed

    Chen, Dan; Li, Yingxi; Wang, Xiaodong; Li, Keqiu; Jing, Yaqing; He, Jinghua; Qiang, Zhaoyan; Tong, Jingzhi; Sun, Ke; Ding, Wen; Kang, Yi; Li, Guang

    2016-08-01

    Regulatory dendritic cells are a potential therapeutic tool for assessing a variety of immune overreaction diseases. Paeoniflorin, a bioactive glucoside extracted from the Chinese herb white paeony root, has been shown to be effective at inhibiting the maturation and immunostimulatory function of murine bone marrow-derived dendritic cells. However, whether paeoniflorin can program conventional dendritic cells toward regulatory dendritic cells and the underlying mechanism remain unknown. Here, our study demonstrates that paeoniflorin can induce the production of regulatory dendritic cells from human peripheral blood monocyte-derived immature dendritic cells in the absence or presence of lipopolysaccharide (LPS) but not from mature dendritic cells, thereby demonstrating the potential of paeoniflorin as a specific immunosuppressive drug with fewer complications and side effects. These regulatory dendritic cells treated with paeoniflorin exhibited high CD11b/c and low CD80, CD86 and CD40 expression levels as well as enhanced abilities to capture antigen and promote the proliferation of CD4(+)CD25(+) T cells and reduced abilities to migrate and promote the proliferation of CD4(+) T cells, which is associated with the upregulation of endogenous transforming growth factor (TGF)-β-mediated indoleamine 2,3-dioxygenase (IDO) expression. Collectively, paeoniflorin could program immature dendritic cells (imDCs) and imDCs stimulated with LPS toward a regulatory DC fate by upregulating the endogenous TGF-β-mediated IDO expression level, thereby demonstrating its potential as a specific immunosuppressive drug.

  5. Detailed map of a cis-regulatory input function

    NASA Astrophysics Data System (ADS)

    Setty, Y.; Mayo, A. E.; Surette, M. G.; Alon, U.

    2003-06-01

    Most genes are regulated by multiple transcription factors that bind specific sites in DNA regulatory regions. These cis-regulatory regions perform a computation: the rate of transcription is a function of the active concentrations of each of the input transcription factors. Here, we used accurate gene expression measurements from living cell cultures, bearing GFP reporters, to map in detail the input function of the classic lacZYA operon of Escherichia coli, as a function of about a hundred combinations of its two inducers, cAMP and isopropyl -D-thiogalactoside (IPTG). We found an unexpectedly intricate function with four plateau levels and four thresholds. This result compares well with a mathematical model of the binding of the regulatory proteins cAMP receptor protein (CRP) and LacI to the lac regulatory region. The model is also used to demonstrate that with few mutations, the same region could encode much purer AND-like or even OR-like functions. This possibility means that the wild-type region is selected to perform an elaborate computation in setting the transcription rate. The present approach can be generally used to map the input functions of other genes.

  6. Regulation of murine lymphokine production in vivo. III. The lymphoid tissue microenvironment exerts regulatory influences over T helper cell function

    PubMed Central

    1990-01-01

    We investigated the capacity of murine T lymphocytes, isolated from various lymphoid organs of normal or antigen-primed donors, to produce IL-2 or IL-4 after activation with anti-CD3 or specific antigen. Our results established that T cells resident within lymphoid organs being drained by nonmucosal tissue sites (e.g., axillary, inguinal, brachial lymph nodes, or spleen) produced IL-2 as the predominant T cell growth factor (TCGF) after activation. Conversely, activated T cells from lymphoid organs being drained by mucosal tissues (Peyer's patches, and cervical, periaortic, and parathymic lymph nodes) produced IL-4 as the major species of TCGF. Analysis of the lymphoid tissues obtained from adoptive recipients of antigen-primed lymphocytes provided by syngeneic donors provided evidence that direct influences were being exerted on T cells during their residence within defined lymphoid compartments. These lymphoid tissue influences appeared to be responsible for altering the potential of resident T cells to produce distinct species of TCGF. Steroid hormones, known transcriptional enhancers and repressors of specific cellular genes, were implicated in the controlling mechanisms over TCGF production. Glucocorticoids (GCs) were found to exert a systemic effect on all recirculating T cells, evidenced by a marked dominance in IL-4 production by T cells obtained from all lymphoid organs of GC-treated mice, or after a direct exposure of normal lymphoid cells to GCs in vitro before cellular activation with T cell mitogens. Further, the androgen steroid DHEA appeared to be responsible for providing an epigenetic influence to T cells trafficking through peripheral lymphoid organs. This steroid influence resulted in an enhanced potential for IL-2 secretion after activation. Anatomic compartmentalization of the DHEA-facilitated influence appears to be mediated by differential levels of DHEA-sulfatase in lymphoid tissues. DHEA-sulfatase is an enzyme capable of converting DHEA

  7. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization.

    PubMed

    Denning, Timothy L; Norris, Brian A; Medina-Contreras, Oscar; Manicassamy, Santhakumar; Geem, Duke; Madan, Rajat; Karp, Christopher L; Pulendran, Bali

    2011-07-15

    Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.

  8. Radiation Enhances Regulatory T Cell Representation

    SciTech Connect

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Doerthe

    2011-11-15

    Purpose: Immunotherapy could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease, although successful integration of immunotherapy into treatment protocols will require further understanding of how standard therapies affect the generation of antitumor immune responses. This study was undertaken to evaluate the impact of radiation therapy (RT) on immunosuppressive T regulatory (Treg) cells. Methods and Materials: Treg cells were identified as a CD4{sup +}CD25{sup hi}Foxp3{sup +} lymphocyte subset, and their fate was followed in a murine TRAMP C1 model of prostate cancer in mice with and without RT. Results: CD4{sup +}CD25{sup hi}Foxp3{sup +} Treg cells increased in immune organs after local leg or whole-body radiation. A large part, but not all, of this increase after leg-only irradiation could be ascribed to radiation scatter and Treg cells being intrinsically more radiation resistant than other lymphocyte subpopulations, resulting in their selection. Their functional activity on a per-cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg cell population in the response to RT was shown by systemic elimination of Treg cells, which greatly enhanced radiation-induced tumor regression. Conclusions: We conclude that Treg cells are more resistant to radiation than other lymphocytes, resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context, they may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation.

  9. Prostaglandin E2 Suppresses Antifungal Immunity by Inhibiting Interferon Regulatory Factor 4 Function and Interleukin-17 Expression in T Cells

    PubMed Central

    Valdez, Patricia A.; Vithayathil, Paul J.; Janelsins, Brian M.; Shaffer, Arthur L.; Williamson, Peter R.; Datta, Sandip K.

    2012-01-01

    SUMMARY T helper 17 (Th17) cells play an important role in mucosal host defense through production of the signature cytokines IL-17 and IL-22. Prostaglandin E2 (PGE2) has been shown to enhance IL-17 production by mature Th17 cells. However, when present during Th17 differentiation, we found that PGE2 inhibited the transcription factor IRF4 and suppressed production of IL-17 but not IL-22. We show that IRF4 was required for IL-17 expression but inhibited IL-22 expression, highlighting the potential for discordant regulation of these two cytokines in Th17 cells. The pathogenic fungus, Cryptococcus neoformans, produces PGE2 and we found that it uses PGE2- and IRF4-dependent mechanisms to specifically inhibit induction of IL-17 during Th17 differentiation. Blockade of host PGE2 during infection led to increased IL-17 production from CD4+T cells and increased survival of mice. These findings suggest that host- or pathogen-derived PGE2 can act directly on Th17 cells during differentiation to inhibit IL-17-dependent anti-microbial responses. PMID:22464170

  10. Additive Functions in Boolean Models of Gene Regulatory Network Modules

    PubMed Central

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H.; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in Boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a Boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred Boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  11. Additive functions in boolean models of gene regulatory network modules.

    PubMed

    Darabos, Christian; Di Cunto, Ferdinando; Tomassini, Marco; Moore, Jason H; Provero, Paolo; Giacobini, Mario

    2011-01-01

    Gene-on-gene regulations are key components of every living organism. Dynamical abstract models of genetic regulatory networks help explain the genome's evolvability and robustness. These properties can be attributed to the structural topology of the graph formed by genes, as vertices, and regulatory interactions, as edges. Moreover, the actual gene interaction of each gene is believed to play a key role in the stability of the structure. With advances in biology, some effort was deployed to develop update functions in boolean models that include recent knowledge. We combine real-life gene interaction networks with novel update functions in a boolean model. We use two sub-networks of biological organisms, the yeast cell-cycle and the mouse embryonic stem cell, as topological support for our system. On these structures, we substitute the original random update functions by a novel threshold-based dynamic function in which the promoting and repressing effect of each interaction is considered. We use a third real-life regulatory network, along with its inferred boolean update functions to validate the proposed update function. Results of this validation hint to increased biological plausibility of the threshold-based function. To investigate the dynamical behavior of this new model, we visualized the phase transition between order and chaos into the critical regime using Derrida plots. We complement the qualitative nature of Derrida plots with an alternative measure, the criticality distance, that also allows to discriminate between regimes in a quantitative way. Simulation on both real-life genetic regulatory networks show that there exists a set of parameters that allows the systems to operate in the critical region. This new model includes experimentally derived biological information and recent discoveries, which makes it potentially useful to guide experimental research. The update function confers additional realism to the model, while reducing the complexity

  12. [Regulatory functions of Pax gene family in Drosophila development].

    PubMed

    Li, Li; Yang, Yang; Xue, Lei

    2010-02-01

    The Pax gene family encodes a group of important transcription factors that have been evolutionary conserved from Drosophila to human. Pax genes play pivotal roles in regulating diverse signal transduction pathways and organogenesis during embryonic development through modulating cell proliferation and self-renewal, embryonic precursor cell migration, and the coordination of specific differentiation programs. Ten members of the Pax gene family, which perform crucial regulatory functions during embryonic and postembryonic development, have been identified in Drosophila. In this report, we described the protein structures, expression patterns, and main functions of Drosophila Pax genes.

  13. Functional Islet-Specific Regulatory T Cells Can Be Generated from CD4+CD25− T cells of Healthy and Type 1 Diabetic Subjects

    PubMed Central

    Long, S. Alice; Walker, Mindi R.; Rieck, Mary; James, Eddie; Kwok, William W.; Sanda, Srinath; Pihoker, Catherine; Greenbaum, Carla; Nepom, Gerald T; Buckner, Jane H

    2009-01-01

    SUMMARY CD4+CD25+FOXP3+ Treg cells require TCR engagement for suppressive function, thus ensuring that suppression only occurs in the presence of specific antigens, however, to date no studies have addressed the function of self antigen-specific Treg in humans. These studies were designed to determine whether peripheral generation and function of islet antigen-specific adaptive Treg are defective in human subjects with type 1 diabetes (T1D). Islet antigen-specific adaptive Treg were induced in vitro by activation of CD4+FOXP3− T cells with GAD and IGRP peptides in the context of T1D associated HLA-DRβ alleles. Antigen-specific Treg were characterized using flow cytometry for FOXP3 and class II tetramer (Tmr) and assessed for the ability to inhibit proliferation. These adaptive Treg were then compared to influenza-specific Treg from the same study population. The function of Tmr+ cells that expressed FOXP3 was similar for both influenza and islet antigens generated from control and T1D subjects. In fact, potency of suppression correlated with FOXP3 expression, not antigen specificity. Thus, these data suggest that development of functional adaptive Treg can occur in response to islet antigens and activation of islet-specific Treg may potentially be used as a targeted immunotherapy in T1D. PMID:19180473

  14. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling

    PubMed Central

    Corral-Jara, Karla F.; Gómez-Leyva, Juan F.; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1. PMID:27578921

  15. Conjugated Bilirubin Differentially Regulates CD4+ T Effector Cells and T Regulatory Cell Function through Outside-In and Inside-Out Mechanisms: The Effects of HAV Cell Surface Receptor and Intracellular Signaling.

    PubMed

    Corral-Jara, Karla F; Trujillo-Ochoa, Jorge L; Realpe, Mauricio; Panduro, Arturo; Gómez-Leyva, Juan F; Rosenstein, Yvonne; Jose-Abrego, Alexis; Roman, Sonia; Fierro, Nora A

    2016-01-01

    We recently reported an immune-modulatory role of conjugated bilirubin (CB) in hepatitis A virus (HAV) infection. During this infection the immune response relies on CD4+ T lymphocytes (TLs) and it may be affected by the interaction of HAV with its cellular receptor (HAVCR1/TIM-1) on T cell surface. How CB might affect T cell function during HAV infection remains to be elucidated. Herein, in vitro stimulation of CD4+ TLs from healthy donors with CB resulted in a decrease in the degree of intracellular tyrosine phosphorylation and an increase in the activity of T regulatory cells (Tregs) expressing HAVCR1/TIM-1. A comparison between CD4+ TLs from healthy donors and HAV-infected patients revealed changes in the TCR signaling pathway relative to changes in CB levels. The proportion of CD4+CD25+ TLs increased in patients with low CB serum levels and an increase in the percentage of Tregs expressing HAVCR1/TIM-1 was found in HAV-infected patients relative to controls. A low frequency of 157insMTTTVP insertion in the viral receptor gene HAVCR1/TIM-1 was found in patients and controls. Our data revealed that, during HAV infection, CB differentially regulates CD4+ TLs and Tregs functions by modulating intracellular pathways and by inducing changes in the proportion of Tregs expressing HAVCR1/TIM-1.

  16. Clonorchis sinensis-derived total protein attenuates airway inflammation in murine asthma model by inducing regulatory T cells and modulating dendritic cell functions

    SciTech Connect

    Jeong, Young-Il; Kim, Seung Hyun; Ju, Jung Won; Cho, Shin Hyeong; Lee, Won Ja; Park, Jin Wook; Park, Yeong-Min; Lee, Sang Eun

    2011-04-22

    Highlights: {yields} Treatment with Clonorchis sinensis-derived total protein attenuates OVA-induced airway inflammation and AHR to methacholine. {yields} Induction of CD4{sup +}CD25{sup +}Foxp3{sup +} T cells and IL-10 along with suppression of splenocyte proliferation by C. sinensis-derived total protein. {yields} C. sinensis-derived total protein interferes with the expression of co-stimulatory molecules in DCs. -- Abstract: Asthma is characterized by Th2-mediated inflammation, resulting in airway hyperresponsiveness (AHR) through airway remodeling. Recent epidemiological and experimental reports have suggested an inverse relationship between the development of allergy and helminth infections. Infection by Clonorchis sinensis, a liver fluke that resides in the bile duct of humans, is endemic predominantly in Asia including Korea and China. Using a murine model for asthma, we investigated the effects of C. sinensis-derived total protein (Cs-TP) on allergen-induced airway inflammation and the mechanism underlying the protective effects of Cs-TP administration on asthma. Treatment with Cs-TP attenuated OVA-induced airway inflammation and methacholine-induced AHR, as well as eosinophilia development, lymphocyte infiltration into the lung, and goblet cell metaplasia. This protective effect of Cs-TP is associated with markedly reduced OVA-specific IgE and Th1/Th2 cytokine production. Moreover, Cs-TP increased the number of CD4{sup +}CD25{sup +}Foxp3{sup +} regulatory T (Treg) cells as well as their suppressive activity. In fact, proliferation of OVA-restimulated splenocytes was suppressed significantly. Cs-TP also inhibited the expression of such co-stimulatory molecules as CD80, CD86, and CD40 in LPS- or OVA-stimulated dendritic cells (DCs), suggesting that Cs-TP could interfere with the capacity of airway DCs to prime naive T cells. These data demonstrate the capacity of C. sinensis to ameliorate allergic asthma and broaden our understanding of the paradoxical

  17. Regulatory influence of germ cells on sertoli cell function in the pre-pubertal rat after acute irradiation of the testis.

    PubMed

    Guitton, N; Touzalin, A M; Sharpe, R M; Cheng, C Y; Pinon-Lataillade, G; Méritte, H; Chenal, C; Jégou, B

    2000-12-01

    While germ cell regulation of Sertoli cells has been extensively explored in adult rats in vivo, in contrast, very little is known about germ cell influence on Sertoli cell function at the time when spermatogenesis begins and develops. In the present study various Sertoli cell parameters (number, testicular androgen binding protein (ABP) and testin, serum inhibin-B and, indirectly, follicle-stimulating hormone (FSH)) were investigated after the exposure of 19-day-old rats to a low dose of 3 Grays of gamma-rays. Differentiated spermatogonia were the primary testicular targets of the gamma-rays, which resulted in progressive maturation depletion, sequentially and reversibly affecting all germ cell classes. Testicular weight declined to a nadir when pachytene spermatocytes and spermatids were depleted from the seminiferous epithelium and complete or near complete recovery of spermatogenesis and testicular weight was observed at the end of the experiment. Blood levels of FSH and ABP were normal during the first 11 days after irradiation, when spermatogonia and early spermatocytes were depleted. While the number of Sertoli cells was not significantly affected by the irradiation, from days 11-66 after gamma-irradiation, ABP production declined and FSH levels increased when pachytene spermatocytes and spermatids were depleted and the recovery of these parameters was only observed when spermatogenesis was fully restored. Comparison of the pattern of change in serum levels of inhibin-B and testicular levels of testin and of germ cell numbers strongly suggest a relationship between the disappearance of spermatocytes and spermatids from the seminiferous epithelium and the decrease in levels of inhibin-B and increase in levels of testin from 7 to 36 days post-irradiation. Levels of testin and inhibin-B were restored before spermatogenesis had totally returned to normal. In conclusion, this in vivo study shows that pre-pubertal Sertoli cell function is under the complex control

  18. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis.

    PubMed

    Murai, Masako; Turovskaya, Olga; Kim, Gisen; Madan, Rajat; Karp, Christopher L; Cheroutre, Hilde; Kronenberg, Mitchell

    2009-11-01

    Regulatory T cells (T(reg) cells) that express the transcription factor Foxp3 suppress the activity of other cells. Here we show that interleukin 10 (IL-10) produced by CD11b(+) myeloid cells in recombination-activating gene 1-deficient (Rag1(-/-)) recipient mice was needed to prevent the colitis induced by transferred CD4(+)CD45RB(hi) T cells. In Il10(-/-)Rag1(-/-) mice, T(reg) cells failed to maintain Foxp3 expression and regulatory activity. The loss of Foxp3 expression occurred only in recipients with colitis, which indicates that the requirement for IL-10 is manifested in the presence of inflammation. IL-10 receptor-deficient (Il10rb(-/-)) T(reg) cells also failed to maintain Foxp3 expression, which suggested that host IL-10 acted directly on the T(reg) cells. Our data indicate that IL-10 released from myeloid cells acts in a paracrine manner on T(reg) cells to maintain Foxp3 expression.

  19. Abatacept (cytotoxic T lymphocyte antigen 4-immunoglobulin) improves B cell function and regulatory T cell inhibitory capacity in rheumatoid arthritis patients non-responding to anti-tumour necrosis factor-α agents.

    PubMed

    Picchianti Diamanti, A; Rosado, M M; Scarsella, M; Germano, V; Giorda, E; Cascioli, S; Laganà, B; D'Amelio, R; Carsetti, R

    2014-09-01

    The use of biological agents combined with methotrexate (MTX) in rheumatoid arthritis (RA) patients has strongly improved disease outcome. In this study, the effects of abatacept on the size and function of circulating B and T cells in RA patients not responding to anti-tumour necrosis factor (TNF)-α have been analysed, with the aim of identifying immunological parameters helpful to choosing suitable tailored therapies. We analysed the frequency of peripheral B and T cell subsets, B cell function and T regulatory cell (Treg ) inhibitory function in 20 moderate/severe RA patients, according to the European League Against Rheumatism (EULAR)/American College of Rheumatology (ACR) criteria, primary non-responders to one TNF-α blocking agent, who received abatacept + MTX. Patients were studied before and 6 months after therapy. We found that abatacept therapy significantly reduced disease activity score on 44 joints (DAS)/erythrocyte sedimentation rate (ESR) values without causing severe side effects. The size of the circulating B and T cell compartments in RA patients was not significantly different from healthy donors, but B cell proliferation and plasma cell differentiation was impaired before therapy and restored by abatacept. While Treg cell frequency was normal, its inhibitory function was absent before therapy and was partially recovered 6 months after abatacept. B and Treg cell function is impaired in RA patients not responding to the first anti-TNF-α agent. Abatacept therapy was able to rescue immune function and led to an effective and safe clinical outcome, suggesting that RA patients, in whom anti-TNF-α failed, are immunologically prone to benefit from an agent targeting a different pathway.

  20. Integrating sequence, evolution and functional genomics in regulatory genomics

    PubMed Central

    Vingron, Martin; Brazma, Alvis; Coulson, Richard; van Helden, Jacques; Manke, Thomas; Palin, Kimmo; Sand, Olivier; Ukkonen, Esko

    2009-01-01

    With genome analysis expanding from the study of genes to the study of gene regulation, 'regulatory genomics' utilizes sequence information, evolution and functional genomics measurements to unravel how regulatory information is encoded in the genome. PMID:19226437

  1. T Regulatory Cells and Transplantation Tolerance

    PubMed Central

    Gorantla, Vijay S.; Schneeberger, Stefan; Brandacher, Gerald; Sucher, Robert; Zhang, Dong; Lee, Andrew; Zheng, Xin Xiao

    2010-01-01

    Despite the development of successful immunosuppression protocols and tremendous improvement in short-term graft survival rates, the problem of chronic graft loss remains the bane of clinical transplantation. The induction and maintenance of transplantation tolerance is the “Holy grail” of transplantation. The recent identification and characterization of regulatory T cells (T regs) has opened up exciting opportunities for tolerance induction, immunotherapy and immunomodulation in transplantation. This review focuses on current understanding of regulatory T cells and their role in transplantation tolerance. PMID:20541385

  2. The expanding universe of regulatory T cell subsets in cancer.

    PubMed

    Gajewski, Thomas F

    2007-08-01

    Evidence has indicated that failed antitumor immunity is dominated by immunosuppressive mechanisms within the tumor microenvironment. In this issue of Immunity, Peng et al. (2007) add to this list by describing tumor-infiltrating gammadelta T cells that have regulatory function.

  3. Functional studies of regulatory genes in the sea urchin embryo.

    PubMed

    Cavalieri, Vincenzo; Di Bernardo, Maria; Spinelli, Giovanni

    2009-01-01

    Sea urchin embryos are characterized by an extremely simple mode of development, rapid cleavage, high transparency, and well-defined cell lineage. Although they are not suitable for genetic studies, other approaches are successfully used to unravel mechanisms and molecules involved in cell fate specification and morphogenesis. Microinjection is the elective method to study gene function in sea urchin embryos. It is used to deliver precise amounts of DNA, RNA, oligonucleotides, peptides, or antibodies into the eggs or even into blastomeres. Here we describe microinjection as it is currently applied in our laboratory and show how it has been used in gene perturbation analyses and dissection of cis-regulatory DNA elements.

  4. Radiation Enhances Regulatory T Cell Representation

    PubMed Central

    Kachikwu, Evelyn L.; Iwamoto, Keisuke S.; Liao, Yu-Pei; DeMarco, John J.; Agazaryan, Nzhde; Economou, James S.; McBride, William H.; Schaue, Dörthe

    2010-01-01

    PURPOSE Immunotherapy (IT) could be a useful adjunct to standard cytotoxic therapies such as radiation in patients with micrometastatic disease although successful integration of IT into treatment protocols will require further understanding of how standard therapies affect the generation of anti-tumor immune responses. This study was undertaken to evaluate the impact of radiation therapy on immunosuppressive T regulatory (Treg) cells. MATERIALS and METHODS Tregs were identified as a CD4+CD25hiFoxp3+ lymphocyte subset and their fate followed in a murine TRAMP-C1 model of prostate cancer in mice with and without radiation therapy. RESULTS CD4+CD25hiFoxp3+ Treg cells increased in immune organs following local leg or whole body radiation. A large part, but not all, of this increase following leg-only irradiation could be ascribed to radiation scatter and Tregs being intrinsically more radiation resistant than other lymphocyte subpopulations resulting in their selection. Their functional activity on a per cell basis was not affected by radiation exposure. Similar findings were made with mice receiving local RT to murine prostate tumors growing in the leg. The importance of the Treg population in the response to RT was shown by systemic elimination of Tregs, which greatly enhanced radiation-induced tumor regression. CONCLUSIONS We conclude that Tregs are more resistant to radiation than other lymphocytes resulting in their preferential increase. Treg cells may form an important homeostatic mechanism for tissues injured by radiation, and in a tumor context may assist in immune evasion during therapy. Targeting this population may allow enhancement of radiotherapeutic benefit through immune modulation. PMID:21093169

  5. T Regulatory Cell Biology in Health and Disease.

    PubMed

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.

  6. B cells with regulatory properties in transplantation tolerance

    PubMed Central

    Durand, Justine; Chiffoleau, Elise

    2015-01-01

    Induction of tolerance remains a major goal in transplantation. Indeed, despite potent immunosuppression, chronic rejection is still a real problem in transplantation. The humoral response is an important mediator of chronic rejection, and numerous strategies have been developed to target either B cells or plasma cells. However, the use of anti-CD20 therapy has highlighted the beneficial role of subpopulation of B cells, termed regulatory B cells. These cells have been characterized mainly in mice models of auto-immune diseases but emerging literature suggests their role in graft tolerance in transplantation. Regulatory B cells seem to be induced following inflammation to restrain excessive response. Different phenotypes of regulatory B cells have been described and are functional at various differentiation steps from immature to plasma cells. These cells act by multiple mechanisms such as secretion of immuno-suppressive cytokines interleukin-10 (IL-10) or IL-35, cytotoxicity, expression of inhibitory receptors or by secretion of non-inflammatory antibodies. Better characterization of the development, phenotype and mode of action of these cells seems urgent to develop novel approaches to manipulate the different B cell subsets and the response to the graft in a clinical setting. PMID:26722647

  7. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila.

    PubMed

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R

    2016-09-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa.

  8. Combinatorial Gene Regulatory Functions Underlie Ultraconserved Elements in Drosophila

    PubMed Central

    Warnefors, Maria; Hartmann, Britta; Thomsen, Stefan; Alonso, Claudio R.

    2016-01-01

    Ultraconserved elements (UCEs) are discrete genomic elements conserved across large evolutionary distances. Although UCEs have been linked to multiple facets of mammalian gene regulation their extreme evolutionary conservation remains largely unexplained. Here, we apply a computational approach to investigate this question in Drosophila, exploring the molecular functions of more than 1,500 UCEs shared across the genomes of 12 Drosophila species. Our data indicate that Drosophila UCEs are hubs for gene regulatory functions and suggest that UCE sequence invariance originates from their combinatorial roles in gene control. We also note that the gene regulatory roles of intronic and intergenic UCEs (iUCEs) are distinct from those found in exonic UCEs (eUCEs). In iUCEs, transcription factor (TF) and epigenetic factor binding data strongly support iUCE roles in transcriptional and epigenetic regulation. In contrast, analyses of eUCEs indicate that they are two orders of magnitude more likely than the expected to simultaneously include protein-coding sequence, TF-binding sites, splice sites, and RNA editing sites but have reduced roles in transcriptional or epigenetic regulation. Furthermore, we use a Drosophila cell culture system and transgenic Drosophila embryos to validate the notion of UCE combinatorial regulatory roles using an eUCE within the Hox gene Ultrabithorax and show that its protein-coding region also contains alternative splicing regulatory information. Taken together our experiments indicate that UCEs emerge as a result of combinatorial gene regulatory roles and highlight common features in mammalian and insect UCEs implying that similar processes might underlie ultraconservation in diverse animal taxa. PMID:27247329

  9. The two faces of regulatory T cells in cancer

    PubMed Central

    Blatner, Nichole R; Gounari, Fotini; Khazaie, Khashayarsha

    2013-01-01

    Regulatory T cells (Tregs) that expand in human colon cancer express retinoid-related orphan receptor γt (RORγt) and exert potent T-cell suppressive functions while mediating pro-inflammatory effects. Similar Tregs expand and drive a vicious cycle of inflammation in murine polyposis. Targeting RORγt in Tregs interrupts such a cycle and protects mice against polyposis, suggesting that a similar intervention may provide therapeutic benefits to colon cancer patients. PMID:23762787

  10. Antigen-Pulsed CpG-ODN-Activated Dendritic Cells Induce Host-Protective Immune Response by Regulating the T Regulatory Cell Functioning in Leishmania donovani-Infected Mice: Critical Role of CXCL10

    PubMed Central

    Majumder, Saikat; Bhattacharjee, Amrita; Paul Chowdhury, Bidisha; Bhattacharyya Majumdar, Suchandra; Majumdar, Subrata

    2014-01-01

    Visceral leishmaniasis (VL), caused by Leishmania donovani, is a systemic infection of reticulo-endothelial system. There is currently no protective vaccine against VL and chemotherapy is increasingly limited due to appearance of drug resistance to first line drugs such as antimonials and amphotericin B. In the present study, by using a murine model of leishmaniasis we evaluated the function played by soluble leishmanial antigen (SLA)-pulsed CpG-ODN-stimulated dendritic cells (SLA–CpG–DCs) in restricting the intracellular parasitic growth. We establish that a single dose of SLA–CpG–DC vaccination is sufficient in rendering complete protection against L. donovani infection. In probing the possible mechanism, we observe that SLA–CpG–DCs vaccination results in the significant decrease in Foxp3+GITR+CTLA4+CD4+CD25+ regulatory T cells (Treg) cell population in Leishmania-infected mice. Vaccination with these antigen-stimulated dendritic cells results in the decrease in the secretion of TGF-β by these Treg cells by possible regulation of the SMAD signaling. Moreover, we demonstrate that a CXC chemokine, IFN-γ-inducible protein 10 (IP-10; CXCL10), has a direct role in the regulation of CD4+CD25+ Treg cells in SLA–CpG–DC-vaccinated parasitized mice as Treg cells isolated from IP-10-depleted vaccinated mice showed significantly increased TGF-β production and suppressive activity. PMID:24926293

  11. Splenic CD4+ T Cells in Progressive Visceral Leishmaniasis Show a Mixed Effector-Regulatory Phenotype and Impair Macrophage Effector Function through Inhibitory Receptor Expression

    PubMed Central

    Osorio, Elvia Y.; Saldarriaga, Omar A.; Travi, Bruno L.; Kong, Fanping; Spratt, Heidi; Soong, Lynn

    2017-01-01

    Visceral leishmaniasis (VL), caused by infection with the intracellular protozoan Leishmania donovani, is a chronic progressive disease with a relentlessly increasing parasite burden in the spleen, liver and bone marrow. The disease is characterized by fever, splenomegaly, cachexia, and pancytopenia, and progresses to death if not treated. Control of Leishmania infection is mediated by Th1 (IFNγ-producing) CD4+ T cells, which activate macrophages to produce nitric oxide and kill intracellular parasites. However, despite expansion of CD4+ T cells and increased IFNγ expression in the spleen, humans with active VL do not control the infection. We used an experimental model of chronic progressive VL in hamsters, which mimics clinical and pathological features seen in humans, to better understand the mechanisms that lead to progressive disease. Transcriptional profiling of the spleen during chronic infection revealed expression of markers of both T cell activation and inhibition. CD4+ T cells isolated from the spleen during chronic progressive VL showed mixed expression of Th1 and Th2 cytokines and chemokines, and were marginally effective in controlling infection in an ex vivo T cell-macrophage co-culture system. Splenic CD4+ T cells and macrophages from hamsters with VL showed increased expression of inhibitory receptors and their ligands, respectively. Blockade of the inhibitory receptor PD-L2 led to a significant decrease in parasite burden, revealing a pathogenic role for the PD-1 pathway in chronic VL. PD-L2 blockade was associated with a dramatic reduction in expression of host arginase 1, but no change in IFNγ and inducible nitric oxide synthase. Thus, the expression of counter-regulatory molecules on splenic CD4+ T cells and macrophages promotes a more permissive macrophage phenotype and attenuates intracellular parasite control in chronic progressive VL. Host-directed adjunctive therapy targeting the PD-1 regulatory pathway may be efficacious for VL. PMID

  12. How tolerogenic dendritic cells induce regulatory T cells

    PubMed Central

    Maldonado, Roberto A.; von Andrian, Ulrich H.

    2010-01-01

    Since their discovery by Steinman and Cohn in 1973, dendritic cells (DCs) have become increasingly recognized for their crucial role as regulators of innate and adaptive immunity. DCs are exquisitely adept at acquiring, processing and presenting antigens to T cells. They also adjust the context (and hence the outcome) of antigen presentation in response to a plethora of environmental inputs that signal the occurence of pathogens or tissue damage. Such signals generally boost DC maturation, which promotes their migration from peripheral tissues into and within secondary lymphoid organs and their capacity to induce and regulate effector T cell responses. Conversely, more recent observations indicate that DCs are also crucial to ensure immunological peace. Indeed, DCs constantly present innocuous self and non-self antigens in a fashion that promotes tolerance, at least in part, through the control of regulatory T cells (Tregs). Tregs are specialized T cells that exert their immuno-suppressive function through a variety of mechanisms affecting both DCs and effector cells. Here, we review recent advances in our understanding of the relationship between tolerogenic DCs and Tregs. PMID:21056730

  13. Dietary Vitamin D Increases Percentages and Function of Regulatory T Cells in the Skin-Draining Lymph Nodes and Suppresses Dermal Inflammation

    PubMed Central

    Geldenhuys, Sian; Judge, Melinda; Weeden, Clare E.; Waithman, Jason

    2016-01-01

    Skin inflammatory responses in individuals with allergic dermatitis may be suppressed by dietary vitamin D through induction and upregulation of the suppressive activity of regulatory T (TReg) cells. Vitamin D may also promote TReg cell tropism to dermal sites. In the current study, we examined the capacity of dietary vitamin D3 to modulate skin inflammation and the numbers and activity of TReg cells in skin and other sites including lungs, spleen, and blood. In female BALB/c mice, dietary vitamin D3 suppressed the effector phase of a biphasic ear swelling response induced by dinitrofluorobenzene in comparison vitamin D3-deficient female BALB/c mice. Vitamin D3 increased the percentage of TReg (CD3+CD4+CD25+Foxp3+) cells in the skin-draining lymph nodes (SDLN). The suppressive activity of TReg cells in the SDLN, mesenteric lymph nodes, spleen, and blood was upregulated by vitamin D3. However, there was no difference in the expression of the naturally occurring TReg cell marker, neuropilin, nor the expression of CCR4 or CCR10 (skin-tropic chemokine receptors) on TReg cells in skin, SDLN, lungs, and airway-draining lymph nodes. These data suggest that dietary vitamin D3 increased the percentages and suppressive activity of TReg cells in the SDLN, which are poised to suppress dermal inflammation. PMID:27672666

  14. Robust and cost effective expansion of human regulatory T cells highly functional in a xenograft model of graft-versus-host disease.

    PubMed

    Chakraborty, Rikhia; Mahendravada, Aruna; Perna, Serena K; Rooney, Cliona M; Heslop, Helen E; Vera, Juan F; Savoldo, Barbara; Dotti, Gianpietro

    2013-04-01

    The low frequency of naturally occurring regulatory T cells (nTregs) in peripheral blood and the suboptimal protocols available for their ex vivo expansion limit the development of clinical trials based on the adoptive transfer of these cells. We have, therefore, generated a simplified, robust and cost-effective platform for the large-scale expansion of nTregs using a gas permeable static culture flask (G-Rex) in compliance with Good Manufacturing Practice. More than 10(9) putative Tregs co-expressing CD25 and CD4 molecules (92 ± 5%) and FoxP3 (69 ± 19%) were obtained within 21 days of culture. Expanded Tregs showed potent regulatory activity in vitro (80 ± 13% inhibition of CD8(+) cell division) and in vivo (suppression or delay of graft-versus-host disease in a xenograft mouse model) indicating that the cost-effective and simplified production of nTregs we propose will facilitate the implementation of clinical trials based on their adoptive transfer.

  15. Functional Classification of Immune Regulatory Proteins

    SciTech Connect

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.; Almo, Steven C.; Fiser, Andras

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving the class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.

  16. The potential role of functional inhibition of T regulatory cells by anti-TGFβ antibody in photodynamic therapy of renal cancer

    NASA Astrophysics Data System (ADS)

    Mroz, Pawel; Hamblin, Michael R.

    2011-03-01

    Photodynamic therapy (PDT) has been shown to be an effective locally ablative anti-cancer treatment that has the additional advantage of inducing tumor-directed immune response. We hypothesized that PDT could be combined with anti-transforming growth factor (TGF) beta antibody that does not significantly affect the population of cytotoxic T lymphocytes (CTL) but at the same time, has the potential to decrease the immunosuppressive effects of regulatory T-cells (Treg) mediated by TGF beta. This hypothesis was tested with aTGF-beta antibody combined with BPD-mediated PDT in a BALB/c renal cell carcinoma model. Evidence of positive benefits of the combination therapy over individual treatments alone was obtained.

  17. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota

    PubMed Central

    Cong, Y; Liu, Z

    2015-01-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3+ regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders. PMID:26080708

  18. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota.

    PubMed

    Sun, M; He, C; Cong, Y; Liu, Z

    2015-09-01

    The intestinal lumen harbors nearly 100 trillion commensal bacteria that exert crucial function for health. An elaborate balance between immune responses and tolerance to intestinal microbiota is required to maintain intestinal homeostasis. This process depends on diverse regulatory mechanisms, including both innate and adaptive immunity. Dysregulation of the homeostasis between intestinal immune systems and microbiota has been shown to be associated with the development of inflammatory bowel diseases (IBD) in genetically susceptible populations. In this review, we discuss the recent progress reported in studies of distinct types of regulatory immune cells in the gut, including intestinal intraepithelial lymphocytes, Foxp3(+) regulatory T cells, regulatory B cells, alternatively activated macrophages, dendritic cells, and innate lymphoid cells, and how dysfunction of this immune regulatory system contributes to intestinal diseases such as IBD. Moreover, we discuss the manipulation of these regulatory immune cells as a potential therapeutic method for management of intestinal inflammatory disorders.

  19. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    SciTech Connect

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; Turco, G.; Toal, T. W.; Gaudinier, A.; Young, N. F.; Trabucco, G. M.; Veling, M. T.; Lamothe, R.; Handakumbura, P. P.; Xiong, G.; Wang, C.; Corwin, J.; Tsoukalas, A.; Zhang, L.; Ware, D.; Pauly, M.; Kliebenstein, D. J.; Dehesh, K.; Tagkopoulos, I.; Breton, G.; Pruneda-Paz, J. L.; Ahnert, S. E.; Kay, S. A.; Hazen, S. P.; Brady, S. M.

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated by a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.

  20. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research.

    PubMed

    Miyagaki, Tomomitsu; Fujimoto, Manabu; Sato, Shinichi

    2015-10-01

    B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples.

  1. Multiple functions of nucleosomes and regulatory factors in transcription.

    PubMed

    Workman, J L; Buchman, A R

    1993-03-01

    The in vivo packaging of DNA with histone proteins to form chromatin makes its transcription a difficult process. Biochemical and genetic studies are beginning to reveal mechanistic details of how transcriptional regulatory factors confront at least two hurdles created by nucleosomes, the primary structural unit of chromatin. Regulatory factors must gain access to their respective binding sites and activate the formation of transcription complexes at core promoter elements. Distinct regulatory factors may be specialized to perform these functions.

  2. Regulatory T cells as therapeutic targets in rheumatoid arthritis

    PubMed Central

    Esensten, Jonathan H.; Wofsy, David; Bluestone, Jeffrey A.

    2011-01-01

    Regulatory T cells (TREG) are a subset of CD4+ T cells with a critical role in the prevention of autoimmunity. Whether defects in TREG contribute to the pathogenesis of rheumatoid arthritis (RA) is unclear. However, a variety of approved and experimental drugs for RA may work, in part, by promoting the function or increasing numbers of TREG. Furthermore, animal studies demonstrate that direct injection of TREG ameliorates a wide range of experimental models of inflammatory and autoimmune diseases. Thus, cell-based therapy with TREG has the potential to produce durable disease remission in patients with RA. PMID:19798031

  3. MicroRNAs targeting TGFβ signalling underlie the regulatory T cell defect in multiple sclerosis.

    PubMed

    Severin, Mary E; Lee, Priscilla W; Liu, Yue; Selhorst, Amanda J; Gormley, Matthew G; Pei, Wei; Yang, Yuhong; Guerau-de-Arellano, Mireia; Racke, Michael K; Lovett-Racke, Amy E

    2016-06-01

    Transforming growth factor beta (TGFβ) signalling is critical for regulatory T cell development and function, and regulatory T cell dysregulation is a common observation in autoimmune diseases, including multiple sclerosis. In a comprehensive miRNA profiling study of patients with multiple sclerosis naïve CD4 T cells, 19 differentially expressed miRNAs predicted to target the TGFβ signalling pathway were identified, leading to the hypothesis that miRNAs may be responsible for the regulatory T cell defect observed in patients with multiple sclerosis. Patients with multiple sclerosis had reduced levels of TGFβ signalling components in their naïve CD4 T cells. The differentially expressed miRNAs negatively regulated the TGFβ pathway, resulting in a reduced capacity of naïve CD4 T cells to differentiate into regulatory T cells. Interestingly, the limited number of regulatory T cells, that did develop when these TGFβ-targeting miRNAs were overexpressed, were capable of suppressing effector T cells. As it has previously been demonstrated that compromising TGFβ signalling results in a reduced regulatory T cell repertoire insufficient to control autoimmunity, and patients with multiple sclerosis have a reduced regulatory T cell repertoire, these data indicate that the elevated expression of multiple TGFβ-targeting miRNAs in naïve CD4 T cells of patients with multiple sclerosis impairs TGFβ signalling, and dampens regulatory T cell development, thereby enhancing susceptibility to developing multiple sclerosis.

  4. Regulatory networks and connected components of the neutral space. A look at functional islands

    NASA Astrophysics Data System (ADS)

    Boldhaus, G.; Klemm, K.

    2010-09-01

    The functioning of a living cell is largely determined by the structure of its regulatory network, comprising non-linear interactions between regulatory genes. An important factor for the stability and evolvability of such regulatory systems is neutrality - typically a large number of alternative network structures give rise to the necessary dynamics. Here we study the discretized regulatory dynamics of the yeast cell cycle [Li et al., PNAS, 2004] and the set of networks capable of reproducing it, which we call functional. Among these, the empirical yeast wildtype network is close to optimal with respect to sparse wiring. Under point mutations, which establish or delete single interactions, the neutral space of functional networks is fragmented into ≈ 4.7 × 108 components. One of the smaller ones contains the wildtype network. On average, functional networks reachable from the wildtype by mutations are sparser, have higher noise resilience and fewer fixed point attractors as compared with networks outside of this wildtype component.

  5. Treating arthritis by immunomodulation: is there a role for regulatory T cells?

    PubMed Central

    van Wijk, Femke; Roord, Sarah T.; Albani, Salvatore; Prakken, Berent J.

    2010-01-01

    The discovery of regulatory T cells almost 15 years ago initiated a new and exciting research area. The growing evidence for a critical role of these cells in controlling autoimmune responses has raised expectations for therapeutic application of regulatory T cells in patients with autoimmune arthritis. Here, we review recent studies investigating the presence, phenotype and function of these cells in patients with RA and juvenile idiopathic arthritis (JIA) and consider their therapeutic potential. Both direct and indirect methods to target these cells will be discussed. Arguably, a therapeutic approach that combines multiple regulatory T-cell-enhancing strategies could be most successful for clinical application. PMID:20463189

  6. Regulatory T cells and skeletal muscle regeneration.

    PubMed

    Schiaffino, Stefano; Pereira, Marcelo G; Ciciliot, Stefano; Rovere-Querini, Patrizia

    2017-02-01

    Skeletal muscle regeneration results from the activation and differentiation of myogenic stem cells, called satellite cells, located beneath the basal lamina of the muscle fibers. Inflammatory and immune cells have a crucial role in the regeneration process. Acute muscle injury causes an immediate transient wave of neutrophils followed by a more persistent infiltration of M1 (proinflammatory) and M2 (anti-inflammatory/proregenerative) macrophages. New studies show that injured muscle is also infiltrated by a specialized population of regulatory T (Treg) cells, which control both the inflammatory response, by promoting the M1-to-M2 switch, and the activation of satellite cells. Treg cells accumulate in injured muscle in response to specific cytokines, such as IL-33, and promote muscle growth by releasing growth factors, such as amphiregulin. Muscle repair during aging is impaired due to reduced number of Treg cells and can be enhanced by IL-33 supplementation. Migration of Treg cells could also contribute to explain the effect of heterochronic parabiosis, whereby muscle regeneration of aged mice can be improved by a parabiotically linked young partners. In mdx dystrophin-deficient mice, a model of human Duchenne muscular dystrophy, muscle injury, and inflammation is mitigated by expansion of the Treg-cell population but exacerbated by Treg-cell depletion. These findings support the notion that immunological mechanisms are not only essential in the response to pathogenic microbes and tumor cells but also have a wider homeostatic role in tissue repair, and open new perspectives for boosting muscle growth in chronic muscle disease and during aging.

  7. Genomic definition of multiple ex vivo regulatory T cell subphenotypes.

    PubMed

    Feuerer, Markus; Hill, Jonathan A; Kretschmer, Karsten; von Boehmer, Harald; Mathis, Diane; Benoist, Christophe

    2010-03-30

    Regulatory T (Treg) cells that express the Foxp3 transcription factor are essential for lymphoid homeostasis and immune tolerance to self. Other nonimmunological functions of Treg cells, such as controlling metabolic function in adipose tissue, are also emerging. Treg cells originate primarily in the thymus, but can also be elicited from conventional T cells by in vivo exposure to low-dose antigen or homeostatic expansion or by activation in the presence of TGFbeta in vitro. Treg cells are characterized by a distinct transcriptional signature controlled in part, but not solely, by Foxp3. For a better perspective on transcriptional control in Treg cells, we compared gene expression profiles of a broad panel of Treg cells from various origins or anatomical locations. Treg cells generated by different means form different subphenotypes and were identifiable by particular combinations of transcripts, none of which fully encompassed the entire Treg signature. Molecules involved in Treg cell effector function, chemokine receptors, and the transcription factors that control them were differentially represented in these subphenotypes. Treg cells from the gut proved dissimilar to cells elicited by exposure to TGFbeta in vitro, but instead they resembled a CD103(+)Klrg1(+) subphenotype preferentially generated in response to lymphopenia.

  8. Regulatory Circuits Controlling Vascular Cell Calcification

    PubMed Central

    Sallam, Tamer; Cheng, Henry; Demer, Linda L.; Tintut, Yin

    2013-01-01

    Vascular calcification is a common feature of chronic kidney disease, cardiovascular disease, and aging. Such abnormal calcium deposition occurs in medial and/or intimal layers of blood vessels as well as in cardiac valves. Once considered a passive and inconsequential finding, the presence of calcium deposits in the vasculature is widely accepted as a predictor of increased morbidity and mortality. Recognition of the importance of vascular calcification in health is driving research into mechanisms that govern its development, progression, and regression. Diverse, but highly interconnected factors, have been implicated, including disturbances in lipid metabolism, oxidative stress, inflammatory cytokines, and mineral and hormonal balances, which can lead to formation of osteoblast-like cells in the artery wall. A tight balance of procalcific and anticalcific regulators dictates the extent of disease. In this review, we focus on the main regulatory circuits modulating vascular cell calcification. PMID:23269436

  9. Role of Regulatory Cells in Oral Tolerance

    PubMed Central

    Wawrzyniak, Marcin; O'Mahony, Liam

    2017-01-01

    The immune system is continuously exposed to great amounts of different antigens from both food and intestinal microbes. Immune tolerance to these antigens is very important for intestinal and systemic immune homeostasis. Oral tolerance is a specific type of peripheral tolerance induced by exposure to antigen via the oral route. Investigations on the role of intestinal immune system in preventing hypersensitivity reactions to innocuous dietary and microbial antigens have been intensively performed during the last 2 decades. In this review article, we discuss how food allergens are recognized by the intestinal immune system and draw attention to the role of regulatory T (Treg) and B (Breg) cells in the establishment of oral tolerance and tolerogenic features of intestinal dendritic cells. We also emphasize the potential role of tonsils in oral tolerance induction because of their anatomical location, cellular composition, and possible usage to develop novel ways of specific immunotherapy for the treatment of allergic diseases. PMID:28102055

  10. On the Concept of Cis-regulatory Information: From Sequence Motifs to Logic Functions

    NASA Astrophysics Data System (ADS)

    Tarpine, Ryan; Istrail, Sorin

    The regulatory genome is about the “system level organization of the core genomic regulatory apparatus, and how this is the locus of causality underlying the twin phenomena of animal development and animal evolution” (E.H. Davidson. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution, Academic Press, 2006). Information processing in the regulatory genome is done through regulatory states, defined as sets of transcription factors (sequence-specific DNA binding proteins which determine gene expression) that are expressed and active at the same time. The core information processing machinery consists of modular DNA sequence elements, called cis-modules, that interact with transcription factors. The cis-modules “read” the information contained in the regulatory state of the cell through transcription factor binding, “process” it, and directly or indirectly communicate with the basal transcription apparatus to determine gene expression. This endowment of each gene with the information-receiving capacity through their cis-regulatory modules is essential for the response to every possible regulatory state to which it might be exposed during all phases of the life cycle and in all cell types. We present here a set of challenges addressed by our CYRENE research project aimed at studying the cis-regulatory code of the regulatory genome. The CYRENE Project is devoted to (1) the construction of a database, the cis-Lexicon, containing comprehensive information across species about experimentally validated cis-regulatory modules; and (2) the software development of a next-generation genome browser, the cis-Browser, specialized for the regulatory genome. The presentation is anchored on three main computational challenges: the Gene Naming Problem, the Consensus Sequence Bottleneck Problem, and the Logic Function Inference Problem.

  11. T Cells: Soldiers and Spies--The Surveillance and Control of Effector T Cells by Regulatory T Cells.

    PubMed

    Hall, Bruce M

    2015-11-06

    Traditionally, T cells were CD4+ helper or CD8+ cytotoxic T cells, and with antibodies, they were the soldiers of immunity. Now, many functionally distinct subsets of activated CD4+ and CD8+ T cells have been described, each with distinct cytokine and transcription factor expression. For CD4+ T cells, these include Th1 cells expressing the transcription factor T-bet and cytokines IL-2, IFN-γ, and TNF-β; Th2 cells expressing GATA-3 and the cytokines IL-4, IL-5, and IL-13; and Th17 cells expressing RORγt and cytokines IL-17A, IL-17F, IL-21, and IL-22. The cytokines produced determine the immune inflammation that they mediate. T cells of the effector lineage can be naïve T cells, recently activated T cells, or memory T cells that can be distinguished by cell surface markers. T regulatory cells or spies were characterized as CD8+ T cells expressing I-J in the 1970s. In the 1980s, suppressor cells fell into disrepute when the gene for I-J was not present in the mouse MHC I region. At that time, a CD4+ T cell expressing CD25, the IL-2 receptor-α, was identified to transfer transplant tolerance. This was the same phenotype of activated CD4+ CD25+ T cells that mediated rejection. Thus, the cells that could induce tolerance and undermine rejection had similar badges and uniforms as the cells effecting rejection. Later, FOXP3, a transcription factor that confers suppressor function, was described and distinguishes T regulatory cells from effector T cells. Many subtypes of T regulatory cells can be characterized by different expressions of cytokines and receptors for cytokines or chemokines. In intense immune inflammation, T regulatory cells express cytokines characteristic of effector cells; for example, Th1-like T regulatory cells express T-bet, and IFN-γ-like Th1 cells and effector T cells can change sides by converting to T regulatory cells. Effector T cells and T regulatory cells use similar molecules to be activated and mediate their function, and thus, it can be

  12. SHARPIN controls the development of regulatory T cells.

    PubMed

    Redecke, Vanessa; Chaturvedi, Vandana; Kuriakose, Jeeba; Häcker, Hans

    2016-06-01

    SHARPIN is an essential component of the linear ubiquitin chain assembly complex (LUBAC) complex that controls signalling pathways of various receptors, including the tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR) and antigen receptor, in part by synthesis of linear, non-degrading ubiquitin chains. Consistent with SHARPIN's function in different receptor pathways, the phenotype of SHARPIN-deficient mice is complex, including the development of inflammatory systemic and skin diseases, the latter of which depend on TNFR signal transduction. Given the established function of SHARPIN in primary and malignant B cells, we hypothesized that SHARPIN might also regulate T-cell receptor (TCR) signalling and thereby control T-cell biology. Here, we focus primarily on the role of SHARPIN in T cells, specifically regulatory T (Treg) cells. We found that SHARPIN-deficient (Sharpin(cpdm/cpdm) ) mice have significantly reduced numbers of FOXP3(+) Treg cells in lymphoid organs and the peripheral blood. Competitive reconstitution of irradiated mice with mixed bone marrow from wild-type and SHARPIN-deficient mice revealed an overall reduced thymus population with SHARPIN-deficient cells with almost complete loss of thymic Treg development. Consistent with this cell-intrinsic function of SHARPIN in Treg development, TCR stimulation of SHARPIN-deficient thymocytes revealed reduced activation of nuclear factor-κB and c-Jun N-terminal kinase, establishing a function of SHARPIN in TCR signalling, which may explain the defective Treg development. In turn, in vitro generation and suppressive activity of mature SHARPIN-deficient Treg cells were comparable to wild-type cells, suggesting that maturation, but not function, of SHARPIN-deficient Treg cells is impaired. Taken together, these findings show that SHARPIN controls TCR signalling and is required for efficient generation of Treg cells in vivo, whereas the inhibitory function of mature Treg cells appears to be

  13. Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection

    PubMed Central

    Miles, Brodie; Miller, Shannon M.; Folkvord, Joy M.; Kimball, Abigail; Chamanian, Mastooreh; Meditz, Amie L.; Arends, Tessa; McCarter, Martin D.; Levy, David N.; Rakasz, Eva G.; Skinner, Pamela J.; Connick, Elizabeth

    2015-01-01

    Human and simian immunodeficiency viruses (HIV and SIV) exploit follicular lymphoid regions by establishing high levels of viral replication and dysregulating humoral immunity. Follicular regulatory T cells (TFR) are a recently characterized subset of lymphocytes that influence the germinal centre response through interactions with follicular helper T cells (TFH). Here, utilizing both human and rhesus macaque models, we show the impact of HIV and SIV infection on TFR number and function. We find that TFR proportionately and numerically expand during infection through mechanisms involving viral entry and replication, TGF-β signalling, low apoptosis rates and the presence of regulatory dendritic cells. Further, TFR exhibit elevated regulatory phenotypes and impair TFH functions during HIV infection. Thus, TFR contribute to inefficient germinal centre responses and inhibit HIV and SIV clearance. PMID:26482032

  14. Umbilical cord blood regulatory T-cell expansion and functional effects of tumor necrosis factor receptor family members OX40 and 4-1BB expressed on artificial antigen-presenting cells

    PubMed Central

    Harker-Murray, Paul; Porter, Stephen B.; Merkel, Sarah C.; Londer, Aryel; Taylor, Dawn K.; Bina, Megan; Panoskaltsis-Mortari, Angela; Rubinstein, Pablo; Van Rooijen, Nico; Golovina, Tatiana N.; Suhoski, Megan M.; Miller, Jeffrey S.; Wagner, John E.; June, Carl H.; Riley, James L.

    2008-01-01

    Previously, we showed that human umbilical cord blood (UCB) regulatory T cells (Tregs) could be expanded approximately 100-fold using anti-CD3/28 monoclonal antibody (mAb)–coated beads to provide T-cell receptor and costimulatory signals. Because Treg numbers from a single UCB unit are limited, we explored the use of cell-based artificial antigen-presenting cells (aAPCs) preloaded with anti-CD3/28 mAbs to achieve higher levels of Treg expansion. Compared with beads, aAPCs had similar expansion properties while significantly increasing transforming growth factor β (TGF-β) secretion and the potency of Treg suppressor function. aAPCs modified to coexpress OX40L or 4-1BBL expanded UCB Tregs to a significantly greater extent than bead- or nonmodified aAPC cultures, reaching mean expansion levels exceeding 1250-fold. Despite the high expansion and in contrast to studies using other Treg sources, neither OX40 nor 4-1BB signaling of UCB Tregs reduced in vitro suppression. UCB Tregs expanded with 4-1BBL expressing aAPCs had decreased levels of proapoptotic bim. UCB Tregs expanded with nonmodified or modified aAPCs versus beads resulted in higher survival associated with increased Treg persistence in a xeno-geneic graft-versus-host disease lethality model. These data offer a novel approach for UCB Treg expansion using aAPCs, including those coexpressing OX40L or 4-1BBL. PMID:18645038

  15. Cellular immune responses towards regulatory cells.

    PubMed

    Larsen, Stine Kiær

    2016-01-01

    This thesis describes the results from two published papers identifying spontaneous cellular immune responses against the transcription factors Foxp3 and Foxo3. The tumor microenvironment is infiltrated by cells that hinder effective tumor immunity from developing. Two of these cell types, which have been linked to a bad prognosis for patients, are regulatory T cells (Treg) and tolerogenic dendritic cells (DC). Tregs inhibit effector T cells from attacking the tumor through various mechanisms, including secreted factors and cell-to-cell contact. Tregs express the transcription factor Foxp3, which is necessary for their development and suppressive activities. Tolerogenic DCs participate in creating an environment in the tumor where effector T cells become tolerant towards the tumor instead of attacking it. The transcription factor Foxo3 was recently described to be highly expressed by tolerogenic DCs and to programme their tolerogenic influence. This thesis describes for the first time the existence of spontaneous cellular immune responses against peptides derived from Foxp3 and Foxo3. We have detected the presence of cytotoxic T cells that recognise these peptides in an HLA-A2 restricted manner in cancer patients and for Foxp3 in healthy donors as well. In addition, we have demonstrated that the Foxp3- and Foxo3-specific CTLs recognize Foxp3- and Foxo3-expressing cancer cell lines and importantly, suppressive immune cells, namely Tregs and in vitro generated DCs. Cancer immunotherapy is recently emerging as an important treatment modality improving the survival of selected patients. The current progress is largely owing to targeting of the immune suppressive milieu that is dominating the tumor microenvironment. This is being done through immune checkpoint blockade with CTLA-4 and PD-1/PD-L1 antibodies and through lymphodepleting conditioning of patients and ex vivo activation of TILs in adoptive cell transfer. Several strategies are being explored for depletion of

  16. Controlling the fire--tissue-specific mechanisms of effector regulatory T-cell homing.

    PubMed

    Chow, Zachary; Banerjee, Ashish; Hickey, Michael J

    2015-04-01

    Regulatory T cells have essential roles in regulating immune responses and limiting inappropriate inflammation. Evidence now indicates that to achieve this function, regulatory T cells must be able to migrate to the most appropriate locations within both lymphoid and non-lymphoid organs. This function is achieved via the spatiotemporally controlled expression of adhesion molecules and chemokine receptors, varying according to the developmental stage of the regulatory T cell and the location and environment where they undergo activation. In this Review, we summarise information on the roles of adhesion molecules and chemokine receptors in mediating regulatory T-cell migration and function throughout the body under homeostatic and inflammatory conditions. In addition, we review recent studies that have used in vivo imaging to examine the actions of regulatory T cells in vivo, in lymph nodes, in the microvasculature and in the interstitium of peripheral organs. These studies reveal that the capacity of regulatory T cells to undergo selective migration serves a critical role in their ability to suppress immune responses. As such, the cellular and molecular requirements of regulatory T-cell migration need to be completely understood to enable the most effective use of these cells in clinical settings.

  17. Control of experimental inflammatory bowel disease by regulatory T cells.

    PubMed

    Asseman, C; Fowler, S; Powrie, F

    2000-10-01

    A helper T cell type 1-mediated colitis driven by enteric bacteria develops in severe combined immunodeficient mice after transfer of CD45RB(high)CD4(+) T cells. Development of disease can be prevented by cotransfer of the reciprocal CD45RB(low) subset. Analysis of the mechanism of immune suppression transferred by CD45RB(low)CD4(+) cells revealed essential roles for both IL-10 and TGF-beta. These data indicate that a functionally specialized population of regulatory T (Treg) cells exists in normal mice and that these can prevent the development of pathogenic responses toward commensal bacteria. The role of Treg cells in the control of the immune response is discussed.

  18. A role for the transcription factor Helios in human CD4+CD25+ regulatory T cells

    PubMed Central

    Getnet, Derese; Grosso, Joseph F.; Goldberg, Monica V.; Harris, Timothy J.; Yen, Hung-Rong; Bruno, Tullia C.; Durham, Nicholas M.; Hipkiss, Edward L.; Pyle, Kristin J.; Wada, Satoshi; Pan, Fan; Pardoll, Drew M.; Drake, Charles G.

    2010-01-01

    Relative up-regulation of the Ikaros family transcription factor Helios in natural regulatory T cells (Tregs) has been reported by several groups. However, a role for Helios in regulatory T cells has not yet been described. Here, we show that Helios is upregulated in CD4+CD25+ regulatory T cells. Chromatin Immunoprecipitation (ChIP) experiments indicated that Helios binds to the FoxP3 promoter. These data were further corroborated by experiments showing that knocking-down Helios with siRNA oligonucleotides results in down-regulation of FoxP3. Functionally, we found that suppression of Helios message in CD4+CD25+ T cells significantly attenuates their suppressive function. Taken together, these data suggest that Helios may play an important role in regulatory T cell function and support the concept that Helios may be a novel target to manipulate Treg activity in a clinical setting. PMID:20226531

  19. PDGF upregulates CLEC-2 to induce T regulatory cells.

    PubMed

    Agrawal, Sudhanshu; Ganguly, Sreerupa; Hajian, Pega; Cao, Jia-Ning; Agrawal, Anshu

    2015-10-06

    The effect of platelet derived growth factor (PDGF) on immune cells is not elucidated. Here, we demonstrate PDGF inhibited the maturation of human DCs and induced IL-10 secretion. Culture of PDGF-DCs with T cells induced the polarization of T cells towards FoxP3 expressing T regulatory cells that secreted IL-10. Gene expression studies revealed that PDGF induced the expression of C-type lectin like receptor member 2, (CLEC-2) receptor on DCs. Furthermore, DCs transfected with CLEC-2 induced T regulatory cells in DC-T cell co-culture. CLEC-2 is naturally expressed on platelets. Therefore, to confirm whether CLEC-2 is responsible for inducing the T regulatory cells, T cells were cultured with either CLEC-2 expressing platelets or soluble CLEC-2. Both conditions resulted in the induction of regulatory T cells. The generation of T regulatory cells was probably due to the binding of CLEC-2 with its ligand podoplanin on T cells, since crosslinking of podoplanin on the T cells also resulted in the induction of T regulatory cells. These data demonstrate that PDGF upregulates the expression of CLEC-2 on cells to induce T regulatory cells.

  20. A Systematic Analysis of Drosophila Regulatory Peptide Expression in Enteroendocrine Cells.

    PubMed

    Chen, Ji; Kim, Seol-Min; Kwon, Jae Young

    2016-04-30

    The digestive system is gaining interest as a major regulator of various functions including immune defense, nutrient accumulation, and regulation of feeding behavior, aside from its conventional function as a digestive organ. The Drosophila midgut epithelium is completely renewed every 1-2 weeks due to differentiation of pluripotent intestinal stem cells in the midgut. Intestinal stem cells constantly divide and differentiate into enterocytes that secrete digestive enzymes and absorb nutrients, or enteroendocrine cells that secrete regulatory peptides. Regulatory peptides have important roles in development and metabolism, but study has mainly focused on expression and functions in the nervous system, and not much is known about the roles in endocrine functions of enteroendocrine cells. We systemically examined the expression of 45 regulatory peptide genes in the Drosophila midgut, and verified that at least 10 genes are expressed in the midgut enteroendocrine cells through RT-PCR, in situ hybridization, antisera, and 25 regulatory peptide-GAL transgenes. The Drosophila midgut is highly compartmentalized, and individual peptides in enteroendocrine cells were observed to express in specific regions of the midgut. We also confirmed that some peptides expressed in the same region of the midgut are expressed in mutually exclusive enteroendocrine cells. These results indicate that the midgut enteroendocrine cells are functionally differentiated into different subgroups. Through this study, we have established a basis to study regulatory peptide functions in enteroendocrine cells as well as the complex organization of enteroendocrine cells in the Drosophila midgut.

  1. Cutting Edge: Regulatory T Cells Facilitate Cutaneous Wound Healing.

    PubMed

    Nosbaum, Audrey; Prevel, Nicolas; Truong, Hong-An; Mehta, Pooja; Ettinger, Monika; Scharschmidt, Tiffany C; Ali, Niwa H; Pauli, Mariela L; Abbas, Abul K; Rosenblum, Michael D

    2016-03-01

    Foxp3-expressing regulatory T cells (Tregs) reside in tissues where they control inflammation and mediate tissue-specific functions. The skin of mice and humans contain a large number of Tregs; however, the mechanisms of how these cells function in skin remain largely unknown. In this article, we show that Tregs facilitate cutaneous wound healing. Highly activated Tregs accumulated in skin early after wounding, and specific ablation of these cells resulted in delayed wound re-epithelialization and kinetics of wound closure. Tregs in wounded skin attenuated IFN-γ production and proinflammatory macrophage accumulation. Upon wounding, Tregs induce expression of the epidermal growth factor receptor (EGFR). Lineage-specific deletion of EGFR in Tregs resulted in reduced Treg accumulation and activation in wounded skin, delayed wound closure, and increased proinflammatory macrophage accumulation. Taken together, our results reveal a novel role for Tregs in facilitating skin wound repair and suggest that they use the EGFR pathway to mediate these effects.

  2. Functional Characterization of a Novel Pro-Apoptotic Transcription Regulatory Protein in Ovarian Cancer

    DTIC Science & Technology

    2006-12-01

    of establishing stable cell lines in ovarian cancer as stated above, this project awaits the establishment of tetracycline -inducible ovarian cancer ...W81XWH-04-1-0085 TITLE: Functional Characterization of a Novel Pro-Apoptotic Transcription Regulatory Protein in Ovarian Cancer ...Transcription Regulatory Protein in Ovarian Cancer 5b. GRANT NUMBER W81XWH-04-1-0085 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  3. Transcriptome-Guided Functional Analyses Reveal Novel Biological Properties and Regulatory Hierarchy of Human Embryonic Stem Cell-Derived Ventricular Cardiomyocytes Crucial for Maturation

    PubMed Central

    Poon, Ellen; Yan, Bin; Zhang, Shaohong; Rushing, Stephanie; Keung, Wendy; Ren, Lihuan; Lieu, Deborah K.; Geng, Lin; Kong, Chi-Wing; Wang, Jiaxian; Wong, Hau San; Boheler, Kenneth R.; Li, Ronald A.

    2013-01-01

    Abstract Human (h) embryonic stem cells (ESC) represent an unlimited source of cardiomyocytes (CMs); however, these differentiated cells are immature. Thus far, gene profiling studies have been performed with non-purified or non-chamber specific CMs. Here we took a combinatorial approach of using systems biology to guide functional discoveries of novel biological properties of purified hESC-derived ventricular (V) CMs. We profiled the transcriptomes of hESCs, hESC-, fetal (hF) and adult (hA) VCMs, and showed that hESC-VCMs displayed a unique transcriptomic signature. Not only did a detailed comparison between hESC-VCMs and hF-VCMs confirm known expression changes in metabolic and contractile genes, it further revealed novel differences in genes associated with reactive oxygen species (ROS) metabolism, migration and cell cycle, as well as potassium and calcium ion transport. Following these guides, we functionally confirmed that hESC-VCMs expressed IKATP with immature properties, and were accordingly vulnerable to hypoxia/reoxygenation-induced apoptosis. For mechanistic insights, our coexpression and promoter analyses uncovered a novel transcriptional hierarchy involving select transcription factors (GATA4, HAND1, NKX2.5, PPARGC1A and TCF8), and genes involved in contraction, calcium homeostasis and metabolism. These data highlight novel expression and functional differences between hESC-VCMs and their fetal counterparts, and offer insights into the underlying cell developmental state. These findings may lead to mechanism-based methods for in vitro driven maturation. PMID:24204964

  4. The generation and antigen-specificity of CD4+CD25+ regulatory T cells.

    PubMed

    Taams, Leonie S; Curnow, S John; Vukmanovic-Stejic, M; Akbar, Arne N

    2006-09-01

    CD4+CD25+ regulatory T cells are essential components of the immune system. They help to maintain immune tolerance by exerting suppressive effects on cells of the adaptive and innate immune system. In the last few years there has been an abundance of papers addressing the suppressive effects of CD4+CD25+ regulatory T cells and their putative role in various experimental disease models and human diseases. Despite the enormous amounts of data on these cells a number of controversial issues still exists. CD4+CD25+ regulatory T cells were originally described as thymus-derived anergic/suppressive T cells. Recent papers however indicate that these cells might also be generated in the periphery. Due to the thymic development of CD4+CD25+ regulatory T cells it was thought that these cells were specific for self-antigens. Indeed it was shown that CD4+CD25+ regulatory T cells could be positively selected upon high affinity interaction with self-antigens. However, evidence is accumulating that these cells might also interact with non-self antigens. Finally, in the literature there is conflicting evidence regarding the role of soluble factors versus cell-contact in the mechanism of suppression. The aim of this review is to summarize the evidence supporting these opposing viewpoints and to combine them into a general model for the origin, function and antigen-specificity of CD4+CD25+ regulatory T cells.

  5. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation

    PubMed Central

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-01-01

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag-/- γc-/- mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions. PMID:26915707

  6. Regulatory T cells inhibit CD34+ cell differentiation into NK cells by blocking their proliferation.

    PubMed

    Pedroza-Pacheco, Isabela; Shah, Divya; Domogala, Anna; Luevano, Martha; Blundell, Michael; Jackson, Nicola; Thrasher, Adrian; Madrigal, Alejandro; Saudemont, Aurore

    2016-02-26

    Graft versus Host Disease (GvHD) remains one of the main complications after hematopoietic stem cell transplantation (HSCT). Due to their ability to suppress effector cells, regulatory T cells (Tregs) have been proposed as a cellular therapy to prevent GvHD, however they also inhibit the functions of natural killer (NK) cells, key effectors of the Graft versus Leukemia effect. In this study, we have explored whether a Tregs therapy will also impact on NK cell differentiation. Using an in vitro model of hematopoietic stem cell (HSC) differentiation into NK cells, we found that activated Tregs led to a 90% reduction in NK cell numbers when added at the time of commitment to the NK cell lineage. This effect was contact dependent and was reversible upon Tregs depletion. The few NK cells that developed in these cultures were mature and exhibited normal functions. Furthermore, adoptive transfer of activated Tregs in rag(-/-) γc(-/-) mice abrogated HSC differentiation into NK cells thus confirming our in vitro findings. Collectively, these results demonstrate for the first time that activated Tregs can inhibit NK cell differentiation from HSC under specific conditions.

  7. Immunopathogenesis In Autism: Regulatory T Cells and Autoimmunity In Neurodevelopment

    DTIC Science & Technology

    2011-07-01

    exogenous agents, such as environmental pollutants, play a role in causing or triggering dysfunctional development that may culminate in an autism diagnosis...1-0484 TITLE: Immunopathogenesis in Autism : Regulatory T Cells and Autoimmunity in Neurodevelopment PRINCIPAL INVESTIGATOR: Jamie C...1 July 2010 – 30 June 2011 4. TITLE AND SUBTITLE Immunopathogenesis in Autism : 5a. CONTRACT NUMBER Regulatory T Cells and Autoimmunity in

  8. US Nuclear Regulatory Commission organization charts and functional statements

    SciTech Connect

    1997-11-01

    This document contains organization charts for the U.S. Nuclear Regulatory Commission (NRC) and for the five offices of the NRC. Function statements are provided delineating the major responsibilities and operations of each office. Organization and function are provided to the branch level. The head of each office, division, and branch is also listed.

  9. Effect of ATRA and ATO on the expression of tissue factor in NB4 acute promyelocytic leukemia cells and regulatory function of the inflammatory cytokines TNF and IL-1β.

    PubMed

    Dunoyer-Geindre, Sylvie; Rivier-Cordey, Anne-Sophie; Tsopra, Olga; Lecompte, Thomas; Kruithof, Egbert K O

    2017-03-25

    The characteristic hemorrhages of acute promyelocytic leukemia (APL) are caused in part by the high expression of tissue factor (TF) on leukemic cells, which also produce TNF and IL-1β, proinflammatory cytokines known to increase TF in various cell types. Exposure of NB4 cells, an APL cell line, to all-trans retinoic acid (ATRA) or arsenic trioxide (ATO) rapidly and strongly reduced TF mRNA. Both drugs also reduced TNF mRNA, but later, and moreover increased IL-1β mRNA. The effect on procoagulant activity of cells and microparticles, as measured with calibrated automated thrombography, was delayed and only partial at 24 h. TNF and IL-1β inhibition reduced TF mRNA and activity only partially. Inhibition of the inflammatory signaling intermediate p38 reduced TF mRNA by one third but increased TNF and IL-1β mRNA. NF-κB inhibition reduced, within 1 h, TF and TNF mRNA but did not change IL-1β mRNA, and rapidly and markedly reduced cell survival, with procoagulant properties still being present. In conclusion, although we provide evidence that TNF, IL-1β, and their signaling intermediates have a regulatory function on TF expression by NB4 APL cells, the effect of ATRA and ATO on TF can only partially be accounted for by their impact on these cytokines.

  10. Immunoevasive Pericytes From Human Pluripotent Stem Cells Preferentially Modulate Induction of Allogeneic Regulatory T Cells

    PubMed Central

    Domev, Hagit; Milkov, Irina; Dar, Ayelet

    2014-01-01

    Isolated microvessel-residing pericytes and pericytes from human pluripotent stem cells (hPSCs) exhibit mesenchymal stem cell-like characteristics and therapeutic properties. Despite growing interest in pericyte-based stem cell therapy, their immunogenicity and immunomodulatory effects on nonactivated T cells are still poorly defined, in particular those of vasculogenic hPSC pericytes. We found that tissue-embedded and unstimulated cultured hPSC- or tissue-derived pericytes constitutively expressed major histocompatibility complex (MHC) class I and the inhibitory programmed cell death-ligand 1/2 (PD-L1/2) molecules but not MHC class II or CD80/CD86 costimulatory molecules. Pretreatment with inflammatory mediators failed to induce an antigen-presenting cell-like phenotype in stimulated pericytes. CD146+ pericytes from hPSCs did not induce activation and proliferation of allogeneic resting T cells independent of interferon (IFN)-γ prestimulation, similarly to pericytes from human brain or placenta. Instead, pericytes mediated a significant increase in the frequency of allogeneic CD25highFoxP3+ regulatory T cells when cocultured with nonactivated peripheral blood T cells. Furthermore, when peripheral blood CD25high regulatory T cells (Tregs) were depleted from isolated CD3+ T cells, pericytes preferentially induced de novo formation of CD4+CD25highFoxP3+CD127−, suppressive regulatory T cells. Constitutive expression of PD-L1/2 and secretion of transforming growth factor-β by hPSC pericytes directly regulated generation of pericyte-induced Tregs. Pericytes cotransplanted into immunodeficient mice with allogeneic CD25− T cells maintained a nonimmunogenic phenotype and mediated the development of functional regulatory T cells. Together, these findings reveal a novel feature of pericyte-mediated immunomodulation distinguished from immunosuppression, shared by native tissue pericytes and hPSC pericytes, and support the notion that pericytes can be applied for

  11. The split personality of regulatory T cells in HIV infection.

    PubMed

    Chevalier, Mathieu F; Weiss, Laurence

    2013-01-03

    Natural regulatory T cells (Tregs) participate in responses to various chronic infections including HIV. HIV infection is associated with a progressive CD4 lymphopenia and defective HIV-specific CD8 responses known to play a key role in the control of viral replication. Persistent immune activation is a hallmark of HIV infection and is involved in disease progression independent of viral load. The consequences of Treg expansion, observed in HIV infection, could be either beneficial, by suppressing generalized T-cell activation, or detrimental, by weakening HIV-specific responses and thus contributing to viral persistence. The resulting balance between Tregs contrasting outcomes might have critical implications in pathogenesis. Topics covered in this review include HIV-induced alterations of Tregs, Treg cell dynamics in blood and tissues, Treg-suppressive function, and the relationship between Tregs and immune activation. This review also provides a focus on the role of CD39(+) Tregs and other regulatory cell subsets. All these issues will be explored in different situations including acute and chronic infection, antiretroviral treatment-mediated viral control, and spontaneous viral control. Results must be interpreted with regard to both the Treg definition used in context and to the setting of the disease in an attempt to draw clearer conclusions from the apparently conflicting results.

  12. Movement of regulatory RNA between animal cells

    PubMed Central

    Jose, Antony M.

    2015-01-01

    Summary Recent studies suggest that RNA can move from one cell to another and regulate genes through specific base-pairing. Mechanisms that modify or select RNA for secretion from a cell are unclear. Secreted RNA can be stable enough to be detected in the extracellular environment and can enter the cytosol of distant cells to regulate genes. Mechanisms that import RNA into the cytosol of an animal cell can enable uptake of RNA from many sources including other organisms. This role of RNA is akin to that of steroid hormones, which cross cell membranes to regulate genes. The potential diagnostic use of RNA in human extracellular fluids has ignited interest in understanding mechanisms that enable the movement of RNA between animal cells. Genetic model systems will be essential to gain more confidence in proposed mechanisms of RNA transport and to connect an extracellular RNA with a specific biological function. Studies in the worm C. elegans and in other animals have begun to reveal parts of this novel mechanism of cell-to-cell communication. Here, I summarize the current state of this nascent field, highlight the many unknowns, and suggest future directions. PMID:26138457

  13. Regulatory T Cell Immunotherapy in Immune-Mediated Diseases

    PubMed Central

    Pierini, Antonio; Schneidawind, Dominik; Nishikii, Hidekazu; Negrin, Robert S.

    2015-01-01

    Broad clinical interest rapidly followed the recent discovery of different subpopulations of T cells that have immune regulatory properties and a number of studies have been conducted aiming to dissect the translational potential of these promising cells. In this review we will focus on forkhead box P3 (FoxP3) positive regulatory T cells, T regulatory type 1 cells and invariant natural killer T cells (iNKT). We will analyze their ability to correct immune dysregulation in animal models of immune mediated diseases and we will examine the first clinical approaches where these cells have been directly or indirectly employed. We will discuss successes, challenges and limitations that rose in the road to the clinical use of regulatory T cells. PMID:26779417

  14. Hypoxic culture conditions enhance the generation of regulatory T cells

    PubMed Central

    Neildez-Nguyen, Thi My Anh; Bigot, Jérémy; Da Rocha, Sylvie; Corre, Guillaume; Boisgerault, Florence; Paldi, Andràs; Galy, Anne

    2015-01-01

    The generation of large amounts of induced CD4+ CD25+ Foxp3+ regulatory T (iTreg) cells is of great interest for several immunotherapy applications, therefore a better understanding of signals controlling iTreg cell differentiation and expansion is required. There is evidence that oxidative metabolism may regulate several key signalling pathways in T cells. This prompted us to investigate the effects of oxygenation on iTreg cell generation by comparing the effects of atmospheric (21%) or of low (5%) O2 concentrations on the phenotype of bead-stimulated murine splenic CD4+ T cells from Foxp3-KI-GFP T-cell receptor transgenic mice. The production of intracellular reactive oxygen species was shown to play a major role in the generation of iTreg cells, a process characterized by increased levels of Sirt1, PTEN and Glut1 on the committed cells, independently of the level of oxygenation. The suppressive function of iTreg cells generated either in atmospheric or low oxygen levels was equivalent. However, greater yields of iTreg cells were obtained under low oxygenation, resulting from a higher proliferative rate of the committed Treg cells and higher levels of Foxp3, suggesting a better stability of the differentiation process. Higher expression of Glut1 detected on iTreg cells generated under hypoxic culture conditions provides a likely explanation for the enhanced proliferation of these cells as compared to those cultured under ambient oxygen. Such results have important implications for understanding Treg cell homeostasis and developing in vitro protocols for the generation of Treg cells from naive T lymphocytes. PMID:25243909

  15. An Arabidopsis gene regulatory network for secondary cell wall synthesis

    DOE PAGES

    Taylor-Teeples, M.; Lin, L.; de Lucas, M.; ...

    2014-12-24

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptional regulation of synthesis for each polymer is complex and vital to cell function. A regulatory hierarchy of developmental switches has been proposed, although the full complement of regulators remains unknown. In this paper, we present a protein–DNA network between Arabidopsis thaliana transcription factors and secondary cell wall metabolic genes with gene expression regulated bymore » a series of feed-forward loops. This model allowed us to develop and validate new hypotheses about secondary wall gene regulation under abiotic stress. Distinct stresses are able to perturb targeted genes to potentially promote functional adaptation. Finally, these interactions will serve as a foundation for understanding the regulation of a complex, integral plant component.« less

  16. Regulatory mechanisms of helper T cell differentiation

    PubMed Central

    Pappu, Bhanu P.; Angkasekwinai, Pornpimon; Dong, Chen

    2008-01-01

    Interleukin 17 (IL-17) family consists of six cytokines in mammals. Among them, IL-17 and IL-17F are expressed by a novel subset of CD4+ helper T (Th) cells and play critical function in inflammation and autoimmunity. On the other hand, IL-17E, also called IL-25, has been associated with allergic responses. Here we summarize recent work by us as well as other investigators in understanding the regulation and function of these three cytokines. From these studies, IL-17 family cytokines may serve as novel targets for pharmaceutical intervention of immune and inflammatory diseases. PMID:18280574

  17. Regulatory T cell-based therapies for autoimmunity.

    PubMed

    Arellano, Benjamine; Graber, David J; Sentman, Charles L

    2016-08-01

    Autoimmune disorders are long-term diseases that adversely affect the quality of life for patients, and they are one of the top ten leading causes of death. While each autoimmune disorder is unique, they all are caused by a breakdown of tolerance against endogenous proteins. This leads to auto-inflammatory events that promote the destruction of organs in a humoral and cellular immune mediated manner. Treatment options for autoimmunity can involve the use of chemical and biologic agents that suppress inflammation. While these treatment options for patients have shown to be beneficial in autoimmunity, they can result in patients being vulnerable to opportunistic infections. Newer therapies aim to identify methods to specifically block auto-inflammatory immune cells while allowing for an intact immune response to other antigens. T regulatory (Treg) cells are a subtype of the adoptive immune cell that is capable of suppressing inflammatory events in an antigen-specific manner, but they are often poorly functioning within autoimmune patients. Treg cells have been well characterized for their immune modulating capabilities and preclinical and early clinical studies support their therapeutic potential for antigen-specific immune suppression. This review will examine the current understanding of Treg cell function and the therapeutic potential of enhancing Treg cells in patients with inflammatory disorders.

  18. Unifying roles for regulatory T cells and inflammation in cancer

    PubMed Central

    Erdman, Susan E.; Rao, Varada P.; Olipitz, Werner; Taylor, Christie L.; Jackson, Erin A.; Levkovich, Tatiana; Lee, Chung-Wei; Horwitz, Bruce H.; Fox, James G.; Ge, Zhongming; Poutahidis, Theofilos

    2014-01-01

    Activities of CD4+ regulatory (TREG) cells restore immune homeostasis during chronic inflammatory disorders. Roles for TREG cells in inflammation-associated cancers, however, are paradoxical. It is widely believed that TREG function in cancer mainly to suppress protective anticancer responses. However, we demonstrate here that TREG cells also function to reduce cancer risk throughout the body by efficiently downregulating inflammation arising from the gastrointestinal (GI) tract. Building on a “hygiene hypothesis” model in which GI infections lead to changes in TREG that reduce immune-mediated diseases, here we show that gut bacteria-triggered TREG may function to inhibit cancer even in extraintestinal sites. Ability of bacteria-stimulated TREG to suppress cancer depends on interleukin (IL)-10, which serves to maintain immune homeostasis within bowel and support a protective antiinflammatory TREG phenotype. However, under proinflammatory conditions, TREG may fail to provide antiinflammatory protection and instead contribute to a T helper (Th)-17-driven procarcinogenic process; a cancer state that is reversible by downregulation of inflammation. Consequently, hygienic individuals with a weakened IL-10 and TREG-mediated inhibitory loop are highly susceptible to the carcinogenic consequences of elevated IL-6 and IL-17 and show more frequent inflammation-associated cancers. Taken together, these data unify seemingly divergent disease processes such as autoimmunity and cancer and help explain the paradox of TREG and inflammation in cancer. Enhancing protective TREG functions may promote healthful longevity and significantly reduce risk of cancer. PMID:19795459

  19. Cell-type-specific enrichment of risk-associated regulatory elements at ovarian cancer susceptibility loci

    PubMed Central

    Coetzee, Simon G.; Shen, Howard C.; Hazelett, Dennis J.; Lawrenson, Kate; Kuchenbaecker, Karoline; Tyrer, Jonathan; Rhie, Suhn K.; Levanon, Keren; Karst, Alison; Drapkin, Ronny; Ramus, Susan J.; Couch, Fergus J.; Offit, Kenneth; Chenevix-Trench, Georgia; Monteiro, Alvaro N.A.; Antoniou, Antonis; Freedman, Matthew; Coetzee, Gerhard A.; Pharoah, Paul D.P.; Noushmehr, Houtan; Gayther, Simon A.

    2015-01-01

    Understanding the regulatory landscape of the human genome is a central question in complex trait genetics. Most single-nucleotide polymorphisms (SNPs) associated with cancer risk lie in non-protein-coding regions, implicating regulatory DNA elements as functional targets of susceptibility variants. Here, we describe genome-wide annotation of regions of open chromatin and histone modification in fallopian tube and ovarian surface epithelial cells (FTSECs, OSECs), the debated cellular origins of high-grade serous ovarian cancers (HGSOCs) and in endometriosis epithelial cells (EECs), the likely precursor of clear cell ovarian carcinomas (CCOCs). The regulatory architecture of these cell types was compared with normal human mammary epithelial cells and LNCaP prostate cancer cells. We observed similar positional patterns of global enhancer signatures across the three different ovarian cancer precursor cell types, and evidence of tissue-specific regulatory signatures compared to non-gynecological cell types. We found significant enrichment for risk-associated SNPs intersecting regulatory biofeatures at 17 known HGSOC susceptibility loci in FTSECs (P = 3.8 × 10−30), OSECs (P = 2.4 × 10−23) and HMECs (P = 6.7 × 10−15) but not for EECs (P = 0.45) or LNCaP cells (P = 0.88). Hierarchical clustering of risk SNPs conditioned on the six different cell types indicates FTSECs and OSECs are highly related (96% of samples using multi-scale bootstrapping) suggesting both cell types may be precursors of HGSOC. These data represent the first description of regulatory catalogues of normal precursor cells for different ovarian cancer subtypes, and provide unique insights into the tissue specific regulatory variation with respect to the likely functional targets of germline genetic susceptibility variants for ovarian cancer. PMID:25804953

  20. Identification of the Adenovirus E4orf4 Protein Binding Site on the B55α and Cdc55 Regulatory Subunits of PP2A: Implications for PP2A Function, Tumor Cell Killing and Viral Replication

    PubMed Central

    Mui, Melissa Z.; Kucharski, Michael; Miron, Marie-Joëlle; Hur, Woosuk Steve; Berghuis, Albert M.; Blanchette, Paola; Branton, Philip E.

    2013-01-01

    Adenovirus E4orf4 protein induces the death of human cancer cells and Saccharomyces cerevisiae. Binding of E4orf4 to the B/B55/Cdc55 regulatory subunit of protein phosphatase 2A (PP2A) is required, and such binding inhibits PP2AB55 activity leading to dose-dependent cell death. We found that E4orf4 binds across the putative substrate binding groove predicted from the crystal structure of B55α such that the substrate p107 can no longer interact with PP2AB55α. We propose that E4orf4 inhibits PP2AB55 activity by preventing access of substrates and that at high E4orf4 levels this inhibition results in cell death through the failure to dephosphorylate substrates required for cell cycle progression. However, E4orf4 is expressed at much lower and less toxic levels during a normal adenovirus infection. We suggest that in this context E4orf4 largely serves to recruit novel substrates such as ASF/SF2/SRSF1 to PP2AB55 to enhance adenovirus replication. Thus E4orf4 toxicity probably represents an artifact of overexpression and does not reflect the evolutionary function of this viral product. PMID:24244166

  1. CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors

    PubMed Central

    Kalekar, Lokesh A.; Schmiel, Shirdi E.; Nandiwada, Sarada L.; Lam, Wing Y.; Barsness, Laura O.; Zhang, Na; Stritesky, Gretta L.; Malhotra, Deepali; Pauken, Kristen E.; Linehan, Jonathan L.; O’Sullivan, M. Gerard; Fife, Brian T.; Hogquist, Kristin A.; Jenkins, Marc K.; Mueller, Daniel L.

    2015-01-01

    The role that anergy, an acquired state of T cell functional unresponsiveness, plays in natural peripheral tolerance remains unclear. In this study, we demonstrate that anergy is selectively induced in fetal antigen-specific maternal CD4+ T cells during pregnancy. A naturally occurring subpopulation of anergic polyclonal CD4+ T cells, enriched in self antigen-specific T cell receptors, is also observed in healthy hosts. Neuropilin-1 expression in anergic conventional CD4+ T cells is associated with thymic regulatory T cell (Treg cell)-related gene hypomethylation, and this correlates with their capacity to differentiate into Foxp3+ Treg cells that suppress immunopathology. Thus, our data suggest that not only is anergy induction important in preventing autoimmunity, but it also generates the precursors for peripheral Treg cell differentiation. PMID:26829766

  2. The Molecular Mechanisms of Regulatory T Cell Immunosuppression

    PubMed Central

    Pandiyan, Pushpa; Zheng, Lixin; Lenardo, Michael J.

    2011-01-01

    CD4+CD25+Foxp3+ T lymphocytes, known as regulatory T cells or Tregs, have been proposed to be a lineage of professional immune suppressive cells that exclusively counteract the effects of the immunoprotective “helper” and “cytotoxic” lineages of T lymphocytes. Here we discuss new concepts on the mechanisms and functions of Tregs. There are several key points we emphasize: 1. Tregs exert suppressive effects both directly on effector T cells and indirectly through antigen-presenting cells; 2. Regulation can occur through a novel mechanism of cytokine consumption to regulate as opposed to the usual mechanism of cytokine/chemokine production; 3. In cases where CD4+ effector T cells are directly inhibited by Tregs, it is chiefly through a mechanism of lymphokine withdrawal apoptosis leading to polyclonal deletion; and 4. Contrary to the current view, we discuss new evidence that Tregs, similar to other T-cells lineages, can promote protective immune responses in certain infectious contexts (Chen et al., 2011; Pandiyan et al., 2011). Although these points are at variance to varying degrees with the standard model of Treg behavior, we will recount developing findings that support these new concepts. PMID:22566849

  3. A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer

    PubMed Central

    Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine

    2009-01-01

    Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752

  4. Myeloid-derived suppressor cells and myeloid regulatory cells in cancer and autoimmune disorders

    PubMed Central

    Barnie, Prince Amoah; Zhang, Pan; Lv, Hongxiang; Wang, Dan; Su, Xiaolian; Su, Zhaoliang; Xu, Huaxi

    2017-01-01

    Myeloid-derived suppressor cells (MDSCs) were originally described as a heterogeneous population of immature cells derived from myeloid progenitors with immune-suppressive functions in tumor-bearing hosts. In recent years, increasing number of studies have described various populations of myeloid cells with MDSC-like properties in murine models of cancer and autoimmune diseases. These studies have observed that the populations of MDSCs are increased during inflammation and autoimmune conditions. In addition, MDSCs can effectively suppress T cell responses and modulate the activity of natural killer cells and other myeloid cells. MDSCs have also been implicated in the induction of regulatory T cell production. Furthermore, these cells have the potential to suppress the autoimmune response, thereby limiting tissue injury. Myeloid regulatory cells (Mregs) are recently attracting increasing attention, since they function in proinflammatory and immune suppression in autoimmune diseases, as well as in various types of cancer. Currently, research focus is directed from MDSCs to Mregs in cancer and autoimmune diseases. The present study reviewed the suppressive roles of MDSCs in various autoimmune murine models, the immune modulation of MDSCs to T helper 17 lymphocytes, as well as the proinflammatory and immunosuppressive roles of Mregs in various types of cancer and autoimmune diseases. PMID:28352304

  5. Extracellular NAD(+): a danger signal hindering regulatory T cells.

    PubMed

    Adriouch, Sahil; Haag, Friedrich; Boyer, Olivier; Seman, Michel; Koch-Nolte, Friedrich

    2012-11-01

    Endogenous danger signals released during cell damage contribute to alert the immune system. Typically, their release results in the activation and maturation of innate immune cells, and the production of pro-inflammatory cytokines. In addition, extracellular NAD(+) stimulates immune responses by hindering regulatory T cells (Tregs), and could, therefore, represent the prototype of a new category of danger signals.

  6. Type 1 diabetes immunotherapy using polyclonal regulatory T cells

    PubMed Central

    Bluestone, Jeffrey A.; Buckner, Jane H.; Fitch, Mark; Gitelman, Stephen E.; Gupta, Shipra; Hellerstein, Marc K.; Herold, Kevan C.; Lares, Angela; Lee, Michael R.; Li, Kevin; Liu, Weihong; Long, S. Alice; Masiello, Lisa M.; Nguyen, Vinh; Putnam, Amy L.; Rieck, Mary; Sayre, Peter; Tang, Qizhi

    2016-01-01

    Type 1 diabetes (T1D) is an autoimmune disease that occurs in genetically susceptible individuals. Regulatory T cells (Tregs) have been shown to be defective in the autoimmune disease setting. Thus, efforts to repair or replace Tregs in T1D may reverse autoimmunity and protect the remaining insulin-producing β cells. On the basis of this premise, a robust technique has been developed to isolate and expand Tregs from patients with T1D. The expanded Tregs retained their T cell receptor diversity and demonstrated enhanced functional activity. We report on a phase 1 trial to assess safety of Treg adoptive immunotherapy in T1D. Fourteen adult subjects with T1D, in four dosing cohorts, received ex vivo–expanded autologous CD4+CD127lo/−CD25+ polyclonal Tregs (0.05 × 108 to 26 × 108 cells). A subset of the adoptively transferred Tregs was long-lived, with up to 25% of the peak level remaining in the circulation at 1 year after transfer. Immune studies showed transient increases in Tregs in recipients and retained a broad Treg FOXP3+CD4+CD25hiCD127lo phenotype long-term. There were no infusion reactions or cell therapy–related high-grade adverse events. C-peptide levels persisted out to 2+ years after transfer in several individuals. These results support the development of a phase 2 trial to test efficacy of the Treg therapy. PMID:26606968

  7. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset.

    PubMed

    Sag, Duygu; Krause, Petra; Hedrick, Catherine C; Kronenberg, Mitchell; Wingender, Gerhard

    2014-09-01

    Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10-producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset.

  8. Invasive Surgery Impairs the Regulatory Function of Human CD56 bright Natural Killer Cells in Response to Staphylococcus aureus. Suppression of Interferon-γ Synthesis.

    PubMed

    Reinhardt, Renate; Pohlmann, Stephanie; Kleinertz, Holger; Hepner-Schefczyk, Monika; Paul, Andreas; Flohé, Stefanie B

    2015-01-01

    Major surgery increases the risk for infectious complications due to the development of immunosuppression. CD56 bright NK cells play a key role in the defense against bacterial infections through the release of Interferon (IFN) γ upon stimulation with monocyte-derived Interleukin (IL) 12. We investigated whether invasive visceral surgery interferes with the IFN-γ synthesis of human NK cells in response to Staphylococcus aureus. In a prospective pilot study, peripheral blood mononuclear cells (PBMC) were isolated from 53 patients before and 1 to 7 d after elective visceral surgery. The release of IL-12 and IFN-γ from PBMC upon exposure to S. aureus in vitro was quantified. The expression of the IL-12 receptor β1 chain on the surface, the phosphorylation of signal transducer and activator of transcription (STAT) 4, and the synthesis of IFN-γ on/in individual CD56 bright NK cells were investigated using flow cytometry. The modulatory effect of IL-12 on the S. aureus-induced IFN-γ production in CD56 bright NK cells was analyzed. The IFN-γ secretion from purified CD56 bright NK cells was quantified after stimulation with IL-12 and IL-18. After surgery, CD56 bright NK cells among total PBMC were impaired in the release of IFN-γ for at least 5 d. Likewise, the IL-12-induced release of IFN-γ from purified CD56 bright NK cells was abolished. Upon stimulation with S. aureus, PBMC secreted less IL-12 but supplementation with recombinant IL-12 did not restore the capacity of CD56 bright NK cells to produce IFN-γ. CD56 bright NK cells displayed reduced levels of the IL-12Rβ1 chain whereas the phosphorylation of STAT4, the key transcription factor for the Ifng gene was not diminished. In summary, after invasive visceral surgery, CD56 bright NK cells are impaired in S. aureus-induced IFN-γ production and might contribute to the enhanced susceptibility to opportunistic infections.

  9. Community Structure Reveals Biologically Functional Modules in MEF2C Transcriptional Regulatory Network

    PubMed Central

    Alcalá-Corona, Sergio A.; Velázquez-Caldelas, Tadeo E.; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique

    2016-01-01

    Gene regulatory networks are useful to understand the activity behind the complex mechanisms in transcriptional regulation. A main goal in contemporary biology is using such networks to understand the systemic regulation of gene expression. In this work, we carried out a systematic study of a transcriptional regulatory network derived from a comprehensive selection of all potential transcription factor interactions downstream from MEF2C, a human transcription factor master regulator. By analyzing the connectivity structure of such network, we were able to find different biologically functional processes and specific biochemical pathways statistically enriched in communities of genes into the network, such processes are related to cell signaling, cell cycle and metabolism. In this way we further support the hypothesis that structural properties of biological networks encode an important part of their functional behavior in eukaryotic cells. PMID:27252657

  10. CCR6 Recruits Regulatory T Cells and Th17 Cells to the Kidney in Glomerulonephritis

    PubMed Central

    Turner, Jan-Eric; Paust, Hans-Joachim; Steinmetz, Oliver M.; Peters, Anett; Riedel, Jan-Hendrik; Erhardt, Annette; Wegscheid, Claudia; Velden, Joachim; Fehr, Susanne; Mittrücker, Hans-Willi; Tiegs, Gisa; Stahl, Rolf A.K.

    2010-01-01

    T cells recruited to the kidney contribute to tissue damage in crescentic and proliferative glomerulonephritides. Chemokines and their receptors regulate T cell trafficking, but the expression profile and functional importance of chemokine receptors for renal CD4+ T cell subsets are incompletely understood. In this study, we observed that renal FoxP3+CD4+ regulatory T cells (Tregs) and IL-17–producing CD4+ T (Th17) cells express the chemokine receptor CCR6, whereas IFNγ-producing Th1 cells are CCR6−. Induction of experimental glomerulonephritis (nephrotoxic nephritis) in mice resulted in upregulation of the only CCR6 ligand, CCL20, followed by T cell recruitment, renal tissue injury, albuminuria, and loss of renal function. CCR6 deficiency aggravated renal injury and increased mortality (from uremia) among nephritic mice. Compared with wild-type (WT) mice, CCR6 deficiency reduced infiltration of Tregs and Th17 cells but did not affect recruitment of Th1 cells in the setting of glomerulonephritis. Adoptive transfer of WT but not CCR6-deficient Tregs attenuated morphologic and functional renal injury in nephritic mice. Furthermore, reconstitution with WT Tregs protected CCR6−/− mice from aggravated nephritis. Taken together, these data suggest that CCR6 mediates renal recruitment of both Tregs and Th17 cells and that the reduction of anti-inflammatory Tregs in the presence of a fully functional Th1 response aggravates experimental glomerulonephritis. PMID:20299360

  11. Computational identification and functional validation of regulatory motifs in cartilage-expressed genes

    PubMed Central

    Davies, Sherri R.; Chang, Li-Wei; Patra, Debabrata; Xing, Xiaoyun; Posey, Karen; Hecht, Jacqueline; Stormo, Gary D.; Sandell, Linda J.

    2007-01-01

    Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter. PMID:17785538

  12. Type 1 regulatory T cells: a new mechanism of peripheral immune tolerance.

    PubMed

    Zeng, Hanyu; Zhang, Rong; Jin, Boquan; Chen, Lihua

    2015-09-01

    The lack of immune response to an antigen, a process known as immune tolerance, is essential for the preservation of immune homeostasis. To date, two mechanisms that drive immune tolerance have been described extensively: central tolerance and peripheral tolerance. Under the new nomenclature, thymus-derived regulatory T (tT(reg)) cells are the major mediators of central immune tolerance, whereas peripherally derived regulatory T (pT(reg)) cells function to regulate peripheral immune tolerance. A third type of T(reg) cells, termed iT(reg), represents only the in vitro-induced T(reg) cells(1). Depending on whether the cells stably express Foxp3, pT(reg), and iT(reg) cells may be divided into two subsets: the classical CD4(+)Foxp3(+) T(reg) cells and the CD4(+)Foxp3(-) type 1 regulatory T (Tr1) cells(2). This review focuses on the discovery, associated biomarkers, regulatory functions, methods of induction, association with disease, and clinical trials of Tr1 cells.

  13. The Role of Regulatory T Cells in Cancer

    PubMed Central

    2009-01-01

    There has been an explosion of literature focusing on the role of regulatory T (Treg) cells in cancer immunity. It is becoming increasingly clear that Treg cells play an active and significant role in the progression of cancer, and have an important role in suppressing tumor-specific immunity. Thus, there is a clear rationale for developing clinical strategies to diminish their regulatory influences, with the ultimate goal of augmenting antitimor immunity. Therefore, manipulation of Treg cells represent new strategies for cancer treatment. In this Review, I will summarize and review the explosive recent studies demonstrating that Treg cells are increased in patients with malignancies and restoration of antitumor immunity in mice and humans by depletion or reduction of Treg cells. In addition, I will discuss both the prognostic value of Treg cells in tumor progression in tumor-bearing hosts and the rationale for strategies for therapeutic vaccination and immunotherapeutic targeting of Treg cells with drugs and microRNA. PMID:20157609

  14. Emerging role of regulatory T cells in gene transfer.

    PubMed

    Cao, Ou; Furlan-Freguia, Christian; Arruda, Valder R; Herzog, Roland W

    2007-10-01

    Induction and maintenance of immune tolerance to therapeutic transgene products are key requirements for successful gene replacement therapies. Gene transfer may also be used to specifically induce immune tolerance and thereby augment other types of therapies. Similarly, gene therapies for treatment of autoimmune diseases are being developed in order to restore tolerance to self-antigens. Regulatory T cells have emerged as key players in many aspects of immune tolerance, and a rapidly increasing body of work documents induction and/or activation of regulatory T cells by gene transfer. Regulatory T cells may suppress antibody formation and cytotoxic T cell responses and may be critical for immune tolerance to therapeutic proteins. In this regard, CD4(+)CD25(+) regulatory T cells have been identified as important components of tolerance in several gene transfer protocols, including hepatic in vivo gene transfer. Augmentation of regulatory T cell responses should be a promising new tool to achieve tolerance and avoid immune-mediated rejection of gene therapy. During the past decade, it has become obvious that immune regulation is an important and integral component of tolerance to self-antigens and of many forms of induced tolerance. Gene therapy can only be successful if the immune system does not reject the therapeutic transgene product. Recent studies provide a rapidly growing body of evidence that regulatory T cells (T(reg)) are involved and often play a crucial role in tolerance to proteins expressed by means of gene transfer. This review seeks to provide an overview of these data and their implications for gene therapy.

  15. Cell-type specific cis-regulatory networks: insights from Hox transcription factors.

    PubMed

    Polychronidou, Maria; Lohmann, Ingrid

    2013-01-01

    Hox proteins are a prominent class of transcription factors that specify cell and tissue identities in animal embryos. In sharp contrast to tissue-specifically expressed transcription factors, which coordinate regulatory pathways leading to the differentiation of a selected tissue, Hox proteins are active in many different cell types but are nonetheless able to differentially regulate gene expression in a context-dependent manner. This particular feature makes Hox proteins ideal candidates for elucidating the mechanisms employed by transcription factors to achieve tissue-specific functions in multi-cellular organisms. Here we discuss how the recent genome-wide identification and characterization of Hox cis-regulatory elements has provided insight concerning the molecular mechanisms underlying the high spatiotemporal specificity of Hox proteins. In particular, it was shown that Hox transcriptional outputs depend on the cell-type specific interplay of the different Hox proteins with co-regulatory factors as well as with epigenetic modifiers. Based on these observations it becomes clear that cell-type specific approaches are required for dissecting the tissue-specific Hox regulatory code. Identification and comparative analysis of Hox cis-regulatory elements driving target gene expression in different cell types in combination with analyses on how cofactors, epigenetic modifiers and protein-protein interactions mediate context-dependent Hox function will elucidate the mechanistic basis of tissue-specific gene regulation.

  16. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation.

    PubMed

    Schmetterer, Klaus G; Neunkirchner, Alina; Pickl, Winfried F

    2012-06-01

    Naturally occurring CD4(+)CD25(high) forkhead box protein 3 (FOXP3)(+) regulatory T cells (nTregs) are key mediators of immunity, which orchestrate and maintain tolerance to self and foreign antigens. In the recent 1.5 decades, a multitude of studies have aimed to define the phenotype and function of nTregs and to assess their therapeutic potential for modulating immune mediated disorders such as autoimmunity, allergy, and episodes of transplant rejection. In this review, we summarize the current knowledge on the biology of nTregs. We address the exact definition of nTregs by specific markers and combinations thereof, which is a prerequisite for the state-of-the-art isolation of defined nTreg populations. Furthermore, we discuss the mechanism by which nTregs mediate immunosuppression and how this knowledge might translate into novel therapeutic modalities. With first clinical studies of nTreg-based therapies being finished, questions concerning the reliable sources of nTregs are becoming more and more eminent. Consequently, approaches allowing conversion of CD4(+) T cells into nTregs by coculture with antigen-presenting cells, cytokines, and/or pharmacological agents are discussed. In addition, genetic engineering approaches for the generation of antigen-specific nTregs are described.

  17. Critical evaluation of regulatory T cells in autoimmunity: are the most potent regulatory specificities being ignored?

    PubMed

    Vandenbark, Arthur A; Offner, Halina

    2008-09-01

    The identification of CD4+ CD25+ Foxp3+ regulatory T (Treg) cells as natural regulators of immunity in the periphery and tissues has stimulated tremendous interest in developing therapeutic strategies for autoimmune diseases. In this review, the site of origin, antigen specificity, homing markers and cytokine profiles of Treg cells were evaluated in autoimmune colitis and type 1 diabetes, two examples in which Treg cells were effective as therapy. These studies were compared with studies of Treg cells in experimental autoimmune encephalomyelitis and multiple sclerosis, where successful therapy has not yet been achieved. Antigen-specific Treg cells appear to have more potent activity than polyclonal Treg cells and therefore hold more promise as therapeutic agents. However, Treg cells specific for the pathogenic T effector cells themselves have largely been overlooked and deserve consideration in future studies.

  18. Drivers of structural features in gene regulatory networks: From biophysical constraints to biological function

    NASA Astrophysics Data System (ADS)

    Martin, O. C.; Krzywicki, A.; Zagorski, M.

    2016-07-01

    Living cells can maintain their internal states, react to changing environments, grow, differentiate, divide, etc. All these processes are tightly controlled by what can be called a regulatory program. The logic of the underlying control can sometimes be guessed at by examining the network of influences amongst genetic components. Some associated gene regulatory networks have been studied in prokaryotes and eukaryotes, unveiling various structural features ranging from broad distributions of out-degrees to recurrent ;motifs;, that is small subgraphs having a specific pattern of interactions. To understand what factors may be driving such structuring, a number of groups have introduced frameworks to model the dynamics of gene regulatory networks. In that context, we review here such in silico approaches and show how selection for phenotypes, i.e., network function, can shape network structure.

  19. The impact of regulatory T cells on T-cell immunity following hematopoietic cell transplantation

    PubMed Central

    Nguyen, Vu H.; Shashidhar, Sumana; Chang, Daisy S.; Ho, Lena; Kambham, Neeraja; Bachmann, Michael; Brown, Janice M.

    2008-01-01

    Regulatory T cells (Tregs) prevent graft-versus-host disease (GvHD) by inhibiting the proliferation and function of conventional T cells (Tcons). However, the impact of Tregs on T-cell development and immunity following hematopoietic cell transplantation (HCT) is unknown. Using a murine GvHD model induced by Tcons, we demonstrate that adoptive transfer of Tregs leads to (1) abrogration of GvHD, (2) preservation of thymic and peripheral lymph node architecture, and (3) an accelerated donor lymphoid reconstitution of a diverse TCR-Vβ repertoire. The resultant enhanced lymphoid reconstitution in Treg recipients protects them from lethal cytomegalovirus (MCMV) infection. By contrast, mice that receive Tcons alone have disrupted lymphoid organs from GvHD and remain lymphopenic with a restricted TCR-Vβ repertoire and rapid death on MCMV challenge. Lymphocytes from previously infected Treg recipients generate secondary response specific to MCMV, indicating long-term protective immunity with transferred Tregs. Thymectomy significantly reduces survival after MCMV challenge in Treg recipients compared with euthymic controls. Our results indicate that Tregs enhance immune reconstitution by preventing GvHD-induced damage of the thymic and secondary lymphoid microenvironment. These findings provide new insights into the role of Tregs in affording protection to lymphoid stromal elements important for T-cell immunity. PMID:17916743

  20. Roles for Inflammation and Regulatory T Cells in Colon Cancer

    PubMed Central

    Erdman, Susan E.; Poutahidis, Theofilos

    2014-01-01

    Risk for developing cancer rises substantially as a result of poorly regulated inflammatory responses to pathogenic bacterial infections. Anti-inflammatory CD4+ regulatory cells (TREG) function to restore immune homeostasis during chronic inflammatory disorders. It seems logical that TREG cells would function to reduce risk of inflammation-associated cancer in the bowel by down-regulating inflammation. It is widely believed, however, that TREG function in cancer mainly to suppress protective anticancer inflammatory responses. Thus roles for inflammation, TREG cells, and gut bacteria in cancer are paradoxical and are the subject of controversy. Our accumulated data build upon the “hygiene hypothesis” model in which gastrointestinal (GI) infections lead to changes in TREG that reduce inflammation-associated diseases. Ability of TREG to inhibit or suppress cancer depends upon gut bacteria and IL-10, which serve to maintain immune balance and a protective anti-inflammatory TREG phenotype. However, under poorly regulated pro-inflammatory conditions, TREG fail to inhibit and may instead contribute to a T helper (Th)-17-driven procarcinogenic process, a cancer state that is reversible by down-regulation of inflammation and interleukin (IL)-6. Consequently, hygienic individuals with a weakened IL-10– and TREG–mediated inhibitory loop are highly susceptible to the carcinogenic consequences of elevated inflammation and show more frequent inflammation-associated cancers. Taken together, these data help explain the paradox of inflammation and TREG in cancer and indicate that targeted stimulation of TREG may promote health and significantly reduce risk of cancer. PMID:20019355

  1. Regulatory T-cell cytokines in patients with nonsegmental vitiligo.

    PubMed

    Kidir, Mehtap; Karabulut, Ayse A; Ercin, Mustafa E; Atasoy, Pınar

    2017-05-01

    In the etiopathogenesis of vitiligo, the role of suppressor cytokines, such as transforming growth factor-β (TGF-β) and interleukin-10 (IL-10), associated with regulatory T-cells (Treg) is not completely known. In this study, the role of Treg-cell functions in the skin of patients with nonsegmental vitiligo was investigated. Lesional and nonlesional skin samples from 30 adult volunteers ranging in age from 18 to 36 years with nonsegmental vitiligo were compared with normal skin area excision specimens of 30 benign melanocytic nevus cases as controls. All samples were evaluated staining for forkhead box P3 (Foxp3), TGF-β, and IL-10 using the standardized streptavidin-biotin immunoperoxidase immunohistochemistry method. Foxp3 expression was lower in lesional vitiligo skin specimens compared to controls; it was also lower in lesional vitiligo specimens than nonlesional vitiligo specimens. IL-10 levels were lower in lesional vitiligo specimens compared to the controls, whereas IL-10 expression was significantly lower in lesional specimens compared with nonlesional specimens. TGF-β expression was higher in both lesional and nonlesional skin specimens of patients with vitiligo compared to controls. TGF-β expression was lower in lesional skin specimens than nonlesional skin specimens. In addition, there was no significant correlation between Foxp3 expression with TGF-β and IL-10 expressions in lesional skin specimens in the vitiligo group. In this study, results supporting the contribution of Treg cells and IL-10 deficiency to the autoimmune process were obtained. Therefore, future studies are necessary to demonstrate the definitive role of Treg-cell functions in the etiopathogenesis of vitiligo.

  2. The role of dendritic cells and regulatory T cells in the pathogenesis of morphea

    PubMed Central

    Teresiak-Mikołajczak, Ewa; Dańczak-Pazdrowska, Aleksandra; Kowalczyk, Michał; Żaba, Ryszard; Adamski, Zygmunt

    2015-01-01

    Morphea is one of diseases characterised by fibrosis of the skin and subcutaneous tissue. It is a chronic disease that does not shorten the life of the patient, yet significantly affects its quality. The group of factors responsible for its pathogenesis is thought to include disturbed functioning of endothelial cells as well as immune disturbances leading to chronic inflammatory conditions, accompanied by increased production of collagen and of other extracellular matrix components. Dendritic cells (DC) are a type of professional antigen-presenting cells and can be found in almost all body tissues. Individual investigations have demonstrated high numbers of plasmacytoid DC (pDC) in morphoeic skin lesions, within deeper dermal layers, around blood vessels, and around collagen fibres in subcutaneous tissue. It appears that DC has a more pronounced role in the development of inflammation and T cell activation in morphea, as compared to systemic sclerosis (SSc). Regulatory T (Treg) cells represent a subpopulation of T cells with immunosuppressive properties. Recent studies have drawn attention to the important role played by Treg in the process of autoimmunisation. Just a few studies have demonstrated a decrease in the number and activity of Treg in patients with SSc, and only such studies involve morphea. This article reviews recent studies on the role of DC and regulatory T cells in the pathogenesis of morphea. Moreover, mechanisms of phototherapy and potential therapeutic targets in the treatment of morphea are discussed in this context. PMID:26155191

  3. Regulation of Gastrointestinal Smooth Muscle Function by Interstitial Cells.

    PubMed

    Sanders, Kenton M; Kito, Yoshihiko; Hwang, Sung Jin; Ward, Sean M

    2016-09-01

    Interstitial cells of mesenchymal origin form gap junctions with smooth muscle cells in visceral smooth muscles and provide important regulatory functions. In gastrointestinal (GI) muscles, there are two distinct classes of interstitial cells, c-Kit(+) interstitial cells of Cajal and PDGFRα(+) cells, that regulate motility patterns. Loss of these cells may contribute to symptoms in GI motility disorders.

  4. Functional implications of local DNA structures in regulatory motifs.

    PubMed

    Xiang, Qian

    2013-01-01

    The three-dimensional structure of DNA has been proposed to be a major determinant for functional transcription factors (TFs) and DNA interaction. Here, we use hydroxyl radical cleavage pattern as a measure of local DNA structure. We compared the conservation between DNA sequence and structure in terms of information content and attempted to assess the functional implications of DNA structures in regulatory motifs. We used statistical methods to evaluate the structural divergence of substituting a single position within a binding site and applied them to a collection of putative regulatory motifs. The following are our major observations: (i) we observed more information in structural alignment than in the corresponding sequence alignment for most of the transcriptional factors; (ii) for each TF, majority of positions have more information in the structural alignment as compared to the sequence alignment; (iii) we further defined a DNA structural divergence score (SD score) for each wild-type and mutant pair that is distinguished by single-base mutation. The SD score for benign mutations is significantly lower than that of switch mutations. This indicates structural conservation is also important for TFBS to be functional and DNA structures will provide previously unappreciated information for TF to realize the binding specificity.

  5. Functional genomics identifies negative regulatory nodes controlling phagocyte oxidative burst

    PubMed Central

    Graham, Daniel B.; Becker, Christine E.; Doan, Aivi; Goel, Gautam; Villablanca, Eduardo J.; Knights, Dan; Mok, Amanda; Ng, Aylwin C.Y.; Doench, John G.; Root, David E.; Clish, Clary B.; Xavier, Ramnik J.

    2015-01-01

    The phagocyte oxidative burst, mediated by Nox2 NADPH oxidase-derived reactive oxygen species, confers host defense against a broad spectrum of bacterial and fungal pathogens. Loss-of-function mutations that impair function of the Nox2 complex result in a life-threatening immunodeficiency, and genetic variants of Nox2 subunits have been implicated in pathogenesis of inflammatory bowel disease (IBD). Thus, alterations in the oxidative burst can profoundly impact host defense, yet little is known about regulatory mechanisms that fine-tune this response. Here we report the discovery of regulatory nodes controlling oxidative burst by functional screening of genes within loci linked to human inflammatory disease. Implementing a multi-omics approach, we define transcriptional, metabolic and ubiquitin-cycling nodes controlled by Rbpj, Pfkl and Rnf145, respectively. Furthermore, we implicate Rnf145 in proteostasis of the Nox2 complex by endoplasmic reticulum-associated degradation. Consequently, ablation of Rnf145 in murine macrophages enhances bacterial clearance, and rescues the oxidative burst defects associated with Ncf4 haploinsufficiency. PMID:26194095

  6. Regulatory T Cells in Hepatitis B and C Virus Infections

    PubMed Central

    2016-01-01

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) are hepatotropic viruses that establish chronic persistent infection by effectively escaping the host immune response and can cause immune-mediated liver injury. It has recently become apparent that regulatory T (Treg) cells, specifically CD4+CD25+Foxp3+ Treg cells, modulate viral diseases by suppressing antiviral immune responses and regulating inflammatory host injury. The roles of Treg cells in HBV and HCV infections range from suppressing antiviral T cell responses to protecting the liver from immune-mediated damage. This review describes Treg cells and subpopulations and focuses on the roles of these cells in HBV and HCV infections. PMID:28035208

  7. Identification of functional elements and regulatory circuits by Drosophila modENCODE.

    PubMed

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L; Landolin, Jane M; Bristow, Christopher A; Ma, Lijia; Lin, Michael F; Washietl, Stefan; Arshinoff, Bradley I; Ay, Ferhat; Meyer, Patrick E; Robine, Nicolas; Washington, Nicole L; Di Stefano, Luisa; Berezikov, Eugene; Brown, Christopher D; Candeias, Rogerio; Carlson, Joseph W; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y; Will, Sebastian; Alekseyenko, Artyom A; Artieri, Carlo; Booth, Benjamin W; Brooks, Angela N; Dai, Qi; Davis, Carrie A; Duff, Michael O; Feng, Xin; Gorchakov, Andrey A; Gu, Tingting; Henikoff, Jorja G; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K; Riddle, Nicole C; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E; Schwartz, Yuri B; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E; Brent, Michael R; Cherbas, Lucy; Elgin, Sarah C R; Gingeras, Thomas R; Grossman, Robert; Hoskins, Roger A; Kaufman, Thomas C; Kent, William; Kuroda, Mitzi I; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J; Celniker, Susan E; Henikoff, Steven; Karpen, Gary H; Lai, Eric C; MacAlpine, David M; Stein, Lincoln D; White, Kevin P; Kellis, Manolis

    2010-12-24

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.

  8. [The Role of Regulatory T-cells in Antitumor Immune Response].

    PubMed

    Klabusay, M

    2015-01-01

    Regulatory T-lymphocytes (Treg) are essential for regulation of immune homeostasis and prevention of autoimmune disease development. Regulatory T-cells prevent the onset of autoimmune diseases; they keep immune homeostasis and modulate immune response during infection. Their activity is precisely controlled. Regulatory T-cells belong to one group of immune cells, which can support tumor survival and growth. They realize their function through inhibition of effector T-cells and by regulation of tumor microenvironment through production of various soluble factors. Many publications have proven that the amount of Treg cells is elevated in both solid tumors and in hematologic malignancies. Nevertheless, little is known about mechanisms, which allow increase and maintenance of elevated Treg cells in cancer patients. In this review, we will focus, among others, on the description of function and phenotype of Treg cells, their modulation of humoral immune response and interaction with cancer stem cells. Current development of modern tumor immunotherapy allows new possibilities of influencing Treg cells function.

  9. Molecular determinants of regulatory T cell development: the essential roles of epigenetic changes.

    PubMed

    Kitagawa, Yohko; Ohkura, Naganari; Sakaguchi, Shimon

    2013-01-01

    Regulatory T (Treg) cells constitute a distinct T cell subset, which plays a key role in immune tolerance and homeostasis. The transcription factor Foxp3 controls a substantial part of Treg cell development and function. Yet its expression alone is insufficient for conferring developmental and functional characteristics of Treg cells. There is accumulating evidence that concurrent induction of Treg-specific epigenetic changes and Foxp3 expression is crucial for lineage specification and functional stability of Treg cells. This review discusses recent progress in our understanding of molecular features of Treg cells, in particular, the molecular basis of how a population of developing T cells is driven to the Treg cell lineage and how its function is stably maintained.

  10. Daily subcutaneous injections of peptide induce CD4+ CD25+ T regulatory cells

    PubMed Central

    Dahlberg, P E; Schartner, J M; Timmel, A; Seroogy, C M

    2007-01-01

    Peptide immunotherapy is being explored to modulate varied disease states; however, the mechanism of action remains poorly understood. In this study, we investigated the ability of a subcutaneous peptide immunization schedule to induce of CD4+ CD25+ T regulatory cells. DO11·10 T cell receptor (TCR) transgenic mice on a Rag 2–/– background were injected subcutaneously with varied doses of purified ovalbumin (OVA323−339) peptide daily for 16 days. While these mice have no CD4+ CD25+ T regulatory cells, following this injection schedule up to 30% of the CD4+ cells were found to express CD25. Real-time quantitative polymerase chain reaction (QPCR) analysis of the induced CD4+ CD25+ T cells revealed increased expression of forkhead box P3 (FoxP3), suggesting that these cells may have a regulatory function. Proliferation and suppression assays in vitro utilizing the induced CD4+ CD25+ T cells revealed a profound anergic phenotype in addition to potent suppressive capability. Importantly, co-injection of the induced CD4+ CD25+ T cells with 5,6-carboxy-succinimidyl-fluorescence-ester (CFSE)-labelled naive CD4+ T cells (responder cells) into BALB/c recipient mice reduced proliferation and differentiation of the responder cells in response to challenge with OVA323−339 peptide plus adjuvant. We conclude that repeated subcutaneous exposure to low-dose peptide leads to de novo induction of CD4+ CD25+ FoxP3+ T regulatory cells with potent in vitro and in vivo suppressive capability, thereby suggesting that one mechanism of peptide immunotherapy appears to be induction of CD4+ CD25+ Foxp3+ T regulatory cells. PMID:17490400

  11. Daily subcutaneous injections of peptide induce CD4+ CD25+ T regulatory cells.

    PubMed

    Dahlberg, P E; Schartner, J M; Timmel, A; Seroogy, C M

    2007-08-01

    Peptide immunotherapy is being explored to modulate varied disease states; however, the mechanism of action remains poorly understood. In this study, we investigated the ability of a subcutaneous peptide immunization schedule to induce of CD4(+) CD25(+) T regulatory cells. DO11.10 T cell receptor (TCR) transgenic mice on a Rag 2(-/-) background were injected subcutaneously with varied doses of purified ovalbumin (OVA(323-339)) peptide daily for 16 days. While these mice have no CD4(+) CD25(+) T regulatory cells, following this injection schedule up to 30% of the CD4(+) cells were found to express CD25. Real-time quantitative polymerase chain reaction (QPCR) analysis of the induced CD4(+) CD25(+) T cells revealed increased expression of forkhead box P3 (FoxP3), suggesting that these cells may have a regulatory function. Proliferation and suppression assays in vitro utilizing the induced CD4(+) CD25(+) T cells revealed a profound anergic phenotype in addition to potent suppressive capability. Importantly, co-injection of the induced CD4(+) CD25(+) T cells with 5,6-carboxy-succinimidyl-fluorescence-ester (CFSE)-labelled naive CD4(+) T cells (responder cells) into BALB/c recipient mice reduced proliferation and differentiation of the responder cells in response to challenge with OVA(323-339) peptide plus adjuvant. We conclude that repeated subcutaneous exposure to low-dose peptide leads to de novo induction of CD4(+) CD25(+) FoxP3(+) T regulatory cells with potent in vitro and in vivo suppressive capability, thereby suggesting that one mechanism of peptide immunotherapy appears to be induction of CD4(+) CD25(+) Foxp3(+) T regulatory cells.

  12. Unexpected T cell regulatory activity of anti-histone H1 autoantibody: Its mode of action in regulatory T cell-dependent and -independent manners

    SciTech Connect

    Takaoka, Yuki; Kawamoto, Seiji; Katayama, Akiko; Nakano, Toshiaki; Yamanaka, Yasushi; Takahashi, Miki; Shimada, Yayoi; Chiang, Kuei-Chen; Ohmori, Naoya; Aki, Tsunehiro; Goto, Takeshi; Sato, Shuji; Goto, Shigeru; Chen, Chao-Long; Ono, Kazuhisa

    2013-02-08

    Highlights: ► Anti-histone H1 autoantibody (anti-H1) acts on T cells to inhibit their activation. ► Anti-H1 suppresses T cell activation in Treg cell-dependent and -independent manners. ► Suboptimal dose of anti-H1 enhances suppressor function of Treg cells. ► High dose of anti-H1 directly inhibits T cell receptor signaling. -- Abstract: Induction of anti-nuclear antibodies against DNA or histones is a hallmark of autoimmune disorders, but their actual contribution to disease predisposition remains to be clarified. We have previously reported that autoantibodies against histone H1 work as a critical graft survival factor in a rat model of tolerogeneic liver transplantation. Here we show that an immunosuppressive anti-histone H1 monoclonal antibody (anti-H1 mAb) acts directly on T cells to inhibit their activation in response to T cell receptor (TCR) ligation. Intriguingly, the T cell activation inhibitory activity of anti-H1 mAb under suboptimal dosages required regulatory T (Treg) cells, while high dose stimulation with anti-H1 mAb triggered a Treg cell-independent, direct negative regulation of T cell activation upon TCR cross-linking. In the Treg cell-dependent mode of immunosuppressive action, anti-H1 mAb did not induce the expansion of CD4{sup +}Foxp3{sup +} Treg cells, but rather potentiated their regulatory capacity. These results reveal a previously unappreciated T cell regulatory role of anti-H1 autoantibody, whose overproduction is generally thought to be pathogenic in the autoimmune settings.

  13. Tumor-infiltrating regulatory T cells inhibit endogenous cytotoxic T cell responses to lung adenocarcinoma

    PubMed Central

    Ganesan, Anusha-Preethi; Johansson, Magnus; Ruffell, Brian; Beltran, Adam; Lau, Jonathan; Jablons, David M.; Coussens, Lisa M.

    2013-01-01

    Immune cells comprise a substantial proportion of the tumor mass in human non-small cell lung cancers (NSCLC), but the precise composition and significance of this infiltration is unclear. Herein we examined immune complexity of human NSCLC as well as NSCLC developing in CC10-TAg transgenic mice, and revealed that CD4+ T lymphocytes represent the dominant population of CD45+ immune cells, and relative to normal lung tissue, CD4+FoxP3+ regulatory T cells (Tregs) were significantly increased as a proportion of total CD4+ cells. To assess the functional significance of increased Treg cells, we evaluated CD8+ T cell-deficient/CC10-TAg mice and revealed that CD8+ T cells significantly controlled tumor growth with anti-tumor activity that was partially repressed by Treg cells. However, while treatment with anti-CD25 depleting mAb as monotherapy preferentially depleted Tregs and improved CD8+ T cell-mediated control of tumor progression during early tumor development, similar monotherapy was ineffective at later stages. Since mice bearing early NSCLC treated with anti-CD25 mAb exhibited increased tumor cell death associated with infiltration by CD8+ T cells expressing elevated levels of granzyme A, granzyme B, perforin and interferon-γ, we therefore evaluated carboplatin combination therapy resulting in a significantly extended survival beyond that observed with chemotherapy alone, indicating that Treg depletion in combination with cytotoxic therapy may be beneficial as a treatment strategy for advanced NSCLC. PMID:23851682

  14. Biochemical Features and Functional Implications of the RNA-Based T-Box Regulatory Mechanism

    PubMed Central

    Gutiérrez-Preciado, Ana; Henkin, Tina M.; Grundy, Frank J.; Yanofsky, Charles; Merino, Enrique

    2009-01-01

    Summary: The T-box mechanism is a common regulatory strategy used for modulating the expression of genes of amino acid metabolism-related operons in gram-positive bacteria, especially members of the Firmicutes. T-box regulation is usually based on a transcription attenuation mechanism in which an interaction between a specific uncharged tRNA and the 5′ region of the transcript stabilizes an antiterminator structure in preference to a terminator structure, thereby preventing transcription termination. Although single T-box regulatory elements are common, double or triple T-box arrangements are also observed, expanding the regulatory range of these elements. In the present study, we predict the functional implications of T-box regulation in genes encoding aminoacyl-tRNA synthetases, proteins of amino acid biosynthetic pathways, transporters, and regulatory proteins. We also consider the global impact of the use of this regulatory mechanism on cell physiology. Novel biochemical relationships between regulated genes and their corresponding metabolic pathways were revealed. Some of the genes identified, such as the quorum-sensing gene luxS, in members of the Lactobacillaceae were not previously predicted to be regulated by the T-box mechanism. Our analyses also predict an imbalance in tRNA sensing during the regulation of operons containing multiple aminoacyl-tRNA synthetase genes or biosynthetic genes involved in pathways common to more than one amino acid. Based on the distribution of T-box regulatory elements, we propose that this regulatory mechanism originated in a common ancestor of members of the Firmicutes, Chloroflexi, Deinococcus-Thermus group, and Actinobacteria and was transferred into the Deltaproteobacteria by horizontal gene transfer. PMID:19258532

  15. Characterization of peripheral regulatory CD4+ T cells that prevent diabetes onset in nonobese diabetic mice.

    PubMed

    Lepault, F; Gagnerault, M C

    2000-01-01

    The period that precedes onset of insulin-dependent diabetes mellitus corresponds to an active dynamic state in which pathogenic autoreactive T cells are kept from destroying beta cells by regulatory T cells. In prediabetic nonobese diabetic (NOD) mice, CD4+ splenocytes were shown to prevent diabetes transfer in immunodeficient NOD recipients. We now demonstrate that regulatory splenocytes belong to the CD4+ CD62Lhigh T cell subset that comprises a vast majority of naive cells producing low levels of IL-2 and IFN-gamma and no IL-4 and IL-10 upon in vitro stimulation. Consistently, the inhibition of diabetes transfer was not mediated by IL-4 and IL-10. Regulatory cells homed to the pancreas and modified the migration of diabetogenic to the islets, which resulted in a decreased insulitis severity. The efficiency of CD62L+ T cells was dose dependent, independent of sex and disease prevalence. Protection mechanisms did not involve the CD62L molecule, an observation that may relate to the fact that CD4+ CD62Lhigh lymph node cells were less potent than their splenic counterparts. Regulatory T cells were detectable after weaning and persist until disease onset, sustaining the notion that diabetes is a late and abrupt event. Thus, the CD62L molecule appears as a unique marker that can discriminate diabetogenic (previously shown to be CD62L-) from regulatory T cells. The phenotypic and functional characteristics of protective CD4+ CD62L+ cells suggest they are different from Th2-, Tr1-, and NK T-type cells, reported to be implicated in the control of diabetes in NOD mice, and may represent a new immunoregulatory population.

  16. Tr1-Like T Cells – An Enigmatic Regulatory T Cell Lineage

    PubMed Central

    White, Anna Malgorzata; Wraith, David C.

    2016-01-01

    The immune system evolved to respond to foreign invaders and prevent autoimmunity to self-antigens. Several types of regulatory T cells facilitate the latter process. These include a subset of Foxp3− CD4+ T cells able to secrete IL-10 in an antigen-specific manner, type 1 regulatory (Tr1) T cells. Although their suppressive function has been confirmed both in vitro and in vivo, their phenotype remains poorly defined. It has been suggested that the surface markers LAG-3 and CD49b are biomarkers for murine and human Tr1 cells. Here, we discuss these findings in the context of our data regarding the expression pattern of inhibitory receptors (IRs) CD49b, TIM-3, PD-1, TIGIT, LAG-3, and ICOS on Tr1-like human T cells generated in vitro from CD4+ memory T cells stimulated with αCD3 and αCD28 antibodies. We found that there were no differences in IR expression between IL-10+ and IL-10− T cells. However, CD4+IL-10+ T cells isolated ex vivo, following a short stimulation and cytokine secretion assay, contained significantly higher proportions of TIM-3+ and PD-1+ cells. They also expressed significantly higher TIGIT mRNA and showed a trend toward increased TIM-3 mRNA levels. These data led us to conclude that large pools of IRs may be stored intracellularly; hence, they may not represent ideal candidates as cell surface biomarkers for Tr1-like T cells. PMID:27683580

  17. Regulatory B cells present in lymph nodes draining a murine tumor.

    PubMed

    Maglioco, Andrea; Machuca, Damián G; Camerano, Gabriela; Costa, Héctor A; Ruggiero, Raúl; Dran, Graciela I

    2014-01-01

    In cancer, B cells have been classically associated with antibody secretion, antigen presentation and T cell activation. However, a possible role for B lymphocytes in impairing antitumor response and collaborating with tumor growth has been brought into focus. Recent reports have described the capacity of B cells to negatively affect immune responses in autoimmune diseases. The highly immunogenic mouse tumor MCC loses its immunogenicity and induces systemic immune suppression and tolerance as it grows. We have previously demonstrated that MCC growth induces a distinct and progressive increase in B cell number and proportion in the tumor draining lymph nodes (TDLN), as well as a less prominent increase in T regulatory cells. The aim of this research was to study B cell characteristics and function in the lymph node draining MCC tumor and to analyze whether these cells may be playing a role in suppressing antitumor response and favoring tumor progression. Results indicate that B cells from TDLN expressed increased CD86 and MHCII co-stimulatory molecules indicating activated phenotype, as well as intracellular IL-10, FASL and Granzyme B, molecules with regulatory immunosuppressive properties. Additionally, B cells showed high inhibitory upon T cell proliferation ex vivo, and a mild capacity to secrete antibodies. Our conclusion is that even when evidence of B cell-mediated activity of the immune response is present, B cells from TDLN exhibit regulatory phenotype and inhibitory activity, probably contributing to the state of immunological tolerance characteristic of the advanced tumor condition.

  18. Thymic B cells promote thymus-derived regulatory T cell development and proliferation.

    PubMed

    Lu, Fang-Ting; Yang, Wei; Wang, Yin-Hu; Ma, Hong-Di; Tang, Wei; Yang, Jing-Bo; Li, Liang; Ansari, Aftab A; Lian, Zhe-Xiong

    2015-07-01

    Thymic CD4(+) FoxP3(+) regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell-cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3(+) Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.

  19. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses

    PubMed Central

    Joshi, Nikhil S.; Akama-Garren, Elliot H.; Lu, Yisi; Lee, Da-Yae; Chang, Gregory P.; Li, Amy; DuPage, Michel; Tammela, Tuomas; Kerper, Natanya R.; Farago, Anna F.; Robbins, Rebecca; Crowley, Denise M.; Bronson, Roderick T.; Jacks, Tyler

    2016-01-01

    SUMMARY Infiltration of regulatory T (Treg) cells into many tumor types correlates with poor patient prognoses. However, mechanisms of intratumoral Treg cell function remain to be elucidated. We investigated Treg cell function in a genetically-engineered mouse lung adenocarcinoma model and found Treg cells suppress anti-tumor responses in tumor-associated tertiary lymphoid structures (TA-TLS). TA-TLS have been described in human lung cancers, but their function remains to be determined. TLS in this model were spatially associated with >90% of tumors and facilitated interactions between T cells and tumor-antigen presenting dendritic cells (DCs). Costimulatory ligand expression by DCs and T cell proliferation rates increased in TA-TLS upon Treg cell depletion, leading to tumor destruction. Thus, we propose Treg cells in TA-TLS can inhibit endogenous immune responses against tumors, and targeting these cells may provide therapeutic benefit for cancer patients. PMID:26341400

  20. Treatment of ongoing autoimmune encephalomyelitis with activated B-cell progenitors maturing into regulatory B cells

    PubMed Central

    Korniotis, Sarantis; Gras, Christophe; Letscher, Hélène; Montandon, Ruddy; Mégret, Jérôme; Siegert, Stefanie; Ezine, Sophie; Fallon, Padraic G.; Luther, Sanjiv A.; Fillatreau, Simon; Zavala, Flora

    2016-01-01

    The influence of signals perceived by immature B cells during their development in bone marrow on their subsequent functions as mature cells are poorly defined. Here, we show that bone marrow cells transiently stimulated in vivo or in vitro through the Toll-like receptor 9 generate proB cells (CpG-proBs) that interrupt experimental autoimmune encephalomyelitis (EAE) when transferred at the onset of clinical symptoms. Protection requires differentiation of CpG-proBs into mature B cells that home to reactive lymph nodes, where they trap T cells by releasing the CCR7 ligand, CCL19, and to inflamed central nervous system, where they locally limit immunopathogenesis through interleukin-10 production, thereby cooperatively inhibiting ongoing EAE. These data demonstrate that a transient inflammation at the environment, where proB cells develop, is sufficient to confer regulatory functions onto their mature B-cell progeny. In addition, these properties of CpG-proBs open interesting perspectives for cell therapy of autoimmune diseases. PMID:27396388

  1. Finding Balance: T cell Regulatory Receptor Expression during Aging.

    PubMed

    Cavanagh, Mary M; Qi, Qian; Weyand, Cornelia M; Goronzy, Jörg J

    2011-10-01

    Aging is associated with a variety of changes to immune responsiveness. Reduced protection against infection, reduced responses to vaccination and increased risk of autoimmunity are all hallmarks of advanced age. Here we consider how changes in the expression of regulatory receptors on the T cell surface contribute to altered immunity during aging.

  2. Thymic Versus Induced Regulatory T Cells – Who Regulates the Regulators?

    PubMed Central

    Povoleri, Giovanni Antonio Maria; Scottà, Cristiano; Nova-Lamperti, Estefania Andrea; John, Susan; Lombardi, Giovanna; Afzali, Behdad

    2013-01-01

    Physiological health must balance immunological responsiveness against foreign pathogens with tolerance toward self-components and commensals. Disruption of this balance causes autoimmune diseases/chronic inflammation, in case of excessive immune responses, and persistent infection/immunodeficiency if regulatory components are overactive. This homeostasis occurs at two different levels: at a resting state to prevent autoimmune disease, as autoreactive effector T-cells (Teffs) are only partially deleted in the thymus, and during inflammation to prevent excessive tissue injury, contract the immune response, and enable tissue repair. Adaptive immune cells with regulatory function (“regulatory T-cells”) are essential to control Teffs. Two sets of regulatory T cell are required to achieve the desired control: those emerging de novo from embryonic/neonatal thymus (“thymic” or tTregs), whose function is to control autoreactive Teffs to prevent autoimmune diseases, and those induced in the periphery (“peripheral” or pTregs) to acquire regulatory phenotype in response to pathogens/inflammation. The differentiation mechanisms of these cells determine their commitment to lineage and plasticity toward other phenotypes. tTregs, expressing high levels of IL-2 receptor alpha chain (CD25), and the transcription factor Foxp3, are the most important, since mutations or deletions in these genes cause fatal autoimmune diseases in both mice and men. In the periphery, instead, Foxp3+ pTregs can be induced from naïve precursors in response to environmental signals. Here, we discuss molecular signatures and induction processes, mechanisms and sites of action, lineage stability, and differentiating characteristics of both Foxp3+ and Foxp3− populations of regulatory T cells, derived from the thymus or induced peripherally. We relate these predicates to programs of cell-based therapy for the treatment of autoimmune diseases and induction of tolerance to transplants. PMID

  3. Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch.

    PubMed

    Muto, Akihiko; Ochiai, Kyoko; Kimura, Yoshitaka; Itoh-Nakadai, Ari; Calame, Kathryn L; Ikebe, Dai; Tashiro, Satoshi; Igarashi, Kazuhiko

    2010-12-01

    Two transcription factors, Pax5 and Blimp-1, form a gene regulatory network (GRN) with a double-negative loop, which defines either B-cell (Pax5 high) or plasma cell (Blimp-1 high) status as a binary switch. However, it is unclear how this B-cell GRN registers class switch DNA recombination (CSR), an event that takes place before the terminal differentiation to plasma cells. In the absence of Bach2 encoding a transcription factor required for CSR, mouse splenic B cells more frequently and rapidly expressed Blimp-1 and differentiated to IgM plasma cells as compared with wild-type cells. Genetic loss of Blimp-1 in Bach2(-/-) B cells was sufficient to restore CSR. These data with mathematical modelling of the GRN indicate that Bach2 achieves a time delay in Blimp-1 induction, which inhibits plasma cell differentiation and promotes CSR (Delay-Driven Diversity model for CSR). Reduction in mature B-cell numbers in Bach2(-/-) mice was not rescued by Blimp-1 ablation, indicating that Bach2 regulates B-cell differentiation and function through Blimp-1-dependent and -independent GRNs.

  4. Biomechanical cell regulatory networks as complex adaptive systems in relation to cancer.

    PubMed

    Feller, Liviu; Khammissa, Razia Abdool Gafaar; Lemmer, Johan

    2017-01-01

    Physiological structure and function of cells are maintained by ongoing complex dynamic adaptive processes in the intracellular molecular pathways controlling the overall profile of gene expression, and by genes in cellular gene regulatory circuits. Cytogenetic mutations and non-genetic factors such as chronic inflammation or repetitive trauma, intrinsic mechanical stresses within extracellular matrix may induce redirection of gene regulatory circuits with abnormal reactivation of embryonic developmental programmes which can now drive cell transformation and cancer initiation, and later cancer progression and metastasis. Some of the non-genetic factors that may also favour cancerization are dysregulation in epithelial-mesenchymal interactions, in cell-to-cell communication, in extracellular matrix turnover, in extracellular matrix-to-cell interactions and in mechanotransduction pathways. Persistent increase in extracellular matrix stiffness, for whatever reason, has been shown to play an important role in cell transformation, and later in cancer cell invasion. In this article we review certain cell regulatory networks driving carcinogenesis, focussing on the role of mechanical stresses modulating structure and function of cells and their extracellular matrices.

  5. The pro-metastatic role of bone marrow-derived cells: a focus on MSCs and regulatory T cells

    PubMed Central

    Koh, Bong Ihn; Kang, Yibin

    2012-01-01

    Several bone marrow-derived cells have been shown to promote tumour growth and progression. These cells can home to the primary tumour and become active components of the tumour microenvironment. Recent studies have also identified bone marrow-derived cells—such as mesenchymal stem cells and regulatory T cells—as contributors to cancer metastasis. The innate versatility of these cells provides diverse functional aid to promote malignancy, ranging from structural support to signal-mediated suppression of the host immune response. Here, we review the role of mesenchymal stem cells and regulatory T cells in cancer metastasis. A better understanding of the bipolar nature of these bone marrow-derived cells in physiological and malignant contexts could pave the way for new therapeutics against metastatic disease. PMID:22473297

  6. Regulatory System for Stem/Progenitor Cell Niches in the Adult Rodent Pituitary

    PubMed Central

    Yoshida, Saishu; Kato, Takako; Kato, Yukio

    2016-01-01

    The anterior lobe of the pituitary gland is a master endocrine tissue composed of five types of endocrine cells. Although the turnover rate of pituitary endocrine cells is as low as about 1.6% per day, recent studies have demonstrated that Sex-determining region Y-box 2 (SOX2)+-cells exist as pituitary stem/progenitor cells in the adult anterior lobe and contribute to cell regeneration. Notably, SOX2+-pituitary stem/progenitor cells form two types of niches in this tissue: the marginal cell layer (MCL-niche) and the dense cell clusters scattering in the parenchyma (parenchymal-niche). However, little is known about the mechanisms and factors for regulating the pituitary stem/progenitor cell niches, as well as the functional differences between the two types of niches. Elucidation of the regulatory mechanisms in the niches might enable us to understand the cell regeneration system that acts in accordance with physiological demands in the adult pituitary. In this review, so as to reveal the regulatory mechanisms of the two types of niche, we summarize the regulatory factors and their roles in the adult rodent pituitary niches by focusing on three components: soluble factors, cell surface proteins and extracellular matrixes. PMID:26761002

  7. Functional and topological characteristics of mammalian regulatory domains

    PubMed Central

    Symmons, Orsolya; Uslu, Veli Vural; Tsujimura, Taro; Ruf, Sandra; Nassari, Sonya; Schwarzer, Wibke; Ettwiller, Laurence; Spitz, François

    2014-01-01

    Long-range regulatory interactions play an important role in shaping gene-expression programs. However, the genomic features that organize these activities are still poorly characterized. We conducted a large operational analysis to chart the distribution of gene regulatory activities along the mouse genome, using hundreds of insertions of a regulatory sensor. We found that enhancers distribute their activities along broad regions and not in a gene-centric manner, defining large regulatory domains. Remarkably, these domains correlate strongly with the recently described TADs, which partition the genome into distinct self-interacting blocks. Different features, including specific repeats and CTCF-binding sites, correlate with the transition zones separating regulatory domains, and may help to further organize promiscuously distributed regulatory influences within large domains. These findings support a model of genomic organization where TADs confine regulatory activities to specific but large regulatory domains, contributing to the establishment of specific gene expression profiles. PMID:24398455

  8. Functional splicing network reveals extensive regulatory potential of the core spliceosomal machinery.

    PubMed

    Papasaikas, Panagiotis; Tejedor, J Ramón; Vigevani, Luisa; Valcárcel, Juan

    2015-01-08

    Pre-mRNA splicing relies on the poorly understood dynamic interplay between >150 protein components of the spliceosome. The steps at which splicing can be regulated remain largely unknown. We systematically analyzed the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and used this information to reconstruct a network of functional interactions. The network accurately captures known physical and functional associations and identifies new ones, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during spliceosome assembly. In contrast with standard models of regulation at early steps of splice site recognition, factors involved in catalytic activation of the spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF, and on targets of antitumor drugs, and can be widely used to identify mechanisms of splicing regulation.

  9. Minocycline promotes the generation of dendritic cells with regulatory properties

    PubMed Central

    Im, Sun-A; Kim, Ji-Wan; Lee, Jae-Hee; Park, Young-Jun; Song, Sukgil; Lee, Chong-Kil

    2016-01-01

    Minocycline, which has long been used as a broad-spectrum antibiotic, also exhibits non-antibiotic properties such as inhibition of inflammation and angiogenesis. In this study, we show that minocycline significantly enhances the generation of dendritic cells (DCs) from mouse bone marrow (BM) cells when used together with GM-CSF and IL-4. DCs generated from BM cells in the presence of minocycline (Mino-DCs) demonstrate the characteristics of regulatory DCs. Compared with control DCs, Mino-DCs are resistant to subsequent maturation stimuli, impaired in MHC class II-restricted exogenous Ag presentation, and show decreased cytokine secretion. Mino-DCs also show decreased ability to prime allogeneic-specific T cells, while increasing the expansion of CD4+CD25+Foxp3+ T regulatory cells both in vitro and in vivo. In addition, pretreatment with MOG35-55 peptide-pulsed Mino-DCs ameliorates clinical signs of experimental autoimmune encephalitis induced by MOG peptide injection. Our study identifies minocycline as a new pharmacological agent that could be potentially used to increase the production of regulatory DCs for cell therapy to treat autoimmune disorders, allergy, and transplant rejection. PMID:27463004

  10. Direct-to-consumer stem cell marketing and regulatory responses.

    PubMed

    Sipp, Douglas

    2013-09-01

    There is a large, poorly regulated international market of putative stem cell products, including transplants of processed autologous stem cells from various tissues, cell processing devices, cosmetics, and nutritional supplements. Despite the absence of rigorous scientific research in the form of randomized clinical trials to support the routine use of such products, the market appears to be growing and diversifying. Very few stem cell biologics have passed regulatory scrutiny, and authorities in many countries, including the United States, have begun to step up their enforcement activities to protect patients and the integrity of health care markets.

  11. Role of regulatory T cell in the pathogenesis of inflammatory bowel disease

    PubMed Central

    Yamada, Akiko; Arakaki, Rieko; Saito, Masako; Tsunematsu, Takaaki; Kudo, Yasusei; Ishimaru, Naozumi

    2016-01-01

    Regulatory T (Treg) cells play key roles in various immune responses. For example, Treg cells contribute to the complex pathogenesis of inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis during onset or development of that disease. Many animal models of IBD have been used to investigate factors such as pathogenic cytokines, pathogenic bacteria, and T-cell functions, including those of Treg cells. In addition, analyses of patients with IBD facilitate our understanding of the precise mechanism of IBD. This review article focuses on the role of Treg cells and outlines the pathogenesis and therapeutic strategies of IBD based on previous reports. PMID:26900284

  12. Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells

    PubMed Central

    2012-01-01

    Background Current experimental evidence indicates that functionally related genes show coordinated expression in order to perform their cellular functions. In this way, the cell transcriptional machinery can respond optimally to internal or external stimuli. This provides a research opportunity to identify and study co-expressed gene modules whose transcription is controlled by shared gene regulatory networks. Results We developed and integrated a set of computational methods of differential gene expression analysis, gene clustering, gene network inference, gene function prediction, and DNA motif identification to automatically identify differentially co-expressed gene modules, reconstruct their regulatory networks, and validate their correctness. We tested the methods using microarray data derived from soybean cells grown under various stress conditions. Our methods were able to identify 42 coherent gene modules within which average gene expression correlation coefficients are greater than 0.8 and reconstruct their putative regulatory networks. A total of 32 modules and their regulatory networks were further validated by the coherence of predicted gene functions and the consistency of putative transcription factor binding motifs. Approximately half of the 32 modules were partially supported by the literature, which demonstrates that the bioinformatic methods used can help elucidate the molecular responses of soybean cells upon various environmental stresses. Conclusions The bioinformatics methods and genome-wide data sources for gene expression, clustering, regulation, and function analysis were integrated seamlessly into one modular protocol to systematically analyze and infer modules and networks from only differential expression genes in soybean cells grown under stress conditions. Our approach appears to effectively reduce the complexity of the problem, and is sufficiently robust and accurate to generate a rather complete and detailed view of putative soybean

  13. Dynamics of gene regulatory networks with cell division cycle

    NASA Astrophysics Data System (ADS)

    Chen, Luonan; Wang, Ruiqi; Kobayashi, Tetsuya J.; Aihara, Kazuyuki

    2004-07-01

    This paper focuses on modeling and analyzing the nonlinear dynamics of gene regulatory networks with the consideration of a cell division cycle with duplication process of DNA , in particular for switches and oscillators of synthetic networks. We derive two models that may correspond to the eukaryotic and prokaryotic cells, respectively. A biologically plausible three-gene model ( lac,tetR , and cI ) and a repressilator as switch and oscillator examples are used to illustrate our theoretical results. We show that the cell cycle may play a significant role in gene regulation due to the nonlinear dynamics of a gene regulatory network although gene expressions are usually tightly controlled by transcriptional factors.

  14. Regulatory T cells in kidney disease and transplantation.

    PubMed

    Hu, Min; Wang, Yuan Min; Wang, Yiping; Zhang, Geoff Y; Zheng, Guoping; Yi, Shounan; O'Connell, Philip J; Harris, David C H; Alexander, Stephen I

    2016-09-01

    Regulatory T cells (Tregs) have been shown to be important in maintaining immune homeostasis and preventing autoimmune disease, including autoimmune kidney disease. It is also likely that they play a role in limiting kidney transplant rejection and potentially in promoting transplant tolerance. Although other subsets of Tregs exist, the most potent and well-defined Tregs are the Foxp3 expressing CD4(+) Tregs derived from the thymus or generated peripherally. These CD4(+)Foxp3(+) Tregs limit autoimmune renal disease in animal models, especially chronic kidney disease, and kidney transplantation. Furthermore, other subsets of Tregs, including CD8 Tregs, may play a role in immunosuppression in kidney disease. The development and protective mechanisms of Tregs in kidney disease and kidney transplantation involve multiple mechanisms of suppression. Here we review the development and function of CD4(+)Foxp3(+) Tregs. We discuss the specific application of Tregs as a therapeutic strategy to prevent kidney disease and to limit kidney transplant rejection and detail clinical trials in this area of transplantation.

  15. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin.

    PubMed

    Wang, Yuan Min; Zhang, Geoff Yu; Wang, Yiping; Hu, Min; Wu, Huiling; Watson, Debbie; Hori, Shohei; Alexander, Ian E; Harris, David C H; Alexander, Stephen I

    2006-03-01

    Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.

  16. The Role of Regulatory T Cells in the Biology of Graft Versus Host Disease

    PubMed Central

    Beres, Amy J.; Drobyski, William R.

    2013-01-01

    Graft versus host disease (GVHD) is the major complication of allogeneic hematopoietic stem cell transplantation. GVHD is characterized by an imbalance between the effector and regulatory arms of the immune system which results in the over production of inflammatory cytokines. Moreover, there is a persistent reduction in the number of regulatory T (Treg) cells which limits the ability of the immune system to re-calibrate this proinflammatory environment. Treg cells are comprised of both natural and induced populations which have unique ontological and developmental characteristics that impact how they function within the context of immune regulation. In this review, we summarize pre-clinical data derived from experimental murine models that have examined the role of both natural and induced Treg cells in the biology of GVHD. We also review the clinical studies which have begun to employ Treg cells as a form of adoptive cellular therapy for the prevention of GVHD in human transplant recipients. PMID:23805140

  17. CD4+ regulatory T cell responses induced by T cell vaccination in patients with multiple sclerosis

    PubMed Central

    Hong, Jian; Zang, Ying C. Q.; Nie, Hong; Zhang, Jingwu Z.

    2006-01-01

    Immunization with irradiated autologous T cells (T cell vaccination) is shown to induce regulatory T cell responses that are poorly understood. In this study, CD4+ regulatory T cell lines were generated from patients with multiple sclerosis that received immunization with irradiated autologous myelin basic protein-reactive T cells. The resulting CD4+ regulatory T cell lines had marked inhibition on autologous myelin basic protein-reactive T cells and displayed two distinctive patterns distinguishable by the expression of transcription factor Foxp3 and cytokine profile. The majority of the T cell lines had high Foxp3 expression and secreted both IFN-γ and IL-10 as compared with the other pattern characteristic of low Foxp3 expression and predominant production of IL-10 but not IFN-γ. CD4+ regulatory T cell lines of both patterns expressed CD25 and reacted with activated autologous T cells but not resting T cells, irrespective of antigen specificity of the target T cells. It was evident that they recognized preferentially a synthetic peptide corresponding to residues 61–73 of the IL-2 receptor α chain. T cell vaccination correlated with increased Foxp3 expression and T cell reactivity to peptide 61–73. The findings have important implications in the understanding of the role of CD4+ regulatory T cell response induced by T cell vaccination. PMID:16547138

  18. Gene regulatory networks governing haematopoietic stem cell development and identity.

    PubMed

    Pimanda, John E; Göttgens, Berthold

    2010-01-01

    Development can be viewed as a dynamic progression through regulatory states which characterise the various cell types within a given differentiation cascade. To understand the progression of regulatory states that define the origin and subsequent development of haematopoietic stem cells, the first imperative is to understand the ontogeny of haematopoiesis. We are fortunate that the ontogeny of blood development is one of the best characterized mammalian developmental systems. However, the field is still in its infancy with regard to the reconstruction of gene regulatory networks and their interactions with cell signalling cascades that drive a mesodermal progenitor to adopt the identity of a haematopoietic stem cell and beyond. Nevertheless, a framework to dissect these networks and comprehend the logic of its circuitry does exist and although they may not as yet be available, a sense for the tools that will be required to achieve this aim is also emerging. In this review we cover the fundamentals of network architecture, methods used to reconstruct networks, current knowledge of haematopoietic and related transcriptional networks, current challenges and future outlook.

  19. Single-cell chromatin accessibility reveals principles of regulatory variation.

    PubMed

    Buenrostro, Jason D; Wu, Beijing; Litzenburger, Ulrike M; Ruff, Dave; Gonzales, Michael L; Snyder, Michael P; Chang, Howard Y; Greenleaf, William J

    2015-07-23

    Cell-to-cell variation is a universal feature of life that affects a wide range of biological phenomena, from developmental plasticity to tumour heterogeneity. Although recent advances have improved our ability to document cellular phenotypic variation, the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of mammalian DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells by assay for transposase-accessible chromatin using sequencing (ATAC-seq) integrated into a programmable microfluidics platform. Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provide insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type-specific accessibility variance across eight cell types. Targeted perturbations of cell cycle or transcription factor signalling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome compartments de novo, linking single-cell accessibility variation to three-dimensional genome organization. Single-cell analysis of DNA accessibility provides new insight into cellular variation of the 'regulome'.

  20. The role of T regulatory cells in immunopathogenesis of myasthenia gravis: implications for therapeutics.

    PubMed

    Alahgholi-Hajibehzad, Mahdi; Kasapoglu, Pinar; Jafari, Reza; Rezaei, Nima

    2015-01-01

    T regulatory cells (Tregs) are crucial for the development of self-tolerance and are the major focus in many studies interpreting the pathogenesis of myasthenia gravis (MG), an autoimmune-based disease. In normal conditions, Tregs regulate the immune responses, while impaired regulatory function of these cells can lead to autoimmunity. Recent studies have confirmed that the thymic and peripheral blood CD4(+)CD25(+) Tregs of MG are defective in functions and/or in numbers, which are associated with disease severity; approaches to correct the defects of these Tregs may be promising in the treatment of MG. This review discusses recent studies on characteristics, quantitative and qualitative changes of Tregs and possible mechanisms that are involved in the impairment of these cells in MG pathogenesis. In addition, new approaches inducing Treg generation that are currently being investigated as therapies for MG, will be discussed as well as proposed approaches for future therapies.

  1. Regulatory and pro-inflammatory phenotypes of myelin basic protein-autoreactive T cells in multiple sclerosis

    PubMed Central

    Li, Haiyan; Chen, Meiyue; Zang, Ying C. Q.; Skinner, Sheri M.; Killian, James M.; Zhang, Jingwu Z.

    2009-01-01

    MBP-specific autoreactive T cells are considered pro-inflammatory T cells and thought to play an important role in the pathogenesis of multiple sclerosis (MS). Here, we report that MBP83–99-specific T cells generated from MS patients (n = 7) were comprised of pro-inflammatory and regulatory subsets of distinct phenotypes. The pro-inflammatory phenotype was characterized by high production of IFN-γ, IL-6, IL-21 and IL-17 and low expression of FOXP3, whereas the regulatory subset expressed high levels of FOXP3 and exhibited potent regulatory functions. The regulatory subset of MBP-specific T cells appeared to expand from the CD4+CD25− T-cell pool. Their FOXP3 expression was stable, independent of the activation state and it correlated with suppressive function and inversely with the production of IFN-γ, IL-6, IL-21 and IL-17. In contrast, the phenotype and function of FOXP3low MBP-specific T cells were adaptive and dependent on IL-6. The higher frequency of FOXP3high MBP-specific T cells was observed when IL-6 was neutralized in the culture of PBMC with MBP. The study provides new evidence that MBP-specific T cells are susceptible to pro-inflammatory cytokine milieu and act as either pro-inflammatory or regulatory T cells. PMID:19822525

  2. Mast Cell Function

    PubMed Central

    da Silva, Elaine Zayas Marcelino; Jamur, Maria Célia

    2014-01-01

    Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role. PMID:25062998

  3. SHARPIN controls regulatory T cells by negatively modulating the T cell antigen receptor complex

    PubMed Central

    Park, Yoon; Jin, Hyung-seung; Lopez, Justine; Lee, Jeeho; Liao, Lujian; Elly, Chris; Liu, Yun-Cai

    2016-01-01

    SHARPIN forms a linear-ubiquitin-chain-assembly complex that promotes signaling via the transcription factor NF-κB. SHARPIN deficiency leads to progressive multi-organ inflammation and immune system malfunction, but how SHARPIN regulates T cell responses is unclear. Here we found that SHARPIN deficiency resulted in a substantial reduction in the number of and defective function of regulatory T cells (Treg cells). Transfer of SHARPIN-sufficient Treg cells into SHARPIN-deficient mice considerably alleviated their systemic inflammation. SHARPIN-deficient T cells displayed enhanced proximal signaling via the T cell antigen receptor (TCR) without an effect on the activation of NF-κB. SHARPIN conjugated with Lys63 (K63)-linked ubiquitin chains, which led to inhibition of the association of TCRζ with the signaling kinase Zap70; this affected the generation of Treg cells. Our study therefore identifies a role for SHARPIN in TCR signaling whereby it maintains immunological homeostasis and tolerance by regulating Treg cells. PMID:26829767

  4. Hepatic Stellate Cells Preferentially Induce Foxp3+ Regulatory T Cells by Production of Retinoic Acid

    PubMed Central

    Dunham, Richard M.; Thapa, Manoj; Velazquez, Victoria M.; Elrod, Elizabeth J.; Denning, Timothy L.; Pulendran, Bali

    2013-01-01

    The liver has long been described as immunosuppressive, although the mechanisms underlying this phenomenon are incompletely understood. Hepatic stellate cells (HSCs), a population of liver nonparenchymal cells, are potent producers of the regulatory T cell (Treg)–polarizing molecules TGF-β1 and all-trans retinoic acid, particularly during states of inflammation. HSCs are activated during hepatitis C virus infection and may therefore play a role in the enrichment of Tregs during infection. We hypothesized that Ag presentation in the context of HSC activation will induce naive T cells to differentiate into Foxp3+ Tregs. To test this hypothesis, we investigated the molecular interactions between murine HSCs, dendritic cells, and naive CD4+ T cells. We found that HSCs alone do not present Ag to naive CD4+ T cells, but in the presence of dendritic cells and TGF-β1, preferentially induce functional Tregs. This Treg induction was associated with retinoid metabolism by HSCs and was dependent on all-trans retinoic acid. Thus, we conclude that HSCs preferentially generate Foxp3+ Tregs and, therefore, may play a role in the tolerogenic nature of the liver. PMID:23359509

  5. Comparison of circulating and intratumoral regulatory T cells in patients with renal cell carcinoma.

    PubMed

    Asma, Gati; Amal, Gorrab; Raja, Marrakchi; Amine, Derouiche; Mohammed, Chebil; Amel, Ben Ammar Elgaaied

    2015-05-01

    The clear evidence that tumor-infiltrating lymphocytes (TIL) exists in the tumor microenvironment raises the question why renal cell carcinoma (RCC) progresses. Numerous studies support the implication of CD4(+)CD25(high) regulatory T (Treg) cells in RCC development. We aimed in this study to characterize the phenotype and function of circulating and intratumoral Treg cells of RCC patient in order to evaluate their implication in the inhibition of the local antitumor immune response. Our results demonstrate that the proportion of Treg in TIL was, in average, similar to that found in circulating CD4(+) T cells of patients or healthy donors. However, intratumoral Treg exhibit a marked different phenotype when compared with the autologous circulating Treg. A higher CD25 mean level, HLA-DR, Fas, and GITR, and a lower CD45RA expression were observed in intratumoral Treg, suggesting therefore that these cells are effector in the tumor microenvironment. Additionally, intratumoral Treg showed a higher inhibitory function on autologous CD4(+)CD25(-) T cells when compared with circulating Treg that may be explained by an overexpression of FoxP3 transcription factor. These findings suggest that intratumoral Treg could be major actors in the impairment of local antitumor immune response for RCC patients.

  6. Retinoic acid from retinal pigment epithelium induces T regulatory cells.

    PubMed

    Kawazoe, Yuko; Sugita, Sunao; Keino, Hiroshi; Yamada, Yukiko; Imai, Ayano; Horie, Shintaro; Mochizuki, Manabu

    2012-01-01

    Primary cultured retinal pigment epithelial (RPE) cells can convert T cells into T regulatory cells (Tregs) through inhibitory factor(s) including transforming growth factor β (TGFβ) in vitro. Retinoic acid (RA) enhances induction of CD4(+) Tregs in the presence of TGFβ. We investigated whether RA produced by RPE cells can promote generation of Tregs. We found that in vitro, RA-treated T cells expressed high levels of Foxp3 in the presence of recombinant TGFβ. In GeneChip analysis, cultured RPE cells constitutively expressed RA-associated molecules such as RA-binding proteins, enzymes, and receptors. RPE from normal mice, but not vitamin A-deficient mice, contained significant levels of TGFβ. RPE-induced Tregs from vitamin A-deficient mice failed to suppress activation of target T cells. Only a few Foxp3(+) T cells were found in intraocular cells from vitamin A-deficient experimental autoimmune uveitis (EAU) mice, whereas expression was higher in cells from normal EAU mice. RA receptor antagonist-pretreated or RA-binding protein-siRNA-transfected RPE cells failed to convert CD4(+) T cells into Tregs. Our data support the hypothesis that RPE cells produce RA, thereby enabling bystander T cells to be converted into Tregs through TGFβ promotion, which can then participate in the establishment of immune tolerance in the eye.

  7. A regulatory framework for shoot stem cell control integrating metabolic, transcriptional, and phytohormone signals.

    PubMed

    Schuster, Christoph; Gaillochet, Christophe; Medzihradszky, Anna; Busch, Wolfgang; Daum, Gabor; Krebs, Melanie; Kehle, Andreas; Lohmann, Jan U

    2014-02-24

    Plants continuously maintain pluripotent stem cells embedded in specialized tissues called meristems, which drive long-term growth and organogenesis. Stem cell fate in the shoot apical meristem (SAM) is controlled by the homeodomain transcription factor WUSCHEL (WUS) expressed in the niche adjacent to the stem cells. Here, we demonstrate that the bHLH transcription factor HECATE1 (HEC1) is a target of WUS and that it contributes to SAM function by promoting stem cell proliferation, while antagonizing niche cell activity. HEC1 represses the stem cell regulators WUS and CLAVATA3 (CLV3) and, like WUS, controls genes with functions in metabolism and hormone signaling. Among the targets shared by HEC1 and WUS are phytohormone response regulators, which we show to act as mobile signals in a universal feedback system. Thus, our work sheds light on the mechanisms guiding meristem function and suggests that the underlying regulatory system is far more complex than previously anticipated.

  8. The companions: regulatory T cells and gene therapy

    PubMed Central

    Eghtesad, Saman; Morel, Penelope A; Clemens, Paula R

    2009-01-01

    Undesired immunological responses to products of therapeutic gene replacement have been obstacles to successful gene therapy. Understanding such responses of the host immune system to achieve immunological tolerance to a transferred gene product is therefore crucial. In this article, we review relevant studies of immunological responses to gene replacement therapy, the role of immunological tolerance mediated by regulatory T cells in down-regulating the unwanted immune responses, and the interrelationship of the two topics. PMID:19368560

  9. Interstitial cells: regulators of smooth muscle function.

    PubMed

    Sanders, Kenton M; Ward, Sean M; Koh, Sang Don

    2014-07-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα(+) cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα(+) cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues.

  10. Interstitial Cells: Regulators of Smooth Muscle Function

    PubMed Central

    Sanders, Kenton M.; Ward, Sean M.; Koh, Sang Don

    2014-01-01

    Smooth muscles are complex tissues containing a variety of cells in addition to muscle cells. Interstitial cells of mesenchymal origin interact with and form electrical connectivity with smooth muscle cells in many organs, and these cells provide important regulatory functions. For example, in the gastrointestinal tract, interstitial cells of Cajal (ICC) and PDGFRα+ cells have been described, in detail, and represent distinct classes of cells with unique ultrastructure, molecular phenotypes, and functions. Smooth muscle cells are electrically coupled to ICC and PDGFRα+ cells, forming an integrated unit called the SIP syncytium. SIP cells express a variety of receptors and ion channels, and conductance changes in any type of SIP cell affect the excitability and responses of the syncytium. SIP cells are known to provide pacemaker activity, propagation pathways for slow waves, transduction of inputs from motor neurons, and mechanosensitivity. Loss of interstitial cells has been associated with motor disorders of the gut. Interstitial cells are also found in a variety of other smooth muscles; however, in most cases, the physiological and pathophysiological roles for these cells have not been clearly defined. This review describes structural, functional, and molecular features of interstitial cells and discusses their contributions in determining the behaviors of smooth muscle tissues. PMID:24987007

  11. USP1 deubiquitinase: cellular functions, regulatory mechanisms and emerging potential as target in cancer therapy

    PubMed Central

    2013-01-01

    Reversible protein ubiquitination is emerging as a key process for maintaining cell homeostasis, and the enzymes that participate in this process, in particular E3 ubiquitin ligases and deubiquitinases (DUBs), are increasingly being regarded as candidates for drug discovery. Human DUBs are a group of approximately 100 proteins, whose cellular functions and regulatory mechanisms remain, with some exceptions, poorly characterized. One of the best-characterized human DUBs is ubiquitin-specific protease 1 (USP1), which plays an important role in the cellular response to DNA damage. USP1 levels, localization and activity are modulated through several mechanisms, including protein-protein interactions, autocleavage/degradation and phosphorylation, ensuring that USP1 function is carried out in a properly regulated spatio-temporal manner. Importantly, USP1 expression is deregulated in certain types of human cancer, suggesting that USP1 could represent a valid target in cancer therapy. This view has gained recent support with the finding that USP1 inhibition may contribute to revert cisplatin resistance in an in vitro model of non-small cell lung cancer (NSCLC). Here, we describe the current knowledge on the cellular functions and regulatory mechanisms of USP1. We also summarize USP1 alterations found in cancer, combining data from the literature and public databases with our own data. Finally, we discuss the emerging potential of USP1 as a target, integrating published data with our novel findings on the effects of the USP1 inhibitor pimozide in combination with cisplatin in NSCLC cells. PMID:23937906

  12. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle.

    PubMed

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R

    2015-09-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes.

  13. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells.

    PubMed

    Audo, Rachel; Hua, Charlotte; Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells.

  14. Phosphatidylserine Outer Layer Translocation Is Implicated in IL-10 Secretion by Human Regulatory B Cells

    PubMed Central

    Hahne, Michael; Combe, Bernard; Morel, Jacques; Daien, Claire I.

    2017-01-01

    B cells can have a regulatory role, mainly mediated by interleukin 10 (IL-10). IL-10 producing B cells (B10 cells) cells remain to be better characterized. Annexin V binds phosphatidylserine (PS), which is externalized during apoptosis. Previous works suggested that B10 cells are apoptotic cells since they bind Annexin V. Others showed that Annexin V binding could also be expressed on viable B cells. We aimed to explore if PS exposure can be a marker of B10 cells and if PS exposure has a functional role on B cell IL-10 production in healthy subjects. We found that B10 cells were significantly more often Annexin V+ than IL-10 non-producing B cells. After CpG activation, Annexin V+ B cells differentiated more often into B10 cells than Annexin Vneg B cells. Cell death and early apoptosis were similar between Annexin V+ and Annexin Vneg B cells. PS blockage, using biotinylated AnV and glyburide, decreased B10 cell differentiation. This study showed that B10 cells have an increased PS exposure independently of any apoptotic state. B cells exposing PS differentiate more into B10 cells whereas PS blockage inhibits B10 cells generation. These results strongly suggest a link between PS exposure and B10 cells. PMID:28072868

  15. Immune regulatory effects of simvastatin on regulatory T cell-mediated tumour immune tolerance.

    PubMed

    Lee, K J; Moon, J Y; Choi, H K; Kim, H O; Hur, G Y; Jung, K H; Lee, S Y; Kim, J H; Shin, C; Shim, J J; In, K H; Yoo, S H; Kang, K H; Lee, S Y

    2010-08-01

    Statins are potent inhibitors of hydroxyl-3-methylglutaryl co-enzyme A (HMG-CoA) reductase, and have emerged as potential anti-cancer agents based on preclinical evidence. In particular, compelling evidence suggests that statins have a wide range of immunomodulatory properties. However, little is known about the role of statins in tumour immune tolerance. Tumour immune tolerance involves the production of immunosuppressive molecules, such as interleukin (IL)-10, transforming growth factor (TGF)-beta and indoleamine-2,3-dioxygenase (IDO) by tumours, which induce a regulatory T cell (T(reg)) response. In this study, we investigated the effect of simvastatin on the production of IL-10, TGF-beta and IDO production and the proliferation of T(regs) using several cancer cell lines, and Lewis lung cancer (3LL) cells-inoculated mouse tumour model. Simvastatin treatment resulted in a decrease in the number of cancer cells (3LL, A549 and NCI-H292). The production of the immune regulatory markers IL-10, TGF-beta in 3LL and NCI-H292 cells increased after treatment with simvastatin. The expression of IDO and forkhead box P3 (FoxP3) transcription factor was also increased in the presence of simvastatin. In a murine 3LL model, there were no significant differences in tumour growth rate between untreated and simvastatin-treated mice groups. Therefore, while simvastatin had an anti-proliferative effect, it also exhibited immune tolerance-promoting properties during tumour development. Thus, due to these opposing actions, simvastatin had no net effect on tumour growth.

  16. Autoimmunity: from black water fever to regulatory function.

    PubMed

    Chang, Christopher

    2014-01-01

    Autoimmunity is a field that has only been around for a little over a century. Initially, it was thought that autoimmunity could not happen, that the body would never turn on itself (i.e. "horror autotoxicus"). It was only around the First World War that autoimmunity was recognized as the pathogenesis of various diseases, including rheumatoid arthritis. The discovery of Compound E led to successful treatment of patients with autoimmune diseases, but it was not till later that the adverse effects of this class of drugs were elucidated. The "modern" age of autoimmunity began around 1945 with the description of blackwater fever, and most of the subsequent research on hemolytic anemia and the role of an autoantibody in its pathogenesis led to a description of the anti-globulin reaction. The lupus erythematous (LE) cell was recognized in the mid-1940s by Hargreaves. His research carried on into the 1960s. Rheumatoid factor was also first described in the 1940s as yet another serum factor with activity against globulin-coated sheep red blood cells. The concept of autoimmunity really gained a foothold in the 1950s, when autoimmune thyroid disease and idiopathic thrombocytopenia were first described. Much has happened since then, and our understanding of autoimmunity has evolved now to include mechanisms of apoptosis, signaling pathway derangements, and the discovery of subsets of T cells with regulatory activity. The modern day study of autoimmunity is a fascinating area of research, and full understanding of the pathogenesis of autoimmune diseases is far from being completely elucidated.

  17. Follicular regulatory T cells control humoral autoimmunity via NFAT2-regulated CXCR5 expression.

    PubMed

    Vaeth, Martin; Müller, Gerd; Stauss, Dennis; Dietz, Lena; Klein-Hessling, Stefan; Serfling, Edgar; Lipp, Martin; Berberich, Ingolf; Berberich-Siebelt, Friederike

    2014-03-10

    Maturation of high-affinity B lymphocytes is precisely controlled during the germinal center reaction. This is dependent on CD4(+)CXCR5(+) follicular helper T cells (TFH) and inhibited by CD4(+)CXCR5(+)Foxp3(+) follicular regulatory T cells (TFR). Because NFAT2 was found to be highly expressed and activated in follicular T cells, we addressed its function herein. Unexpectedly, ablation of NFAT2 in T cells caused an augmented GC reaction upon immunization. Consistently, however, TFR cells were clearly reduced in the follicular T cell population due to impaired homing to B cell follicles. This was TFR-intrinsic because only in these cells NFAT2 was essential to up-regulate CXCR5. The physiological relevance for humoral (auto-)immunity was corroborated by exacerbated lupuslike disease in the presence of NFAT2-deficient TFR cells.

  18. Quantitative functional interrelations within the cis-regulatory system of the S. purpuratus Endo16 gene.

    PubMed

    Yuh, C H; Moore, J G; Davidson, E H

    1996-12-01

    Embryonic expression of the Endo16 gene of Strongylocentrotus purpuratus is controlled by interactions with at least 13 different DNA-binding factors. These interactions occur within a cis-regulatory domain that extends about 2300 bp upstream from the transcription start site. A recent functional characterization of this domain reveals six different subregions, or cis-regulatory modules, each of which displays a specific regulatory subfunction when linked with the basal promoter and in some cases various other modules (C.-H. Yuh and E. Davidson (1996) Development 122, 1069-1082). In the present work, we analyzed quantitative time-course measurements of the CAT enzyme output of embryos bearing expression constructs controlled by various Endo16 regulatory modules, either singly or in combination. Three of these modules function positively in that, in isolation, each is capable of promoting expression in vegetal plate and adjacent cell lineages, though with different temporal profiles of activity. Models for the mode of interaction of the three positive modules with one another were tested by assuming mathematical relations that would generate, from the measured single module time courses, the experimentally observed profiles of activity obtained when the relevant modules are physically linked in the same construct. The generated and observed time functions were compared, and the differences were minimized by least squares adjustment of a scale parameter. When the modules were tested in context of the endogenous promoter region, one of the positive modules (A) was found to increase the output of the others (B and G), by a constant factor. In contrast, a solution in which the time-course data of modules A and B are multiplied by one another was required for the interrelations of the positive modules when a minimal SV40 promoter was used. One interpretation is that, in this construct, each module independently stimulates the basal transcription complex. We used a

  19. Reciprocity between Regulatory T Cells and Th17 Cells: Relevance to Polarized Immunity in Leprosy.

    PubMed

    Sadhu, Soumi; Khaitan, Binod Kumar; Joshi, Beenu; Sengupta, Utpal; Nautiyal, Arvind Kumar; Mitra, Dipendra Kumar

    2016-01-01

    T cell defect is a common feature in lepromatous or borderline lepromatous leprosy (LL/BL) patients in contrast to tuberculoid or borderline tuberculoid type (TT/BT) patients. Tuberculoid leprosy is characterized by strong Th1-type cell response with localized lesions whereas lepromatous leprosy is hallmarked by its selective Mycobacterium leprae specific T cell anergy leading to disseminated and progressive disease. FoxP3+ Regulatory T cells (Treg) which are essential for maintaining peripheral tolerance, preventing autoimmune diseases and limiting chronic inflammatory diseases also dampen proinflammatory T cells that include T helper 17 (Th17) cells. This study is aimed at evaluating the role of Treg cells in influencing other effector T cells and its relationship with the cytokine polarized state in leprosy patients. Peripheral blood mononuclear cells from of BT/TT (n = 15) and BL/LL (n = 15) patients were stimulated with M. leprae antigen (WCL) in presence of golgi transport inhibitor monensin for FACS based intracellular cytokine estimation. The frequency of Treg cells showed >5-fold increase in BL/LL in comparison to BT/TT and healthy contacts. These cells produced suppressive cytokine, IL-10 in BL/LL as opposed to BT/TT (p = 0.0200) indicating their suppressive function. The frequency of Th17 cells (CD4, CD45RO, IL-17) was, however, higher in BT/TT. Significant negative correlation (r = -0.68, P = 0.03) was also found between IL-10 of Treg cells and IL-17+ T cells in BL/LL. Blocking IL-10/TGF-β restored the IL-17+ T cells in BL/LL patients. Simultaneously, presence of Th17 related cytokines (TGF-β, IL-6, IL-17 and IL-23) decreased the number of FoxP3+ Treg cells concomitantly increasing IL-17 producing CD4+ cells in lepromatous leprosy. Higher frequency of Programmed Death-1/PD-1+ Treg cells and its ligand, PDL-1 in antigen presenting cells (APCs) was found in BL/LL patients. Inhibition of this pathway led to rescue of IFN-γ and IL-17 producing T cells

  20. Harnessing Regulatory T Cells for the Treatment of Inflammatory Bowel Disease

    PubMed Central

    Geem, Duke; Harusato, Akihito; Flannigan, Kyle

    2015-01-01

    Abstract: Regulatory CD4+ T (Treg) cells are comprised of a heterogeneous population of cells that play a vital role in suppressing inflammation and maintaining immune tolerance. The immunoregulatory function of Treg cells is especially important in the intestine where the mucosa is exposed to a diverse array of foreign antigens—including those derived from food and commensal bacteria. Treg cells are enriched in the intestinal lamina propria and provide a crucial function in promoting tolerance to enteric antigens while modulating tissue inflammation. Correspondingly, Treg cell dysfunction is associated with a breakdown in intestinal tolerance and the induction of aberrant immune responses that may contribute to the pathogenesis of inflammatory bowel disease. This review will provide a brief overview of Treg cell biology with a focus on Foxp3+ Treg and type 1 regulatory (Tr1) cells and summarize the evidence for defective Treg cells in experimental and human inflammatory bowel disease. The potential application of Treg cells as a treatment for inflammatory bowel disease will also be discussed in the context of Treg infusion therapy and the in vivo induction/expansion of intestinal Treg cells. PMID:25793328

  1. [The significance of regulatory CD4+CD25+ T cells in the pathogenesis and treatment of kidney disease].

    PubMed

    Krajewska, Magdalena; Weyde, Wacław; Klinger, Marian

    2007-01-01

    Thanks to a precisely regulated response, the immune system works to maintain homeostasis, and one of the significant mechanisms of this regulation is regulatory T cells. This paper presents the latest knowledge concerning the occurrence of natural regulatory T cells of CD4+CD25+ phenotype and their role in the pathogeneses of immune system diseases. Functional and quantitative disorders in this population of cells are found in many diseases which in their course attack the kidney, for instance mixed cryoglobulinemia, rheumatoid arthritis, Sjögren's syndrome, lupus erythematosus, and type 1 diabetes mellitus. The role of T cells and the effectory and regulatory mechanisms dependent on them in the development and progression of glomerulonephritis is presented. The role of regulatory T cells in the development and progression of chronic kidney disease is discussed as well. Qualms whether a decreased number and/or disrupted function of regulatory T cells promote the development of autoimmune diseases or whether they are secondary phenomena are settled by clinical observations in which restoration of the number of the cells prevents further tissue damage. Strengthening or blocking regulatory T-cell functions and obtaining a balance between activation and suppression in the immune system depending on current needs may become the key to the immunotherapy of many diseases. Another problem presented in this paper is the perspective of regulatory T cell therapy; however, attempts to modify their activity and change the number of cells must be carried with the greatest of care because such a procedure may result in dysregulation of the immune system.

  2. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes

    PubMed Central

    Delage, Elise; Cervantes, Diégo Cordero; Pénard, Esthel; Schmitt, Christine; Syan, Sylvie; Disanza, Andrea; Scita, Giorgio; Zurzolo, Chiara

    2016-01-01

    Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as “freeways” to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion. PMID:28008977

  3. Postnatal paucity of regulatory T cells and control of NK cell activation in experimental biliary atresia

    PubMed Central

    Miethke, Alexander G.; Saxena, Vijay; Shivakumar, Pranavkumar; Sabla, Gregg E.; Simmons, Julia; Chougnet, Claire A.

    2010-01-01

    Background & Aims Although recent studies have identified important roles for T and NK cells in the pathogenesis of biliary atresia (BA), the mechanisms by which susceptibility to bile duct injury is restricted to the neonatal period are unknown. Methods We characterised hepatic regulatory T cells (Tregs) by flow cytometry in two groups of neonatal mice challenged with rhesus rotavirus (RRV) at day 7 (no ductal injury) or day 1 of life (resulting in BA), determined the functional interaction with effector cells in co-culture assays, and examined the effect of adoptive transfer of CD4+ cells on the BA phenotype. Results While day 7 RRV infection increased hepatic Tregs (Foxp3+ CD4+ CD25+) by 10-fold within 3 days, no increase in Tregs occurred at this time point following infection on day 1. In vitro, Tregs effectively suppressed NK cell activation by hepatic dendritic cells and decreased the production of pro-inflammatory cytokines, including TNFα and IL-15, following RRV infection. In vivo, adoptive transfer of CD4+ cells prior to RRV inoculation led to increased survival, improved weight gain, decreased population of hepatic NK cells, and persistence of donor Tregs in the liver. Conclusions 1) The liver is devoid of Tregs early after perinatal RRV infection; 2) Tregs suppress DC-dependent activation of naive NK cells in vitro, and Treg-containing CD4+ cells inhibit hepatic NK cell expansion in vivo. Thus, the postnatal absence of Tregs may be a key factor that allows hepatic DCs to act unopposed in NK cell activation during the initiation of neonatal bile duct injury. PMID:20347178

  4. Functional conservation of Pax6 regulatory elements in humans and mice demonstrated with a novel transgenic reporter mouse

    PubMed Central

    Tyas, David A; Simpson, T Ian; Carr, Catherine B; Kleinjan, Dirk A; van Heyningen, Veronica; Mason, John O; Price, David J

    2006-01-01

    Background The Pax6 transcription factor is expressed during development in the eyes and in specific CNS regions, where it is essential for normal cell proliferation and differentiation. Mice lacking one or both copies of the Pax6 gene model closely humans with loss-of-function mutations in the PAX6 locus. The sequence of the Pax6/PAX6 protein is identical in mice and humans and previous studies have shown structural conservation of the gene's regulatory regions. Results We generated a transgenic mouse expressing green fluorescent protein (GFP) and neomycin resistance under the control of the entire complement of human PAX6 regulatory elements using a modified yeast artificial chromosome (YAC). Expression of GFP was studied in embryos from 9.5 days on and was confined to cells known to express Pax6. GFP expression was sufficiently strong that expressing cells could be distinguished from non-expressing cells using flow cytometry. Conclusion This work demonstrates the functional conservation of the regulatory elements controlling Pax6/PAX6 expression in mice and humans. The transgene provides an excellent tool for studying the functions of different Pax6/PAX6 regulatory elements in controlling Pax6 expression in animals that are otherwise normal. It will allow the analysis and isolation of cells in which Pax6 is activated, irrespective of the status of the endogenous locus. PMID:16674807

  5. Integrative functional genomics identifies regulatory mechanisms at coronary artery disease loci

    PubMed Central

    Miller, Clint L.; Pjanic, Milos; Wang, Ting; Nguyen, Trieu; Cohain, Ariella; Lee, Jonathan D.; Perisic, Ljubica; Hedin, Ulf; Kundu, Ramendra K.; Majmudar, Deshna; Kim, Juyong B.; Wang, Oliver; Betsholtz, Christer; Ruusalepp, Arno; Franzén, Oscar; Assimes, Themistocles L.; Montgomery, Stephen B.; Schadt, Eric E.; Björkegren, Johan L.M.; Quertermous, Thomas

    2016-01-01

    Coronary artery disease (CAD) is the leading cause of mortality and morbidity, driven by both genetic and environmental risk factors. Meta-analyses of genome-wide association studies have identified >150 loci associated with CAD and myocardial infarction susceptibility in humans. A majority of these variants reside in non-coding regions and are co-inherited with hundreds of candidate regulatory variants, presenting a challenge to elucidate their functions. Herein, we use integrative genomic, epigenomic and transcriptomic profiling of perturbed human coronary artery smooth muscle cells and tissues to begin to identify causal regulatory variation and mechanisms responsible for CAD associations. Using these genome-wide maps, we prioritize 64 candidate variants and perform allele-specific binding and expression analyses at seven top candidate loci: 9p21.3, SMAD3, PDGFD, IL6R, BMP1, CCDC97/TGFB1 and LMOD1. We validate our findings in expression quantitative trait loci cohorts, which together reveal new links between CAD associations and regulatory function in the appropriate disease context. PMID:27386823

  6. CNS accumulation of regulatory B cells is VLA-4-dependent

    PubMed Central

    Lehmann-Horn, Klaus; Sagan, Sharon A.; Winger, Ryan C.; Spencer, Collin M.; Bernard, Claude C.A.; Sobel, Raymond A.

    2016-01-01

    Objective: To investigate the role of very late antigen-4 (VLA-4) on regulatory B cells (Breg) in CNS autoimmune disease. Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in mice selectively deficient for VLA-4 on B cells (CD19cre/α4f/f) by immunization with myelin oligodendrocyte glycoprotein (MOG) peptide (p)35–55 or recombinant human (rh) MOG protein. B-cell and T-cell populations were examined by flow cytometry and immunohistochemistry. Breg were evaluated by intracellular IL-10 staining of B cells and, secondly, by coexpression of CD1d and CD5. Results: As previously reported, EAE was less severe in B-cell VLA-4-deficient vs control CD19cre mice when induced by rhMOG, a model that is B-cell-dependent and leads to efficient B-cell activation and antibody production. Paradoxically, B-cell VLA-4-deficient mice developed more severe clinical disease than control mice when EAE was induced with MOG p35-55, a B-cell-independent encephalitogen that does not efficiently activate B cells. Peripheral T-cell and humoral immune responses were not altered in B-cell VLA-4-deficient mice. In MOG p35-55-induced EAE, B-cell VLA-4 deficiency reduced CNS accumulation of B but not T cells. Breg were detected in the CNS of control mice with MOG p35-55-induced EAE. However, more severe EAE in B-cell VLA-4-deficient mice was associated with virtual absence of CNS Breg. Conclusions: Our results demonstrate that CNS accumulation of Breg is VLA-4-dependent and suggest that Breg may contribute to regulation of CNS autoimmunity in situ. These observations underscore the need to choose the appropriate encephalitogen when studying how B cells contribute to pathogenesis or regulation of CNS autoimmunity. PMID:27027096

  7. Phylogenetic conservation of the regulatory and functional properties of the Vav oncoprotein family

    SciTech Connect

    Couceiro, Jose R.; Martin-Bermudo, Maria D.; Bustelo, Xose R. . E-mail: xbustelo@usal.es

    2005-08-15

    Vav proteins are phosphorylation-dependent GDP/GTP exchange factors for Rho/Rac GTPases. Despite intense characterization of mammalian Vav proteins both biochemically and genetically, there is little information regarding the conservation of their biological properties in lower organisms. To approach this issue, we have performed a characterization of the regulatory, catalytic, and functional properties of the single Vav family member of Drosophila melanogaster. These analyses have shown that the intramolecular mechanisms controlling the enzyme activity of mammalian Vav proteins are already present in Drosophila, suggesting that such properties have been set up before the divergence between protostomes and deuterostomes during evolution. We also show that Drosophila and mammalian Vav proteins have similar catalytic specificities. As a consequence, Drosophila Vav can trigger oncogenic transformation, morphological change, and enhanced cell motility in mammalian cells. Gain-of-function studies using transgenic flies support the implication of this protein in cytoskeletal-dependent processes such as embryonic dorsal closure, myoblast fusion, tracheal development, and the migration/guidance of different cell types. These results highlight the important roles of Vav proteins in the signal transduction pathways regulating cytoskeletal dynamics. Moreover, they indicate that the foundations for the regulatory and enzymatic activities of this protein family have been set up very early during evolution.

  8. Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    PubMed Central

    Teixeira-Carvalho, Andréa; Renato Zuquim Antas, Paulo; Assis Silva Gomes, Juliana; Sathler-Avelar, Renato; Otávio Costa Rocha, Manoel; Elói-Santos, Silvana Maria; Pinho, Rosa Teixeira; Correa-Oliveira, Rodrigo; Martins-Filho, Olindo Assis

    2011-01-01

    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite

  9. Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity

    PubMed Central

    Paterson, Alison M.; Lovitch, Scott B.; Sage, Peter T.; Juneja, Vikram R.; Lee, Youjin; Trombley, Justin D.; Arancibia-Cárcamo, Carolina V.; Sobel, Raymond A.; Rudensky, Alexander Y.; Kuchroo, Vijay K.; Freeman, Gordon J.

    2015-01-01

    Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of T cell responses. Germline Ctla4 deficiency is lethal, making investigation of the function of CTLA-4 on mature T cells challenging. To elucidate the function of CTLA-4 on mature T cells, we have conditionally ablated Ctla4 in adult mice. We show that, in contrast to germline knockout mice, deletion of Ctla4 during adulthood does not precipitate systemic autoimmunity, but surprisingly confers protection from experimental autoimmune encephalomyelitis (EAE) and does not lead to increased resistance to MC38 tumors. Deletion of Ctla4 during adulthood was accompanied by activation and expansion of both conventional CD4+Foxp3− (T conv) and regulatory Foxp3+ (T reg cells) T cell subsets; however, deletion of CTLA-4 on T reg cells was necessary and sufficient for protection from EAE. CTLA-4 deleted T reg cells remained functionally suppressive. Deletion of Ctla4 on T reg cells alone or on all adult T cells led to major changes in the Ctla4 sufficient T conv cell compartment, including up-regulation of immunoinhibitory molecules IL-10, LAG-3 and PD-1, thereby providing a compensatory immunosuppressive mechanism. Collectively, our findings point to a profound role for CTLA-4 on T reg cells in limiting their peripheral expansion and activation, thereby regulating the phenotype and function of T conv cells. PMID:26371185

  10. 'Hardcore' OX40(+) immunosuppressive regulatory T cells in hepatic cirrhosis and cancer.

    PubMed

    Piconese, Silvia; Timperi, Eleonora; Barnaba, Vincenzo

    2014-01-01

    Human regulatory T cells (Tregs) comprise an array of distinct subsets displaying diverse functions in response to microenvironmental signals. Here, we review our recent findings demonstrating the preferential accumulation of uncommitted, Th1-like and OX40(-) Tregs in non-cirrhotic tissues in contrast to the presence of committed, Th1-suppressing and OX40(+) Tregs in cirrhotic and tumor contexts in human liver affected by chronic hepatitis C.

  11. Regulatory Roles of Anoctamin-6 in Human Trabecular Meshwork Cells

    PubMed Central

    Banerjee, Juni; Leung, Chi-Ting; Li, Ang; Peterson-Yantorno, Kim; Ouyang, Huan; Stamer, W. Daniel; Civan, Mortimer M.

    2017-01-01

    Purpose Trabecular meshwork (TM) cell volume is a determinant of aqueous humor outflow resistance, and thereby IOP. Regulation of TM cell volume depends on chloride ion (Cl−) release through swelling-activated channels (ICl,Swell), whose pore is formed by LRRC8 proteins. Chloride ion release through swelling-activated channels has been reported to be regulated by calcium-activated anoctamins, but this finding is controversial. Particularly uncertain has been the effect of anoctamin Ano6, reported as a Ca2+-activated Cl− (CaCC) or cation channel in other cells. The current study tested whether anoctamin activity modifies volume regulation of primary TM cell cultures and cell lines. Methods Gene expression was studied with quantitative PCR, supplemented by reverse-transcriptase PCR and Western immunoblots. Currents were measured by ruptured whole-cell patch clamping and volume by electronic cell sizing. Results Primary TM cell cultures and the TM5 and GTM3 cell lines expressed Ano6 3 to 4 orders of magnitude higher than the other anoctamin CaCCs (Ano1 and Ano2). Ionomycin increased cell Ca2+ and activated macroscopic currents conforming to CaCCs in other cells, but displayed significantly more positive mean reversal potentials (+5 to +12 mV) than those displayed by ICl,Swell (−14 to −21 mV) in the same cells. Nonselective CaCC inhibitors (tannic acid>CaCCinh−A01) and transient Ano6 knockdown strongly inhibited ionomycin-activated currents, ICl,Swell and the regulatory volume response to hyposmotic swelling. Conclusions Ionomycin activates CaCCs associated with net cation movement in TM cells. These currents, ICl,Swell, and cell volume are regulated by Ano6. The findings suggest a novel clinically-relevant approach for altering cell volume, and thereby outflow resistance, by targeting Ano6. PMID:28125837

  12. T Regulatory Cells Control Susceptibility to Invasive Pneumococcal Pneumonia in Mice

    PubMed Central

    Neill, Daniel R.; Fernandes, Vitor E.; Wisby, Laura; Haynes, Andrew R.; Ferreira, Daniela M.; Laher, Ameera; Strickland, Natalie; Gordon, Stephen B.; Denny, Paul; Kadioglu, Aras; Andrew, Peter W.

    2012-01-01

    Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design. PMID:22563306

  13. IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis.

    PubMed

    Cao, Qi; Wang, Yiping; Zheng, Dong; Sun, Yan; Wang, Ya; Lee, Vincent W S; Zheng, Guoping; Tan, Thian Kui; Ince, Jon; Alexander, Stephen I; Harris, David C H

    2010-06-01

    IL-10/TGF-beta-modified macrophages, a subset of activated macrophages, produce anti-inflammatory cytokines, suggesting that they may protect against inflammation-mediated injury. Here, macrophages modified ex vivo by IL-10/TGF-beta (IL-10/TGF-beta Mu2) significantly attenuated renal inflammation, structural injury, and functional decline in murine adriamycin nephrosis (AN). These cells deactivated effector macrophages and inhibited CD4+ T cell proliferation. IL-10/TGF-beta Mu2 expressed high levels of the regulatory co-stimulatory molecule B7-H4, induced regulatory T cells from CD4+CD25- T cells in vitro, and increased the number of regulatory T cells in lymph nodes draining the kidneys in AN. The phenotype of IL-10/TGF-beta Mu2 did not switch to that of effector macrophages in the inflamed kidney, and these cells did not promote fibrosis. Taken together, these data demonstrate that IL-10/TGF-beta-modified macrophages effectively protect against renal injury in AN and may become part of a therapeutic strategy for chronic inflammatory disease.

  14. Functional and regulatory interactions between Hox and extradenticle genes

    PubMed Central

    Azpiazu, Natalia; Morata, Ginés

    1998-01-01

    The homeobox gene extradenticle (exd) acts as a cofactor of Hox function both in Drosophila and vertebrates. It has been shown that the distribution of the Exd protein is developmentally regulated at the post-translational level; in the regions where exd is not functional Exd is present only in the cell cytoplasm, whereas it accumulates in the nuclei of cells requiring exd function. We show that the subcellular localization of Exd is regulated by the BX-C genes and that each BX-C gene can prevent or reduce nuclear translocation of Exd to different extents. In spite of this negative regulation, two BX-C genes, Ultrabithorax and abdominal-A, require exd activity for their maintenance and function. We propose that mutual interactions between Exd and BX-C proteins ensure the correct amounts of interacting molecules. As the Hoxd10 gene has the same properties as Drosophila BX-C genes, we suggest that the control mechanism of subcellular distribution of Exd found in Drosophila probably operates in other organisms as well. PMID:9436985

  15. Breaking Free of Control: How Conventional T Cells Overcome Regulatory T Cell Suppression

    PubMed Central

    Mercadante, Emily R.; Lorenz, Ulrike M.

    2016-01-01

    Conventional T (Tcon) cells are crucial in shaping the immune response, whether it is protection against a pathogen, a cytotoxic attack on tumor cells, or an unwanted response to self-antigens in the context of autoimmunity. In each of these immune settings, regulatory T cells (Tregs) can potentially exert control over the Tcon cell response, resulting in either suppression or activation of the Tcon cells. Under physiological conditions, Tcon cells are able to transiently overcome Treg-imposed restraints to mount a protective response against an infectious threat, achieving clonal expansion, differentiation, and effector function. However, evidence has accumulated in recent years to suggest that Tcon cell resistance to Treg-mediated suppression centrally contributes to the pathogenesis of autoimmune disease. Tipping the balance too far in the other direction, cancerous tumors utilize Tregs to establish an overly suppressive microenvironment, preventing antitumor Tcon cell responses. Given the wide-ranging clinical importance of the Tcon/Treg interaction, this review aims to provide a better understanding of what determines whether a Tcon cell is susceptible to Treg-mediated suppression and how perturbations to this finely tuned balance play a role in pathological conditions. Here, we focus in detail on the complex array of factors that confer Tcon cells with resistance to Treg suppression, which we have divided into two categories: (1) extracellular factor-mediated signaling and (2) intracellular signaling molecules. Further, we explore the therapeutic implications of manipulating the phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway, which is proposed to be the convergence point of signaling pathways that mediate Tcon resistance to suppression. Finally, we address important unresolved questions on the timing and location of acquisition of resistance, and the stability of the “Treg-resistant” phenotype. PMID:27242798

  16. Regulatory pathways coordinating cell cycle progression in early Xenopus development.

    PubMed

    Gotoh, Tetsuya; Villa, Linda M; Capelluto, Daniel G S; Finkielstein, Carla V

    2011-01-01

    The African clawed frog, Xenopus laevis, is used extensively as a model organism for studying both cell development and cell cycle regulation. For over 20 years now, this model organism has contributed to answering fundamental questions concerning the mechanisms that underlie cell cycle transitions--the cellular components that synthesize, modify, repair, and degrade nucleic acids and proteins, the signaling pathways that allow cells to communicate, and the regulatory pathways that lead to selective expression of subsets of genes. In addition, the remarkable simplicity of the Xenopus early cell cycle allows for tractable manipulation and dissection of the basic components driving each transition. In this organism, early cell divisions are characterized by rapid cycles alternating phases of DNA synthesis and division. The post-blastula stages incorporate gap phases, lengthening progression, and allowing more time for DNA repair. Various cyclin/Cdk complexes are differentially expressed during the early cycles with orderly progression being driven by both the combined action of cyclin synthesis and degradation and the appropriate selection of specific substrates by their Cdk components. Like other multicellular organisms, chief developmental events in early Xenopus embryogenesis coincide with profound remodeling of the cell cycle, suggesting that cell proliferation and differentiation events are linked and coordinated through crosstalk mechanisms acting on signaling pathways involving the expression of cell cycle control genes.

  17. IL-33 induces both regulatory B cells and regulatory T cells in dextran sulfate sodium-induced colitis.

    PubMed

    Zhu, Junfeng; Xu, Ying; Zhu, Chunyu; Zhao, Jian; Meng, Xinrui; Chen, Siyao; Wang, Tianqi; Li, Xue; Zhang, Li; Lu, Changlong; Liu, Hongsheng; Sun, Xun

    2017-05-01

    Interleukin (IL)-33 is a member of the IL-1 family. Serum levels of IL-33 are increased in inflammatory bowel diseases (IBD), suggesting that IL-33 is involved in the pathogenesis of IBD, although its role is not clear. In this study, we investigated the role of IL-33 in the regulation of T-helper (Th) cell and B cell responses in mesenteric lymph nodes (MLN) in mice with dextran sulfate sodium (DSS)-induced colitis. Here, we showed that IL-33-treated mice were susceptible to DSS-induced colitis as compared with PBS-treated mice. The production of spontaneous inflammatory cytokines production by macrophages or dendritic cells (DC) in MLN significantly increased, and the responses of Th2, regulatory T cells (Treg) and regulatory B cells (Breg) were markedly upregulated, while Th1 responses were significantly downregulated in MLN of IL-33-treated mice with DSS-induced colitis. Our results demonstrate that IL-33 contributes to the pathogenesis of DSS-induced colitis in mice by promoting Th2 responses, but suppressing Th1 responses, in MLN. Moreover, IL-33 treatment increased Breg and Treg responses in MLN in mice with DSS-induced colitis. Therefore, modulation of IL-33/ST2 signaling is implicated as a novel biological therapy for inflammatory diseases associated with Th1 responses.

  18. An EAR-Dependent Regulatory Module Promotes Male Germ Cell Division and Sperm Fertility in Arabidopsis.

    PubMed

    Borg, Michael; Rutley, Nicholas; Kagale, Sateesh; Hamamura, Yuki; Gherghinoiu, Mihai; Kumar, Sanjeev; Sari, Ugur; Esparza-Franco, Manuel A; Sakamoto, Wataru; Rozwadowski, Kevin; Higashiyama, Tetsuya; Twell, David

    2014-05-01

    The production of the sperm cells in angiosperms requires coordination of cell division and cell differentiation. In Arabidopsis thaliana, the germline-specific MYB protein DUO1 integrates these processes, but the regulatory hierarchy in which DUO1 functions is unknown. Here, we identify an essential role for two germline-specific DUO1 target genes, DAZ1 and DAZ2, which encode EAR motif-containing C2H2-type zinc finger proteins. We show that DAZ1/DAZ2 are required for germ cell division and for the proper accumulation of mitotic cyclins. Importantly, DAZ1/DAZ2 are sufficient to promote G2- to M-phase transition and germ cell division in the absence of DUO1. DAZ1/DAZ2 are also required for DUO1-dependent cell differentiation and are essential for gamete fusion at fertilization. We demonstrate that the two EAR motifs in DAZ1/DAZ2 mediate their function in the male germline and are required for transcriptional repression and for physical interaction with the corepressor TOPLESS. Our findings uncover an essential module in a regulatory hierarchy that drives mitotic transition in male germ cells and implicates gene repression pathways in sperm cell formation and fertility.

  19. Design principles of regulatory networks: searching for the molecular algorithms of the cell.

    PubMed

    Lim, Wendell A; Lee, Connie M; Tang, Chao

    2013-01-24

    A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks.

  20. Design Principles of Regulatory Networks: Searching for the Molecular Algorithms of the Cell

    PubMed Central

    Lim, Wendell A.; Lee, Connie M.; Tang, Chao

    2013-01-01

    A challenge in biology is to understand how complex molecular networks in the cell execute sophisticated regulatory functions. Here we explore the idea that there are common and general principles that link network structures to biological functions, principles that constrain the design solutions that evolution can converge upon for accomplishing a given cellular task. We describe approaches for classifying networks based on abstract architectures and functions, rather than on the specific molecular components of the networks. For any common regulatory task, can we define the space of all possible molecular solutions? Such inverse approaches might ultimately allow the assembly of a design table of core molecular algorithms that could serve as a guide for building synthetic networks and modulating disease networks. PMID:23352241

  1. Validation of skeletal muscle cis-regulatory module predictions reveals nucleotide composition bias in functional enhancers.

    PubMed

    Kwon, Andrew T; Chou, Alice Yi; Arenillas, David J; Wasserman, Wyeth W

    2011-12-01

    We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions.

  2. What are the molecules involved in regulatory T-cells induction by dendritic cells in cancer?

    PubMed

    Ramos, Rodrigo Nalio; de Moraes, Cristiano Jacob; Zelante, Bruna; Barbuto, José Alexandre M

    2013-01-01

    Dendritic cells (DCs) are essential for the maintenance of homeostasis in the organism, and they do that by modulating lymphocyte priming, expansion, and response patterns according to signals they receive from the environment. The induction of suppressive lymphocytes by DCs is essential to hinder the development of autoimmune diseases but can be reverted against homeostasis when in the context of neoplasia. In this setting, the induction of suppressive or regulatory T cells contributes to the establishment of a state of tolerance towards the tumor, allowing it to grow unchecked by an otherwise functional immune system. Besides affecting its local environment, tumor also has been described as potent sources of anti-inflammatory/suppressive factors, which may act systemically, generating defects in the differentiation and maturation of immune cells, far beyond the immediate vicinity of the tumor mass. Cytokines, as IL-10 and TGF-beta, as well as cell surface molecules like PD-L1 and ICOS seem to be significantly involved in the redirection of DCs towards tolerance induction, and recent data suggest that tumor cells may, indeed, modulate distinct DCs subpopulations through the involvement of these molecules. It is to be expected that the identification of such molecules should provide molecular targets for more effective immunotherapeutic approaches to cancer.

  3. Dendritic Cells in the Periphery Control Antigen-Specific Natural and Induced Regulatory T Cells

    PubMed Central

    Yamazaki, Sayuri; Morita, Akimichi

    2013-01-01

    Dendritic cells (DCs) are specialized antigen-presenting cells that regulate both immunity and tolerance. DCs in the periphery play a key role in expanding naturally occurring Foxp3+ CD25+ CD4+ regulatory T cells (Natural T-regs) and inducing Foxp3 expression (Induced T-regs) in Foxp3− CD4+ T cells. DCs are phenotypically and functionally heterogeneous, and further classified into several subsets depending on distinct marker expression and their location. Recent findings indicate the presence of specialized DC subsets that act to expand Natural T-regs or induce Foxp3+ T-regs from Foxp3− CD4+ T cells. For example, two major subsets of DCs in lymphoid organs act differentially in inducing Foxp3+ T-regs from Foxp3− cells or expanding Natural T-regs with model-antigen delivery by anti-DC subset monoclonal antibodies in vivo. Furthermore, DCs expressing CD103 in the intestine induce Foxp3+ T-regs from Foxp3− CD4+ T cells with endogenous TGF-β and retinoic acid. In addition, antigen-presenting DCs have a capacity to generate Foxp3+ T-regs in the oral cavity where many antigens and commensals exist, similar to intestine and skin. In skin and skin-draining lymph nodes, at least six DC subsets have been identified, suggesting a complex DC-T-reg network. Here, we will review the specific activity of DCs in expanding Natural T-regs and inducing Foxp3+ T-regs from Foxp3− precursors, and further discuss the critical function of DCs in maintaining tolerance at various locations including skin and oral cavity. PMID:23801989

  4. Graded Foxo1 Activity in Regulatory T Cells Differentiates Tumor Immunity from Autoimmunity

    PubMed Central

    Luo, Chong T.; Liao, Will; Dadi, Saida; Toure, Ahmed; Li, Ming O.

    2016-01-01

    Summary Regulatory T (Treg) cells expressing the transcription factor Foxp3 have a pivotal role in maintaining immunological self-tolerance1-5; yet, excessive Treg cell activities suppress anti-tumor immune responses6-8. Compared to resting phenotype Treg (rTreg) cells in the secondary lymphoid organs, Treg cells in non-lymphoid tissues including solid tumors exhibit an activated Treg (aTreg) cell phenotype9-11. However, aTreg cell function and whether its generation can be manipulated to promote tumor immunity without evoking autoimmunity are largely unexplored. Here we show that the transcription factor Foxo1, previously demonstrated to promote Treg cell suppression of lymphoproliferative diseases12,13, has an unexpected function in inhibiting aTreg cell-mediated immune tolerance. We found that aTreg cells turned over at a slower rate than rTreg cells, but were not locally maintained in tissues. Transcriptome analysis revealed that aTreg cell differentiation was associated with repression of Foxo1-dependent gene transcription, concomitant with reduced Foxo1 expression and enhanced Foxo1 phosphorylation at sites of the Akt kinase. Treg cell-specific expression of an Akt-insensitive Foxo1 mutant prevented downregulation of lymphoid organ homing molecules, and depleted aTreg cells, causing CD8+ T cell-mediated autoimmune diseases. Compared to Treg cells from healthy tissues, tumor-infiltrating Treg cells downregulated Foxo1 target genes more substantially. Expression of the Foxo1 mutant at a lower dose was sufficient to deplete tumor-associated Treg cells, activate effector CD8+ T cells, and inhibit tumor growth without inflicting autoimmunity. Thus, Foxo1 inactivation is essential for the generation of aTreg cells that have a crucial function in suppressing CD8+ T cell responses; and the Foxo signaling pathway in Treg cells can be titrated to preferentially break tumor immune tolerance. PMID:26789248

  5. T regulatory cells distinguish two types of primary hypophysitis.

    PubMed

    Mirocha, S; Elagin, R B; Salamat, S; Jaume, J C

    2009-03-01

    Numerous cases of primary hypophysitis have been described over the past 25 years with, however, little insight into the cause(s) of this disease. In order to guide treatment, a better understanding of the pathogenesis is needed. We studied the pathogenesis of primary hypophysitis by analysing systematically the immune response at the pituitary tissue level of consecutive cases of 'lymphocytic' hypophysitis who underwent pituitary biopsy. In order to investigate further the pathogenesis of their diseases we characterized two cases at clinical, cellular and molecular levels. We show here, for the first time, that lymphocytic hypophysitis probably encompasses at least two separate entities. One entity, in agreement with the classical description of lymphocytic hypophysitis, demonstrates an autoimmune process with T helper 17 cell dominance and lack of T regulatory cells. The other entity represents a process in which T regulatory cells seem to control the immune response, which may not be self- but foreign-targeted. Our data suggest that it may be necessary to biopsy suspected primary hypophysitis and to analyse pituitary tissue with immune markers to guide treatment. Based on our results, hypophysitis driven by an immune homeostatic process should not be treated with immunosuppression, while autoimmune-defined hypophysitis may benefit from it. We show here for the first time two different pathogenic processes classified under one disease type and how to distinguish them. Because of our findings, changes in current diagnostic and therapeutic approaches may need to be considered.

  6. Short-Circuiting Gene Regulatory Networks: Origins of B Cell Lymphoma

    PubMed Central

    Koues, Olivia I.; Oltz, Eugene M.; Payton, Jacqueline E.

    2015-01-01

    B cell lymphomas (BCL) are characterized by widespread deregulation of gene expression when compared with their normal B cell counterparts. Recent epigenomic studies defined cis-regulatory elements (REs) whose activities are altered in BCL to drive some of these pathogenic expression changes. During transformation, multiple mechanisms are employed to alter RE activities, including perturbations in the function of chromatin modifiers, which can lead to revision of the B cell epigenome. Inherited and somatic variants also alter RE function via disruption of TF binding. Aberrant expression of non-coding RNAs deregulates genes involved in B cell differentiation via direct repression and post-transcriptional targeting. These discoveries have established epigenetic etiologies for B cell transformation that are being exploited by novel therapeutic approaches. PMID:26604030

  7. T Cell Receptor CDR3 Sequence but Not Recognition Characteristics Distinguish Autoreactive Effector and Foxp3+ Regulatory T Cells

    PubMed Central

    Liu, Xin; Nguyen, Phuong; Liu, Wei; Cheng, Cheng; Steeves, Meredith; Obenauer, John C.; Ma, Jing; Geiger, Terrence L.

    2010-01-01

    SUMMARY The source, specificity, and plasticity of the forkhead box transcription factor 3 (Foxp3)+ regulatory T (Treg) and conventional T (Tconv) cell populations active at sites of autoimmune pathology are not well characterized. To evaluate this, we combined global repertoire analyses and functional assessments of isolated T cell receptors (TCR) from TCRα retrogenic mice with autoimmune encephalomyelitis. Treg and Tconv cell TCR repertoires were distinct, and autoantigen-specific Treg and Tconv cells were enriched in diseased tissue. Autoantigen sensitivity and fine specificity of these cells intersected, implying that differences in responsiveness were not responsible for lineage specification. Notably, autoreactive Treg and Tconv cells could be fully distinguished by an acidic versus aliphatic variation at a single TCR CDR3 residue. Our results imply that ontogenically distinct Treg and Tconv cell repertoires with convergent specificities for autoantigen respond during autoimmunity and argue against more than limited plasticity between Treg and Tconv cells during autoimmune inflammation. PMID:20005134

  8. An arabidopsis gene regulatory network for secondary cell wall synthesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The plant cell wall is an important factor for determining cell shape, function and response to the environment. Secondary cell walls, such as those found in xylem, are composed of cellulose, hemicelluloses and lignin and account for the bulk of plant biomass. The coordination between transcriptiona...

  9. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    SciTech Connect

    Palmeira, Carlos M. Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-12-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes.

  10. Induced and Natural Regulatory T Cells in the Development of Inflammatory Bowel Disease

    PubMed Central

    Mayne, Christopher G.; Williams, Calvin B.

    2013-01-01

    The mucosal immune system mediates contact between the host, and the trillions of microbes that symbiotically colonize the gastrointestinal tract. Failure to tolerate the antigens within this “extended self” can result in inflammatory bowel disease (IBD). Within the adaptive immune system, the most significant cells modulating this interaction are Foxp3+ regulatory T (Treg) cells. Treg cells can be divided into two primary subsets: “natural” Treg (nTreg) cells, and “adaptive” or “induced” Treg (iTreg). Recent research suggests that these subsets serve to play both independent and synergistic roles in mucosal tolerance. Studies from both mouse models and human patients suggest defects in Treg cells can play distinct causative roles in IBD. Numerous genetic, microbial, nutritional, and environmental factors that associate with IBD may also affect Treg cells. In this review we summarize the development and function of Treg cells, and how their regulatory mechanisms may fail, leading to a loss of mucosal tolerance. We discuss both animal models and studies of IBD patients suggesting Treg cell involvement in IBD, and consider how Treg cells may be used in future therapies. PMID:23656897

  11. Interleukin-4 Inhibits Regulatory T Cell Differentiation through Regulating CD103+ Dendritic Cells

    PubMed Central

    Tu, Lei; Chen, Jie; Zhang, Hongwei; Duan, Lihua

    2017-01-01

    CD103+ dendritic cells (DCs) have been shown to play a crucial role in the pathogenesis of inflammatory bowel diseases (IBDs) through educating regulatory T (Treg) cells differentiation. However, the mechanism of CD103+ DCs subsets differentiation remains elusive. Interleukin (IL)-4 is a pleiotropic cytokine that is upregulated in certain types of inflammation, including IBDs and especially ulcerative colitis. However, the precise role of IL-4 in the differentiation of CD103+ DCs subpopulation remains unknown. In this study, we observed a repressive role of IL-4 on the CD103+ DCs differentiation in both mouse and human. High-dose IL-4 inhibited the CD103+ DC differentiation. In comparison to CD103− DCs, CD103+ DCs expressed high levels of the co-stimulatory molecules and indoleamine 2,3-dioxygenase (IDO). Interestingly, IL-4 diminished IDO expression on DCs in a dose-dependent manner. Besides, high-dose IL-4-induced bone marrow-derived DCs, and monocyte-derived DCs revealed mature DCs profiles, characterized by increased co-stimulatory molecules and decreased pinocytotic function. Furthermore, DCs generated under low concentrations of IL-4 favored Treg cells differentiation, which depend on IDO produced by CD103+ DCs. Consistently, IL-4 also reduced the frequency of CD103+ DC in vivo. Thus, we here demonstrated that the cytokine IL-4 involved in certain types of inflammatory diseases by orchestrating the functional phenotype of CD103+ DCs subsets. PMID:28316599

  12. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection

    PubMed Central

    Penaloza-MacMaster, Pablo; Kamphorst, Alice O.; Wieland, Andreas; Araki, Koichi; Iyer, Smita S.; West, Erin E.; O’Mara, Leigh; Yang, Shu; Konieczny, Bogumila T.; Sharpe, Arlene H.; Freeman, Gordon J.

    2014-01-01

    Regulatory T (T reg) cells are critical for preventing autoimmunity mediated by self-reactive T cells, but their role in modulating immune responses during chronic viral infection is not well defined. To address this question and to investigate a role for T reg cells in exhaustion of virus-specific CD8 T cells, we depleted T reg cells in mice chronically infected with lymphocytic choriomeningitis virus (LCMV). T reg cell ablation resulted in 10–100-fold expansion of functional LCMV-specific CD8 T cells. Rescue of exhausted CD8 T cells was dependent on cognate antigen, B7 costimulation, and conventional CD4 T cells. Despite the striking recovery of LCMV-specific CD8 T cell responses, T reg cell depletion failed to diminish viral load. Interestingly, T reg cell ablation triggered up-regulation of the molecule programmed cell death ligand-1 (PD-L1), which upon binding PD-1 on T cells delivers inhibitory signals. Increased PD-L1 expression was observed especially on LCMV-infected cells, and combining T reg cell depletion with PD-L1 blockade resulted in a significant reduction in viral titers, which was more pronounced than that upon PD-L1 blockade alone. These results suggest that T reg cells effectively maintain CD8 T cell exhaustion, but blockade of the PD-1 inhibitory pathway is critical for elimination of infected cells. PMID:25113973

  13. Glioma-Derived ADAM10 Induces Regulatory B Cells to Suppress CD8+ T Cells

    PubMed Central

    Li, Wen-sheng; Luo, Lun; Huang, Zhen-chao; Guo, Ying

    2014-01-01

    CD8+ T cells play an important role in the anti-tumor activities of the body. The dysfunction of CD8+ T cells in glioma is unclear. This study aims to elucidate the glioma cell-derived ADAM10 (A Disintegrin and metalloproteinase domain-containing protein 10) in the suppression of CD8+ effector T cells by the induction of regulatory B cells. In this study, glioma cells were isolated from surgically removed glioma tissue and stimulated by Phorbol myristate acetage (PMA) in the culture. The levels of ADAM10 in the culture were determined by enzyme-linked immunosorbent assay. Immune cells were assessed by flow cytometry. The results showed that the isolated glioma cells express ADAM10, which was markedly up regulated after stimulated with PMA. The glioma-derived ADAM10 induced activated B cells to differentiate into regulatory B cells, the later suppressed CD8+ T cell proliferation as well as the induced regulatory T cells, which also showed the immune suppressor effect on CD8+ effector T cell proliferation. In conclusion, glioma cells produce ADAM10 to induce Bregs; the latter suppresses CD8+ T cells and induces Tregs. PMID:25127032

  14. Human Gamma Delta T Regulatory Cells in Cancer: Fact or Fiction?

    PubMed Central

    Wesch, Daniela; Peters, Christian; Siegers, Gabrielle Melanie

    2014-01-01

    While gamma delta T cell (γδTc) anticancer immunotherapies are being developed, recent reports suggest a regulatory role for γδTc tumor-infiltrating lymphocytes. This mini-review surveys available evidence, determines strengths and weaknesses thereof and suggest directions for further exploration. We focus on human γδTc, as mouse and human γδTc repertoires differ. Regulatory γδTc are defined and compared to conventional Tregs and their roles in health and disease (focusing in on cancer) are discussed. We contrast the suggested regulatory roles for γδTc in breast and colorectal cancer with their cytotoxic capabilities in other malignancies, emphasizing the context dependence of γδTc functional plasticity. Since γδTc can be induced to exhibit regulatory properties (in some cases reversible), we carefully scrutinize experimental procedures in published reports. As γδTc garner increasing interest for their therapeutic potential, it is critical that we appreciate the full extent of their role(s) and interactions with other cell types in both the circulation and the tumor microenvironment. A comprehensive understanding will enable manipulation of γδTc to improve anti-tumor efficacy and patient outcomes. PMID:25477885

  15. Stem cell-derived tissue-associated regulatory T cells ameliorate the development of autoimmunity

    PubMed Central

    Haque, Mohammad; Song, Jianyong; Fino, Kristin; Sandhu, Praneet; Song, Xinmeng; Lei, Fengyang; Zheng, Songguo; Ni, Bing; Fang, Deyu; Song, Jianxun

    2016-01-01

    Pluripotent stem cells (PSCs) have the potential to produce almost all of the cells in the body, including regulatory T cells (Tregs). However, the exact conditions required for the development of antigen (Ag)-specific Tregs from PSCs (i.e., PSC-Tregs) are not well delineated. Ag-specific PSC-Tregs can be tissue/organ-associated and migrate to local inflamed tissues/organs to suppress the autoimmune response after adoptive transfer, thereby avoiding potential overall immunosuppression from non-specific Tregs. In this study, we developed a new approach to generate functional Ag-specific Tregs from induced PSCs (iPSCs), i.e., iPSC-Tregs, which had the ability to generate an Ag-specific immunosuppressive response in a murine model of arthritis. We retrovirally transduced murine iPSCs with a construct containing genes of Ag-specific T cell receptor (TCR) and the transcriptional factor FoxP3. We differentiated the iPSCs into Ag-specific iPSC-Tregs using in vitro or in vivo Notch signaling, and demonstrated that adoptive transfer of such Tregs dramatically suppressed autoimmunity in a well-established Ag-induced arthritis model, including the inflammation, joint destruction, cartilage prostaglandin depletion, osteoclast activity, and Th17 production. Our results indicate that PSCs can be used to develop Ag-specific Tregs, which have a therapeutic potential for Treg-based therapies of autoimmune disorders. PMID:26846186

  16. Mechanisms by Which B Cells and Regulatory T Cells Influence Development of Murine Organ-Specific Autoimmune Diseases

    PubMed Central

    Ellis, Jason S.; Braley-Mullen, Helen

    2017-01-01

    Experiments with B cell-deficient (B−/−) mice indicate that a number of autoimmune diseases require B cells in addition to T cells for their development. Using B−/− Non-obese diabetic (NOD) and NOD.H-2h4 mice, we demonstrated that development of spontaneous autoimmune thyroiditis (SAT), Sjogren’s syndrome and diabetes do not develop in B−/− mice, whereas all three diseases develop in B cell-positive wild-type (WT) mice. B cells are required early in life, since reconstitution of adult mice with B cells or autoantibodies did not restore their ability to develop disease. B cells function as important antigen presenting cells (APC) to initiate activation of autoreactive CD4+ effector T cells. If B cells are absent or greatly reduced in number, other APC will present the antigen, such that Treg are preferentially activated and effector T cells are not activated. In these situations, B−/− or B cell-depleted mice develop the autoimmune disease when T regulatory cells (Treg) are transiently depleted. This review focuses on how B cells influence Treg activation and function, and briefly considers factors that influence the effectiveness of B cell depletion for treatment of autoimmune diseases. PMID:28134752

  17. An arthropod cis-regulatory element functioning in sensory organ precursor development dates back to the Cambrian

    PubMed Central

    2010-01-01

    Background An increasing number of publications demonstrate conservation of function of cis-regulatory elements without sequence similarity. In invertebrates such functional conservation has only been shown for closely related species. Here we demonstrate the existence of an ancient arthropod regulatory element that functions during the selection of neural precursors. The activity of genes of the achaete-scute (ac-sc) family endows cells with neural potential. An essential, conserved characteristic of proneural genes is their ability to restrict their own activity to single or a small number of progenitor cells from their initially broad domains of expression. This is achieved through a process called lateral inhibition. A regulatory element, the sensory organ precursor enhancer (SOPE), is required for this process. First identified in Drosophila, the SOPE contains discrete binding sites for four regulatory factors. The SOPE of the Drosophila asense gene is situated in the 5' UTR. Results Through a manual comparison of consensus binding site sequences we have been able to identify a SOPE in UTR sequences of asense-like genes in species belonging to all four arthropod groups (Crustacea, Myriapoda, Chelicerata and Insecta). The SOPEs of the spider Cupiennius salei and the insect Tribolium castaneum are shown to be functional in transgenic Drosophila. This would place the origin of this regulatory sequence as far back as the last common ancestor of the Arthropoda, that is, in the Cambrian, 550 million years ago. Conclusions The SOPE is not detectable by inter-specific sequence comparison, raising the possibility that other ancient regulatory modules in invertebrates might have escaped detection. PMID:20868489

  18. Collagen scaffold microenvironments modulate cell lineage commitment for differentiation of bone marrow cells into regulatory dendritic cells

    PubMed Central

    Fang, Yongxiang; Wang, Bin; Zhao, Yannan; Xiao, Zhifeng; Li, Jing; Cui, Yi; Han, Sufang; Wei, Jianshu; Chen, Bing; Han, Jin; Meng, Qingyuan; Hou, Xianglin; Luo, Jianxun; Dai, Jianwu; Jing, Zhizhong

    2017-01-01

    The microenvironment plays a pivotal role for cell survival and functional regulation, and directs the cell fate determination. The biological functions of DCs have been extensively investigated to date. However, the influences of the microenvironment on the differentiation of bone marrow cells (BMCs) into dendritic cells (DCs) are not well defined. Here, we established a 3D collagen scaffold microenvironment to investigate whether such 3D collagen scaffolds could provide a favourable niche for BMCs to differentiate into specialised DCs. We found that BMCs embedded in the 3D collagen scaffold differentiated into a distinct subset of DC, exhibiting high expression of CD11b and low expression of CD11c, co-stimulator (CD40, CD80, CD83, and CD86) and MHC-II molecules compared to those grown in 2D culture. DCs cultured in the 3D collagen scaffold possessed weak antigen uptake ability and inhibited T-cell proliferation in vitro; in addition, they exhibited potent immunoregulatory function to alleviate allo-delay type hypersensitivity when transferred in vivo. Thus, DCs differentiated in the 3D collagen scaffold were defined as regulatory DCs, indicating that collagen scaffold microenvironments probably play an important role in modulating the lineage commitment of DCs and therefore might be applied as a promising tool for generation of specialised DCs. PMID:28169322

  19. Regulatory T cells in vitiligo: Implications for pathogenesis and therapeutics.

    PubMed

    Dwivedi, Mitesh; Kemp, E Helen; Laddha, Naresh C; Mansuri, Mohmmad Shoab; Weetman, Anthony P; Begum, Rasheedunnisa

    2015-01-01

    Vitiligo is a hypomelanotic autoimmune skin disease arising from a breakdown in immunological self-tolerance, which leads to aberrant immune responses against melanocytes. Regulatory T cells (Tregs) are crucial to the development of self-tolerance and so are major foci in the study of autoimmune pathogenesis of vitiligo. This review will summarise recent findings concerning the role of Tregs in the pathogenesis of vitiligo. In addition, as antigen-specific Tregs are a potential route for the reinstatement of immune tolerance, new strategies that expand or induce de novo generation of Tregs and which are currently being investigated as therapies for other autoimmune diseases, will be discussed. These approaches will highlight the opportunities for Treg cell-based therapeutics in vitiligo.

  20. Special regulatory T cell review: The suppression problem!

    PubMed

    Waldmann, Herman

    2008-01-01

    The concept of T-cell mediated suppression evolved more than 30 years ago. At that time it spawned many claims that have not stood the test of time. The rediscovery of suppression phenomena and regulatory T cells over the past 15 years created schizophrenic responses amongst immunologists. Some claimed that the new proponents of suppression were, once again, bringing immunology into disrepute, whilst others have embraced the field with great enthusiasm and novel approaches to clarification. Without faithful repetition of the "old" experiments, it is difficult to establish what was right and what was wrong. Nevertheless, immunologists must now accept that a good number of the old claims were overstated, and reflected poor scientific discipline. "I speak not to disprove what Brutus spoke, But here I am to speak what I do know" Shakespeare. Julius Caesar Act 3, Scene 2.

  1. Special regulatory T cell review: The suppression problem!

    PubMed Central

    Waldmann, Herman

    2008-01-01

    The concept of T-cell mediated suppression evolved more than 30 years ago. At that time it spawned many claims that have not stood the test of time. The rediscovery of suppression phenomena and regulatory T cells over the past 15 years created schizophrenic responses amongst immunologists. Some claimed that the new proponents of suppression were, once again, bringing immunology into disrepute, whilst others have embraced the field with great enthusiasm and novel approaches to clarification. Without faithful repetition of the “old” experiments, it is difficult to establish what was right and what was wrong. Nevertheless, immunologists must now accept that a good number of the old claims were overstated, and reflected poor scientific discipline. “I speak not to disprove what Brutus spoke, But here I am to speak what I do know” Shakespeare. Julius Caesar Act 3, Scene 2. PMID:18154612

  2. Rapid regulatory control of plant cell expansion and wall relaxation

    SciTech Connect

    Cosgrove, D.J.

    1991-08-14

    The aim of this project is to elucidate the biophysical and cellular mechanisms that control plant cell expansion. At present we are attempting to characterize the kinetics of the system(s) responsible for regulatory and compensatory behavior of growing cells and tissues. This work is significantly because it indicates that biochemical loosening and biophysical stress relaxation of the wall are part of a feedback loop controlling growth. This report briefly summarizes the efforts and results of the past 12 months. In large part, we have been trying to analyze the nature of growth rate noise,'' i.e. spontaneous and often erratic variations in growth rate. We are obtaining evidence that such noise'' is not random, but rather reveals an underlying growth mechanism with complex dynamics.

  3. The Role of Different Subsets of Regulatory T Cells in Immunopathogenesis of Rheumatoid Arthritis

    PubMed Central

    Gol-Ara, Maryam; Jadidi-Niaragh, Farhad; Sadria, Reza; Azizi, Gholamreza; Mirshafiey, Abbas

    2012-01-01

    Rheumatoid arthritis (RA) is a common autoimmune disease and a systemic inflammatory disease which is characterized by chronic joint inflammation and variable degrees of bone and cartilage erosion and hyperplasia of synovial tissues. Considering the role of autoreactive T cells (particularly Th1 and Th17 cells) in pathophysiology of RA, it might be assumed that the regulatory T cells (Tregs) will be able to control the initiation and progression of disease. The frequency, function, and properties of various subsets of Tregs including natural Tregs (nTregs), IL-10-producing type 1 Tregs (Tr1 cells), TGF-β-producing Th3 cells, CD8+ Tregs, and NKT regulatory cells have been investigated in various studies associated with RA and collagen-induced arthritis (CIA) as experimental model of this disease. In this paper, we intend to submit the comprehensive information about the immunobiology of various subsets of Tregs and their roles and function in immunopathophysiology of RA and its animal model, CIA. PMID:23133752

  4. Enhancer turnover and conserved regulatory function in vertebrate evolution

    PubMed Central

    Domené, Sabina; Bumaschny, Viviana F.; de Souza, Flávio S. J.; Franchini, Lucía F.; Nasif, Sofía; Low, Malcolm J.; Rubinstein, Marcelo

    2013-01-01

    Mutations in regulatory regions including enhancers are an important source of variation and innovation during evolution. Enhancers can evolve by changes in the sequence, arrangement and repertoire of transcription factor binding sites, but whole enhancers can also be lost or gained in certain lineages in a process of turnover. The proopiomelanocortin gene (Pomc), which encodes a prohormone, is expressed in the pituitary and hypothalamus of all jawed vertebrates. We have previously described that hypothalamic Pomc expression in mammals is controlled by two enhancers—nPE1 and nPE2—that are derived from transposable elements and that presumably replaced the ancestral neuronal Pomc regulatory regions. Here, we show that nPE1 and nPE2, even though they are mammalian novelties with no homologous counterpart in other vertebrates, nevertheless can drive gene expression specifically to POMC neurons in the hypothalamus of larval and adult transgenic zebrafish. This indicates that when neuronal Pomc enhancers originated de novo during early mammalian evolution, the newly created cis- and trans-codes were similar to the ancestral ones. We also identify the neuronal regulatory region of zebrafish pomca and confirm that it is not homologous to the mammalian enhancers. Our work sheds light on the process of gene regulatory evolution by showing how a locus can undergo enhancer turnover and nevertheless maintain the ancestral transcriptional output. PMID:24218639

  5. Regulatory T cells in patients with Whipple's disease.

    PubMed

    Schinnerling, Katina; Moos, Verena; Geelhaar, Anika; Allers, Kristina; Loddenkemper, Christoph; Friebel, Julian; Conrad, Kristina; Kühl, Anja A; Erben, Ulrike; Schneider, Thomas

    2011-10-15

    Classical Whipple's disease (CWD) is caused by chronic infection with Tropheryma whipplei that seems to be associated with an underlying immune defect. The pathognomonic hallmark of CWD is a massive infiltration of the duodenal mucosa with T. whipplei-infected macrophages that disperse systemically to many other organ systems. An alleviated inflammatory reaction and the absence of T. whipplei-specific Th1 reactivity support persistence and systemic spread of the pathogen. In this article, we hypothesized that regulatory T cells (T(reg)) are involved in immunomodulation in CWD, and we asked for the distribution, activation, and regulatory capacity of T(reg) in CWD patients. Whereas in the lamina propria of CWD patients before treatment numbers of T(reg) were increased, percentages in the peripheral blood were similar in CWD patients and healthy controls. However, peripheral T(reg) of CWD patients were more activated than those of controls. Elevated secretion of IL-10 and TGF-β in the duodenal mucosa of CWD patients indicated locally enhanced T(reg) activity. Enhanced CD95 expression on peripheral memory CD4(+) T cells combined with reduced expression of IFN-γ and IL-17A upon polyclonal stimulation by CD4(+) cells from untreated CWD patients further hinted to T(reg) activity-related exhaustion of effector CD4(+) T cells. In conclusion, increased numbers of T(reg) can be detected within the duodenal mucosa in untreated CWD, where huge numbers of T. whipplei-infected macrophages are present. Thus, T(reg) might contribute to the chronic infection and systemic spread of T. whipplei in CWD but in contrast prevent mucosal barrier defect by reducing local inflammation.

  6. Suppression of lethal autoimmunity by regulatory T cells with a single TCR specificity.

    PubMed

    Levine, Andrew G; Hemmers, Saskia; Baptista, Antonio P; Schizas, Michail; Faire, Mehlika B; Moltedo, Bruno; Konopacki, Catherine; Schmidt-Supprian, Marc; Germain, Ronald N; Treuting, Piper M; Rudensky, Alexander Y

    2017-03-06

    The regulatory T cell (T reg cell) T cell receptor (TCR) repertoire is highly diverse and skewed toward recognition of self-antigens. TCR expression by T reg cells is continuously required for maintenance of immune tolerance and for a major part of their characteristic gene expression signature; however, it remains unknown to what degree diverse TCR-mediated interactions with cognate self-antigens are required for these processes. In this study, by experimentally switching the T reg cell TCR repertoire to a single T reg cell TCR, we demonstrate that T reg cell function and gene expression can be partially uncoupled from TCR diversity. An induced switch of the T reg cell TCR repertoire to a random repertoire also preserved, albeit to a limited degree, the ability to suppress lymphadenopathy and T helper cell type 2 activation. At the same time, these perturbations of the T reg cell TCR repertoire led to marked immune cell activation, tissue inflammation, and an ultimately severe autoimmunity, indicating the importance of diversity and specificity for optimal T reg cell function.

  7. Quiescence of Memory CD8(+) T Cells Is Mediated by Regulatory T Cells through Inhibitory Receptor CTLA-4.

    PubMed

    Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit

    2015-06-16

    Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation.

  8. Purification and stability characterization of a cell regulatory sialoglycopeptide inhibitor

    NASA Technical Reports Server (NTRS)

    Moos, P. J.; Fattaey, H. K.; Johnson, T. C.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    Previous attempts to physically separate the cell cycle inhibitory and protease activities in preparations of a purified cell regulatory sialoglycopeptide (CeReS) inhibitor were largely unsuccessful. Gradient elution of the inhibitor preparation from a DEAE HPLC column separated the cell growth inhibitor from the protease, and the two activities have been shown to be distinct and non-overlapping. The additional purification increased the specific biological activity of the CeReS preparation by approximately two-fold. The major inhibitory fraction that eluted from the DEAE column was further analyzed by tricine-SDS-PAGE and microbore reverse phase HPLC and shown to be homogeneous in nature. Two other fractions separated by DEAE HPLC, also devoid of protease activity, were shown to be inhibitory to cell proliferation and most likely represented modified relatives of the CeReS inhibitor. The highly purified CeReS was chemically characterized for amino acid and carbohydrate composition and the role of the carbohydrate in cell proliferation inhibition, stability, and protease resistance was assessed.

  9. Regulatory issues in cell-based therapy for clinical purposes.

    PubMed

    Casaroli-Marano, Ricardo P; Tabera, Jaime; Vilarrodona, Anna; Trias, Esteve

    2014-01-01

    Rapid development in the fields of cellular and molecular biology, biotechnology, and bioengineering medicine has brought new, highly innovative treatments and medicinal products, some of which contain viable cells and tissues associated with scaffolds and devices. These new cell-based therapy approaches in regenerative medicine have great potential for use in the treatment of a number of diseases that at present cannot be managed effectively. Given the unique challenges associated with the development of human cell-based medicinal products, great care is required in the development of procedures, practices, and regulation. In cell therapy, appropriate methodologies in the areas of production, reproducibility, maintenance, and delivery are essential for accurate definition and reliable assurance of the suitability and quality of the final products. Recently, the official European Community agencies (EMA) and the relevant authority in the USA (FDA) have made significant efforts to establish regulatory guidance for use in the application of the cell-based therapies for human patients. The guidelines surrounding cell-based therapy take into account the current legislation, but focus less on the heterogeneity and requirements of individual human cell-based products, including specific combination products and applications. When considering guidelines and regulation, a risk assessment approach is an effective method of identifying priority areas for the development of human cell-based medicinal products. Additionally, effective design and thorough validation of the manufacturing process in line with existing Good Manufacturing Practices (GMPs) and quality control regimes and a program that ensures the traceability and biovigilance of the final products are also all essential elements to consider.

  10. Regulatory T-cell vaccination independent of auto-antigen.

    PubMed

    Pascual, David W; Yang, Xinghong; Holderness, Kathryn; Jun, SangMu; Maddaloni, Massimo; Kochetkova, Irina

    2014-03-14

    To date, efforts to treat autoimmune diseases have primarily focused on the disease symptoms rather than on the cause of the disease. In large part, this is attributed to not knowing the responsible auto-antigens (auto-Ags) for driving the self-reactivity coupled with the poor success of treating autoimmune diseases using oral tolerance methods. Nonetheless, if tolerogenic approaches or methods that stimulate regulatory T (Treg) cells can be devised, these could subdue autoimmune diseases. To forward such efforts, our approach with colonization factor antigen I (CFA/I) fimbriae is to establish bystander immunity to ultimately drive the development of auto-Ag-specific Treg cells. Using an attenuated Salmonella vaccine expressing CFA/I fimbriae, fimbriae-specific Treg cells were induced without compromising the vaccine's capacity to protect against travelers' diarrhea or salmonellosis. By adapting the vaccine's anti-inflammatory properties, it was found that it could also dampen experimental inflammatory diseases resembling multiple sclerosis (MS) and rheumatoid arthritis. Because of this bystander effect, disease-specific Treg cells are eventually induced to resolve disease. Interestingly, this same vaccine could elicit the required Treg cell subset for each disease. For MS-like disease, conventional CD25(+) Treg cells are stimulated, but for arthritis CD39(+) Treg cells are induced instead. This review article will examine the potential of treating autoimmune diseases without having previous knowledge of the auto-Ag using an innocuous antigen to stimulate Treg cells via the production of transforming growth factor-β and interleukin-10.

  11. Regulatory T cells: Mechanisms of suppression and impairment in autoimmune liver disease.

    PubMed

    Liberal, Rodrigo; Grant, Charlotte R; Longhi, Maria Serena; Mieli-Vergani, Giorgina; Vergani, Diego

    2015-02-01

    There are three classic liver diseases with probable autoimmune etiology: primary biliary cirrhosis, primary sclerosing cholangitis, and autoimmune hepatitis. The occurrence of these autoimmune conditions is determined by the breakdown of immune-regulatory mechanisms that in health are responsible for maintaining immunological tolerance against self-antigens. Among the multiple T cell subsets with suppressive function, the regulatory T cells (Tregs), defined by the expression of CD4, the IL-2 receptor α chain (CD25), and the transcription factor FOXP3, have emerged as having a central role in maintaining immune-tolerance to autoantigens. Tregs are equipped with an array of mechanisms of suppression, including the modulation of antigen presenting cell maturation and function, the killing of target cells, the disruption of metabolic pathways, and the production of anti-inflammatory cytokines. In all the three autoimmune liver diseases mentioned above, there is evidence pointing for either a reduced frequency and/or function of Tregs. Here, we review the definition, phenotypic characteristics, and mechanisms of suppression employed by Tregs and then we discuss the evidence available pointing to their impairment in patients with autoimmune liver disease.

  12. Autoimmune Hepatitis: Progress from Global Immunosuppression to Personalised Regulatory T Cell Therapy

    PubMed Central

    Than, Nwe Ni; Jeffery, Hannah C.; Oo, Ye H.

    2016-01-01

    Autoimmune hepatitis (AIH) is an immune mediated liver injury. The precise aetiology of AIH is still unknown but current evidence suggests both genetic and environmental factors are involved. Breakdown in peripheral self-tolerance, and impaired functions of FOXP3+ regulatory T cell along with effector cell resistance to suppression at the tissue level seem to play an important role in AIH immunopathogenesis. AIH is predominantly a T lymphocytes driven disease but B lymphocytes are also involved in the immunopathology. Innate immune cells are crucial in the initial onset of disease and their response is followed by adaptive T (Th1, Th17, and cytotoxic T cells) and B cell responses evidenced by liver histology and peripheral blood serology. Standard treatment regimens involving steroid and immunosuppressive medications lead to global immune suppression requiring life-long therapy with many side effects. Biologic therapies have been attempted but duration of remission is short-lived. Future direction of diagnosis and treatment for AIH should be guided by “omics” and the immunology profile of the individual patient and clinicians should aim to deliver personalised medicine for their patients. Cell therapy such as infusion of autologous, antigen-specific, and liver-homing regulatory T cells to restore hepatic immune tolerance may soon be a potential future treatment for AIH patients. PMID:27446862

  13. Regulatory network reconstruction using an integral additive model with flexible kernel functions

    PubMed Central

    Novikov, Eugene; Barillot, Emmanuel

    2008-01-01

    Background Reconstruction of regulatory networks is one of the most challenging tasks of systems biology. A limited amount of experimental data and little prior knowledge make the problem difficult to solve. Although models that are currently used for inferring regulatory networks are sometimes able to make useful predictions about the structures and mechanisms of molecular interactions, there is still a strong demand to develop increasingly universal and accurate approaches for network reconstruction. Results The additive regulation model is represented by a set of differential equations and is frequently used for network inference from time series data. Here we generalize this model by converting differential equations into integral equations with adjustable kernel functions. These kernel functions can be selected based on prior knowledge or defined through iterative improvement in data analysis. This makes the integral model very flexible and thus capable of covering a broad range of biological systems more adequately and specifically than previous models. Conclusion We reconstructed network structures from artificial and real experimental data using differential and integral inference models. The artificial data were simulated using mathematical models implemented in JDesigner. The real data were publicly available yeast cell cycle microarray time series. The integral model outperformed the differential one for all cases. In the integral model, we tested the zero-degree polynomial and single exponential kernels. Further improvements could be expected if the kernel were selected more specifically depending on the system. PMID:18218091

  14. New Insights into Regulatory T Cells: Exosome- and Non-Coding RNA-Mediated Regulation of Homeostasis and Resident Treg Cells.

    PubMed

    Li, Peiyao; Liu, Changhong; Yu, Zhibin; Wu, Minghua

    2016-01-01

    Regulatory T (Treg) cells are a group of cells that are heterogeneous in origin and in functional activity. Treg cells comprise a necessary balance to adaptive immune responses. As key regulators of self-tolerance, Treg cells have been involved in a series of pathologic processes and considered as therapeutic targets. Here, we summarize recent research regarding Treg cell origins and their functional classification, highlight the role of exosomes and non-coding RNA in modulating Treg cell homeostasis, and discuss the current understanding of resident Treg cells.

  15. New Insights into Regulatory T Cells: Exosome- and Non-Coding RNA-Mediated Regulation of Homeostasis and Resident Treg Cells

    PubMed Central

    Li, Peiyao; Liu, Changhong; Yu, Zhibin; Wu, Minghua

    2016-01-01

    Regulatory T (Treg) cells are a group of cells that are heterogeneous in origin and in functional activity. Treg cells comprise a necessary balance to adaptive immune responses. As key regulators of self-tolerance, Treg cells have been involved in a series of pathologic processes and considered as therapeutic targets. Here, we summarize recent research regarding Treg cell origins and their functional classification, highlight the role of exosomes and non-coding RNA in modulating Treg cell homeostasis, and discuss the current understanding of resident Treg cells. PMID:27999575

  16. Lineage stability and phenotypic plasticity of Foxp3⁺ regulatory T cells.

    PubMed

    Hori, Shohei

    2014-05-01

    Regulatory T (Treg) cells expressing the transcription factor forkhead box protein 3 (Foxp3) constitute a unique T-cell lineage committed to suppressive functions. While their differentiation state is remarkably stable in the face of various perturbations from the extracellular environment, they are able to adapt to diverse and fluctuating tissue environments by changing their phenotype. The lineage stability and phenotypic plasticity of Treg cells thus ensure the robustness of self-tolerance and tissue homeostasis. Recent studies have suggested, however, that Treg cells may retain lineage plasticity, the ability to switch their cell fate to various effector T-cell types under certain circumstances such as inflammation, a notion that remains highly contentious. While accumulating evidence indicates that some Treg cells can downregulate Foxp3 expression and/or acquire effector T-helper cell-like phenotypes, results from my laboratory have shown that Treg cells retain epigenetic memory of, and thus remain committed to, Foxp3 expression and suppressive functions despite such phenotypic plasticity. It has also become evident that Foxp3 can be promiscuously and transiently expressed in activated T cells. Here, I argue that the current controversy stems partly from the lack of the lineage specificity of Foxp3 expression and also from the confusion between phenotypic plasticity and lineage plasticity, and discuss implications of our findings in Treg cell fate determination and maintenance.

  17. Immunostimulatory conventional dendritic cells evolve into regulatory macrophage-like cells.

    PubMed

    Diao, Jun; Mikhailova, Anastassia; Tang, Michael; Gu, Hongtao; Zhao, Jun; Cattral, Mark S

    2012-05-24

    Dendritic cell (DC) homeostasis in peripheral tissues reflect a balance between DC generation, migration, and death. The current model of DC ontogeny indicates that pre-cDCs are committed to become terminal conventional DCs (cDCs). Here, we report the unexpected finding that proliferating immunostimulatory CD11c(+) MHC class II(+) cDCs derived from pre-cDCs can lose their DC identity and generate progeny that exhibit morphologic, phenotypic, and functional characteristics of regulatory macrophages. DC-derived-macrophages (DC-d-Ms) potently suppress T-cell responses through the production of immunosuppressive molecules including nitric oxide, arginase, and IL-10. Relative deficiency of granulocyte-macrophage colony stimulating factor (GM-CSF) provided a permissive signal for DC-d-M generation. Using a transgenic mouse model that allows tracking of CD11c(+) cells in vivo, we found that DC-d-M development occurs commonly in cancer, but not in lymphoid or nonlymphoid tissues under steady-state conditions. We propose that this developmental pathway serves as an alternative mechanism of regulating DC homeostasis during inflammatory processes.

  18. A Dynamic Gene Regulatory Network Model That Recovers the Cyclic Behavior of Arabidopsis thaliana Cell Cycle

    PubMed Central

    Ortiz-Gutiérrez, Elizabeth; García-Cruz, Karla; Azpeitia, Eugenio; Castillo, Aaron; Sánchez, María de la Paz; Álvarez-Buylla, Elena R.

    2015-01-01

    Cell cycle control is fundamental in eukaryotic development. Several modeling efforts have been used to integrate the complex network of interacting molecular components involved in cell cycle dynamics. In this paper, we aimed at recovering the regulatory logic upstream of previously known components of cell cycle control, with the aim of understanding the mechanisms underlying the emergence of the cyclic behavior of such components. We focus on Arabidopsis thaliana, but given that many components of cell cycle regulation are conserved among eukaryotes, when experimental data for this system was not available, we considered experimental results from yeast and animal systems. We are proposing a Boolean gene regulatory network (GRN) that converges into only one robust limit cycle attractor that closely resembles the cyclic behavior of the key cell-cycle molecular components and other regulators considered here. We validate the model by comparing our in silico configurations with data from loss- and gain-of-function mutants, where the endocyclic behavior also was recovered. Additionally, we approximate a continuous model and recovered the temporal periodic expression profiles of the cell-cycle molecular components involved, thus suggesting that the single limit cycle attractor recovered with the Boolean model is not an artifact of its discrete and synchronous nature, but rather an emergent consequence of the inherent characteristics of the regulatory logic proposed here. This dynamical model, hence provides a novel theoretical framework to address cell cycle regulation in plants, and it can also be used to propose novel predictions regarding cell cycle regulation in other eukaryotes. PMID:26340681

  19. A systems biology approach to defining regulatory mechanisms for cartilage and tendon cell phenotypes

    PubMed Central

    Mueller, A. J.; Tew, S. R.; Vasieva, O.; Clegg, P. D.; Canty-Laird, E. G.

    2016-01-01

    Phenotypic plasticity of adult somatic cells has provided emerging avenues for the development of regenerative therapeutics. In musculoskeletal biology the mechanistic regulatory networks of genes governing the phenotypic plasticity of cartilage and tendon cells has not been considered systematically. Additionally, a lack of strategies to effectively reproduce in vitro functional models of cartilage and tendon is retarding progress in this field. De- and redifferentiation represent phenotypic transitions that may contribute to loss of function in ageing musculoskeletal tissues. Applying a systems biology network analysis approach to global gene expression profiles derived from common in vitro culture systems (monolayer and three-dimensional cultures) this study demonstrates common regulatory mechanisms governing de- and redifferentiation transitions in cartilage and tendon cells. Furthermore, evidence of convergence of gene expression profiles during monolayer expansion of cartilage and tendon cells, and the expression of key developmental markers, challenges the physiological relevance of this culture system. The study also suggests that oxidative stress and PI3K signalling pathways are key modulators of in vitro phenotypes for cells of musculoskeletal origin. PMID:27670352

  20. Modulation of liver tolerance by conventional and nonconventional antigen-presenting cells and regulatory immune cells

    PubMed Central

    Horst, Andrea Kristina; Neumann, Katrin; Diehl, Linda; Tiegs, Gisa

    2016-01-01

    The liver is a tolerogenic organ with exquisite mechanisms of immune regulation that ensure upkeep of local and systemic immune tolerance to self and foreign antigens, but that is also able to mount effective immune responses against pathogens. The immune privilege of liver allografts was recognized first in pigs in spite of major histo-compatibility complex mismatch, and termed the “liver tolerance effect”. Furthermore, liver transplants are spontaneously accepted with only low-dose immunosuppression, and induce tolerance for non-hepatic co-transplanted allografts of the same donor. Although this immunotolerogenic environment is favorable in the setting of organ transplantation, it is detrimental in chronic infectious liver diseases like hepatitis B or C, malaria, schistosomiasis or tumorigenesis, leading to pathogen persistence and weak anti-tumor effects. The liver is a primary site of T-cell activation, but it elicits poor or incomplete activation of T cells, leading to their abortive activation, exhaustion, suppression of their effector function and early death. This is exploited by pathogens and can impair pathogen control and clearance or allow tumor growth. Hepatic priming of T cells is mediated by a number of local conventional and nonconventional antigen-presenting cells (APCs), which promote tolerance by immune deviation, induction of T-cell anergy or apoptosis, and generating and expanding regulatory T cells. This review will focus on the communication between classical and nonclassical APCs and lymphocytes in the liver in tolerance induction and will discuss recent insights into the role of innate lymphocytes in this process. PMID:27041638

  1. A steganalysis-based approach to comprehensive identification and characterization of functional regulatory elements

    PubMed Central

    Wang, Guandong; Zhang, Weixiong

    2006-01-01

    The comprehensive identification of cis-regulatory elements on a genome scale is a challenging problem. We develop a novel, steganalysis-based approach for genome-wide motif finding, called WordSpy, by viewing regulatory regions as a stegoscript with cis-elements embedded in 'background' sequences. We apply WordSpy to the promoters of cell-cycle-related genes of Saccharomyces cerevisiae and Arabidopsis thaliana, identifying all known cell-cycle motifs with high ranking. WordSpy can discover a complete set of cis-elements and facilitate the systematic study of regulatory networks. PMID:16787547

  2. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance

    PubMed Central

    Soroosh, Pejman; Doherty, Taylor A.; Duan, Wei; Mehta, Amit Kumar; Choi, Heonsik; Adams, Yan Fei; Mikulski, Zbigniew; Khorram, Naseem; Rosenthal, Peter; Broide, David H.

    2013-01-01

    Airway tolerance is the usual outcome of inhalation of harmless antigens. Although T cell deletion and anergy are likely components of tolerogenic mechanisms in the lung, increasing evidence indicates that antigen-specific regulatory T cells (inducible Treg cells [iTreg cells]) that express Foxp3 are also critical. Several lung antigen-presenting cells have been suggested to contribute to tolerance, including alveolar macrophages (MØs), classical dendritic cells (DCs), and plasmacytoid DCs, but whether these possess the attributes required to directly promote the development of Foxp3+ iTreg cells is unclear. Here, we show that lung-resident tissue MØs coexpress TGF-β and retinal dehydrogenases (RALDH1 and RALDH 2) under steady-state conditions and that their sampling of harmless airborne antigen and presentation to antigen-specific CD4 T cells resulted in the generation of Foxp3+ Treg cells. Treg cell induction in this model depended on both TGF-β and retinoic acid. Transfer of the antigen-pulsed tissue MØs into the airways correspondingly prevented the development of asthmatic lung inflammation upon subsequent challenge with antigen. Moreover, exposure of lung tissue MØs to allergens suppressed their ability to generate iTreg cells coincident with blocking airway tolerance. Suppression of Treg cell generation required proteases and TLR-mediated signals. Therefore, lung-resident tissue MØs have regulatory functions, and strategies to target these cells might hold promise for prevention or treatment of allergic asthma. PMID:23547101

  3. The immunology of pregnancy: regulatory T cells control maternal immune tolerance toward the fetus.

    PubMed

    La Rocca, Claudia; Carbone, Fortunata; Longobardi, Salvatore; Matarese, Giuseppe

    2014-11-01

    Establishment and maintenance of pregnancy represents a challenge for the maternal immune system since it has to defend against pathogens and tolerate paternal alloantigens expressed in fetal tissues. Regulatory T (Treg) cells, a subset of suppressor CD4(+) T cells, play a dominant role in the maintenance of immunological self-tolerance by preventing immune and autoimmune responses against self-antigens. Although localized mechanisms contribute to fetal evasion from immune attack, in the last few years it has been observed that Treg cells are essential in promoting fetal survival avoiding the recognition of paternal semi-allogeneic tissues by maternal immune system. Several functional studies have shown that unexplained infertility, miscarriage and pre-clampsia are often associated with deficit in Treg cell number and function while normal pregnancy selectively stimulates the accumulation of maternal forkhead-box-P3(+) (FoxP3(+)) CD4(+) Treg cells with fetal specificity. Some papers have been reported that the number of Treg cells persists at elevated levels long after delivery developing an immune regulatory memory against father's antigens, moreover these memory Treg cells rapidly proliferate during subsequent pregnancies, however, on the other hand, there are several evidence suggesting a clear decline of Treg cells number after delivery. Different factors such as cytokines, adipokines, pregnancy hormones and seminal fluid have immunoregulatory activity and influence the success of pregnancy by increasing Treg cell number and activity. The development of strategies capable of modulating immune responses toward fetal antigens through Treg cell manipulation, could have an impact on the induction of tolerance against fetal antigens during immune-mediated recurrent abortion.

  4. Association Mapping of Cell Wall Synthesis Regulatory Genes and Cell Wall Quality in Switchgrass

    SciTech Connect

    Bartley, Laura; Wu, Y.; Zhu, L.; Brummer, E. C.; Saha, M.

    2016-05-31

    markers might be used to select switchgrass genotypes with improved composition in breeding programs for biofuel and forage production. Because the SSAC continues to be characterized by collaborators in the bioenergy community, the data generated will be used to identify additional markers in higher resolution genotyping data to approach identifying the genes and alleles that cause natural variation in switchgrass cell wall quality. For example, these markers can be surveyed in the 2100-member Oklahoma Southern and Northern Lowland switchgrass collections that this project also characterized. An orthogonal approach to biodiversity studies, using comparative functional genomics permits systematic querying of how much regulatory information is likely to be transferable from dicots to grasses and use of accumulated functional genomics resources for better-characterized grass species, such as rice, itself a biomass source in global agriculture and in certain regions. The project generated and tested a number of specific hypotheses regarding cell wall transcription factors and enzymes of grasses. To aid identification of cell wall regulators, the project assembled a novel, highdepth and -quality gene association network using a general linearized model scoring system to combine rice gene network data. Using known or putative orthologs of Arabidopsis cell wall biosynthesis genes and regulators, the project pulled from this network a cell wall sub-network that includes 96 transcription factors. Reverse genetics of a co-ortholog of the Arabidopsis MYB61 transcription factor in rice revealed that this regulatory node has evolved the ability to regulate grass-specific cell wall synthesis enzymes. A transcription factor with such activity has not been previously characterized to our knowledge, representing a major conclusion of this work. Changes in gene expression in a protoplast-based assay demonstrated positive or negative roles in cell wall regulation for eleven other

  5. Regulatory B cell is critical in bone union process through suppressing proinflammatory cytokines and stimulating Foxp3 in Treg cells.

    PubMed

    Sun, Guojing; Wang, Yicun; Ti, Yunfan; Wang, Jun; Zhao, Jianning; Qian, Hongbo

    2017-04-01

    Bone fractures may result in delayed union (DU) or non-union (NU) in some patients. Evidence suggests that the skewing of the immune system toward the proinflammatory type is a contributing factor. Because B cells were previously found to infiltrate the fracture healing site at abundant levels, we examined the regulatory B cells (Bregs) in DU/NU patients. In bone fracture patients with normal healing, the frequency of interleukin (IL)-10-expressing B cells was significantly upregulated in the early healing process (6 weeks post-surgery) and was downregulated later on (18 weeks post-surgery), whereas in DU/NU patients, the early upregulation of IL-10-expressing B cells was missing. The majority of IL-10-expressing B cells were concentrated in the IgM(+) CD27(+) fraction in both controls and patients. IgM(+) CD27(+) B cells effectively suppressed interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), and IL-2 expression from CD4(+) T cells, as well as IFN-γ and TNF-α expression from CD8(+) T cells. The IgM(+) CD27(+) B cell-mediated suppression was restricted to the sample from the early healing time point in controls, as the IgM(+) CD27(+) B cells from normal healing patients later on or from DU/NU patients did not present significant regulatory function. In addition, culturing of CD4(+) CD25(+) Tregs with IgM(+) CD27(+) B cells from controls at early healing time point resulted in higher Foxp3 expression, a function absent in controls at later time point, or in DU/NU patients. In conclusion, our results support a role of B cell-mediated regulation early during the bone healing process.

  6. Foetal immune programming: hormones, cytokines, microbes and regulatory T cells.

    PubMed

    Hsu, Peter; Nanan, Ralph

    2014-10-01

    In addition to genetic factors, environmental cues play important roles in shaping the immune system. The first environment that the developing foetal immune system encounters is the uterus. Although physically the mother and the foetus are separated by the placental membranes, various factors such as hormones and cytokines may provide "environmental cues" to the foetal immune system. Additionally, increasing evidence suggests that prenatal maternal environmental factors, particularly microbial exposure, might significantly influence the foetal immune system, affecting long-term outcomes, a concept termed foetal immune programming. Here we discuss the potential mediators of foetal immune programming, focusing on the role of pregnancy-related hormones, cytokines and regulatory T cells, which play a critical role in immune tolerance.

  7. The role of regulatory T cells in cancer immunology.

    PubMed

    Whiteside, Theresa L

    2015-01-01

    Regulatory T cells (Treg) are generally considered to be significant contributors to tumor escape from the host immune system. Emerging evidence suggests, however, that in some human cancers, Treg are necessary to control chronic inflammation, prevent tissue damage, and limit inflammation-associated cancer development. The dual role of Treg in cancer and underpinnings of Treg diversity are not well understood. This review attempts to provide insights into the importance of Treg subsets in cancer development and its progression. It also considers the role of Treg as potential biomarkers of clinical outcome in cancer. The strategies for monitoring Treg in cancer patients are discussed as is the need for caution in the use of therapies which indiscriminately ablate Treg. A greater understanding of molecular pathways operating in various tumor microenvironments is necessary for defining the Treg impact on cancer and for selecting immunotherapies targeting Treg.

  8. Apoptosis as a mechanism of T-regulatory cell homeostasis and suppression.

    PubMed

    Yolcu, Esma S; Ash, Shifra; Kaminitz, Ayelet; Sagiv, Yuval; Askenasy, Nadir; Yarkoni, Shai

    2008-01-01

    Activation-induced cell death is a general mechanism of immune homeostasis through negative regulation of clonal expansion of activated immune cells. This mechanism is involved in the maintenance of self- and transplant tolerance through polarization of the immune responses. The Fas/Fas-ligand interaction is a major common executioner of apoptosis in lymphocytes, with a dual role in regulatory T cell (Treg) function: Treg cell homeostasis and Treg cell-mediated suppression. Sensitivity to apoptosis and the patterns of Treg-cell death are of outmost importance in immune homeostasis that affects the equilibrium between cytolytic and suppressor forces in activation and termination of immune activity. Naive innate (naturally occurring) Treg cells present variable sensitivities to apoptosis, related to their turnover rates in tissue under steady state conditions. Following activation, Treg cells are less sensitive to apoptosis than cytotoxic effector subsets. Their susceptibility to apoptosis is influenced by cytokines within the inflammatory environment (primarily interleukin-2), the mode of antigenic stimulation and the proliferation rates. Here, we attempt to resolve some controversies surrounding the sensitivity of Treg cells to apoptosis under various experimental conditions, to delineate the function of cell death in regulation of immunity.

  9. Circumvention of regulatory CD4(+) T cell activity during cross-priming strongly enhances T cell-mediated immunity.

    PubMed

    Heit, Antje; Gebhardt, Friedemann; Lahl, Katharina; Neuenhahn, Michael; Schmitz, Frank; Anderl, Florian; Wagner, Hermann; Sparwasser, Tim; Busch, Dirk H; Kastenmüller, Kathrin

    2008-06-01

    Immunization with purified antigens is a safe and practical vaccination strategy but is generally unable to induce sustained CD8(+) T cell-mediated protection against intracellular pathogens. Most efforts to improve the CD8(+) T cell immunogenicity of these vaccines have focused on co-administration of adjuvant to support cross-presentation and dendritic cell maturation. In addition, it has been shown that CD4(+) T cell help during the priming phase contributes to the generation of protective CD8(+) memory T cells. In this report we demonstrate that the depletion of CD4(+) T cells paradoxically enhances long-lasting CD8-mediated protective immunity upon protein vaccination. Functional and genetic in vivo inactivation experiments attribute this enhancement primarily to MHC class II-restricted CD4(+) regulatory T cells (Treg), which appear to physiologically suppress the differentiation process towards long-living effector memory T cells. Since, in functional terms, this suppression by Treg largely exceeds the positive effects of conventional CD4(+) T cell help, even the absence of all CD4(+) T cells or lack of MHC class II-mediated interactions on priming dendritic cells result in enhanced CD8(+) T cell immunogenicity. These findings have important implications for the improvement of vaccines against intracellular pathogens or tumors, especially in patients with highly active Treg.

  10. Sequential activation and distinct functions for distal and proximal modules within the IgH 3′ regulatory region

    PubMed Central

    Garot, Armand; Marquet, Marie; Saintamand, Alexis; Bender, Sébastien; Le Noir, Sandrine; Rouaud, Pauline; Carrion, Claire; Oruc, Zéliha; Bébin, Anne-Gaëlle; Moreau, Jeanne; Lebrigand, Kevin; Denizot, Yves; Alt, Frederick W.; Cogné, Michel; Pinaud, Eric

    2016-01-01

    As a master regulator of functional Ig heavy chain (IgH) expression, the IgH 3′ regulatory region (3′RR) controls multiple transcription events at various stages of B-cell ontogeny, from newly formed B cells until the ultimate plasma cell stage. The IgH 3′RR plays a pivotal role in early B-cell receptor expression, germ-line transcription preceding class switch recombination, interactions between targeted switch (S) regions, variable region transcription before somatic hypermutation, and antibody heavy chain production, but the functional ranking of its different elements is still inaccurate, especially that of its evolutionarily conserved quasi-palindromic structure. By comparing relevant previous knockout (KO) mouse models (3′RR KO and hs3b-4 KO) to a novel mutant devoid of the 3′RR quasi-palindromic region (3′PAL KO), we pinpointed common features and differences that specify two distinct regulatory entities acting sequentially during B-cell ontogeny. Independently of exogenous antigens, the 3′RR distal part, including hs4, fine-tuned B-cell receptor expression in newly formed and naïve B-cell subsets. At mature stages, the 3′RR portion including the quasi-palindrome dictated antigen-dependent locus remodeling (global somatic hypermutation and class switch recombination to major isotypes) in activated B cells and antibody production in plasma cells. PMID:26831080

  11. GITR+ regulatory T cells in the treatment of autoimmune diseases.

    PubMed

    Petrillo, Maria Grazia; Ronchetti, Simona; Ricci, Erika; Alunno, Alessia; Gerli, Roberto; Nocentini, Giuseppe; Riccardi, Carlo

    2015-02-01

    Autoimmune diseases decrease life expectancy and quality of life for millions of women and men. Although treatments can slow disease progression and improve quality of life, all currently available drugs have adverse effects and none of them are curative; therefore, requiring patients to take immunosuppressive drugs for the remainder of their lives. A curative therapy that is safe and effective is urgently needed. We believe that therapies promoting the in vivo expansion of regulatory T cells (Tregs) or injection of in vitro expanded autologous/heterologous Tregs (cellular therapy) can alter the natural history of autoimmune diseases. In this review, we present data from murine and human studies suggesting that 1) glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) plays a crucial role in thymic Treg (tTreg) differentiation and expansion; 2) GITR plays a crucial role in peripheral Treg (pTreg) expansion; 3) in patients with Sjögren syndrome and systemic lupus erythematosus, CD4(+)GITR(+) pTregs are expanded in patients with milder forms of the disease; and 4) GITR is superior to other cell surface markers to differentiate Tregs from other CD4(+) T cells. In this context, we consider two potential new approaches for treating autoimmune diseases consisting of the in vivo expansion of GITR(+) Tregs by GITR-triggering drugs and in vitro expansion of autologous or heterologous GITR(+) Tregs to be infused in patients. Advantages of such an approach, technical problems, and safety issues are discussed.

  12. Regulatory B lymphocyte functions should be considered in chronic lymphocytic leukemia

    PubMed Central

    Mohr, Audrey; Renaudineau, Yves; Bagacean, Cristina; Pers, Jacques-Olivier; Jamin, Christophe; Bordron, Anne

    2016-01-01

    ABSTRACT Chronic lymphocytic leukemia (CLL) is characterized by an abnormal expansion of mature B cells in the bone marrow and their accumulation in blood and secondary lymphoid organs. Tumor CLL cells share expression of various surface molecules with many subsets of B cells and have several common characteristics with regulatory B cells (B regs). However, the identification of B regs and their role in CLL remain elusive. The aim of this review is to summarize recent works regarding the regulatory and phenotypic characteristic of B regs and their associated effects on the immune system. It is also meant to highlight their potential importance with regards to the immunotherapeutic response. PMID:27467951

  13. Regulatory B lymphocyte functions should be considered in chronic lymphocytic leukemia.

    PubMed

    Mohr, Audrey; Renaudineau, Yves; Bagacean, Cristina; Pers, Jacques-Olivier; Jamin, Christophe; Bordron, Anne

    2016-05-01

    Chronic lymphocytic leukemia (CLL) is characterized by an abnormal expansion of mature B cells in the bone marrow and their accumulation in blood and secondary lymphoid organs. Tumor CLL cells share expression of various surface molecules with many subsets of B cells and have several common characteristics with regulatory B cells (B regs). However, the identification of B regs and their role in CLL remain elusive. The aim of this review is to summarize recent works regarding the regulatory and phenotypic characteristic of B regs and their associated effects on the immune system. It is also meant to highlight their potential importance with regards to the immunotherapeutic response.

  14. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy

    PubMed Central

    Crane, Courtney A.; Ahn, Brian J.; Han, Seunggu J.; Parsa, Andrew T.

    2012-01-01

    In patients with glioma, the tumor microenvironment can significantly impact pro-inflammatory immune cell functions. However, the mechanisms by which this occurs are poorly defined. Because immunosuppressive regulatory T cells (Treg) are over represented in the tumor microenvironment compared with peripheral blood, we hypothesized that the tumor may have an effect on Treg survival, migration, expansion, and/or induction of a regulatory phenotype from non-Treg conventional CD4+ T cells. We defined the impact of soluble factors produced by tumor cells on Treg from healthy patients in vitro to determine mechanisms by which gliomas influence T cell populations. We found that tumor-derived soluble factors allowed for preferential proliferation and increased chemotaxis of Treg, compared with conventional T cells, indicating that these mechanisms may contribute to the increased Treg in the tumor microenvironment. Conventional T cells also exhibited a significantly increased expression of pro-apoptotic transcripts in the presence of tumor-derived factors, indicating that survival of Treg in the tumor site is driven by exposure to soluble factors produced by the tumor. Together, these data suggest that tumor burden may induce increased Treg infiltration, proliferation, and survival, negating productive anti-tumor immune responses in patients treated with immunotherapies. Collectively, our data indicate that several mechanisms of Treg recruitment and retention in the tumor microenvironment exist and may need to be addressed to improve the specificity of immunotherapies seeking to eliminate Treg in patients with glioma. PMID:22406925

  15. Assay of Peripheral Regulatory Vδ1 T Cells in Ankylosing Spondylitis and its Significance

    PubMed Central

    Wang, Hongliang; Sun, Na; Li, Ka; Tian, Jiguang; Li, Jianmin

    2016-01-01

    Background Ankylosing spondylitis (AS) involves inflammation at the sacroiliac joint and spine attachment site. This study aimed to observe the ratio and function of peripheral regulatory Vδ1 T cells in AS patients to investigate their roles in AS pathogenesis. Material/Methods Peripheral blood mononuclear cells (PBMC) were separated by density-gradient centrifugation from AS patients and healthy controls. Flow cytometry was used to determine the ratio between Vδ1 and CD4 T cells of PBMC in AS patients and controls. Flow cytometry sorting (FCS) was used to obtain Vδ1 and naïve CD4 T cells with purity higher than 90%. CFSE staining method was used to detect the effect of Vδ1 T cells on proliferation of naïve CD4 T cells. The effect of Vδ1 T cells on secretion of IFN-γ from naïve CD4 T cells and the ability to secrete IL-10 from Vδ1 T cells were determined by flow cytometry. Results AS patients had significantly lower Vδ1 T cell ratio in PBMC compared to controls (p<0.05), but their CD4 T cell ratio was significantly elevated (p<0.05). Functional assay showed suppression of naïve CD4 T cell proliferation and IFN-γ secretion by peripheral Vδ1 T cells in AS patients (p<0.01). AS patients also had lower IL-10 secreting level from peripheral derived Vδ1 T cells (p<0.01). Conclusions The immune suppression of peripheral Vδ1 T cell in AS patient increases the ratio of peripheral CD4 T cells and IFN-γ level, leading to AS pathogenesis. This immune suppression is mainly due to suppressed IL-10 secretion. PMID:27598263

  16. Role of IL-10-producing regulatory B cells in modulating T-helper cell immune responses during silica-induced lung inflammation and fibrosis

    PubMed Central

    Liu, Fangwei; Dai, Wujing; Li, Chao; Lu, Xiaowei; Chen, Ying; Weng, Dong; Chen, Jie

    2016-01-01

    Silicosis is characterized by chronic lung inflammation and fibrosis, which are seriously harmful to human health. Previous research demonstrated that uncontrolled T-helper (Th) cell immune responses were involved in the pathogenesis of silicosis. Lymphocytes also are reported to have important roles. Existing studies on lymphocyte regulation of Th immune responses were limited to T cells, such as the regulatory T (Treg) cell, which could negatively regulate inflammation and promote the process of silicosis. However, other regulatory subsets in silicosis have not been investigated in detail, and the mechanism of immune homeostasis modulation needs further exploration. Another regulatory lymphocyte, the regulatory B cell, has recently drawn increasing attention. In this study, we comprehensively showed the role of IL-10-producing regulatory B cell (B10) in a silicosis model of mice. B10 was inducible by silica instillation. Insufficient B10 amplified inflammation and attenuated lung fibrosis by promoting the Th1 immune response. Insufficient B10 clearly inhibited Treg and decreased the level of IL-10. Our study indicated that B10 could control lung inflammation and exacerbate lung fibrosis by inhibiting Th1 response and modulating the Th balance. The regulatory function of B10 could be associated with Treg induction and IL-10 secretion. PMID:27354007

  17. MALT1 is an intrinsic regulator of regulatory T cells.

    PubMed

    Brüstle, A; Brenner, D; Knobbe-Thomsen, C B; Cox, M; Lang, P A; Lang, K S; Mak, T W

    2015-09-25

    Regulatory T cells (Tregs) are crucial for the maintenance of immunological self-tolerance and their absence or dysfunction can lead to autoimmunity. However, the molecular pathways that govern Treg biology remain obscure. In this study, we show that the nuclear factor-κB signalling mediator mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is an important novel regulator of both Tregs originating in the thymus ('natural' or nTregs) and Tregs induced to differentiate from naive thymocyte helper (Th) cells in the periphery ('induced' or iTregs). Our examination of mice deficient for MALT1 revealed that these mutants have a reduced number of total Tregs. In young Malt1(-/-) mice, nTregs are totally absent and iTreg are diminished in the periphery. Interestingly, total Treg numbers increase in older Malt1(-/-) mice as well as in Malt1(-/-) mice subjected to experimentally induced inflammation. iTregs isolated from WT and Malt1(-/-) mice were indistinguishable with respect to their ability to suppress the activities of effector T cells, but Malt1(-/-) iTregs expressed higher levels of Toll-like receptor (TLR) 2. Treatment of WT and Malt1(-/-) Th cells in vitro with the TLR2 ligand Pam3Cys strongly enhanced the induction and proliferation of Malt1(-/-) iTregs. Our data suggest that MALT1 supports nTreg development in the thymus but suppresses iTreg induction in the periphery during inflammation. Our data position MALT1 as a key molecule that contributes to immune tolerance at steady-state while facilitating immune reactivity under stress conditions.Cell Death and Differentiation advance online publication, 25 September 2015; doi:10.1038/cdd.2015.104.

  18. Neutrophils induce proangiogenic T cells with a regulatory phenotype in pregnancy

    PubMed Central

    Nadkarni, Suchita; Smith, Joanne; Sferruzzi-Perri, Amanda N.; Ledwozyw, Agata; Kishore, Madhav; Haas, Robert; Mauro, Claudio; Williams, David J.; Farsky, Sandra H. P.; Marelli-Berg, Federica M.; Perretti, Mauro

    2016-01-01

    Although neutrophils are known to be fundamental in controlling innate immune responses, their role in regulating adaptive immunity is just starting to be appreciated. We report that human neutrophils exposed to pregnancy hormones progesterone and estriol promote the establishment of maternal tolerance through the induction of a population of CD4+ T cells displaying a GARP+CD127loFOXP3+ phenotype following antigen activation. Neutrophil-induced T (niT) cells produce IL-10, IL-17, and VEGF and promote vessel growth in vitro. Neutrophil depletion during murine pregnancy leads to abnormal development of the fetal-maternal unit and reduced empbryo development, with placental architecture displaying poor trophoblast invasion and spiral artery development in the maternal decidua, accompanied by significantly attenuated niT cell numbers in draining lymph nodes. Using CD45 congenic cells, we show that induction of niT cells and their regulatory function occurs via transfer of apoptotic neutrophil-derived proteins, including forkhead box protein 1 (FOXO1), to T cells. Unlike in women with healthy pregnancies, neutrophils from blood and placental samples of preeclamptic women fail to induce niT cells as a direct consequence of their inability to transfer FOXO1 to T cells. Finally, neutrophil-selective FOXO1 knockdown leads to defective placentation and compromised embryo development, similar to that resulting from neutrophil depletion. These data define a nonredundant function of neutrophil–T cell interactions in the regulation of vascularization at the maternal–fetal interface. PMID:27956610

  19. Old Mice Accumulate Activated Effector CD4 T Cells Refractory to Regulatory T Cell-Induced Immunosuppression

    PubMed Central

    Harpaz, Idan; Bhattacharya, Udayan; Elyahu, Yehezqel; Strominger, Itai; Monsonego, Alon

    2017-01-01

    Chronic low-grade inflammation and reduced lymphocyte potency are implicated in the pathogenesis of major illnesses associated with aging. Whether this immune phenotype results from a loss of cell-mediated regulation or intrinsic dysregulated function of effector T cells (Teffs) requires further research. Here, we report that, as compared with young C57BL6 mice, old mice show an increased frequency of CD4+CD62L− Teffs with a dysregulated activated phenotype and markedly increased effector functions. Analysis of the frequency and suppressive function of CD4+FoxP3+ regulatory T cells (Tregs) indicates an increase in the frequency of FoxP3+ T cells with aging which, however, occurs within the CD4+CD25− T cells. Furthermore, whereas Tregs from young and old mice similarly suppress Teffs from young mice, both have a compromised suppressive capacity of Teffs from old mice, a phenomenon which is partially recovered in the presence of IL-2-producing CD4+CD62L+ non-Teffs. Finally, we observed that Teff subsets from old mice are enriched with IL-17A-producing T cells and exhibit intrinsically dysregulated expression of genes encoding cell-surface molecules and transcription factors, which play a key role in T-cell activation and regulation. We, thus, demonstrate an age-related impairment in the regulation of effector CD4 T cells, which may underlie the higher risk for destructive inflammation associated with aging. PMID:28382033

  20. Old Mice Accumulate Activated Effector CD4 T Cells Refractory to Regulatory T Cell-Induced Immunosuppression.

    PubMed

    Harpaz, Idan; Bhattacharya, Udayan; Elyahu, Yehezqel; Strominger, Itai; Monsonego, Alon

    2017-01-01

    Chronic low-grade inflammation and reduced lymphocyte potency are implicated in the pathogenesis of major illnesses associated with aging. Whether this immune phenotype results from a loss of cell-mediated regulation or intrinsic dysregulated function of effector T cells (Teffs) requires further research. Here, we report that, as compared with young C57BL6 mice, old mice show an increased frequency of CD4+CD62L- Teffs with a dysregulated activated phenotype and markedly increased effector functions. Analysis of the frequency and suppressive function of CD4+FoxP3+ regulatory T cells (Tregs) indicates an increase in the frequency of FoxP3+ T cells with aging which, however, occurs within the CD4+CD25- T cells. Furthermore, whereas Tregs from young and old mice similarly suppress Teffs from young mice, both have a compromised suppressive capacity of Teffs from old mice, a phenomenon which is partially recovered in the presence of IL-2-producing CD4+CD62L+ non-Teffs. Finally, we observed that Teff subsets from old mice are enriched with IL-17A-producing T cells and exhibit intrinsically dysregulated expression of genes encoding cell-surface molecules and transcription factors, which play a key role in T-cell activation and regulation. We, thus, demonstrate an age-related impairment in the regulation of effector CD4 T cells, which may underlie the higher risk for destructive inflammation associated with aging.

  1. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation.

    PubMed

    Gagliani, Nicola; Amezcua Vesely, Maria Carolina; Iseppon, Andrea; Brockmann, Leonie; Xu, Hao; Palm, Noah W; de Zoete, Marcel R; Licona-Limón, Paula; Paiva, Ricardo S; Ching, Travers; Weaver, Casey; Zi, Xiaoyuan; Pan, Xinghua; Fan, Rong; Garmire, Lana X; Cotton, Matthew J; Drier, Yotam; Bernstein, Bradley; Geginat, Jens; Stockinger, Brigitta; Esplugues, Enric; Huber, Samuel; Flavell, Richard A

    2015-07-09

    Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The Th17 lineage of T helper (Th) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A) and plasticity (they can start expressing cytokines typical of other lineages) upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion Th17 cells ex vivo during immune responses. Thus, it is unknown whether Th17 cell plasticity merely reflects change in expression of a few cytokines, or if Th17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation. Furthermore, although Th17 cell instability/plasticity has been associated with pathogenicity, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic Th17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track Th17 cells during immune responses to show that CD4(+) T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of Th17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and post-conversion Th17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, Th17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that Th17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases.

  2. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation

    PubMed Central

    Gagliani, Nicola; Vesely, Maria Carolina Amezcua; Iseppon, Andrea; Brockmann, Leonie; Xu, Hao; Palm, Noah W.; de Zoete, Marcel R.; Licona-Limón, Paula; Paiva, Ricardo S.; Ching, Travers; Weaver, Casey; Zi, Xiaoyuan; Pan, Xinghua; Fan, Rong; Garmire, Lana X.; Cotton, Matthew J.; Drier, Yotam; Bernstein, Bradley; Geginat, Jens; Stockinger, Brigitta; Esplugues, Enric; Huber, Samuel; Flavell, Richard A.

    2015-01-01

    Inflammation is a beneficial host response to infection but can contribute to inflammatory disease if unregulated. The TH17 lineage of T helper (TH) cells can cause severe human inflammatory diseases. These cells exhibit both instability (they can cease to express their signature cytokine, IL-17A)1 and plasticity (they can start expressing cytokines typical of other lineages)1,2 upon in vitro re-stimulation. However, technical limitations have prevented the transcriptional profiling of pre- and post-conversion TH17 cells ex vivo during immune responses. Thus, it is unknown whether TH17 cell plasticity merely reflects change in expression of a few cytokines, or if TH17 cells physiologically undergo global genetic reprogramming driving their conversion from one T helper cell type to another, a process known as transdifferentiation3,4. Furthermore, although TH17 cell instability/plasticity has been associated with pathogenicity1,2,5, it is unknown whether this could present a therapeutic opportunity, whereby formerly pathogenic TH17 cells could adopt an anti-inflammatory fate. Here we used two new fate-mapping mouse models to track TH17 cells during immune responses to show that CD4+ T cells that formerly expressed IL-17A go on to acquire an anti-inflammatory phenotype. The transdifferentiation of TH17 into regulatory T cells was illustrated by a change in their signature transcriptional profile and the acquisition of potent regulatory capacity. Comparisons of the transcriptional profiles of pre- and postconversion TH17 cells also revealed a role for canonical TGF-β signalling and consequently for the aryl hydrocarbon receptor (AhR) in conversion. Thus, TH17 cells transdifferentiate into regulatory cells, and contribute to the resolution of inflammation. Our data suggest that TH17 cell instability and plasticity is a therapeutic opportunity for inflammatory diseases. PMID:25924064

  3. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells.

    PubMed

    Amarnath, Shoba; Mangus, Courtney W; Wang, James C M; Wei, Fang; He, Alice; Kapoor, Veena; Foley, Jason E; Massey, Paul R; Felizardo, Tania C; Riley, James L; Levine, Bruce L; June, Carl H; Medin, Jeffrey A; Fowler, Daniel H

    2011-11-30

    Immune surveillance by T helper type 1 (T(H)1) cells is not only critical for the host response to tumors and infection, but also contributes to autoimmunity and graft-versus-host disease (GVHD) after transplantation. The inhibitory molecule programmed death ligand 1 (PDL1) has been shown to anergize human T(H)1 cells, but other mechanisms of PDL1-mediated T(H)1 inhibition such as the conversion of T(H)1 cells to a regulatory phenotype have not been well characterized. We hypothesized that PDL1 may cause T(H)1 cells to manifest differentiation plasticity. Conventional T cells or irradiated K562 myeloid tumor cells overexpressing PDL1 converted TBET(+) T(H)1 cells into FOXP3(+) regulatory T (T(reg)) cells in vivo, thereby preventing human-into-mouse xenogeneic GVHD (xGVHD). Either blocking PD1 expression on T(H)1 cells by small interfering RNA targeting or abrogation of PD1 signaling by SHP1/2 pharmacologic inhibition stabilized T(H)1 cell differentiation during PDL1 challenge and restored the capacity of T(H)1 cells to mediate lethal xGVHD. PD1 signaling therefore induces human T(H)1 cells to manifest in vivo plasticity, resulting in a T(reg) phenotype that severely impairs cell-mediated immunity. Converting human T(H)1 cells to a regulatory phenotype with PD1 signaling provides a potential way to block GVHD after transplantation. Moreover, because this conversion can be prevented by blocking PD1 expression or pharmacologically inhibiting SHP1/2, this pathway provides a new therapeutic direction for enhancing T cell immunity to cancer and infection.

  4. Identification of functional elements and regulatory circuits by Drosophila modENCODE

    SciTech Connect

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V.; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L.; Landolin, Jane M.; Bristow, Christopher A.; Ma, Lijia; Lin, Michael F.; Washietl, Stefan; Arshinoff, Bradley I.; Ay, Ferhat; Meyer, Patrick E.; Robine, Nicolas; Washington, Nicole L.; Stefano, Luisa Di; Berezikov, Eugene; Brown, Christopher D.; Candeias, Rogerio; Carlson, Joseph W.; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y.; Will, Sebastian; Alekseyenko, Artyom A.; Artieri, Carlo; Booth, Benjamin W.; Brooks, Angela N.; Dai, Qi; Davis, Carrie A.; Duff, Michael O.; Feng, Xin; Gorchakov, Andrey A.; Gu, Tingting; Henikoff, Jorja G.; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K.; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K.; Riddle, Nicole C.; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E.; Schwartz, Yuri B.; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H.; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E.; Brent, Michael R.; Cherbas, Lucy; Elgin, Sarah C. R.; Gingeras, Thomas R.; Grossman, Robert; Hoskins, Roger A.; Kaufman, Thomas C.; Kent, William; Kuroda, Mitzi I.; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W.; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R.; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J.; Celniker, Susan E.; Henikoff, Steven; Karpen, Gary H.; Lai, Eric C.; MacAlpine, David M.; Stein, Lincoln D.; White, Kevin P.; Kellis, Manolis

    2010-12-22

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation. Several years after the complete genetic sequencing of many species, it is still unclear how to translate genomic information into a functional map of cellular and developmental programs. The Encyclopedia of DNA Elements (ENCODE) (1) and model organism ENCODE (modENCODE) (2) projects use diverse genomic assays to comprehensively annotate the Homo sapiens (human), Drosophila melanogaster (fruit fly), and Caenorhabditis elegans (worm) genomes, through systematic generation and computational integration of functional genomic data sets. Previous genomic studies in flies have made seminal contributions to our understanding of basic biological mechanisms and genome functions, facilitated by genetic, experimental, computational, and manual annotation of the euchromatic and heterochromatic genome (3), small genome size, short life cycle, and a deep knowledge of development, gene function, and chromosome biology. The functions

  5. Cell volume regulatory ion transport in the regulation of cell migration.

    PubMed

    Jakab, M; Ritter, M

    2006-01-01

    Cell migration is typically accomplished by the generation of protrusive mechanical forces and is achieved by repeated spatially and temporally coordinated cycles including the formation of a leading edge, the formation of new and disruption of older adhesions to the substratum, actomyosin based contractions and retraction of the trailing edge. Beside the well-described roles of the cytoskeleton and cell adhesions during these processes, a growing body of evidence indicates that the precise regulation of the cell volume is an indispensable prerequisite for coordinated cell migration. On the one hand during cell migration cell volume is continuously tormented by mechanical and morphological alterations, which pose changes to the intracellular hydrostatic pressure, metabolic changes and the formation or degradation of macromolecules like actin, which distort the osmotic equilibrium and the action of chemoattractants, hormones and transmitters, which frequently alter the electrical properties of a cell and thus cause cell swelling or shrinkage, respectively. On the other hand, a migrating cell actively has to govern cell volume regulatory ion transport mechanisms in order to create the appropriate micro- or even nanoenvironment in the intra- and/or extracellular space, which is necessary to guarantee the correct polarity and hence direction of movement of a migrating cell. This chapter will focus on the role of the cell volume regulatory ion transport mechanisms as they participate in the regulation of cell migration and special emphasis is given to their interplay with the cytoskeleton, their meaning for substrate adhesion and to the polarized fashion of their subcellular distribution.

  6. Functional characterisation of the regulatory subunit of cyclic AMP-dependent protein kinase A homologue of Giardia lamblia: Differential expression of the regulatory and catalytic subunits during encystation.

    PubMed

    Gibson, Candace; Schanen, Brian; Chakrabarti, Debopam; Chakrabarti, Ratna

    2006-06-01

    To understand the functional roles of protein kinase A (PKA) during vegetative and differentiating states of Giardia parasites, we studied the structural and functional characteristics of the regulatory subunit of PKA (gPKAr) and its involvement in the giardial encystment process. Molecular cloning and characterisation showed that gPKAr contains two tandem 3'5'-cyclic adenosine monphosphate (cyclic AMP) binding domains at the C-terminal end and the interaction domain for the catalytic subunit. A number of consensus residues including in vivo phosphorylation site for PKAc and dimerisation/docking domain are present in gPKAr. The regulatory subunit physically interacts with the catalytic subunit and inhibits its kinase activity in the absence of cyclic AMP, which could be partially restored upon addition of cyclic AMP. Western blot analysis showed a marked reduction in the endogenous gPKAr concentration during differentiation of Giardia into cysts. An increased activity of gPKAc was also detected during encystation without any significant change in the protein concentration. Distinct localisations of gPKAc to the anterior flagella, basal bodies and caudal flagella as noted in trophozoites were absent in encysting cells at later stages. Instead, PKAc staining was punctate and located mostly to the cell periphery. Our study indicates possible enrichment of the active gPKAc during late stages of encystation, which may have implications in completion of the encystment process or priming of cysts for efficient excystation.

  7. Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis

    PubMed Central

    Astier, Anne L.; Meiffren, Gregory; Freeman, Samuel; Hafler, David A.

    2006-01-01

    Loss of Treg function appears to be a critical factor in the pathogenesis of human autoimmune diseases. Attention has focused on defects of CD4+CD25high Tregs, and techniques have been developed to determine their function. In contrast, the role of Tr1 regulatory T cells, which secrete the antiinflammatory cytokine IL-10, in autoimmune disease has not been well assessed. CD46 is a newly defined costimulatory molecule for T cell activation, and CD46-costimulated human T cells induce a Tr1 Treg phenotype with considerable amounts of IL-10 secretion. Here, we examined the role of Tr1 cells in patients with multiple sclerosis (MS) by stimulating CD4+ T cells with anti-CD3 and -CD46 mAbs and measuring IL-10 secretion. There were striking defects in the induction of Tr1 cells with CD46 costimulation as measured by IL-10 but not IFN-γ secretion in patients with MS compared with healthy subjects. This loss of Tr1 cell–associated IL-10 secretion was specific to CD46 and not CD28 costimulation and was associated with an altered regulation of the CD46-Cy2 isoform that differentially regulates T cell function in a CD46-transgenic murine model. These data demonstrate a second major Treg defect in human autoimmune disease associated with the CD46 pathway. PMID:17099776

  8. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  9. Dynamics of regulatory networks in gastrin-treated adenocarcinoma cells.

    PubMed

    Doni Jayavelu, Naresh; Bar, Nadav

    2014-01-01

    Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs) and target genes (TGs). The hormone gastrin activates and stimulates signaling pathways leading to various cellular states through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network component analysis (NCA). Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four time ranges after gastrin treatment, namely immediate-early (IE), mid-early (ME), mid-late (ML) and very late (VL). Network analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms involved at each time range.

  10. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants

    PubMed Central

    De Rosa, Veronica; Galgani, Mario; Porcellini, Antonio; Colamatteo, Alessandra; Santopaolo, Marianna; Zuchegna, Candida; Romano, Antonella; De Simone, Salvatore; Procaccini, Claudio; La Rocca, Claudia; Carrieri, Pietro Biagio; Maniscalco, Giorgia Teresa; Salvetti, Marco; Buscarinu, Maria Chiara; Franzese, Adriana; Mozzillo, Enza; La Cava, Antonio; Matarese, Giuseppe

    2016-01-01

    Human regulatory T cells (Treg cells) that develop from conventional T cells (Tconv cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced Treg cells (iTreg cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iTreg cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2–related suppressive activity of iTreg cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of Treg cells in health and in autoimmunity. PMID:26414764

  11. Interleukin-2 treatment of tumor patients can expand regulatory T cells.

    PubMed

    Beyer, Marc

    2012-10-01

    Augmented numbers of regulatory T cells contribute to the overall immunosuppression in tumor patients. Interleukin-2 has been widely used in the clinics in anticancer therapy, yet evidence has accumulated that the major drawback, limiting clinical efficacy, is the expansion of regulatory T cells, which aggravates immunosuppression.

  12. Regulatory Elements in Vectors for Efficient Generation of Cell Lines Producing Target Proteins

    PubMed Central

    Maksimenko, O.; Gasanov, N. B.; Georgiev, P.

    2015-01-01

    To date, there has been an increasing number of drugs produced in mammalian cell cultures. In order to enhance the expression level and stability of target recombinant proteins in cell cultures, various regulatory elements with poorly studied mechanisms of action are used. In this review, we summarize and discuss the potential mechanisms of action of such regulatory elements. PMID:26483956

  13. Kinome Profiling of Regulatory T Cells: A Closer Look into a Complex Intracellular Network

    PubMed Central

    Tuettenberg, Andrea; Hahn, Susanne A.; Mazur, Johanna; Gerhold-Ay, Aslihan; Scholma, Jetse; Marg, Iris; Ulges, Alexander; Satoh, Kazuki; Bopp, Tobias; Joore, Jos; Jonuleit, Helmut

    2016-01-01

    Regulatory T cells (Treg) are essential for T cell homeostasis and maintenance of peripheral tolerance. They prevent activation of auto-reactive T effector cells (Teff) in the context of autoimmunity and allergy. Otherwise, Treg also inhibit effective immune responses against tumors. Besides a number of Treg-associated molecules such as Foxp3, CTLA-4 or GARP, known to play critical roles in Treg differentiation, activation and function, the involvement of additional regulatory elements is suggested. Herein, kinase activities seem to play an important role in Treg fine tuning. Nevertheless, our knowledge regarding the complex intracellular signaling pathways controlling phenotype and function of Treg is still limited and based on single kinase cascades so far. To gain a more comprehensive insight into the pathways determining Treg function we performed kinome profiling using a phosphorylation-based kinome array in human Treg at different activation stages compared to Teff. Here we have determined intriguing quantitative differences in both populations. Resting and activated Treg showed an altered pattern of CD28-dependent kinases as well as of those involved in cell cycle progression. Additionally, significant up-regulation of distinct kinases such as EGFR or CK2 in activated Treg but not in Teff not only resemble data we obtained in previous studies in the murine system but also suggest that those specific molecular activation patterns can be used for definition of the activation and functional state of human Treg. Taken together, detailed investigation of kinome profiles opens the possibility to identify novel molecular mechanisms for a better understanding of Treg biology but also for development of effective immunotherapies against unwanted T cell responses in allergy, autoimmunity and cancer. PMID:26881744

  14. Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis

    PubMed Central

    2012-01-01

    Background DNA vaccines represent promising therapeutic strategies in autoimmune disorders such as multiple sclerosis (MS). However, the precise mechanisms by which DNA vaccines induce immune regulation remain largely unknown. Here, we aimed to expand previous knowledge existing on the mechanisms of action of DNA vaccines in the animal model of MS, experimental autoimmune encephalomyelitis (EAE), by treating EAE mice with a DNA vaccine encoding the myelin oligodendrocyte glycoprotein (MOG), and exploring the therapeutic effects on the disease-induced inflammatory and neurodegenerative changes. Methods EAE was induced in C57BL6/J mice by immunization with MOG35-55 peptide. Mice were intramuscularly treated with a MOG-DNA vaccine or vehicle in prophylactic and therapeutic approaches. Histological studies were performed in central nervous system (CNS) tissue. Cytokine production and regulatory T cell (Treg) quantification were achieved by flow cytometry. Gene expression patterns were determined using microarrays, and the main findings were validated by real-time PCR. Results MOG-DNA treatment reduced the clinical and histopathological signs of EAE when administered in both prophylactic and therapeutic settings. Suppression of clinical EAE was associated with dampening of antigen (Ag)-specific proinflammatory Th1 and Th17 immune responses and, interestingly, expansion of Treg in the periphery and upregulation in the CNS of genes encoding neurotrophic factors and proteins involved in remyelination. Conclusions These results suggest for the first time that the beneficial effects of DNA vaccines in EAE are not limited to anti-inflammatory mechanisms, and DNA vaccines may also exert positive effects through hitherto unknown neuroprotective mechanisms. PMID:22727044

  15. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart

    PubMed Central

    Lovato, TyAnna L.; Cripps, Richard M.

    2016-01-01

    The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart. PMID:27695700

  16. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks

    NASA Technical Reports Server (NTRS)

    Huang, S.; Ingber, D. E.

    2000-01-01

    Development of characteristic tissue patterns requires that individual cells be switched locally between different phenotypes or "fates;" while one cell may proliferate, its neighbors may differentiate or die. Recent studies have revealed that local switching between these different gene programs is controlled through interplay between soluble growth factors, insoluble extracellular matrix molecules, and mechanical forces which produce cell shape distortion. Although the precise molecular basis remains unknown, shape-dependent control of cell growth and function appears to be mediated by tension-dependent changes in the actin cytoskeleton. However, the question remains: how can a generalized physical stimulus, such as cell distortion, activate the same set of genes and signaling proteins that are triggered by molecules which bind to specific cell surface receptors. In this article, we use computer simulations based on dynamic Boolean networks to show that the different cell fates that a particular cell can exhibit may represent a preprogrammed set of common end programs or "attractors" which self-organize within the cell's regulatory networks. In this type of dynamic network model of information processing, generalized stimuli (e.g., mechanical forces) and specific molecular cues elicit signals which follow different trajectories, but eventually converge onto one of a small set of common end programs (growth, quiescence, differentiation, apoptosis, etc.). In other words, if cells use this type of information processing system, then control of cell function would involve selection of preexisting (latent) behavioral modes of the cell, rather than instruction by specific binding molecules. Importantly, the results of the computer simulation closely mimic experimental data obtained with living endothelial cells. The major implication of this finding is that current methods used for analysis of cell function that rely on characterization of linear signaling pathways or

  17. Regulatory T cells (Tregs) monitoring in environmental diseases.

    PubMed

    Mićović, Vladimir; Vojniković, Bozo; Bulog, Aleksandar; Coklo, Miran; Malatestinić, Dulija; Mrakovcić-Sutić, Ines

    2009-09-01

    The prevalence of environmental diseases is increasing worldwide and these diseases are an onerous burden both to the individual and to the public health. Urban air pollution is a grave problem in majority of metropolises, which contain high levels of traffic congestion generating great amounts of genotoxic substances. The contribution of such environmental exposure to increase prevalence of many allergic, environmental diseases and multiple chemical sensitivity or other related syndromes, as a result of an abnormal immune response based on environmental damage of lymphocyte subsets, is marked. Benzene is one of the most important air pollutants that are emitted by oil industry, since they are involved in almost every refinery process. Volatile organic compounds (VOCs) are a major group of air pollutants and play a crucial role in ecological damages, disturbing the ecosystem and human health. The variability of pollutants is an important factor in determining human exposure to these chemicals. The immune system possess a capacity to distinguish between innocuous and harmful foreign antigens and controls this action by mechanisms of central and peripheral tolerance, where crucial role play regulatory T cells (Tregs). We analyzed the characteristics of human Tregs of inhabitants living near gasoline industry which have assessed moderate spyrometric tests and compared them with those situated in rural areas. Our data demonstrate that the chronic inhalation exposure increases the percentage of Tregs cells, but contrary those of inhabitants with decreased spirometry values have shown diminished number of Tregs, which may contribute to the new therapeutic approach of environmental diseases.

  18. The Cellular and Molecular Mechanisms of Immuno-Suppression by Human Type 1 Regulatory T Cells

    PubMed Central

    Gregori, Silvia; Goudy, Kevin S.; Roncarolo, Maria Grazia

    2011-01-01

    The immuno-regulatory mechanisms of IL-10-producing type 1 regulatory T (Tr1) cells have been widely studied over the years. However, several recent discoveries have shed new light on the cellular and molecular mechanisms that human Tr1 cells use to control immune responses and induce tolerance. In this review we outline the well known and newly discovered regulatory properties of human Tr1 cells and provide an in-depth comparison of the known suppressor mechanisms of Tr1 cells with FOXP3+ Treg. We also highlight the role that Tr1 cells play in promoting and maintaining tolerance in autoimmunity, allergy, and transplantation. PMID:22566914

  19. B-cell lymphoma gene regulatory networks: biological consistency among inference methods.

    PubMed

    de Matos Simoes, Ricardo; Dehmer, Matthias; Emmert-Streib, Frank

    2013-01-01

    Despite the development of numerous gene regulatory network (GRN) inference methods in the last years, their application, usage and the biological significance of the resulting GRN remains unclear for our general understanding of large-scale gene expression data in routine practice. In our study, we conduct a structural and a functional analysis of B-cell lymphoma GRNs that were inferred using 3 mutual information-based GRN inference methods: C3Net, BC3Net and Aracne. From a comparative analysis on the global level, we find that the inferred B-cell lymphoma GRNs show major differences. However, on the edge-level and the functional-level-that are more important for our biological understanding-the B-cell lymphoma GRNs were highly similar among each other. Also, the ranks of the degree centrality values and major hub genes in the inferred networks are highly conserved as well. Interestingly, the major hub genes of all GRNs are associated with the G-protein-coupled receptor pathway, cell-cell signaling and cell cycle. This implies that hub genes of the GRNs can be highly consistently inferred with C3Net, BC3Net, and Aracne, representing prominent targets for signaling pathways. Finally, we describe the functional and structural relationship between C3Net, BC3Net and Aracne gene regulatory networks. Our study shows that these GRNs that are inferred from large-scale gene expression data are promising for the identification of novel candidate interactions and pathways that play a key role in the underlying mechanisms driving cancer hallmarks. Overall, our comparative analysis reveals that these GRNs inferred with considerably different inference methods contain large amounts of consistent, method independent, biological information.

  20. TARGETING REGULATORY T CELLS IN THE TREATMENT OF TYPE 1 DIABETES MELLITUS

    PubMed Central

    Cabrera, Susanne M.; Rigby, Mark R.; Mirmira, Raghavendra G.

    2013-01-01

    Type 1 diabetes mellitus (T1DM) is a T cell-mediated autoimmune disease resulting in islet β cell destruction, hypoinsulinemia, and severely altered glucose homeostasis. T1DM has classically been attributed to the pathogenic actions of auto-reactive effector T cells (Teffs) on the β cell. Recent literature now suggests that a failure of a second T cell subtype, known as regulatory T cells (Tregs), plays a critical role in the development of T1DM. During immune homeostasis, Tregs counterbalance the actions of autoreactive Teff cells, thereby participating in peripheral tolerance. An imbalance in the activity between Teff and Tregs may be crucial in the breakdown of peripheral tolerance, leading to the development of T1DM. In this review, we summarize our current understanding of Treg function in health and in T1DM, and examine the effect of experimental therapies for T1DM on Treg cell number and function in both mice and humans. PMID:22709273

  1. TIGIT predominantly regulates the immune response via regulatory T cells

    PubMed Central

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J.; Teng, Michele W.L.; Smyth, Mark J.; Kuchroo, Vijay K.; Anderson, Ana C.

    2015-01-01

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings. PMID:26413872

  2. TIGIT predominantly regulates the immune response via regulatory T cells.

    PubMed

    Kurtulus, Sema; Sakuishi, Kaori; Ngiow, Shin-Foong; Joller, Nicole; Tan, Dewar J; Teng, Michele W L; Smyth, Mark J; Kuchroo, Vijay K; Anderson, Ana C

    2015-11-02

    Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings.

  3. Evolution of New cis-Regulatory Motifs Required for Cell-Specific Gene Expression in Caenorhabditis

    PubMed Central

    Félix, Marie-Anne

    2016-01-01

    Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change—less than 30%—in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR) binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression. PMID:27588814

  4. IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer.

    PubMed

    Kryczek, Ilona; Wu, Ke; Zhao, Ende; Wei, Shuang; Vatan, Linhua; Szeliga, Wojciech; Huang, Emina; Greenson, Joel; Chang, Alfred; Roliński, Jacek; Radwan, Piotr; Fang, Jingyuan; Wang, Guobin; Zou, Weiping

    2011-04-01

    Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.

  5. IL-10-Producing Regulatory B Cells Are Decreased in Patients with Common Variable Immunodeficiency

    PubMed Central

    Costa, Priscilla Ramos; Barros, Myrthes Toledo; Kalil, Jorge; Kokron, Cristina Maria

    2016-01-01

    Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immunodeficiency in adults. CVID patients often present changes in the frequency and function of B lymphocytes, reduced number of Treg cells, chronic immune activation, recurrent infections, high incidence of autoimmunity and increased risk for malignancies. We hypothesized that the frequency of B10 cells would be diminished in CVID patients because these cells play an important role in the development of Treg cells and in the control of T cell activation and autoimmunity. Therefore, we evaluated the frequency of B10 cells in CVID patients and correlated it with different clinical and immunological characteristics of this disease. Forty-two CVID patients and 17 healthy controls were recruited for this study. Cryopreserved PBMCs were used for analysis of T cell activation, frequency of Treg cells and characterization of B10 cells by flow cytometry. IL-10 production by sorted B cells culture and plasma sCD14 were determined by ELISA. We found that CVID patients presented decreased frequency of IL-10-producing CD24hiCD38hi B cells in different cell culture conditions and decreased frequency of IL-10-producing CD24hiCD27+ B cells stimulated with CpG+PIB. Moreover, we found that CVID patients presented lower secretion of IL-10 by sorting-purified B cells when compared to healthy controls. The frequency of B10 cells had no correlation with autoimmunity, immune activation and Treg cells in CVID patients. This work suggests that CVID patients have a compromised regulatory B cell compartment which is not correlated with clinical and immunological characteristics presented by these individuals. PMID:26991898

  6. A Role for Regulatory T Cells in a Murine Model of Epicutaneous Toluene Diisocyanate Sensitization

    PubMed Central

    Long, Carrie Mae; Marshall, Nikki B.; Lukomska, Ewa; Kashon, Michael L.; Meade, B. Jean; Shane, Hillary; Anderson, Stacey E.

    2016-01-01

    Toluene diisocyanate (TDI) is a leading cause of chemical-induced occupational asthma which impacts workers in a variety of industries worldwide. Recently, the robust regulatory potential of regulatory T cells (Tregs) has become apparent, including their functional role in the regulation of allergic disease; however, their function in TDI-induced sensitization has not been explored. To elucidate the kinetics, phenotype, and function of Tregs during TDI sensitization, BALB/c mice were dermally exposed (on each ear) to a single application of TDI (0.5–4% v/v) or acetone vehicle and endpoints were evaluated via RT-PCR and flow cytometry. The draining lymph node (dLN) Treg population expanded significantly 4, 7, and 9 days after single 4% TDI exposure. This population was identified using a variety of surface and intracellular markers and was found to be phenotypically heterogeneous based on increased expression of markers including CD103, CCR6, CTLA4, ICOS, and Neuropilin-1 during TDI sensitization. Tregs isolated from TDI-sensitized mice were significantly more suppressive compared with their control counterparts, further supporting a functional role for Tregs during TDI sensitization. Last, Tregs were depleted prior to TDI sensitization and an intensified sensitization response was observed. Collectively, these data indicate that Tregs exhibit a functional role during TDI sensitization. Because the role of Tregs in TDI sensitization has not been previously elucidated, these data contribute to the understanding of the immunologic mechanisms of chemical induced allergic disease. PMID:27103660

  7. Emerging roles of T helper 17 and regulatory T cells in lung cancer progression and metastasis.

    PubMed

    Marshall, Erin A; Ng, Kevin W; Kung, Sonia H Y; Conway, Emma M; Martinez, Victor D; Halvorsen, Elizabeth C; Rowbotham, David A; Vucic, Emily A; Plumb, Adam W; Becker-Santos, Daiana D; Enfield, Katey S S; Kennett, Jennifer Y; Bennewith, Kevin L; Lockwood, William W; Lam, Stephen; English, John C; Abraham, Ninan; Lam, Wan L

    2016-10-27

    Lung cancer is a leading cause of cancer-related deaths worldwide. Lung cancer risk factors, including smoking and exposure to environmental carcinogens, have been linked to chronic inflammation. An integral feature of inflammation is the activation, expansion and infiltration of diverse immune cell types, including CD4(+) T cells. Within this T cell subset are immunosuppressive regulatory T (Treg) cells and pro-inflammatory T helper 17 (Th17) cells that act in a fine balance to regulate appropriate adaptive immune responses.In the context of lung cancer, evidence suggests that Tregs promote metastasis and metastatic tumor foci development. Additionally, Th17 cells have been shown to be an integral component of the inflammatory milieu in the tumor microenvironment, and potentially involved in promoting distinct lung tumor phenotypes. Studies have shown that the composition of Tregs and Th17 cells are altered in the tumor microenvironment, and that these two CD4(+) T cell subsets play active roles in promoting lung cancer progression and metastasis.We review current knowledge on the influence of Treg and Th17 cells on lung cancer tumorigenesis, progression, metastasis and prognosis. Furthermore, we discuss the potential biological and clinical implications of the balance among Treg/Th17 cells in the context of the lung tumor microenvironment and highlight the potential prognostic function and relationship to metastasis in lung cancer.

  8. Identification of Treg-like cells in Tetraodon: insight into the origin of regulatory T subsets during early vertebrate evolution.

    PubMed

    Wen, Yi; Fang, Wei; Xiang, Li-Xin; Pan, Ruo-Lang; Shao, Jian-Zhong

    2011-08-01

    CD4(+)CD25(+)Foxp3(+) regulatory T cells (Treg cells) are critical for the maintenance of peripheral tolerance, and the suppression of autoimmune diseases and even tumors. Although Treg cells are well characterized in humans, little is known regarding their existence or occurrence in ancient vertebrates. In the present study, we report on the molecular and functional characterization of a Treg-like subset with the phenotype CD4-2(+)CD25-like(+)Foxp3-like(+) from a pufferfish (Tetraodon nigroviridis) model. Functional studies showed that depletion of this subset produced an enhanced mixed lymphocyte reaction (MLR) and nonspecific cytotoxic cell (NCC) activity in vitro, as well as inflammation of the intestine in vivo. The data presented here will not only enrich the knowledge of fish immunology but will also be beneficial for a better cross-species understanding of the evolutionary history of the Treg family and Treg-mediated regulatory networks in cellular immunity.

  9. T Regulatory Cells Support Plasma Cell Populations in the Bone Marrow.

    PubMed

    Glatman Zaretsky, Arielle; Konradt, Christoph; Dépis, Fabien; Wing, James B; Goenka, Radhika; Atria, Daniela Gomez; Silver, Jonathan S; Cho, Sunglim; Wolf, Amaya I; Quinn, William J; Engiles, Julie B; Brown, Dorothy C; Beiting, Daniel; Erikson, Jan; Allman, David; Cancro, Michael P; Sakaguchi, Shimon; Lu, Li-Fan; Benoist, Christophe O; Hunter, Christopher A

    2017-02-21

    Long-lived plasma cells (PCs) in the bone marrow (BM) are a critical source of antibodies after infection or vaccination, but questions remain about the factors that control PCs. We found that systemic infection alters the BM, greatly reducing PCs and regulatory T (Treg) cells, a population that contributes to immune privilege in the BM. The use of intravital imaging revealed that BM Treg cells display a distinct behavior characterized by sustained co-localization with PCs and CD11c-YFP(+) cells. Gene expression profiling indicated that BM Treg cells express high levels of Treg effector molecules, and CTLA-4 deletion in these cells resulted in elevated PCs. Furthermore, preservation of Treg cells during systemic infection prevents PC loss, while Treg cell depletion in uninfected mice reduced PC populations. These studies suggest a role for Treg cells in PC biology and provide a potential target for the modulation of PCs during vaccine-induced humoral responses or autoimmunity.

  10. Caveolin-1 regulates TCR signal strength and regulatory T-cell differentiation into alloreactive T cells.

    PubMed

    Schönle, Anne; Hartl, Frederike A; Mentzel, Jan; Nöltner, Theresa; Rauch, Katharina S; Prestipino, Alessandro; Wohlfeil, Sebastian A; Apostolova, Petya; Hechinger, Anne-Kathrin; Melchinger, Wolfgang; Fehrenbach, Kerstin; Guadamillas, Marta C; Follo, Marie; Prinz, Gabriele; Ruess, Ann-Katrin; Pfeifer, Dietmar; del Pozo, Miguel Angel; Schmitt-Graeff, Annette; Duyster, Justus; Hippen, Keli I; Blazar, Bruce R; Schachtrup, Kristina; Minguet, Susana; Zeiser, Robert

    2016-04-14

    Caveolin-1 (Cav-1) is a key organizer of membrane specializations and a scaffold protein that regulates signaling in multiple cell types. We found increased Cav-1 expression in human and murine T cells after allogeneic hematopoietic cell transplantation. Indeed, Cav-1(-/-)donor T cells caused less severe acute graft-versus-host disease (GVHD) and yielded higher numbers of regulatory T cells (Tregs) compared with controls. Depletion of Tregs from the graft abrogated this protective effect. Correspondingly, Treg frequencies increased when Cav-1(-/-)T cells were exposed to transforming growth factor-β/T-cell receptor (TCR)/CD28 activation or alloantigen stimulation in vitro compared with wild-type T cells. Mechanistically, we found that the phosphorylation of Cav-1 is dispensable for the control of T-cell fate by using a nonphosphorylatable Cav-1 (Y14F/Y14F) point-mutation variant. Moreover, the close proximity of lymphocyte-specific protein tyrosine kinase (Lck) to the TCR induced by TCR-activation was reduced in Cav-1(-/-)T cells. Therefore, less TCR/Lck clustering results in suboptimal activation of the downstream signaling events, which correlates with the preferential development into a Treg phenotype. Overall, we report a novel role for Cav-1 in TCR/Lck spatial distribution upon TCR triggering, which controls T-cell fate toward a regulatory phenotype. This alteration translated into a significant increase in the frequency of Tregs and reduced GVHD in vivo.

  11. Bovine γδ T Cells Are a Major Regulatory T Cell Subset

    PubMed Central

    Hope, Jayne; Taylor, Geraldine; Smith, Adrian L.; Cubillos-Zapata, Carolina; Charleston, Bryan

    2014-01-01

    In humans and mice, γδ T cells represent <5% of the total circulating lymphocytes. In contrast, the γδ T cell compartment in ruminants accounts for 15–60% of the total circulating mononuclear lymphocytes. Despite the existence of CD4+CD25high Foxp3+ T cells in the bovine system, these are neither anergic nor suppressive. We present evidence showing that bovine γδ T cells are the major regulatory T cell subset in peripheral blood. These γδ T cells spontaneously secrete IL-10 and proliferate in response to IL-10, TGF-β, and contact with APCs. IL-10–expressing γδ T cells inhibit Ag-specific and nonspecific proliferation of CD4+ and CD8+ T cells in vitro. APC subsets expressing IL-10 and TFG-β regulate proliferation of γδ T cells producing IL-10. We propose that γδ T cells are a major regulatory T cell population in the bovine system. PMID:24890724

  12. Hepatic CD206-positive macrophages express amphiregulin to promote the immunosuppressive activity of regulatory T cells in HBV infection.

    PubMed

    Dai, Kai; Huang, Ling; Sun, Xiaomei; Yang, Lihua; Gong, Zuojiong

    2015-12-01

    Hepatitis B virus is a major cause of chronic liver inflammation worldwide. Innate and adaptive immune responses work together to restrain or eliminate hepatitis B virus in the liver. Compromised or failed adaptive immune response results in persistent virus replication and spread. How to promote antiviral immunity is a research focus for hepatitis B virus prevention and therapy. In this study, we investigated the role of macrophages in the regulation of antiviral immunity. We found that F4/80(+)CD206(+)CD80(lo/+) macrophages were a particular hepatic macrophage subset that expressed amphiregulin in our mouse hepatitis B virus infection model. CD206(+) macrophage-derived amphiregulin promoted the immunosuppressive activity of intrahepatic regulatory T cells, demonstrated by higher expression of CTLA-4, ICOS, and CD39, as well as stronger inhibition of antiviral function of CD8(+) T cells. Amphiregulin-neutralizing antibody diminished the effect of CD206(+) macrophages on regulatory T cells. In addition, we found that CD206(+) macrophage-derived amphiregulin activated mammalian target of rapamycin signaling in regulatory T cells, and this mammalian target of rapamycin activation was essential for promotion of regulatory T cell activity by CD206(+) macrophages. Adoptive transfer of CD206(+) macrophages into hepatitis B virus-infected mice increased cytoplasmic hepatitis B virus DNA in hepatocytes and also increased serum hepatitis B surface antigen. The antiviral activity of CD8(+) T cells was decreased after macrophage transfer. Therefore, our research indicated that amphiregulin produced by CD206(+) macrophages plays an important role in modulating regulatory T cell function and subsequently restrains the antiviral activity of CD8(+) T cells. Our study offers new insights into the immunomodulation in hepatitis B virus infection.

  13. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    PubMed

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions.

  14. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma

    PubMed Central

    Krejcik, Jakub; Casneuf, Tineke; Nijhof, Inger S.; Verbist, Bie; Bald, Jaime; Plesner, Torben; Syed, Khaja; Liu, Kevin; van de Donk, Niels W. C. J.; Weiss, Brendan M.; Ahmadi, Tahamtan; Lokhorst, Henk M.; Mutis, Tuna

    2016-01-01

    Daratumumab targets CD38-expressing myeloma cells through a variety of immune-mediated mechanisms (complement-dependent cytotoxicity, antibody-dependent cell-mediated cytotoxicity, and antibody-dependent cellular phagocytosis) and direct apoptosis with crosslinking. These mechanisms may also target nonplasma cells that express CD38, which prompted evaluation of daratumumab’s effects on CD38-positive immune subpopulations. Peripheral blood (PB) and bone marrow (BM) from patients with relapsed/refractory myeloma from 2 daratumumab monotherapy studies were analyzed before and during therapy and at relapse. Regulatory B cells and myeloid-derived suppressor cells, previously shown to express CD38, were evaluated for immunosuppressive activity and daratumumab sensitivity in the myeloma setting. A novel subpopulation of regulatory T cells (Tregs) expressing CD38 was identified. These Tregs were more immunosuppressive in vitro than CD38-negative Tregs and were reduced in daratumumab-treated patients. In parallel, daratumumab induced robust increases in helper and cytotoxic T-cell absolute counts. In PB and BM, daratumumab induced significant increases in CD8+:CD4+ and CD8+:Treg ratios, and increased memory T cells while decreasing naïve T cells. The majority of patients demonstrated these broad T-cell changes, although patients with a partial response or better showed greater maximum effector and helper T-cell increases, elevated antiviral and alloreactive functional responses, and significantly greater increases in T-cell clonality as measured by T-cell receptor (TCR) sequencing. Increased TCR clonality positively correlated with increased CD8+ PB T-cell counts. Depletion of CD38+ immunosuppressive cells, which is associated with an increase in T-helper cells, cytotoxic T cells, T-cell functional response, and TCR clonality, represents possible additional mechanisms of action for daratumumab and deserves further exploration. PMID:27222480

  15. Requirements for efficient cell-type proportioning: regulatory timescales, stochasticity and lateral inhibition

    NASA Astrophysics Data System (ADS)

    Pfeuty, B.; Kaneko, K.

    2016-04-01

    The proper functioning of multicellular organisms requires the robust establishment of precise proportions between distinct cell types. This developmental differentiation process typically involves intracellular regulatory and stochastic mechanisms to generate cell-fate diversity as well as intercellular signaling mechanisms to coordinate cell-fate decisions at tissue level. We thus surmise that key insights about the developmental regulation of cell-type proportion can be captured by the modeling study of clustering dynamics in population of inhibitory-coupled noisy bistable systems. This general class of dynamical system is shown to exhibit a very stable two-cluster state, but also metastability, collective oscillations or noise-induced state hopping, which can prevent from timely and reliably reaching a robust and well-proportioned clustered state. To circumvent these obstacles or to avoid fine-tuning, we highlight a general strategy based on dual-time positive feedback loops, such as mediated through transcriptional versus epigenetic mechanisms, which improves proportion regulation by coordinating early and flexible lineage priming with late and firm commitment. This result sheds new light on the respective and cooperative roles of multiple regulatory feedback, stochasticity and lateral inhibition in developmental dynamics.

  16. The cell envelope stress response of Bacillus subtilis: from static signaling devices to dynamic regulatory network.

    PubMed

    Radeck, Jara; Fritz, Georg; Mascher, Thorsten

    2017-02-01

    The cell envelope stress response (CESR) encompasses all regulatory events that enable a cell to protect the integrity of its envelope, an essential structure of any bacterial cell. The underlying signaling network is particularly well understood in the Gram-positive model organism Bacillus subtilis. It consists of a number of two-component systems (2CS) and extracytoplasmic function σ factors that together regulate the production of both specific resistance determinants and general mechanisms to protect the envelope against antimicrobial peptides targeting the biogenesis of the cell wall. Here, we summarize the current picture of the B. subtilis CESR network, from the initial identification of the corresponding signaling devices to unraveling their interdependence and the underlying regulatory hierarchy within the network. In the course of detailed mechanistic studies, a number of novel signaling features could be described for the 2CSs involved in mediating CESR. This includes a novel class of so-called intramembrane-sensing histidine kinases (IM-HKs), which-instead of acting as stress sensors themselves-are activated via interprotein signal transfer. Some of these IM-HKs are involved in sensing the flux of antibiotic resistance transporters, a unique mechanism of responding to extracellular antibiotic challenge.

  17. OX40+ regulatory T cells in cutaneous squamous cell carcinoma suppress effector T cell responses and associate with metastatic potential

    PubMed Central

    Lai, Chester; August, Suzannah; Albibas, Amel; Behar, Ramnik; Cho, Shin-Young; Polak, Marta E; Theaker, Jeff; MacLeod, Amanda S; French, Ruth R; Glennie, Martin J; Al-Shamkhani, Aymen; Healy, Eugene

    2016-01-01

    Purpose Cutaneous squamous cell carcinoma (cSCC) is the most common human cancer with metastatic potential. Despite T cells accumulating around cSCCs, these tumors continue to grow and persist. To investigate reasons for failure of T cells to mount a protective response in cSCC, we focused on regulatory T cells (Tregs) as this suppressive population is well represented among the infiltrating lymphocytes. Experimental Design Flow cytometry was conducted on cSCC lymphocytes and in vitro functional assays were performed using sorted tumoral T cells. Lymphocyte subsets in primary cSCCs were quantified immunohistochemically. Results FOXP3+ Tregs were more frequent in cSCCs than in peripheral blood (p<0.0001, n=86 tumors). Tumoral Tregs suppressed proliferation of tumoral effector CD4+ (p=0.005, n=10 tumors) and CD8+ T cells (p=0.043, n=9 tumors) and inhibited interferon-γ secretion by tumoral effector T cells (p=0.0186, n=11 tumors). The costimulatory molecule OX40 was expressed predominantly on tumoral Tregs (p<0.0001, n=15 tumors) and triggering OX40 with an agonist anti-OX40 antibody overcame the suppression exerted by Tregs, leading to increased tumoral effector CD4+ lymphocyte proliferation (p=0.0098, n=10 tumors). Tregs and OX40+ lymphocytes were more abundant in primary cSCCs which metastasized than in primary cSCCs which had not metastasized (n=48 and n=49 tumors respectively). Conclusions Tregs in cSCCs suppress effector T cell responses and are associated with subsequent metastasis, suggesting a key role for Tregs in cSCC development and progression. OX40 agonism reversed the suppressive effects of Tregs in vitro, suggesting that targeting OX40 could benefit the subset of cSCC patients at high risk of metastasis. PMID:27034329

  18. Regulatory T Cells in the Tumor Microenvironment and Cancer Progression: Role and Therapeutic Targeting

    PubMed Central

    Chaudhary, Belal; Elkord, Eyad

    2016-01-01

    Recent years have seen significant efforts in understanding and modulating the immune response in cancer. In this context, immunosuppressive cells, including regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), have come under intense investigation for their proposed roles in suppressing tumor-specific immune responses and establishing an immunosuppressive tumor microenvironment, thus enabling tumor immune evasion. Additionally, recent evidence indicates that Tregs comprise diverse and heterogeneous subsets; phenotypically and functionally distinct subsets of tumor-infiltrating Tregs could contribute differently to cancer prognosis and clinical outcomes. Understanding Treg biology in the setting of cancer, and specifically the tumor microenvironment, is important for designing effective cancer therapies. In this review, we critically examine the role of Tregs in the tumor microenvironment and in cancer progression focusing on human studies. We also discuss the impact of current therapeutic modalities on Treg biology and the therapeutic opportunities for targeting Tregs to enhance anti-tumor immune responses and clinical benefits. PMID:27509527

  19. Human secondary lymphoid organs typically contain polyclonally-activated proliferating regulatory T cells.

    PubMed

    Peters, Jorieke H; Koenen, Hans J P M; Fasse, Esther; Tijssen, Henk J; Ijzermans, Jan N M; Groenen, Patricia J T A; Schaap, Nicolaas P M; Kwekkeboom, Jaap; Joosten, Irma

    2013-09-26

    Immunomodulating regulatory T-cell (Treg) therapy is a promising strategy in autoimmunity and transplantation. However, to achieve full clinical efficacy, better understanding of in vivo human Treg biology is warranted. Here, we demonstrate that in contrast to blood and bone marrow Tregs, which showed a resting phenotype, the majority of CD4(pos)CD25(pos)CD127(neg)FoxP3(pos) Tregs in secondary lymphoid organs were proliferating activated CD69(pos)CD45RA(neg) cells with a hyperdemethylated FOXP3 gene and a broad T-cell receptor-Vβ repertoire, implying polyclonal activation. Activated CD69(pos) Tregs were distributed over both T-cell and B-cell areas, distant from Aire(pos) and CD11c(pos) cells. In contrast to the anergic peripheral blood Tregs, lymphoid organ Tregs had significant ex vivo proliferative capacity and produced cytokines like interleukin-2, while revealing similar suppressive potential. Also, next to Treg-expressing chemokine receptors important for a prolonged stay in lymphoid organs, a significant part of the cells expressed peripheral tissue-associated, functional homing markers. In conclusion, our data suggest that human secondary lymphoid organs aid in the maintenance and regulation of Treg function and homeostasis. This knowledge may be exploited for further optimization of Treg immunotherapy, for example, by ex vivo selection of Tregs with capacity to migrate to lymphoid organs providing an in vivo platform for further Treg expansion.

  20. The protein tyrosine phosphatase SHP-1 modulates the suppressive activity of regulatory T cells

    PubMed Central

    Iype, Tessy; Sankarshanan, Mohan; Mauldin, Ileana S.; Mullins, David W.; Lorenz, Ulrike

    2010-01-01

    The importance of regulatory T cells (Treg) for immune tolerance is well recognized, yet the signaling molecules influencing their suppressive activity are relatively poorly understood. Here, through in vivo studies and complementary ex vivo studies, we make several important observations. First, we identify the cytoplasmic tyrosine phosphatase SHP-1 as a novel ‘endogenous brake’ and modifier of the suppressive ability of Treg cells; consistent with this notion, loss of SHP-1 expression strongly augments the ability of Treg cells to suppress inflammation in a mouse model. Second, specific pharmacological inhibition of SHP-1 enzymatic activity via the cancer drug sodium stibogluconate (SSG) potently augmented Treg cell suppressor activity both in vivo and ex vivo. Finally, through a quantitative imaging approach, we directly demonstrate that Treg cells prevent the activation of conventional T cells, and that SHP-1-deficient Treg cells are more efficient suppressors. Collectively, our data reveal SHP-1 as a critical modifier of Treg cell function, and a potential therapeutic target for augmenting Treg cell-mediated suppression in certain disease states. PMID:20952680

  1. Regulatory T Cells Are Critical for Clearing Influenza A Virus in Neonatal Mice

    PubMed Central

    Oliphant, Samantha; Lines, J. Louise; Hollifield, Melissa L.

    2015-01-01

    Abstract We previously reported that neonatal mice infected with influenza A virus (IAV) develop interstitial pneumonia characterized by reduced lung cytokine and chemokine responses. The failure of T cells to infiltrate the airways of neonates correlated with delayed clearance of sublethal IAV infections compared to adults. We hypothesized that negative regulators in the neonatal lungs such as cytokines or T regulatory (Treg) cells are responsible for these differences. Neonates either deficient in interleukin-10 (IL-10) or with T cells unresponsive to transforming growth factor-β signaling due to absence of SMAD family member 4 (Smad4) had similar IAV clearance kinetics to wild-type pups and no difference in T-cell responses. In contrast, functional depletion of Treg cells with anti-CD25 monoclonal antibody resulted in increased proportions of activated CD4+ T cells in the lungs, but failure to clear IAV. Similarly, scurfy pups (mutation in forkhead box P3 [Foxp3] rendering them deficient in Treg cells) had increased proportions of activated T cells in the lungs compared to littermate controls. Scurfy pups also had increased proportions of IL-13-producing CD4+ T cells. Interestingly, like anti-CD25-treated pups, scurfy pups had significantly elevated viral loads compared to controls. Based on these data, we conclude that Tregs are critical for clearance of IAV in neonatal mice. PMID:26501792

  2. Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells.

    PubMed

    De Simone, Marco; Arrigoni, Alberto; Rossetti, Grazisa; Gruarin, Paola; Ranzani, Valeria; Politano, Claudia; Bonnal, Raoul J P; Provasi, Elena; Sarnicola, Maria Lucia; Panzeri, Ilaria; Moro, Monica; Crosti, Mariacristina; Mazzara, Saveria; Vaira, Valentina; Bosari, Silvano; Palleschi, Alessandro; Santambrogio, Luigi; Bovo, Giorgio; Zucchini, Nicola; Totis, Mauro; Gianotti, Luca; Cesana, Giancarlo; Perego, Roberto A; Maroni, Nirvana; Pisani Ceretti, Andrea; Opocher, Enrico; De Francesco, Raffaele; Geginat, Jens; Stunnenberg, Hendrik G; Abrignani, Sergio; Pagani, Massimiliano

    2016-11-15

    Tumor-infiltrating regulatory T lymphocytes (Treg) can suppress effector T cells specific for tumor antigens. Deeper molecular definitions of tumor-infiltrating-lymphocytes could thus offer therapeutic opportunities. Transcriptomes of T helper 1 (Th1), Th17, and Treg cells infiltrating colorectal or non-small-cell lung cancers were compared to transcr