Sample records for cell seeding density

  1. Optimization of human corneal endothelial cell culture: density dependency of successful cultures in vitro.

    PubMed

    Peh, Gary S L; Toh, Kah-Peng; Ang, Heng-Pei; Seah, Xin-Yi; George, Benjamin L; Mehta, Jodhbir S

    2013-05-03

    Global shortage of donor corneas greatly restricts the numbers of corneal transplantations performed yearly. Limited ex vivo expansion of primary human corneal endothelial cells is possible, and a considerable clinical interest exists for development of tissue-engineered constructs using cultivated corneal endothelial cells. The objective of this study was to investigate the density-dependent growth of human corneal endothelial cells isolated from paired donor corneas and to elucidate an optimal seeding density for their extended expansion in vitro whilst maintaining their unique cellular morphology. Established primary human corneal endothelial cells were propagated to the second passage (P2) before they were utilized for this study. Confluent P2 cells were dissociated and seeded at four seeding densities: 2,500 cells per cm2 ('LOW'); 5,000 cells per cm2 ('MID'); 10,000 cells per cm2 ('HIGH'); and 20,000 cells per cm2 ('HIGH(×2)'), and subsequently analyzed for their propensity to proliferate. They were also subjected to morphometric analyses comparing cell sizes, coefficient of variance, as well as cell circularity when each culture became confluent. At the two lower densities, proliferation rates were higher than cells seeded at higher densities, though not statistically significant. However, corneal endothelial cells seeded at lower densities were significantly larger in size, heterogeneous in shape and less circular (fibroblastic-like), and remained hypertrophic after one month in culture. Comparatively, cells seeded at higher densities were significantly homogeneous, compact and circular at confluence. Potentially, at an optimal seeding density of 10,000 cells per cm2, it is possible to obtain between 10 million to 25 million cells at the third passage. More importantly, these expanded human corneal endothelial cells retained their unique cellular morphology. Our results demonstrated a density dependency in the culture of primary human corneal endothelial cells. Sub-optimal seeding density results in a decrease in cell saturation density, as well as a loss in their proliferative potential. As such, we propose a seeding density of not less than 10,000 cells per cm2 for regular passage of primary human corneal endothelial cells.

  2. Exploring the effects of cell seeding density on the differentiation of human pluripotent stem cells to brain microvascular endothelial cells.

    PubMed

    Wilson, Hannah K; Canfield, Scott G; Hjortness, Michael K; Palecek, Sean P; Shusta, Eric V

    2015-05-21

    Brain microvascular-like endothelial cells (BMECs) derived from human pluripotent stem cells (hPSCs) have significant promise as tools for drug screening and studying the structure and function of the BBB in health and disease. The density of hPSCs is a key factor in regulating cell fate and yield during differentiation. Prior reports of hPSC differentiation to BMECs have seeded hPSCs in aggregates, leading to non-uniform cell densities that may result in differentiation heterogeneity. Here we report a singularized-cell seeding approach compatible with hPSC-derived BMEC differentiation protocols and evaluate the effects of initial hPSC seeding density on the subsequent differentiation, yield, and blood-brain barrier (BBB) phenotype. A range of densities of hPSCs was seeded and differentiated, with the resultant endothelial cell yield quantified via VE-cadherin flow cytometry. Barrier phenotype of purified hPSC-derived BMECs was measured via transendothelial electrical resistance (TEER), and purification protocols were subsequently optimized to maximize TEER. Expression of characteristic vascular markers, tight junction proteins, and transporters was confirmed by immunocytochemistry and quantified by flow cytometry. P-glycoprotein and MRP-family transporter activity was assessed by intracellular accumulation assay. The initial hPSC seeding density of approximately 30,000 cells/cm(2) served to maximize the yield of VE-cadherin+ BMECs per input hPSC. BMECs displayed the highest TEER (>2,000 Ω × cm(2)) within this same range of initial seeding densities, although optimization of the BMEC purification method could minimize the seeding density dependence for some lines. Localization and expression levels of tight junction proteins as well as efflux transporter activity were largely independent of hPSC seeding density. Finally, the utility of the singularized-cell seeding approach was demonstrated by scaling the differentiation and purification process down from 6-well to 96-well culture without impacting BBB phenotype. Given the yield and barrier dependence on initial seeding density, the singularized-cell seeding approach reported here should enhance the reproducibility and scalability of hPSC-derived BBB models, particularly for the application to new pluripotent stem cell lines.

  3. Critical seeding density improves properties and translatability of self-assembling anatomically shaped knee menisci

    PubMed Central

    Hadidi, Pasha; Yeh, Timothy C.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2014-01-01

    A recent development in the field of tissue engineering is the rise of all-biologic, scaffold-free engineered tissues. Since these biomaterials rely primarily upon cells, investigation of initial seeding densities constitutes a particularly relevant aim for tissue engineers. In this study, a scaffold-free method was used to create fibrocartilage in the shape of the rabbit knee meniscus. The objectives of this study were: (i) to determine the minimum seeding density, normalized by an area of 44 mm2, necessary for the self-assembling process of fibrocartilage to occur, (ii) examine relevant biomechanical properties of engineered fibrocartilage, such as tensile and compressive stiffness and strength, and their relationship to seeding density, and (iii) identify a reduced, or optimal, number of cells needed to produce this biomaterial. It was found that a decreased initial seeding density, normalized by the area of the construct, produced superior mechanical and biochemical properties. Collagen per wet weight, glycosaminoglycans per wet weight, tensile properties, and compressive properties were all significantly greater in the 5 million cells per construct group as compared to the historical 20 million cells per construct group. Scanning electron microscopy demonstrated that a lower seeding density results in a denser tissue. Additionally, the translational potential of the self-assembling process for tissue engineering was improved though this investigation, as fewer cells may be used in the future. The results of this study underscore the potential for critical seeding densities to be investigated when researching scaffold-free engineered tissues. PMID:25234157

  4. Cell Seeding Densities in Autologous Chondrocyte Implantation Techniques for Cartilage Repair.

    PubMed

    Foldager, Casper Bindzus; Gomoll, Andreas H; Lind, Martin; Spector, Myron

    2012-04-01

    Cartilage repair techniques have been among the most intensively investigated treatments in orthopedics for the past decade, and several different treatment modalities are currently available. Despite the extensive research effort within this field, the generation of hyaline cartilage remains a considerable challenge. There are many parameters attendant to each of the cartilage repair techniques that can affect the amount and types of reparative tissue generated in the cartilage defect, and some of the most fundamental of these parameters have yet to be fully investigated. For procedures in which in vitro-cultured autologous chondrocytes are implanted under a periosteal or synthetic membrane cover, or seeded onto a porous membrane or scaffold, little is known about how the number of cells affects the clinical outcome. Few published clinical studies address the cell seeding density that was employed. The principal objective of this review is to provide an overview of the cell seeding densities used in cell-based treatments currently available in the clinic for cartilage repair. Select preclinical studies that have informed the use of specific cell seeding densities in the clinic are also discussed.

  5. Oxygen mapping: Probing a novel seeding strategy for bone tissue engineering.

    PubMed

    Westphal, Ines; Jedelhauser, Claudia; Liebsch, Gregor; Wilhelmi, Arnd; Aszodi, Attila; Schieker, Matthias

    2017-04-01

    Bone tissue engineering (BTE) utilizing biomaterial scaffolds and human mesenchymal stem cells (hMSCs) is a promising approach for the treatment of bone defects. The quality of engineered tissue is crucially affected by numerous parameters including cell density and the oxygen supply. In this study, a novel oxygen-imaging sensor was introduced to monitor the oxygen distribution in three dimensional (3D) scaffolds in order to analyze a new cell-seeding strategy. Immortalized hMSCs, pre-cultured in a monolayer for 30-40% or 70-80% confluence, were used to seed demineralized bone matrix (DBM) scaffolds. Real-time measurements of oxygen consumption in vitro were simultaneously performed by the novel planar sensor and a conventional needle-type sensor over 24 h. Recorded oxygen maps of the novel planar sensor revealed that scaffolds, seeded with hMSCs harvested at lower densities (30-40% confluence), exhibited rapid exponential oxygen consumption profile. In contrast, harvesting cells at higher densities (70-80% confluence) resulted in a very slow, almost linear, oxygen decrease due to gradual achieving the stationary growth phase. In conclusion, it could be shown that not only the seeding density on a scaffold, but also the cell density at the time point of harvest is of major importance for BTE. The new cell seeding strategy of harvested MSCs at low density during its log phase could be a useful strategy for an early in vivo implantation of cell-seeded scaffolds after a shorter in vitro culture period. Furthermore, the novel oxygen imaging sensor enables a continuous, two-dimensional, quick and convenient to handle oxygen mapping for the development and optimization of tissue engineered scaffolds. Biotechnol. Bioeng. 2017;114: 894-902. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Three-dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers

    NASA Technical Reports Server (NTRS)

    Ishaug-Riley, S. L.; Crane-Kruger, G. M.; Yaszemski, M. J.; Mikos, A. G.

    1998-01-01

    Neonatal rat calvarial osteoblasts were cultured in 90% porous, 75:25 poly(DL-lactic-co-glycolic acid) (PLGA) foam scaffolds for up to 56 days to examine the effects of the cell seeding density, scaffold pore size, and foam thickness on the proliferation and function of the cells in this three-dimensional environment. Osteoblasts were seeded at either 11.1 x 10(5) or 22.1 x 10(5) cells per cm2 onto PLGA scaffolds having pore sizes in the range of 150-300 or 500-710 microm with a thickness of either 1.9 or 3.2 mm. After 1 day in culture, 75.6 and 68.6% of the seeded cells attached and proliferated on the 1.9 mm thick scaffolds of 150-300 microm pore size for the low and high seeding densities, respectively. The number of osteoblasts continued to increase throughout the study and eventually leveled off near 56 days, as indicated by a quantitative DNA assay. Osteoblast/foam constructs with a low cell seeding density achieved comparable DNA content and alkaline phosphatase (ALPase) activity after 14 days, and mineralization results after 56 days to those with a high cell seeding density. A maximum penetration depth of osseous tissue of 220+/-40 microm was reached after 56 days in the osteoblast/foam constructs of 150-300 microm pore size initially seeded with a high cell density. For constructs of 500-710 microm pore size, the penetration depth was 190+/-40 microm under the same conditions. Scaffold pore size and thickness did not significantly affect the proliferation or function of osteoblasts as demonstrated by DNA content, ALPase activity, and mineralized tissue formation. These data show that comparable bone-like tissues can be engineered in vitro over a 56 day period using different rat calvarial osteoblast seeding densities onto biodegradable polymer scaffolds with pore sizes in the range of 150-710 microm. When compared with the results of a previous study where similar polymer scaffolds were seeded and cultured with marrow stromal cells, this study demonstrates that PLGA foams are suitable substrates for osteoblast growth and differentiated function independent of cell source.

  7. Structure-function relationships in the stem cell's mechanical world A: seeding protocols as a means to control shape and fate of live stem cells.

    PubMed

    Zimmermann, Joshua A; Knothe Tate, Melissa L

    2011-12-01

    Shape and fate are intrinsic manifestations of form and function at the cell scale. Here we hypothesize that seeding density and protocol affect the form and function of live embryonic murine mesenchymal stem cells (MSCs) and their nuclei. First, the imperative for study of live cells was demonstrated in studies showing changes in cell nucleus shape that were attributable to fixation per se. Hence, we compared live cell and nuclear volume and shape between groups of a model MSC line (C3H10T1/2) seeded at, or proliferated from 5,000 cells/cm2 to one of three target densities to achieve targeted development contexts. Cell volume was shown to be dependent on initial seeding density whereas nucleus shape was shown to depend on developmental context but not seeding density. Both smaller cell volumes and flatter nuclei were found to correlate with increased expression of markers for mesenchymal condensation as well as chondrogenic and osteogenic differentiation but a decreased expression of pre-condensation and adipogenic markers. Considering the data presented here, both seeding density and protocol significantly alter the morphology of mesenchymal stem cells even at very early stages of cell culture. Thus, these design parameters may play a critical role in the success of tissue engineering strategies seeking to recreate condensation events. However, a better understanding of how these changes in cell volume and nucleus shape relate to the differentiation of MSCs is important for prescribing precise seeding conditions necessary for the development of the desired tissue type. In a companion study (Part B, following), we address the effect of concomitant volume and shape changing stresses on spatiotemporal distribution of the cytoskeletal proteins actin and tubulin. Taken together, these studies bring us one step closer to our ultimate goal of elucidating the dynamics of nucleus and cell shape change as tissue templates grow (cell proliferation) and specialize (cell differentiation).

  8. Comparisons of human amniotic mesenchymal stem cell viability in FDA-approved collagen-based scaffolds: Implications for engineered diaphragmatic replacement.

    PubMed

    Shieh, Hester F; Graham, Christopher D; Brazzo, Joseph A; Zurakowski, David; Fauza, Dario O

    2017-06-01

    We sought to examine amniotic fluid mesenchymal stem cell (afMSC) viability within two FDA-approved collagen-based scaffolds, as a prerequisite to clinical translation of afMSC-based engineered diaphragmatic repair. Human afMSCs were seeded in a human-derived collagen hydrogel and in a bovine-derived collagen sheet at 3 matching densities. Cell viability was analyzed at 1, 3, and 5days using an ATP-based 3D bioluminescence assay. Statistical comparisons were by ANOVA (P<0.05). There was a highly significant 3-way interaction between scaffold type, seeding density, and time in 3D culture as determinants of cell viability, clearly favoring the human hydrogel (P<0.001). In both scaffolds, cell viability was highest at the highest seeding density of 150,000 cells/mL. Time in 3D culture impacted cell viability at the optimal seeding density in the human hydrogel, with the highest levels on days 1 (P<0.001) and 5 (P=0.05) with no significant effect in the bovine sheet (P=0.39-0.96). Among clinically-approved cell delivery vehicles, mesenchymal stem cell viability is significantly enhanced in a collagen hydrogel when compared with a collagen sheet. Cell viability can be further optimized by seeding density and time in 3D culture. These data further support the regulatory viability of clinical trials of engineered diaphragmatic repair. N/A (animal and laboratory study). Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cytotoxicity of zinc oxide (ZnO) nanoparticles is influenced by cell density and culture format.

    PubMed

    Heng, Boon Chin; Zhao, Xinxin; Xiong, Sijing; Ng, Kee Woei; Boey, Freddy Yin-Chiang; Loo, Joachim Say-Chye

    2011-06-01

    A parameter that has often been overlooked in cytotoxicity assays is the density and confluency of mammalian cell monolayers utilized for toxicology screening. Hence, this study investigated how different cell seeding densities influenced their response to cytotoxic challenge with ZnO nanoparticles. Utilizing the same volume (1 ml per well) and concentration range (5-40 μg/ml) of ZnO nanoparticles, contradictory results were observed with higher-density cell monolayers (BEAS-2B cells) obtained either by increasing the number of seeded cells per well (50,000 vs. 200,000 cells per well of 12-well plate) or by seeding the same numbers of cells (50,000) within a smaller surface area (12-well vs. 48-well plate, 4.8 vs. 1.2 cm(2), respectively). Further experiments demonstrated that the data may be skewed by inconsistency in the mass/number of nanoparticles per unit area of culture surface, as well as by inconsistent nanoparticle to cell ratio. To keep these parameters constant, the same number of cells (50,000 per well) were seeded on 12-well plates, but with the cells being seeded at the edge of the well for the experimental group (by tilting the plate) to form a dense confluent monolayer, as opposed to a sparse monolayer for the control group seeded in the conventional manner. Utilizing such an experimental set-up for the comparative evaluation of four different cell lines (BEAS-2B, L-929, CRL-2922 and C2C12), it was observed that the high cell density monolayer was consistently more resistant to the cytotoxic effects of ZnO nanoparticles compared to the sparse monolayer for all four different cell types, with the greatest differences being observed above a ZnO concentration of 10 μg/ml. Hence, the results of this study demonstrate the need for the standardization of cell culture protocols utilized for toxicology screening of nanoparticles, with respect to cell density and mass/number of nanoparticles per unit area of culture surface.

  10. Evaluating 3D bone tissue engineered constructs with different seeding densities using the alamarBlue assay and the effect on in vivo bone formation.

    PubMed

    Wilson, C E; Dhert, W J A; Van Blitterswijk, C A; Verbout, A J; De Bruijn, J D

    2002-12-01

    Bone tissue engineering using patient derived cells seeded onto porous scaffolds has gained much attention in recent years. Evaluating the viability of these 3D constructs is an essential step in optimizing the process. The alamarBlue (aB) assay was evaluated for its potential to follow in vitro cell proliferation on architecturally standardized hydroxyapatite scaffolds. The impact of the aB assayed and seeding density on subsequent in vivo bone formation was investigated. Twelve scaffolds were seeded with various densities from 250 to 2.5x10(6) cells/scaffold and assay by aB at 5 time points during the 7-day culture period. Twelve additional scaffolds were seeded with 2.5x10(5) cells/scaffold. Two control and 2 aB treated scaffolds were subcutaneously implanted into each of 6 nude mice for 6 weeks. Four observers ranked bone formation using a pair wise comparison of histological sections form each mouse. The aB assay successfully followed cell proliferation, however, the diffusion kinetics of the 3D constructs must be considered. The influence of in vitro aB treatment on subsequent in vivo bone formation cannot be ruled out but was not shown to be significant in the current study. The aB assay appears to be quite promising for evaluating a maximum or end-point viability of 3D tissue engineered constructs. Finally, higher seeding densities resulted in more observed bone formation.

  11. All-trans-retinoic acid and 13-cis-retinoic acid: pharmacokinetics and biological activity in different cell culture models of human keratinocytes.

    PubMed

    Schroeder, M; Zouboulis, C C

    2007-02-01

    Despite its known biological effect on epithelial cells, 13- CIS-retinoic acid shows low binding affinity to either cellular retinoic acid-binding proteins or nuclear retinoid receptors compared to its isomer all- TRANS-retinoic acid. We have postulated a prodrug-drug relation with 13- CIS-retinoic acid which isomerizes to all- TRANS-retinoic acid. On the other hand, the biological effects of these two compounds can differ in the widely used cell culture models of HaCaT and normal primary keratinocytes. In this study, we seeded HaCaT and normal keratinocytes at high densities leading to early confluence in order to imitate high keratinocyte proliferation, such as in acne and psoriasis, while to model decreased keratinocyte proliferation, as in aged and steroid-damaged skin, cells were seeded at a low density. High performance liquid chromatography was administered to examine retinoid uptake and metabolism in monolayer HaCaT and normal keratinocyte cultures and the 4-methylumbelliferyl heptanoate assay to estimate cell growth at different cell densities. Major qualitative and quantitative differences were detected in the two cell types regarding intracellular 13- CIS-retinoic acid isomerization to all- TRANS-retinoic acid. On the other hand, the two retinoic acid isomers showed similar effects on cell growth of both cell types tested with increasing proliferation at low cell densities, but being rather inactive at high ones in normal keratinocytes and exhibiting an antiproliferative effect in HaCaT keratinocytes. The missing effect of retinoids on cell proliferation in high seeding densities of normal keratinocytes may indicate that the normalizing activity of retinoids on hyperkeratotic diseases, such as acne or psoriasis, is likely to be carried out by modulation of cell differentiation than cell growth. On the other hand, induced keratinocyte proliferation in low seeding densities may provide an explanation for the acanthosis induced by topical retinoids in aged and steroid-damaged skin.

  12. Tissue engineering of ligaments: a comparison of bone marrow stromal cells, anterior cruciate ligament, and skin fibroblasts as cell source.

    PubMed

    Van Eijk, F; Saris, D B F; Riesle, J; Willems, W J; Van Blitterswijk, C A; Verbout, A J; Dhert, W J A

    2004-01-01

    Anterior cruciate ligament (ACL) reconstruction surgery still has important problems to overcome, such as "donor site morbidity" and the limited choice of grafts in revision surgery. Tissue engineering of ligaments may provide a solution for these problems. Little is known about the optimal cell source for tissue engineering of ligaments. The aim of this study is to determine the optimal cell source for tissue engineering of the anterior cruciate ligament. Bone marrow stromal cells (BMSCs), ACL, and skin fibroblasts were seeded onto a resorbable suture material [poly(L-lactide/glycolide) multifilaments] at five different seeding densities, and cultured for up to 12 days. All cell types tested attached to the suture material, proliferated, and synthesized extracellular matrix rich in collagen type I. On day 12 the scaffolds seeded with BMSCs showed the highest DNA content (p < 0.01) and the highest collagen production (p < 0.05 for the two highest seeding densities). Scaffolds seeded with ACL fibroblasts showed the lowest DNA content and collagen production. Accordingly, BMSCs appear to be the most suitable cells for further study and development of tissue-engineered ligament.

  13. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    NASA Technical Reports Server (NTRS)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  14. Characterization and optimization of cell seeding in scaffolds by factorial design: quality by design approach for skeletal tissue engineering.

    PubMed

    Chen, Yantian; Bloemen, Veerle; Impens, Saartje; Moesen, Maarten; Luyten, Frank P; Schrooten, Jan

    2011-12-01

    Cell seeding into scaffolds plays a crucial role in the development of efficient bone tissue engineering constructs. Hence, it becomes imperative to identify the key factors that quantitatively predict reproducible and efficient seeding protocols. In this study, the optimization of a cell seeding process was investigated using design of experiments (DOE) statistical methods. Five seeding factors (cell type, scaffold type, seeding volume, seeding density, and seeding time) were selected and investigated by means of two response parameters, critically related to the cell seeding process: cell seeding efficiency (CSE) and cell-specific viability (CSV). In addition, cell spatial distribution (CSD) was analyzed by Live/Dead staining assays. Analysis identified a number of statistically significant main factor effects and interactions. Among the five seeding factors, only seeding volume and seeding time significantly affected CSE and CSV. Also, cell and scaffold type were involved in the interactions with other seeding factors. Within the investigated ranges, optimal conditions in terms of CSV and CSD were obtained when seeding cells in a regular scaffold with an excess of medium. The results of this case study contribute to a better understanding and definition of optimal process parameters for cell seeding. A DOE strategy can identify and optimize critical process variables to reduce the variability and assists in determining which variables should be carefully controlled during good manufacturing practice production to enable a clinically relevant implant.

  15. Three-dimensional organization of dermal fibroblasts by macromass culture.

    PubMed

    Deshpande, Manisha

    2008-01-01

    The three-dimensional organization of cells by high-cell-seeding-density culture, termed 'macromass culture', is described. By macromass culture, dermal fibroblasts can be made to organize themselves into a unified three-dimensional form without the aid of a scaffold, and macroscopic constructs, named macromasses, can be made wholly from cells. The sole factor causing three-dimensional organization is culture of cells at high cell seeding density per unit area. No scaffold or extraneous matrix is used for the generation of macromasses; they are of completely cellular origin. No other agents or external influences such as tissue-inducing chemicals, tissue-inducing growth factors, substratum with special properties, rotational culture, centrifugation etc. are employed for macromass formation, and all seeded cells become part of the cohesive construct. These three-dimensional constructs have the potential for use as in vitro tissue analogues, and a possible application for in vitro cytotoxicity testing is demonstrated.

  16. Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering.

    PubMed

    Shimizu, Kazunori; Ito, Akira; Honda, Hiroyuki

    2007-09-01

    Bone tissue engineering has been investigated as an alternative strategy for autograft transplantation. In the process of tissue engineering, cell seeding into three-dimensional (3-D) scaffolds is the first step for constructing 3-D tissues. We have proposed a methodology of cell seeding into 3-D porous scaffolds using magnetic force and magnetite nanoparticles, which we term Mag-seeding. In this study, we applied this Mag-seeding technique to bone tissue engineering using bone marrow stromal cells (BMSCs) and 3-D hydroxyapatite (HA) scaffolds. BMSCs were magnetically labeled with our original magnetite cationic liposomes (MCLs) having a positive surface charge to improve adsorption to cell surface. Magnetically labeled BMSCs were seeded onto a scaffold, and a 1-T magnet was placed under the scaffold. By using Mag-seeding, the cells were successfully seeded into the internal space of scaffolds with a high cell density. The cell seeding efficiency into HA scaffolds by Mag-seeding was approximately threefold larger than that by static-seeding (conventional method, without a magnet). After a 14-d cultivation period using the osteogenic induction medium by Mag-seeding, the level of two representative osteogenic markers (alkaline phosphatase and osteocalcin) were significantly higher than those by static-seeding. These results indicated that Mag-seeding of BMSCs into HA scaffolds is an effective approach to bone tissue engineering.

  17. Adhesion of a monolayer of fibroblast cells to fibronectin under sonic vibrations in a bioreactor.

    PubMed

    Titze, Ingo R; Klemuk, Sarah A; Lu, Xiaoying

    2012-06-01

    We examined cell adhesion to a surface under vibrational forces approximating those of phonation. A monolayer of human fibroblast cells was seeded on a fibronectin-coated glass coverslip, which was attached to either the rotating part or the stationary part of a rheometer-bioreactor. The temperature, humidity, carbon dioxide level, nutrients, and cell seeding density were controlled. The cell density was on the order of 1,000 to 5,000 cells per square millimeter. Target stresses above 1 kPa at an oscillatory frequency of 100 Hz were chosen to reflect conditions of vocal fold tissue vibration. Fibronectin coating provided enough adhesion to support at least 2 kPa of oscillating stress, but only about 0.1 kPa of steady rotational shear. For stresses exceeding those limits, the cells were not able to adhere to the thin film of fibronectin. Cells will adhere to a planar surface under stresses typical of phonation, which provide a more stringent test than adherence in a 3-dimensional matrix. The density of cell seeding on the coverslip played a role in cell-extracellular matrix adhesion, in that the cells adhered to each other more than to the fibronectin coating when the cells were nearly confluent.

  18. Human dental pulp stem cell adhesion and detachment in polycaprolactone electrospun scaffolds under direct perfusion

    PubMed Central

    Paim, A.; Braghirolli, D.I.; Cardozo, N.S.M.; Pranke, P.; Tessaro, I.C.

    2018-01-01

    Cell adhesion in three-dimensional scaffolds plays a key role in tissue development. However, stem cell behavior in electrospun scaffolds under perfusion is not fully understood. Thus, an investigation was made on the effect of flow rate and shear stress, adhesion time, and seeding density under direct perfusion in polycaprolactone electrospun scaffolds on human dental pulp stem cell detachment. Polycaprolactone scaffolds were electrospun using a solvent mixture of chloroform and methanol. The viable cell number was determined at each tested condition. Cell morphology was analyzed by confocal microscopy after various incubation times for static cell adhesion with a high seeding density. Scanning electron microscopy images were obtained before and after perfusion for the highest flow rate tested. The wall pore shear stress was calculated for all tested flow rates (0.005–3 mL/min). An inversely proportional relationship between adhesion time with cell detachment under perfusion was observed. Lower flow rates and lower seeding densities reduced the drag of cells by shear stress. However, there was an operational limit for the lowest flow rate that can be used without compromising cell viability, indicating that a flow rate of 0.05 mL/min might be more suitable for the tested cell culture in electrospun scaffolds under direct perfusion. PMID:29590258

  19. Controlled cell-seeding methodologies: a first step toward clinically relevant bone tissue engineering strategies.

    PubMed

    Impens, Saartje; Chen, Yantian; Mullens, Steven; Luyten, Frank; Schrooten, Jan

    2010-12-01

    The repair of large and complex bone defects could be helped by a cell-based bone tissue engineering strategy. A reliable and consistent cell-seeding methodology is a mandatory step in bringing bone tissue engineering into the clinic. However, optimization of the cell-seeding step is only relevant when it can be reliably evaluated. The cell seeding efficiency (CSE) plays a fundamental role herein. Results showed that cell lysis and the definition used to determine the CSE played a key role in quantifying the CSE. The definition of CSE should therefore be consistent and unambiguous. The study of the influence of five drop-seeding-related parameters within the studied test conditions showed that (i) the cell density and (ii) the seeding vessel did not significantly affect the CSE, whereas (iii) the volume of seeding medium-to-free scaffold volume ratio (MFR), (iv) the seeding time, and (v) the scaffold morphology did. Prolonging the incubation time increased the CSE up to a plateau value at 4 h. Increasing the MFR or permeability by changing the morphology of the scaffolds significantly reduced the CSE. These results confirm that cell seeding optimization is needed and that an evidence-based selection of the seeding conditions is favored.

  20. Density gradients at hydrogel interfaces for enhanced cell penetration.

    PubMed

    Simona, B R; Hirt, L; Demkó, L; Zambelli, T; Vörös, J; Ehrbar, M; Milleret, V

    2015-04-01

    We report that stiffness gradients facilitate infiltration of cells through otherwise cell-impermeable hydrogel interfaces. By enabling the separation of hydrogel manufacturing and cell seeding, and by improving cell colonization of additively manufactured hydrogel elements, interfacial density gradients present a promising strategy to progress in the creation of 3D tissue models.

  1. Modulation of chondrogenic differentiation of human mesenchymal stem cells in jellyfish collagen scaffolds by cell density and culture medium.

    PubMed

    Pustlauk, W; Paul, B; Brueggemeier, S; Gelinsky, M; Bernhardt, A

    2017-06-01

    Studies on tissue-engineering approaches for the regeneration of traumatized cartilage focus increasingly on multipotent human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes. The present study applied porous scaffolds made of collagen from the jellyfish Rhopilema esculentum for the in vitro chondrogenic differentiation of hMSCs. Culture conditions in those scaffolds differ from conditions in high-density pellet cultures, making a re-examination of these data necessary. We systematically investigated the influence of seeding density, basic culture media [Dulbecco's modified Eagle's medium (DMEM), α-minimum essential medium (α-MEM)] with varying glucose content and supplementation with fetal calf serum (FCS) or bovine serum albumin (BSA) on the chondrogenic differentiation of hMSCs. Gene expression analyses of selected markers for chondrogenic differentiation and hypertrophic development were conducted. Furthermore, the production of cartilage extracellular matrix (ECM) was analysed by quantification of sulphated glycosaminoglycan and collagen type II contents. The strongest upregulation of chondrogenic markers, along with the highest ECM deposition was observed in scaffolds seeded with 2.4 × 10 6 cells/cm 3 after cultivation in high-glucose DMEM and 0.125% BSA. Lower seeding densities compared to high-density pellet cultures were sufficient to induce in vitro chondrogenic differentiation of hMSCs in collagen scaffolds, which reduces the amount of cells required for the seeding of scaffolds and thus the monolayer expansion period. Furthermore, examination of the impact of FCS and α-MEM on chondrogenic MSC differentiation is an important prerequisite for the development of an osteochondral medium for simultaneous osteogenic and chondrogenic differentiation in biphasic scaffolds for osteochondral tissue regeneration. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. High seeding density of human chondrocytes in agarose produces tissue-engineered cartilage approaching native mechanical and biochemical properties.

    PubMed

    Cigan, Alexander D; Roach, Brendan L; Nims, Robert J; Tan, Andrea R; Albro, Michael B; Stoker, Aaron M; Cook, James L; Vunjak-Novakovic, Gordana; Hung, Clark T; Ateshian, Gerard A

    2016-06-14

    Animal cells have served as highly controllable model systems for furthering cartilage tissue engineering practices in pursuit of treating osteoarthritis. Although successful strategies for animal cells must ultimately be adapted to human cells to be clinically relevant, human chondrocytes are rarely employed in such studies. In this study, we evaluated the applicability of culture techniques established for juvenile bovine and adult canine chondrocytes to human chondrocytes obtained from fresh or expired osteochondral allografts. Human chondrocytes were expanded and encapsulated in 2% agarose scaffolds measuring ∅3-4mm×2.3mm, with cell seeding densities ranging from 15 to 90×10(6)cells/mL. Subsets of constructs were subjected to transient or sustained TGF-β treatment, or provided channels to enhance nutrient transport. Human cartilaginous constructs physically resembled native human cartilage, and reached compressive Young's moduli of up to ~250kPa (corresponding to the low end of ranges reported for native knee cartilage), dynamic moduli of ~950kPa (0.01Hz), and contained 5.7% wet weight (%/ww) of glycosaminoglycans (≥ native levels) and 1.5%/ww collagen. We found that the initial seeding density had pronounced effects on tissue outcomes, with high cell seeding densities significantly increasing nearly all measured properties. Transient TGF-β treatment was ineffective for adult human cells, and tissue construct properties plateaued or declined beyond 28 days of culture. Finally, nutrient channels improved construct mechanical properties, presumably due to enhanced rates of mass transport. These results demonstrate that our previously established culture system can be successfully translated to human chondrocytes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels.

    PubMed

    Bian, Liming; Zhai, David Y; Zhang, Emily C; Mauck, Robert L; Burdick, Jason A

    2012-04-01

    Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matrix, and the hypertrophic differentiation of human MSCs encapsulated in hyaluronic acid (HA) hydrogels during long term culture. After 70 days of culture, dynamic compressive loading increased the mechanical properties, as well as the glycosaminoglycan (GAG) and collagen contents of HA hydrogel constructs in a seeding density dependent manner. The impact of loading on HA hydrogel construct properties was delayed when applied to lower density (20 million MSCs/ml) compared to higher seeding density (60 million MSCs/ml) constructs. Furthermore, loading promoted a more uniform spatial distribution of cartilage matrix in HA hydrogels with both seeding densities, leading to significantly improved mechanical properties as compared to free swelling constructs. Using a previously developed in vitro hypertrophy model, dynamic compressive loading was also shown to significantly reduce the expression of hypertrophic markers by human MSCs and to suppress the degree of calcification in MSC-seeded HA hydrogels. Findings from this study highlight the importance of mechanical loading in stem cell based therapy for cartilage repair in improving neocartilage properties and in potentially maintaining the cartilage phenotype.

  4. Multipotent Mesenchymal Stromal Stem Cell Expansion by Plating Whole Bone Marrow at a Low Cellular Density: A More Advantageous Method for Clinical Use

    PubMed Central

    Mareschi, Katia; Rustichelli, Deborah; Calabrese, Roberto; Gunetti, Monica; Sanavio, Fiorella; Castiglia, Sara; Risso, Alessandra; Ferrero, Ivana; Tarella, Corrado; Fagioli, Franca

    2012-01-01

    Mesenchymal stem cells (MSCs) are a promising source for cell therapy due to their pluripotency and immunomodulant proprieties. As the identification of “optimal” conditions is important to identify a standard procedure for clinical use. Percoll, Ficoll and whole bone marrow directly plated were tested from the same sample as separation methods. The cells were seeded at the following densities: 100 000, 10 000, 1000, 100, 10 cells/cm2. After reaching confluence, the cells were detached, pooled and re-plated at 1000, 500, 100, and 10 cells/cm2. Statistical analyses were performed. Cumulative Population Doublings (PD) did not show significant differences for the separation methods and seeding densities but only for the plating density. Some small quantity samples plated in T25 flasks at plating densities of 10 and 100 cells/cm2 did not produce any expansion. However, directly plated whole bone marrow resulted in a more advantageous method in terms of CFU-F number, cellular growth and minimal manipulation. No differences were observed in terms of gross morphology, differentiation potential or immunophenotype. These data suggest that plating whole bone marrow at a low cellular density may represent a good procedure for MSC expansion for clinical use. PMID:23715383

  5. ERRATUM: In vivo evaluation of a neural stem cell-seeded prosthesis In vivo evaluation of a neural stem cell-seeded prosthesis

    NASA Astrophysics Data System (ADS)

    Purcell, E. K.; Seymour, J. P.; Yandamuri, S.; Kipke, D. R.

    2009-08-01

    In the published article, an error was made in figure 5. Specifically, the three-month, NSC-seeded image is a duplicate of the six-week image, and the one-day, probe alone image is a duplicate of the three-month image. The corrected figure is reproduced below. Figure 5 Figure 5. Glial encapsulation of each probe condition over the 3 month time course. Ox-42 labeled microglia and GFAP labeled astrocytes are shown. Images are taken from probes implanted in the same animal at each time point. NSC seeding was associated with reduced non-neuronal density at 1 day post-implantation in comparison to alginate coated probes and at the 1 week time point in comparison to untreated probes (P < 0.001). Glial activation is at its overall peak 1 week after insertion. A thin encapsulation layer surrounds probes at the 6 week and 3 month time points, with NSC-seeded probes having the greatest surrounding non-neuronal density P < 0.001). Interestingly, microglia appeared to have a ramified, or `surveilling', morphology surrounding a neural stem cell-alginate probe initially, whereas activated cells with an amoeboid structure were found near an alginate probe in the same hemisphere of one animal (left panels).

  6. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    NASA Astrophysics Data System (ADS)

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-12-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process.

  7. Enhancing Post-Expansion Chondrogenic Potential of Costochondral Cells in Self-Assembled Neocartilage

    PubMed Central

    Murphy, Meghan K.; Huey, Daniel J.; Reimer, Andrew J.; Hu, Jerry C.; Athanasiou, Kyriacos A.

    2013-01-01

    The insufficient healing capacity of articular cartilage necessitates mechanically functional biologic tissue replacements. Using cells to form biomimetic cartilage implants is met with the challenges of cell scarcity and donor site morbidity, requiring expanded cells that possess the ability to generate robust neocartilage. To address this, this study assesses the effects of expansion medium supplementation (bFGF, TFP, FBS) and self-assembled construct seeding density (2, 3, 4 million cells/5 mm dia. construct) on the ability of costochondral cells to generate biochemically and biomechanically robust neocartilage. Results show TFP (1 ng/mL TGF-β1, 5 ng/mL bFGF, 10 ng/mL PDGF) supplementation of serum-free chondrogenic expansion medium enhances the post-expansion chondrogenic potential of costochondral cells, evidenced by increased glycosaminoglycan content, decreased type I/II collagen ratio, and enhanced compressive properties. Low density (2 million cells/construct) enhances matrix synthesis and tensile and compressive mechanical properties. Combined, TFP and Low density interact to further enhance construct properties. That is, with TFP, Low density increases type II collagen content by over 100%, tensile stiffness by over 300%, and compressive moduli by over 140%, compared with High density. In conclusion, the interaction of TFP and Low density seeding enhances construct material properties, allowing for a mechanically functional, biomimetic cartilage to be formed using clinically relevant costochondral cells. PMID:23437288

  8. Aggregation of Human Eyelid Adipose-derived Stem Cells by Human Body Fluids

    PubMed Central

    Song, Yeonhwa; Yun, Sujin; Yang, Hye Jin; Yoon, A Young; Kim, Haekwon

    2012-01-01

    Fetal bovine serum (FBS) is the most frequently used serum for the cultivation of mammalian cells. However, since animal-derived materials might not be appropriate due to safety issues, allogeneic human serum (HS) has been used to replace FBS, particularly for the culture of human cells. While there has been a debate about the advantages of HS, its precise effect on human adult stem cells have not been clarified. The present study aimed to investigate the effect of HS on the human eyelid adipose stem cells (HEACs) in vitro. When HEACs were cultivated in a medium containing 10% HS, many cells moved into several spots and aggregated there. The phenomenon was observed as early as 9 days following 10% HS treatment, and 12 days following 5% HS plus 5% FBS treatment. However, the aggregation was never observed when the same cells were cultivated with 10% FBS or bovine serum albumin. To examine whether cell density might affect the aggregation, cells were seeded with different densities on 12-well dish. Until the beginning of aggregation, cells seeded at low densities exhibited the longest culture period of 16 days whereas cells seeded at high densities showed the shortest period of 9 days to form aggregation. The number of cells was 15.1±0.2×104 as the least for the low density group, and 29.3±2.8×104 as the greatest for the high density group. When human cord blood serum or normal bovine serum was examined for the same effect on HEACs, interestingly, cord blood serum induced the aggregation of cells whereas bovine serum treatment has never induced. When cells were cultivated with 10% HS for 9 days, they were obtained and analyzed by RT-PCR. Compared to FBS-cultivated HEACs, HS-cultivated HEACs did not express VIM, and less expressed GATA4, PALLD. On the other hand, HS-cultivated HEACs expressed MAP2 more than FBS-cultivated HEACs. In conclusion, human adult stem cells could move and form aggregates by the treatment with human body fluids. PMID:25949109

  9. Apoptotic death in cerebral hemisphere cells is density dependent and modulated by transient oxygen and glucose deprivation.

    PubMed

    Yavin, E; Billia, D M

    1997-03-01

    Flow cytometry, light and fluorescence microscopy, and designated biochemical techniques were used to examine the type of death which occurs in cerebral cortex cells when grown under crowded vs. sparse conditions or after brief anoxia/hypoglycemia. A 4 hr episode of anoxia combined with glucose deprivation enhanced apoptotic cell death as assessed by 4',6-diamidino-2-phenylindole (DAPI) staining and reduced neutral red eye uptake. An additional form of cell death involving exclusion of the nucleus was recorded by time lapse cinematography and DAPI stain. The presence of the endonuclease inhibitor aurintricarboxylic acid (0.1 mM) reduced cell death by 56.6%, while the protein and RNA synthesis inhibitors actinomycin D and cycloheximide (each at 5 micrograms/ml) effectively decreased cell death by 83.3% and 90.6%, respectively. In contrast, 5 mM glutamate had no effect on cell death in accord with the immature state of the cells. Growth of cells under crowded conditions improved cell survival; after 2 h or 4 days in culture, cells seeded at high density (34 microgram cellular DNA/cm2) showed a nearly 3-fold decline in the amount of cell death in comparison to cells seeded at low density (5 micrograms cellular DNA/cm2). At high cell density, anoxic episodes enhanced cell death most likely by preventing a cell density-mediated rescue. Neutral red dye uptake, an index for cell viability, was enhanced with increasing cell density and in vitro maturation, but was reduced in dense cultures exposed to anoxic/hypoglycemic conditions. The data suggest that cell density may play a critical role in brain organogenesis and that anoxic stress is more deleterious in dense than sparse cell assemblies.

  10. Fibroblast contractility and growth in plastic compressed collagen gel scaffolds with microstructures correlated with hydraulic permeability.

    PubMed

    Serpooshan, Vahid; Muja, Naser; Marelli, Benedetto; Nazhat, Showan N

    2011-03-15

    Scaffold microstructure is hypothesized to influence physical and mechanical properties of collagen gels, as well as cell function within the matrix. Plastic compression under increasing load was conducted to produce scaffolds with increasing collagen fibrillar densities ranging from 0.3 to above 4.1 wt % with corresponding hydraulic permeability (k) values that ranged from 1.05 to 0.03 μm², as determined using the Happel model. Scanning electron microscopy revealed that increasing the level of collagen gel compression yielded a concomitant reduction in pore size distribution and a slight increase in average fibril bundle diameter. Decreasing k delayed the onset of contraction and significantly reduced both the total extent and the maximum rate of contraction induced by NIH3T3 fibroblasts seeded at a density of either 6.0 x 10⁴ or 1.5 x 10⁵ cells mL⁻¹. At the higher cell density, however, the effect of k reduction on collagen gel contraction was overcome by an accelerated onset of contraction which led to an increase in both the total extent and the maximum rate of contraction. AlamarBlue™ measurements indicated that the metabolic activity of fibroblasts within collagen gels increased as k decreased. Moreover, increasing seeded cell density from 2.0 x 10⁴ to 1.5 x 10⁵ cells mL⁻¹ significantly increased NIH3T3 proliferation. In conclusion, fibroblast-matrix interactions can be optimized by defining the microstructural properties of collagen scaffolds through k adjustment which in turn, is dependent on the cell seeding density. Copyright © 2011 Wiley Periodicals, Inc.

  11. Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells

    PubMed Central

    Chamieh, Frédéric; Collignon, Anne-Margaux; Coyac, Benjamin R.; Lesieur, Julie; Ribes, Sandy; Sadoine, Jérémy; Llorens, Annie; Nicoletti, Antonino; Letourneur, Didier; Colombier, Marie-Laure; Nazhat, Showan N.; Bouchard, Philippe; Chaussain, Catherine; Rochefort, Gael Y.

    2016-01-01

    Therapies using mesenchymal stem cell (MSC) seeded scaffolds may be applicable to various fields of regenerative medicine, including craniomaxillofacial surgery. Plastic compression of collagen scaffolds seeded with MSC has been shown to enhance the osteogenic differentiation of MSC as it increases the collagen fibrillary density. The aim of the present study was to evaluate the osteogenic effects of dense collagen gel scaffolds seeded with mesenchymal dental pulp stem cells (DPSC) on bone regeneration in a rat critical-size calvarial defect model. Two symmetrical full-thickness defects were created (5 mm diameter) and filled with either a rat DPSC-containing dense collagen gel scaffold (n = 15), or an acellular scaffold (n = 15). Animals were imaged in vivo by microcomputer tomography (Micro-CT) once a week during 5 weeks, whereas some animals were sacrificed each week for histology and histomorphometry analysis. Bone mineral density and bone micro-architectural parameters were significantly increased when DPSC-seeded scaffolds were used. Histological and histomorphometrical data also revealed significant increases in fibrous connective and mineralized tissue volume when DPSC-seeded scaffolds were used, associated with expression of type I collagen, osteoblast-associated alkaline phosphatase and osteoclastic-related tartrate-resistant acid phosphatase. Results demonstrate the potential of DPSC-loaded-dense collagen gel scaffolds to benefit of bone healing process. PMID:27934940

  12. Characterization and reproducibility of HepG2 hanging drop spheroids toxicology in vitro.

    PubMed

    Hurrell, Tracey; Ellero, Andrea Antonio; Masso, Zelie Flavienne; Cromarty, Allan Duncan

    2018-02-21

    Hepatotoxicity remains a major challenge in drug development despite preclinical toxicity screening using hepatocytes of human origin. To overcome some limitations of reproducing the hepatic phenotype, more structurally and functionally authentic cultures in vitro can be introduced by growing cells in 3D spheroid cultures. Characterisation and reproducibility of HepG2 spheroid cultures using a high-throughput hanging drop technique was performed and features contributing to potential phenotypic variation highlighted. Cultured HepG2 cells were seeded into Perfecta 3D® 96-well hanging drop plates and assessed over time for morphology, viability, cell cycle distribution, protein content and protein-mass profiles. Divergent aspects which were assessed included cell stocks, seeding density, volume of culture medium and use of extracellular matrix additives. Hanging drops are advantageous due to no complex culture matrix being present, enabling background free extractions for downstream experimentation. Varying characteristics were observed across cell stocks and batches, seeding density, culture medium volume and extracellular matrix when using immortalized HepG2 cells. These factors contribute to wide-ranging cellular responses and highlights concerns with respect to generating a reproducible phenotype in HepG2 hanging drop spheroids. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. High-Density Spot Seeding for Tissue Model Formation

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)

    2016-01-01

    A model of tissue is produced by steps comprising seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any cells that have not partially attached, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a muscle tissue or other tissue depending on the cells seeded.

  14. Hybrid Tissue Engineering Scaffolds by Combination of Three-Dimensional Printing and Cell Photoencapsulation.

    PubMed

    Markovic, Marica; Van Hoorick, Jasper; Hölzl, Katja; Tromayer, Maximilian; Gruber, Peter; Nürnberger, Sylvia; Dubruel, Peter; Van Vlierberghe, Sandra; Liska, Robert; Ovsianikov, Aleksandr

    2015-05-01

    Three-dimensional (3D) printing offers versatile possibilities for adapting the structural parameters of tissue engineering scaffolds. However, it is also essential to develop procedures allowing efficient cell seeding independent of scaffold geometry and pore size. The aim of this study was to establish a method for seeding the scaffolds using photopolymerizable cell-laden hydrogels. The latter facilitates convenient preparation, and handling of cell suspension, while distributing the hydrogel precursor throughout the pores, before it is cross-linked with light. In addition, encapsulation of living cells within hydrogels can produce constructs with high initial cell loading and intimate cell-matrix contact, similar to that of the natural extra-cellular matrix (ECM). Three dimensional scaffolds were produced from poly(lactic) acid (PLA) by means of fused deposition modeling. A solution of methacrylamide-modified gelatin (Gel-MOD) in cell culture medium containing photoinitiator Li-TPO-L was used as a hydrogel precursor. Being an enzymatically degradable derivative of natural collagen, gelatin-based matrices are biomimetic and potentially support the process of cell-induced remodeling. Preosteoblast cells MC3T3-E1 at a density of 10 × 10 6 cells per 1 mL were used for testing the seeding procedure and cell proliferation studies. Obtained results indicate that produced constructs support cell survival and proliferation over extended duration of our experiment. The established two-step approach for scaffold seeding with the cells is simple, rapid, and is shown to be highly reproducible. Furthermore, it enables precise control of the initial cell density, while yielding their uniform distribution throughout the scaffold. Such hybrid tissue engineering constructs merge the advantages of rigid 3D printed constructs with the soft hydrogel matrix, potentially mimicking the process of ECM remodeling.

  15. Optimal endothelialisation of a new compliant poly(carbonate-urea)urethane vascular graft with effect of physiological shear stress.

    PubMed

    Salacinski, H J; Tai, N R; Punshon, G; Giudiceandrea, A; Hamilton, G; Seifalian, A M

    2000-10-01

    to define the optimal seeding conditions of a new stress free poly(carbonate-urea)urethane (CPU) graft with compliance similar to that of human artery with honeycomb structure engineered during the manufacturing process to enhance adhesion and growth of endothelial cells. (111)Indium-oxine radiolabeled human umbilical vein endothelial cells (HUVEC) were seeded onto CPU grafts at (a) concentrations from 2-24x10(5)cells/cm(2)and (b) incubated for 0.5, 1, 2, 4 and 6 h. Following incubation, graft segments were subjected to three washing/gamma counting procedures and scanning electron microscopy (SEM). Cell viability was measured using a modified Alamar blue(TM)assay. To test physiological retention a pulsatile flow phantom was used to subject optimally seeded (16x10(5), 4 h) CPU grafts to arterial shear stress for 6 h with real time acquisition of scintigraphic images of seeded grafts using a nuclear medicine gamma camera system. the seeding efficiency of 54+/-13% post three washes was achieved using 16x10(5)cells/cm(2). Similarly in SEM micrographs a seeding density of 16x10(5)cells/cm(2)resulted in a confluent monolayer. Seeded CPU segments incubated for 4 h exhibited significantly higher resistance to wash-off than segments incubated for 30 min (p <0.05). Exposure of seeded grafts to pulsatile shear stress resulted in some cell loss with 67+/-3% of cells adherent following 6 h of perfusion with ongoing metabolic activity. Thus, optimal conditions were 16x10(5)cells/cm(2)at 4 h. the optimal seeding conditions have been defined for "tissue-engineered" vascular graft which allow complete endothelialisation and high cell-to-substrate strength that resists hydrodynamic stress. Copyright 2000 Harcourt Publishers Ltd.

  16. Tubular scaffolds of gelatin and poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel for the proliferation of the primary intestinal smooth muscle cells of rats.

    PubMed

    Jwo, Shyh-Chuan; Chiu, Chu-Hua; Tang, Shye-Jye; Hsieh, Ming-Fa

    2013-12-01

    The proper regeneration of intestinal muscle for functional peristalsis is the most challenging aspect of current small intestine tissue engineering. This study aimed to fabricate a hydrogel scaffold for the proliferation of intestinal smooth muscle cells (ISMCs). Tubular porous scaffolds of 10-20 wt% gelatin and 0.05-0.1 wt% poly(ε-caprolactone)-block-poly(γ-glutamic acid) blending hydrogel were cross-linked by carbodiimide and succinimide in an annular space of a glass mold. The scaffolds with higher gelatin contents degraded slower in the phosphate buffer solution. In rheological measurements, the hydrated scaffolds were elastic (all tangent delta <0.45); they responded differentially to frequency, indicating a complete viscoelastic property that is beneficial for soft tissue regeneration. Isolated rat ISMCs, with the characteristic biomarkers α-SMA, calponin and myh11, were loaded into the scaffolds by using either static or centrifugal methods. The average cell density inside the scaffolds increased in a time-dependent manner in most scaffolds of both seeding groups, although at early time points (seven days) the centrifugal seeding method trapped cells more efficiently and yielded a higher cell density than the static seeding method. The static seeding method increased the cell density from 7.5-fold to 16.3-fold after 28 days, whereas the centrifugal procedure produced a maximum increase of only 2.4-fold in the same period. In vitro degradation data showed that 50-80% of the scaffold was degraded by the 14th day. However, the self-secreted extracellular matrix maintained the integrity of the scaffolds for cell proliferation and spreading for up to 28 days. Confocal microscopic images revealed cell-cell contacts with the formation of a 3D network, demonstrating that the fabricated scaffolds were highly biocompatible. Therefore, these polymeric biomaterials hold great promise for in vivo applications of intestinal tissue engineering.

  17. Factors affecting the structure and maturation of human tissue engineered skeletal muscle.

    PubMed

    Martin, Neil R W; Passey, Samantha L; Player, Darren J; Khodabukus, Alastair; Ferguson, Richard A; Sharples, Adam P; Mudera, Vivek; Baar, Keith; Lewis, Mark P

    2013-07-01

    Tissue engineered skeletal muscle has great utility in experimental studies of physiology, clinical testing and its potential for transplantation to replace damaged tissue. Despite recent work in rodent tissue or cell lines, there is a paucity of literature concerned with the culture of human muscle derived cells (MDCs) in engineered constructs. Here we aimed to tissue engineer for the first time in the literature human skeletal muscle in self-assembling fibrin hydrogels and determine the effect of MDC seeding density and myogenic proportion on the structure and maturation of the constructs. Constructs seeded with 4 × 10(5) MDCs assembled to a greater extent than those at 1 × 10(5) or 2 × 10(5), and immunostaining revealed a higher fusion index and a higher density of myotubes within the constructs, showing greater structural semblance to in vivo tissue. These constructs primarily expressed perinatal and slow type I myosin heavy chain mRNA after 21 days in culture. In subsequent experiments MACS(®) technology was used to separate myogenic and non-myogenic cells from their heterogeneous parent population and these cells were seeded at varying myogenic (desmin +) proportions in fibrin based constructs. Only in the constructs seeded with 75% desmin + cells was there evidence of striations when immunostained for slow myosin heavy chain compared with constructs seeded with 10 or 50% desmin + cells. Overall, this work reveals the importance of cell number and myogenic proportions in tissue engineering human skeletal muscle with structural resemblance to in vivo tissue. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Diffusion of rhodamine B and bovine serum albumin in fibrin gels seeded with primary endothelial cells.

    PubMed

    Shkilnyy, Andriy; Proulx, Pierre; Sharp, Jamie; Lepage, Martin; Vermette, Patrick

    2012-05-01

    Scaffolds with adequate mass transport properties are needed in many tissue engineering applications. Fibrin is considered a good biological material to fabricate such scaffolds. However, very little is known about mass transport in fibrin. Therefore, a method based on the analysis of fluorescence intensity for measuring the apparent diffusion coefficient of rhodamine B and fluorescein-labelled bovine serum albumin (FITC-BSA) is described. The experiments are performed in fibrin gels with and without human umbilical vein endothelial cells (HUVEC). The apparent diffusion coefficients of rhodamine B and FITC-BSA in fibrin (fibrinogen concentration of 4 mg/mL) with different cell densities are reported. A LIVE/DEAD(®) assay is performed to confirm the viability of HUVEC seeded at high densities. Diffusion coefficients for rhodamine B remain more or less constant up to 5×10(5) cells/mL and correlate well with literature values measured by other methods in water systems. This indicates that the presence of HUVEC in the fibrin gels (up to 5×10(5) cells/mL) has almost no effect on the diffusion coefficients. Higher cell densities (>5×10(5) cells/mL) result in a decrease of the diffusion coefficients. Diffusion coefficients of rhodamine B and FITC-BSA obtained by this method agree with diffusion coefficients in water predicted by the Stokes-Einstein equation. The experimental design used in this study can be applied to measure diffusion coefficients in different types of gels seeded or not with living cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes.

    PubMed

    Limat, A; Hunziker, T; Boillat, C; Bayreuther, K; Noser, F

    1989-05-01

    For growth at low seeding densities, keratinocytes isolated from human tissues like epidermis or hair follicles are dependent on mesenchyme-derived feeder cells such as the 3T3-cell employed so far. As an alternative method, the present study describes the use of post-mitotic human dermal fibroblasts sublethally irradiated or mitomycin C-treated. Special emphasis was put on efficient growth of primary keratinocyte cultures plated at very low seeding densities. Thus, outer root sheath cells isolated from two anagen human hair follicles and plated in a 35-mm culture dish (3 - 6 X 10(2) attached cells) grew to confluence within 3 weeks (6 - 8 X 10(5) cells). Similar results were obtained for interfollicular keratinocytes. A crucial point for the function of these fibroblast feeder cells is plating at appropriate densities, considering their tremendous increase in cell size at the post-mitotic state. Plating densities of 4 - 5 X 10(3/cm2 allow full spreading of the feeder cells and do not impede the settling and expansion of the keratinocytes. Major advantages of this system include easier handling and better reproducibility than using 3T3-cells. Moreover, homologous fibroblast feeders mimic more closely the physiologic situation and therefore might provide a valuable tool for studying interactions between human mesenchymal and epithelial cells. Finally, potential hazards of using transformed feeder cells from a different species in keratinocyte cultures raised for wound covering in humans could be thus avoided.

  20. Dependency of subcellular reactions during PDT on the metabolic state of cell cultures probed by different microscopic techniques

    NASA Astrophysics Data System (ADS)

    Rueck, Angelika C.; Schneckenburger, Herbert; Strauss, Wolfgang S. L.; Gschwend, Michael H.; Beck, Gerd C.; Kunzi-Rapp, Karin; Steiner, Rudolf W.

    1994-02-01

    Various microscopic techniques were used to study the dependency of photodynamically induced subcellular reactions on the metabolic state of cell cultures. TPPS4 and AlS2-3Pc were incubated in RR 1022 epithelial cells with varying cell density. To attain almost isolated cells (low cell density) or confluent growing cells (high cell density) 25 cells/mm2 or 500 cells/mm2 were seeded, respectively. Low cell density irradiation with blue light led to a change in the initial cytoplasmatic fluorescence pattern. For both sensitizers, TPPS4 as well as AlS2-3, a fluorescence relocalization and fluorescence intensity increase could be detected, moreover in the case of TPPS4 a fluorescence formation in the nucleus and nucleoli were detected. In contrast, for confluent growing cells no redistribution was observed.

  1. Green tea seed oil reduces weight gain in C57BL/6J mice and influences adipocyte differentiation by suppressing peroxisome proliferator-activated receptor-gamma.

    PubMed

    Kim, Na-Hyung; Choi, Sun-Kyung; Kim, Su-Jin; Moon, Phil-Dong; Lim, Hun-Sun; Choi, In-Young; Na, Ho-Jeong; An, Hyo-Jin; Myung, Noh-Yil; Jeong, Hyun-Ja; Um, Jae-Young; Hong, Seung-Heon; Kim, Hyung-Min

    2008-11-01

    Given that tea contains a number of chemical constituents possessing medicinal and pharmacological properties, green tea seed is also believed to contain many biologically active compounds such as saponin, flavonoids, vitamins, and oil materials. However, little is known about the physiologic functions of green tea seed oil. The aim of this study is to investigate the anti-obesity effects of green tea seed oil in C57BL/6J mice and in preadipocyte 3T3L-1 cell lines. In vivo, three groups of mice were fed with a standard diet, a high-fat diet containing 30% shortening, or 30% of green tea seed oil based on a standard diet for 85 days. The levels of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglyceride, glucose, and alanine aminotransferase in blood were analyzed at the end of the study. The mice given green tea seed oil gained less weight compared to mice given the shortening diet (p < 0.01). The plasma level of total cholesterol was decreased by a significant level of 32.4% in mice given the green tea seed oil compared to the mice given the shortening diet (p < 0.01). In addition, 3T3-L1 cells were treated for 2 days to evaluate effects of green tea seed oil on adipocyte differentiation. Green tea seed oil inhibited expression of peroxisome proliferator-activated receptor-gamma(2) and CCAAT/enhancer binding protein-alpha in adipocytes and adipose tissue from the experimental animals. These results indicate that the anti-obesity effects of green tea seed oil might be, in part, through suppression of transcription factors related to adipocyte differentiation.

  2. A Caco-2 cell-based quantitative antioxidant activity assay for antioxidants.

    PubMed

    Wan, Hongxia; Liu, Dong; Yu, Xiangying; Sun, Haiyan; Li, Yan

    2015-05-15

    A Caco-2 cell-based antioxidant activity (CAA) assay for quantitative evaluation of antioxidants was developed by optimizing seeding density and culture time of Caco-2 cells, incubation time and concentration of fluorescent probe (2',7'-dichlorofluorescin diacetate, DCFH-DA), incubation way and incubation time of antioxidants (pure phytochemicals) and DCFH-DA with cells, and detection time of fluorescence. Results showed that the CAA assay was of good reproducibility and could be used to evaluate the antioxidant activity of antioxidants at the following conditions: seeding density of 5 × 10(4)/well, cell culture time of 24h, co-incubation of 60 μM DCFH-DA and pure phytochemicals with Caco-2 cells for 20 min and fluorescence recorded for 90 min. Additionally, a significant correlation was observed between CAA values and rat plasma ORAC values following the intake of antioxidants for selected pure phytochemicals (R(2) = 0.815, p < 0.01), demonstrating the good biological relevance of CAA assay. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Pre-differentiation of mesenchymal stromal cells in combination with a microstructured nerve guide supports peripheral nerve regeneration in the rat sciatic nerve model.

    PubMed

    Boecker, Arne Hendrik; van Neerven, Sabien Geraldine Antonia; Scheffel, Juliane; Tank, Julian; Altinova, Haktan; Seidensticker, Katrin; Deumens, Ronald; Tolba, Rene; Weis, Joachim; Brook, Gary Anthony; Pallua, Norbert; Bozkurt, Ahmet

    2016-02-01

    Many bioartificial nerve guides have been investigated pre-clinically for their nerve regeneration-supporting function, often in comparison to autologous nerve transplantation, which is still regarded as the current clinical gold standard. Enrichment of these scaffolds with cells intended to support axonal regeneration has been explored as a strategy to boost axonal regeneration across these nerve guides Ansselin et al. (1998). In the present study, 20 mm rat sciatic nerve defects were implanted with a cell-seeded microstructured collagen nerve guide (Perimaix) or an autologous nerve graft. Under the influence of seeded, pre-differentiated mesenchymal stromal cells, axons regenerated well into the Perimaix nerve guide. Myelination-related parameters, like myelin sheath thickness, benefitted from an additional seeding with pre-differentiated mesenchymal stromal cells. Furthermore, both the number of retrogradely labelled sensory neurons and the axon density within the implant were elevated in the cell-seeded scaffold group with pre-differentiated mesenchymal stromal cells. However, a pre-differentiation had no influence on functional recovery. An additional cell seeding of the Perimaix nerve guide with mesenchymal stromal cells led to an extent of functional recovery, independent of the differentiation status, similar to autologous nerve transplantation. These findings encourage further investigations on pre-differentiated mesenchymal stromal cells as a cellular support for peripheral nerve regeneration. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Effect of laser irradiation on the early-stage seed formation of laser-induced submicrometer-scale silica spheres

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Ha, S. Y.; Hong, Y. J.; Nam, S.; Oh, S. Y.; Lim, C.

    2014-04-01

    We describe the effect of irradiation on the early-stage seed formation of submicrometer-scale (SS) SiO2 spheres by a laser-induced process. A quartz cell containing chemical reagents was exposed to a pulsed laser (Nd:YAG, 532 nm) tuned to various energy densities, while SiO2 SS spheres are synthesized in the quartz cell by the Stöber, Fink, and Bohn method. Higher laser energy densities typically produce wider size distributions. In particular, bidisperse SiO2 spheres were obtained when the laser energy density was 1.15 J/cm2. The size distributions were widest with 1.15 J/cm2 and narrowest with 0.33 J/cm2 laser energy density. However, the compositions of the SiO2 SS spheres were not affected by laser irradiation, and we observed by the energy-dispersive X-ray spectroscopy that the compositions of the irradiated and nonirradiated SiO2 SS spheres were the same.

  5. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture.

    PubMed

    Yang, Jian; Shi, Guixin; Bei, Jianzhong; Wang, Shenguo; Cao, Yilin; Shang, Qingxin; Yang, Guanghui; Wang, Wenjing

    2002-12-05

    The fabrication and surface modification of a porous cell scaffold are very important in tissue engineering. Of most concern are high-density cell seeding, nutrient and oxygen supply, and cell affinity. In the present study, poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds with different pore structures were fabricated. An improved method based on Archimedes' Principle for measuring the porosity of scaffolds, using a density bottle, was developed. Anhydrous ammonia plasma treatment was used to modify surface properties to improve the cell affinity of the scaffolds. The results show that hydrophilicity and surface energy were improved. The polar N-containing groups and positive charged groups also were incorporated into the sample surface. A low-temperature treatment was used to maintain the plasma-modified surface properties effectively. It would do help to the further application of plasma treatment technique. Cell culture results showed that pores smaller than 160 microm are suitable for human skin fibroblast cell growth. Cell seeding efficiency was maintained at above 99%, which is better than the efficiency achieved with the common method of prewetting by ethanol. The plasma-treatment method also helped to resolve the problem of cell loss during cell seeding, and the negative effects of the ethanol trace on cell culture were avoided. The results suggest that anhydrous ammonia plasma treatment enhances the cell affinity of porous scaffolds. Mass transport issues also have been considered. Copyright 2002 Wiley Periodicals, Inc.

  6. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwit, Charles; Levey, Douglas, J.; Greenberg, Cathyrn, H.

    2004-05-03

    Kwit, Charles, D.J. Levey and Cathryn H. Greenberg. 2004. Contagious seed dispersal beneath heterospecific fruiting trees and its consequences. Oikos. 107:303-308 A n hypothesized advantage of seed dispersal is avoidance of high per capita mortality (i.e. density-dependent mortality) associated with dense populations of seeds and seedlings beneath parent trees. This hypothesis, inherent in nearly all seed dispersal studies, assumes that density effects are species-specific. Yet because many tree species exhibit overlapping fruiting phenologies and share dispersers, seeds may be deposited preferentially under synchronously fruiting heterospecific trees, another location where they may be particularly vulnerable to mortality, in this case bymore » generalist seed predators. We demonstrate that frugivores disperse higher densities of Cornus florida seeds under fruiting (female) I lex opaca trees than under non-fruiting (male) I lex trees in temperate hardwood forest settings in South Carolina, U SA . To determine if density of Cornus and/or I lex seeds influences survivorship of dispersed Cornus seeds, we followed the fates of experimentally dispersed Cornus seeds in neighborhoods of differing, manipulated background densities of Cornus and I lex seeds. We found that the probability of predation on dispersed Cornus seeds was a function of both Cornus and I lex background seed densities. H igher densities of I lex seeds negatively affected Cornus seed survivorship, and this was particularly evident as background densities of dispersed Cornus seeds increased. These results illustrate the importance of viewing seed dispersal and predation in a community context, as the pattern and intensity of density-dependent mortality may not be solely a function of conspecific densities.« less

  7. Seed-predator satiation and Janzen-Connell effects vary with spatial scales for seed-feeding insects.

    PubMed

    Xiao, Zhishu; Mi, Xiangcheng; Holyoak, Marcel; Xie, Wenhua; Cao, Ke; Yang, Xifu; Huang, Xiaoqun; Krebs, Charles J

    2017-01-01

    The Janzen-Connell model predicts that common species suffer high seed predation from specialized natural enemies as a function of distance from parent trees, and consequently as a function of conspecific density, whereas the predator satiation hypothesis predicts that seed attack is reduced due to predator satiation at high seed densities. Pre-dispersal predation by insects was studied while seeds are still on parent trees, which represents a frequently overlooked stage in which seed predation occurs. Reproductive tree density and seed production were investigated from ten Quercus serrata populations located in south-west China, quantifying density-dependent pre-dispersal seed predation over two years by three insect groups. Acorn infestation was nearly twice as high in the low-seed year as that in the high-seed year, with considerable spatio-temporal variation in the direction and magnitude of density-dependent pre-dispersal seed predation evident. Across whole populations of trees, a high density of reproductive trees caused predator satiation and reduced insect attack in the high-seed year. Within individual trees, and consistent with the Janzen-Connell model, overall insect seed predation was positively correlated with seed production in the low-seed year. In addition, there was variation among insect taxa, with positive density-dependent seed predation by Curculio weevils in the high-seed year and moths in the low-seed year, but apparent density independence by Cyllorhynchites weevils in both years. The overall trend of negative density-dependent, pre-dispersal seed predation suggests that predator satiation limited the occurrence of Janzen-Connell effects across Q. serrata populations. Such effects may have large impacts on plant population dynamics and tree diversity, depending on the extent to which they are reduced by counteracting positive density-dependent predation for seeds on individual trees and other factors affecting successful recruitment. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Dynamic Hydrostatic Pressure Regulates Nucleus Pulposus Phenotypic Expression and Metabolism in a Cell Density-Dependent Manner.

    PubMed

    Shah, Bhranti S; Chahine, Nadeen O

    2018-02-01

    Dynamic hydrostatic pressure (HP) loading can modulate nucleus pulposus (NP) cell metabolism, extracellular matrix (ECM) composition, and induce transformation of notochordal NP cells into mature phenotype. However, the effects of varying cell density and dynamic HP magnitude on NP phenotype and metabolism are unknown. This study examined the effects of physiological magnitudes of HP loading applied to bovine NP cells encapsulated within three-dimensional (3D) alginate beads. Study 1: seeding density (1 M/mL versus 4 M/mL) was evaluated in unloaded and loaded (0.1 MPa, 0.1 Hz) conditions. Study 2: loading magnitude (0, 0.1, and 0.6 MPa) applied at 0.1 Hz to 1 M/mL for 7 days was evaluated. Study 1: 4 M/mL cell density had significantly lower adenosine triphosphate (ATP), glycosaminoglycan (GAG) and collagen content, and increased lactate dehydrogenase (LDH). HP loading significantly increased ATP levels, and expression of aggrecan, collagen I, keratin-19, and N-cadherin in HP loaded versus unloaded groups. Study 2: aggrecan expression increased in a dose dependent manner with HP magnitude, whereas N-cadherin and keratin-19 expression were greatest in low HP loading compared to unloaded. Overall, the findings of the current study indicate that cell seeding density within a 3D construct is a critical variable influencing the mechanobiological response of NP cells to HP loading. NP mechanobiology and phenotypic expression was also found to be dependent on the magnitude of HP loading. These findings suggest that HP loading and culture conditions of NP cells may require complex optimization for engineering an NP replacement tissue.

  9. [Effects of sowing date and planting density on the seed yield and oil content of winter oilseed rape].

    PubMed

    Zhang, Shu-Jie; Li, Ling; Zhang, Chun-Lei

    2012-05-01

    A field experiment was conducted to investigate the effects of different sowing date and planting density on the seed yield and seed oil content of winter oilseed rape (Brassica napus). Sowing date mainly affected the seed yield of branch raceme, while planting density affected the seed yields of both branch raceme and main raceme. The seed oil content was less affected by sowing date. The proportion of the seed yield of main raceme to the seed yield per plant increased with increasing planting density, and the seed oil content of main raceme was about 1% higher than that of branch raceme. Consequently, the seed oil production per plot increased significantly with increasing planting density. In the experimental region, the sowing date of winter oilseed rape should be earlier than mid-October. When sowing in late October, the seed yield would be decreased significantly. A planting density of 36-48 plants x m(-2) could improve the seed yield and oil content of winter oilseed rape.

  10. Implications of seed banking for recruitment of Southern Appalachian woody species

    Treesearch

    Janneke Hille Ris Lambers; James S. Clark; Michael Lavine

    2002-01-01

    Seed dormancy is assumed to be unimportant for population dynamics of temperate woody species, because seeds occur at low densities and are short lived in forest soils. However, low soil seed densities may result from low seed production, and even modest seed longevity can buffer against fluctuating seed production, potentially limiting density-dependent mortality and...

  11. Seed banks in a degraded desert shrubland: Influence of soil surface condition and harvester ant activity on seed abundance

    USGS Publications Warehouse

    DeFalco, L.A.; Esque, T.C.; Kane, J.M.; Nicklas, M.B.

    2009-01-01

    We compared seed banks between two contrasting anthropogenic surface disturbances (compacted, trenched) and adjacent undisturbed controls to determine whether site condition influences viable seed densities of perennial and annual Mojave Desert species. Viable seeds of perennials were rare in undisturbed areas (3-4 seeds/m2) and declined to <1 seed/m2 within disturbed sites. Annual seed densities were an order of magnitude greater than those of perennials, were one-third the undisturbed seed densities on compacted sites, but doubled on trenched sites relative to controls. On trenched sites, greater litter cover comprising the infructescences of the dominant spring annuals, and low gravel content, enhanced seed densities of both annuals and perennials. Litter cover and surface ruggedness were the best explanations for viable perennial seed densities on compacted sites, but litter cover and the presence of a common harvester ant explained annual seed densities better than any other surface characteristics that were examined. Surface disturbances can have a varied impact on the condition of the soil surface in arid lands. Nevertheless, the consistently positive relationship between ground cover of litter and viable seed density emphasizes the importance of litter as an indicator of site degradation and recovery potential in arid lands.

  12. Natural seed fall in white pine (Pinus strobes L.) stands of varying density

    Treesearch

    Raymond E. Graber

    1970-01-01

    Seed fall was observed in three stands of mature white pines at stand basal-area densities of 80, 120, and 187 square feet per acre. It was found that the intermediate-density stand produced nearly 50 percent more seed than the stands of other densities. During a good seed year this stand produced 59 pounds of dry sound seed per acre. Most of the seeds were dispersed...

  13. Structure-function relationships in the stem cell's mechanical world B: emergent anisotropy of the cytoskeleton correlates to volume and shape changing stress exposure.

    PubMed

    Chang, Hana; Knothe Tate, Melissa L

    2011-12-01

    In the preceding study (Part A), we showed that prescribed seeding conditions as well as seeding density can be used to subject multipotent stem cells (MSCs) to volume changing stresses and that changes in volume of the cell are associated with changes in shape, but not volume, of the cell nucleus. In the current study, we aim to control the mechanical milieu of live cells using these prescribed seeding conditions concomitant to delivery of shape changing stresses via fluid flow, while observing adaptation of the cytoskeleton, a major cellular transducer that modulates cell shape, stiffness and remodeling. We hypothesize that the spatiotemporal organization of tubulin and actin elements of the cytoskeleton changes in response to volume and shape changing stresses emulating those during development, prior to the first beating of the heart or twitching of muscle. Our approach was to quantify the change over baseline in spatiotemporal distribution of actin and tubulin in live C3H/10T1/2 model stem cells subjected to volume changing stresses induced by seeding at density as well as low magnitude, short duration, shape changing (shear) stresses induced by fluid flow (0.5 or 1.0 dyne/cm2 for 30/60/90 minutes). Upon exposure to fluid flow, both tubulin thickness (height) and concentration (fluorescence intensity) change significantly over baseline, as a function of proximity to neighboring cells (density) and the substrate (apical-basal height). Given our recently published studies showing amplification of stress gradients (flow velocity) with increasing distance to nearest neighbors and the substrate, i.e. with decreasing density and toward the apical side of the cell, tubulin adaptation appears to depend significantly on the magnitude of the stress to which the cell is exposed locally. In contrast, adaptation of actin to the changing mechanical milieu is more global, exhibiting less significant differences attributable to nearest neighbors or boundaries than differences attributable to magnitude of the stress to which the cell is exposed globally (0.5 versus 1.0 dyne/cm2). Furthermore, changes in the actin cytoskeletal distribution correlate positively with one pre-mesenchymal condensation marker (Msx2) and negatively with early markers of chondrogenesis (ColIIaI alone, indicative of pre-hypertrophic chondrogenesis) and osteogenesis (Runx2). Changes in the tubulin cytoskeletal distribution correlate positively with a marker of pericondensation (Sox9 alone), negatively with chondrogenesis (ColIIaI) and positively with adipogenesis (Ppar-gamma 2). Taken as a whole, exposure of MSCs to volume and shape changing stresses results in emergent anisotropy of cytoskeletal architecture (structure), which relate to emergent cell fate (function).

  14. Expansion of Endothelial Progenitor Cells in High Density Dot Culture of Rat Bone Marrow Cells

    PubMed Central

    Wang, Ling; Kretlow, James D.; Zhou, Guangdong; Cao, Yilin; Liu, Wei; Zhang, Wen Jie

    2014-01-01

    In vitro expansion of endothelial progenitor cells (EPCs) remains a challenge in stem cell research and its application. We hypothesize that high density culture is able to expand EPCs from bone marrow by mimicking cell-cell interactions of the bone marrow niche. To test the hypothesis, rat bone marrow cells were either cultured in high density (2×105 cells/cm2) by seeding total 9×105 cells into six high density dots or cultured in regular density (1.6×104 cells/cm2) with the same total number of cells. Flow cytometric analyses of the cells cultured for 15 days showed that high density cells exhibited smaller cell size and higher levels of marker expression related to EPCs when compared to regular density cultured cells. Functionally, these cells exhibited strong angiogenic potentials with better tubal formation in vitro and potent rescue of mouse ischemic limbs in vivo with their integration into neo-capillary structure. Global gene chip and ELISA analyses revealed up-regulated gene expression of adhesion molecules and enhanced protein release of pro-angiogenic growth factors in high density cultured cells. In summary, high density cell culture promotes expansion of bone marrow contained EPCs that are able to enhance tissue angiogenesis via paracrine growth factors and direct differentiation into endothelial cells. PMID:25254487

  15. Indirect interactions among tropical tree species through shared rodent seed predators: a novel mechanism of tree species coexistence.

    PubMed

    Garzon-Lopez, Carol X; Ballesteros-Mejia, Liliana; Ordoñez, Alejandro; Bohlman, Stephanie A; Olff, Han; Jansen, Patrick A

    2015-08-01

    The coexistence of numerous tree species in tropical forests is commonly explained by negative dependence of recruitment on the conspecific seed and tree density due to specialist natural enemies that attack seeds and seedlings ('Janzen-Connell' effects). Less known is whether guilds of shared seed predators can induce a negative dependence of recruitment on the density of different species of the same plant functional group. We studied 54 plots in tropical forest on Barro Colorado Island, Panama, with contrasting mature tree densities of three coexisting large seeded tree species with shared seed predators. Levels of seed predation were far better explained by incorporating seed densities of all three focal species than by conspecific seed density alone. Both positive and negative density dependencies were observed for different species combinations. Thus, indirect interactions via shared seed predators can either promote or reduce the coexistence of different plant functional groups in tropical forest. © 2015 John Wiley & Sons Ltd/CNRS.

  16. Transcriptional effect of an Aframomum angustifolium seed extract on human cutaneous cells using low-density DNA chips.

    PubMed

    Bonnet-Duquennoy, Mathilde; Dumas, Marc; Debacker, Adeline; Lazou, Kristell; Talbourdet, Sylvie; Franchi, Jocelyne; Heusèle, Catherine; André, Patrice; Schnebert, Sylvianne; Bonté, Frédéric; Kurfürst, Robin

    2007-06-01

    Studying photoexposed and photoprotected skin biopsies from young and aged women, it has been found that a specific zone, composed of the basal layers of the epidermis, the dermal epidermal junction, and the superficial dermis, is major target of aging and reactive oxygen species. We showed that this zone is characterized by significant variations at a transcriptional and/or protein levels. Using low-density DNA chip technology, we evaluated the effect of a natural mixture of Aframomum angustifolium seed extract containing labdane diterpenoids on these aging markers. Expression profiles of normal human fibroblasts (NHF) were studied using a customized cDNA macroarray system containing genes covering dermal structure, inflammatory responses, and oxidative stress defense mechanisms. For normal human keratinocyte (NHK) investigations, we chose OLISA technique, a sensitive and quantitative method developed by BioMérieux specifically designed to investigate cell death, proliferation, epidermal structure, differentiation, and oxidative stress defense response. We observed that this extract strongly modified gene expression profiles of treated NHK, but weakly for NHF. This extract regulated antioxidant defenses, dermal-epidermal junction components, and epidermal renewal-related genes. Using low-density DNA chip technology, we identified new potential actions of A. angustifolium seed extract on skin aging.

  17. Seed harvesting is influenced by associational effects in mixed seed neighbourhoods, not just by seed density

    USGS Publications Warehouse

    Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan; Klinger, Robert C.

    2013-01-01

    Rodents frequently forage in a density-dependent manner, increasing harvesting in patches with greater seed densities. Although seldom considered, seed harvesting may also depend on the species identities of other individuals in the seed neighbourhood. When the seed harvest of a focal species increases in association with another seed species, the focal species suffers from Associational Susceptibility. In contrast, if seeds of the focal species are harvested less when in association with a second species, the focal species benefits from Associational Resistance.To evaluate density dependence and associational effects among seeds in mixtures, we conducted seed removal experiments using a completely additive design patterned after a two-species competition experiment using seeds of either Achnatherum hymenoides(Indian ricegrass), Leymus cinereus (basin wildrye) or Pseudoroegneria spicata (bluebunch wheatgrass), all native perennial grasses, combined with seeds of Bromus tectorum(cheatgrass), a non-native annual grass. The experiment involved placing five fixed quantities of the native seeds mixed with five fixed quantities of B. tectorum seeds in a factorial design, resulting in 35 seed mixture combinations. The seed-eating rodent community at our study sites, in order of abundance, is composed of Peromyscus maniculatus (North American deer mouse), Dipodomys ordii (Ord's kangaroo rat) and Perognathus parvus (Great Basin pocket mouse).Native seed harvesting was density dependent, with a greater proportion of seeds being harvested as density increased. In the mixed density model, the presence of B. tectorumdid not affect harvest of any of the native species' seeds when analysed individually. However, when all three native species were analysed together, increasing quantities of B. tectorum resulted in reduced harvest of native seeds, demonstrating weak but significant Associational Resistance. In contrast, harvest of B. tectorum seeds increased when in combination with any of the native seed species individually, indicating relatively strong Associational Susceptibility.These results demonstrate that seed harvest is determined not just by seed density, but also by the local seed neighbourhood and suggest that associational effects between native seeds and B. tectorum can occur in field conditions. The ecological implications of seed selection and associational effects on plant populations in natural and managed systems are also discussed.

  18. Chondrogenesis of Human Bone Marrow Mesenchymal Stem Cells in 3-Dimensional, Photocrosslinked Hydrogel Constructs: Effect of Cell Seeding Density and Material Stiffness

    PubMed Central

    Sun, Aaron X.; Lin, Hang; Fritch, Madalyn R.; Shen, He; Alexander, Pete G.; DeHart, Michael; Tuan, Rocky S.

    2018-01-01

    Three-dimensional hydrogel constructs incorporated with live stem cells that support chondrogenic differentiation and maintenance offer a promising regenerative route towards addressing the limited self-repair capabilities of articular cartilage. In particular, hydrogel scaffolds that augment chondrogenesis and recapitulate the native physical properties of cartilage, such as compressive strength, can potentially be applied in point-of-care procedures. We report here the synthesis of two new materials, [poly-L-lactic acid/polyethylene glycol/poly-L-lactic acid] (PLLA-PEG 1000) and [poly-D,L-lactic acid/polyethylene glycol/poly-D,L-lactic acid] (PDLLA-PEG 1000), that are biodegradable, biocompatible (>80% viability post fabrication), and possess high, physiologically relevant mechanical strength (~1,500 to 1,800 kPa). This study examined the effects of physiologically relevant cell densities (4, 8, 20, and 50 × 106/mL) and hydrogel stiffnesses (~150kPa to ~1,500 kPa Young’s moduli) on chondrogenesis of human bone marrow stem cells incorporated in hydrogel constructs fabricated with these materials and a previously characterized PDLLA-PEG 4000. Results showed that 20 × 106 cells/mL, under a static culture condition, was the most efficient cell seeding density for extracellular matrix (ECM) production on the basis of hydroxyproline and glycosaminoglycan content. Interestingly, material stiffness did not significantly affect chondrogenesis, but rather material concentration was correlated to chondrogenesis with increasing levels at lower concentrations based on ECM production, chondrogenic gene expression, and histological analysis. These findings establish optimal cell densities for chondrogenesis within three-dimensional cell-incorporated hydrogels, inform hydrogel material development for cartilage tissue engineering, and demonstrate the efficacy and potential utility of PDLLA-PEG 1000 for point-of-care treatment of cartilage defects. PMID:28611002

  19. Seed viability detection using computerized false-color radiographic image enhancement

    NASA Technical Reports Server (NTRS)

    Vozzo, J. A.; Marko, Michael

    1994-01-01

    Seed radiographs are divided into density zones which are related to seed germination. The seeds which germinate have densities relating to false-color red. In turn, a seed sorter may be designed which rejects those seeds not having sufficient red to activate a gate along a moving belt containing the seed source. This results in separating only seeds with the preselected densities representing biological viability lending to germination. These selected seeds demand a higher market value. Actual false-coloring isn't required for a computer to distinguish the significant gray-zone range. This range can be predetermined and screened without the necessity of red imaging. Applying false-color enhancement is a means of emphasizing differences in densities of gray within any subject from photographic, radiographic, or video imaging. Within the 0-255 range of gray levels, colors can be assigned to any single level or group of gray levels. Densitometric values then become easily recognized colors which relate to the image density. Choosing a color to identify any given density allows separation by morphology or composition (form or function). Additionally, relative areas of each color are readily available for determining distribution of that density by comparison with other densities within the image.

  20. High-Density Spot Seeding for Tissue Model Formation

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)

    2014-01-01

    A method for making a tissue includes seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any unattached cells, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a skeletal muscle tissue, a cardiac muscle tissue, nerve tissue, or a bone tissue.

  1. Bone repair by cell-seeded 3D-bioplotted composite scaffolds made of collagen treated tricalciumphosphate or tricalciumphosphate-chitosan-collagen hydrogel or PLGA in ovine critical-sized calvarial defects.

    PubMed

    Haberstroh, Kathrin; Ritter, Kathrin; Kuschnierz, Jens; Bormann, Kai-Hendrik; Kaps, Christian; Carvalho, Carlos; Mülhaupt, Rolf; Sittinger, Michael; Gellrich, Nils-Claudius

    2010-05-01

    The aim of this study was to investigate the osteogenic effect of three different cell-seeded 3D-bioplotted scaffolds in a ovine calvarial critical-size defect model. The choice of scaffold-materials was based on their applicability for 3D-bioplotting and respective possibility to produce tailor-made scaffolds for the use in cranio-facial surgery for the replacement of complex shaped boneparts. Scaffold raw-materials are known to be osteoinductive when being cell-seeded [poly(L-lactide-co-glycolide) (PLGA)] or having components with osteoinductive properties as tricalciumphosphate (TCP) or collagen (Col) or chitosan. The scaffold-materials PLGA, TCP/Col, and HYDR (TCP/Col/chitosan) were cell-seeded with osteoblast-like cells whether gained from bone (OLB) or from periost (OLP). In a prospective and randomized design nine sheep underwent osteotomy to create four critical-sized calvarial defects. Three animals each were assigned to the HYDR-, the TCP/Col-, or the PLGA-group. In each animal, one defect was treated with a cell-free, an OLB- or OLP-seeded group-specific scaffold, respectively. The fourth defect remained untreated as control (UD). Fourteen weeks later, animals were euthanized for histo-morphometrical analysis of the defect healing. OLB- and OLP-seeded HYDR and OLB-seeded TCP/Col scaffolds significantly increased the amount of newly formed bone (NFB) at the defect bottom and OLP-seeded HYDR also within the scaffold area, whereas PLGA-scaffolds showed lower rates. The relative density of NFB was markedly higher in the HYDR/OLB group compared to the corresponding PLGA group. TCP/Col had good stiffness to prepare complex structures by bioplotting but HYDR and PLGA were very soft. HYDR showed appropriate biodegradation, TCP/Col and PLGA seemed to be nearly undegraded after 14 weeks. 3D-bioplotted, cell-seeded HYDR and TCP/Col scaffolds increased the amount of NFB within ovine critical-size calvarial defects, but stiffness, respectively, biodegradation of materials is not appropriate for the application in cranio-facial surgery and have to be improved further by modifications of the manufacturing process or their material composition. (c) 2010 Wiley Periodicals, Inc.

  2. Introduction to cell–hydrogel mechanosensing

    PubMed Central

    Ahearne, Mark

    2014-01-01

    The development of hydrogel-based biomaterials represents a promising approach to generating new strategies for tissue engineering and regenerative medicine. In order to develop more sophisticated cell-seeded hydrogel constructs, it is important to understand how cells mechanically interact with hydrogels. In this paper, we review the mechanisms by which cells remodel hydrogels, the influence that the hydrogel mechanical and structural properties have on cell behaviour and the role of mechanical stimulation in cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed by several cellular processes, including adhesion, migration, contraction, degradation and extracellular matrix deposition. Variations in hydrogel stiffness, density, composition, orientation and viscoelastic characteristics all affect cell activity and phenotype. The application of mechanical force on cells encapsulated in hydrogels can also instigate changes in cell behaviour. By improving our understanding of cell–material mechano-interactions in hydrogels, this should enable a new generation of regenerative medical therapies to be developed. PMID:24748951

  3. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    PubMed Central

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  4. Dense understory dwarf bamboo alters the retention of canopy tree seeds

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Zhang, Tengda; Guo, Qinxue; Tao, Jianping

    2016-05-01

    Tree seed retention is thought to be an important factor in the process of forest community regeneration. Although dense understory dwarf bamboo has been considered to have serious negative effects on the regeneration of forest community species, little attention has been paid to the relationship between dwarf bamboo and seed retention. In a field experiment we manipulated the density of Fargesia decurvata, a common understory dwarf bamboo, to investigate the retention of seeds from five canopy tree species in an evergreen and deciduous broad-leaved mixed forest in Jinfoshan National Nature Reserve, SW China. We found that the median survival time and retention ratio of seeds increased with the increase in bamboo density. Fauna discriminately altered seed retention in bamboo groves of different densities. Arthropods reduced seed survival the most, and seeds removed decreased with increasing bamboo density. Birds removed or ate more seeds in groves of medium bamboo density and consumed fewer seeds in dense or sparse bamboo habitats. Rodents removed a greater number of large and highly profitable seeds in dense bamboo groves but more small and thin-husked seeds in sparse bamboo groves. Seed characteristics, including seed size, seed mass and seed profitability, were important factors affecting seed retention. The results suggested that dense understory dwarf bamboo not only increased seeds concealment and reduced the probability and speed of seed removal but also influenced the trade-off between predation and risk of animal predatory strategies, thereby impacting the quantity and composition of surviving seeds. Our results also indicated that dense understory dwarf bamboo and various seed characteristics can provide good opportunities for seed storage and seed germination and has a potential positive effect on canopy tree regeneration.

  5. Vertical growth of ZnO nanorods on ZnO seeded FTO substrate for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.

    2018-04-01

    Zinc oxide (ZnO) nanorods (NRs) were electrochemically grown on fluorine doped tin oxide (FTO) and ZnO seeded FTO substrates. X-ray diffraction (XRD) patterns, Raman spectra and photoluminescence (PL) spectra reveal that the hexagonal wurtzite structured ZnO grown on a seeded FTO substrate has a high crystallinity, crystal quality and less atomic defects. Felid emission scanning electron microscope (FE-SEM) images display a high growth density of NRs grown on seeded FTO substrate compared to NRs grown on FTO substrate. The efficiency of the DSSCs based on NRs grown on FTO and seeded FTO substrates is 0.85 and 1.52 %, respectively. UV-Vis absorption spectra and electrochemical impedance spectra depict that the NRs grown on seeded FTO photoanode have higher dye absorption and charge recombination resistance than that of the NRs grown on FTO substrate.

  6. Influence of key processing parameters and seeding density effects of microencapsulated chondrocytes fabricated using electrohydrodynamic spraying.

    PubMed

    Gansau, Jennifer; Kelly, Lara; Buckley, Conor

    2018-06-11

    Cell delivery and leakage during injection remains a challenge for cell-based intervertebral disc regeneration strategies. Cellular microencapsulation may offer a promising approach to overcome these limitations by providing a protective niche during intradiscal injection. Electrohydrodynamic spraying (EHDS) is a versatile one-step approach for microencapsulation of cells using a high voltage electric field. The primary objective of this work was to characterise key processing parameters such as applied voltage (0, 5, 10 or 15kV), emitter needle gauge (21, 26 or 30G), alginate concentration (1, 2 or 3%) and flow rate (50, 100, 250 or 500 µl/min) to regulate the morphology of alginate microcapsules and subsequent cell viability when altering these parameters. The effect of initial cell seeding density (5, 10 and 20x10<sup>6</sup> cells/ml) on subsequent matrix accumulation of microencapsulated articular chondrocytes was also evaluated. Results showed that increasing alginate concentration and thus viscosity increased overall microcapsule size but also affected the geometry towards ellipsoidal-shaped gels. Altering the electric field strength and needle diameter regulated microcapsule size towards a smaller diameter with increasing voltage and smaller needle diameter. Needle size did not appear to affect cell viability when operating with lower alginate concentrations (1% and 2%), although higher concentrations (3%) and thus higher viscosity hydrogels resulted in diminished viability with decreasing needle diameter. Increasing cell density resulted in decreased cell viability and a concomitant decrease in DNA content, perhaps due to competing nutrient demands as a result of more closely packed cells. However, higher cell densities resulted in increased levels of extracellular matrix accumulated. Overall, this work highlights the potential of EHDS as a controllable and versatile approach to fabricate microcapsules for injectable delivery which can be used in a variety of applications such as drug development or cell therapies. . © 2018 IOP Publishing Ltd.

  7. Do cacti form soil seed banks? An evaluation using species from the Southern Central Andes.

    PubMed

    Lindow-López, Lucía; Galíndez, Guadalupe; Sühring, Silvia; Pastrana-Ignes, Valeria; Gorostiague, Pablo; Gutiérrez, Angela; Ortega-Baes, Pablo

    2018-06-22

    There is controversy over whether cactus species form soil seed banks. Although it is commonly assumed that cacti do not form seed banks, very few studies have evaluated them. In this work, we analyzed whether cactus species form soil seed banks, studying seed distribution, seed density and seed longevity in the Southern Central Andes. Soil samples were collected in two microhabitats (under nurse plants and in bare areas) at 12 selected sites. We determined seed presence-absence, density and distribution for 32 native cactus species. Seed longevity for six of these species was determined through a burial experiment. We recorded viable seeds for 62.5% of the 32 evaluated species, finding variation in seed density between microenvironments and among populations. In some species, the greatest seed density was found under potential nurse plants. Seed germination and seed viability decreased with burial time, with seed longevity always being less than 24 months after burial. Our results show strong evidence that cactus species do form seed banks. Seed density can vary between microenvironments and among populations, suggesting that cactus-nurse plant associations can also be explained by differential seed dispersal and not only by differential establishment. We found that Echinopsis and Gymnocalycium species form short-term seed banks. Our results will help to better understand the population dynamics of cactus species, a focal species group for conservation actions because many of them are threatened by human activities. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. A novel flow-perfusion bioreactor supports 3D dynamic cell culture.

    PubMed

    Sailon, Alexander M; Allori, Alexander C; Davidson, Edward H; Reformat, Derek D; Allen, Robert J; Warren, Stephen M

    2009-01-01

    Bone engineering requires thicker three-dimensional constructs than the maximum thickness supported by standard cell-culture techniques (2 mm). A flow-perfusion bioreactor was developed to provide chemotransportation to thick (6 mm) scaffolds. Polyurethane scaffolds, seeded with murine preosteoblasts, were loaded into a novel bioreactor. Control scaffolds remained in static culture. Samples were harvested at days 2, 4, 6, and 8 and analyzed for cellular distribution, viability, metabolic activity, and density at the periphery and core. By day 8, static scaffolds had a periphery cell density of 67% +/- 5.0%, while in the core it was 0.3% +/- 0.3%. Flow-perfused scaffolds demonstrated peripheral cell density of 94% +/- 8.3% and core density of 76% +/- 3.1% at day 8. Flow perfusion provides chemotransportation to thick scaffolds. This system may permit high throughput study of 3D tissues in vitro and enable prefabrication of biological constructs large enough to solve clinical problems.

  9. Modeling the Effect of Density-Dependent Chemical Interference Upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2005-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:19330163

  10. Modeling the Effect of Density-Dependent Chemical Interference upon Seed Germination

    PubMed Central

    Sinkkonen, Aki

    2006-01-01

    A mathematical model is presented to estimate the effects of phytochemicals on seed germination. According to the model, phytochemicals tend to prevent germination at low seed densities. The model predicts that at high seed densities they may increase the probability of seed germination and the number of germinating seeds. Hence, the effects are reminiscent of the density-dependent effects of allelochemicals on plant growth, but the involved variables are germination probability and seedling number. The results imply that it should be possible to bypass inhibitory effects of allelopathy in certain agricultural practices and to increase the efficiency of nature conservation in several plant communities. PMID:18648596

  11. [Soil seed bank in Keerqin meadow grassland under grazing and harvesting].

    PubMed

    Jiang, Deming; Li, Rongping; Liu, Zhimin; Yan, Qiaoling

    2004-10-01

    This study on the size and composition of seed bank and its relationship with vegetation showed in Keerqin meadow grassland, the density of soil seed bank was 6158 +/- 1647 grains x m(-2) under grazing and 8312 +/- 2540 grains m(-2) under harvesting. Under grazing, the seed bank was mainly composed of some dwarf and short-life annuals. The seeds of the annuals and biennials accounted for 81.66% of the seeds in seed bank. The four species with largest proportion of seed bank were Chloris virgata, Chenopodium glaucum, Digitaria cilliaris and Setaria viridis, and the proportions were 38.55%, 15.42%, 14.95%, and 9.83%, respectively. The density of perennials in soil seed bank was 1129 +/- 302 grains x m(-2). Under harvesting, the seeds of annuals and biennials accounted for 68.08% of the seed in seed bank, and the proportion of Setaria viridis was 52.7%. In the harvesting meadow grassland, the seed density of perennials was 2653 +/- 811 grains x m(-2). There was no significant correlation between the seed density in soil and the vegetation under grazing, but a significant correlation between the seed density in soil and the species abundance of vegetation under harvesting (r = 0.76, P < 0.01). The index of Shannon-Wiener and richness of grazing meadow grassland were 2.96 and 2.98, respectively, distinctly smaller than 3.10 and 5.09 of harvesting meadow, which showed that free grazing made the diversity of seed bank decrease easily.

  12. Nest establishment, pollination efficiency, and reproductive success of Megachile rotundata (Hymenoptera: Megachilidae) in relation to resource availability in field enclosures.

    PubMed

    Pitts-Singer, Theresa L; Bosch, Jordi

    2010-02-01

    The alfalfa leafcutting bee, Megachile rotundata (Fabricius), is used to pollinate alfalfa, Medicago sativa L., for seed production in the United States and Canada. It is difficult to reliably sustain commercial M. rotundata populations in the United States because of problems with disease, parasites, predators, and unexplained mortality. One possible explanation for early immature mortality is that, relative to floral availability, superfluous numbers of bees are released in alfalfa fields where resources quickly become limited. Our objective was to determine how M. rotundata density affects bee nesting, pollination efficiency, and reproductive success. Various numbers of bees were released into enclosures on an alfalfa field, but only 10-90% of released female bees established nests. Therefore, a "bee density index" was derived for each enclosure from the number of established females and number of open flowers over time. As the density index increased, significant reductions occurred in the number of pollinated flowers, number of nests, and number of cells produced per bee, as well as the percentage of cells that produced viable prepupae by summer's end and the percentage that produced adult bees. The percentage of cells resulting in early brood mortality (i.e., pollen balls) significantly increased as the density index increased. We conclude that bee nest establishment, pollination efficiency, and reproductive success are compromised when bee densities are high relative to floral resource availability. Open field studies are needed to determine commercial bee densities that result in sustainable bee populations and adequate pollination for profitable alfalfa seed production.

  13. Effects of dispersal, shrubs, and density-dependent morality on seed and seedling distributions in temperate forests

    Treesearch

    Janneke Hille Ris Lambers; James S. Clark

    2003-01-01

    Processes limiting recruitment of trees may have large impacts on forest dynamics. In this paper, we determined the effects of dispersal, shrubs (Rhododendron maximum), and density-dependent mortality on seed and seedling distributions of Southern Appalachian trees. We quantified the spatial distribution of seed rain, seed bank densities, first-year...

  14. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia.

    PubMed

    Zhang, Caixi; Tateishi, Naoya; Tanabe, Kenji

    2010-10-01

    To clarify the relationship between pollen density and gametophytic competition in Pyrus pyrifolia, gametophytic performance, gibberellin metabolism, fruit set, and fruit quality were investigated by modifying P. pyrifolia pollen grain number and density with Lycopodium spores. Higher levels of pollen density improved seed viability, fruit set, and fruit quality. Treatments with the highest pollen density showed a significantly increased fruit growth rate and larger fruit at harvest. High pollen density increased germination rate and gave a faster pollen tube growth, both in vivo and in vitro. Endogenous gibberellin (GA) concentrations increased in pollen tubes soon after germination and the concentration of two growth-active GAs, GA(3), and GA(4), was positively correlated to final fruit size, cell numbers in the mesocarp, and pollen tube growth rate. These two GAs appear to be biosynthesized de novo in pollen tube and are the main pollen-derived bioactive GAs found after pollen germination. GA(1) levels in the pollen tube appear to be related to a pollen-style interaction that occurred after the pollen grains landed on the stigma.

  15. Spatio-temporal variation in a seed bank of a semi-arid region in northeastern Brazil

    NASA Astrophysics Data System (ADS)

    da Silva, Kleber A.; dos Santos, Danielle M.; dos Santos, Josiene M. F. F.; de Albuquerque, Ulysses P.; Ferraz, Elba M. N.; Araújo, Elcida de L.

    2013-01-01

    This study aimed to evaluate variations in the seed bank within a 3-year temporal series in order to answer the following questions: 1) Does the seed bank's species richness and seed density differ among climatic seasons and between years? 2) Are there differences in the richness and density of seed banks between the litter and mineral soil? 3) Can the seed bank's species richness and seed density be explained by characteristics such as the previous year's precipitation and soil depth (litter or mineral soil)? The samples were collected from litter and mineral soil (0-5 cm), in 210 sub-plots, during the dry and rainy seasons of each year (August 2005 through February 2008). Overall, 79 species were recorded. On average, 1 168, 304 and 302 seeds.m-2 were recorded in the seed bank during years I, II and III, respectively. This study showed that the Caatinga's seed bank is rich in herbaceous species, yet species' density and richness are low in the litter. Furthermore, about 43% of the variation in species richness and density was explained by soil depth (litter and mineral soil) and previous years' rainfall.

  16. Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells.

    PubMed

    Mitra, Debika; Whitehead, Jacklyn; Yasui, Osamu W; Leach, J Kent

    2017-11-01

    Perfusion culture of mesenchymal stem cells (MSCs) seeded in biomaterial scaffolds provides nutrients for cell survival, enhances extracellular matrix deposition, and increases osteogenic cell differentiation. However, there is no consensus on the appropriate perfusion duration of cellular constructs in vitro to boost their bone forming capacity in vivo. We investigated this phenomenon by culturing human MSCs in macroporous composite scaffolds in a direct perfusion bioreactor and compared their response to scaffolds in continuous dynamic culture conditions on an XYZ shaker. Cell seeding in continuous perfusion bioreactors resulted in more uniform MSC distribution than static seeding. We observed similar calcium deposition in all composite scaffolds over 21 days of bioreactor culture, regardless of pore size. Compared to scaffolds in dynamic culture, perfused scaffolds exhibited increased DNA content and expression of osteogenic markers up to 14 days in culture that plateaued thereafter. We then evaluated the effect of perfusion culture duration on bone formation when MSC-seeded scaffolds were implanted in a murine ectopic site. Human MSCs persisted in all scaffolds at 2 weeks in vivo, and we observed increased neovascularization in constructs cultured under perfusion for 7 days relative to those cultured for 1 day within each gender. At 8 weeks post-implantation, we observed greater bone volume fraction, bone mineral density, tissue ingrowth, collagen density, and osteoblastic markers in bioreactor constructs cultured for 14 days compared to those cultured for 1 or 7 days, and acellular constructs. Taken together, these data demonstrate that culturing MSCs under perfusion culture for at least 14 days in vitro improves the quantity and quality of bone formation in vivo. This study highlights the need for optimizing in vitro bioreactor culture duration of engineered constructs to achieve the desired level of bone formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Engineering functional and histological regeneration of vascularized skeletal muscle.

    PubMed

    Gilbert-Honick, Jordana; Iyer, Shama R; Somers, Sarah M; Lovering, Richard M; Wagner, Kathryn; Mao, Hai-Quan; Grayson, Warren L

    2018-05-01

    Tissue engineering strategies to treat patients with volumetric muscle loss (VML) aim to recover the structure and contractile function of lost muscle tissue. Here, we assessed the capacity of novel electrospun fibrin hydrogel scaffolds seeded with murine myoblasts to regenerate the structure and function of damaged muscle within VML defects to the mouse tibialis anterior muscle. The electrospun fibrin scaffolds provide pro-myogenic alignment and stiffness cues, myomimetic hierarchical structure, suturability, and scale-up capabilities. Myoblast-seeded scaffolds enabled remarkable muscle regeneration with high myofiber and vascular densities after 2 and 4 weeks, mimicking that of native skeletal muscle, while acellular scaffolds lacked muscle regeneration. Both myoblast-seeded and acellular scaffolds fully recovered muscle contractile function to uninjured values after 2 and 4 weeks. Electrospun scaffolds pre-vascularized with co-cultured human endothelial cells and human adipose-derived stem cells implanted into VML defects for 2 weeks anastomosed with host vasculature and were perfused with host red blood cells. These data demonstrate the significant potential of electrospun fibrin scaffolds seeded with myoblasts to fully regenerate the structure and function of volumetric muscle defects and these scaffolds offer a promising treatment option for patients with VML. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Effects of seed density and proximity to refuge habitat on seed predation rates for a rare and a common Lupinus species.

    PubMed

    Pardini, Eleanor A; Patten, Melissa V; Knight, Tiffany M

    2017-03-01

    Biotic interactions such as seed predation can play a role in explaining patterns of abundance among plant species. The effect of seed predation will depend on how the strength of predation differs across species and environments, and on the degree to which seed loss at one life-cycle phase increases fitness at another phase. Few studies have simultaneously quantified predispersal and postdispersal predation in co-occurring rare and common congeners, despite the value of estimating both for understanding causes of rarity. We quantified predispersal seed predation on the rare, herbaceous species Lupinus tidestromii (Fabaceae) and its common, shrubby congener L. chamissonis across multiple years in the same community. We experimentally measured postdispersal seed predation at two seed densities and locations near or far from an exotic grass housing high densities of deer mice ( Peromyscus maniculatus ), their primary, native seed predator. The common L. chamissonis had the lowest predispersal seed predation of the two lupine species, potentially because of its height: its high racemes received less predation than those low to the ground. By contrast, the same species experienced higher postdispersal seed predation, and at predators traveled long distances away from refuge habitat to consume their seeds. Across both plant species, mice preferentially predated high-density seed sources. Our results show differences in the magnitude and direction of seed predation between the species across different life-cycle phases. We demonstrated possible roles of proximity to refuge habitat, seed density, and seed size in these patterns. Congeneric comparisons would benefit from a comprehensive framework that considers seed predation across different life-cycle phases and the environmental context of predation. © 2017 Botanical Society of America.

  19. Expedient generation of patterned surface aldehydes by microfluidic oxidation for chemoselective immobilization of ligands and cells.

    PubMed

    Westcott, Nathan P; Pulsipher, Abigail; Lamb, Brian M; Yousaf, Muhammad N

    2008-09-02

    An expedient and inexpensive method to generate patterned aldehydes on self-assembled monolayers (SAMs) of alkanethiolates on gold with control of density for subsequent chemoselective immobilization from commercially available starting materials has been developed. Utilizing microfluidic cassettes, primary alcohol oxidation of tetra(ethylene glycol) undecane thiol and 11-mercapto-1-undecanol SAMs was performed directly on the surface generating patterned aldehyde groups with pyridinium chlorochromate. The precise density of surface aldehydes generated can be controlled and characterized by electrochemistry. For biological applications, fibroblast cells were seeded on patterned surfaces presenting biospecifc cell adhesive (Arg-Glyc-Asp) RGD peptides.

  20. Development of scaffold architectures and heterotypic cell systems for hepatocyte transplantation

    NASA Astrophysics Data System (ADS)

    Alzebdeh, Dalia Abdelrahim

    In vitro assembly of functional liver tissue is needed to enable the transplantation of tissue-engineered livers. In addition, there is an increasing demand for in vitro models that replicate complex events occurring in the liver. However, tissue engineering of sizable implantable liver systems is currently limited by the difficulty of assembling three dimensional hepatocyte cultures of a useful size, while maintaining full cell viability, an issue which is closely related to the high metabolic rate of hepatocytes. In this study, we first compared two designs of highly porous chitosan-heparin scaffolds seeded with hepatocytes in dynamic perfusion bioreactor systems. The aim was to promote cell seeding efficiency by effectively entrapping 100 million hepatocytes at high density. We found that scaffolds with radially tapering pore architecture had highly efficient cell entrapment that maximized donor hepatocyte utilization, compared to alternate pore structures. Hepatocytes showed higher seeding efficiency and metabolic function when seeded as single cell suspensions as opposed to pre-formed, 100microm aggregates. Seeding efficiency was found to increase with flow rate, with single cell and aggregate suspension exhibiting different optimal flow rates. However, metabolic performance results indicated significant shear damage to cells at high efficiency flow rates. To better maintain hepatocyte basement membrane and cell polarity, spheroid co-cultures with mesenchymal stem cells (MSC) were investigated. Hepatocytes and MSCs were seeded in three different architectures in an effort to optimize the spatial arrangement of the two cell types. MSC co-culture greatly enhanced hepatocyte metabolic function in agitated cultures. Interestingly, the effects of diffusion limitations in spheroid culture, coupled with shear damage and subsequent removal of outer hepatocyte layers produced a defined oscillation of urea production rates in certain co-culture arrangements. A mathematical model of urea synthesis in shear-exposed, co-culture spheroids reproduced the metabolic oscillations observed. This result together with culture observations suggests that MSCs can provide both physiological support and some direct shear protection to hepatocytes in perfused or shear-exposed culture environments. Finally, in order to reduce hepatocyte exposure to excessive shear forces in perfused scaffolds, a modular scaffold design based on polyelectrolyte fiber encapsulation was explored. Scaffolds with uniformly distributed, shear protected cells were achieved.

  1. Seed population dynamics on abandoned slopes in the hill and gully Loess Plateau region of China

    NASA Astrophysics Data System (ADS)

    Yu, Weijie; Jiao, Juying

    2017-04-01

    Recovery of natural vegetation is an effective but slow approach to control the soil erosion in the Chinese hill and gully Loess Plateau region. As seed stage is particularly vulnerable to environmental conditions, characteristics of seed population should be needed to study for determining whether the recovery of natural vegetation is limited during this stage on the abandoned slopes in this region. The study was performed on three abandoned slopes in a watershed with an area of 8.27 km2in the Shaanxi province of China. The differences in soil seed banks were investigated in two different points in time, late March2011 and early April 2013. Main factors of seed population dynamics, such as seed yield of dominant species, seed inputs by seed rain as well as seed outputs through seed loss by overland flow and seedling emergence, were monitored from late March 2011 to early April 2013. In this study, seed rain densities of the main later successional species, i.e., Lespedeza davurica, Stipa bungeana and Artemisia gmelinii accounted for 51.5-71.6% of their own seed yields. The soil seed bank density in early April 2013 was larger than that in late March 2011. The density of seed inputs by seed rain was 10186 seeds•m-2, and the total seed bank, including seed rain and seeds present in the soil seed bank in late March 2011, reached a density of 15018 seeds•m-2 during the study period. Seed densities of loss due to overland flow and seedling emergence were 79 seeds•m-2 from 20 species and 938 seedlings•m-2 that belonged to 38 species during a study period, and the seed output through them accounted for 0.5% and 6.3% of the total seed bank, respectively. The study concluded that overland flow could not result in large numbers of seeds loss and seeds were accumulating in the soil seed bank due to seed rain, and vegetation succession might be limited by curbed spatial seed dispersal and seedling establishment.

  2. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.

    PubMed

    Ren, Xiang; Wang, Fuyou; Chen, Cheng; Gong, Xiaoyuan; Yin, Li; Yang, Liu

    2016-07-20

    Cartilage tissue engineering is a promising approach for repairing and regenerating cartilage tissue. To date, attempts have been made to construct zonal cartilage that mimics the cartilaginous matrix in different zones. However, little attention has been paid to the chondrocyte density gradient within the articular cartilage. We hypothesized that the chondrocyte density gradient plays an important role in forming the zonal distribution of extracellular matrix (ECM). In this study, collagen type II hydrogel/chondrocyte constructs were fabricated using a bioprinter. Three groups were created according to the total cell seeding density in collagen type II pre-gel: Group A, 2 × 10(7) cells/mL; Group B, 1 × 10(7) cells/mL; and Group C, 0.5 × 10(7) cells/mL. Each group included two types of construct: one with a biomimetic chondrocyte density gradient and the other with a single cell density. The constructs were cultured in vitro and harvested at 0, 1, 2, and 3 weeks for cell viability testing, reverse-transcription quantitative PCR (RT-qPCR), biochemical assays, and histological analysis. We found that total ECM production was positively correlated with the total cell density in the early culture stage, that the cell density gradient distribution resulted in a gradient distribution of ECM, and that the chondrocytes' biosynthetic ability was affected by both the total cell density and the cell distribution pattern. Our results suggested that zonal engineered cartilage could be fabricated by bioprinting collagen type II hydrogel constructs with a biomimetic cell density gradient. Both the total cell density and the cell distribution pattern should be optimized to achieve synergistic biological effects.

  3. Wetting of silicone oil onto a cell-seeded substrate

    NASA Astrophysics Data System (ADS)

    Lu, Yongjie; Chan, Yau Kei; Chao, Youchuang; Shum, Ho Cheung

    2017-11-01

    Wetting behavior of solid substrates in three-phase systems containing two immiscible liquids are widely studied. There exist many three-phase systems in biological environments, such as droplet-based microfluidics or tamponade of silicone oil for eye surgery. However, few studies focus on wetting behavior of biological surfaces with cells. Here we investigate wetting of silicone oil onto cell-seeded PMMA sheet immersed in water. Using a simple parallel-plate cell, we show the effect of cell density, viscosity of silicone oil, morphology of silicone oil drops and interfacial tension on the wetting phenomenon. The dynamics of wetting is also observed by squeezing silicone oil drop using two parallel plates. Experimental results are explained based on disjoining pressure which is dependent on the interaction of biological surfaces and liquid used. These findings are useful for explaining emulsification of silicone oil in ophthalmological applications.

  4. Global asymptotic stability of plant-seed bank models.

    PubMed

    Eager, Eric Alan; Rebarber, Richard; Tenhumberg, Brigitte

    2014-07-01

    Many plant populations have persistent seed banks, which consist of viable seeds that remain dormant in the soil for many years. Seed banks are important for plant population dynamics because they buffer against environmental perturbations and reduce the probability of extinction. Viability of the seeds in the seed bank can depend on the seed's age, hence it is important to keep track of the age distribution of seeds in the seed bank. In this paper we construct a general density-dependent plant-seed bank model where the seed bank is age-structured. We consider density dependence in both seedling establishment and seed production, since previous work has highlighted that overcrowding can suppress both of these processes. Under certain assumptions on the density dependence, we prove that there is a globally stable equilibrium population vector which is independent of the initial state. We derive an analytical formula for the equilibrium population using methods from feedback control theory. We apply these results to a model for the plant species Cirsium palustre and its seed bank.

  5. A comparison of seed banks across a sand dune successional gradient at Lake Michigan dunes (Indiana, USA)

    USGS Publications Warehouse

    Leicht-Young, S. A.; Pavlovic, N.B.; Grundel, R.; Frohnapple, K.J.

    2009-01-01

    In habitats where disturbance is frequent, seed banks are important for the regeneration of vegetation. Sand dune systems are dynamic habitats in which sand movement provides intermittent disturbance. As succession proceeds from bare sand to forest, the disturbance decreases. At Indiana Dunes National Lakeshore, we examined the seed banks of three habitat types across a successional gradient: foredunes, secondary dunes, and oak savanna. There were differences among the types of species that germinated from each of the habitats. The mean seed bank density increased across the successional gradient by habitat, from 376 to 433 to 968 seeds m-2, but with foredune and secondary dune seed bank densities being significantly lower than the savanna seed bank density. The number of seeds germinated was significantly correlated with soil organic carbon, demonstrating for this primary successional sequence that seed density increases with stage and age. The seed bank had much lower species richness than that of the aboveground vegetation across all habitats. Among sites within a habitat type, the similarity of species germinated from the seed banks was very low, illustrating the variability of the seed bank even in similar habitat types. These results suggest that restoration of these habitats cannot rely on seed banks alone. ?? 2008 Springer Science+Business Media B.V.

  6. Effect of variation in self-incompatibility on pollen limitation and inbreeding depression in Flourensia cernua (Asteraceae) scrubs of contrasting density

    PubMed Central

    Ferrer, Miriam M.; Good-Avila, Sara V.; Montaña, Carlos; Domínguez, César A.; Eguiarte, Luis E.

    2009-01-01

    Background and Aims Selection may favour a partial or complete loss of self-incompatibility (SI) if it increases the reproductive output of individuals in the presence of low mate availability. The reproductive output of individuals varying in their strength of SI may also be affected by population density via its affect on the spatial structuring and number of S-alleles in populations. Modifiers increasing levels of self-compatibility can be selected when self-compatible individuals receive reproductive compensation by, for example, increasing seed set and/or when they become associated with high fitness genotypes. Methods The effect of variation in the strength of SI and scrub density (low versus high) on seed set, seed germination and inbreeding depression in seed germination (δgerm) was investigated in the partially self-incompatible species Flourensia cernua by analysing data from self-, cross- and open-pollinated florets. Key Results Examination of 100 plants in both high and low scrub densities revealed that 51% of plants were strongly self-incompatible and 49 % varied from being self-incompatible to self-compatible. Seed set after hand cross-pollination was higher than after open-pollination for self-incompatible, partially self-incompatible and self-compatible plants but was uniformly low for strongly self-incompatible plants. Strongly self-incompatible and self-incompatible plants exhibited lower seed set, seed germination and multiplicative female fitness (floral display × seed set × seed germination) in open-pollinated florets compared with partially self-incompatible and self-compatible plants. Scrub density also had an effect on seed set and inbreeding depression: in low-density scrubs seed set was higher after open-pollination and δgerm was lower. Conclusions These data suggest that (a) plants suffered outcross pollen limitation, (b) female fitness in partially self-incompatible and self-compatible plants is enhanced by increased mate-compatibility and (c) plants in low-density scrubs received higher quality pollen via open-pollination than plants in high-density scrubs. PMID:19218580

  7. Use of Adipose Derived Stem Cells to Treat Large Bone Defects. Addendum

    DTIC Science & Technology

    2009-07-01

    optimal delivery . We have also completed characterization of our segmental defect model, including analysis of vascular ingrowth during defect healing...cells seeded in 1.2% Keltone alginate at a density of 12-15x106cells/ml were loaded on 24-well transwell insert membranes [6]. Once hydrogel discs...process from tissue culture plates and hydrogels does not alter the surface phenotype. Gene expression of surface markers and proteins associated with

  8. Lipopolysaccharide effects on the proliferation of NRK52E cells via alternations in gap-junction function.

    PubMed

    Hei, Ziqing; Zhang, Ailan; Wei, Jing; Gan, Xiaoliang; Wang, Yanling; Luo, Gangjian; Li, Xiaoyun

    2012-07-01

    Gap junctions regulate proper kidney function by facilitating intercellular communication, vascular conduction, and tubular purinergic signaling. However, no clear relationship has been described between gap-junction function and acute kidney injury induced by the endotoxin lipopolysaccharide (LPS). Normal rat kidney epithelial cells (NRK52E cells) were seeded at high and low densities to promote or impede gap-junction formation, respectively, and establish distinctive levels of intercellular communication in culture. Cells were then challenged with LPS at various concentrations (10-1,000 ng/mL). LPS-induced formation and function of gap junctions were assessed by measuring changes in cell proliferation and colony-forming rates, fluorescent dye transmission to adjacent cells, expression levels of connexin43, and repositioning of confluent cells in response to the gap junction inhibitor oleamide or agonist retinoic acid. The cell proliferation rate and colony-forming rate of high- and low-density NRK52E cells were decreased upon LPS challenge, in a dose-dependent manner. The colony-forming rate of confluent high-density cells was significantly lower than that of low-density cells. Oleamide treatment raised the LPS-induced colony-forming rate of high-density cells, whereas retinoic acid decreased the rate. Neither oleamide nor retinoic acid significantly affected the LPS-induced colony-forming rate of low-density cells. Fluorescence transmission of high-density cells was reduced by LPS challenge, in a dose-dependent manner, but inclusion of retinoic acid increased the LPS-induced transmission of fluorescence. LPS challenge of either high- or low-density NRK52E cells resulted in down-regulated connexin43 expression. Gap-junction function plays an important role in concentration-dependent cytotoxic effect of LPS on normal rat kidney cells in vitro.

  9. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates.

    PubMed

    Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E

    2017-12-01

    Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.

  10. Interstitial flow influences direction of tumor cell migration through competing mechanisms

    PubMed Central

    Polacheck, William J.; Charest, Joseph L.; Kamm, Roger D.

    2011-01-01

    Interstitial flow is the convective transport of fluid through tissue extracellular matrix. This creeping fluid flow has been shown to affect the morphology and migration of cells such as fibroblasts, cancer cells, endothelial cells, and mesenchymal stem cells. A microfluidic cell culture system was designed to apply stable pressure gradients and fluid flow and allow direct visualization of transient responses of cells seeded in a 3D collagen type I scaffold. We used this system to examine the effects of interstitial flow on cancer cell morphology and migration and to extend previous studies showing that interstitial flow increases the metastatic potential of MDA-MB-435S melanoma cells [Shields J, et al. (2007) Cancer Cell 11:526–538]. Using a breast carcinoma line (MDA-MB-231) we also observed cell migration along streamlines in the presence of flow; however, we further demonstrated that the strength of the flow as well as the cell density determined directional bias of migration along the streamline. In particular, we found that cells either at high seeding density or with the CCR-7 receptor inhibited migration against, rather than with the flow. We provide further evidence that CCR7-dependent autologous chemotaxis is the mechanism that leads to migration with the flow, but also demonstrate a competing CCR7-independent mechanism that causes migration against the flow. Data from experiments investigating the effects of cell concentration, interstitial flow rate, receptor activity, and focal adhesion kinase phosphorylation support our hypothesis that the competing stimulus is integrin mediated. This mechanism may play an important role in development of metastatic disease. PMID:21690404

  11. In Vitro Model of Tumor Cell Extravasation

    PubMed Central

    Jeon, Jessie S.; Zervantonakis, Ioannis K.; Chung, Seok; Kamm, Roger D.; Charest, Joseph L.

    2013-01-01

    Tumor cells that disseminate from the primary tumor and survive the vascular system can eventually extravasate across the endothelium to metastasize at a secondary site. In this study, we developed a microfluidic system to mimic tumor cell extravasation where cancer cells can transmigrate across an endothelial monolayer into a hydrogel that models the extracellular space. The experimental protocol is optimized to ensure the formation of an intact endothelium prior to the introduction of tumor cells and also to observe tumor cell extravasation by having a suitable tumor seeding density. Extravasation is observed for 38.8% of the tumor cells in contact with the endothelium within 1 day after their introduction. Permeability of the EC monolayer as measured by the diffusion of fluorescently-labeled dextran across the monolayer increased 3.8 fold 24 hours after introducing tumor cells, suggesting that the presence of tumor cells increases endothelial permeability. The percent of tumor cells extravasated remained nearly constant from1 to 3 days after tumor seeding, indicating extravasation in our system generally occurs within the first 24 hours of tumor cell contact with the endothelium. PMID:23437268

  12. Optimizing Hill Seeding Density for High-Yielding Hybrid Rice in a Single Rice Cropping System in South China

    PubMed Central

    Wang, Danying; Chen, Song; Wang, Zaiman; Ji, Chenglin; Xu, Chunmei; Zhang, Xiufu; Chauhan, Bhagirath Singh

    2014-01-01

    Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill) on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2). In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice. PMID:25290342

  13. Culture of Macrophage Colony-stimulating Factor Differentiated Human Monocyte-derived Macrophages.

    PubMed

    Jin, Xueting; Kruth, Howard S

    2016-06-30

    A protocol is presented for cell culture of macrophage colony-stimulating factor (M-CSF) differentiated human monocyte-derived macrophages. For initiation of experiments, fresh or frozen monocytes are cultured in flasks for 1 week with M-CSF to induce their differentiation into macrophages. Then, the macrophages can be harvested and seeded into culture wells at required cell densities for carrying out experiments. The use of defined numbers of macrophages rather than defined numbers of monocytes to initiate macrophage cultures for experiments yields macrophage cultures in which the desired cell density can be more consistently attained. Use of cryopreserved monocytes reduces dependency on donor availability and produces more homogeneous macrophage cultures.

  14. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    PubMed

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  15. Effects of the seasonal flooding on riparian soil seed bank in the Three Gorges Reservoir Region: a case study in Shanmu River.

    PubMed

    Zhang, Miao; Chen, Fangqing; Chen, Shaohua; Wang, Yajin; Wang, Jianzhu

    2016-01-01

    The water-level fluctuation in the Three Gorges Reservoir Region has changed dramatically as a result of the hydroelectric project for flood control and power generation. The riparian seasonal hydrological environment also has changed from summer flooding with winter drought to summer drought with winter flooding. The changes of riparian seed bank and vegetation were investigated to determine the effects of the seasonal flooding on the composition and spatial distribution of riparian soil seed bank and the similarity of seed bank to standing vegetation. We conducted intensive riparian soil sampling (525 samples) along altitude gradient in the Shanmu River, a tributary of the Yangzi River in the reservoir region of China. Seed bank density, species richness and composition of soil seed bank were examined using the seedling-emergence method. The seasonal hydrological conditions resulted in a decrease in species diversity and an increase in the distribution heterogeneity of the soil seed bank. The soil seed bank was composed of 48 species from 22 families and 40 genera. Most species were annual and perennial herbaceous Polygonaceae, Asteraceae, and Poaceae. Rumex dentatus was the predominant species accounting for 27.0 % of the total seeds. Diversity and composition of the seed bank changed along an altitude gradient and soil depth. Maximum species richness was found in the top soil layer at 165 m and 175 m above sea level. The mean overall seed density of the soil seed bank was 13,475.3 ind m(-2). Density and the number of seeds increased initially and then decreased with increased altitude. Maximum seed density (22,500.2 ind m(-2)) was found at 165 m above sea level in the intermediately flooded riverbank, with the seed number accounting for 27.8 % of the total soil seed bank. Average seed density declined significantly with soil depth. The similarity of seed bank to standing vegetation was relatively high. The environmental heterogeneity created by the wide range and seasonal flooding led to the changes in biodiversity and seed density along altitude gradient. The seasonal flooding also led to the increase in the similarity of seed bank to standing vegetation as their composition both degraded. The seasonal flooding due to the dam reshape the composition and spatial distribution of riparian soil seed bank and limit the vegetation to a grassland dominated by a few annuals and perennials in the Three Gorges Reservoir Region.

  16. Death of embryos from 2300-year-old quinoa seeds found in an archaeological site.

    PubMed

    Burrieza, Hernán Pablo; Sanguinetti, Agustín; Michieli, Catalina Teresa; Bertero, Héctor Daniel; Maldonado, Sara

    2016-12-01

    In the 1970s, during excavations at Los Morrillos, San Juan, Argentina, quinoa seeds were found within ancient pumpkin crocks protected from the light and high temperatures, and preserved in the very dry conditions of the region. The radiocarbon dates confirmed the age of these seeds at around 2300 years. Sectioning of some of these seeds showed reddish-brown embryos, different from the white embryos of recently harvested quinoa seeds. The ancient seeds did not germinate. The structure of the embryo cells was examined using light and transmission electron microscopy; proteins were analyzed by electrophoresis followed by Coomassie blue and periodic acid Schiff staining and fatty acids by gas chromatography. The state of nuclear DNA was investigated by TUNEL assay, DAPI staining, ladder agarose electrophoresis and flow cytometry. Results suggest that, although the embryo tissues contained very low water content, death occurred by a cell death program in which heterochromatin density was dramatically reduced, total DNA was degraded into small fragments of less than 500bp, and some proteins were modified by non-enzymatic glycation, generating Maillard products. Polyunsaturated fatty acids decreased and became fragmented, which could be attributable to the extensive oxidation of the most sensitive species (linolenic and linoleic acids) and associated with a collapse of lipid bodies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. The influence of pulsed electric fields and microwave pretreatments on some selected physicochemical properties of oil extracted from black cumin seed.

    PubMed

    Bakhshabadi, Hamid; Mirzaei, HabibOllah; Ghodsvali, Alireza; Jafari, Seid Mahdi; Ziaiifar, Aman Mohammad

    2018-01-01

    Application of novel technologies such as microwave and pulsed electric fields (PEF) might increase the speed and efficiency of oil extraction. In the present research, PEF (3.25 kV/cm electric field intensity and 30 pulse number) and microwave (540 W for 180 s) pretreatments were used to study the process of oil extraction from black cumin ( Nigella sativa ) seeds. After applying the selected pretreatments, the oil of seeds was extracted with the use of a screw press and the extraction efficiency, refractive index, oil density, color index, oxidative stability, and chemical components of oil and protein of meal were evaluated. The achieved results expressed that PEF and microwave pretreatments increased the oil extraction efficiency and its oxidative stability. Different pretreatments didn't have any significant influence on the refractive index of black cumin seed oil ( p >.05). When microwave and PEF were used, the oil density showed an enhancement as the following: 1.51% and 0.96%, respectively in comparison with the samples with no pretreatments. Evaluation of the extracted oils, using GC/MS analysis indicated that thymoquinone was the dominant phenolic component in the black cumin oil. Finally, the SEM analysis revealed that microwave and PEF can be useful in the extraction of oil from black cumin seeds since these treatments damaged cell walls and facilitated the oil extraction process.

  18. Small-mammal seed predation limits the recruitment and abundance of two perennial grassland forbs.

    PubMed

    Bricker, Mary; Pearson, Dean; Maron, John

    2010-01-01

    Although post-dispersal seed predators are common and often reduce seed density, their influence on plant population abundance remains unclear. On the one hand, increasing evidence suggests that many plant populations are seed limited, implying that seed predators could reduce plant abundance. On the other hand,.it is generally uncertain whether the magnitude of seed limitation imposed by granivores is strong enough to overcome density-dependent processes that could compensate for seed loss at later stages. We examined the impact of seed predation by small mammals, primarily deer mice (Peromyscus maniculatus), on seedling recruitment and subsequent plant establishment of two perennial grassland forbs in western Montana, USA: Lupinus sericeus (Fabaceae) and Lithospermum ruderale (Boraginaceae). The experiment combined graded densities of seed addition for each species with a small-mammal exclusion treatment. Seedling recruitment and plant establishment were monitored in the experimental plots for up to three years. For both species, small-mammal exclusion increased the total number of seedlings that emerged, and these effects were still significant three years after seed addition, resulting in greater numbers of established plants inside exclosures than in control plots. We also found evidence of seed limitation, with increasing density of seeds added leading to increased numbers of seedlings. Results from seed addition and small-mammal exclusion experiments in later years also revealed significant impacts of small mammals on seedling emergence. These results suggest that granivores can have potentially important impacts in limiting forb abundance in grasslands communities.

  19. Influence of richness and seeding density on invasion resistance in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Helzer, Christopher J.; Wedin, David A.

    2013-01-01

    In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome.

  20. Early dissemination seeds metastasis in breast cancer

    PubMed Central

    Hosseini, Hedayatollah; Obradović, Milan M.S.; Hoffmann, Martin; Harper, Kathryn; Sosa, Maria Soledad; Werner-Klein, Melanie; Nanduri, Lahiri Kanth; Werno, Christian; Ehrl, Carolin; Maneck, Matthias; Patwary, Nina; Haunschild, Gundula; Gužvić, Miodrag; Reimelt, Christian; Grauvogl, Michael; Eichner, Norbert; Weber, Florian; Hartkopf, Andreas; Taran, Florin-Andrei; Brucker, Sara Y.; Fehm, Tanja; Rack, Brigitte; Buchholz, Stefan; Spang, Rainer; Meister, Gunter; Aguirre-Ghiso, Julio A.; Klein, Christoph A.

    2016-01-01

    Accumulating data suggest that metastatic dissemination often occurs early during tumour formation but the mechanisms of early metastatic spread have not yet been addressed. Here, we studied metastasis in a HER2-driven mouse breast cancer model and found that progesterone-induced signalling triggered migration of cancer cells from early lesions shortly after HER2 activation, but promoted proliferation in advanced primary tumour cells. The switch from migration to proliferation was regulated by elevated HER2 expression and increased tumour cell density involving miRNA-mediated progesterone receptor (PGR) down-regulation and was reversible. Cells from early, low-density lesions displayed more stemness features than cells from dense, advanced tumours, migrated more and founded more metastases. Strikingly, we found that at least 80% of metastases were derived from early disseminated cancer cells (DCC). Karyotypic and phenotypic analysis of human disseminated cancer cells and primary tumours corroborated the relevance of these findings for human metastatic dissemination. PMID:27974799

  1. Timing of seed dispersal generates a bimodal seed bank depth distribution

    USGS Publications Warehouse

    Espinar, J.L.; Thompson, K.; Garcia, L.V.

    2005-01-01

    The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Don??ana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated.

  2. Numerical analyses of baseline JT-60SA design concepts with the COREDIV code

    NASA Astrophysics Data System (ADS)

    Zagórski, R.; Gałązka, K.; Ivanova-Stanik, I.; Stępniewski, W.; Garzotti, L.; Giruzzi, G.; Neu, R.; Romanelli, M.

    2017-06-01

    JT-60SA reference design scenarios at high (#3) and low (#2) density have been analyzed with the help of the self-consistent COREDIV code. Simulations results for a standard C wall and full W wall have been compared in terms of the influence of impurities, both intrinsic (C, W) and seeded (N, Ar, Ne, Kr), on the radiation losses and plasma parameters. For scenario #3 in a C environment, the regime of detachment on divertor plates can be achieved with N or Ne seeding, whereas for the low density and high power scenario (#2), the C and seeding impurity radiation does not effectively reduce power to the targets. In this case, only an increase of either average density or edge density together with Kr seeding might help to develop conditions with strong radiation losses and semi-detached conditions in the divertor. The calculations show that, in the case of a W divertor, the power load to the plate is mitigated by seeding and the central plasma dilution is smaller compared to the C divertor. For the high density case (#3) with Ne seeding, operation in full detachment mode is predicted. Ar seems to be an optimal choice for the low-density high-power scenario #2, showing a wide operating window, whereas Ne leads to high plasma dilution at high seeding levels albeit not achieving semi-detached conditions in the divertor.

  3. [Characteristics of soil seed banks in logging gaps of forests at different succession stages in Changbai Mountains].

    PubMed

    Zhang, Zhi-Ting; Song, Xin-Zhang; Xiao, Wen-Fa; Gao, Bao-Jia; Guo, Zhong-Ling

    2009-06-01

    An investigation was made on the soil seed banks in the logging gaps of Populus davidiana--Betula platyphylla secondary forest, secondary broad-leaved forest, and broad-leaved Korean pine mixed forest at their different succession stages in Changbai Mountains. Among the test forests, secondary broad-leaved forest had the highest individual density (652 ind x m(-2)) in its soil seed bank. With the succession of forest community, the diversity and uniformity of soil seed bank increased, but the dominance decreased. The seed density of climax species such as Pinus koraiensis, Abies nephrolepis, and Acer mono increased, whereas that of Maackia amurensis and Fraxinus mandshurica decreased. Moreover, the similarity in species composition between soil seed bank and the seedlings within logging gaps became higher. The individual density and similarity between soil seed bank and the seedlings in non-logging gaps were similar to those in logging gaps. All of these indicated that soil seed bank provided rich seed resources for forest recovery and succession, and the influence of soil seed bank on seedlings regeneration increased with the succession.

  4. Effect of Seed Density on Splash Cup Seed Dispersal

    NASA Astrophysics Data System (ADS)

    Wigger, Patrick; Pepper, Rachel

    2017-11-01

    Splash cup plants are plants that utilize a small, mm-sized cup filled with seeds as a method of seed dispersal. The cup uses kinetic energy of an incident raindrop in order to project the seeds away from the plant up to 1 meter. The dispersal distance is important to ensure the offspring are not clustered too tightly to the parent plant. It has previously been found that a cup angle of 40 degrees to the horizontal is optimal for maximum dispersal of water from cups with no seeds. In this study we examine if the 40 degree cup is optimal for cups containing seeds with varying densities. We released uniform water drops above 5.0 mm 3D printed models of splash cups, using 1.0 mm plastic and glass microspheres of varying densities to simulate seeds. We observed the dispersal characteristics of each bead type by measuring the final seed locations after each splash, and by recording high speed video to determine the angle and velocity of the seeds as they exited the cup.

  5. Compartmental hollow fiber capillary membrane-based bioreactor technology for in vitro studies on red blood cell lineage direction of hematopoietic stem cells.

    PubMed

    Housler, Greggory J; Miki, Toshio; Schmelzer, Eva; Pekor, Christopher; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Abbot, Stewart; Zeilinger, Katrin; Gerlach, Jörg C

    2012-02-01

    Continuous production of red blood cells (RBCs) in an automated closed culture system using hematopoietic stem cell (HSC) progenitor cell populations is of interest for clinical application because of the high demand for blood transfusions. Previously, we introduced a four-compartment bioreactor that consisted of two bundles of hollow fiber microfiltration membranes for transport of culture medium (forming two medium compartments), interwoven with one bundle of hollow fiber membranes for transport of oxygen (O(2)), carbon dioxide (CO(2)), and other gases (forming one gas compartment). Small-scale prototypes were developed of the three-dimensional (3D) perfusion cell culture systems, which enable convection-based mass transfer and integral oxygenation in the cell compartment. CD34(+) HSC were isolated from human cord blood units using a magnetic separation procedure. Cells were inoculated into 2- or 8-mL scaled-down versions of the previously designed 800-mL cell compartment devices and perfused with erythrocyte proliferation and differentiation medium. First, using the small-scale 2-mL analytical scale bioreactor, with an initial seeding density of 800,000 cells/mL, we demonstrated approximately 100-fold cell expansion and differentiation after 7 days of culture. An 8-mL laboratory-scale bioreactor was then used to show pseudocontinuous production by intermediately harvesting cells. Subsequently, we were able to use a model to demonstrate semicontinuous production with up to 14,288-fold expansion using seeding densities of 800,000 cells/mL. The down-scaled culture technology allows for expansion of CD34(+) cells and stimulating these progenitors towards RBC lineage, expressing approximately 40% CD235(+) and enucleation. The 3D perfusion technology provides an innovative tool for studies on RBC production, which is scalable.

  6. Compartmental Hollow Fiber Capillary Membrane–Based Bioreactor Technology for In Vitro Studies on Red Blood Cell Lineage Direction of Hematopoietic Stem Cells

    PubMed Central

    Housler, Greggory J.; Miki, Toshio; Schmelzer, Eva; Pekor, Christopher; Zhang, Xiaokui; Kang, Lin; Voskinarian-Berse, Vanessa; Abbot, Stewart; Zeilinger, Katrin

    2012-01-01

    Continuous production of red blood cells (RBCs) in an automated closed culture system using hematopoietic stem cell (HSC) progenitor cell populations is of interest for clinical application because of the high demand for blood transfusions. Previously, we introduced a four-compartment bioreactor that consisted of two bundles of hollow fiber microfiltration membranes for transport of culture medium (forming two medium compartments), interwoven with one bundle of hollow fiber membranes for transport of oxygen (O2), carbon dioxide (CO2), and other gases (forming one gas compartment). Small-scale prototypes were developed of the three-dimensional (3D) perfusion cell culture systems, which enable convection-based mass transfer and integral oxygenation in the cell compartment. CD34+ HSC were isolated from human cord blood units using a magnetic separation procedure. Cells were inoculated into 2- or 8-mL scaled-down versions of the previously designed 800-mL cell compartment devices and perfused with erythrocyte proliferation and differentiation medium. First, using the small-scale 2-mL analytical scale bioreactor, with an initial seeding density of 800,000 cells/mL, we demonstrated approximately 100-fold cell expansion and differentiation after 7 days of culture. An 8-mL laboratory-scale bioreactor was then used to show pseudocontinuous production by intermediately harvesting cells. Subsequently, we were able to use a model to demonstrate semicontinuous production with up to 14,288-fold expansion using seeding densities of 800,000 cells/mL. The down-scaled culture technology allows for expansion of CD34+ cells and stimulating these progenitors towards RBC lineage, expressing approximately 40% CD235+ and enucleation. The 3D perfusion technology provides an innovative tool for studies on RBC production, which is scalable. PMID:21933020

  7. Consumers limit the abundance and dynamics of a perennial shrub with a seed bank

    USGS Publications Warehouse

    Kauffman, M.J.; Maron, J.L.

    2006-01-01

    For nearly 30 years, ecologists have argued that predators of seeds and seedlings seldom have population-level effects on plants with persistent seed banks and density-dependent seedling survival. We parameterized stage-based population models that incorporated density dependence and seed dormancy with data from a 5.5-year experiment that quantified how granivorous mice and herbivorous voles influence bush lupine (Lupinus arboreus) demography. We asked how seed dormancy and density-dependent seedling survival mediate the impacts of these consumers in dune and grassland habitats. In dune habitat, mice reduced analytical ?? (the intrinsic rate of population growth) by 39%, the equilibrium number of above-ground plants by 90%, and the seed bank by 98%; voles had minimal effects. In adjacent grasslands, mice had minimal effects, but seedling herbivory by voles reduced analytical ?? by 15% and reduced both the equilibrium number of aboveground plants and dormant seeds by 63%. A bootstrap analysis demonstrated that these consumer effects were robust to parameter uncertainty. Our results demonstrate that the quantitative strengths of seed dormancy and density-dependent seedling survival-not their mere existence-critically mediate consumer effects. This study suggests that plant population dynamics and distribution may be more strongly influenced by consumers of seeds and seedlings than is currently recognized. ?? 2006 by The University of Chicago.

  8. A model of the relationship between weedy rice seed-bank dynamics and rice-crop infestation and damage in Jiangsu Province, China.

    PubMed

    Zhang, Zheng; Dai, Weimin; Song, Xiaoling; Qiang, Sheng

    2014-05-01

    A heavy infestation of weedy rice leading to no harvested rice has never been predicted in China due to a lack of knowledge about the weedy rice seed bank. We studied the seed-bank dynamics of weedy rice for three consecutive years and analyzed the relationship between seed-bank density and population density in order to predict future weedy rice infestations of direct-seeded rice at six sites along the Yangtze River in Jiangsu Province, China. The seed-bank density of weedy rice in all six sites displayed an increasing trend with seasonal fluctuations. Weedy rice seeds found in the 0-10 cm soil layer contributed most to seedling emergence. An exponential curve expressed the relationship between cultivated rice yield loss and adult weedy rice density. Based on data collected during the weedy rice life-cycle, a semi-empirical mathematic model was developed that fits well with the experimental data in a way that could be used to predict seed-bank dynamics. By integrating the semi-empirical model and the exponential curve, weedy rice infestation levels and crop losses can be predicted based on the seed-bank dynamics so that a practical control can be adopted before rice planting. © 2013 Society of Chemical Industry.

  9. Direct Low-Temperature Growth of Single-Crystalline Anatase TiO2 Nanorod Arrays on Transparent Conducting Oxide Substrates for Use in PbS Quantum-Dot Solar Cells.

    PubMed

    Chung, Hyun Suk; Han, Gill Sang; Park, So Yeon; Shin, Hee-Won; Ahn, Tae Kyu; Jeong, Sohee; Cho, In Sun; Jung, Hyun Suk

    2015-05-20

    We report on the direct growth of anatase TiO2 nanorod arrays (A-NRs) on transparent conducting oxide (TCO) substrates that can be directly applied to various photovoltaic devices via a seed layer mediated epitaxial growth using a facile low-temperature hydrothermal method. We found that the crystallinity of the seed layer and the addition of an amine functional group play crucial roles in the A-NR growth process. The A-NRs exhibit a pure anatase phase with a high crystallinity and preferred growth orientation in the [001] direction. Importantly, for depleted heterojunction solar cells (TiO2/PbS), the A-NRs improve both electron transport and injection properties, thereby largely increasing the short-circuit current density and doubling their efficiency compared to TiO2 nanoparticle-based solar cells.

  10. Efficacy of Selected Insecticides Applied to Hybrid Rice Seed

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Walker, T.; Dobbins, C.

    2016-01-01

    Hybrid rice and insecticide seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel, have altered the landscape of rice production. The effect of reduced seeding rates on seed treatment efficacy in hybrid rice has not been studied. During 2011 and 2012, an experiment was conducted at seven locations to determine the relationship between low seeding rates used in hybrid rice and efficacy of selected insecticidal seed treatments as measured by rice water weevil densities and yield. Labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin were compared with higher rates of these products to determine if labeled rates provide an acceptable level of control of the rice water weevil. Study locations were divided into low, moderate, and high groups based on rice water weevil larval densities. All seed treatments and seed treatment rates reduced rice water weevil densities. However, there was no observed yield or economic benefit from the use of an insecticidal seed treatment in areas of low pressure. Differences in yield were observed among seed treatments and seed treatment rates in moderate and high pressure locations, and all seed treatments yielded better than the untreated plots, but these differences were not always economical. All seed treatments showed an economic advantage in areas of high weevil pressure, and there were no differences among seed treatment products or rates, suggesting that currently labeled seed treatment rates in hybrid rice are effective for rice water weevil management. PMID:26537671

  11. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  12. Grazing disturbance increases transient but decreases persistent soil seed bank.

    PubMed

    Ma, Miaojun; Walck, Jeffrey L; Ma, Zhen; Wang, Lipei; Du, Guozhen

    2018-04-30

    Very few studies have examined whether the impacts of grazing disturbance on soil seed banks occur directly or indirectly through aboveground vegetation and soil properties. The potential role of the seed bank in alpine wetland restoration is also unknown. We used SEM (structural equation modeling) to explore the direct effect of grazing disturbance on the seed bank and the indirect effect through aboveground vegetation and soil properties. We also studied the role of the seed bank on the restoration potential in wetlands with various grazing intensities: low (fenced, winter grazed only), medium (seasonally grazed), and high (whole-year grazed). For the seed bank, species richness and density per plot showed no difference among grazing intensities for each depth (0-5, 5-10, 10-15 cm) and for the whole depth (0-15 cm) in spring and summer. There was no direct effect of grazing disturbance on seed bank richness and density both in spring and summer, and also no indirect effect on the seed bank through its direct effect on vegetation richness and abundance. Grazing disturbance indirectly increased spring seed bank density but decreased summer seed bank density through its direct effect (negative correlation) on soil moisture and total nitrogen and its indirect effect on vegetation abundance. Species composition of the vegetation changed with grazing regime, but that of the seed bank did not. An increased trend of similarity between the seed bank and aboveground vegetation with increased grazing disturbance was found in the shallow depth and in the whole depth only in spring. Although there was almost no change in seed bank size with grazing intensities, grazing disturbance increased the quantity of transient seeds but decreased persistent seeds. Persistent seeds stored in the soil could play a crucial role in vegetation regeneration and in restoration of degraded wetland ecosystems. The seed bank should be an integral part of alpine wetland restoration programs. © 2018 by the Ecological Society of America.

  13. Fatty acid composition, physicochemical properties, antioxidant and cytotoxic activity of apple seed oil obtained from apple pomace.

    PubMed

    Walia, Mayanka; Rawat, Kiran; Bhushan, Shashi; Padwad, Yogendra S; Singh, Bikram

    2014-03-30

    Apple pomace is generated in huge quantities in juice-processing industries the world over and continuous efforts are being made for its inclusive utilization. In this study, apple seeds separated from industrial pomace were used for extraction of oil. The fatty acid composition, physicochemical and antioxidant as well as in vitro anticancer properties of extracted oil were studied to assess its suitability in food and therapeutic applications. The fatty acid composition of seed oil revealed the dominance of oleic (46.50%) and linoleic acid (43.81%). It had high iodine (121.8 g I 100 g⁻¹) and saponification value (184.91 mg KOH g⁻¹ oil). The acid value, refractive index and relative density were 4.28 mg KOH g⁻¹, 1.47 and 0.97 mg mL⁻¹, respectively. The antioxidant potential (IC₅₀) of apple seed oil was 40.06 µg mL⁻¹. Cytotoxicity of apple seed oil against CHOK1, SiHa and A549 cancer cell lines ranged between 0.5 ± 0.06% and 88.6 ± 0.3%. The physicochemical properties of apple seed oil were comparable with edible food oil, indicating its better stability and broad application in the food and pharmaceutical industries. Apple seed oil could be a good source of natural antioxidants. Also, the in vitro cytotoxic activity against specific cell lines exhibited its potential as an anticancer agent. © 2013 Society of Chemical Industry.

  14. Genotoxic Effects of Superconducting Static Magnetic Fields (SMFs) on Wheat (Triticum aestivum) Pollen Mother Cells (PMCs)

    NASA Astrophysics Data System (ADS)

    Zhang, Pingping; Yin, Ruochun; Chen, Zhiyou; Wu, Lifang; Yu, Zengliang

    2007-04-01

    The effects of superconducting static magnetic fields (SMFs) on the pollen mother cells (PMCs) of wheat were investigated in order to evaluate the possible genotoxic effect of such non-ionizing radiation. The seeds of wheat were exposed to static magnetic fields with either different magnetic flux densities (0, 1, 3, 5 and 7 Tesla) for 5 h or different durations (1, 3 and 5 h) at a magnetic flux density of 7 Tesla. The seeds were germinated at 23oC after exposure and the seedlings were transplanted into the field. The PMCs from young wheat ears were taken and slides were made following the conventional method. The genotoxic effect was evaluated in terms of micronucleus (MN), chromosomal bridge, lagging chromosome and fragments in PMCs. Although the exposed groups of a low field intensity (below 5 Tesla) showed no statistically significant difference in the aberration frequency compared with the unexposed control groups and sham exposed groups, a significant increase in the chromosomal bridge, lagging chromosome, triple-polar segregation or micronucleus was observed at a field strength of 5 Tesla or 7 Tesla, respectively. The analysis of dose-effect relationships indicated that the increased frequency of meiotic abnormal cells correlated with the flux density of the magnetic field and duration, but no linear relationship was observed. Such statistically significant differences indicated a potential genotoxic effect of high static magnetic fields above 5 T.

  15. Faith in a seed: on the origins of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Retterer, J. M.; Roddy, P.

    2014-05-01

    Our faith in the seeds of equatorial plasma irregularities holds that there will generally always be density perturbations sufficient to provide the seeds for irregularity development whenever the Rayleigh-Taylor instability is active. When the duration of the time of the Rayleigh-Taylor instability is short, however, the magnitude of the seed perturbations can make a difference in whether the irregularities have a chance to grow to a strength at which the nonlinear development of plumes occurs. In addition, the character of the resulting irregularities reflects the characteristics of the initial seed density perturbation, e.g., their strength, spacing, and, to some extent, their spatial scales, and it is important to know the seeds to help determine the structure of the developed irregularities. To this end, we describe the climatology of daytime and early-evening density irregularities that can serve as seeds for later development of plumes, as determined from the Planar Langmuir Probe (PLP) plasma density measurements on the C/NOFS (Communication and Navigation Outage Forecast System) satellite mission, presenting their magnitude as a function of altitude, latitude, longitude, local time, season, and phase in the solar cycle (within the C/NOFS observation era). To examine some of the consequences of these density perturbations, they are used as initial conditions for the PBMOD PBMOD (Retterer, 2010a) 3-D irregularity model to follow their potential development into larger-amplitude irregularities, plumes, and radio scintillation. "Though I do not believe that a pla[sma bubble] will spring up where no seed has been, I have great faith in a seed. Convince me that you have a seed there, and I am prepared to expect wonders." - Henry David Thoreau

  16. Statistics of primordial density perturbations from discrete seed masses

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Bertschinger, Edmund

    1991-01-01

    The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.

  17. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  18. A strong conditional mutualism limits and enhances seed dispersal and germination of a tropical palm

    USGS Publications Warehouse

    Klinger, R.; Rejmanek, M.

    2010-01-01

    Seed predation and seed dispersal can have strong effects on early life history stages of plants. These processes have often been studied as individual effects, but the degree to which their relative importance co-varies with seed predator abundance and how this influences seed germination rates is poorly understood. Therefore, we used a combination of observations and field experiments to determine the degree to which germination rates of the palm Astrocaryum mexicanum varied with abundance of a small mammal seed predator/disperser, Heteromysdesmarestianus, in a lowland tropical forest. Patterns of abundance of the two species were strongly related; density of H. desmarestianus was low in sites with low density of A. mexicanum and vice versa. Rates of predation and dispersal of A. mexicanum seeds depended on abundance of H. desmarestianus; sites with high densities of H. desmarestianus had the highest rates of seed predation and lowest rates of seed germination, but a greater total number of seeds were dispersed and there was greater density of seedlings, saplings, and adults of A. mexicanum in these sites. When abundance of H. desmarestianus was experimentally reduced, rates of seed predation decreased, but so did dispersal of A. mexicanum seeds. Critically, rates of germination of dispersed seeds were 5 times greater than undispersed seeds. The results suggest that the relationship between A. mexicanum and H. desmarestianus is a conditional mutualism that results in a strong local effect on the abundance of each species. However, the magnitude and direction of these effects are determined by the relative strength of opposing, but related, mechanisms. A. mexicanum nuts provide H. desmarestianus with a critical food resource, and while seed predation on A. mexicanum nuts by H. desmarestianus is very intense, A. mexicanum ultimately benefits because of the relatively high germination rates of its seeds that are dispersed by H. desmarestianus. ?? The Author(s) 2010.

  19. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation.

    PubMed

    Olano, J M; Caballero, I; Escudero, A

    2012-01-01

    Seed banks are critical in arid ecosystems and ensure the persistence of species. Despite the importance of seed banks, knowledge about their formation and the extent to which a seed bank can recover after severe perturbation remains scarce. If undisturbed, soil seed banks reflect a long vegetation history; therefore, we would expect that new soil seed banks and those of undisturbed soils require long periods to become similar with respect to both density and composition. In contrast, if soil seed banks are only a short- to mid-term reservoir in which long-term accumulation constitutes only a tiny fraction, they will recover rapidly from the vegetation. To shed light on this question, we evaluated seed bank formation in a semi-arid gypsum community. Soils from 300 plots were replaced with sterilized soil in an undisturbed semi-arid Mediterranean community. Seasonal changes in seed bank density and composition were monitored for 3 years by comparing paired sterilized and control soil samples at each plot. Differences in seed bank density between sterilized and control soil disappeared after 18 months. The composition of sterilized seed banks was correlated with that of the control plots from the first sampling date, and both were highly correlated with vegetation. Nearly 24 % of the seed bank density could be attributed to secondary dispersal. Most seeds died before emergence (66·41-71·33 %), whereas the rest either emerged (14·08-15·48 %) or persisted in the soil (14·59-18·11 %). Seed banks can recover very rapidly even under the limiting and stressful conditions of semi-arid environments. This recovery is based mainly on the seed rain at small scales together with secondary dispersal from intact seed banks in the vicinity. These results emphasize the relevance of processes occurring on short spatial scales in determining community structure.

  20. Erythropoietin promotes network formation of transplanted adipose tissue-derived microvascular fragments.

    PubMed

    Karschnia, P; Scheuer, C; Heß, A; Später, T; Menger, M D; Laschke, M W

    2018-05-09

    The seeding of tissue constructs with adipose tissue-derived microvascular fragments (ad-MVF) is an emerging pre-vascularisation strategy. Ad-MVF rapidly reassemble into new microvascular networks after in vivo implantation. Herein it was analysed whether this process was improved by erythropoietin (EPO). Ad-MVF were isolated from green fluorescent protein (GFP)+ as well as wild-type C57BL/6 mice and cultivated for 24 h in medium supplemented with EPO (20 IU/mL) or vehicle. Freshly isolated, non-cultivated ad-MVF served as controls. Protein expression, cell viability and proliferation of ad-MVF were assessed by proteome profiler array and fluorescence microscopy. GFP+ ad-MVF were seeded on collagen-glycosaminoglycan matrices, which were implanted into dorsal skinfold chambers of C57BL/6 mice, to analyse their vascularisation over 14 d by intravital fluorescence microscopy, histology and immunohistochemistry. Cultivation up-regulated the expression of pro- and anti-angiogenic factors within both vehicle- and EPO-treated ad-MVF when compared with non-cultivated controls. Moreover, EPO treatment suppressed cultivation-associated apoptosis and significantly increased the number of proliferating endothelial cells in ad-MVF when compared with vehicle-treated and non-cultivated ad-MVF. Accordingly, implanted matrices seeded with EPO-treated ad-MVF exhibited an improved vascularisation, as indicated by a significantly higher functional microvessel density. The matrices of the three groups contained a comparably large fraction of GFP+ microvessels originating from the ad-MVF, whereas the tissue surrounding the matrices seeded with EPO-treated ad-MVF exhibited a significantly increased microvessel density when compared with the other two groups. These findings indicated that EPO represents a promising cytokine to further boost the excellent vascularisation properties of ad-MVF in tissue-engineering applications.

  1. Use of Irrigation to Extend the Seeding Window for Final Reclamation at Yucca Mountain, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TRW Environmental Safety

    2000-08-01

    The U.S. Department of Energy has implemented a program to investigate the feasibility of various techniques for reclaiming lands disturbed during site characterization at Yucca Mountain. As part of this program, two studies were conducted in 1997 to assess the effects of combinations of seeding date (date that seeds are planted) and supplemental irrigation on densities of native plant species at Yucca Mountain. Study objectives were to (1) determine whether the traditional seeding window (October-December) could be extended through combinations of seeding date and irrigation date, (2) determine which combination of seeding date and irrigation was most successful, and (3)more » assess the effects of irrigation versus natural precipitation on seedling establishment. In the first study, a multi-species seed mix of 16 native species was sown into plots on four dates (12/96, 2/97, 3/97, and 4/97). Irrigation treatments were control (no irrigation) or addition of 80 mm of supplemental water applied over a one month period. Plant densities were sampled in August and again in October, 1997. In the second study, Larrea tridentata and Lycium andersonii, two species that are common at Yucca Mountain, but difficult to establish from seed, were sown together into plots in January and August, 1997. Half the plots were irrigated with approximately 250 mm of water between August 18 and September 11, while the remaining plots received no irrigation (control). Plant densities were sampled in October, 1997. The August census for the multi-species mix study showed irrigated plots that were sown in February, March and April had higher plant densities and more species than plots that were not irrigated. Irrigation had no effect on plant densities on plots that were seeded in December. Plots were used again in October following 18 mm of precipitation in September. Densities of three species, Ambrosia dumosa, Hymenoclea salsola, and L. tridentata, (warm-season species) were lower on irrigated plots sown in December, February, and March, and showed no response to irrigation on plots sown in April. Therefore, early spring irrigation did not facilitate establishment of warm-season species. These results suggest that these species are dependent upon precipitation while temperatures are warm in late summer or fall. However, control plots that were seeded in December had acceptable densities of these species. A more practical approach might be to avoid irrigation costs by seeding in December and waiting for fall precipitation. The remaining species (cool-season species) showed an opposite response to supplemental water with greater densities on irrigated plots sown in February, March, and April, and no response to irrigation on plots sown in December. While these results show that irrigation can extend the seeding window for cool-season species should it be necessary, it was also apparent that if seeds are sown by late December, irrigation is not necessary to achieve acceptable plant densities.« less

  2. Nanocomposite Porous Microcarriers Based on Strontium-Substituted HA- g-Poly(γ-benzyl-l-glutamate) for Bone Tissue Engineering.

    PubMed

    Yan, Shifeng; Xia, Pengfei; Xu, Shenghua; Zhang, Kunxi; Li, Guifei; Cui, Lei; Yin, Jingbo

    2018-05-04

    Porous microcarriers have aroused increasing attention recently, which can create a protected environment for sufficient cell seeding density, facilitate oxygen and nutrient transfer, and well support the cell attachment and growth. In this study, porous microcarriers fabricated from the strontium-substituted hydroxyapatite- graft-poly(γ-benzyl-l-glutamate) (Sr10-HA- g-PBLG) hybrid nanocomposite were developed. The surface grating of PBLG, the micromorphology and element distribution, mechanical strength, in vitro degradation, and Sr 2+ ion release of the obtained Sr10-HA- g-PBLG porous microcarriers were investigated, respectively. The grafting ratio and the molecular weight of the grafted PBLG of Sr10-HA- g-PBLG could be effectively controlled by varying the initial ratio of BLG-NCA to Sr10-HA-NH 2 . The microcarriers exhibited a highly porous and interconnected microstructure with the porosity of about 90% and overall density of 1.03-1.06 g/cm 3 . Also, the degradation rate of Sr10-HA-PBLG microcarriers could be effectively controlled and long-term Sr 2+ release was obtained. The Sr10-HA-PBLG microcarriers allowed cells adhesion, infiltration, and proliferation and promoted the osteogenic differentiation of rabbit adipose-derived stem cells (ADSCs). Successful healing of femoral bone defect was proved by injection of the ADSCs-seeded Sr10-HA-PBLG microcarriers in a rabbit model.

  3. Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects.

    PubMed

    Bernhardt, Anne; Paul, Birgit; Gelinsky, Michael

    2018-03-13

    Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.

  4. Characterization of kidney epithelial cells from the Florida manatee, Trichechus manatus latirostris.

    PubMed

    Sweat JMDunigan, D D; Wright, S D

    2001-06-01

    The West-Indian manatee, Trichechus manatus latirostris, is a herbivorous marine mammal found in the coastal waters of Florida. Because of their endangered status, animal experimentation is not allowed. Therefore, a cell line was developed and characterized from tissue collected during necropsies of the manatees. A primary cell culture was established by isolating single cells from kidney tissue using both enzymatic and mechanical techniques. Primary manatee kidney (MK) cells were subcultured for characterization. These cells were morphologically similar to the cell lines of epithelial origin. An immunocytochemistry assay was used to localize the cytokeratin filaments common to cells of epithelial origin. At second passage, epithelial-like cells had an average population-doubling time of 48 h, had an optimum seeding density of 5 x 10(3) cells/cm2, and readily attached to plastic culture plates with a high level of seeding efficiency. Although the epithelial-like cells had a rapid growth rate during the first three passages, the cloning potential was low. These cells did not form colonies in agar medium, were serum dependent, had a limited life span of approximately nine passages, and possessed cell-contact inhibition. These data suggest that the cells were finite (noncontinuous growth), did not possess transformed properties, and were of epithelial origin. These cells are now referred to as MK epithelial cells.

  5. Mechanisms of nanoclay-enhanced plastic foaming processes: effects of nanoclay intercalation and exfoliation

    NASA Astrophysics Data System (ADS)

    Wong, Anson; Wijnands, Stephan F. L.; Kuboki, Takashi; Park, Chul B.

    2013-08-01

    The foaming behaviors of high-density polypropylene-nanoclay composites with intercalated and exfoliated nanoclay particles blown with carbon dioxide were examined via in situ observation of the foaming processes in a high-temperature/high-pressure view-cell. The intercalated nanoclay particles were 300-600 nm in length and 50-200 nm in thickness, while the exfoliated nanoclay particles were 100-200 nm in length and 1 nm in thickness. Contrary to common belief, it was discovered that intercalated nanoclay yielded higher cell density than exfoliated nanoclay despite its lower particle density. This was attributed to the higher tensile stresses generated around the larger and stiffer intercalated nanoclay particles, which led to increase in supersaturation level for cell nucleation. Also, the coupling agent used to exfoliate nanoclay would increase the affinity between polymer and surface of nanoclay particles. Consequently, the critical work needed for cell nucleation would be increased; pre-existing microvoids, which could act as seeds for cell nucleation, were also less likely to exist. Meanwhile, exfoliated nanoclay had better cell stabilization ability to prevent cell coalescence and cell coarsening. This investigation clarifies the roles of nanoclay in plastic foaming processes and provides guidance for the advancement of polymer nanocomposite foaming technology.

  6. Seeding method influences warm-season grass abundance and distribution but not local diversity in grassland restoration

    USGS Publications Warehouse

    Yurkonis, Kathryn A.; Wilsey, Brian J.; Moloney, Kirk A.; Drobney, Pauline; Larson, Diane L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands.

  7. Seeding Method Influences Warm-Season Grass Abundance and Distribution but not Local Diversity in Grassland Restoration

    USGS Publications Warehouse

    Yurkonis, K.A.; Wilsey, B.J.; Moloney, K.A.; Drobney, P.; Larson, D.L.

    2010-01-01

    Ecological theory predicts that the arrangement of seedlings in newly restored communities may influence future species diversity and composition. We test the prediction that smaller distances between neighboring seeds in drill seeded grassland plantings would result in lower species diversity, greater weed abundance, and larger conspecific patch sizes than otherwise similar broadcast seeded plantings. A diverse grassland seed mix was either drill seeded, which places seeds in equally spaced rows, or broadcast seeded, which spreads seeds across the ground surface, into 24 plots in each of three sites in 2005. In summer 2007, we measured species abundance in a 1 m2 quadrat in each plot and mapped common species within the quadrat by recording the most abundant species in each of 64 cells. Quadrat-scale diversity and weed abundance were similar between drilled and broadcast plots, suggesting that processes that limited establishment and controlled invasion were not affected by such fine-scale seed distribution. However, native warm-season (C4) grasses were more abundant and occurred in less compact patches in drilled plots. This difference in C4 grass abundance and distribution may result from increased germination or vegetative propagation of C4 grasses in drilled plots. Our findings suggest that local plant density may control fine-scale heterogeneity and species composition in restored grasslands, processes that need to be further investigated to determine whether seed distributions can be manipulated to increase diversity in restored grasslands. ?? 2010 Society for Ecological Restoration International.

  8. Spatial variation in reproductive effort of a southern Australian seagrass.

    PubMed

    Smith, Timothy M; York, Paul H; Macreadie, Peter I; Keough, Michael J; Ross, D Jeff; Sherman, Craig D H

    2016-09-01

    In marine environments characterised by habitat-forming plants, the relative allocation of resources into vegetative growth and flowering is an important indicator of plant condition and hence ecosystem health. In addition, the production and abundance of seeds can give clues to local resilience. Flowering density, seed bank, biomass and epiphyte levels were recorded for the temperate seagrass Zostera nigricaulis in Port Phillip Bay, south east Australia at 14 sites chosen to represent several regions with different physicochemical conditions. Strong regional differences were found within the large bay. Spathe and seed density were very low in the north of the bay (3 sites), low in the centre of the bay (2 sites) intermediate in the Outer Geelong Arm (2 sites), high in Swan Bay (2 sites) and very high in the Inner Geelong Arm (3 sites). In the south (2 sites) seed density was low and spathe density was high. These regional patterns were largely consistent for the 5 sites sampled over the three year period. Timing of flowering was consistent across sites, occurring from August until December with peak production in October, except during the third year of monitoring when overall densities were lower and peaked in November. Seagrass biomass, epiphyte load, canopy height and stem density showed few consistent spatial and temporal patterns. Variation in spathe and seed density and morphology across Port Phillip Bay reflects varying environmental conditions and suggests that northern sites may be restricted in their ability to recover from disturbance through sexual reproduction. In contrast, sites in the west and south of the bay have greater potential to recover from disturbances due to a larger seed bank and these sites could act as source populations for sites where seed production is low. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Myocardial Tissue Engineering With Cells Derived From Human-Induced Pluripotent Stem Cells and a Native-Like, High-Resolution, 3-Dimensionally Printed Scaffold.

    PubMed

    Gao, Ling; Kupfer, Molly E; Jung, Jangwook P; Yang, Libang; Zhang, Patrick; Da Sie, Yong; Tran, Quyen; Ajeti, Visar; Freeman, Brian T; Fast, Vladimir G; Campagnola, Paul J; Ogle, Brenda M; Zhang, Jianyi

    2017-04-14

    Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact. Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction. The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days. When tested in mice with surgically induced myocardial infarction, measurements of cardiac function, infarct size, apoptosis, both vascular and arteriole density, and cell proliferation at week 4 after treatment were significantly better in animals treated with the hCMPs than in animals treated with cell-free scaffolds, and the rate of cell engraftment in hCMP-treated animals was 24.5% at week 1 and 11.2% at week 4. Thus, the novel multiphoton-excited 3D printing technique produces extracellular matrix-based scaffolds with exceptional resolution and fidelity, and hCMPs fabricated with these scaffolds may significantly improve recovery from ischemic myocardial injury. © 2017 American Heart Association, Inc.

  10. The numerical and functional responses of a granivorous rodent and the fate of Neotropical tree seeds

    USGS Publications Warehouse

    Klinger, R.; Rejmanek, M.

    2009-01-01

    Despite their potential to provide mechanistic explanations of rates of seed dispersal and seed fate, the functional and numerical responses of seed predators have never been explicitly examined within this context. Therefore, we investigated the numerical response of a small-mammal seed predator, Heteromys desmarestianus, to disturbance-induced changes in food availability and evaluated the degree to which removal and fate of seeds of eight tree species in a lowland tropical forest in Belize were related to the functional response of H. desmarestianus to varying seed densities. Mark-recapture trapping was used to estimate abundance of H. desmarestianus in six 0.5-ha grids from July 2000 to September 2002. Fruit availability and seed fate were estimated in each grid, and two experiments nested within the grids were used to determine (1) the form of the functional response for nine levels of fruit density (2-32 fruits/m 2), (2) the removal rate and handling times, and (3) the total proportion of fruits removed. The total proportion of fruits removed was determined primarily by the numerical response of H. desmarestianus to fruit availability, while removal rates and the proportion of seeds eaten or cached were related primarily to the form of the functional response. However, the numerical and functional responses interacted; H. desmarestianus showed strong spatial and temporal numerical responses to total fruit availability, and their density relative to fruit availability resulted in variation in the form of the functional response. Types I, II, and III functional responses were observed, as were density-independent responses, and these responses varied both among and within fruit species. The highest proportions of fruits were eaten when the Type III functional response was detected, which was when fruit availability was high relative to H. desmarestianus population density. Numerous idiosyncratic influences on seed fate have been documented, but our results indicate that shifts in the numerical and functional responses of seed predators to seasonal and interannual variation in seed availability potentially provide a general mechanistic explanation for patterns of removal and fate for vertebrate-dispersed seeds. ?? 2009 by the Ecological Society of America.

  11. Community-wide spatial and temporal discordances of seed-seedling shadows in a tropical rainforest.

    PubMed

    Rother, Débora Cristina; Pizo, Marco Aurélio; Siqueira, Tadeu; Rodrigues, Ricardo Ribeiro; Jordano, Pedro

    2015-01-01

    Several factors decrease plant survival throughout their lifecycles. Among them, seed dispersal limitation may play a major role by resulting in highly aggregated (contagious) seed and seedling distributions entailing increased mortality. The arrival of seeds, furthermore, may not match suitable environments for seed survival and, consequently, for seedling establishment. In this study, we investigated spatio-temporal patterns of seed and seedling distribution in contrasting microhabitats (bamboo and non-bamboo stands) from the Brazilian Atlantic Forest. Spatial distribution patterns, spatial concordance between seed rain and seedling recruitment between subsequent years in two fruiting seasons (2004-2005 and 2007-2009), and the relation between seeds and seedlings with environmental factors were examined within a spatially-explicit framework. Density and species richness of both seeds and seedlings were randomly distributed in non-bamboo stands, but showed significant clustering in bamboo stands. Seed and seedling distributions showed across-year inconsistency, suggesting a marked spatial decoupling of the seed and seedling stages. Generalized linear mixed effects models indicated that only seed density and seed species richness differed between stand types while accounting for variation in soil characteristics. Our analyses provide evidence of marked recruitment limitation as a result of the interplay between biotic and abiotic factors. Because bamboo stands promote heterogeneity in the forest, they are important components of the landscape. However, at high densities, bamboos may limit recruitment for the plant community by imposing marked discordances of seed arrival and early seedling recruitment.

  12. Seed Regeneration Potential of Canopy Gaps at Early Formation Stage in Temperate Secondary Forests, Northeast China

    PubMed Central

    Yan, Qiao-Ling; Zhu, Jiao-Jun; Yu, Li-Zhong

    2012-01-01

    Promoting the seed regeneration potential of secondary forests undergoing gap disturbances is an important approach for achieving forest restoration and sustainable management. Seedling recruitment from seed banks strongly determines the seed regeneration potential, but the process is poorly understood in the gaps of secondary forests. The objectives of the present study were to evaluate the effects of gap size, seed availability, and environmental conditions on the seed regeneration potential in temperate secondary forests. It was found that gap formation could favor the invasion of more varieties of species in seed banks, but it also could speed up the turnover rate of seed banks leading to lower seed densities. Seeds of the dominant species, Fraxinus rhynchophylla, were transient in soil and there was a minor and discontinuous contribution of the seed bank to its seedling emergence. For Quercus mongolica, emerging seedling number was positively correlated with seed density in gaps (R = 0.32, P<0.01), especially in medium and small gaps (<500 m2). Furthermore, under canopies, there was a positive correlation between seedling number and seed density of Acer mono (R = 0.43, P<0.01). Gap formation could promote seedling emergence of two gap-dependent species (i.e., Q. mongolica and A. mono), but the contribution of seed banks to seedlings was below 10% after gap creation. Soil moisture and temperature were the restrictive factors controlling the seedling emergence from seeds in gaps and under canopies, respectively. Thus, the regeneration potential from seed banks is limited after gap formation. PMID:22745771

  13. A Study of Parameters Affecting Fibroblast Morphology in Response to an Applied Mechanical Force

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.; Sawyer, Christine

    1994-01-01

    A precisely controlled stretch/relaxation regimen (20% elongation at 6.6 cycles/min) was applied to normal human fetal, neonatal and aged dermal fibroblasts cultured on flexible membranes. Culture conditions included poly (NH2) or collagen type I coated substrate membranes; control cultures were grown on the same pliable material in the absence of applied stretch. Direct observation and immunofluorescence analyses revealed a progressive change in cell body orientation limited to the stretched dermal fibroblast cultures. Monolayers gradually (over 4 days) acquired a symmetric, radial distribution equivalent to the biaxial array of the applied force. At high seeding density, alignment was inhibited in the fetal cell cultures. This cell strain required collagen type I coating for optimal attachment to the flexible membrane, preferring growth in three-dimensional cell 'balls' on the poly(NH2) coated substrate. Neonatal cells also required the collagen type I coating, but both neonatal and aged dermal fibroblasts aligned efficiently at all seeding densities examined. The randomly oriented neonatal cells on the unstretched control membranes spontaneously detached at confluence, as a single cell sheet. Their aligned counterparts did not detach until the applied stretch stimulus was removed. Low concentrations of cytochalasin D (62.5 ng/ml) disrupted the stretch-related alignment response. Rhodamine phalloidin staining visualized fewer actin stress fibers in stretched, aligned cells than in controls. Both intercellular interactions and cytoskeletal integrity mediate the response to mechanical strain. Normal rabbit corneal stroma fibroblasts (NRC) were also analyzed, and failed to orient under these conditions. This cell type may require a different regimen, or a longer time period, to demonstrate alignment behavior. Supported by NASA Space Biology RTOP 199-40-22 and the NASA-ARC Director's Discretionary Fund.

  14. Topology of large-scale structure in seeded hot dark matter models

    NASA Technical Reports Server (NTRS)

    Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.

    1992-01-01

    The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.

  15. Modeling the size-density relationship in direct-seeded slash pine stands

    Treesearch

    Quang V. Cao; Thomas J. Dean; V. Clark Baldwin

    2000-01-01

    The relationship between quadratic mean diameter and tree density appeared curvilinear on a log–log scale, based on data from direct-seeded slash pine (Pinus elliotti var. elliotti Engelm.) stands. The self-thinning trajectory followed a straight line for high tree density levels and then turned away from this line as tree density...

  16. Competition between harvester ants and rodents in the cold desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landeen, D.S.; Jorgensen, C.D.; Smith, H.D.

    1979-09-30

    Local distribution patterns of three rodent species (Perognathus parvus, Peromyscus maniculatus, Reithrodontomys megalotis) were studied in areas of high and low densities of harvester ants (Pogonomyrmex owyheei) in Raft River Valley, Idaho. Numbers of rodents were greatest in areas of high ant-density during May, but partially reduced in August; whereas, the trend was reversed in areas of low ant-density. Seed abundance was probably not the factor limiting changes in rodent populations, because seed densities of annual plants were always greater in areas of high ant-density. Differences in seasonal population distributions of rodents between areas of high and low ant-densities weremore » probably due to interactions of seed availability, rodent energetics, and predation.« less

  17. Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest.

    PubMed

    Bagchi, Robert; Philipson, Christopher D; Slade, Eleanor M; Hector, Andy; Phillips, Sam; Villanueva, Jerome F; Lewis, Owen T; Lyal, Christopher H C; Nilus, Reuben; Madran, Adzley; Scholes, Julie D; Press, Malcolm C

    2011-11-27

    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.

  18. The impact of various scaffold components on vascularized bone constructs.

    PubMed

    Eweida, Ahmad; Schulte, Matthias; Frisch, Oliver; Kneser, Ulrich; Harhaus, Leila

    2017-06-01

    Bone tissue engineering is gaining more interest in the field of craniofacial surgery where continuous efforts are being made to improve the outcomes via modulation of the scaffold components. In an in vitro three dimensional (3D) culture, the effect of bone morphogenic protein 2 (BMP2, 60 μg/ml) and the effect of different cell seeding densities (0.25, 0.5, and 1 × 104) of rat mesenchymal stem cells seeded on nanocrystalline hydroxyapatite in silica gel matrix (Nanobone ® ) on the cell viability and differentiation were studied. Alkaline phosphatase and viability assays were performed at day 7, day 14, and day 21 to assess the differentiation and the relative fraction of viable cells in the 3D cell cultures. In a subsequent in vivo study, we examined the effect of axial vascularization, the scaffold's particle size and the nature of the matrix (collagen type I vs. diluted fibrin) on vascularization and tissue generation in vascularized bone construct in rats. Regarding vascularization, we compared constructs vascularized randomly by extrinsic vascularization from the periphery of the implanted construct with others vascularized axially via an implanted arteriovenous loop (AVL). Regarding the particle size, we compared constructs having a scaffold particle size of 0.2 mm (powder) with other constructs having a particle size of 2 × 0.6 mm (granules). Regarding the matrix we compared constructs having a collagen matrix with others having a fibrin matrix. Various groups were compared regarding the amount of tissue generation, vascularization, and cellular proliferation. The initial seeding density had a temporary and minimal effect on the overall osteogenic differentiation of the cells. On the contrary, adding BMP2 in a concentration of 60 μg/ml over one week led to an overall enhanced osteogenic differentiation despite depressed cell viability. Axial vascularization was mandatory for efficient tissue formation and vascularization of the bone construct. Collagen matrix and a smaller particle size provided more favorable results in terms of vascularization and tissue formation than diluted fibrin and larger Nanobone particles. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  19. Using Phase Space Density Profiles to Investigate the Radiation Belt Seed Population

    NASA Astrophysics Data System (ADS)

    Boyd, A. J.; Spence, H.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.

    2013-12-01

    It is believed that particles with energies of 100s of keV play a critical role in the acceleration of electrons within the radiation belt. Through wave particle interactions, these so called 'seed electrons' can be accelerated up to energies greater than 1 MeV. Using data from the MagEIS (Magnetic Electron Ion Spectrometer) Instrument onboard the Van Allen Probes we calculate phase space density within the radiation belts over a wide range of mu and K values. These phase space density profiles are combined with those from THEMIS, in order to see how the phase space density evolves over a large range of L*. In this presentation we examine how the seed electron population evolves in both time and L* during acceleration events. Comparing this to the evolution of the higher mu electron population allows us to determine what role the seed electrons played in the acceleration process. Finally, we compare several of these storms to examine the importance of the seed population to the acceleration process.

  20. The Influence of Neuronal Density and Maturation on Network Activity of Hippocampal Cell Cultures: A Methodological Study

    PubMed Central

    Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuronal culture activity, a dedicated report of density and age influence on neuronal hippocampal culture activity has not yet been reported. Therefore, this work aims at providing reference data to researchers that set up an experimental study on hippocampal neuronal cultures, helping in planning and decoding the experiments. In this work, we analysed the effects of both neuronal density and culture age on functional attributes of maturing hippocampal cultures. We characterized the electrophysiological activity of neuronal cultures seeded at three different cell densities, recording their spontaneous electrical activity over maturation by means of MicroElectrode Arrays (MEAs). We had gather data from 86 independent hippocampal cultures to achieve solid statistic results, considering the high culture-to-culture variability. Network activity was evaluated in terms of simple spiking, burst and network burst features. We observed that electrical descriptors were characterized by a functional peak during maturation, followed by a stable phase (for sparse and medium density cultures) or by a decrease phase (for high dense neuronal cultures). Moreover, 900 cells/mm2 cultures showed characteristics suitable for long lasting experiments (e.g. chronic effect of drug treatments) while 1800 cells/mm2 cultures should be preferred for experiments that require intense electrical activity (e.g. to evaluate the effect of inhibitory molecules). Finally, cell cultures at 3600 cells/mm2 are more appropriate for experiments in which time saving is relevant (e.g. drug screenings). These results are intended to be a reference for the planning of in vitro neurophysiological and neuropharmacological experiments with MEAs. PMID:24386305

  1. The influence of neuronal density and maturation on network activity of hippocampal cell cultures: a methodological study.

    PubMed

    Biffi, Emilia; Regalia, Giulia; Menegon, Andrea; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2013-01-01

    It is known that cell density influences the maturation process of in vitro neuronal networks. Neuronal cultures plated with different cell densities differ in number of synapses per neuron and thus in single neuron synaptic transmission, which results in a density-dependent neuronal network activity. Although many authors provided detailed information about the effects of cell density on neuronal culture activity, a dedicated report of density and age influence on neuronal hippocampal culture activity has not yet been reported. Therefore, this work aims at providing reference data to researchers that set up an experimental study on hippocampal neuronal cultures, helping in planning and decoding the experiments. In this work, we analysed the effects of both neuronal density and culture age on functional attributes of maturing hippocampal cultures. We characterized the electrophysiological activity of neuronal cultures seeded at three different cell densities, recording their spontaneous electrical activity over maturation by means of MicroElectrode Arrays (MEAs). We had gather data from 86 independent hippocampal cultures to achieve solid statistic results, considering the high culture-to-culture variability. Network activity was evaluated in terms of simple spiking, burst and network burst features. We observed that electrical descriptors were characterized by a functional peak during maturation, followed by a stable phase (for sparse and medium density cultures) or by a decrease phase (for high dense neuronal cultures). Moreover, 900 cells/mm(2) cultures showed characteristics suitable for long lasting experiments (e.g. chronic effect of drug treatments) while 1800 cells/mm(2) cultures should be preferred for experiments that require intense electrical activity (e.g. to evaluate the effect of inhibitory molecules). Finally, cell cultures at 3600 cells/mm(2) are more appropriate for experiments in which time saving is relevant (e.g. drug screenings). These results are intended to be a reference for the planning of in vitro neurophysiological and neuropharmacological experiments with MEAs.

  2. Assembly of multiple cell gradients directed by three-dimensional microfluidic channels.

    PubMed

    Li, Yiwei; Feng, Xiaojun; Wang, Yachao; Du, Wei; Chen, Peng; Liu, Chao; Liu, Bi-Feng

    2015-08-07

    Active control over the cell gradient is essential for understanding biological systems and the reconstitution of the functionality of many types of tissues, particularly for organ-on-a-chip. Here, we propose a three-dimensional (3D) microfluidic strategy for generating controllable cell gradients. In this approach, a homogeneous cell suspension is loaded into a 3D stair-shaped PDMS microchannel to generate a cell gradient within 10 min by sedimentation. We demonstrate that cell gradients of various profiles (exponential and piecewise linear) can be achieved by precisely controlling the height of each layer during the fabrication. With sequential seeding, we further demonstrate the generation of two overlapping cell gradients on the same glass substrate with pre-defined designs. The cell gradient-based QD cytotoxicity assay also demonstrated that cell behaviors and resistances were regulated by the changes in cell density. These results reveal that the proposed 3D microfluidic strategy provides a simple and versatile means for establishing controllable gradients in cell density, opening up a new avenue for reconstructing functional tissues.

  3. Seed mediated synthesis of nanosized zinc oxide and its electron transporting activity in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rajkumar, C.; Arulraj, Arunachalam

    2018-01-01

    A zinc oxide (ZnO) nanoparticle has been synthesized using seed mediated method at a low temperature of 90 °C. To understand its optical, structural and morphological properties of as-synthesized ZnO, it was characterized using various analytical techniques. The obtained result reveals that ZnO nanoparticles possess hexagonal wurtzite crystal structure with an average crystallite size of ˜40 nm. The presence of hydroxyl, amine and alkyl groups was confirmed from Fourier transform infrared analysis. Furthermore, the synthesized ZnO powder has employed as photoanode for the fabrication of dye-sensitized solar cells using Doctor-blade technique. To evaluate its photo-conversion efficiency, the device has been assembled into a cell module and illuminated with the light intensity of 100 mW cm-2. The device exhibits the photo-conversion efficiency of 1.85% with the current density of 4.532 mA cm-2 and voltage of 0.61 V.

  4. Impacts of logging on density-dependent predation of dipterocarp seeds in a South East Asian rainforest

    PubMed Central

    Bagchi, Robert; Philipson, Christopher D.; Slade, Eleanor M.; Hector, Andy; Phillips, Sam; Villanueva, Jerome F.; Lewis, Owen T.; Lyal, Christopher H. C.; Nilus, Reuben; Madran, Adzley; Scholes, Julie D.; Press, Malcolm C.

    2011-01-01

    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen–Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen–Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m2) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen–Connell mechanism at this site, it may influence the recruitment of particular species. PMID:22006965

  5. Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different Planting densities

    PubMed Central

    Cao, YuSong; Xiao, Yian; Huang, Haiqun; Xu, Jiancheng; Hu, Wenhai; Wang, Ning

    2016-01-01

    Climate warming can shift the reproductive phenology of plant, and hence dramatically reduced the reproductive capacity both of density-dependent and -independent plant species. But it is still unclear how climate warming affects flowering phenology and reproductive allocation of plant under different planting densities. Here, we assessed the impact of simulated warming on flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta under four densities. We found that simulated warming delayed the onset of flowering averagely for 3.6 days but preceded the end of flowering for about 1 day, which indicated climate warming shortened the duration of the flowering. And the flowering amplitude in the peak flowering day also dramatically increased in the simulated warming treatment, which caused a mass-flowering pattern. Climate warming significantly increased the weights of the fruits, seeds and seed, but reduced fruit length and sexual reproductive allocation under all the four densities. The duration of flowering was shortened and the weights of the fruits, seeds and seed, and sexual reproductive allocation were reduced under The highest density. PMID:27296893

  6. Development of resting membrane potentials in differentiating murine neuroblastoma cells (N1E-115) evaluated by flow cytometry.

    PubMed

    Kisaalita, W S; Bowen, J M

    1997-09-01

    With the aid of a voltage-sensitive oxonol dye, flow cytometry was used to measure relative changes in resting membrane potential (V(m)) and forward angle light scatter (FALS) profiles of a differentiating/differentiated murine neuroblastoma cell line (N1E-115). Electrophysiological differentiation was characterized by V(m) establishment. The (V(m))-time profile was found to be seed cell concentration-dependent for cell densities of less than 2 × 10(4) cells/cm(2). At higher initial cell densities, under differentiating culture conditions, V(m) development commenced on day 2 and reached a steady-state on day 12. The relative distribution of differentiated cells between low and high FALS has been proposed as a potential culture electrophysiological differentiation state index. These experiments offer a general methodology to characterize cultured excitable cells of nervous system origin, with respect to electrophysiological differentiation. This information is valuable in studies employing neuroblastoma cells as in vitro screening models for safety/hazard evaluation and/or risk assessment of therapeutical and industrial chemicals under development.

  7. The effects of seed size on hybrids formed between oilseed rape (Brassica napus) and wild brown mustard (B. juncea).

    PubMed

    Liu, Yong-Bo; Tang, Zhi-Xi; Darmency, Henri; Stewart, C Neal; Di, Kun; Wei, Wei; Ma, Ke-ping

    2012-01-01

    Seed size has significant implications in ecology, because of its effects on plant fitness. The hybrid seeds that result from crosses between crops and their wild relatives are often small, and the consequences of this have been poorly investigated. Here we report on plant performance of hybrid and its parental transgenic oilseed rape (Brassica napus) and wild B. juncea, all grown from seeds sorted into three seed-size categories. Three seed-size categories were sorted by seed diameter for transgenic B. napus, wild B. juncea and their transgenic and non-transgenic hybrids. The seeds were sown in a field at various plant densities. Globally, small-seeded plants had delayed flowering, lower biomass, fewer flowers and seeds, and a lower thousand-seed weight. The seed-size effect varied among plant types but was not affected by plant density. There was no negative effect of seed size in hybrids, but it was correlated with reduced growth for both parents. Our results imply that the risk of further gene flow would probably not be mitigated by the small size of transgenic hybrid seeds. No fitness cost was detected to be associated with the Bt-transgene in this study.

  8. Development of Scaffold-Free Elastic Cartilaginous Constructs with Structural Similarities to Auricular Cartilage

    PubMed Central

    Giardini-Rosa, Renata; Joazeiro, Paulo P.; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna

    2014-01-01

    External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm2) directly from a small population of donor cells (20,000–40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model. PMID:24124666

  9. Development of scaffold-free elastic cartilaginous constructs with structural similarities to auricular cartilage.

    PubMed

    Giardini-Rosa, Renata; Joazeiro, Paulo P; Thomas, Kathryn; Collavino, Kristina; Weber, Joanna; Waldman, Stephen D

    2014-03-01

    External ear reconstruction with autologous cartilage still remains one of the most difficult problems in the fields of plastic and reconstructive surgery. As the absence of tissue vascularization limits the ability to stimulate new tissue growth, relatively few surgical approaches are currently available (alloplastic implants or sculpted autologous cartilage grafts) to repair or reconstruct the auricle (or pinna) as a result of traumatic loss or congenital absence (e.g., microtia). Alternatively, tissue engineering can offer the potential to grow autogenous cartilage suitable for implantation. While tissue-engineered auricle cartilage constructs can be created, a substantial number of cells are required to generate sufficient quantities of tissue for reconstruction. Similarly, as routine cell expansion can elicit negative effects on chondrocyte function, we have developed an approach to generate large-sized engineered auricle constructs (≥3 cm(2)) directly from a small population of donor cells (20,000-40,000 cells/construct). Using rabbit donor cells, the developed bioreactor-cultivated constructs adopted structural-like characteristics similar to native auricular cartilage, including the development of distinct cartilaginous and perichondrium-like regions. Both alterations in media composition and seeding density had profound effects on the formation of engineered elastic tissue constructs in terms of cellularity, extracellular matrix accumulation, and tissue structure. Higher seeding densities and media containing sodium bicarbonate produced tissue constructs that were closer to the native tissue in terms of structure and composition. Future studies will be aimed at improving the accumulation of specific tissue constituents and determining the clinical effectiveness of this approach using a reconstructive animal model.

  10. Waterfowl foraging in winter-flooded ricefields: Any agronomic benefits for farmers?

    PubMed

    Brogi, Anne; Pernollet, Claire A; Gauthier-Clerc, Michel; Guillemain, Matthieu

    2015-12-01

    Winter-flooding of ricefields provides foraging habitat to waterfowl, which in return may bring agronomic benefits to farmers. Our study experimentally tested the effect of mallards (Anas platyrhynchos) on the standing stalks and weed seed bank in the Camargue (France), both of which present major challenges for farmers. Three duck densities were tested: (D1) 5 ducks ha(-1) (historical nocturnal density), (D2) 23 ducks ha(-1) (present nocturnal density), and (D3) 300 ducks ha(-1) (Asian rice-duck farming density). The ducks reduced the stalks significantly: -27 % (D1), -52 % (D2), and -91 % (D3). Conversely, they decreased the number of seeds by only 3 % (D3) and the seed mass by about 21 % (D1 and D3), which was not significant. Besides they had no effect on seed species richness. This study clearly demonstrates that the winter-flooding effect on straw decomposition can be enhanced by waterfowl foraging, hence showing an agronomic benefit from ducks to farmers. However, there was no clear effect in terms of seed bank reduction.

  11. Distinguishing Raman from strongly coupled Brillouin amplification for short pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Qing; Barth, Ido; Edwards, Matthew R.

    2016-05-15

    Plasma-based amplification by strongly coupled Brillouin scattering has recently been suggested for the compression of a short seed laser to ultrahigh intensities in sub-quarter-critical-density plasmas. However, by employing detailed spectral analysis of particle-in-cell simulations in the same parameter regime, we demonstrate that, in fact, Raman backscattering amplification is responsible for the growth and compression of the high-intensity, leading spike, where most of the energy compression occurs, while the ion mode only affects the low-intensity tail of the amplified pulse. The critical role of the initial seed shape is identified. A number of subtleties in the numerical simulations are also pointedmore » out.« less

  12. Restoration of Mountain Big Sagebrush Steppe Following Prescribed Burning to Control Western Juniper

    NASA Astrophysics Data System (ADS)

    Davies, K. W.; Bates, J. D.; Madsen, M. D.; Nafus, A. M.

    2014-05-01

    Western juniper ( Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush ( Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.

  13. Restoration of mountain big sagebrush steppe following prescribed burning to control western juniper.

    PubMed

    Davies, K W; Bates, J D; Madsen, M D; Nafus, A M

    2014-05-01

    Western juniper (Juniperus occidentalis ssp. occidentalis Hook) encroachment into mountain big sagebrush (Artemisia tridentata spp. vaseyana (Rydb.) Beetle) steppe has reduced livestock forage production, increased erosion risk, and degraded sagebrush-associated wildlife habitat. Western juniper has been successfully controlled with partial cutting followed by prescribed burning the next fall, but the herbaceous understory and sagebrush may be slow to recover. We evaluated the effectiveness of seeding perennial herbaceous vegetation and sagebrush at five sites where juniper was controlled by partially cutting and prescribed burning. Treatments tested at each site included an unseeded control, herbaceous seed mix (aerially seeded), and the herbaceous seed mix plus sagebrush seed. In the third year post-treatment, perennial grass cover and density were twice as high in plots receiving the herbaceous seed mix compared to the control plots. Sagebrush cover and density in the sagebrush seeded plots were between 74- and 290-fold and 62- and 155-fold greater than the other treatments. By the third year after treatment, sagebrush cover was as high as 12 % in the sagebrush seeded plots and between 0 % and 0.4 % where it was not seeded. These results indicate that aerial seeding perennial herbaceous vegetation can accelerate the recovery of perennial grasses which likely stabilize the site. Our results also suggest that seeding mountain big sagebrush after prescribed burning encroaching juniper can rapidly recover sagebrush cover and density. In areas where sagebrush habitat is limited, seeding sagebrush after juniper control may increase sagebrush habitat and decrease the risks to sagebrush-associated species.

  14. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  15. Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh

    USGS Publications Warehouse

    Neff, K.P.; Baldwin, A.H.

    2005-01-01

    Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212 + 30.6 seeds/m2/month) than the equal-sized stationary wind traps (18 + 6.0 seeds/m(2)/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106 + 1.4 for stationary water traps and 104 + 5.5 for trawl samples) than for wind (54 + 6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool of dispersing propagules is present, an interesting result given the urbanized nature of the surrounding landscape. However, species composition of dispersing seeds differed from vegetation of restored and natural tidal freshwater marshes, indicating that planting is necessary for certain species. At other restoration sites, information on densities of dispersing seeds can support decisions on which species to plant.

  16. Waste rice seed in conventional and stripper-head harvested fields in California: Implications for wintering waterfowl

    USGS Publications Warehouse

    Fleskes, Joseph P.; Halstead, Brian J.; Casazza, Michael L.; Coates, Peter S.; Kohl, Jeffrey D.; Skalos, Daniel A.

    2012-01-01

    Waste rice seed is an important food for wintering waterfowl and current estimates of its availability are needed to determine the carrying capacity of rice fields and guide habitat conservation. We used a line-intercept method to estimate mass-density of rice seed remaining after harvest during 2010 in the Sacramento Valley (SACV) of California and compared results with estimates from previous studies in the SACV and Mississippi Alluvial Valley (MAV). Posterior mean (95% credible interval) estimates of total waste rice seed mass-density for the SACV in 2010 were 388 (336–449) kg/ha in conventionally harvested fields and 245 (198–307) kg/ha in stripper-head harvested fields; the 2010 mass-density is nearly identical to the mid-1980s estimate for conventionally harvested fields but 36% lower than the mid-1990s estimate for stripped fields. About 18% of SACV fields were stripper-head harvested in 2010 vs. 9–15% in the mid-1990s and 0% in the mid-1980s; but due to a 50% increase in planted rice area, total mass of waste rice seed in SACV remaining after harvest in 2010 was 43% greater than in the mid-1980s. However, total mass of seed-eating waterfowl also increased 82%, and the ratio of waste rice seed to seed-eating waterfowl mass was 21% smaller in 2010 than in the mid-1980s. Mass-densities of waste rice remaining after harvest in SACV fields are within the range reported for MAV fields. However, because there is a lag between harvest and waterfowl use in the MAV but not in the SACV, seed loss is greater in the MAV and estimated waste seed mass-density available to wintering waterfowl in SACV fields is about 5–30 times recent MAV estimates. Waste rice seed remains an abundant food source for waterfowl wintering in the SACV, but increased use of stripper-head harvesters would reduce this food. To provide accurate data on carrying capacities of rice fields necessary for conservation planning, trends in planted rice area, harvest method, and postharvest field treatment should be tracked and impacts of postharvest field treatment and other farming practices on waste rice seed availability should be investigated.

  17. Choice of osteoblast model critical for studying the effects of electromagnetic stimulation on osteogenesis in vitro.

    PubMed

    Bique, Anna-Maria; Kaivosoja, Emilia; Mikkonen, Marko; Paulasto-Kröckel, Mervi

    2016-01-01

    The clinical benefits of electromagnetic field (EMF) therapy in enhancing osteogenesis have been acknowledged for decades, but agreement regarding the underlying mechanisms continues to be sought. Studies have shown EMFs to promote osteoblast-like cell proliferation, or contrarily, to induce differentiation and enhance mineralization. Typically these disparities have been attributed to methodological differences. The present paper argues the possibility that the chosen osteoblast model impacts stimulation outcome. Phenotypically immature cells, particularly at low seeding densities, appear to be prone to EMF-amplified proliferation. Conversely, mature cells at higher densities seem to be predisposed to earlier onset differentiation and mineralization. This suggests that EMFs augment ongoing processes in cell populations. To test this hypothesis, mature SaOS-2 cells and immature MC3T3-E1 cells at various densities, with or without osteo-induction, were exposed to sinusoidal 50 Hz EMF. The exposure stimulated the proliferation of MC3T3-E1 and inhibited the proliferation of SaOS-2 cells. Baseline alkaline phosphatase (ALP) expression of SaOS-2 cells was high and rapidly further increased with EMF exposure, whereas ALP effects in MC3T3-E1 cells were not seen until the second week. Thus both cell types responded differently to EMF stimulation, corroborating the hypothesis that the phenotypic maturity and culture stage of cells influence stimulation outcome.

  18. Differential Attachment of Salmonella enterica and Enterohemorrhagic Escherichia coli to Alfalfa, Fenugreek, Lettuce, and Tomato Seeds

    PubMed Central

    Cui, Yue; Walcott, Ronald

    2017-01-01

    ABSTRACT Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds (P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds (P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds (P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. PMID:28130295

  19. Differential Attachment of Salmonella enterica and Enterohemorrhagic Escherichia coli to Alfalfa, Fenugreek, Lettuce, and Tomato Seeds.

    PubMed

    Cui, Yue; Walcott, Ronald; Chen, Jinru

    2017-04-01

    Vegetable seeds have the potential to disseminate and transmit foodborne bacterial pathogens. This study was undertaken to assess the abilities of selected Salmonella and enterohemorrhagic Escherichia coli (EHEC) strains to attach to fungicide-treated versus untreated, and intact versus mechanically damaged, seeds of alfalfa, fenugreek, lettuce, and tomato. Surface-sanitized seeds (2 g) were exposed to four individual strains of Salmonella or EHEC at 20°C for 5 h. Contaminated seeds were rinsed twice, each with 10 ml of sterilized water, before being soaked overnight in 5 ml of phosphate-buffered saline at 4°C. The seeds were then vortexed vigorously for 1 min, and pathogen populations in seed rinse water and soaking buffer were determined using a standard plate count assay. In general, the Salmonella cells had higher attachment ratios than the EHEC cells. Lettuce seeds by unit weight had the highest numbers of attached Salmonella or EHEC cells, followed by tomato, alfalfa, and fenugreek seeds. In contrast, individual fenugreek seeds had more attached pathogen cells, followed by lettuce, alfalfa, and tomato seeds. Significantly more Salmonella and EHEC cells attached to mechanically damaged seeds than to intact seeds ( P < 0.05). Although, on average, significantly more Salmonella and EHEC cells were recovered from untreated than fungicide-treated seeds ( P < 0.05), fungicide treatment did not significantly affect the attachment of individual bacterial strains to vegetable seeds ( P > 0.05), with a few exceptions. This study fills gaps in the current body of literature and helps explain bacterial interactions with vegetable seeds with differing surface characteristics. IMPORTANCE Vegetable seeds, specifically sprout seeds, have the potential to disseminate and transmit foodborne bacterial pathogens. This study investigated the interaction between two important bacterial pathogens, i.e., Salmonella and EHEC, and vegetable seeds with differing surface characteristics. This research helps understand whether seed surface structure, integrity, and fungicide treatment affect the interaction between bacterial cells and vegetable seeds. Copyright © 2017 American Society for Microbiology.

  20. Nonselective Currents and Channels in Plasma Membranes of Protoplasts from Coats of Developing Seeds of Bean1

    PubMed Central

    Zhang, Wen-Hao; Skerrett, Martha; Walker, N. Alan; Patrick, John W.; Tyerman, Stephen D.

    2002-01-01

    In developing bean (Phaseolus vulgaris) seeds, phloem-imported nutrients move in the symplast from sieve elements to the ground parenchyma cells where they are transported across the plasma membrane into the seed apoplast. To study the mechanisms underlying this transport, channel currents in ground parenchyma protoplasts were characterized using patch clamp. A fast-activating outward current was found in all protoplasts, whereas a slowly activating outward current was observed in approximately 25% of protoplasts. The two currents had low selectivity for univalent cations, but the slow current was more selective for K+ over Cl− (PK:PCl = 3.6–4.2) than the fast current (PK:PCl = 1.8–2.5) and also displayed Ca2+ selectivity. The slow current was blocked by Ba2+, whereas both currents were blocked by Gd3+ and La3+. Efflux of K+ from seed coat halves was inhibited 25% by Gd3+ and La3+ but was stimulated by Ba2+ and Cs+, suggesting that only the fast current may be a component in the pathway for K+ release. An “instantaneous” inward current observed in all protoplasts exhibited similar pharmacology and permeability for univalent cations to the fast outward current. In outside-out patches, two classes of depolarization-activated cation-selective channels were observed: one slowly activating of low conductance (determined from nonstationary noise to be 2.4 pS) and another with conductances 10-fold higher. Both channels occurred at high density. The higher conductance channel in 10 mm KCl had PK:PCl = 2.8. Such nonselective channels in the seed coat ground parenchyma cell could function to allow some of the efflux of phloem-imported univalent ions into the seed apoplast. PMID:11842143

  1. Effectiveness of predator satiation in masting oaks is negatively affected by conspecific density.

    PubMed

    Bogdziewicz, Michał; Espelta, Josep M; Muñoz, Alberto; Aparicio, Jose M; Bonal, Raul

    2018-04-01

    Variation in seed availability shapes plant communities, and is strongly affected by seed predation. In some plant species, temporal variation in seed production is especially high and synchronized over large areas, which is called 'mast seeding'. One selective advantage of this phenomenon is predator satiation which posits that masting helps plants escape seed predation through starvation of predators in lean years, and satiation in mast years. However, even though seed predation can be predicted to have a strong spatial component and depend on plant densities, whether the effectiveness of predator satiation in masting plants changes according to the Janzen-Connell effect has been barely investigated. We studied, over an 8-year period, the seed production, the spatiotemporal patters of weevil seed predation, and the abundance of adult weevils in a holm oak (Quercus ilex) population that consists of trees interspersed at patches covering a continuum of conspecific density. Isolated oaks effectively satiate predators, but this is trumped by increasing conspecific plant density. Lack of predator satiation in trees growing in dense patches was caused by re-distribution of insects among plants that likely attenuated them against food shortage in lean years, and changed the type of weevil functional response from type II in isolated trees to type III in trees growing in dense patches. This study provides the first empirical evaluation of the notion that masting and predator satiation should be more important in populations that start to dominate their communities, and is consistent with the observation that masting is less frequent and less intense in diverse forests.

  2. Comparative effects of using black seed (Nigella sativa), cumin seed (Cuminum cyminum), probiotic or prebiotic on growth performance, blood haematology and serum biochemistry of broiler chicks.

    PubMed

    Alimohamadi, K; Taherpour, K; Ghasemi, H A; Fatahnia, F

    2014-06-01

    A 42-day trial was conducted to compare the effects of the following seven experimental diets, which varied in black seed, cumin seed, probiotic or prebiotic concentrations, on the broiler chicks: control (no additives), diet BS1 (4 g/kg black seed), diet BS2 (8 g/kg black seed), diet CS1 (4 g/kg cumin seed), diet CS2 (8 g/kg cumin seed), diet Pro (1 g/kg probiotic Primalac(®)) and diet Pre (2 g/kg prebiotic Fermacto(®)). A total of 420 1-day-old male broiler chicks, initially weighing an average of 43 g, were distributed into 28 floor pens at a stocking density of 15 birds per pen. At 28 day of age, the body weight in the birds fed diets BS2, CS2 and Pro was significantly higher than in the control group, but final body weight was not affected. Additionally, the birds fed diets BS2, Pro and Pre exhibited better feed conversion ratio than control birds from 0 to 42 day of age. Diets BS2, CS2 and Pro also statistically increased the relative weight of thymus and bursa of Fabricius, whereas only diet Pro decreased the abdominal fat percentage compared with control diet. Regarding the haematological parameters, feeding diet BS2 yielded a significant increase in red blood cell count, haemoglobin concentration and haematocrit percentage compared with control diet. Serum total cholesterol and low-density lipoprotein cholesterol levels in the birds fed diets BS2, Pro and Pre were also significantly lower than in the birds fed the control diet. Without exception, no diets affected feed intake, internal organs weights, carcass characteristics, antibody titres against Newcastle and influenza viruses and leucocyte subsets. In general, current study showed promising results regarding the use of spice additives as growth and health promoters, especially at higher levels of their incorporation in the diets, which were comparable to the probiotic- or prebiotic-containing diets. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  3. Determination of Foraging Thresholds and Effects of Application on Energetic Carrying Capacity for Waterfowl

    PubMed Central

    2015-01-01

    Energetic carrying capacity of habitats for wildlife is a fundamental concept used to better understand population ecology and prioritize conservation efforts. However, carrying capacity can be difficult to estimate accurately and simplified models often depend on many assumptions and few estimated parameters. We demonstrate the complex nature of parameterizing energetic carrying capacity models and use an experimental approach to describe a necessary parameter, a foraging threshold (i.e., density of food at which animals no longer can efficiently forage and acquire energy), for a guild of migratory birds. We created foraging patches with different fixed prey densities and monitored the numerical and behavioral responses of waterfowl (Anatidae) and depletion of foods during winter. Dabbling ducks (Anatini) fed extensively in plots and all initial densities of supplemented seed were rapidly reduced to 10 kg/ha and other natural seeds and tubers combined to 170 kg/ha, despite different starting densities. However, ducks did not abandon or stop foraging in wetlands when seed reduction ceased approximately two weeks into the winter-long experiment nor did they consistently distribute according to ideal-free predictions during this period. Dabbling duck use of experimental plots was not related to initial seed density, and residual seed and tuber densities varied among plant taxa and wetlands but not plots. Herein, we reached several conclusions: 1) foraging effort and numerical responses of dabbling ducks in winter were likely influenced by factors other than total food densities (e.g., predation risk, opportunity costs, forager condition), 2) foraging thresholds may vary among foraging locations, and 3) the numerical response of dabbling ducks may be an inconsistent predictor of habitat quality relative to seed and tuber density. We describe implications on habitat conservation objectives of using different foraging thresholds in energetic carrying capacity models and suggest scientists reevaluate assumptions of these models used to guide habitat conservation. PMID:25790255

  4. Towards a quantitative understanding of oxygen tension and cell density evolution in fibrin hydrogels.

    PubMed

    Demol, Jan; Lambrechts, Dennis; Geris, Liesbet; Schrooten, Jan; Van Oosterwyck, Hans

    2011-01-01

    The in vitro culture of hydrogel-based constructs above a critical size is accompanied by problems of unequal cell distribution when diffusion is the primary mode of oxygen transfer. In this study, an experimentally-informed mathematical model was developed to relate cell proliferation and death inside fibrin hydrogels to the local oxygen tension in a quantitative manner. The predictive capacity of the resulting model was tested by comparing its outcomes to the density, distribution and viability of human periosteum derived cells (hPDCs) that were cultured inside fibrin hydrogels in vitro. The model was able to reproduce important experimental findings, such as the formation of a multilayered cell sheet at the hydrogel periphery and the occurrence of a cell density gradient throughout the hydrogel. In addition, the model demonstrated that cell culture in fibrin hydrogels can lead to complete anoxia in the centre of the hydrogel for realistic values of oxygen diffusion and consumption. A sensitivity analysis also identified these two parameters, together with the proliferation parameters of the encapsulated cells, as the governing parameters for the occurrence of anoxia. In conclusion, this study indicates that mathematical models can help to better understand oxygen transport limitations and its influence on cell behaviour during the in vitro culture of cell-seeded hydrogels. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Dynamic Seeding of Perfusing Human Umbilical Vein Endothelial Cells (HUVECs) onto Dual-Function Cell Adhesion Ligands: Arg-Gly-Asp (RGD)-Streptavidin and Biotinylated Fibronectin

    PubMed Central

    Anamelechi, Charles C.; Clermont, Edward C.; Novak, Matthew T.; Reichert, William M.

    2014-01-01

    Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for α5β1 and αvβ3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both α5β1 and αvβ3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately. PMID:19348476

  6. Escape From Tumor Cell Dormancy

    DTIC Science & Technology

    2011-10-01

    addressed using a novel organotypic bioreactor in which tumor cells can be followed for weeks to months, the process of seeding, dormancy and...and Kupffer cells (months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for fluorescence (months 1-6) 5. label tumor... cells for mass reporting (months 3-9) Objective 2: 1. generate liver organ bioreactors for tumor cell seeding (months 3-24) 2. seed organotypic

  7. Small-mammal seed predation limits the recruitment and abundance of two perennial grassland forbs

    Treesearch

    Mary Bricker; Dean Pearson; John Maron

    2010-01-01

    Although post-dispersal seed predators are common and often reduce seed density, their influence on plant population abundance remains unclear. On the one hand, increasing evidence suggests that many plant populations are seed limited, implying that seed predators could reduce plant abundance. On the other hand, it is generally uncertain whether the magnitude of seed...

  8. Genetic diversity of dispersed seeds is highly variable among leks of the long-wattled umbrellabird

    NASA Astrophysics Data System (ADS)

    Ottewell, Kym; Browne, Luke; Cabrera, Domingo; Olivo, Jorge; Karubian, Jordan

    2018-01-01

    Frugivorous animals frequently generate clumped distributions of seeds away from source trees, but genetic consequences of this phenomenon remain poorly resolved. Seed dispersal of the palm Oenocarpus bataua by long-wattled umbrellabirds Cephalopterus penduliger generates high seed densities in leks (i.e., multi-male display sites), providing a suitable venue to investigate how dispersal by this frugivore may influence seed source diversity and genetic structure at local and landscape levels. We found moderate levels of maternal seed source diversity in primary seed rain across five leks in northwest Ecuador (unweighted mean alpha diversity α = 9.52, weighted mean αr = 3.52), with considerable variation among leks (αr range: 1.81-24.55). Qualitatively similar findings were obtained for allelic diversity and heterozygosity. Higher densities of O. bataua adults around leks were associated with higher values of αr and heterozygosity (non-significant trends) and allelic diversity (significant correlation). Seed source overlap between different leks was not common but did occur at low frequency, providing evidence for long-distance seed dispersal by umbrellabirds into leks. Our findings are consistent with the idea that seed pool diversity within leks may be shaped by the interaction between density of local trees, which can vary considerably between leks, and umbrellabird foraging ecology, particularly a lack of territorial defense of fruiting trees. Taken as a whole, this work adds to our growing appreciation of the ways resource distribution and associated frugivore foraging behaviors mechanistically shape seed dispersal outcomes and the distribution of plant genotypes across the landscape.

  9. Effects of age and stand density of mother trees on early Pinus thunbergii seedling establishment in the coastal zone, China.

    PubMed

    Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo

    2014-01-01

    Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest.

  10. Effects of Age and Stand Density of Mother Trees on Early Pinus thunbergii Seedling Establishment in the Coastal Zone, China

    PubMed Central

    Mao, Peili; Han, Guangxuan; Wang, Guangmei; Yu, Junbao; Shao, Hongbo

    2014-01-01

    Effects of age and stand density of mother tree on seed germination, seedling biomass allocation, and seedling growth of Pinus thunbergii were studied. The results showed that age of mother tree did not have significant influences on seed germination, but it was significant on seedling biomass allocation and growth. Seedlings from the minimum and maximum age of mother tree had higher leaf mass ratio and lower root mass ratio than from the middle age of mother tree. Moreover, they also had higher relative height growth rate and slenderness, which were related to their biomass allocation. Stand density of mother tree mainly demonstrated significant effects on seed germination and seedling growth. Seed from higher stand density of mother tree did not decrease germination rate, but had higher mean germination time, indicating that it delayed germination process. Seedlings of higher stand density of mother tree showed higher relative height growth rate and slenderness. These traits of offspring from higher stand density of mother tree were similar to its mother, indicating significant environmental maternal effects. So, mother tree identity of maternal age and environments had important effects on natural regeneration of the coastal P. thunbergii forest. PMID:24955404

  11. Tracing impacts of partner abundance in facultative pollination mutualisms: from individuals to populations.

    PubMed

    Geib, Jennifer C; Galen, Candace

    2012-07-01

    Partner abundance affects costs and benefits in obligate mutualisms, but its role in facultative partnerships is less clear. We address this gap in a pollination web consisting of two clovers (Trifolium) that differ in specialization on a bumble bee pollinator Bombus balteatus. We examine how pollination niche breadth affects plant responses to pollinator abundance, comparing early-flowering (specialized) and late-flowering (generalized) cohorts of T. parryi and early T. parryi to T. dasyphyllum, a pollination generalist. Co-pollinators disrupt the link between B. halteatus visitation and pollination rate for both clovers. Only for early-flowering T. parryi do visitation, pollination, and seed set increase with density of B. balteatus. Bumble bee density also alters timing of seed germination in T. parryi, with seeds from plants receiving augmented B. balteatus germinating sooner than seeds of open-pollinated counterparts. Benefits saturate at intermediate bumble bee densities. Despite strong effects of B. balteatus density on individual plant fitness components, population models suggest little impact of B. balteatus density on lamda in T. parryi or T. dasyphyllum. Findings show that functional redundancy in a pollinator guild mediates host-plant responses to partner density. Unexpected effects of pollinator density on life history schedule have implications for recruitment under pollinator decline.

  12. Effects of planting density and genotype on loblolly pine stands growing in the mountains of southeastern Oklahoma

    Treesearch

    Rodney E. Will; Thomas C. Hennessey; Thomas B. Lynch; Robert Heinemann; Randal Holeman; Dennis Wilson; Keith Anderson; Gregory Campbell

    2013-01-01

    We determined the effects of planting density (4- by 4-, 6- by 6-, 8- by 8-, and 10- by 10-foot spacing) on stand-level height, diameter at breast height, stem volume, basal area, and periodic annual increment for two loblolly pine (Pinus taeda L.) seed sources. Seed sources for the 25-year-old stands were a North Carolina seed source (NCC 8-01) and...

  13. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines.

    PubMed

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-05-01

    To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted.

  14. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    PubMed Central

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  15. Proceedings of the ARPA/AFML Review of Progress in Quantitative Nondestructive Evaluation

    DTIC Science & Technology

    1978-05-01

    seeded with Fe, Si , SIC, low density SI3N4, C and pores in sizes ranging from 125 to 1000 ^m (0.005 to 0.040 Inches) as shown in the margins. Figure...are some blank areas where seeded defects are supposed to be, partic- ularly for the low density SI3N4 and the smallest size of SI and SIC, there 1s...shear wave Inspections of a seeded billet of NC-132, hot pressed silicon nitride. In this case the seeded defects are WC, Fe, BN, SIC, Si and C

  16. Process-Structure-Property Relationship in Magnesium-Based Biodegradable Alloy for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Trivedi, Pramanshu

    Magnesium alloys are considered to be the next generation of biomaterials because of their ability to degrade in the physiological environment. We elucidate here the impact of multiaxial forging of Mg-2Zn-2Gd alloy on grain refinement to sub-micron regime and relate the structure to mechanical properties and biological functionality. As-cast and annealed samples were multiaxial forged (MAF) for a total number of two passes with a true strain of 2/pass. Considering that the microstructure governs the biological response of materials, we studied the constituents of the microstructure in conjunction with the mechanical behavior. The antimicrobial behavior in a Mg-2Zn-2Gd alloy with different grain size in the range of 44 microm to 710 nm was studied by seeding. Surface energy and contact angle measurements using goniometer and wettability were assessed with water, SBF, n-Hexane, and DMEM. The structure-property relationship in Mg-2Zn-2Gd alloy to maintaining mechanical integrity during degradation was studied by seeding Escherichia coli ( E. coli). Furthermore, we studied the effect of degradation behavior in the presence and absence of cells. This was followed by the study of bioactivity in terms of phases present on the surface and degradation products in simulated body fluid (SBF). Magnesium coated with apatite using a biomimetic approach were placed in a 24-well culture plate with alpha-MEM media and the degradation behavior was studied in the absence and presence of cells (seeding density: 10,000 cells/cm2). The change in pH was monitored at regular intervals. Cell attachment was studied by seeding the cells for 4h and cell viability was studied by seeding the cells for up to 1, 3, and 7 days. The study underscores that the fine-grained alloys exhibited superior mechanical properties, antimicrobial resistance, and cell attachment. The degradation rate was also least for fine-grained alloy. The higher surface energy of ultrafine-grained Mg-2Zn-2Gd alloy led to the release of more Mg+2 ions at an early stage, which consequently increased the pH of the fluid in the vicinity of the implant, therefore producing an unfavorable environment for the survival of bacteria. This led to damage of bacterial cell walls and reducing their adhesion. Furthermore, a significant degree of apatite formation was an indication of high bioactivity and cell attachment along with controlled degradation in the ultrafine-grained alloy. Thus, the reduction in grain size significantly improved load bearing capacity and biological functionality of Mg-2Zn-2Gd alloy.

  17. Adhesion and Growth of Vascular Smooth Muscle Cells on Nanostructured and Biofunctionalized Polyethylene

    PubMed Central

    Novotna, Katarina; Bacakova, Marketa; Kasalkova, Nikola Slepickova; Slepicka, Petr; Lisa, Vera; Svorcik, Vaclav; Bacakova, Lucie

    2013-01-01

    Cell colonization of synthetic polymers can be regulated by physical and chemical modifications of the polymer surface. High-density and low-density polyethylene (HDPE and LDPE) were therefore activated with Ar+ plasma and grafted with fibronectin (Fn) or bovine serum albumin (BSA). The water drop contact angle usually decreased on the plasma-treated samples, due to the formation of oxidized groups, and this decrease was inversely related to the plasma exposure time (50–300 s). The presence of nitrogen and sulfur on the polymer surface, revealed by X-ray photoelectron spectroscopy (XPS), and also by immunofluorescence staining, showed that Fn and BSA were bound to this surface, particularly to HDPE. Plasma modification and grafting with Fn and BSA increased the nanoscale surface roughness of the polymer. This was mainly manifested on HDPE. Plasma treatment and grafting with Fn or BSA improved the adhesion and growth of vascular smooth muscle cells in a serum-supplemented medium. The final cell population densities on day 6 after seeding were on an average higher on LDPE than on HDPE. In a serum-free medium, BSA grafted to the polymer surface hampered cell adhesion. Thus, the cell behavior on polyethylene can be modulated by its type, intensity of plasma modification, grafting with biomolecules, and composition of the culture medium. PMID:28809234

  18. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds

    PubMed Central

    Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc

    2017-01-01

    The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031

  19. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis.

    PubMed

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m(-1) of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m(-1) of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20-0.33 weed plant m(-1) of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m(-1) of cotton row, redroot pigweed produced about 626,000 seeds m(-2). Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430-2,250 g dry weight by harvest. Redroot pigweed biomass ha(-1) tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m(-1) of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management.

  20. Interference between Redroot Pigweed (Amaranthus retroflexus L.) and Cotton (Gossypium hirsutum L.): Growth Analysis

    PubMed Central

    Ma, Xiaoyan; Wu, Hanwen; Jiang, Weili; Ma, Yajie; Ma, Yan

    2015-01-01

    Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m-1 of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m-1 of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20–0.33 weed plant m-1 of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m-1 of cotton row, redroot pigweed produced about 626,000 seeds m-2. Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430–2,250 g dry weight by harvest. Redroot pigweed biomass ha-1 tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m-1 of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management. PMID:26057386

  1. Optimizing Dense Plasma Focus Neutron Yields with Fast Gas Jets

    NASA Astrophysics Data System (ADS)

    McMahon, Matthew; Kueny, Christopher; Stein, Elizabeth; Link, Anthony; Schmidt, Andrea

    2016-10-01

    We report a study using the particle-in-cell code LSP to perform fully kinetic simulations modeling dense plasma focus (DPF) devices with high density gas jets on axis. The high density jet models fast gas puffs which allow for more mass on axis while maintaining the optimal pressure for the DPF. As the density of the jet compared to the background fill increases we find the neutron yield increases, as does the variability in the neutron yield. Introducing perturbations in the jet density allow for consistent seeding of the m =0 instability leading to more consistent ion acceleration and higher neutron yields with less variability. Jets with higher on axis density are found to have the greatest yield. The optimal jet configuration is explored. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  2. Expression of TaCYP78A3, a gene encoding cytochrome P450 CYP78A3 protein in wheat (Triticum aestivum L.), affects seed size.

    PubMed

    Ma, Meng; Wang, Qian; Li, Zhanjie; Cheng, Huihui; Li, Zhaojie; Liu, Xiangli; Song, Weining; Appels, Rudi; Zhao, Huixian

    2015-07-01

    Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over-expression induced production of more cells in the seed coat, leading to an 11-48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over-expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over-expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  3. Distribution of western juniper seeds across an ecotone and implications for seed dispersal processes

    USDA-ARS?s Scientific Manuscript database

    Western juniper forests have been the focus of extensive research and management due to range expansion and infilling that began over a century ago. Understanding juniper seed dispersal is vital to identifying processes behind increases in density and range. Dispersal of Juniperus seeds has generall...

  4. The influence of white pine blister rust on seed dispersal in whitebark pine

    Treesearch

    Shawn T. McKinney; Diana F. Tomback

    2007-01-01

    We tested the hypotheses that white pine blister rust (Cronartium ribicola J.C. Fisch.) damage in whitebark pine (Pinus albicaulis Engelm.) stands leads to reduced (1) seed cone density, (2) predispersal seed survival, and (3) likelihood of Clark's Nutcracker (Nucifraga columbiana (Wilson, 1811)) seed...

  5. Seed rain dynamics following disturbance exclusion in a secondary tropical dry forest in Morelos, Mexico.

    PubMed

    Ceccon, Eliane; Hernández, Patricia

    2009-01-01

    In most of the legally protected areas in Mexico local inhabitants use natural resources, such as fire wood or cattle grazing. These frequent but low-intensity disturbances have consequences at various levels of the tropical ecosystems and strongly impact forest structure and its regeneration capacity. Despite their importance, the effects of these perturbations in many aspects of tropical forest ecology and in the forest's capacity to recover after disturbance exclusion remain poorly understood. Understanding the impact of these processes on tropical forests is necessary for rehabilitating these forests and enhancing their productivity. In this study, we evaluate the impact of twelve years of exclusion (E) of cattle grazing and fire wood extraction in the composition and dynamics of seed rain, and compare this assessment to a similar analysis in an area where these perturbations continued (without exclusion, WE). We found a strong seasonality in seed rain (96% of seeds fell in the dry season) in both areas. There were no significant differences between E and WE sites in relation to overall seed density, species richness and diversity. However, the distribution along the year of seed species density was significantly different among the E and WE sites. The Jaccard's similarity index between E and WE sites was relatively low (0.57). Barochory was the most common dispersal mode observed among the 23 species in terms of seed species density (48%), followed by anemochory (39%) and zoochory (13%). In relation to seed density, anemochory was the most frequent dispersal mode (88%). Most species in the zone were categorized as small seeds (92%), and there were no significant differences in the distribution of seed size between E and WE. The spatial pattern of dispersal of the four species with the highest relative importance value index, in both areas, was aggregated. Twelve years of disturbance exclusion were not enough to fully restore the seed rain of the area; some differences were already perceptible after this lapse. On the other hand, zoochorous species were almost absent from both sites. The re-introduction of climax and animal-dispersed species may be, in addition to perturbation exclusion, a viable strategy to accelerate ecological restoration in this area.

  6. Additive manufacturing of hierarchical injectable scaffolds for tissue engineering.

    PubMed

    Béduer, A; Piacentini, N; Aeberli, L; Da Silva, A; Verheyen, C A; Bonini, F; Rochat, A; Filippova, A; Serex, L; Renaud, P; Braschler, T

    2018-06-05

    We present a 3D-printing technology allowing free-form fabrication of centimetre-scale injectable structures for minimally invasive delivery. They result from the combination of 3D printing onto a cryogenic substrate and optimisation of carboxymethylcellulose-based cryogel inks. The resulting highly porous and elastic cryogels are biocompatible, and allow for protection of cell viability during compression for injection. Implanted into the murine subcutaneous space, they are colonized with a loose fibrovascular tissue with minimal signs of inflammation and remain encapsulation-free at three months. Finally, we vary local pore size through control of the substrate temperature during cryogenic printing. This enables control over local cell seeding density in vitro and over vascularization density in cell-free scaffolds in vivo. In sum, we address the need for 3D-bioprinting of large, yet injectable and highly biocompatible scaffolds and show modulation of the local response through control over local pore size. This work combines the power of 3D additive manufacturing with clinically advantageous minimally invasive delivery. We obtain porous, highly compressible and mechanically rugged structures by optimizing a cryogenic 3D printing process. Only a basic commercial 3D printer and elementary control over reaction rate and freezing are required. The porous hydrogels obtained are capable of withstanding delivery through capillaries up to 50 times smaller than their largest linear dimension, an as yet unprecedented compression ratio. Cells seeded onto the hydrogels are protected during compression. The hydrogel structures further exhibit excellent biocompatibility 3 months after subcutaneous injection into mice. We finally demonstrate that local modulation of pore size grants control over vascularization density in vivo. This provides proof-of-principle that meaningful biological information can be encoded during the 3D printing process, deploying its effect after minimally invasive implantation. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Isolation of Salmonella from alfalfa seed and demonstration of impaired growth of heat-injured cells in seed homogenates.

    PubMed

    Liao, Ching-Hsing; Fett, William F

    2003-05-15

    Three major foodborne outbreaks of salmonellosis in 1998 and 1999 were linked to the consumption of raw alfalfa sprouts. In this report, an improved method is described for isolation of Salmonella from alfalfa seed lots, which had been implicated in these outbreaks. From each seed lot, eight samples each containing 25 g of seed were tested for the presence of Salmonella by the US FDA Bacteriological Analytical Manual (BAM) procedure and by a modified method applying two successive pre-enrichment steps. Depending on the seed lot, one to four out of eight samples tested positive for Salmonella by the standard procedure and two to seven out of eight samples tested positive by the modified method. Thus, the use of two consecutive pre-enrichment steps led to a higher detection rate than a single pre-enrichment step. This result indirectly suggested that Salmonella cells on contaminated seeds might be injured and failed to fully resuscitate in pre-enrichment broth containing seed components during the first 24 h of incubation. Responses of heat-injured Salmonella cells grown in buffered peptone water (BPW) and in three alfalfa seed homogenates were investigated. For preparation of seed homogenates, 25 g of seeds were homogenized in 200 ml of BPW using a laboratory Stomacher and subsequently held at 37 degrees C for 24 h prior to centrifugation and filtration. While untreated cells grew at about the same rate in BPW and in seed homogenates, heat-injured cells (52 degrees C, 10 min) required approximately 0.5 to 4.0 h longer to resuscitate in seed homogenates than in BPW. This result suggests that the alfalfa seed components or fermented metabolites from native bacteria hinder the repair and growth of heat-injured cells. This study also shows that an additional pre-enrichment step increases the frequency of isolation of Salmonella from naturally contaminated seeds, possibly by alleviating the toxic effect of seed homogenates on repair or growth of injured cells.

  8. Resource Allocation and Seed Size Selection in Perennial Plants under Pollen Limitation.

    PubMed

    Huang, Qiaoqiao; Burd, Martin; Fan, Zhiwei

    2017-09-01

    Pollen limitation may affect resource allocation patterns in plants, but its role in the selection of seed size is not known. Using an evolutionarily stable strategy model of resource allocation in perennial iteroparous plants, we show that under density-independent population growth, pollen limitation (i.e., a reduction in ovule fertilization rate) should increase the optimal seed size. At any level of pollen limitation (including none), the optimal seed size maximizes the ratio of juvenile survival rate to the resource investment needed to produce one seed (including both ovule production and seed provisioning); that is, the optimum maximizes the fitness effect per unit cost. Seed investment may affect allocation to postbreeding adult survival. In our model, pollen limitation increases individual seed size but decreases overall reproductive allocation, so that pollen limitation should also increase the optimal allocation to postbreeding adult survival. Under density-dependent population growth, the optimal seed size is inversely proportional to ovule fertilization rate. However, pollen limitation does not affect the optimal allocation to postbreeding adult survival and ovule production. These results highlight the importance of allocation trade-offs in the effect pollen limitation has on the ecology and evolution of seed size and postbreeding adult survival in perennial plants.

  9. The liquid biodiesel extracted from pranajiwa (Sterculia Foetida) seeds as fuel for direct biofuel-solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Rahmawati, Fitria; Syahputra, Rahmat J. E.; Yuniastuti, Endang; Prameswari, Arum P.; Nurcahyo, I. F.

    2017-03-01

    This research applied the liquid biodiesel extracted from Pranajiwa seeds (biodiesel-p) as fuel in Intermediate Temperature-Solid Oxide Fuel Cell, IT-SOFC, with an operational temperature of 400 - 600°C. FTIR analysis of the liquid biodiesel found that the liquid consist of some functional groups. By comparing the spectrum with the commercial biosolar as produced by Pertamina, Indonesia, it is found that there are differenet peaks at a wavenumber of 3472.98; 1872.00; and 724.30 cm-1. It indicates the presence of alcoholo molecules. Composite of Samarium doped-Ceria, SDC, with sodium carbonate, NaCO3, was used as the electrolyte, and it is named as NSDC. Meanwhile, the composite of NSDC with catalyst powder of LNC, producing NSDC-L was used as a cathode and as an anode. The liquid fuel vapourized at 150 °C before come into the fuel cell, and it was reformed inside the fuel cell tube which was set up at 400, 500, and 600 °C. The measurement found that the highest Open Circuite Voltage is 0.57 volt and the power density of 1.7 mW.cm-2 at 500 °C.

  10. Calcium phosphate cement with biofunctional agents and stem cell seeding for dental and craniofacial bone repair.

    PubMed

    Thein-Han, WahWah; Liu, Jun; Xu, Hockin H K

    2012-10-01

    Calcium phosphate cement (CPC) can be injected to harden in situ and is promising for dental and craniofacial applications. However, human stem cell attachment to CPC is relatively poor. The objectives of this study were to incorporate biofunctional agents into CPC, and to investigate human umbilical cord mesenchymal stem cell (hUCMSC) seeding on biofunctionalized CPC for osteogenic differentiation for the first time. Five types of biofunctional agents were used: RGD (Arg-Gly-Asp) peptides, human fibronectin (Fn), fibronectin-like engineered polymer protein (FEPP), extracellular matrix Geltrex, and human platelet concentrate. Five biofunctionalized CPC scaffolds were fabricated: CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. The hUCMSC attachment, proliferation, osteogenic differentiation and mineral synthesis were measured. The hUCMSCs on biofunctionalized CPCs had much better cell attachment, proliferation, actin fiber expression, osteogenic differentiation and mineral synthesis, compared to the traditional CPC control. Cell proliferation was increased by an order of magnitude via incorporation of biofunctional agents in CPC (p<0.05). Mineral synthesis on biofunctionalized CPCs was 3-5 folds of those of control (p<0.05). hUCMSCs differentiated with high alkaline phosphatase, Runx2, osteocalcin, and collagen I gene expressions. Mechanical properties of biofunctionalized CPC matched the reported strength and elastic modulus of cancellous bone. A new class of biofunctionalized CPCs was developed, including CPC-RGD, CPC-Fn, CPC-FEPP, CPC-Geltrex, and CPC-Platelets. hUCMSCs on biofunctionalized CPCs had cell density, cell proliferation, actin fiber density, and bone mineralization that were dramatically better than those on traditional CPC. Novel biofunctionalized CPC scaffolds with greatly enhanced human stem cell proliferation and differentiation are promising to facilitate bone regeneration in a wide range of dental, craniofacial and orthopedic applications. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. [Isolation and purification of BMScs of GFP transgenic mouse using the method of adhering to cuture plastic in different time].

    PubMed

    Li, Fu-Qiang; Zhou, Hong-Ying; Yang, Hui-Lun; Xiang, Tao; Mei, Yan; Hu, Huo-Zhen; Wang, Ting-Hua

    2006-03-01

    To adopt the method of adhering to culture plastic in different time for cultivating and purifying BMSCs of green fluorescent protein (GFP) transgenic mice. Bone marrow cells isolated from GFP transgenic mice are directly planted in culture flask and an exchange of the total volume medium is made at different time. Then the cells adhering to culture plastic are differently counted according to the cell types and are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54 in three days. Moreover, the cells after the exchange of the total volume medium in 4 hours, 8 hours and 24 hours are selected and successively subcultured down to the fifth passage. Then the result of amplification is calculated and the cells are examined by immunohistochemistry using the antibodies of CD44, CD45 and CD54. With the extending of the time for the first exchange of medium, the density of cells adhering to culture plastic increased accordingly, but the BMSCs proportion decreased. The cells after first exchange of medium in 4 hours had high BMSCs proportion but low BMSCs density, and the cells in 24 hours had high BMSCs density and low BMSCs proportion. However, the cells in 8-10 hours had high BMSCs density and also high BMSCs proportion. The subcultured BMSCs could stably express GFP. The method of adhering to culture plastic in different time for cultivating and purifying BMSCs of GFP transgenic mice is effective. It is suitable to make the first exchange of total volume medium in 8-10 hours. The subcultured cell has the capacity for amplification and will probably be a seed cell for the research of tissue engineering and gene therapy.

  12. Nutrient intake, digestibility and performance of Gaddi kids supplemented with tea seed or tea seed saponin extract.

    PubMed

    Kumar, M; Kannan, A; Bhar, R; Gulati, A; Gaurav, A; Sharma, V K

    2017-04-01

    An experiment was conducted to determine the nutrient intake, digestibility, microbial protein synthesis, haemato-biochemical attributes, immune response and growth performance of Gaddi kids fed with oat fodder based basal diet supplemented with either tea seed or tea seed saponin (TSS) extract. Eighteen male kids, 7.03±0.16 months of age and 19.72±0.64 kg body weight, were distributed into three groups, T 0 (control), T 1 , and T 2 , consisting of 6 animals each in a completely randomized design. The kids were fed a basal diet consisting of concentrate mixture and oat fodder (50:50). Animals in group III (T 2 ) were supplemented with TSS at 0.4% of dry matter intake (DMI), and group II (T 1 ) were supplemented with tea seed at 2.6% of DMI to provide equivalent dose of TSS as in T 2 . Two metabolism trials were conducted, 1st after 21 days and 2nd after 90 days of feeding to evaluate the short term and long term effects of supplementation. The tea seed (T 1 ) or TSS (T 2 ) supplementation did not affect DMI as well as the digestibility of dry matter, organic matter, crude protein, neutral detergent fibre, and acid detergent fibre. Nutritive value of diet and plane of nutrition were also comparable for both the periods. However, the average daily gain and feed conversion ratio (FCR) were improved (p<0.05) for T 1 and T 2 as compared to T 0 . The microbial protein supply was also higher (p<0.05) for T 1 and T 2 for both the periods. There was no effect of supplementation on most blood parameters. However, the triglyceride and low density lipoprotein cholesterol levels decreased (p<0.05) and high density lipoprotein-cholesterol level increased (p<0.05) in T 2 as compared with T 0 and T 1 . Supplementation also did not affect the cell mediated and humoral immune response in goats. Tea seed at 2.6% of DMI and TSS at 0.4% DMI can be fed to Gaddi goats to improve growth rate, FCR and microbial protein synthesis.

  13. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  14. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells

    PubMed Central

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E.; Du, Jiang; Jin, Sungho; Grogan, Shawn P.

    2016-01-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling “longitudinal tears” were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears. PMID:26842062

  15. Disturbance frequency and vertical distribution of seeds affect long-term population dynamics: a mechanistic seed bank model.

    PubMed

    Eager, Eric Alan; Haridas, Chirakkal V; Pilson, Diana; Rebarber, Richard; Tenhumberg, Brigitte

    2013-08-01

    Seed banks are critically important for disturbance specialist plants because seeds of these species germinate only in disturbed soil. Disturbance and seed depth affect the survival and germination probability of seeds in the seed bank, which in turn affect population dynamics. We develop a density-dependent stochastic integral projection model to evaluate the effect of stochastic soil disturbances on plant population dynamics with an emphasis on mimicking how disturbances vertically redistribute seeds within the seed bank. We perform a simulation analysis of the effect of the frequency and mean depth of disturbances on the population's quasi-extinction probability, as well as the long-term mean and variance of the total density of seeds in the seed bank. We show that increasing the frequency of disturbances increases the long-term viability of the population, but the relationship between the mean depth of disturbance and the long-term viability of the population are not necessarily monotonic for all parameter combinations. Specifically, an increase in the probability of disturbance increases the long-term viability of the total seed bank population. However, if the probability of disturbance is too low, a shallower mean depth of disturbance can increase long-term viability, a relationship that switches as the probability of disturbance increases. However, a shallow disturbance depth is beneficial only in scenarios with low survival in the seed bank.

  16. Seed rain and seed bank of third- and fifth-order streams on the western slope of the Cascade Range.

    Treesearch

    Janice M. Harmon; Jerry F. Franklin

    1991-01-01

    We compared the composition and density of the on-site vegetation, seed bank, and seed rain of three geomorphic and successional surfaces along third- and fifth-order streams on the western slope of the central Cascade Range in Oregon.The on-site vegetation generally was dominated by tree species, the seed bank by herb species, and the seed rain by tree and...

  17. Floral display size, conspecific density and florivory affect fruit set in natural populations of Phlox hirsuta, an endangered species

    PubMed Central

    Ruane, Lauren G.; Rotzin, Andrew T.; Congleton, Philip H.

    2014-01-01

    Background and Aims Natural variation in fruit and seed set may be explained by factors that affect the composition of pollen grains on stigmas. Self-incompatible species require compatible outcross pollen grains to produce seeds. The siring success of outcross pollen grains, however, can be hindered if self (or other incompatible) pollen grains co-occur on stigmas. This study identifies factors that determine fruit set in Phlox hirsuta, a self-sterile endangered species that is prone to self-pollination, and its associated fitness costs. Methods Multiple linear regressions were used to identify factors that explain variation in percentage fruit set within three of the five known populations of this endangered species. Florivorous beetle density, petal colour, floral display size, local conspecific density and pre-dispersal seed predation were quantified and their effects on the ability of flowers to produce fruits were assessed. Key Results In all three populations, percentage fruit set decreased as florivorous beetle density increased and as floral display size increased. The effect of floral display size on fruit set, however, often depended on the density of nearby conspecific plants. High local conspecific densities offset – even reversed – the negative effects of floral display size on percentage fruit set. Seed predation by mammals decreased fruit set in one population. Conclusions The results indicate that seed production in P. hirsuta can be maximized by selectively augmenting populations in areas containing isolated large plants, by reducing the population sizes of florivorous beetles and by excluding mammals that consume unripe fruits. PMID:24557879

  18. The effects of seeding sterile triticale on a native plant community after wildfire in a pinyon pinemountain mahogany woodland

    USGS Publications Warehouse

    Waitman, B.A.; Draper, T.M.; Esque, T.C.

    2009-01-01

    Post-fire seeding with grasses is a common practice for emergency rehabilitation of burned woodlands. However, most post-seeding monitoring does not address consequences to native flora. In November 2004, the US Forest Service hand-seeded triticale (Triticosecale Wittm. ex A. Camus), a sterile wheatrye hybrid, on a small burned area in the Spring Mountains of southern Nevada, United States. A monitoring project using paired plots was designed to quantify the effects of seeding triticale on density and species richness of native annual and perennial plants, cover of perennial plants, and aboveground production of annual plants. We did not find any effects of triticale seeding on annual plant species or most responses of perennial plants. However, the density of woody perennial seedlings was significantly lower 2 years after triticale was added. Although we found a smaller impact from seeding with exotic grass than other studies, quantifiable costs to native vegetation were observed. We caution against the use of non-native grass for seeding in areas with naturally low perennial recruitment. ?? IAWF 2009.

  19. Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold

    PubMed Central

    Xin, Xuejun; Hussain, Mohammad; Mao, Jeremy J.

    2010-01-01

    Nanofibers have recently gained substantial interest for potential applications in tissue engineering. The objective of this study was to determine whether electrospun nanofibers accommodate the viability, growth, and differentiation of human mesenchymal stem cells (hMSCs) as well as their osteogenic (hMSC-Ob) and chondrogenic (hMSC-Ch) derivatives. Poly(D,L-lactide-co-glycolide) (PLGA) beads with a PLA:PGA ratio of 85:15 were electrospun into non-woven fibers with an average diameter of 760±210 nm. The average Young’s modulus of electrospun PLGA nanofibers was 42±26 kPa, per nanoindentation with atomic force microscopy (AFM). Human MSCs were seeded 1–4 weeks at a density of 2×106 cells/mL in PLGA nanofiber sheets. After 2 week culture on PLGA nanofiber scaffold, hMSCs remained as precursors upon immunoblotting with hKL12 antibody. SEM taken up to 7 days after cell seeding revealed that hMSCs, hMSC-Ob and hMSC-Ch apparently attached to PLGA nanofibers. The overwhelming majority of hMSCs was viable and proliferating in PLGA nanofiber scaffolds up to the tested 14 days, as assayed live/dead tests, DNA assay and BrdU. In a separate experiment, hMSCs seeded in PLGA nanofiber scaffolds were differentiated into chodrogenic and osteogenic cells. Histological assays revealed that hMSCs continuously differentiated into chondrogenic cells and osteogenic cells after 2 week incubation in PLGA nanofibers. Taken together, these data represent an original investigation of continuous differentiation of hMSCs into chondrogenic and osteogenic cells in PLGA nanofiber scaffold. Consistent with previous work, these findings also suggest that nanofibers may serve as accommodative milieu for not only hMSCs, but also as a 3D carrier vehicle for lineage specific cells. PMID:17010425

  20. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    PubMed

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear differentiation between initial emergence and subsequent survival to juvenile and adult stages is required.

  1. Influence of soil pathogens on early regeneration success of tropical trees varies between forest edge and interior.

    PubMed

    Krishnadas, Meghna; Comita, Liza S

    2018-01-01

    Soil fungi are key mediators of negative density-dependent mortality in seeds and seedlings, and the ability to withstand pathogens in the shaded understory of closed-canopy forests could reinforce light gradient partitioning by tree species. For four species of tropical rainforest trees-two shade-tolerant and two shade-intolerant-we conducted a field experiment to examine the interactive effects of fungal pathogens, light, and seed density on germination and early seedling establishment. In a fully factorial design, seeds were sown into 1 m 2 plots containing soil collected from underneath conspecific adult trees, with plots assigned to forest edge (high light) or shaded understory, high or low density, and fungicide or no fungicide application. We monitored total seed germination and final seedling survival over 15 weeks. Shade-intolerant species were strongly constrained by light; their seedlings survived only at the edge. Fungicide application significantly improved seedling emergence and/or survival for three of the four focal species. There were no significant interactions between fungicide and seed density, suggesting that pathogen spread with increased aggregation of seeds and seedlings did not contribute to pathogen-mediated mortality. Two species experienced significant edge-fungicide interactions, but fungicide effects in edge vs. interior forest varied with species and recruitment stage. Our results suggest that changes to plant-pathogen interactions could affect plant recruitment in human-impacted forests subject to fragmentation and edge-effects.

  2. Neighborhoods have little effect on fungal attack or insect predation of developing seeds in a grassland biodiversity experiment.

    PubMed

    Beckman, Noelle G; Dybzinski, Ray; Tilman, G David

    2014-02-01

    Numerous observational studies have documented conspecific negative density-dependence that is consistent with the Janzen-Connell Hypothesis (JCH) of diversity maintenance. However, there have been few experimental tests of a central prediction of the JCH: that removing host-specific enemies should lead to greater increases in per capita recruitment in areas of higher host density or lower relative phylogenetic diversity. Using spatially randomized plots of high and low host biomass in a temperate grassland biodiversity experiment, we treated developing seedheads of six prairie perennials to factorial applications of fungicide and insecticide. We measured predispersal seed production, seed viability, and seedling biomass. Results were highly species-specific and idiosyncratic. Effects of insect seed predators and fungal pathogens on predispersal responses varied with neither conspecific biomass nor phylogenetic diversity, suggesting that-at least at the predispersal stage and for the insect and fungal seed predators we were able to exclude-the JCH is not sufficient to contribute to negative conspecific density-dependence for these dominant prairie species.

  3. Analysis of Large Seeds from Three Different Medicago truncatula Ecotypes Reveals a Potential Role of Hormonal Balance in Final Size Determination of Legume Grains

    PubMed Central

    Bandyopadhyay, Kaustav; Uluçay, Orhan; Şakiroğlu, Muhammet; Udvardi, Michael K.; Verdier, Jerome

    2016-01-01

    Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination. PMID:27618017

  4. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    PubMed

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  5. Effects of phytoestrogen extracts isolated from rye, green and yellow pea seeds on hormone production and proliferation of trophoblast tumor cells Jeg3.

    PubMed

    Matscheski, A; Richter, D-U; Hartmann, A-M; Effmert, U; Jeschke, U; Kupka, M S; Abarzua, S; Briese, V; Ruth, W; Kragl, U; Piechulla, B

    2006-01-01

    Phytoestrogens are a diverse group of non-steroidal plant compounds. Because they have chemical structures similar to estrogens they are able to bind on estrogen receptors in humans. In this study, we tested the effects of crude phytoestrogen extracts from rye (Secale cereale), green pea (Pisum sativum) and yellow pea seeds (Pisum sativum cv.) on cell proliferation and the production of progesterone in trophoblast tumor cells of the cell line Jeg3. Isoflavone extracts from green and yellow pea seeds and lignan extracts from rye seeds were obtained, using different extraction methods. Isolated extracts were incubated in different concentrations with trophoblast tumor cells. Untreated cells were used as controls. At designated times, aliquots were removed and tested for estradiol and progesterone production. In addition, we tested the effects of the phytoestrogen extracts on cell proliferation. Cell proliferation is significantly inhibited by potential phytoestrogens isolated from rye, green and yellow pea seeds in trophoblast tumor cells of the cell line Jeg3. We found a correlation between the effects of proliferation and production of estradiol in isoflavone extracts from green and yellow pea seeds in Jeg3 cells. In addition, higher concentrations of isoflavones isolated from green pea seeds and lignans from rye showed also a inhibition of progesterone production whereas higher concentrations of rye lignans elevated estradiol production in Jeg3 cells. A useful indicator test system for potential phytoestrogens could be established. Based on the obtained results it is proposed that green and yellow pea seeds contain measurable concentrations of isoflavones and rye seeds contain lignans which can be isolated and used for special human diet programs. Copyright 2006 S. Karger AG, Basel.

  6. Short-term effects of experimental fires on a Mojave Desert seed bank

    USGS Publications Warehouse

    Esque, Todd C.; Young, James A.; Tracy, C. Richard

    2010-01-01

    A Mojave Desert shrub community was experimentally burned to understand changes in seed bank of desert annual plant species in response to wildfire. Seed mortality ranged from 55 to 80%, and fire caused significant losses of native and alien annual seeds. Schismus arabicus, Schismus barbatus, Bromus madritensis, Bromus tectorum, Erodium cicutarium and Plantago spp. made up >95% of the seed bank. Bromus spp. and Plantago spp. had proportionately greater mortality of seeds than did Schismus spp. and E. cicutarium. Schismus spp. can be lodged into soil cracks thus avoiding lethal temperatures. E. cicutarium has a self-drilling mechanism that places the seeds at greater depth in the soil. Greater seed mortality occurred beneath shrub canopies than interspaces for most species (Plantago, spp., Bromus spp., and E. cicutarium), but microsite had little effect on Schismus spp. Fire reduced the perennial Ambrosia dumosa densities under canopies. Fire reduced the mean number of species found in samples by about one species per plot and no species was extirpated on experimental plots. The relative abundances of common species did not change dramatically as a result of fire or microsite, however; seed densities varied by treatment and affected interpretations of species compositions.

  7. SU-E-J-233: Effect of Brachytherapy Seed Artifacts in T2 and Proton Density Maps in MR Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mashouf, S; University of Toronto, Dept of Radiation Oncology, Toronto, Ontario; Fatemi-Ardekani, A

    Purpose: This study aims at investigating the influence of brachytherapy seeds on T2 and proton density (PD) maps generated from MR images. Proton density maps can be used to extract water content. Since dose absorbed in tissue surrounding low energy brachytherapy seeds are highly influenced by tissue composition, knowing the water content is a first step towards implementing a heterogeneity correction algorithm using MR images. Methods: An LDR brachytherapy (IsoAid Advantage Pd-103) seed was placed in the middle of an agar-based gel phantom and imaged using a 3T Philips MR scanner with a 168-channel head coil. A multiple echo sequencemore » with TE=20, 40, 60, 80, 100 (ms) with large repetition time (TR=6259ms) was used to extract T2 and PD maps. Results: Seed artifacts were considerably reduced on T2 maps compared to PD maps. The variation of PD around the mean was obtained as −97% to 125% (±1%) while for T2 it was recorded as −71% to 24% (±1%). Conclusion: PD maps which are required for heterogeneity corrections are susceptible to artifacts from seeds. Seed artifacts on T2 maps, however, are significantly reduced due to not being sensitive to B0 field variation.« less

  8. Spatial heterogeneity in post-dispersal predation on Prunus and Uvularia seeds.

    PubMed

    Webb, Sara L; Willson, Mary F

    1985-08-01

    We investigated effects of seed density, distance from parent, and habitat (woods, open field) on post-dispersal predation risk (chiefly by rodents) for seeds of Prunus virginiana (Rosaceae). Additional study of the habitat effect (woods, open field, treefall gap) was made with seeds of Prunus avium (Rosaceae) and Uvularia grandiflora (Liliaceae). Density of Prunus seeds (range 2-40 seeds/group) did not affect predation risk for individual seeds. Distance from parent plants did influence predation risk, which was greatest directly beneath parents. This distance effect primarily comprised a sharp drop in risk within 2 m of parents, a distance too small to generate a "spacing rule" for conspecifics.We found that habitat strongly influenced predation intensity. Rates of removal of Prunus seeds were higher in woods than in open fields, except when overall predation intensity was very low and no pattern could be discerned. Prunus seed removal rates were higher in closed woods than in treefall gaps. Consequently, a Prunus seed will more likely escape predation if dispersed to an open site. In contrast, Uvularia seed removal rates were higher in open fields than in woods but did not differ between closed woods and tree-fall gaps.Predation intensity was spatially patchy between and within experimental arrays, but was consistent over time at some specific points in space, possibly reflecting home ranges of seed predators.

  9. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds

    PubMed Central

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc

    2017-01-01

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products – embryo and endosperm – and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization. PMID:28348169

  10. Selection and phenotypic characterization of a core collection of Brachypodium distachyon inbred lines.

    PubMed

    Tyler, Ludmila; Fangel, Jonatan U; Fagerström, Alexandra Dotson; Steinwand, Michael A; Raab, Theodore K; Willats, William Gt; Vogel, John P

    2014-01-14

    The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community. The natural variation in this collection can serve as a powerful experimental tool for many areas of inquiry, including investigating biomass traits. We surveyed the phenotypic diversity in a large collection of inbred lines and then selected a core collection of lines for more detailed analysis with an emphasis on traits relevant to the use of grasses as biofuel and grain crops. Phenotypic characters examined included plant height, growth habit, stem density, flowering time, and seed weight. We also surveyed differences in cell wall composition using near infrared spectroscopy (NIR) and comprehensive microarray polymer profiling (CoMPP). In all cases, we observed extensive natural variation including a two-fold variation in stem density, four-fold variation in ferulic acid bound to hemicellulose, and 1.7-fold variation in seed mass. These characterizations can provide the criteria for selecting diverse lines for future investigations of the genetic basis of the observed phenotypic variation.

  11. Effects of in-plane magnetic field on the transport of 2D electron vortices in non-uniform plasmas

    NASA Astrophysics Data System (ADS)

    Angus, Justin; Richardson, Andrew; Schumer, Joseph; Pulsed Power Team

    2015-11-01

    The formation of electron vortices in current-carrying plasmas is observed in 2D particle-in-cell (PIC) simulations of the plasma-opening switch. In the presence of a background density gradient in Cartesian systems, vortices drift in the direction found by crossing the magnetic field with the background density gradient as a result of the Hall effect. However, most of the 2D simulations where electron vortices are seen and studied only allow for in-plane currents and thus only an out-of-plane magnetic field. Here we present results of numerical simulations of 2D, seeded electron vortices in an inhomogeneous background using the generalized 2D electron-magneto-hydrodynamic model that additionally allows for in-plane components of the magnetic field. By seeding vortices with a varying axial component of the velocity field, so that the vortex becomes a corkscrew, it is found that a pitch angle of around 20 degrees is sufficient to completely prevent the vortex from propagating due to the Hall effect for typical plasma parameters. This work is supported by the NRL Base Program.

  12. Engineering tubular bone using mesenchymal stem cell sheets and coral particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Wenxin; Ma, Dongyang; Yan, Xingrong

    Highlights: • We developed a novel engineering strategy to solve the limitations of bone grafts. • We fabricated tubular constructs using cell sheets and coral particles. • The composite constructs showed high radiological density and compressive strength. • These characteristics were similar to those of native bone. -- Abstract: The development of bone tissue engineering has provided new solutions for bone defects. However, the cell-scaffold-based approaches currently in use have several limitations, including low cell seeding rates and poor bone formation capacity. In the present study, we developed a novel strategy to engineer bone grafts using mesenchymal stem cell sheetsmore » and coral particles. Rabbit bone marrow mesenchymal stem cells were continuously cultured to form a cell sheet with osteogenic potential and coral particles were integrated into the sheet. The composite sheet was then wrapped around a cylindrical mandrel to fabricate a tubular construct. The resultant tubular construct was cultured in a spinner-flask bioreactor and subsequently implanted into a subcutaneous pocket in a nude mouse for assessment of its histological characteristics, radiological density and mechanical property. A similar construct assembled from a cell sheet alone acted as a control. In vitro observations demonstrated that the composite construct maintained its tubular shape, and exhibited higher radiological density, compressive strength and greater extracellular matrix deposition than did the control construct. In vivo experiments further revealed that new bone formed ectopically on the composite constructs, so that the 8-week explants of the composite sheets displayed radiological density similar to that of native bone. These results indicate that the strategy of using a combination of a cell sheet and coral particles has great potential for bone tissue engineering and repairing bone defects.« less

  13. COBRA-LIKE2, a Member of the Glycosylphosphatidylinositol-Anchored COBRA-LIKE Family, Plays a Role in Cellulose Deposition in Arabidopsis Seed Coat Mucilage Secretory Cells1,2[OPEN

    PubMed Central

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J.; Harpaz-Saad, Smadar

    2015-01-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. PMID:25583925

  14. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  15. Oxygen consumption rate of cells in 3D culture: the use of experiment and simulation to measure kinetic parameters and optimise culture conditions.

    PubMed

    Streeter, Ian; Cheema, Umber

    2011-10-07

    Understanding the basal O(2) and nutrient requirements of cells is paramount when culturing cells in 3D tissue models. Any scaffold design will need to take such parameters into consideration, especially as the addition of cells introduces gradients of consumption of such molecules from the surface to the core of scaffolds. We have cultured two cell types in 3D native collagen type I scaffolds, and measured the O(2) tension at specific locations within the scaffold. By changing the density of cells, we have established O(2) consumption gradients within these scaffolds and using mathematical modeling have derived rates of consumption for O(2). For human dermal fibroblasts the average rate constant was 1.19 × 10(-17) mol cell(-1) s(-1), and for human bone marrow derived stromal cells the average rate constant was 7.91 × 10(-18) mol cell(-1) s(-1). These values are lower than previously published rates for similar cells cultured in 2D, but the values established in this current study are more representative of rates of consumption measured in vivo. These values will dictate 3D culture parameters, including maximum cell-seeding density and maximum size of the constructs, for long-term viability of tissue models.

  16. Apical Dominance and Planting Density Effects on Weed Suppression by Sunn Hemp (Crotalaria juncea L.)

    USDA-ARS?s Scientific Manuscript database

    A field study was conducted in 2008 and 2009 in Citra, Florida to evaluate the effects of seeding rate and removal of apical dominance of sunn hemp (Crotalaria juncea L.) on weed suppression and seed production of sunn hemp. Three seeding rates of sunn hemp were used; a representative seed producti...

  17. Direct seeding woody species for restoration of bottomlands

    Treesearch

    Daniel J. Twedt

    2006-01-01

    I direct seeded (broadcast) seeds of 39 species of trees and shrubs using an ATV-mounted rotary spreader to initiate restoration of bottomland forest on retired agricultural sites. Four sites were planted during February, 2000, and 13 additional sites were planted during April and May, 2001. After two growing seasons, stem density of direct-seeded species varied...

  18. Model-based strategy for cell culture seed train layout verified at lab scale.

    PubMed

    Kern, Simon; Platas-Barradas, Oscar; Pörtner, Ralf; Frahm, Björn

    2016-08-01

    Cell culture seed trains-the generation of a sufficient viable cell number for the inoculation of the production scale bioreactor, starting from incubator scale-are time- and cost-intensive. Accordingly, a seed train offers potential for optimization regarding its layout and the corresponding proceedings. A tool has been developed to determine the optimal points in time for cell passaging from one scale into the next and it has been applied to two different cell lines at lab scale, AGE1.HN AAT and CHO-K1. For evaluation, experimental seed train realization has been evaluated in comparison to its layout. In case of the AGE1.HN AAT cell line, the results have also been compared to the formerly manually designed seed train. The tool provides the same seed train layout based on the data of only two batches.

  19. Seed Embryo Development Is Regulated via an AN3-MINI3 Gene Cascade

    PubMed Central

    Meng, Lai-Sheng; Wang, Yi-Bo; Loake, Gary J.; Jiang, Ji-Hong

    2016-01-01

    In agriculture, seed mass is one of the most important components related to seed yield. MINISEED3 (MINI3) which encodes the transcriptional activator WRKY10, is thought to be a pivotal regulator of seed mass. In Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 (SHB1) associates with the promoter of MINI3, regulating embryo cell proliferation (both cell division and elongation), which, in turn, modulates seed mass. Furthermore, the recruitment of SHB1 via MINI3 to both its cognate promoter and that of IKU2 implies a two-step amplification for countering the low expression level of IKU2, which is thought to function as a molecular switch for seed cavity enlargement. However, it is largely unknown how embryo cell proliferation, which encompasses both cell division and elongation, is regulated by SHB1 and MINI3 function. Here, we show that a loss of function mutation within the transcriptional coactivator ANGUSTIFOLIA3 (AN3), increases seed mass. Further, AN3 associates with the MINI3 promoter in vivo. Genetic evidence indicates that the absence of MINI3 function suppresses the decrease of cell number observed in an3-4 mutants by regulating cell division and in turn inhibits increased cell size of the an3-4 line by controlling cell elongation. Thus, seed embryo development is modulated via an AN3-MINI3 gene cascade. This regulatory model provides a deeper understanding of seed mass regulation, which may in turn lead to increased crop yields. PMID:27857719

  20. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    PubMed

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Ecosystem services from keystone species: diversionary seeding and seed-caching desert rodents can enhance Indian ricegrass seedling establishment

    USGS Publications Warehouse

    Longland, William; Ostoja, Steven M.

    2013-01-01

    Seeds of Indian ricegrass (Achnatherum hymenoides), a native bunchgrass common to sandy soils on arid western rangelands, are naturally dispersed by seed-caching rodent species, particularly Dipodomys spp. (kangaroo rats). These animals cache large quantities of seeds when mature seeds are available on or beneath plants and recover most of their caches for consumption during the remainder of the year. Unrecovered seeds in caches account for the vast majority of Indian ricegrass seedling recruitment. We applied three different densities of white millet (Panicum miliaceum) seeds as “diversionary foods” to plots at three Great Basin study sites in an attempt to reduce rodents' over-winter cache recovery so that more Indian ricegrass seeds would remain in soil seedbanks and potentially establish new seedlings. One year after diversionary seed application, a moderate level of Indian ricegrass seedling recruitment occurred at two of our study sites in western Nevada, although there was no recruitment at the third site in eastern California. At both Nevada sites, the number of Indian ricegrass seedlings sampled along transects was significantly greater on all plots treated with diversionary seeds than on non-seeded control plots. However, the density of diversionary seeds applied to plots had a marginally non-significant effect on seedling recruitment, and it was not correlated with recruitment patterns among plots. Results suggest that application of a diversionary seed type that is preferred by seed-caching rodents provides a promising passive restoration strategy for target plant species that are dispersed by these rodents.

  2. Mesquite seed density in fecal samples of Raramuri Criollo vs. Angus x Hereford cows grazing Chihuahuan Desert Rangeland

    USDA-ARS?s Scientific Manuscript database

    This study was part of a larger project investigating breed-related differences in feeding habits of Raramuri Criollo (RC) versus Angus x Hereford (AH) cows. Seed densities in fecal samples collected in July and August 2015 were analyzed to compare presumed mesquite bean consumption of RC and AH cow...

  3. Cutleafgroundcherry (physalis angulata) density, biomass and seed production in peanut (arachis hypogaea L.) following regrowth due to inadequate control

    USDA-ARS?s Scientific Manuscript database

    A field experiment was conducted to evaluate herbicide and application timing on cutleaf groundcherry density, biomass, seed production, and crop yield in a peanut system. Treatments included: 1) a non-treated control; 2) hand pruning; 3) diclosulam applied preemergence (PRE) alone at 0.027 kg ai h...

  4. Autologous human plasma in stem cell culture and cryopreservation in the creation of a tissue-engineered vascular graft.

    PubMed

    Zhang, Ping; Policha, Aleksandra; Tulenko, Thomas; DiMuzio, Paul

    2016-03-01

    Previous work demonstrated the effectiveness of autologous adipose-derived stem cells (ASCs) as endothelial cell (EC) substitutes in vascular tissue engineering. We further this work toward clinical translation by evaluating ASC function after (1) replacement of fetal bovine serum (FBS) with autologous human plasma (HP) in culture and (2) cryopreservation. Human ASCs and plasma, isolated from periumbilical fat and peripheral blood, respectively, were collected from the same donors. ASCs were differentiated in endothelial growth medium supplemented with FBS (2%) vs HP (2%). Proliferation was measured by growth curves and MTT assay. Endothelial differentiation was measured by quantitative polymerase chain reaction, assessment of acetylated low-density lipoprotein uptake, and cord formation after plating on Matrigel (BD Biosciences, San Jose, Calif). Similar studies were conducted before and after cryopreservation of ASCs and included assessment of cell retention on the luminal surface of a vascular graft. ASCs expanded in HP-supplemented medium showed (1) similar proliferation to FBS-cultured ASCs, (2) consistent differentiation toward an EC lineage (increases in CD31, von Willebrand factor, and CD144 message; acetylated low-density lipoprotein uptake; and cord formation on Matrigel), and (3) retention on the luminal surface after seeding and subsequent flow conditioning. Cryopreservation did not significantly alter ASC viability, proliferation, acquisition of endothelial characteristics, or retention after seeding onto a vascular graft. This study suggests that (1) replacement of FBS with autologous HP--a step necessary for the translation of this technology into human use--does not significantly impair proliferation or endothelial differentiation of ASCs used as EC substitutes and (2) ASCs are tolerant to cryopreservation in terms of maintaining EC characteristics and retention on a vascular graft. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  5. Phage nanofibers induce vascularized osteogenesis in 3D printed bone scaffolds.

    PubMed

    Wang, Jianglin; Yang, Mingying; Zhu, Ye; Wang, Lin; Tomsia, Antoni P; Mao, Chuanbin

    2014-08-06

    A virus-activated matrix is developed to overcome the challenge of forming vascularized bone tissue. It is generated by filling a 3D printed bioceramic scaffold with phage nanofibers displaying high-density RGD peptide. After it is seeded with mesenchymal stem cells (MSCs) and implanted into a bone defect, the phage nanofibers induce osteogenesis and angiogenesis by activating endothelialization and osteogenic differentiation of MSCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ion/proton-conducting apparatus and method

    DOEpatents

    Yates, Matthew; Xue, Wei

    2014-12-23

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.

  7. The effect of scaffold pore size in cartilage tissue engineering.

    PubMed

    Nava, Michele M; Draghi, Lorenza; Giordano, Carmen; Pietrabissa, Riccardo

    2016-07-26

    The effect of scaffold pore size and interconnectivity is undoubtedly a crucial factor for most tissue engineering applications. The aim of this study was to examine the effect of pore size and porosity on cartilage construct development in different scaffolds seeded with articular chondrocytes. We fabricated poly-L-lactide-co-trimethylene carbonate scaffolds with different pore sizes, using a solvent-casting/particulate-leaching technique. We seeded primary bovine articular chondrocytes on these scaffolds, cultured the constructs for 2 weeks and examined cell proliferation, viability and cell-specific production of cartilaginous extracellular matrix proteins, including GAG and collagen. Cell density significantly increased up to 50% with scaffold pore size and porosity, likely facilitated by cell spreading on the internal surface of bigger pores, and by increased mass transport of gases and nutrients to cells, and catabolite removal from cells, allowed by lower diffusion barriers in scaffolds with a higher porosity. However, both the cell metabolic activity and the synthesis of cartilaginous matrix proteins significantly decreased by up to 40% with pore size. We propose that the association of smaller pore diameters, causing 3-dimensional cell aggregation, to a lower oxygenation caused by a lower porosity, could have been the condition that increased the cell-specific synthesis of cartilaginous matrix proteins in the scaffold with the smallest pores and the lowest porosity among those tested. In the initial steps of in vitro cartilage engineering, the combination of small scaffold pores and low porosity is an effective strategy with regard to the promotion of chondrogenesis.

  8. Evaluation of Synergetic Anticancer Activity of Berberine and Curcumin on Different Models of A549, Hep-G2, MCF-7, Jurkat, and K562 Cell Lines.

    PubMed

    Balakrishna, Acharya; Kumar, M Hemanth

    2015-01-01

    Ayurvedic system of medicine is using Berberis aristata and Curcuma longa herbs to treat different diseases including cancer. The study was performed to evaluate the synergetic anticancer activity of Berberine and Curcumin by estimating the inhibition of the cell proliferation by cytotoxicity assay using MTT method on specified human cell lines (A549, Hep-G2, MCF-7, Jurkat, and K562). All the cells were harvested from the culture and seeded in the 96-well assay plates at seeding density of 2.0 × 10(4) cells/well and were incubated for 24 hours. Test items Berberine with Curcumin (1 : 1), Curcumin 95% pure, and Berberine 95% pure were exposed at the concentrations of 1.25, 0.001, and 0.5 mg/mL, respectively, and incubated for a period of 48 hours followed by dispensing MTT solution (5 mg/mL). The cells were incubated at 37 ± 1°C for 4 hours followed by addition of DMSO for dissolving the formazan crystals and absorbance was read at 570 nm. Separate wells were prepared for positive control, controls (only medium with cells), and blank (only medium). The results had proven the synergetic anticancer activity of Berberine with Curcumin inducing cell death greater percentage of >77% when compared to pure curcumin with <54% and pure Berberine with <45% on average on all cell line models.

  9. Life history traits influence the strength of distance- and density-dependence at different life stages of two Amazonian palms.

    PubMed

    Choo, Juanita; Carasco, Cecilia; Alvarez-Loayza, Patricia; Simpson, Beryl B; Economo, Evan P

    2017-07-01

    Natural enemies are known to be important in regulating plant populations and contributing to species coexistence (Janzen-Connell effects). The strength of Janzen-Connell effects (both distance- and density-effects) varies across species, but the life history traits that may mediate such a variation are not well understood. This study examined Janzen-Connell effects across the life stages (seed through adult stages) of two sympatric palm species with distinct phenologies and shade tolerances, two traits that may mediate the strength and timing of Janzen-Connell effects. Populations of two common palm species, Attalea phalerata and Astrocaryum murumuru , were studied in Manu National Park, Peru. Seed predation experiments were conducted to assess Janzen-Connell effects at the seed stage. In the post-seed stages, spatial point pattern analyses of the distributions of individuals and biomass were used to infer the strength of distance- and density-effects. Seed predation was both negative distance- and density-dependent consistent with the Janzen-Connell effects. However, only seedling recruitment for asynchronously fruiting Attalea phalerata was depressed near adults while recruitment remained high for synchronously fruiting Astrocaryum murumuru , consistent with weak distance-effects. Negative density-effects were strong in the early stages for shade-intolerant Attalea phalerata but weak or absent in shade-tolerant Astrocaryum murumuru. Distance- and density-effects varied among the life stages of the two palm species in a manner that corresponded to their contrasting phenology and shade tolerance. Generalizing such connections across many species would provide a route to understanding how trait-mediated Janzen-Connell effects scale up to whole communities of species. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Seasonal dynamics of the plant community and soil seed bank along a successional gradient in a subalpine meadow on the Tibetan Plateau.

    PubMed

    Ma, Miaojun; Zhou, Xianhui; Qi, Wei; Liu, Kun; Jia, Peng; Du, Guozhen

    2013-01-01

    Knowledge about how change the importance of soil seed bank and relationship between seed mass and abundance during vegetation succession is crucial for understanding vegetation dynamics. Many studies have been conducted, but their ecological mechanisms of community assembly are not fully understood. We examined the seasonal dynamics of the vegetation and soil seed bank as well as seed size distribution along a successional gradient. We also explored the potential role of the soil seed bank in plant community regeneration, the relationship between seed mass and species abundance, and the relative importance of deterministic and stochastic processes along a successional gradient. Species richness of seed bank increased (shallow layer and the total) and seed density decreased (each layer and the total) significantly with succession. Species richness and seed density differed significantly between different seasons and among soil depths. Seed mass showed a significant negative relationship with relative abundance in the earliest successional stage, but the relationships were not significant in later stages. Seed mass showed no relationship with relative abundance in the whole successional series in seed bank. Results were similar for both July 2005 and April 2006. The seed mass and abundance relationship was determined by a complex interaction between small and larger seeded species and environmental factors. Both stochastic processes and deterministic processes were important determinants of the structure of the earliest stage. The importance of seed bank decreased with succession. The restoration of abandoned farmed and grazed meadows to the species-rich subalpine meadow in Tibetan Plateau can be successfully achieved from the soil seed bank. However, at least 20 years are required to fully restore an abandoned agricultural meadow to a natural mature subalpine meadow.

  11. Regeneration potential of Taxodium distichum swamps and climate change

    USGS Publications Warehouse

    Middleton, B.A.

    2009-01-01

    Seed bank densities respond to factors across local to landscape scales, and therefore, knowledge of these responses may be necessary in forecasting the effects of climate change on the regeneration of species. This study relates the seed bank densities of species of Taxodium distichum swamps to local water regime and regional climate factors at five latitudes across the Mississippi River Alluvial Valley from southern Illinois to Louisiana. In an outdoor nursery setting, the seed banks of twenty-five swamps were exposed to non-flooded (freely drained) or flooded treatments, and the number and species of seeds germinating were recorded from each swamp during one growing season. Based on ANOVA analysis, the majority of dominant species had a higher rate of germination in non-flooded versus flooded treatments. Similarly, an NMS comparison, which considered the local water regime and regional climate of the swamps, found that the species of seeds germinating, almost completely shifted under non-flooded versus flooded treatments. For example, in wetter northern swamps, seeds of Taxodium distichum germinated in non-flooded conditions, but did not germinate from the same seed banks in flooded conditions. In wetter southern swamps, seeds of Eleocharis cellulosa germinated in flooded conditions, but did not germinate in non-flooded conditions. The strong relationship of seed germination and density relationships with local water regime and regional climate variables suggests that the forecasting of climate change effects on swamps and other wetlands needs to consider a variety of interrelated variables to make adequate projections of the regeneration responses of species to climate change. Because regeneration is an important aspect of species maintenance and restoration, climate drying could influence the species distribution of these swamps in the future. ?? 2008 Springer Science+Business Media B.V.

  12. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules".

    PubMed

    Wang, Wang-Xia; Wilfred, Bernard R; Xie, Kevin; Jennings, Mary H; Hu, Yanling Hu; Stromberg, Arnold J; Nelson, Peter T

    2010-01-01

    MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using an assay we validated previously-a "RIP-Chip" experimental design. RIP-Chip data provided a list of mRNAs recruited into the AGO-miRNP in correlation to each miRNA. These experimentally identified miRNA targets were analyzed for complementary six nucleotide "seed" sequences within the transfected miRNAs. We found that miR-124 targets tended to have sequences in the 3'UTR that would be recognized by the 5' seed of miR-124, as described in previous studies. By contrast, miR-107 targets tended to have 'seed' sequences in the mRNA open reading frame, but not the 3' UTR. Further, mRNA targets of miR-128 and miR-320 are less enriched for 6-mer seed sequences in comparison to miR-107 and miR-124. In sum, our data support the importance of the 5' seed in determining binding characteristics for some miRNAs; however, the "binding rules" are complex, and individual miRNAs can have distinct sequence determinants that lead to mRNA targeting.

  13. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    PubMed Central

    Ibeas, Miguel A.; Grant-Grant, Susana; Navarro, Nathalia; Perez, M. F.; Roschzttardtz, Hannetz

    2017-01-01

    Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds. PMID:29312417

  14. Effects of long-term trampling on the above-ground forest vegetation and soil seed bank at the base of limestone cliffs.

    PubMed

    Rusterholz, Hans-Peter; Verhoustraeten, Christine; Baur, Bruno

    2011-11-01

    Exposed limestone cliffs in central Europe harbor a highly divers flora with many rare and endangered species. During the past few decades, there has been increasing recreational use of these cliffs, which has caused local environmental disturbances. Successful restoration strategies hinge on identifying critical limitations. We examined the composition of aboveground forest vegetation and density and species composition of seeds in the soil seed bank at the base of four limestone cliffs in mixed deciduous forests that are intensively disturbed by human trampling and at four undisturbed cliffs in the Jura Mountains in northwestern Switzerland. We found that long-term human trampling reduced total aboveground vegetation cover at the base of cliffs and caused a significant shift in the plant-species composition. Compared with undisturbed cliffs, total seed density was lower in disturbed cliffs. Human trampling also altered the species composition of seeds in the soil seed bank. Seeds of unintentionally introduced, stress-tolerant, and ruderal species dominated the soil seed bank at the base of disturbed cliffs. Our findings indicate that a restoration of degraded cliff bases from the existing soil seed bank would result in a substantial change of the original unique plant composition. Active seed transfer, or seed flux from adjacent undisturbed forest areas, is essential for restoration success.

  15. New Insights into Different Reproductive Effort and Sexual Recruitment Contribution between Two Geographic Zostera marina L. Populations in Temperate China

    PubMed Central

    Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong

    2018-01-01

    Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m−2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot−1 and 53,623.66 ± 19,628.11 seeds m−2, respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m−2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m−2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October–late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m−2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations. PMID:29483922

  16. New Insights into Different Reproductive Effort and Sexual Recruitment Contribution between Two Geographic Zostera marina L. Populations in Temperate China.

    PubMed

    Xu, Shaochun; Wang, Pengmei; Zhou, Yi; Zhang, Xiaomei; Gu, Ruiting; Liu, Xujia; Liu, Bingjian; Song, Xiaoyue; Xu, Shuai; Yue, Shidong

    2018-01-01

    Seagrasses are important components of global coastal ecosystems, and the eelgrass Zostera marina L. is widely distributed along the Atlantic and Pacific coasts in the temperate northern hemisphere, but limited datum related to the contribution of sexual reproduction to population recruitment have been reported. This study aimed to understand eelgrass sexual reproduction and population recruitment in Swan Lake (SLL), and Huiquan Bay (HQB) was included for comparison. Random sampling, permanent quadrats or cores and laboratory seed germination-based experimental methods were employed. The flowering, seed production, seed banks, seed germination, seedling survival, and seedling growth of eelgrass were investigated from July 2014 to December 2015 to evaluate the contribution of sexual reproduction to population recruitment. Results indicated a dominant role of asexual reproduction in HQB, while sexual reproduction played a relatively important role in SLL. The highest flowering shoot density in SLL was 517.27 ± 504.29 shoots m -2 (June) and represented 53.34% of the total shoots at the center site. The potential seed output per reproductive shoot and per unit area in SLL were 103.67 ± 37.95 seeds shoot -1 and 53,623.66 ± 19,628.11 seeds m -2 , respectively. The maximum seed bank density in SLL was 552.21 ± 204.94 seeds m -2 (October). Seed germination mainly occurred from the middle of March to the end of May, and the highest seedling density was 296.88 ± 274.27 seedlings m -2 in April. The recruitment from seedlings accounted for 41.36% of the Z. marina population recruitment at the center site, while the sexual recruitment contribution at the patch site (50.52%) was greater than that at the center site. Seeds in SLL were acclimated to spring germination, while in HQB, they were acclimated to autumn germination (early October-late November). Seed bank density in HQB was very low, with a value of 254.35 ± 613.34 seeds m -2 (early October). However, seeds in HQB were significantly larger and heavier than those in SLL (size: P = 0.004; weight: P < 0.001). The recruitment from seedlings accounted for as low as 2.53% of the Z. marina population recruitment in HQB. Our laboratory seed germination experiment, which was conducted in autumn, showed that the seed germination percent in HQB was significantly greater than in SLL at optimal germination temperatures (10 and 15°C; P < 0.001). A laboratory seed germination test at suitable temperature may be a potential novel approach to identify the ecological differences among different geographic populations. It is suggested that the Z. marina population recruitment may have different strategies and adapt to specific local conditions, such as in SLL and HQB, and the temperature regime may control morphological and phonological variations.

  17. Experimental Modification of Rat Pituitary Growth Hormone Cell Function During and After Spaceflight

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Salada, T.; Nye, P.; Grossman, E. J.; Lane, P. K.; Grindeland, R. E.

    1996-01-01

    Space-flown rats show a number of flight-induced changes in the structure and function of pituitary Growth Hormone (GH) cells after in vitro postflight testing. To evaluate the possible effects of microgravity on GH cells themselves, freshly dispersed rat anterior pituitary gland cells were seeded into vials containing serum +/- 1 micron HydroCortisone (HC) before flight. Five different cell preparations were used: the entire mixed-cell population of various hormone-producing cell types, cells of density less than 1.071 g/sq cm (band 1), cells of density greater than 1.071 g/sq cm (band 2), and cells prepared from either the dorsal or ventral part of the gland. Relative to ground control samples, bioactive GH released from dense cells during flight was reduced in HC-free medium but was increased in HC-containing medium. Band I and mixed cells usually showed opposite HC-dependent responses. Release of bioactive GH from ventral flight cells was lower; postflight responses to GH-releasing hormone challenge were reduced, and the cytoplasmic area occupied by GH in the dense cells was greater. Collectively, the data show that the chemistry and cellular makeup of the culture system modifies the response of GH cells to microgravity. As such, these cells offer a system to identify gravisensing mechanisms in secretory cells in future microgravity research.

  18. Recombinant Spider Silk Functionalized with a Motif from Fibronectin Mediates Cell Adhesion and Growth on Polymeric Substrates by Entrapping Cells During Self-Assembly.

    PubMed

    Tasiopoulos, Christos Panagiotis; Widhe, Mona; Hedhammar, My

    2018-05-02

    In vitro endothelialization of synthetic grafts or engineered vascular constructs is considered a promising alternative to overcome shortcomings in the availability of autologous vessels and in-graft complications with synthetics. A number of cell-seeding techniques have been implemented to render vascular grafts accessible for cells to attach, proliferate, and spread over the surface area. Nonetheless, seeding efficiency and the time needed for cells to adhere varies dramatically. Herein, we investigated a novel cell-seeding approach (denoted co-seeding) that enables cells to bind to a motif from fibronectin included in a recombinant spider silk protein. Entrapment of cells occurs at the same time as the silk assembles into a nanofibrillar coating on various substrates. Cell adhesion analysis showed that the technique can markedly improve cell-seeding efficiency to nonfunctionalized polystyrene surfaces, as well as establish cell attachment and growth of human dermal microvascular endothelial cells on bare polyethylene terephthalate and polytetrafluoroethylene (PTFE) substrates. Scanning electron microscopy images revealed a uniform endothelial cell layer and cell-substratum compliance with the functionalized silk protein to PTFE surfaces. The co-seeding technique holds a great promise as a method to reliably and quickly cellularize engineered vascular constructs as well as to in vitro endothelialize commercially available cardiovascular grafts.

  19. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment

    NASA Technical Reports Server (NTRS)

    Frick, J.; Nielsen, S. S.; Mitchell, C. A.

    1994-01-01

    Effects of N level (15 to 30 mM), time of N increase (14 to 28 days after planting), and planting density (1163 to 2093 plants/m2) were determined for crop yield responses of dwarf, rapid-cycling brassica (Brassica napus L., CrGC 5-2, Genome: ACaacc). Crops were grown in solid-matrix hydroponic systems and under controlled-environment conditions, including nonsupplemented (ambient) or elevated CO2 concentrations (998 +/- 12 micromoles mol-1). The highest seed yield rate obtained (4.4 g m-2 day-1) occurred with the lowest N level (15 mM) applied at the latest treatment time (day 28). In all trials, CO2 enrichment reduced seed yield rate and harvest index by delaying the onset of flowering and senescence and stimulating vegetative shoot growth. The highest shoot biomass accumulation rate (55.5 g m-2 day-1) occurred with the highest N level (30 mM) applied at the earliest time (day 14). Seed oil content was not significantly affected by CO2 enrichment. Maximum seed oil content (30% to 34%, dry weight basis) was obtained using the lowest N level (15 mM) initiated at the latest treatment time (day 28). In general, an increase in seed oil content was accompanied by a decrease in seed protein. Seed carbohydrate, moisture, and ash contents did not vary significantly in response to experimental treatments. Effects of N level and time of N increase were consistently significant for most crop responses. Planting density was significant only under elevated CO2 conditions.

  20. The direct biologic effects of radioactive 125I seeds on pancreatic cancer cells PANC-1, at continuous low-dose rates.

    PubMed

    Wang, Jidong; Wang, Junjie; Liao, Anyan; Zhuang, Hongqing; Zhao, Yong

    2009-08-01

    The relative biologic effectiveness of model 6711 125I seeds (Ningbo Junan Pharmaceutical Technology Company,Ningbo, China) and their effects on growth, cell cycle, and apoptosis in human pancreatic cancer cell line PANC-1 were examined in the present study. PANC-1 cells were exposed to the absorbed doses of 1, 2, 4, 6, 8, and 10 Gyeither with 125I seeds (initial dose rate, 2.59 cGy=h) or with 60Co g-ray irradiation (dose rate, 221 cGy=min),respectively. Significantly greater numbers of apoptotic PANC-1 cells were detected following the continuouslow-dose-rate (CLDR) irradiation of 125I seeds, compared with cells irradiated with identical doses of 60Co g-ray. The D(0) for 60Co g-ray and 125I seed irradiation were 2.30 and 1.66, respectively. The survival fraction after 125Iseed irradiation was significantly lower than that of 60Co g-ray, with a relative biologic effectiveness of 1.39.PANC-1 cells were dose dependently arrested in the S-phase by 60Co g-rays and in the G2=M phase by 125I seeds,24 hour after irradiation. CLDR irradiation by 125I seeds was more effective in inducing cell apoptosis in PANC-1cells than acute high-dose-rate 60Co g irradiation. Interestingly, CLDR irradiation by 125I seeds can cause PANC-1cell-cycle arrest at the G2=M phase and induce apoptosis, which may be an important mechanism underlying 125Iseed-induced PANC-1 cell inhibition.

  1. Synthesis and Characterization of Poly(Ethylene Glycol) Based Thermo-Responsive Hydrogels for Cell Sheet Engineering.

    PubMed

    Son, Kuk Hui; Lee, Jin Woo

    2016-10-20

    The swelling properties and thermal transition of hydrogels can be tailored by changing the hydrophilic-hydrophobic balance of polymer networks. Especially, poly( N -isopropylacrylamide) (PNIPAm) has received attention as thermo-responsive hydrogels for tissue engineering because its hydrophobicity and swelling property are transited around body temperature (32 °C). In this study, we investigated the potential of poly(ethylene glycol) diacrylate (PEGDA) as a hydrophilic co-monomer and crosslinker of PNIPAm to enhance biological properties of PNIPAm hydrogels. The swelling ratios, lower critical solution temperature (LCST), and internal pore structure of the synthesized p(NIPAm- co -PEGDA) hydrogels could be varied with changes in the molecular weight of PEGDA and the co-monomer ratios (NIPAm to PEGDA). We found that increasing the molecular weight of PEGDA showed an increase of pore sizes and swelling ratios of the hydrogels. In contrast, increasing the weight ratio of PEGDA under the same molecular weight condition increased the crosslinking density and decreased the swelling ratios of the hydrogels. Further, to evaluate the potential of these hydrogels as cell sheets, we seeded bovine chondrocytes on the p(NIPAm- co -PEGDA) hydrogels and observed the proliferation of the seed cells and their detachment as a cell sheet upon a decrease in temperature. Based on our results, we confirmed that p(NIPAm- co -PEGDA) hydrogels could be utilized as cell sheets with enhanced cell proliferation performance.

  2. Optimization of cell seeding in a 2D bio-scaffold system using computational models.

    PubMed

    Ho, Nicholas; Chua, Matthew; Chui, Chee-Kong

    2017-05-01

    The cell expansion process is a crucial part of generating cells on a large-scale level in a bioreactor system. Hence, it is important to set operating conditions (e.g. initial cell seeding distribution, culture medium flow rate) to an optimal level. Often, the initial cell seeding distribution factor is neglected and/or overlooked in the design of a bioreactor using conventional seeding distribution methods. This paper proposes a novel seeding distribution method that aims to maximize cell growth and minimize production time/cost. The proposed method utilizes two computational models; the first model represents cell growth patterns whereas the second model determines optimal initial cell seeding positions for adherent cell expansions. Cell growth simulation from the first model demonstrates that the model can be a representation of various cell types with known probabilities. The second model involves a combination of combinatorial optimization, Monte Carlo and concepts of the first model, and is used to design a multi-layer 2D bio-scaffold system that increases cell production efficiency in bioreactor applications. Simulation results have shown that the recommended input configurations obtained from the proposed optimization method are the most optimal configurations. The results have also illustrated the effectiveness of the proposed optimization method. The potential of the proposed seeding distribution method as a useful tool to optimize the cell expansion process in modern bioreactor system applications is highlighted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in arabidopsis seed coat mucilage secretory cells.

    PubMed

    Ben-Tov, Daniela; Abraham, Yael; Stav, Shira; Thompson, Kevin; Loraine, Ann; Elbaum, Rivka; de Souza, Amancio; Pauly, Markus; Kieber, Joseph J; Harpaz-Saad, Smadar

    2015-03-01

    Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation. © 2015 American Society of Plant Biologists. All Rights Reserved.

  4. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Alnoor, Hatim; Pozina, Galia; Khranovskyy, Volodymyr; Liu, Xianjie; Iandolo, Donata; Willander, Magnus; Nur, Omer

    2016-04-01

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealed by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (˜575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.

  5. Composition of soil seed banks in southern California coastal sage scrub and adjacent exotic grassland

    Treesearch

    Robert D. Cox; Edith B. Allen

    2008-01-01

    Soil seed banks are important to many plant communities and are recognized as an important component of management plans. Understanding seed bank composition and density is especially important when communities have been invaded by exotic species and must be managed to promote desirable species. We examined germinable soil seed banks in southern California coastal sage...

  6. Effects of exotic grasses on soil seed banks in Southeastern Arizona grasslands

    USGS Publications Warehouse

    McLaughlin, S.P.; Bowers, Janice E.

    2007-01-01

    At the Appleton-Whittell Research Ranch, an ungrazed grassland preserve in southeastern Arizona, soil seed banks were sampled in June, August, and October 2002 and June 2003. Wildfire had previously burned 90% of the research ranch in May 2002. Seed density and species richness in burned native grassland (2 plots) were compared to those in burned exotic grassland (2 plots). Averaged over 4 sample dates, seed densities were as follows: burned native grassland, 591 ?? 243.1 seeds??m-2 and 784 ?? 334.9 seeds??m-2; burned exotic grassland, 501 ?? 198.9 seeds??m-2 and 196 ?? 123.8 seeds??m-2. Species richness in the seed bank, also averaged over 4 sample dates, was as follows: burned native grassland, 16.3 ?? 1.7 species??m -2 and 19.5 ?? 1.0 species??m-2; burned exotic grassland, 12.0 ?? 3.4 species??m-2 and 11.06 ?? 2.5 species??m-2. The seed bank of burned exotic grassland contained significantly fewer seeds and species than that of burned native grassland. In addition, the seed bank in burned exotic grassland comprised mainly exotic grasses, whereas annual and perennial herbs, most of them native, dominated the seed bank of burned native grassland. Of the 50 species detected in soil samples, only 20 had a persistent seed bank, and only 1 of these was a native perennial bunchgrass. The preponderance of transient species means that eradication of exotic grasses must be followed by reseeding of native grasses and herbs, perhaps repeatedly, if native grassland is to replace exotic grassland.

  7. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    PubMed

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  8. Influences of sea ice on eastern Bering Sea phytoplankton

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Wang, Peng; Chen, Changping; Liang, Junrong; Li, Bingqian; Gao, Yahui

    2015-03-01

    The influence of sea ice on the species composition and cell density of phytoplankton was investigated in the eastern Bering Sea in spring 2008. Diatoms, particularly pennate diatoms, dominated the phytoplankton community. The dominant species were Grammonema islandica (Grunow in Van Heurck) Hasle, Fragilariopsis cylindrus (Grunow) Krieger, F. oceanica (Cleve) Hasle, Navicula vanhoeffenii Gran, Thalassiosira antarctica Comber, T. gravida Cleve, T. nordenskiöeldii Cleve, and T. rotula Meunier. Phytoplankton cell densities varied from 0.08×104 to 428.8×104 cells/L, with an average of 30.3×104 cells/L. Using cluster analysis, phytoplankton were grouped into three assemblages defined by ice-forming conditions: open water, ice edge, and sea ice assemblages. In spring, when the sea ice melts, the phytoplankton dispersed from the sea ice to the ice edge and even into open waters. Thus, these phytoplankton in the sea ice may serve as a "seed bank" for phytoplankton population succession in the subarctic ecosystem. Moreover, historical studies combined with these results suggest that the sizes of diatom species have become smaller, shifting from microplankton to nannoplankton-dominated communities.

  9. Influence of serum percentage on the behavior of Wharton's jelly mesenchymal stem cells in culture.

    PubMed

    Harmouch, C; El-Omar, R; Labrude, P; Decot, V; Menu, P; Kerdjoudj, H

    2013-01-01

    Mesenchymal stem cells (MSCs) are multipotent cells able to differentiate into several lineages with valuable applications in regenerative medicine. MSCs differentiation is highly dependent on physicochemical properties of the culture substrate, cell density and on culture medium composition. In this study, we assessed the influence of fetal bovine serum (FBS) level on Wharton's jelly (WJ)-MSCs behavior seeded on polyelectrolyte multilayer films (PEMF) made of four bilayers of poly-allylamine hydrochloride (PAH) as polycation and poly-styrene sulfonate (PSS) as polyanion. MSCs isolated from WJ by explants method were amplified until the third passage. Their phenotypic characterization was performed by flow cytometry analyses. MSCs were seeded on PEMF, in Endothelial growth medium-2 (EGM-2) supplemented by either 5% or 2% FBS. Cell's behavior was monitored for 20 days by optical microscopy and immunofluorescence. Until 2 weeks on glass slides, no difference was observed whatever the FBS percentage. Then with 5% FBS, MSCs formed three-dimensional spheroids on PSS/PAH after 20 days of culture with a nuclear aggregate. Whereas, with 2% FBS, these spheroids did not appear and cells grown in 2D conserved the fibroblast-like morphology. The decrease of FBS percentage from 5% to 2% avoids 3D cell spheroids formation on PAH/PSS. Such results could guide bioengineering towards building 2D structures like cell layers or 3D structures by increasing the osteogenic or chondrogenic differentiation potential of MSCs.

  10. Control of edge localized modes by pedestal deposited impurity in the HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Y. P.; Mazon, D.; Zou, X. L.; Zhong, W. L.; Gao, J. M.; Zhang, K.; Sun, P.; Dong, C. F.; Cui, Z. Y.; Liu, Yi; Shi, Z. B.; Yu, D. L.; Cheng, J.; Jiang, M.; Xu, J. Q.; Isobe, M.; Xiao, G. L.; Chen, W.; Song, S. D.; Bai, X. Y.; Zhang, P. F.; Yuan, G. L.; Ji, X. Q.; Li, Y. G.; Zhou, Y.; Delpech, L.; Ekedahl, A.; Giruzzi, G.; Hoang, T.; Peysson, Y.; Song, X. M.; Song, X. Y.; Li, X.; Ding, X. T.; Dong, J. Q.; Yang, Q. W.; Xu, M.; Duan, X. R.; Liu, Y.; the HL-2A Team

    2018-04-01

    Effect of the pedestal deposited impurity on the edge-localized mode (ELM) behaviour has been observed and intensively investigated in the HL-2A tokamak. Impurities have been externally seeded by a newly developed laser blow-off (LBO) system. Both mitigation and suppression of ELMs have been realized by LBO-seeded impurity. Measurements have shown that the LBO-seeded impurity particles are mainly deposited in the pedestal region. During the ELM mitigation phase, the pedestal density fluctuation is significantly increased, indicating that the ELM mitigation may be achieved by the enhancement of the pedestal transport. The transition from ELM mitigation to ELM suppression was triggered when the number of the LBO-seeded impurity exceeds a threshold value. During the ELM suppression phase, a harmonic coherent mode (HCM) is excited by the LBO-seeded impurity, and the pedestal density fluctuation is significantly decreased, the electron density is continuously increased, implying that HCM may reduce the pedestal turbulence, suppress ELMs, increase the pedestal pressure, thus extending the Peeling-Ballooning instability limit. It has been found that the occurance of the ELM mitigation and ELM suppression closely depends on the LBO laser spot diameter.

  11. Factors Limiting Post-logging Seedling Regeneration by Big-leaf Mahogany (Swietenia macrophylla) in Southeastern Amazonia, Brazil, and Implications for Sustainable Management

    Treesearch

    James Grogan; Jurandir Galvao

    2006-01-01

    Post-logging seedling regeneration density by big-leaf mahogany (Swietenia macrophylla), a nonpioneer light-demanding timber species, is generally reported to be low to nonexistent. To investigate factors limiting seedling density following logging within the study region, we quantified seed production rates, germinability, dispersal patterns, and seed fates on the...

  12. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice

    PubMed Central

    Way, Michael O.; Pearson, Rebecca A.; Stout, Michael J.

    2017-01-01

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety. PMID:28805707

  13. Integrating Soil Silicon Amendment into Management Programs for Insect Pests of Drill-Seeded Rice.

    PubMed

    Villegas, James M; Way, Michael O; Pearson, Rebecca A; Stout, Michael J

    2017-08-13

    Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.

  14. Feedback controlled, reactor relevant, high-density, high-confinement scenarios at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Blanken, T. C.; Dunne, M.; McDermott, R. M.; Wolfrum, E.; Bobkov, V.; Felici, F.; Fischer, R.; Janky, F.; Kallenbach, A.; Kardaun, O.; Kudlacek, O.; Mertens, V.; Mlynek, A.; Ploeckl, B.; Stober, J. K.; Treutterer, W.; Zohm, H.; ASDEX Upgrade Team

    2018-03-01

    One main programme topic at the ASDEX Upgrade all-metal-wall tokamak is development of a high-density regime with central densities at reactor grade level while retaining high-confinement properties. This required development of appropriate control techniques capable of coping with the pellet tool, a powerful means of fuelling but one which presented challenges to the control system for handling of related perturbations. Real-time density profile control was demonstrated, raising the core density well above the Greenwald density while retaining the edge density in order to avoid confinement losses. Recently, a new model-based approach was implemented that allows direct control of the central density. Investigations focussed first on the N-seeding scenario owing to its proven potential to yield confinement enhancements. Combining pellets and N seeding was found to improve the divertor buffering further and enhance the operational range accessible. For core densities up to about the Greenwald density, a clear improvement with respect to the non-seeding reference was achieved; however, at higher densities this benefit is reduced. This behaviour is attributed to recurrence of an outward shift of the edge density profile, resulting in a reduced peeling-ballooning stability. This is similar to the shift seen during strong gas puffing, which is required to prevent impurity influx in ASDEX Upgrade. First tests indicate that highly-shaped plasma configurations like the ITER base-line scenario, respond very well to pellet injection, showing efficient fuelling with no measurable impact on the edge density profile.

  15. Removal of Anabaena flos-aquae in water treatment process using Moringa oleifera and assessment of fatty acid profile of generated sludge.

    PubMed

    Moreti, Livia O R; Coldebella, Priscila Ferri; Camacho, Franciele P; Carvalho Bongiovani, Milene; Pereira de Souza, Aloisio Henrique; Kirie Gohara, Aline; Matsushita, Makoto; Fernandes Silva, Marcela; Nishi, Letícia; Bergamasco, Rosângela

    2016-01-01

    This study aimed to evaluate the efficiency of the coagulation/flocculation/dissolved air flotation (C/F/DAF) process using the coagulant Moringa oleifera (MO) seed powder, and to analyse the profile of fatty acids present in the generated sludge after treatment. For the tests, deionized water artificially contaminated with cell cultures of Anabaena flos-aquae was used, with a cell density in the order of 10(4) cells mL(-1). C/F/DAF tests were conducted using 'Flotest' equipment. For fatty acid profile analyses, a gas chromatograph equipped with a flame ionization detector was used. It was seen that the optimal dosage (100 mg L(-1)) of MO used in the C/F/DAF process was efficient at removing nearly all A. flos-aquae cells (96.4%). The sludge obtained after treatment contained oleic acid (61.7%) and palmitic acid (10.8%). Thus, a water treatment process using C/F/DAF linked to integral MO powder seed was found to be efficient in removing cells of cyanobacteria, and produced a sludge rich in oleic acid that is a precursor favourable for obtaining quality biodiesel, thus becoming an alternative application for the recycling of such biomass.

  16. Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum

    PubMed Central

    Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean

    2015-01-01

    Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID:26105185

  17. Endoreduplication intensity as a marker of seed developmental stage in the Fabaceae.

    PubMed

    Rewers, Monika; Sliwinska, Elwira

    2012-12-01

    Flow cytometry (FCM) can be used to study cell cycle activity in developing, mature and germinating seeds. It provides information about a seed's physiological state and therefore can be used by seed growers for assessing optimal harvest times and presowing treatments. Because an augmented proportion of 4C nuclei usually is indicative of high mitotic activity, the 4C/2C ratio is commonly used to follow the progress of seed development and germination. However, its usefulness for polysomatic (i.e., containing cells with different DNA content) seeds is questioned. Changes in cell cycle/endoreduplication activity in developing seeds of five members of the Fabaceae were studied to determine a more suitable marker of seed developmental stages for polysomatic species based on FCM measurements. Seeds of Phaseolus vulgaris, Medicago sativa, Pisum sativum, Vicia sativa, and Vicia faba var. minor were collected 20, 30, 40, 50, and 60 days after flowering (DAF), embryos were isolated and the proportion of nuclei with different DNA contents in the embryo axis and cotyledon was established. The ratios 4C/2C and (Σ>2C)/2C were calculated. Dried seeds were subjected to laboratory germination tests following international seed testing association (ISTA) rules. Additionally, the absolute nuclear DNA content was estimated in the leaves of the studied species. During seed development nuclei with DNA contents from 2C to 128C were detected; the endopolyploidy pattern depended on the species, seed organ and developmental stage. The cell cycle/endoreduplication parameters correlated negatively with genome size. The (Σ>2C)/2C ratio in the cotyledons reflected the seed developmental stage and corresponded with seed germinability. Therefore, this ratio is recommended as a marker in polysomatic seed research and production instead of the 4C/2C ratio, which does not consider the occurrence of endopolyploid cells. Copyright © 2012 International Society for Advancement of Cytometry.

  18. Multiple protective effect of peptides released from Olea europaea and Prunus persica seeds against oxidative damage and cancer cell proliferation.

    PubMed

    Hernández-Corroto, Ester; Marina, María Luisa; García, María Concepción

    2018-04-01

    The long exposition to reactive species results in oxidative stress which has been related with the development of cancer and other serious diseases. Olea europaea and Prunus persica seeds present a high protein content and preliminary results demonstrated their high potency to obtain bioactive peptides. The protective effect against oxidative damage exerted by peptides released from Olea europaea and Prunus persica seeds has been evaluated in this work. Seed hydrolysates showed protection against oxidation through four different mechanisms: inhibition of the formation of hydroxyl radicals, scavenging of free radicals, reduction of oxidizing compounds, and inhibition of lipid peroxidation. Moreover, seed hydrolysates also reduced the oxidative stress induced by an oxidizing agent on human cancer cells. Despite protection evaluated by individual mechanisms seemed to be significantly affected by the seed genotype, overall protection of seed hydrolysates was not so different. Seeds hydrolysates were not cytotoxic on normal cells but they demonstrated antiproliferative effect on human cancer cells (HeLa, PC-3, and HT-29). Peptides in all seed hydrolysates were sequenced by RP-HPLC-ESI-Q-TOF. Eighteen common peptides were observed among olive seed hydrolysates while a wider variability was observed among Prunus seed hydrolysates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Quinoa Seed Quality Response to Sodium Chloride and Sodium Sulfate Salinity

    PubMed Central

    Wu, Geyang; Peterson, Adam J.; Morris, Craig F.; Murphy, Kevin M.

    2016-01-01

    Quinoa (Chenopodium quinoa Willd.) is an Andean crop with an edible seed that both contains high protein content and provides high quality protein with a balanced amino acid profile in embryonic tissues. Quinoa is a halophyte adapted to harsh environments with highly saline soil. In this study, four quinoa varieties were grown under six salinity treatments and two levels of fertilization, and then evaluated for quinoa seed quality characteristics, including protein content, seed hardness, and seed density. Concentrations of 8, 16, and 32 dS m-1 of NaCl and Na2SO4, were applied to the soil medium across low (1 g N, 0.29 g P, 0.29 g K per pot) and high (3 g N, 0.85 g P, 0.86 g K per pot) fertilizer treatments. Seed protein content differed across soil salinity treatments, varieties, and fertilization levels. Protein content of quinoa grown under salinized soil ranged from 13.0 to 16.7%, comparable to that from non-saline conditions. NaCl and Na2SO4 exhibited different impacts on protein content. Whereas the different concentrations of NaCl did not show differential effects on protein content, the seed from 32 dS m-1 Na2SO4 contained the highest protein content. Seed hardness differed among varieties, and was moderately influenced by salinity level (P = 0.09). Seed density was affected significantly by variety and Na2SO4 concentration, but was unaffected by NaCl concentration. The samples from 8 dS m-1 Na2SO4 soil had lower density (0.66 g/cm3) than those from 16 dS m-1 and 32 dS m-1 Na2SO4, 0.74 and 0.72g/cm3, respectively. This paper identifies changes in critical seed quality traits of quinoa as influenced by soil salinity and fertility, and offers insights into variety response and choice across different abiotic stresses in the field environment. PMID:27375648

  20. Seed weight - seedling size correlation in coastal Douglas-fir: genetic and environmental components.

    Treesearch

    Frank C. Sorensen; Robert K. Campbell

    1992-01-01

    The effect of seed weight on nursery seedling height was analyzed in two experiments. In expt. 1, 16 seeds per family from 111 families were individually weighed and sown in autumn. In expt. 2, a second group of 16 seeds were individually weighed and stratified and sown in spring. Four-tree noncontiguous family plots were randomly assigned to two densities in two...

  1. Colonization Pattern of the Biocontrol Strain Pseudomonas chlororaphis MA 342 on Barley Seeds Visualized by Using Green Fluorescent Protein

    PubMed Central

    Tombolini, Riccardo; van der Gaag, Dirk Jan; Gerhardson, Berndt; Jansson, Janet K.

    1999-01-01

    Pseudomonas chlororaphis MA 342 is a potent biocontrol agent that can be used against several seed-borne diseases of cereal crops, including net blotch of barley caused by the fungus Drechslera teres. In this study, strain MA 342 was tagged with the gfp gene (encoding the green fluorescent protein) in order to study the fate of cells after seed inoculation. The gfp-tagged strain, MA 342G2, had the same biocontrol efficacy as the wild type when it was applied at high cell concentrations to seeds but was less effective at lower cell concentrations. By comparing cell counts determined by microscopy to the number of CFU, we found that the number of culturable cells was significantly lower than the total number of bacteria on seeds which were inoculated and dried for 20 h. Confocal microscopy and epifluorescence stereomicroscopy were used to determine the pattern of MA 342G2 colonization and cell aggregation on barley seeds. Immediately after inoculation of seeds, bacteria were found mainly under the seed glume, and there was no particular aggregation pattern. However, after the seeds were sown, irregularly distributed areas of bacterial aggregation were found, which reflected epiphytic colonization of glume cells. There was a trend towards bacterial aggregation near the embryo but never within the embryo. Bacterial aggregates were regularly found in the groove of each seed formed by the base of the coleoptile and the scutellum. Based on these results, we suggest that MA 342 colocalizes with the pathogen D. teres, which facilitates the action of the fungistatic compound(s) produced by this strain. PMID:10427065

  2. Neointimal hyperplasia on a cell-seeded polytetrafluoroethylene graft is promoted by transfer of tissue plasminogen activator gene and inhibited by transfer of nitric oxide synthase gene.

    PubMed

    Yu, Hong; Dai, Wangde; Yang, Zhe; Romaguera, Rita L; Kirkman, Paul; Rowe, Vincent L

    2005-01-01

    The objective of this study was to examine the effect of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase (eNOS) on thrombosis and neointimal hyperplasia on a polytetrafluoroethylene (PTFE) graft seeded with smooth muscle cells (SMCs). SMCs retrovirally transduced with tPA and eNOS genes were seeded on PTFE grafts and then implanted into the infrarenal rabbit aorta. Thrombosis and neointimal hyperplasia on the grafts were examined after 30 and 100 days of implantation. At 30 days of implantation, thrombus was observed on the luminal surface of both unseeded and SMC seeded control grafts, whereas grafts seeded with SMCs secreting tPA were nearly free of thrombus. At 100 days, the neointima on grafts seeded with tPA transduced SMCs was significantly thicker (925 +/- 150 microm, n = 5) than neointima on the other grafts (range, 132 to 374 microm; P < .001). Neointima thickness on grafts seeded with eNOS transduced SMCs (154 +/- 27 microm) was similar to that of unseeded grafts (132 +/- 16 microm, P > .05); both were thinner than those on grafts seeded with SMCs transduced with only lacZ gene (287 +/- 35 microm). The ratio of seeded cells in the neointima was significantly higher on SMC/tPA grafts (46% +/- 8%) than SMC/NOS grafts (21% +/- 6%, P < .05), indicating tPA transduced cells proliferated more than eNOS transduced cells. Engineered tPA expression in seeded SMCs causes significantly more neointimal hyperplasia, despite the favorable inhibition of luminal thrombus. eNOS expression in the seeded cells inhibits neointimal hyperplasia.

  3. Combining ability analysis for within-boll yield components in upland cotton (Gossypium hirsutum L.).

    PubMed

    Imran, M; Shakeel, A; Azhar, F M; Farooq, J; Saleem, M F; Saeed, A; Nazeer, W; Riaz, M; Naeem, M; Javaid, A

    2012-08-24

    Cotton is an important cash crop worldwide, accounting for a large percentage of world agricultural exports; however, yield per acre is still poor in many countries, including Pakistan. Diallel mating system was used to identify parents for improving within-boll yield and fiber quality parameters. Combining ability analysis was employed to obtain suitable parents for this purpose. The parental genotypes CP-15/2, NIAB Krishma, CIM-482, MS-39, and S-12 were crossed in complete diallel mating under green house conditions during 2009. The F₀ seed of 20 hybrids and five parents were planted in the field in randomized complete block design with three replications during 2010. There were highly significant differences among all F₁ hybrids and their parents. Specific combining ability (SCA) variance was greater than general combining ability (GCA) variance for bolls per plant (9.987), seeds per boll (0.635), seed density (5.672), lint per seed (4.174), boll size (3.69), seed cotton yield (0.315), and lint percentage (0.470), showing predominance of non-additive genes; while seed volume (3.84) was controlled by additive gene action based on maximum GCA variance. Cultivar MS-39 was found to be the best general combiner for seed volume (0.102), seeds per boll (0.448), and lint per seed (0.038) and its utilization produced valuable hybrids, including MS-39 x NIAB Krishma and MS-39 x S-12. The parental line CIM-482 had high GCA effects for boll size (0.33) and seeds per boll (0.90). It also showed good SCA with S-12 and NIAB Krishma for bolls per plant, with CP- 15/2 for boll size, and with MS-39 for seeds per boll. The hybrids, namely, CP-15/2 x NIAB Krishma, NIAB Krishma x S-12, NIAB Krishma x CIM-482, MS-39 x NIAB Krishma, MS-39 x CP-15/2, and S-12 x MS-39 showed promising results. Correlation analysis revealed that seed cotton yield showed significant positive correlation with bolls per plant, boll size and seeds per boll while it showed negative correlation with lint percentage and lint per seed. Seed volume showed significant negative correlation with seed density. Seeds per boll were positively correlated with boll size and negatively correlated with bolls per plant lint percentage and lint per seed. Similarly, lint per seed exhibited positive correlation with lint percentage and boll size showed significantly negative correlation with bolls per plant. Presence of non-additive genetic effects in traits like bolls per plant, seeds per boll, lint per seed, seed cotton yield, and lint percentage is indicative of later generation selection or heterosis breeding may be adopted. For boll size, seed volume and seed density early generation selection may be followed because of the presence of additive gene action. The parental material used in this study and cross combinations obtained from these parents may be exploited in future breeding endeavors.

  4. Droplet Microarray Based on Superhydrophobic-Superhydrophilic Patterns for Single Cell Analysis.

    PubMed

    Jogia, Gabriella E; Tronser, Tina; Popova, Anna A; Levkin, Pavel A

    2016-12-09

    Single-cell analysis provides fundamental information on individual cell response to different environmental cues and is a growing interest in cancer and stem cell research. However, current existing methods are still facing challenges in performing such analysis in a high-throughput manner whilst being cost-effective. Here we established the Droplet Microarray (DMA) as a miniaturized screening platform for high-throughput single-cell analysis. Using the method of limited dilution and varying cell density and seeding time, we optimized the distribution of single cells on the DMA. We established culturing conditions for single cells in individual droplets on DMA obtaining the survival of nearly 100% of single cells and doubling time of single cells comparable with that of cells cultured in bulk cell population using conventional methods. Our results demonstrate that the DMA is a suitable platform for single-cell analysis, which carries a number of advantages compared with existing technologies allowing for treatment, staining and spot-to-spot analysis of single cells over time using conventional analysis methods such as microscopy.

  5. Reduced availability of large seeds constrains Atlantic forest regeneration

    NASA Astrophysics Data System (ADS)

    Costa, Janaina B. P.; Melo, Felipe P. L.; Santos, Bráulio A.; Tabarelli, Marcelo

    2012-02-01

    Secondary forests are expanding in defaunated fragmented tropical landscapes, but their resilience potential remains poorly understood. In this study we used a chronosequence of advancing (19-62-yr old) Atlantic forest regeneration following slash-and-burn agriculture to infer successional shifts in seed rain in terms of seed density, species richness, taxonomic and functional composition, and local spatial distribution. After monitoring seed rain during 12 months in 60 1-m2 seed traps, we recorded over 400,000 seeds belonging to 180 morphospecies. From early to late-successional stage, seed rain decreased in density, increased in per capita species richness, gradually changed in species composition, and became less aggregated spatially. Regardless the age of forest stand, vertebrate-dispersed seeds accounted for 67-75% of all species recorded. Large-seeded species typical of old-growth forests, on the other hand, accounted for only 5-8% of the species recorded in the seed rain, a proportion around five times smaller than that reported for the old-growth forests of the same study site (31%). Our results suggest that the secondary forests considered, which are embedded in one of the largest (3500 ha) and best preserved remnant of the severely fragmented Atlantic forest of Northeast Brazil, may fail attaining older successional stages due to the reduced availability of large-seeded late-successional species. This regeneration constraint may be even stronger in smaller, more isolated forest remnants of the region, potentially reducing their ability to provide ecosystem services.

  6. Potential for seed-mediated gene flow in agroecosystems from transgenic safflower (Carthamus tinctorius L.) intended for plant molecular farming.

    PubMed

    McPherson, Marc A; Yang, Rong-Cai; Good, Allen G; Nielson, Ryan L; Hall, Linda M

    2009-04-01

    Safflower has been transformed for field scale molecular farming of high-value proteins including several pharmaceuticals. Viable safflower seed remaining in the soil seed bank after harvest could facilitate seed and pollen-mediated gene flow. Seeds may germinate in subsequent years and volunteer plants may flower and potentially outcross with commodity safflower and/or produce seed. Seeds from volunteers could become admixed with conventional crops at harvest, and/or replenish the seed bank. Seed in following crops could be transported locally and internationally and facilitate gene flow in locations where regulatory thresholds and public acceptance differ from Canada. Seed-mediated gene flow was examined in three studies. Safflower seed loss and viability following harvest of commercial fields of a non-transgenic cultivar were determined. We assessed seed longevity of transgenic and non-transgenic safflower, on the soil surface and buried at two depths. Finally, we surveyed commercial safflower fields at different sites and measured density and growth stage of safflower volunteers, in other crops the following year and documented volunteer survival and viable seed production. Total seed loss at harvest in commercial fields, ranged from 231 to 1,069 seeds m(-2) and the number of viable seeds ranged from 81 to 518 seeds m(-2). Safflower has a relatively short longevity in the seed bank and no viable seeds were found after 2 years. Based on the seed burial studies it is predicted that winter conditions would reduce safflower seed viability on the soil surface by >50%, leaving between 40 and 260 viable seeds m(-2). The density of safflower volunteers emerging in the early spring of the following year ranged from 3 to 11 seedlings m(-2). Safflower volunteers did not survive in fields under chemical fallow, but in some cereal fields small numbers of volunteers did survive and generate viable seed. Results will be used to make recommendations for best management practices to reduce seed-mediated gene flow from commercial production of plant molecular farming with safflower.

  7. Predehydration and Ice Seeding in the Presence of Trehalose Enable Cell Cryopreservation

    PubMed Central

    2017-01-01

    Conventional approaches for cell cryopreservation require the use of toxic membrane-penetrating cryoprotective agents (pCPA), which limits the clinical application of cryopreserved cells. Here, we show intentionally induced ice formation at a high subzero temperature (> −10 °C) during cryopreservation, which is often referred to as ice seeding, could result in significant cell injury in the absence of any pCPA. This issue can be mitigated by predehydrating cells using extracellular trehalose to their minimal volume with minimized osmotically active water before ice seeding. We further observe that ice seeding can minimize the interfacial free energy that drives the devastating ice recrystallization-induced cell injury during warming cryopreserved samples. Indeed, by combining predehydration using extracellular trehalose with ice seeding at high subzero temperatures, high cell viability or recovery is achieved for fibroblasts, adult stem cells, and red blood cells after cryopreservation without using any pCPA. The pCPA-free technology developed in this study may greatly facilitate the long-term storage and ready availability of living cells, tissues, and organs that are of high demand by modern cell-based medicine. PMID:28824959

  8. Smooth muscle cells improve endothelial cell retention on polytetrafluoroethylene grafts in vivo.

    PubMed

    Yu, Hong; Dai, Wangde; Yang, Zhe; Kirkman, Paul; Weaver, Fred A; Eton, Darwin; Rowe, Vincent L

    2003-09-01

    We investigated the influence of smooth muscle cells (SMC) on endothelial cell (EC) retention on polytetrafluoroethylene (PTFE) grafts and the effect of SMC seeding on intimal hyperplasia in vivo in a rabbit model. Fibronectin-coated PTFE grafts (4 mm diameter) were seeded with either EC alone, SMC alone, or SMC followed 24 hours later by EC. The grafts were connected to an extracorporal aortic shunt for 1 hour or were individually implanted for 1, 30, and 100 days into the infrarenal aorta as an end-to-side bypass graft. The number of retained cells was compared at 1 hour and at 1 day after implantation. Neointimal thickness was measured 30 and 100 days after implantation. After 1-hour exposure to blood flow, EC retention rate was greater (P <.005) if seeded on top of SMC (98% +/- 2%; n = 8) versus being seeded alone (65 +/- 11%; n = 8). SMC retention rate was 95 +/- 5% (n = 8) when seeded alone. Similar cell retention was obtained 1 day after implantation. After 30-day implantation the neointima was thicker in grafts seeded with EC and SMC (282 +/- 136 microm; n = 3) than with EC only (52 +/- 45 microm; n = 3; P <.001). However, the neointimal thickness for dual-cell-seeded grafts (126 +/- 60 microm; n = 3) was not significantly different (P =.09) from EC-seeded grafts (79 +/- 48 microm; n = 3) after 100-day implantation. EC retention on PTFE grafts in vivo is improved if seeded over a layer of SMC. Further studies are needed to determine whether overlying EC modulate proliferation of underlying SMC.

  9. Efficiency improvement of an antibody production process by increasing the inoculum density.

    PubMed

    Hecht, Volker; Duvar, Sevim; Ziehr, Holger; Burg, Josef; Jockwer, Alexander

    2014-01-01

    Increasing economic pressure is the main driving force to enhance the efficiency of existing processes. We developed a perfusion strategy for a seed train reactor to generate a higher inoculum density for a subsequent fed batch production culture. A higher inoculum density can reduce culture duration without compromising product titers. Hence, a better capacity utilization can be achieved. The perfusion strategy was planned to be implemented in an existing large scale antibody production process. Therefore, facility and process constraints had to be considered. This article describes the initial development steps. Using a proprietary medium and a Chinese hamster ovary cell line expressing an IgG antibody, four different cell retention devices were compared in regard to retention efficiency and reliability. Two devices were selected for further process refinement, a centrifuge and an inclined gravitational settler. A concentrated feed medium was developed to meet facility constraints regarding maximum accumulated perfundate volume. A 2-day batch phase followed by 5 days of perfusion resulted in cell densities of 1.6 × 10(10) cells L(-1) , a 3.5 fold increase compared to batch cultivations. Two reactor volumes of concentrated feed medium were needed to achieve this goal. Eleven cultivations were carried out in bench and 50 L reactors showing acceptable reproducibility and ease of scale up. In addition, it was shown that at least three perfusion phases can be combined within a repeated perfusion strategy. © 2014 American Institute of Chemical Engineers.

  10. Can salvage logging affect seed dispersal by birds into burned forests?

    NASA Astrophysics Data System (ADS)

    Rost, J.; Pons, P.; Bas, J. M.

    2009-09-01

    The recovery of vegetation in Mediterranean ecosystems after wildfire is mostly a result of direct regeneration, since the same species existing before the fire regenerate on-site by seeding or resprouting. However, the possibility of plant colonization by dispersal of seeds from unburned areas remains poorly studied. We addressed the role of the frugivorous, bird-dependent seed dispersal (seed rain) of fleshy-fruited plants in a burned and managed forest in the second winter after a fire, before on-site fruit production had begun. We also assessed the effect on seed rain of different microhabitats resulting from salvage logging (erosion barriers, standing snags, open areas), as well as the microhabitats of unlogged patches and an unburned control forest, taking account of the importance of perches as seed rain sites. We found considerable seed rain by birds in the burned area. Seeds, mostly from Olive trees Olea europaea and Evergreen pistaches Pistacia lentiscus, belonged to plants fruiting only in surrounding unburned areas. Seed rain was heterogeneous, and depended on microhabitat, with the highest seed density in the unburned control forest but closely followed by the wood piles of erosion barriers. In contrast, very low densities were found under perches of standing snags. Furthermore, frugivorous bird richness seemed to be higher in the erosion barriers than elsewhere. Our results highlight the importance of this specific post-fire management in bird-dependent seed rain and also may suggest a consequent heterogeneous distribution of fleshy-fruited plants in burned and managed areas. However, there needs to be more study of the establishment success of dispersed seeds before an accurate assessment can be made of the role of bird-mediated seed dispersal in post-fire regeneration.

  11. Ord's kangaroo rats living in floodplain habitats: Factors contributing to habitat attraction

    USGS Publications Warehouse

    Miller, M.S.; Wilson, K.R.; Andersen, D.C.

    2003-01-01

    High densities of an aridland granivore, Ord's kangaroo rat (Dipodomys ordii), have been documented in floodplain habitats along the Yampa River in northwestern Colorado. Despite a high probability of inundation and attendant high mortality during the spring flood period, the habitat is consistently recolonized. To understand factors that potentially make riparian habitats attractive to D. ordii, we compared density and spatial pattern of seeds, density of a competitor (western harvester ant, Pogonomyrmex occidentalis), and digging energetics within floodplain habitats and between floodplain and adjacent upland habitats. Seed density within the floodplain was greatest in the topographically high (rarely flooded) floodplain and lowest immediately after a spring flood in the topographically low (frequently flooded) floodplain. Seed densities in adjacent upland habitat that never floods were higher than the lowest floodplain habitat. In the low floodplain prior to flooding, seeds had a clumped spatial pattern, which D. ordii is adept at exploiting; after spring flooding, a more random pattern resulted. Populations of the western harvester ant were low in the floodplain relative to the upland. Digging by D. ordii was energetically less expensive in floodplain areas than in upland areas. Despite the potential for mortality due to annual spring flooding, the combination of less competition from harvester ants and lower energetic costs of digging might promote the use of floodplain habitat by D. ordii.

  12. Nutrient intake, digestibility and performance of Gaddi kids supplemented with tea seed or tea seed saponin extract

    PubMed Central

    Kumar, M.; Kannan, A.; Bhar, R.; Gulati, A.; Gaurav, A.; Sharma, V. K.

    2017-01-01

    Objective An experiment was conducted to determine the nutrient intake, digestibility, microbial protein synthesis, haemato-biochemical attributes, immune response and growth performance of Gaddi kids fed with oat fodder based basal diet supplemented with either tea seed or tea seed saponin (TSS) extract. Methods Eighteen male kids, 7.03±0.16 months of age and 19.72±0.64 kg body weight, were distributed into three groups, T0 (control), T1, and T2, consisting of 6 animals each in a completely randomized design. The kids were fed a basal diet consisting of concentrate mixture and oat fodder (50:50). Animals in group III (T2) were supplemented with TSS at 0.4% of dry matter intake (DMI), and group II (T1) were supplemented with tea seed at 2.6% of DMI to provide equivalent dose of TSS as in T2. Two metabolism trials were conducted, 1st after 21 days and 2nd after 90 days of feeding to evaluate the short term and long term effects of supplementation. Results The tea seed (T1) or TSS (T2) supplementation did not affect DMI as well as the digestibility of dry matter, organic matter, crude protein, neutral detergent fibre, and acid detergent fibre. Nutritive value of diet and plane of nutrition were also comparable for both the periods. However, the average daily gain and feed conversion ratio (FCR) were improved (p<0.05) for T1 and T2 as compared to T0. The microbial protein supply was also higher (p<0.05) for T1 and T2 for both the periods. There was no effect of supplementation on most blood parameters. However, the triglyceride and low density lipoprotein cholesterol levels decreased (p<0.05) and high density lipoprotein-cholesterol level increased (p<0.05) in T2 as compared with T0 and T1. Supplementation also did not affect the cell mediated and humoral immune response in goats. Conclusion Tea seed at 2.6% of DMI and TSS at 0.4% DMI can be fed to Gaddi goats to improve growth rate, FCR and microbial protein synthesis. PMID:27608635

  13. Cone Characteristics and Seed Quality 10 Years After An Uneven-Aged Regeneration Cut In Shortleaf Pine Stands

    Treesearch

    Kenneth J. Grayson; Robert F. Wittwer; Michael G. Shelton

    2002-01-01

    Cone characteristics and seed quality for 16 released (stand density 14 square meters per hectare) and 16 unreleased (stand density 28 square meters per hectare) shortleaf pine (Pinus echinata Mill.) trees were described by d.b.h. class (28, 33, 38, 43 centimeters) and crown position (upper south, upper north, lower south, and lower north). The 38-...

  14. Estimates of Optimal Operating Conditions for Hydrogen-Oxygen Cesium-Seeded Magnetohydrodynamic Power Generator

    NASA Technical Reports Server (NTRS)

    Smith, J. M.; Nichols, L. D.

    1977-01-01

    The value of percent seed, oxygen to fuel ratio, combustion pressure, Mach number, and magnetic field strength which maximize either the electrical conductivity or power density at the entrance of an MHD power generator was obtained. The working fluid is the combustion product of H2 and O2 seeded with CsOH. The ideal theoretical segmented Faraday generator along with an empirical form found from correlating the data of many experimenters working with generators of different sizes, electrode configurations, and working fluids, are investigated. The conductivity and power densities optimize at a seed fraction of 3.5 mole percent and an oxygen to hydrogen weight ratio of 7.5. The optimum values of combustion pressure and Mach number depend on the operating magnetic field strength.

  15. Influence of ZnO seed layer precursor molar ratio on the density of interface defects in low temperature aqueous chemically synthesized ZnO nanorods/GaN light-emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Iandolo, Donata; Willander, Magnus

    Low temperature aqueous chemical synthesis (LT-ACS) of zinc oxide (ZnO) nanorods (NRs) has been attracting considerable research interest due to its great potential in the development of light-emitting diodes (LEDs). The influence of the molar ratio of the zinc acetate (ZnAc): KOH as a ZnO seed layer precursor on the density of interface defects and hence the presence of non-radiative recombination centers in LT-ACS of ZnO NRs/GaN LEDs has been systematically investigated. The material quality of the as-prepared seed layer as quantitatively deduced by the X-ray photoelectron spectroscopy is found to be influenced by the molar ratio. It is revealedmore » by spatially resolved cathodoluminescence that the seed layer molar ratio plays a significant role in the formation and the density of defects at the n-ZnO NRs/p-GaN heterostructure interface. Consequently, LED devices processed using ZnO NRs synthesized with molar ratio of 1:5 M exhibit stronger yellow emission (∼575 nm) compared to those based on 1:1 and 1:3 M ratios as measured by the electroluminescence. Furthermore, seed layer molar ratio shows a quantitative dependence of the non-radiative defect densities as deduced from light-output current characteristics analysis. These results have implications on the development of high-efficiency ZnO-based LEDs and may also be helpful in understanding the effects of the ZnO seed layer on defect-related non-radiative recombination.« less

  16. Lack of recruitment in Lavandula stoechas subsp. pedunculata: a case of safe-site limitation

    NASA Astrophysics Data System (ADS)

    Sánchez, Ana M.; Peco, Begoña

    2007-01-01

    Lavandula stoechas subsp. pedunculata regeneration depends exclusively on the establishment of new individuals. Seed availability and seedling emergence and survival are therefore critical life stages and processes for species regeneration. In this study, seedling emergence and survival was monitored for two years in the scrub, both in clearings and adjacent to adult plants, and the surrounding perennial grassland, at 1, 3 and 5 m from the scrub. Soil seed bank spatial distribution was also studied for one year in the same two habitats, using the same sampling design. Soil seed availability in the scrub is high regardless of the distance from the adult individuals. On the contrary, the adjacent grassland shows a drastic fall in seed density, and almost no seedlings were observed there. In the scrub, seedling density was negatively related to distance from the three nearest adult plants in the clearings, and positively related to adult plant size beneath the adult Lavandula plants. There was also a negative relationship between seedling density and the percentage of bare soil. Only one seedling survived the first drought period, with no detection of effects of either position with respect to adult individuals or seedling density. We hypothesized that the study populations suffer a lack of appropriate safe sites within the scrubland while in the adjacent perennial grassland, observed low seed availability was added to safe-site limitation. That results in a lack of successful seedling establishments and a poor expansion potential of Lavandula scrublands, whose edges remain static in the short and medium term. As found in other Mediterranean scrubland, recruitment may only occur in years with particularly favourable weather, under disturbance regimes that increase seedling survival probability or when external dispersal agents increased seed availability in adequate places for Lavandula establishment.

  17. Effects of pomegranate juice consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level in male rats.

    PubMed

    Türk, Gaffari; Sönmez, Mustafa; Aydin, Muhterem; Yüce, Abdurrauf; Gür, Seyfettin; Yüksel, Murat; Aksu, Emrah Hicazi; Aksoy, Hakan

    2008-04-01

    Pomegranate fruit is inescapably linked with fertility, birth and eternal life because of its many seeds. The aim of this study was to investigate the effects of pomegranate juice (PJ) consumption on sperm quality, spermatogenic cell density, antioxidant activity and testosterone level of male healthy rats. Twenty-eight healthy adult male Wistar rats were divided into four groups; each group containing seven rats. One milliliter distilled water, 0.25 mL PJ plus 0.75 mL distilled water, 0.50 mL PJ plus 0.50 mL distilled water and 1 mL PJ were given daily for seven weeks by gavage to rats in the first, second, third and fourth groups, respectively. Body and reproductive organ weights, spermatogenic cell density, sperm characteristics, levels of antioxidant vitamins, testosterone, and lipid peroxidation and, antioxidant enzyme activities were investigated. All analyses were done only once at the end of the seven week study period. Data were compared by analysis of variance (ANOVA) and the degree of significance was set at P<0.05. A significant decrease in malondialdehyde (MDA) level and marked increases in glutathione (GSH), glutathione peroxidase (GSH-Px) and catalase (CAT) activities, and vitamin C level were observed in rats treated with different doses of PJ. PJ consumption provided an increase in epididymal sperm concentration, sperm motility, spermatogenic cell density and diameter of seminiferous tubules and germinal cell layer thickness, and it decreased abnormal sperm rate when compared to the control group. The results suggest that PJ consumption improves sperm quality and antioxidant activity of rats.

  18. The Seeding and Cultivation of a Tropical Species of Filamentous Ulva for Algal Biomass Production

    PubMed Central

    Carl, Christina; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    Filamentous species of Ulva are ideal for cultivation because they are robust with high growth rates and maintained across a broad range of environments. Temperate species of filamentous Ulva are commercially cultivated on nets which can be artificially ‘seeded’ under controlled conditions allowing for a high level of control over seeding density and consequently biomass production. This study quantified for the first time the seeding and culture cycle of a tropical species of filamentous Ulva (Ulva sp. 3) and identified seeding density and nursery period as key factors affecting growth and biomass yield. A seeding density of 621,000 swarmers m-1 rope in combination with a nursery period of five days resulted in the highest growth rate and correspondingly the highest biomass yield. A nursery period of five days was optimal with up to six times the biomass yield compared to ropes under either shorter or longer nursery periods. These combined parameters of seeding density and nursery period resulted in a specific growth rate of more than 65% day−1 between 7 and 10 days of outdoor cultivation post-nursery. This was followed by a decrease in growth through to 25 days. This study also demonstrated that the timing of harvest is critical as the maximum biomass yield of 23.0±8.8 g dry weight m−1 (228.7±115.4 g fresh weight m−1) was achieved after 13 days of outdoor cultivation whereas biomass degraded to 15.5±7.3 g dry weight m−1 (120.2±71.8 g fresh weight m−1) over a longer outdoor cultivation period of 25 days. Artificially seeded ropes of Ulva with high biomass yields over short culture cycles may therefore be an alternative to unattached cultivation in integrated pond-based aquaculture systems. PMID:24897115

  19. Genetic changes induced by space flight factors in barley seeds on Soyuz-5 and Soyuz-9 craft

    NASA Technical Reports Server (NTRS)

    Nuzhdin, N. I.; Dozortseva, R. L.

    1980-01-01

    Air-dry seeds of the barley Zimujuschij moscowskyi of the 1969 harvest were taken into space onboard the spaceships Soyuz-5 and Soyuz-9. A cytological study of the mitoses in meristemic cells in rootlet terminals revealed that space flight factors (SFF) in nonirradiated seeds induced about 3% of aberrant cells. After irradiation the effect of SFF increased over two-fold. Although the radio protectors ensured the seeds against from the SFF-induced damage either in irradiated or nonirradiated seed cells which is inconsistent with the previously obtained data.

  20. Quaking aspen reproduce from seed after wildfire in the mountains of southeastern Arizona

    Treesearch

    Ronald D. Quinn; Lin Wu

    2001-01-01

    Quaking aspen regenerated from seed after a stand replacement wildfire in the Chiricahua Mountains of southeastern Arizona. The wildfire had created gaps in the canopy so that aspen were able to establish from seed. Seedlings were found at a mean density of 0.17 m-2, 30 m or more from the nearest potential seed trees. Six clumps of aspen seedlings contained 18-186...

  1. Regenerative potential and functional composition of soil seed banks in remnant evergreen broad-leaved forests under urbanization in South China

    Treesearch

    J. Wang; L. Huang; H. Ren; Z. Sun; Q. Guo

    2015-01-01

    Soil seed banks can act as an important source in forest regeneration, and the information on the seed bank composition is vital for determining the resilience of plant communities under severe environments such as urban settings. In this study, we examined the seed bank density and functional composition, and their relationships with aboveground vegetation in three...

  2. Fate of Salmonella enterica and Enterohemorrhagic Escherichia coli Cells Artificially Internalized into Vegetable Seeds during Germination.

    PubMed

    Liu, Da; Cui, Yue; Walcott, Ronald; Chen, Jinru

    2018-01-01

    Vegetable seeds contaminated with bacterial pathogens have been linked to fresh-produce-associated outbreaks of gastrointestinal infections. This study was undertaken to observe the physiological behavior of Salmonella enterica and enterohemorrhagic Escherichia coli (EHEC) cells artificially internalized into vegetable seeds during the germination process. Surface-decontaminated seeds of alfalfa, fenugreek, lettuce, and tomato were vacuum-infiltrated with four individual strains of Salmonella or EHEC. Contaminated seeds were germinated at 25°C for 9 days, and different sprout/seedling tissues were microbiologically analyzed every other day. The internalization of Salmonella and EHEC cells into vegetable seeds was confirmed by the absence of pathogens in seed-rinsing water and the presence of pathogens in seed homogenates after postinternalization seed surface decontamination. Results show that 317 (62%) and 343 (67%) of the 512 collected sprout/seedling tissue samples were positive for Salmonella and EHEC, respectively. The average Salmonella populations were significantly larger ( P < 0.05) than the EHEC populations. Significantly larger Salmonella populations were recovered from the cotyledon and seed coat tissues, followed by the root tissues, but the mean EHEC populations from all sampled tissue sections were statistically similar, except in pregerminated seeds. Three Salmonella and two EHEC strains had significantly larger cell populations on sprout/seedling tissues than other strains used in the study. Salmonella and EHEC populations from fenugreek and alfalfa tissues were significantly larger than those from tomato and lettuce tissues. The study showed the fate of internalized human pathogens on germinating vegetable seeds and sprout/seedling tissues and emphasized the importance of using pathogen-free seeds for sprout production. IMPORTANCE The internalization of microorganisms into vegetable seeds could occur naturally and represents a possible pathway of vegetable seed contamination by human pathogens. The present study investigated the ability of two important bacterial pathogens, Salmonella and enterohemorrhagic Escherichia coli (EHEC), when artificially internalized into vegetable seeds, to grow and disseminate along vegetable sprouts/seedlings during germination. The data from the study revealed that the pathogen cells artificially internalized into vegetable seeds caused the contamination of different tissues of sprouts/seedlings and that pathogen growth on germinating seeds is bacterial species and vegetable seed-type dependent. These results further stress the necessity of using pathogen-free vegetable seeds for edible sprout production. Copyright © 2017 American Society for Microbiology.

  3. Cytochemical localization of reserves during seed development in Arabidopsis thaliana under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; Musgrave, M. E.

    1996-01-01

    Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.

  4. Impact of Water Management on Efficacy of Insecticide Seed Treatments Against Rice Water Weevil (Coleoptera: Curculionidae) in Mississippi Rice

    PubMed Central

    Adams, A.; Gore, J.; Musser, F.; Cook, D.; Catchot, A.; Walker, T.; Awuni, G. A.

    2015-01-01

    Two experiments were conducted at the Delta Research and Extension Center in Stoneville, MS, during 2011 and 2012 to determine the impact of water management practices on the efficacy of insecticidal seed treatments targeting rice water weevil, Lissorhoptrus oryzophilus Kuschel. Larval densities and yield were compared for plots treated with labeled rates of thiamethoxam, chlorantraniliprole, and clothianidin and an untreated control. In the first experiment, plots were subjected to flood initiated at 6 and 8 wk after planting. Seed treatments significantly reduced larval densities with the 8-wk flood timing, but not the 6-wk flood timing. Overall, the treated plots yielded higher than the control plots. In the second experiment, the impact of multiple flushes on the efficacy of insecticidal seed treatments was evaluated. Plots were subjected to zero, one, or two flushes with water. All seed treatments reduced larval densities compared with the untreated control. Significantly fewer larvae were observed in plots that received one or two flushes compared with plots that did not receive a flush. All seed treatments resulted in higher yields compared to the untreated control in the zero and one flush treatments. When two flushes were applied, yield from the thiamethoxam and clothianidin treated plots was not significantly different from those of the control plots, while the chlorantraniliprole treated plots yielded significantly higher than the control. These data suggest that time from planting to flood did not impact the efficacy of seed treatments, but multiple flushes reduced the efficacy of thiamethoxam and clothianidin. PMID:26470232

  5. High-performance solar cells with induced crystallization of perovskite by an evenly distributed CdSe quantum dots seed-mediated underlayer

    NASA Astrophysics Data System (ADS)

    Qi, Jiabin; Xiong, Hao; Wang, Gang; Xie, Huaqing; Jia, Wei; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi

    2018-02-01

    Crystallization and interface engineering of perovskite are the most important factors in achieving high-performance perovskite solar cells (PSCs). Herein, we construct an ultrathin CdSe quantum dots (QDs) underlayer via a solution-processable method, which acts as a seed-mediated layer for perfect perovskite film, with both uniform morphology and better absorption capacity. In addition, CdSe QDs and perovskites form a fully crystalline heterojunction, which is beneficial to minimizing the defect and trap densities. Then, an Ostwald ripening process is adopted to fabricate large-grain, pinhole-free perovskite thin film, by a simple methylammonium bromide treatment. Besides, the first principle is applied in calculating organic/inorganic hybrid perovskite, confirming that electrons can move even quicker and more effectively, as a result of our work. Due to these treatments, representing a very simple method to simultaneously control perovskite crystallization and optimize the interfaces in PSCs, a maximum power conversion efficiency of 15.68% is achieved, 35% higher than the PSC both without CdSe and MABr treatment (11.57%), indicating better performance.

  6. The main changes in plant exposured during space flight missions and prospectives of biological studies on ISS

    NASA Astrophysics Data System (ADS)

    Nechitailo, Galina S.; Kuznetsov, Anatoli

    The fundamental result of biological investigations with plants in space flight is an experimen-tal evidence of vegetative growth from seeds to harvest, with passing of all those stages of development when the plant can be used for food. The changes of plant observed after space flight mission gives a knowledge, which has to be used for precise selection of the plants for future space missions. The experimental investigation of the plants under space flight condi-tions showed that the germinations ability, rate of growth and biometric parameters decrease in comparison with Earth plants. The first two of these factors can be caused by the influence of specific cultivation in space, but the third factor is caused by the influence of space flight conditions, in particular, microgravity. The investigations of germination, plants deaths at var-ious stages of growth, survival probability, and recessive mutations indicated an impairment of genetic apparatus of meristem cells, which results the lethal effect at various stages of develop-ment. The density of paramagnetic centers in seeds was measured in order to determine the free radical concentration under space flight conditions. The concentration of paramagnetic centers is higher for plants with high density of these centers initially. Perhaps, the observed genetic effects in plants under space flight conditions are connected with free radicals. The changes are observed in cells of the plants. The changes included twist, contraction and deformation of the cell walls, curvature and loose arrangement of lamellae in chloroplasts, break of outer membrane of mitochondria and disappearance of mitochondria cristae. A large number of stach grains is observed in chloroplasts. The seeds of various plants were successfully used in space flights: welsh onion, wheat, peas, maize, barley, tomatoes, etc. Mostly stabe plants to space flight factors are found as peas, wheat and tomatoes. Ten generation of wheat and tomatoues exposed in space flights were grown on Earth after flight. The investigation of these plants is used for recommendations of next space flight missions on ISS including new sorts of plants.

  7. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry

    PubMed Central

    Langan, Laura M.; Dodd, Nicholas J. F.; Owen, Stewart F.; Purcell, Wendy M.; Jackson, Simon K.; Jha, Awadhesh N.

    2016-01-01

    Advanced in vitro culture from tissues of different origin includes three-dimensional (3D) organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells) using Electron Paramagnetic Resonance (EPR) oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc) allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL) is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen) report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid) and absolute size (118±32 μm) allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface) for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid) cultures in biomedical and toxicological research. PMID:26900704

  8. Direct Measurements of Oxygen Gradients in Spheroid Culture System Using Electron Parametric Resonance Oximetry.

    PubMed

    Langan, Laura M; Dodd, Nicholas J F; Owen, Stewart F; Purcell, Wendy M; Jackson, Simon K; Jha, Awadhesh N

    2016-01-01

    Advanced in vitro culture from tissues of different origin includes three-dimensional (3D) organoid micro structures that may mimic conditions in vivo. One example of simple 3D culture is spheroids; ball shaped structures typically used as liver and tumour models. Oxygen is critically important in physiological processes, but is difficult to quantify in 3D culture: and the question arises, how small does a spheroid have to be to have minimal micro-environment formation? This question is of particular importance in the growing field of 3D based models for toxicological assessment. Here, we describe a simple non-invasive approach modified for the quantitative measurement and subsequent evaluation of oxygen gradients in spheroids developed from a non-malignant fish cell line (i.e. RTG-2 cells) using Electron Paramagnetic Resonance (EPR) oximetry. Sonication of the paramagnetic probe Lithium phthalocyanine (LiPc) allows for incorporation of probe particulates into spheroid during its formation. Spectra signal strength after incorporation of probe into spheroid indicated that a volume of 20 μl of probe (stock solution: 0.10 mg/mL) is sufficient to provide a strong spectra across a range of spheroid sizes. The addition of non-toxic probes (that do not produce or consume oxygen) report on oxygen diffusion throughout the spheroid as a function of size. We provide evidence supporting the use of this model over a range of initial cell seeding densities and spheroid sizes with the production of oxygen distribution as a function of these parameters. In our spheroid model, lower cell seeding densities (∼2,500 cells/spheroid) and absolute size (118±32 μm) allow control of factors such as pre-existing stresses (e.g. ∼ 2% normoxic/hypoxic interface) for more accurate measurement of treatment response. The applied methodology provides an elegant, widely applicable approach to directly characterize spheroid (and other organoid) cultures in biomedical and toxicological research.

  9. Shelterwood regeneration of true fir: conclusion after 8 years

    Treesearch

    Robert J. Laacke; Jeanne H. Tomascheski

    1986-01-01

    Shelterwood cuttings on Swain Mountain Experimental Forest were measured to determine performance six to eight years after the shelterwood cutting and before shelterwood removal. Use of appropriate selecting criteria minimized windthrow of seed trees. Regeneration remained red fir, even where the major seed source was white fir. Density of seed trees may affect...

  10. Seed size- and density-related hidden treatments in common biodiversity experiments

    Treesearch

    Qinfeng Guo

    2011-01-01

    With a few exceptions, most well-known field biodiversity experiments on ecosystem functioning have been conducted in plant communities (especially grasslands) in which different numbers of species are planted as treatments. In these experiments, investigators have either kept the total seed weight or seed number constant across treatment plots. However, although in...

  11. Identification of nutrient and physical seed trait QTLs in the model legume, Lotus japonicus

    USDA-ARS?s Scientific Manuscript database

    Legume seeds have the potential to provide a significant portion of essential micronutrients to the human diet. To identify the genetic basis for seed nutrient density, quantitative trait locus (QTL) analysis was conducted with the Gifu B-129 x Miyakojima MG-20 recombinant inbred population from th...

  12. Antiproliferative and apoptotic effects triggered by Grape Seed Extract (GSE) versus epigallocatechin and procyanidins on colon cancer cell lines.

    PubMed

    Dinicola, Simona; Cucina, Alessandra; Pasqualato, Alessia; D'Anselmi, Fabrizio; Proietti, Sara; Lisi, Elisabetta; Pasqua, Gabriella; Antonacci, Donato; Bizzarri, Mariano

    2012-01-01

    Grape seed extract has been proven to exert anticancer effects on different tumors. These effects are mainly ascribed to catechin and procyanidin content. Analytical studies demonstrated that grape seed extract composition is complex and it is likely other components could exert biological activities. Using cell count and flow cytometry assays, we evaluated the cytostatic and apoptotic effects produced by three different grape seed extracts from Italia, Palieri and Red Globe cultivars, on Caco2 and HCT-8 colon cancer cells. These effects were compared to those induced by epigallocatechin and procyanidins, alone or in association, on the same cell lines. All the extracts induced growth inhibition and apoptosis in Caco2 and HCT-8 cells, along the intrinsic apoptotic pathway. On both cell lines, growth inhibition induced by Italia and Palieri grape seed extracts was significantly higher than that it has been recorded with epigallocatechin, procyanidins and their association. In Caco2 cells, the extract from Red Globe cultivar was less effective in inducing growth inhibition than procyanidins alone and in association with epigallocatechin, whereas, in HCT-8 cells, only the association of epigallocatechin and procyanidins triggers a significant proliferation decrease. On both cell lines, apoptosis induced by Italia, Palieri and Red Globe grape seed extracts was considerably higher than has been recorded with epigallocatechin, procyanidins and their association. These data support the hypothesis by which other compounds, present in the grape seed extracts, are likely to enhance the anticancer effects.

  13. Antiproliferative and Apoptotic Effects Triggered by Grape Seed Extract (GSE) versus Epigallocatechin and Procyanidins on Colon Cancer Cell Lines

    PubMed Central

    Dinicola, Simona; Cucina, Alessandra; Pasqualato, Alessia; D’Anselmi, Fabrizio; Proietti, Sara; Lisi, Elisabetta; Pasqua, Gabriella; Antonacci, Donato; Bizzarri, Mariano

    2012-01-01

    Grape seed extract has been proven to exert anticancer effects on different tumors. These effects are mainly ascribed to catechin and procyanidin content. Analytical studies demonstrated that grape seed extract composition is complex and it is likely other components could exert biological activities. Using cell count and flow cytometry assays, we evaluated the cytostatic and apoptotic effects produced by three different grape seed extracts from Italia, Palieri and Red Globe cultivars, on Caco2 and HCT-8 colon cancer cells. These effects were compared to those induced by epigallocatechin and procyanidins, alone or in association, on the same cell lines. All the extracts induced growth inhibition and apoptosis in Caco2 and HCT-8 cells, along the intrinsic apoptotic pathway. On both cell lines, growth inhibition induced by Italia and Palieri grape seed extracts was significantly higher than that it has been recorded with epigallocatechin, procyanidins and their association. In Caco2 cells, the extract from Red Globe cultivar was less effective in inducing growth inhibition than procyanidins alone and in association with epigallocatechin, whereas, in HCT-8 cells, only the association of epigallocatechin and procyanidins triggers a significant proliferation decrease. On both cell lines, apoptosis induced by Italia, Palieri and Red Globe grape seed extracts was considerably higher than has been recorded with epigallocatechin, procyanidins and their association. These data support the hypothesis by which other compounds, present in the grape seed extracts, are likely to enhance the anticancer effects. PMID:22312277

  14. Polymer coating on a micropillar chip for robust attachment of PuraMatrix peptide hydrogel for 3D hepatic cell culture.

    PubMed

    Roth, Alexander David; Lama, Pratap; Dunn, Stephen; Hong, Stephen; Lee, Moo-Yeal

    2018-09-01

    For better mimicking tissues in vivo and developing predictive cell models for high-throughput screening (HTS) of potential drug candidates, three-dimensional (3D) cell cultures have been performed in various hydrogels. In this study, we have investigated several polymer coating materials to robustly attach PuraMatrix peptide hydrogel on a micropillar chip for 3D culture of Hep3B human hepatic cells, which can be used as a tool for high-throughput assessment of compound hepatotoxicity. Among several amphiphilic polymers with maleic anhydride groups tested, 0.01% (w/v) poly(maleic anhydride-alt-1-octadecene) (PMA-OD) provided superior coating properties with no PuraMatrix spot detachment from the micropillar chip and no air bubble entrapment in a complementary microwell chip. To maintain Hep3B cell viability in PuraMatrix gel on the chip, gelation conditions were optimized in the presence of additional salts, at different seeding densities, and for growth medium washes. As a result, salts in growth media were sufficient for gelation, and relatively high cell seeding at 6 million cells/mL and two media washes for pH neutralization were required. With optimized 3D cell culture conditions, controlled gene expression and compound toxicity assessment were successfully demonstrated by using recombinant adenoviruses carrying genes for green and red fluorescent proteins as well as six model compounds. Overall, PuraMatrix hydrogel on the chip was suitable for 3D cell encapsulation, gene expression, and rapid toxicity assessment. Published by Elsevier B.V.

  15. Biological effects of low-dose-rate irradiation of pancreatic carcinoma cells in vitro using 125I seeds

    PubMed Central

    Wang, Zhong-Min; Lu, Jian; Zhang, Li-Yun; Lin, Xiao-Zhu; Chen, Ke-Min; Chen, Zhi-Jin; Liu, Fen-Ju; Yan, Fu-Hua; Teng, Gao-Jun; Mao, Ai-Wu

    2015-01-01

    AIM: To determine the mechanism of the radiation-induced biological effects of 125I seeds on pancreatic carcinoma cells in vitro. METHODS: SW1990 and PANC-1 pancreatic cancer cell lines were cultured in DMEM in a suitable environment. Gray’s model of iodine-125 (125I) seed irradiation was used. In vitro, exponential phase SW1990, and PANC-1 cells were exposed to 0, 2, 4, 6, and 8 Gy using 125I radioactive seeds, with an initial dose rate of 12.13 cGy/h. A clonogenic survival experiment was performed to observe the ability of the cells to maintain their clonogenic capacity and to form colonies. Cell-cycle and apoptosis analyses were conducted to detect the apoptosis percentage in the SW1990 and PANC-1 cells. DNA synthesis was measured via a tritiated thymidine (3H-TdR) incorporation experiment. After continuous low-dose-rate irradiation with 125I radioactive seeds, the survival fractions at 2 Gy (SF2), percentage apoptosis, and cell cycle phases of the SW1990 and PANC-1 pancreatic cancer cell lines were calculated and compared. RESULTS: The survival fractions of the PANC-1 and SW1990 cells irradiated with 125I seeds decreased exponentially as the dose increased. No significant difference in SF2 was observed between SW1990 and PANC-1 cells (0.766 ± 0.063 vs 0.729 ± 0.045, P < 0.05). The 125I seeds induced a higher percentage of apoptosis than that observed in the control in both the SW1990 and PANC-1 cells. The rate of apoptosis increased with increasing radiation dosage. The percentage of apoptosis was slightly higher in the SW1990 cells than in the PANC-1 cells. Dose-dependent G2/M cell-cycle arrest was observed after 125I seed irradiation, with a peak value at 6 Gy. As the dose increased, the percentage of G2/M cell cycle arrest increased in both cell lines, whereas the rate of DNA incorporation decreased. In the 3H-TdR incorporation experiment, the dosimetry results of both the SW1990 and PANC-1 cells decreased as the radiation dose increased, with a minimum at 6 Gy. There were no significant differences in the dosimetry results of the two cell lines when they were exposed to the same dose of radiation. CONCLUSION: The pancreatic cancer cell-killing effects induced by 125I radioactive seeds mainly occurred via apoptosis and G2/M cell cycle arrest. PMID:25741139

  16. Design and validation of a pulsatile perfusion bioreactor for 3D high cell density cultures.

    PubMed

    Chouinard, Julie A; Gagnon, Serge; Couture, Marc G; Lévesque, Alain; Vermette, Patrick

    2009-12-15

    This study presents the design and validation of a pulsatile flow perfusion bioreactor able to provide a suitable environment for 3D high cell density cultures for tissue engineering applications. Our bioreactor system is mobile, does not require the use of traditional cell culture incubators and is easy to sterilize. It provides real-time monitoring and stable control of pH, dissolved oxygen concentration, temperature, pressure, pulsation frequency, and flow rate. In this bioreactor system, cells are cultured in a gel within a chamber perfused by a culture medium fed by hollow fibers. Human umbilical vein endothelial cells (HUVEC) suspended in fibrin were found to be living, making connections and proliferating up to five to six times their initial seeding number after a 48-h culture period. Cells were uniformly dispersed within the 14.40 mm x 17.46 mm x 6.35 mm chamber. A larger fraction of the cells suspended in 6.35-mm thick gels and cultured in a traditional CO(2) incubator were found to be round and dead [corrected]. In control experiments carried out in a traditional cell culture incubator, the scarcely found living cells were mostly on top of the gels, while cells cultured under perfusion bioreactor conditions were found to be alive and uniformly distributed across the gel. 2009 Wiley Periodicals, Inc.

  17. Perfusion seed cultures improve biopharmaceutical fed-batch production capacity and product quality.

    PubMed

    Yang, William C; Lu, Jiuyi; Kwiatkowski, Chris; Yuan, Hang; Kshirsagar, Rashmi; Ryll, Thomas; Huang, Yao-Ming

    2014-01-01

    Volumetric productivity and product quality are two key performance indicators for any biopharmaceutical cell culture process. In this work, we showed proof-of-concept for improving both through the use of alternating tangential flow perfusion seed cultures coupled with high-seed fed-batch production cultures. First, we optimized the perfusion N-1 stage, the seed train bioreactor stage immediately prior to the production bioreactor stage, to minimize the consumption of perfusion media for one CHO cell line and then successfully applied the optimized perfusion process to a different CHO cell line. Exponential growth was observed throughout the N-1 duration, reaching >40 × 10(6) vc/mL at the end of the perfusion N-1 stage. The cultures were subsequently split into high-seed (10 × 10(6) vc/mL) fed-batch production cultures. This strategy significantly shortened the culture duration. The high-seed fed-batch production processes for cell lines A and B reached 5 g/L titer in 12 days, while their respective low-seed processes reached the same titer in 17 days. The shortened production culture duration potentially generates a 30% increase in manufacturing capacity while yielding comparable product quality. When perfusion N-1 and high-seed fed-batch production were applied to cell line C, higher levels of the active protein were obtained, compared to the low-seed process. This, combined with correspondingly lower levels of the inactive species, can enhance the overall process yield for the active species. Using three different CHO cell lines, we showed that perfusion seed cultures can optimize capacity utilization and improve process efficiency by increasing volumetric productivity while maintaining or improving product quality. © 2014 American Institute of Chemical Engineers.

  18. Phenology, seed dispersal and difficulties in natural recruitment of the canopy tree Pachira quinata (Malvaceae).

    PubMed

    Castellanos, Maria Clara; Stevenson, Pablo R

    2011-06-01

    Life history and recruitment information of tropical trees in natural populations is scarce even for important commercial species. This study focused on a widely exploited Neotropical canopy species, Pachira quinata (Malvaceae), at the southernmost, wettest limit of its natural distribution, in the Colombian Amazonia. We studied phenological patterns, seed production and natural densities; assessed the importance of seed dispersal and density-dependent effects on recruitment, using field experiments. At this seasonal forest P. quinata was overrepresented by large adult trees and had very low recruitment caused by the combination of low fruit production, high seed predation and very high seedling mortality under continuous canopies mostly due to damping off pathogens. There was no evidence of negative distance or density effects on recruitment, but a clear requirement of canopy gaps for seedling survival and growth, where pathogen incidence was drastically reduced. In spite of the strong dependence on light for survival of seedlings, seeds germinated readily in the dark. At the study site, the population of P. quinata appeared to be declining, likely because recruitment depended on the rare combination of large gap formation with the presence of reproductive trees nearby. The recruitment biology of this species makes it very vulnerable to any type of logging in natural populations.

  19. Programmed cell death in seeds of angiosperms.

    PubMed

    López-Fernández, María Paula; Maldonado, Sara

    2015-12-01

    During the diversification of angiosperms, seeds have evolved structural, chemical, molecular and physiologically developing changes that specially affect the nucellus and endosperm. All through seed evolution, programmed cell death (PCD) has played a fundamental role. However, examples of PCD during seed development are limited. The present review examines PCD in integuments, nucellus, suspensor and endosperm in those representative examples of seeds studied to date. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. Iterative Reconstruction of Volumetric Particle Distribution for 3D Velocimetry

    NASA Astrophysics Data System (ADS)

    Wieneke, Bernhard; Neal, Douglas

    2011-11-01

    A number of different volumetric flow measurement techniques exist for following the motion of illuminated particles. For experiments that have lower seeding densities, 3D-PTV uses recorded images from typically 3-4 cameras and then tracks the individual particles in space and time. This technique is effective in flows that have lower seeding densities. For flows that have a higher seeding density, tomographic PIV uses a tomographic reconstruction algorithm (e.g. MART) to reconstruct voxel intensities of the recorded volume followed by the cross-correlation of subvolumes to provide the instantaneous 3D vector fields on a regular grid. A new hybrid algorithm is presented which iteratively reconstructs the 3D-particle distribution directly using particles with certain imaging properties instead of voxels as base functions. It is shown with synthetic data that this method is capable of reconstructing densely seeded flows up to 0.05 particles per pixel (ppp) with the same or higher accuracy than 3D-PTV and tomographic PIV. Finally, this new method is validated using experimental data on a turbulent jet.

  1. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs). Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Regeneration of subcutaneous tissue-engineered mandibular condyle in nude mice.

    PubMed

    Wang, Feiyu; Hu, Yihui; He, Dongmei; Zhou, Guangdong; Yang, Xiujuan; Ellis, Edward

    2017-06-01

    To explore the feasibility of regenerating mandibular condyles based on cartilage cell sheet with cell bone-phase scaffold compared with cell-biphasic scaffolds. Tissue-engineered mandibular condyles were regenerated by the following: 1) cartilage cell sheet + bone-phase scaffold (PCL/HA) seeded with bone marrow stem cells (BMSCs) from minipigs (cell sheet group), and 2) cartilage phase scaffold (PGA/PLA) seeded with auricular chondrocytes + bone-phase scaffold seeded with BMSCs from minipigs (biphasic scaffold group). They were implanted subcutaneously in nude mice after being cultured in vitro for different periods of time. After 12 weeks, the mice were sacrificed, and the specimens were harvested and evaluated based on gross appearance and histopathologic observations with hematoxylin and eosin, safranin O-fast green and immumohistochemical staining for collagen I and II. The histopathologic assessment score of condylar cartilage and bone density were compared between the 2 groups using SPSS 17.0 software. The 2 groups' specimens all formed mature cartilage-like tissues with numerous chondrocytes, typical cartilage lacuna and abundant cartilage-specific extracellular matrix. The regenerated cartilage was instant, continuous, homogeneous and avascular. In the biphasic scaffold group, there were still a few residual PGA fibers in the cartilage layer. The cartilage and bone interface was established in the 2 groups, and the microchannels of the bone-phase scaffolds were filled with bone tissue. The score of cartilage regeneration in the cell sheet group was a little higher than that in the biphasic scaffold group, but the difference was not significant (p > 0.05). There was no significant difference in bone tissue formation between the 2 groups (p > 0.05). Both the cartilage cell sheet group and the biphasic scaffold group of nude mice underwent regeneration of condyle-shaped osteochondral composite. Without residual PGA fibers, the cell sheet group might have less chance of immunological rejection compared to biphasic scaffold group. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. The Assessment of Parameters Affecting the Quality of Cord Blood by the Appliance of the Annexin V Staining Method and Correlation with CFU Assays

    PubMed Central

    Radke, Teja Falk; Barbosa, David; Duggleby, Richard Charles; Saccardi, Riccardo; Querol, Sergio; Kögler, Gesine

    2013-01-01

    The assessment of nonviable haematopoietic cells by Annexin V staining method in flow cytometry has recently been published by Duggleby et al. Resulting in a better correlation with the observed colony formation in methylcellulose assays than the standard ISHAGE protocol, it presents a promising method to predict cord blood potency. Herein, we applied this method for examining the parameters during processing which potentially could affect cord blood viability. We could verify that the current standards regarding time and temperature are sufficient, since no significant difference was observed within 48 hours or in storage at 4°C up to 26°C. However, the addition of DMSO for cryopreservation alone leads to an inevitable increase in nonviable haematopoietic stem cells from initially 14.8% ± 4.3% to at least 30.6% ± 5.5%. Furthermore, CFU-assays with varied seeding density were performed in order to evaluate the applicability as a quantitative method. The results revealed that only in a narrow range reproducible clonogenic efficiency (ClonE) could be assessed, giving at least a semiquantitative estimation. We conclude that both Annexin V staining method and CFU-assays with defined seeding density are reliable means leading to a better prediction of the final potency. Especially Annexin V, due to its fast readout, is a practical tool for examining and optimising specific steps in processing, while CFU-assays add a functional confirmation. PMID:23533443

  4. Tumor-derived exosomes promote tumor self-seeding in hepatocellular carcinoma by transferring miRNA-25-5p to enhance cell motility.

    PubMed

    Liu, Hao; Chen, Wei; Zhi, Xiao; Chen, En-Jiang; Wei, Tao; Zhang, Jian; Shen, Jian; Hu, Li-Qiang; Zhao, Bin; Feng, Xin-Hua; Bai, Xue-Li; Liang, Ting-Bo

    2018-05-22

    Tumor self-seeding occurs when circulating malignant cells reinfiltrate the original tumor. The process may breed more aggressive tumor cells, which may contribute to cancer progression. In this study, we observed tumor self-seeding in mouse xenograft models of hepatocellular carcinoma (HCC) for the first time. We confirmed that circulating tumor cell uptake of tumor-derived exosomes, which are increasingly recognized as key instigators of cancer progression by facilitating cell-cell communication, promoted tumor self-seeding by enhancing the invasive and migration capability of recipient HCC cells. Horizontal transfer of exosomal microRNA-25-5p to anoikis-resistant HCC cells significantly enhanced their migratory and invasive abilities, whereas inhibiting microRNA-25-5p alleviated these effects. Our experiments delineate an exosome-based novel pathway employed by functional microRNA from the original tumor cells that can influence the biological fate of circulating tumor cells.

  5. TaCYP78A5 regulates seed size in wheat (Triticum aestivum).

    PubMed

    Ma, Meng; Zhao, Huixian; Li, Zhaojie; Hu, Shengwu; Song, Weining; Liu, Xiangli

    2016-03-01

    Seed size is an important agronomic trait and a major component of seed yield in wheat. However, little is known about the genes and mechanisms that determine the final seed size in wheat. Here, we isolated TaCYP78A5, the orthologous gene of Arabidopsis CYP78A5/KLUH in wheat, from wheat cv. Shaan 512 and demonstrated that the expression of TaCYP78A5 affects seed size. TaCYP78A5 encodes the cytochrome P450 (CYP) 78A5 protein in wheat and rescued the phenotype of the Arabidopsis deletion mutant cyp78a5. By affecting the extent of integument cell proliferation in the developing ovule and seed, TaCYP78A5 influenced the growth of the seed coat, which appears to limit seed growth. TaCYP78A5 silencing caused a 10% reduction in cell numbers in the seed coat, resulting in a 10% reduction in seed size in wheat cv. Shaan 512. By contrast, the overexpression of TaCYP78A5 increased the number of cells in the seed coat, resulting in seed enlargement of ~11-35% in Arabidopsis. TaCYP78A5 activity was positively correlated with the final seed size. However, TaCYP78A5 overexpression significantly reduced seed set in Arabidopsis, possibly due to an ovule development defect. TaCYP78A5 also influenced embryo development by promoting embryo integument cell proliferation during seed development. Accordingly, a working model of the influence of TaCYP7A5 on seed size was proposed. This study provides direct evidence that TaCYP78A5 affects seed size and is a potential target for crop improvement. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Seed dispersal of the Australian cycad Macrozamia miquelii (Zamiaceae): are cycads megafauna-dispersed "grove forming" plants?

    PubMed

    Hall, John A; Walter, Gimme H

    2013-06-01

    Plants that invest in large, heavy seeds and colorful, fleshy fruits or analogous structures seem adapted for dispersal by large vertebrates. Some such plants, like Australian cycads in the genus Macrozamia, do not disperse well, which could be explained by seed-dispersal relationships with megafauna that are rare or extinct in contemporary ecosystems. Such plants provide an opportunity to investigate the ecological consequences of low seed-dispersal distances. • We investigated seed dispersal of Macrozamia miquelii in Central Queensland by tracking the fate of marked seeds, identifying the dispersal fauna and quantifying population demography and spatial structure. • We found that 70-100% of marked seeds remained within 1 m of maternal females (cycads are dioecious). Of the 812 seeds recovered (from 840 originally marked) only 24 dispersed >1 m from maternal females, the greatest observed dispersal being 5 m. We found an average of 2.2 seedlings and 0.7 juveniles within 1.5 m of mature females, which suggests that most seeds that remain in the vicinity of maternal females perish. Within-stand densities ranged between 1000 and 5000 plants/ha. The brushtail possum Trichosurus vulpecula was the only animal observed to move the seeds. • Macrozamia are adapted for dispersal by megafauna that are rare or absent in contemporary ecosystems. We argue that Macrozamia are "grove forming" plants that derive ecological benefit from existing as high-density, spatially discrete populations, the function of megafaunal dispersal adaptations being the infrequent dispersal of seeds en masse to establish new such groves in the landscape.

  7. Human endothelial cells hollow fiber membrane bioreactor as a model of the blood vessel for in vitro studies.

    PubMed

    Ciechanowska, Anna; Ladyzynski, Piotr; Hoser, Grazyna; Sabalinska, Stanislawa; Kawiak, Jerzy; Foltynski, Piotr; Wojciechowski, Cezary; Chwojnowski, Andrzej

    2016-09-01

    Human endothelial cells are used in experimental models for studying in vitro pathophysiological mechanisms of different diseases. We developed an original bioreactor, which can simulate human blood vessel, with capillary polysulfone membranes covered with the human umbilical vein endothelial cells (HUVECs) and we characterized its properties. The elaborated cell seeding and culturing procedures ensured formation of a confluent cell monolayer on the inside surface of capillaries within 24 h of culturing under the shear stress of 6.6 dyn/cm(2). The optimal density of cells to be seeded was 60,000 cells/cm(2). Labeling HUVECs with carboxyfluorescein succinimidyl ester (CFSE) did not influence cells' metabolism. Flow cytometry-based analysis of HUVECs stained with CFSE demonstrated that in a presence of the shear stress cells' proliferation was much inhibited (after 72 h proliferation index was equal to 1.9 and 6.2 for cultures with and without shear stress, respectively) and the monolayer was formed mainly due to migration and spreading of cells that were physiologically elongated in a direction of the flow. Monitoring of cells' metabolism showed that HUVECs cultured in a presence of the shear stress preferred anaerobic metabolism and they consumed 1.5 times more glucose and produced 2.3 times more lactate than the cells cultured under static conditions. Daily von Willebrand factor production by HUVECs was near 2 times higher in a presence of the shear stress. The developed model can be used for at least 3 days in target studies under conditions mimicking the in vivo state more closely than the static HUVEC cultures.

  8. [Carbon density distribution characteristics and influencing factors in aerially seeded Pinus massoniana plantations].

    PubMed

    Pan, Ping; Han, Tian Yi; OuYang, Xun Zhi; Liu, Yuan Qiu; Zang, Hao; Ning, Jin Kui; Yang, Yang

    2017-12-01

    The distribution characteristics of carbon density under aerially seeded Pinus massoniana plantations in Ganzhou City of Jiangxi Province were studied. Total 15 factors, including site, stand, understory vegetation, litter and so on were selected to establish a relationship model between stand carbon density and influencing factors, and the main influencing factors were also screened. The results showed that the average carbon density was 98.29 t·hm -2 at stand level with soil layer (49.58 t·hm -2 ) > tree layer (45.25 t·hm -2 ) > understory vegetation layer (2.23 t·hm -2 ) > litter layer (1.23 t·hm -2 ). Significantly positive correlations were found among the tree, litter and soil layers, but not among the other layers. The main factors were tree density, avera-ge diameter at breast height (DBH), soil thickness, slope position, stand age and canopy density to affect carbon density in aerially seeded P. massoniana plantations. The partial correlation coefficients of the six main factors ranged from 0.331 to 0.434 with significance by t test. The multiple correlation coefficient of quantitative model I reached 0.796 with significance by F test (F=9.28). For stand density, the best tree density and canopy density were 1500-2100 plants·hm -2 and 0.4-0.7, respectively. The moderate density was helpful to improve ecosystem carbon sequestration. The carbon density increased with increasing stand age, DBH and soil thickness, and was higher in lower than middle and upper slope positions.

  9. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings.

    PubMed

    Iqbal, Amjad; Fry, Stephen C

    2012-04-01

    Many plants exude allelochemicals--compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots--effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ~25 and ~450 μg ml(-1) respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants.

  10. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings

    PubMed Central

    Iqbal, Amjad; Fry, Stephen C.

    2012-01-01

    Many plants exude allelochemicals – compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots – effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ∼25 and ∼450 μg ml−1 respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants. PMID:22268144

  11. Effect of Seeding Particles on the Shock Structure of a Supersonic Jet

    NASA Astrophysics Data System (ADS)

    Porta, David; Echeverría, Carlos; Stern, Catalina

    2012-11-01

    The original goal of our work was to measure. With PIV, the velocity field of a supersonic flow produced by the discharge of air through a 4mm cylindrical nozzle. The results were superposed to a shadowgraph and combined with previous density measurements made with a Rayleigh scattering technique. The idea was to see if there were any changes in the flow field, close to the high density areas near the shocks. Shadowgraphs were made with and without seeding particles, (spheres of titanium dioxide). Surprisingly, it was observed that the flow structure with particles was shifted in the direction opposite to the flow with respect to the flow structure obtained without seeds. This result might contradict the belief that the seeding particles do not affect the flow and that the speed of the seeds correspond to the local speed of the flow. We acknowledge support from DGAPA UNAM through project IN117712 and from Facultad de Ciencias UNAM.

  12. Driving Cell Seeding Using Vibration Induced Surface Waves

    NASA Astrophysics Data System (ADS)

    Li, Haiyan; Friend, James; Yeo, Leslie

    2007-11-01

    The ability to load cells into scaffold matrices is an important step in in-vitro cell culturing. Efficient and rapid cell seeding is however difficult and has traditionally been carried out using a static method by allowing gravity to drive the perfusion of the cell suspension into the porous scaffold. Nevertheless, due to the large capillary pressures associated with the small scaffold pore dimensions, the static cell seeding method is both slow and inefficient; the majority of cells are distributed close to the surface of the scaffold due to the inability of the fluid to penetrate deep into the scaffold. By driving the liquid into the scaffold using small amplitude surface vibrations on a piezoelectric substrate, we demonstrate that the cells can be infused much quicker (approximately 10 seconds) than if allowed to perfuse by gravity alone, which requires seeding times in excess of 30 minutes. Greater penetration of the fluid and hence the cells into the scaffold is also achieved with the vibration forcing, thus giving rise to a more uniform cell distribution within the scaffold. Moreover, we have verified that 80% of the yeast cells seeded by the surface waves remained viable.

  13. Changes in Spatial Patterns of Caragana stenophylla along a Climatic Drought Gradient on the Inner Mongolian Plateau

    PubMed Central

    Xie, Li-Na; Guo, Hong-Yu; Gabler, Christopher A.; Li, Qing-Fang; Ma, Cheng-Cang

    2015-01-01

    Few studies have investigated the influence of water availability on plant population spatial patterns. We studied changes in the spatial patterns of Caragana stenophylla along a climatic drought gradient within the Inner Mongolian Plateau, China. We examined spatial patterns, seed density, “nurse effects” of shrubs on seedlings, transpiration rates and water use efficiency (WUE) of C. stenophylla across semi-arid, arid, and intensively arid zones. Our results showed that patches of C. stenophylla populations shifted from a random to a clumped spatial pattern towards drier environments. Seed density and seedling survival rate of C. stenophylla decreased from the semi-arid zone to the intensively arid zone. Across the three zones, there were more C. stenophylla seeds and seedlings underneath shrub canopies than outside shrub canopies; and in the intensively arid zone, there were almost no seeds or seedlings outside shrub canopies. Transpiration rates of outer-canopy leaves and WUE of both outer-canopy and inner-canopy leaves increased from the semi-arid zone to the intensively arid zone. In the intensively arid zone, transpiration rates and WUE of inner-canopy leaves were significantly lower and higher, respectively, than those of outer-canopy leaves. We conclude that, as drought stress increased, seed density decreased, seed proportions inside shrubs increased, and “nurse effects” of shrubs on seedlings became more important. These factors, combined with water-saving characteristics associated with clumped spatial patterns, are likely driving the changes in C. stenophylla spatial patterns. PMID:25785848

  14. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination.

    PubMed

    Eroglu, Seckin; Giehl, Ricardo F H; Meier, Bastian; Takahashi, Michiko; Terada, Yasuko; Ignatyev, Konstantin; Andresen, Elisa; Küpper, Hendrik; Peiter, Edgar; von Wirén, Nicolaus

    2017-07-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis ( Arabidopsis thaliana ) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 ( VIT1 ), MTP8 built up iron (Fe) hotspots in MTP8 -expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. © 2017 American Society of Plant Biologists. All Rights Reserved.

  15. Metal Tolerance Protein 8 Mediates Manganese Homeostasis and Iron Reallocation during Seed Development and Germination1[OPEN

    PubMed Central

    Takahashi, Michiko; Terada, Yasuko

    2017-01-01

    Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. PMID:28461400

  16. Black seed oil ameliorates allergic airway inflammation by inhibiting T-cell proliferation in rats.

    PubMed

    Shahzad, Muhammad; Yang, Xudong; Raza Asim, M B; Sun, Qingzhu; Han, Yan; Zhang, Fujun; Cao, Yongxiao; Lu, Shemin

    2009-02-01

    The black seeds, from the Ranunculaceae family, have been traditionally used by various cultures as a natural remedy for several ailments. In this study, we examined the effect of black seed oil as an immunomodulator in a rat model of allergic airway inflammation. Rats sensitized to ovalbumin and challenged intranasally with ovalbumin to induce an allergic inflammatory response were compared to ovalbumin-sensitized, intranasally ovalbumin-exposed rats pretreated with intraperitoneally administered black seed oil and to control rats. The levels of IgE, IgG1 and ova-specific T-cell proliferation in spleen were measured by ELISA. The pro-inflammatory cytokine IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression levels were measured by reverse transcription polymerase chain reaction. The intraperitoneal administration of black seed oil inhibited the Th2 type immune response in rats by preventing inflammatory cell infiltration and pathological lesions in the lungs. It significantly decreased the nitric oxide production in BALF, total serum IgE, IgG1 and OVA-specific IgG1 along with IL-4, IL-5, IL-6 and TGF-beta1 mRNA expression. Black seed oil treatment resulted in decreased T-cell response evident by lesser delayed type hypersensitivity and lower T-cell proliferation in spleen. In conclusion, black seed oil exhibited a significant reduction in all the markers of allergic inflammation mainly by inhibiting the delayed type hypersensitivity and T-cell proliferation. The data suggests that inhibition of T-cell response may be responsible for immunomodulatory effect of black seed oil in the rat model of allergic airway inflammation.

  17. New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWIN1 in cotton.

    PubMed

    Wang, Lu; Ruan, Yong-Ling

    2012-10-01

    Despite substantial evidence on the essential roles of cell wall invertase (CWIN) in seed filling, it remains largely unknown how CWIN exerts its regulation early in seed development, a critical stage that sets yield potential. To fill this knowledge gap, we systematically examined the spatial and temporal expression patterns of a major CWIN gene, GhCWIN1, in cotton (Gossypium hirsutum) seeds from prefertilization to prestorage phase. GhCWIN1 messenger RNA was abundant at the innermost seed coat cell layer at 5 d after anthesis but became undetectable at 10 d after anthesis, at the onset of its differentiation into transfer cells characterized by wall ingrowths, suggesting that CWIN may negatively regulate transfer cell differentiation. Within the filial tissues, GhCWIN1 transcript was detected in endosperm cells undergoing nuclear division but not in those cells at the cellularization stage, with similar results observed in Arabidopsis (Arabidopsis thaliana) endosperm for CWIN, AtCWIN4. These findings indicate a function of CWIN in nuclear division but not cell wall biosynthesis in endosperm, contrasting to the role proposed for sucrose synthase (Sus). Further analyses revealed a preferential expression pattern of GhCWIN1 and AtCWIN4 in the provascular region of the torpedo embryos in cotton and Arabidopsis seed, respectively, indicating a role of CWIN in vascular initiation. Together, these novel findings provide insights into the roles of CWIN in regulating early seed development spatially and temporally. By comparing with previous studies on Sus expression and in conjunction with the expression of other related genes, we propose models of CWIN- and Sus-mediated regulation of early seed development.

  18. The seed ecology of Iliamna logisepala (Torr.) Wiggins, an east Cascade endemic.

    Treesearch

    Richy J. Harrod; Charles B. Halpern

    2005-01-01

    We examined the seed ecology of Iliamna longisepala as an aid to developing a conservation strategy for this rare endemic forb of northcentral Washington. We conducted field, greenhouse, and laboratory studies to quantify: (1) densities of buried viable seed among sites with different histories of burning, (2) post-fire spatial distributions of...

  19. Dynamics of dense direct-seeded stands of southern pines

    Treesearch

    J.C.G. Goelz

    2006-01-01

    Direct seeding of southern pines is an effective method of artificial regeneration, producing extremely dense stands when survival exceeds expectations. Long-term studies of dense direct-seeded stands provide ideal data for exploring development of stands as they approach the limit of maximum stand density. I present data from seven studies with ages of stands ranging...

  20. Pumpkin seed extract: Cell growth inhibition of hyperplastic and cancer cells, independent of steroid hormone receptors.

    PubMed

    Medjakovic, Svjetlana; Hobiger, Stefanie; Ardjomand-Woelkart, Karin; Bucar, Franz; Jungbauer, Alois

    2016-04-01

    Pumpkin seeds have been known in folk medicine as remedy for kidney, bladder and prostate disorders since centuries. Nevertheless, pumpkin research provides insufficient data to back up traditional beliefs of ethnomedical practice. The bioactivity of a hydro-ethanolic extract of pumpkin seeds from the Styrian pumpkin, Cucurbita pepo L. subsp. pepo var. styriaca, was investigated. As pumpkin seed extracts are standardized to cucurbitin, this compound was also tested. Transactivational activity was evaluated for human androgen receptor, estrogen receptor and progesterone receptor with in vitro yeast assays. Cell viability tests with prostate cancer cells, breast cancer cells, colorectal adenocarcinoma cells and a hyperplastic cell line from benign prostate hyperplasia tissue were performed. As model for non-hyperplastic cells, effects on cell viability were tested with a human dermal fibroblast cell line (HDF-5). No transactivational activity was found for human androgen receptor, estrogen receptor and progesterone receptor, for both, extract and cucurbitin. A cell growth inhibition of ~40-50% was observed for all cell lines, with the exception of HDF-5, which showed with ~20% much lower cell growth inhibition. Given the receptor status of some cell lines, a steroid-hormone receptor independent growth inhibiting effect can be assumed. The cell growth inhibition for fast growing cells together with the cell growth inhibition of prostate-, breast- and colon cancer cells corroborates the ethnomedical use of pumpkin seeds for a treatment of benign prostate hyperplasia. Moreover, due to the lack of androgenic activity, pumpkin seed applications can be regarded as safe for the prostate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Distinct Cell Wall Architectures in Seed Endosperms in Representatives of the Brassicaceae and Solanaceae1[C][W][OA

    PubMed Central

    Lee, Kieran J.D.; Dekkers, Bas J.W.; Steinbrecher, Tina; Walsh, Cherie T.; Bacic, Antony; Bentsink, Leónie; Leubner-Metzger, Gerhard; Knox, J. Paul

    2012-01-01

    In some species, a crucial role has been demonstrated for the seed endosperm during germination. The endosperm has been shown to integrate environmental cues with hormonal networks that underpin dormancy and seed germination, a process that involves the action of cell wall remodeling enzymes (CWREs). Here, we examine the cell wall architectures of the endosperms of two related Brassicaceae, Arabidopsis (Arabidopsis thaliana) and the close relative Lepidium (Lepidium sativum), and that of the Solanaceous species, tobacco (Nicotiana tabacum). The Brassicaceae species have a similar cell wall architecture that is rich in pectic homogalacturonan, arabinan, and xyloglucan. Distinctive features of the tobacco endosperm that are absent in the Brassicaceae representatives are major tissue asymmetries in cell wall structural components that reflect the future site of radicle emergence and abundant heteromannan. Cell wall architecture of the micropylar endosperm of tobacco seeds has structural components similar to those seen in Arabidopsis and Lepidium endosperms. In situ and biomechanical analyses were used to study changes in endosperms during seed germination and suggest a role for mannan degradation in tobacco. In the case of the Brassicaceae representatives, the structurally homogeneous cell walls of the endosperm can be acted on by spatially regulated CWRE expression. Genetic manipulations of cell wall components present in the Arabidopsis seed endosperm demonstrate the impact of cell wall architectural changes on germination kinetics. PMID:22961130

  2. Globular cluster seeding by primordial black hole population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolgov, A.; Postnov, K., E-mail: dolgov@fe.infn.it, E-mail: kpostnov@gmail.com

    Primordial black holes (PBHs) that form in the early Universe in the modified Affleck-Dine (AD) mechanism of baryogenesis should have intrinsic log-normal mass distribution of PBHs. We show that the parameters of this distribution adjusted to provide the required spatial density of massive seeds (≥ 10{sup 4} M {sub ⊙}) for early galaxy formation and not violating the dark matter density constraints, predict the existence of the population of intermediate-mass PBHs with a number density of 0∼ 100 Mpc{sup −3}. We argue that the population of intermediate-mass AD PBHs can also seed the formation of globular clusters in galaxies. Inmore » this scenario, each globular cluster should host an intermediate-mass black hole with a mass of a few thousand solar masses, and should not obligatorily be immersed in a massive dark matter halo.« less

  3. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation.

    PubMed

    Abualhassan, Nasser; Sapozhnikov, Lena; Pawlick, Rena L; Kahana, Meygal; Pepper, Andrew R; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A M James

    2016-01-01

    There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.

  4. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation

    PubMed Central

    Pawlick, Rena L.; Kahana, Meygal; Pepper, Andrew R.; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A. M. James

    2016-01-01

    There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ. PMID:27227978

  5. Study of structural changes in the cells of the stimulated seed sprouts

    NASA Astrophysics Data System (ADS)

    Kovalyshyn, Stepan

    2016-10-01

    The paper emphasises that one of the easiest and effective methods of pre-treatment of seed is by industrial electrical power frequency. In order to select the most effective treatment regime it is necessary to reveal the mechanism of the impact of electromagnetic fields on biological structures, including plants. In this regard, electron microscopy studies at the cellular level of seedlings of perennial ryegrass seed treated with electric field corona discharge were conducted. It was found that in seedlings of treated seeds the intracellular organisation of the plant varies, resulting in changes during cell division. This is apparently due to a reduction in interphase, including S-phase, resulting in disrupted normal DNA synthesis, chromatin formation and, consequently, the collection of chromosomes. As a result, the cell division is faster, which leads to increased sowing quality of seeds of studied plants. While maintaining the characteristics of the studied cell division of seedling seed which was subjected to electrical stimulation, there is the prospect of a significant increase of seed germination of ryegrass in the future generations.

  6. Effectiveness of post-fire seeding at the Fitzner-Eberhardt Arid Land Ecology Reserve, Washington

    USGS Publications Warehouse

    Wirth, Troy A.; Pyke, David A.

    2011-01-01

    In August 2007, the Milepost 17 and Wautoma fires burned a combined total of 77,349 acres (31,302 hectares) of the Fitzner-Eberhardt Arid Land Ecology Reserve (ALE), part of the Hanford Reach National Monument administered by the U.S. Fish and Wildlife Service (USFWS) Mid-Columbia National Wildlife Refuge. In 2009, the USFWS implemented a series of seeding and herbicide treatments to mitigate potential negative consequences of these fires, including mortality of native vegetation, invasion of Bromus tectorum (cheatgrass), and soil erosion. Treatments included combinations of seeding (drill and aerial), herbicides, and one of six different mixtures of species. Artemisia tridentata ssp. wyomingensis (Wyoming big sagebrush) also was planted by hand in a small area in the southern end of the fire perimeter. Due to differences in plant communities prior to the fire and the multiple treatments applied, treatments were grouped into five treatment associations including mid-elevation aerial seedings, low-elevation aerial seedings, low-elevation drill seedings, high-elevation drill seeding, and no seeding treatments. Data collected at the mid-elevation aerial seedings indicate that the seeding did not appear to increase the density of seedlings compared to the non-seeded area in 2010. At the low-elevation aerial seedings, there were significantly more seedlings at seeded areas as compared to non-seeded areas. Low densities of existing perennial plants probably fostered a low-competition environment enabling seeds to germinate and emerge in 2010 during adequate moisture. Low-elevation drill seedings resulted in significant emergence of seeded grasses in 2009 and 2010 and forbs in 2010. This was likely due to adequate precipitation and that the drill seeding assured soil-to-seed contact. At the high-elevation drill seeding, which was implemented in 2009, there were a high number of seedlings in 2010. Transplanting of A. tridentata following the fires resulted in variable survival rates that warrant further testing; however, transplants located closer to washes tended to have the highest survival rates. Overall, the low-elevation aerial and drill seedings, and the high-elevation drill seedings resulted in significant numbers of seedlings. Further research is needed on methods that provide land managers with critical information about whether or not to seed post-fire areas including status of pre-fire vegetation and estimates of plant mortality due to fire.

  7. Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination.

    PubMed

    Pereira, W V S; Faria, J M R; Tonetti, O A O; Silva, E A A

    2014-05-01

    This study evaluated the loss of desiccation tolerance in C. langsdorffii seeds during the germination process. Seeds were imbibed for 24, 48, 72, 96, 120 and 144 hours and dried to the initial moisture content, kept in this state for 3 days after which they were submitted to pre-humidification and rehydration. Ultraestructural evaluations were done aiming to observe the cell damage caused by the dry process. Desiccation tolerance was evaluated in terms of the percentage of normal seedlings. Seeds not submitted to the drying process presented 61% of normal seedlings, and after 24 hours of imbibition, followed by drying, the seeds presented the same percentage of survival. However, after 48 hours of imbibition, seeds started to lose the desiccation tolerance. There was twenty six percent of normal seedlings formed from seeds imbibed for 96 hours and later dried and rehydrated. Only 5% of seeds imbibed for 144 hours, dried and rehydrated formed normal seedlings. At 144 hours of imbibition followed the dry process, there was damage into the cell structure, indicating that the seeds were unable to keep the cell structure during the drying process. Copaifera langsdorffii seeds loses the desiccation tolerance at the start of Phase 2 of imbibition.

  8. Effect of tillage system on yield and weed populations of soybean ( Glycin Max L.).

    PubMed

    Hosseini, Seyed Z; Firouzi, Saeed; Aminpanah, Hashem; Sadeghnejhad, Hamid R

    2016-03-01

    Field experiment was conducted at Agricultural and Natural Resources Research Center of Golestan Province, Iran, to determine the effects of tillage system and weed management regime on yield and weed populations in soybean ( Glycin max L.). The experimental design was a split plot where the whole plot portion was a randomized complete block with three replicates. Main plots were tillage system: 1- No-till row crop seeding, 2- No-till seed drilling, 3- Tillage with disc harrow and drill planting, 4- Tillage with chisel packer and drill planting. The subplots were weed management regimes: 1-Weed control with herbicide application, 2- Hand weeding, 3- Herbicide application plus hand weeding, and 4- Non-weeding. Results indicated that the main effects of tillage system and weed management regime were significant for seed yield, pod number per plant, seed number per pod, weed density and biomass, while their interaction were significant only for weed density, weed biomass, and seed number per pod. The highest grain yields (3838 kg ha-1) were recorded for No-till row crop seeding. The highest seed yield (3877 kg ha-1) also was recorded for weed control with herbicide and hand weeding treatment, followed by hand weeding (3379 kg ha-1).

  9. Tree seed rain and seed removal, but not the seed bank, impede forest recovery in bracken (Pteridium aquilinum (L.) Kuhn)-dominated clearings in the African highlands.

    PubMed

    Ssali, Fredrick; Moe, Stein R; Sheil, Douglas

    2018-04-01

    Considerable areas dominated by bracken Pteridium aquilinum (L.) Kuhn occur worldwide and are associated with arrested forest recovery. How forest recovery is impeded in these areas remains poorly understood, especially in the African highlands. The component processes that can lead to recruitment limitation-including low seed arrival, availability and persistence-are important determinants of plant communities and offer a potential explanation for bracken persistence. We investigated key processes that can contribute to recruitment limitation in bracken-dominated clearings in the Bwindi Impenetrable National Park, Uganda. We examined if differences in seed rain (dispersal limitation), soil seed bank, or seed removal (seed viability and persistence) can, individually or in combination, explain the differences in tree regeneration found between bracken-dominated areas and the neighboring forest. These processes were assessed along ten 50-m transects crossing the forest-bracken boundary. When compared to the neighboring forest, bracken clearings had fewer seedlings (bracken 11,557 ± 5482 vs. forest 34,515 ± 6066 seedlings/ha), lower seed rain (949 ± 582 vs. 1605 ± 335 tree seeds m -2  year -1 ), comparable but sparse soil seed bank (304 ± 236 vs. 264 ± 99 viable tree seeds/m 2 ), higher seed removal (70.1% ± 2.4% vs. 40.6% ± 2.4% over a 3-day interval), and markedly higher rodent densities (25.7 ± 5.4 vs. 5.0 ± 1.6 rodents per 100 trapping sessions). Camera traps revealed that rodents were the dominant animals visiting the seeds in our seed removal study. Synthesis : Recruitment limitation contributes to both the slow recovery of forest in bracken-dominated areas, and to the composition of the tree species that occur. Low seed arrival and low persistence of unburied seeds can both explain the reduced density of seedlings found in bracken versus neighboring forest. Seed removal, likely due to rodents, in particular appears sufficient to constrain forest recovery and impacts some species more severely than others.

  10. Multilayer cell-seeded polymer nanofiber constructs for soft-tissue reconstruction.

    PubMed

    Barker, Daniel A; Bowers, Daniel T; Hughley, Brian; Chance, Elizabeth W; Klembczyk, Kevin J; Brayman, Kenneth L; Park, Stephen S; Botchwey, Edward A

    2013-09-01

    Cell seeding throughout the thickness of a nanofiber construct allows for patient-specific implant alternatives with long-lasting effects, earlier integration, and reduced inflammation when compared with traditional implants. Cell seeding may improve implant integration with host tissue; however, the effect of cell seeding on thick nanofiber constructs has not been studied. To use a novel cell-preseeded nanofiber tissue engineering technique to create a 3-dimensional biocompatible implant alternative to decellularized extracellular matrix. Animal study with mammalian cell culture to study tissue engineered scaffolds. Academic research laboratory. Thirty-six Sprague-Dawley rats. The rats each received 4 implant types. The grafts included rat primary (enhanced green fluorescent protein-positive [eGFP+]) fibroblast-seeded polycaprolactone (PCL)/collagen nanofiber scaffold, PCL/collagen cell-free nanofiber scaffold, acellular human cadaveric dermis (AlloDerm), and acellular porcine dermis (ENDURAGen). Rats were monitored postoperatively and received enrofloxacin in the drinking water for 4 days prophylactically and buprenorphine (0.2-0.5 mg/kg administered subcutaneously twice a day postoperatively for pain for 48 hours). The viability of NIH/3T3 fibroblasts cultured on PCL electrospun nanofibers was evaluated using fluorescence microscopy. Soft-tissue remodeling was examined histologically and with novel ex vivo volume determinations of implants using micro-computed tomography of cell-seeded implants relative to nanofibers without cells and commonly used dermal grafts of porcine and human origin (ENDURAGen and AlloDerm, respectively). The fate and distribution of eGFP+ seeded donor fibroblasts were assessed using immunohistochemistry. Fibroblasts migrated across nanofiber layers within 12 hours and remained viable on a single layer for up to 14 days. Scanning electron microscopy confirmed a nanoscale structure with a mean (SD) diameter of 158 (72) nm. Low extrusion rates demonstrated the excellent biocompatibility in vivo. Histological examination of the scaffolds demonstrated minimal inflammation. Cell seeding encouraged rapid vascularization of the nanofiber implants. Cells of donor origin (eGFP+) declined with the duration of implantation. Implant volume was not significantly affected for up to 8 weeks by the preseeding of cells (P > .05). Polymer nanofiber-based scaffolds mimic natural extracellular matrix. Preseeding the nanofiber construct with cells improved vascularization without notable effects on volume. An effect of cell preseeding on scaffold vascularization was evident beyond the presence of preseeded cells. This 3-dimensional, multilayer method of cell seeding throughout a 1-mm-thick construct is simple and feasible for clinical application. Further development of this technique may affect the clinical practice of facial plastic and reconstructive surgeons.

  11. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.).

    PubMed

    Liu, Xu; Li, Jinlu; Tian, Yuping; Liao, Mingan; Zhang, Zhenwen

    2016-01-01

    Wine grapes are usually harvested in vineyards when they ripen. However, not all of the berries in a vineyard ripen homogeneously because of different microclimates around the clusters and berries. In this study, the influence of berry heterogeneity on the phenolic content and antioxidant capacity of grapes and wines under a continental monsoon climate was evaluated for a new wine grape cultivar Meili (Vitis vinifera L.). The total phenolic, flavonoid, flavanol, and monomeric anthocyanin contents in the skin and wine significantly increased with grape density; however, there was no significant difference in the seeds between the two lower densities. The highest values of DPPH free radical-scavenging activity, cupric-reducing antioxidant capacity, and hydroxyl radical-scavenging activity in the skin, seed and wine were detected for the densest berries. The sum of individual phenolic compounds in skin, seed and wine increased with berry density, though no significant difference for skin was observed between the two higher density classes. Hence, the chemical components of Meili grapes and wines were positively associated with the berry density at harvest under the continental monsoon climate.

  12. Influence of Berry Heterogeneity on Phenolics and Antioxidant Activity of Grapes and Wines: A Primary Study of the New Winegrape Cultivar Meili (Vitis vinifera L.)

    PubMed Central

    Liu, Xu; Li, Jinlu; Tian, Yuping; Liao, Mingan; Zhang, Zhenwen

    2016-01-01

    Wine grapes are usually harvested in vineyards when they ripen. However, not all of the berries in a vineyard ripen homogeneously because of different microclimates around the clusters and berries. In this study, the influence of berry heterogeneity on the phenolic content and antioxidant capacity of grapes and wines under a continental monsoon climate was evaluated for a new wine grape cultivar Meili (Vitis vinifera L.). The total phenolic, flavonoid, flavanol, and monomeric anthocyanin contents in the skin and wine significantly increased with grape density; however, there was no significant difference in the seeds between the two lower densities. The highest values of DPPH free radical-scavenging activity, cupric-reducing antioxidant capacity, and hydroxyl radical-scavenging activity in the skin, seed and wine were detected for the densest berries. The sum of individual phenolic compounds in skin, seed and wine increased with berry density, though no significant difference for skin was observed between the two higher density classes. Hence, the chemical components of Meili grapes and wines were positively associated with the berry density at harvest under the continental monsoon climate. PMID:26974974

  13. Resilience of Invaded Riparian Landscapes: The Potential Role of Soil-Stored Seed Banks

    NASA Astrophysics Data System (ADS)

    Tererai, Farai; Gaertner, Mirijam; Jacobs, Shayne M.; Richardson, David M.

    2015-01-01

    We investigated the potential role of soil-stored seed banks in driving vegetation recovery under varying intensities of invasion by the alien tree Eucalyptus camaldulensis along the Berg River in South Africa's Western Cape Province. We asked: How do richness, diversity, and composition of soil-stored seed banks vary with invasion intensity? What is the difference between the seed banks and above-ground vegetation with respect to species richness, diversity, composition, and structure? To what extent do soil-stored seed banks provide reliable sources for restoring native plant communities? Through a seedling-emergence approach, we compared seedling density, richness, and diversity in plots under varying Eucalyptus cover. Seed bank characteristics were also compared with those of the above-ground vegetation. Except in terms of diversity and density, the richness and composition of native species varied significantly among invasion conditions. Despite the paucity of native tree and shrub species in the seed bank, it was more diverse than extant vegetation. Some species occurred exclusively either in the seed bank or in the above-ground vegetation. Although this ecosystem has been degraded by several agents, including Eucalyptus invasion, soil-stored seed banks still offer modest potential for driving regeneration of native plant communities, but secondary invasions need to be managed carefully. Remnant populations of native plants in the above-ground vegetation remaining after E. camaldulensis clearing provide a more promising propagule source for rapid regeneration. Further work is needed to elucidate possible effects of invasion on successional pathways following E. camaldulensis removal and the effects of hydrochory on seed bank dynamics.

  14. The Source of the PB1 Gene in Influenza Vaccine Reassortants Selectively Alters the Hemagglutinin Content of the Resulting Seed Virus

    PubMed Central

    Cobbin, Joanna C. A.; Verity, Erin E.; Gilbertson, Brad P.; Rockman, Steven P.

    2013-01-01

    The yields of egg-grown influenza vaccines are maximized by the production of a seed strain using a reassortment of the seasonal influenza virus isolate with a highly egg-adapted strain. The seed virus is selected based on high yields of viral hemagglutinin (HA) and expression of the surface antigens from the seasonal isolate. The remaining proteins are usually derived from the high-growth parent. However, a retrospective analysis of vaccine seeds revealed that the seasonal PB1 gene was selected in more than 50% of reassortment events. Using the model seasonal H3N2 virus A/Udorn/307/72 (Udorn) virus and the high-growth A/Puerto Rico/8/34 (PR8) virus, we assessed the influence of the source of the PB1 gene on virus growth and vaccine yield. Classical reassortment of these two strains led to the selection of viruses that predominantly had the Udorn PB1 gene. The presence of Udorn PB1 in the seed virus, however, did not result in higher yields of virus or HA compared to the yields in the corresponding seed virus with PR8 PB1. The 8-fold-fewer virions produced with the seed virus containing the Udorn PB1 were somewhat compensated for by a 4-fold increase in HA per virion. A higher HA/nucleoprotein (NP) ratio was found in past vaccine preparations when the seasonal PB1 was present, also indicative of a higher HA density in these vaccine viruses. As the HA viral RNA (vRNA) and mRNA levels in infected cells were similar, we propose that PB1 selectively alters the translation of viral mRNA. This study helps to explain the variability of vaccine seeds with respect to HA yield. PMID:23468502

  15. [Effect of thinning intensities on fruiting regularities of Quercus liaotungensis forests in Huang-long and Qiaoshan mountains.

    PubMed

    Huang, Cai Zhi; Zhang, Wen Hui; Li, Gang; Yu, Shi Chuan; You, Jian Jian

    2016-11-18

    In order to clarify the impact of thinning intensities on fruiting regularity of Quercus liaotungensis forests, we took the Q. liaotungensis half-mature forests in Huanglong and Qiaoshan mountains on south of the Loess Plateau as the object of study, which were under close-to-natural management of different thinning intensities (CK, 10%, 20% and 30%). An analysis was made on stand density and percent of seed trees, seed number of sample tree and unit area, seed spatial distributions, seed characteristics of the Q. liaotungensis forests after 5 years of thinning. The results showed that, percent of seed trees, seed number per sample tree and percent of developed seeds of Q. liaotungensis forests increased with the increasing intensity, and showed a pattern of 30%>20%>10%>CK. Seed number per area reached the maximum number under 20% thinning, and showed a pattern of 20%>30%>CK>10%. From the seed spatial distribution in the canopy, the upper accounted for 73.6%, while the lower had 26.4%. The sunny side of canopy layer set relatively the most fruits of 65.8%, shady side only had 34.2%. Under thinning, further improving was geater under lower canopy than under upper canopy and so was on shady side than on sunny side. The seed long diameter, seed short diameter and 1000-seed mass of Q. liaotungensis forests increased with the increasing intensity, which reached the maximum under 30% thinning. 10% thinning did not significantly impact Q. liaotungensis fruiting, the thinning intensity of 20% was most conducive to the seed quantity and quality improvement of Q. liaotungensis, while the thinning intensity of 30% did not improve the fruiting, and lowered the total number of seeds. It was proposed that 20% thinning should be chosen (canopy density of 0.7) to effectively improve fruiting and quality of Q. liaotungensis.

  16. Effectiveness of primate seed dispersers for an "oversized" fruit, Garcinia benthamii.

    PubMed

    McConkey, Kim R; Brockelman, Warren Y; Saralamba, Chanpen; Nathalang, Anuttara

    2015-10-01

    The largest fruits found in tropical forests may depend on complementary seed dispersal strategies. These fruits are dispersed most effectively by megafauna, but populations can persist where megafauna are absent or erratic visitors. Smaller animals often consume these large fruits, but their capacity to disperse these seeds effectively has rarely been assessed. We evaluated the contributions of gibbons (Hylobates lar) and other frugivores in the seed dispersal of the megafaunal fruit Garcinia benthamii, using the SDE (seed dispersal effectiveness) landscape. Gibbons preferentially consumed G. benthamii fruits and were the main seed disperser that we observed. However, gibbons became satiated when availability was high, with 57% of fruits falling to the ground unhandled. Recruitment of seedlings from gibbon-dispersed seeds was also very low. Elephants consumed G. benthamii fruit, but occurred at low density and were rare visitors to the trees. We suggest that gibbons might complement the seed dispersal role of elephants for G. benthamii, allowing limited recruitment in areas (such as the study site) where elephants occur at low density. Fruit availability varied between years; when availability was low, gibbons reliably consumed most of the crop and dispersed some seeds that established seedlings, albeit at low numbers (2.5 seedlings per crop). When fruit availability was high, the fruit supply overwhelmed the gibbons and other arboreal frugivores, ensuring a large abundance of fruit available to terrestrial seed dispersers. Although gibbons effectively dispersed more seeds at these times (20.7 seedlings per crop), there was the potential for elephants to move many more seeds. Complementary seed dispersal strategies may be important for megafaunal fruit, because they ensure that very large fruits are able to benefit from megafaunal dispersal but also persist where this dispersal becomes erratic. However, our data suggest that smaller seed dispersers might not be capable of replacing large dispersers, leading to potential changes in landscape-scale dispersal patterns where megafauna are absent.

  17. Mortality among Seed Trees in Longleaf Pine Shelterwood Stands

    Treesearch

    William D. Boyer

    1970-01-01

    Mortality of longieaf pine (Pinus palustris Mill.) seed trees was recorded in 27 regeneration areas ranging from North Carolina to Louisiana. Annual mortality averaged 0.7 percent before, and 1.9 percent after a seed cut reduced stand density to about 30 square feet of basal area per acre. On a per-acre basis, however, annual losses averaged 0....

  18. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    NASA Astrophysics Data System (ADS)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  19. Osmoconditioning prevents the onset of microtubular cytoskeleton and activation of cell cycle and is detrimental for germination of Jatropha curcas L. seeds.

    PubMed

    de Brito, C D; Loureiro, M B; Ribeiro, P R; Vasconcelos, P C T; Fernandez, L G; de Castro, R D

    2016-11-01

    Jatropha curcas is an oilseed crop renowned for its tolerance to a diverse range of environmental stresses. In Brazil, this species is grown in semiarid regions where crop establishment requires a better understanding of the mechanisms underlying appropriate seed, seedling and plant behaviour under water restriction conditions. In this context, the objective of this study was to investigate the physiological and cytological profiles of J. curcas seeds in response to imbibition in water (control) and in polyethylene glycol solution (osmoticum). Seed germinability and reactivation of cell cycle events were assessed by means of different germination parameters and immunohistochemical detection of tubulin and microtubules, i.e. tubulin accumulation and microtubular cytoskeleton configurations in water imbibed seeds (control) and in seeds imbibed in the osmoticum. Immunohistochemical analysis revealed increasing accumulation of tubulin and appearance of microtubular cytoskeleton in seed embryo radicles imbibed in water from 48 h onwards. Mitotic microtubules were only visible in seeds imbibed in water, after radicle protrusion, as an indication of cell cycle reactivation and cell proliferation, with subsequent root development. Imbibition in osmoticum prevented accumulation of microtubules, i.e. activation of cell cycle, therefore germination could not be resumed. Osmoconditioned seeds were able to survive re-drying and could resume germination after re-imbibition in water, however, with lower germination performance, possibly due to acquisition of secondary dormancy. This study provides important insights into understanding of the physiological aspects of J. curcas seed germination in response to water restriction conditions. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Specific role of LeMAN2 in the control of seed germination exposed by overexpression of the LeMAN3 gene in tomato plants.

    PubMed

    Belotserkovsky, Harel; Berger, Yael; Shahar, Ron; Wolf, Shmuel

    2007-12-01

    Endo-beta-mannanase is one of the key enzymes involved in the hydrolysis of the mannan-rich cell walls of tomato (Solanum lycopersicon) seeds. Two isoforms of endo-beta-mannanase have been characterized in tomato seeds: LeMAN2 is active in the micropylar area prior to germination and LeMAN1 is active after germination in all endosperm cells surrounding the cotyledons. To explore whether general mannanase activity in the endosperm cap is sufficient to promote germination, the gene encoding LeMAN3 was inserted into transgenic tomato plants under the control of a CaMV-35S promoter. Expression of LeMAN3 was evident in the endosperm cap and in the lateral endosperm of the transgenic seeds 10 min after imbibition. An activity test indicated increased activity of endo-beta-mannanase in the transgenic lines relative to the control line in all seed parts, during the first 20 h of imbibition. However, overexpression of LeMAN3 in transgenic seeds inhibited seed germination at both optimal and suboptimal temperatures. Detailed RT-PCR analyses revealed the transcription patterns of the genes encoding the various mannanase isoforms, and indicated a delay in LeMAN2 transcription in the endosperm cap of the transgenic seeds. Interestingly, tissue-print assays indicated similar mannanase activity in the micropylar areas for both transgenic and control seeds. These results indicate that overexpression of active endo-beta-mannanase in the endosperm cap is not sufficient to enable hydrolysis of the cell walls or to promote germination of tomato seeds. Cell-wall hydrolysis in these endosperm cells is under tight control and requires the specific activity of LeMAN2.

  1. Impact of membrane-induced particle immobilization on seeded growth monitored by in situ liquid scanning transmission electron microscopy

    DOE PAGES

    Weiner, Rebecca G.; Chen, Dennis P.; Unocic, Raymond R.; ...

    2016-04-01

    In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Furthermore, different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell.

  2. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus.

    PubMed

    Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng

    2017-04-10

    High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed.

  3. Fabrication of multi-well chips for spheroid cultures and implantable constructs through rapid prototyping techniques.

    PubMed

    Lopa, Silvia; Piraino, Francesco; Kemp, Raymond J; Di Caro, Clelia; Lovati, Arianna B; Di Giancamillo, Alessia; Moroni, Lorenzo; Peretti, Giuseppe M; Rasponi, Marco; Moretti, Matteo

    2015-07-01

    Three-dimensional (3D) culture models are widely used in basic and translational research. In this study, to generate and culture multiple 3D cell spheroids, we exploited laser ablation and replica molding for the fabrication of polydimethylsiloxane (PDMS) multi-well chips, which were validated using articular chondrocytes (ACs). Multi-well ACs spheroids were comparable or superior to standard spheroids, as revealed by glycosaminoglycan and type-II collagen deposition. Moreover, the use of our multi-well chips significantly reduced the operation time for cell seeding and medium refresh. Exploiting a similar approach, we used clinical-grade fibrin to generate implantable multi-well constructs allowing for the precise distribution of multiple cell types. Multi-well fibrin constructs were seeded with ACs generating high cell density regions, as shown by histology and cell fluorescent staining. Multi-well constructs were compared to standard constructs with homogeneously distributed ACs. After 7 days in vitro, expression of SOX9, ACAN, COL2A1, and COMP was increased in both constructs, with multi-well constructs expressing significantly higher levels of chondrogenic genes than standard constructs. After 5 weeks in vivo, we found that despite a dramatic size reduction, the cell distribution pattern was maintained and glycosaminoglycan content per wet weight was significantly increased respect to pre-implantation samples. In conclusion, multi-well chips for the generation and culture of multiple cell spheroids can be fabricated by low-cost rapid prototyping techniques. Furthermore, these techniques can be used to generate implantable constructs with defined architecture and controlled cell distribution, allowing for in vitro and in vivo investigation of cell interactions in a 3D environment. © 2015 Wiley Periodicals, Inc.

  4. Cardiac Muscle-cell Based Actuator and Self-stabilizing Biorobot - PART 1.

    PubMed

    Holley, Merrel T; Nagarajan, Neerajha; Danielson, Christian; Zorlutuna, Pinar; Park, Kidong

    2017-07-11

    Biological machines often referred to as biorobots, are living cell- or tissue-based devices that are powered solely by the contractile activity of living components. Due to their inherent advantages, biorobots are gaining interest as alternatives to traditional fully artificial robots. Various studies have focused on harnessing the power of biological actuators, but only recently studies have quantitatively characterized the performance of biorobots and studied their geometry to enhance functionality and efficiency. Here, we demonstrate the development of a self-stabilizing swimming biorobot that can maintain its pitch, depth, and roll without external intervention. The design and fabrication of the PDMS scaffold for the biological actuator and biorobot followed by the functionalization with fibronectin is described in this first part. In the second part of this two-part article, we detail the incorporation of cardiomyocytes and characterize the biological actuator and biorobot function. Both incorporate a base and tail (cantilever) which produce fin-based propulsion. The tail is constructed with soft lithography techniques using PDMS and laser engraving. After incorporating the tail with the device base, it is functionalized with a cell adhesive protein and seeded confluently with cardiomyocytes. The base of the biological actuator consists of a solid PDMS block with a central glass bead (acts as a weight). The base of the biorobot consists of two composite PDMS materials, Ni-PDMS and microballoon-PDMS (MB-PDMS). The nickel powder (in Ni-PDMS) allows magnetic control of the biorobot during cells seeding and stability during locomotion. Microballoons (in MB-PDMS) decrease the density of MB-PDMS, and enable the biorobot to float and swim steadily. The use of these two materials with different mass densities, enabled precise control over the weight distribution to ensure a positive restoration force at any angle of the biorobot. This technique produces a magnetically controlled self-stabilizing swimming biorobot.

  5. Co-culture systems-based strategies for articular cartilage tissue engineering.

    PubMed

    Zhang, Yu; Guo, Weimin; Wang, Mingjie; Hao, Chunxiang; Lu, Liang; Gao, Shuang; Zhang, Xueliang; Li, Xu; Chen, Mingxue; Li, Penghao; Jiang, Peng; Lu, Shibi; Liu, Shuyun; Guo, Quanyi

    2018-03-01

    Cartilage engineering facilitates repair and regeneration of damaged cartilage using engineered tissue that restores the functional properties of the impaired joint. The seed cells used most frequently in tissue engineering, are chondrocytes and mesenchymal stem cells. Seed cells activity plays a key role in the regeneration of functional cartilage tissue. However, seed cells undergo undesirable changes after in vitro processing procedures, such as degeneration of cartilage cells and induced hypertrophy of mesenchymal stem cells, which hinder cartilage tissue engineering. Compared to monoculture, which does not mimic the in vivo cellular environment, co-culture technology provides a more realistic microenvironment in terms of various physical, chemical, and biological factors. Co-culture technology is used in cartilage tissue engineering to overcome obstacles related to the degeneration of seed cells, and shows promise for cartilage regeneration and repair. In this review, we focus first on existing co-culture systems for cartilage tissue engineering and related fields, and discuss the conditions and mechanisms thereof. This is followed by methods for optimizing seed cell co-culture conditions to generate functional neo-cartilage tissue, which will lead to a new era in cartilage tissue engineering. © 2017 Wiley Periodicals, Inc.

  6. Freezing Responses in DMSO-Based Cryopreservation of Human iPS Cells: Aggregates Versus Single Cells.

    PubMed

    Li, Rui; Yu, Guanglin; Azarin, Samira M; Hubel, Allison

    2018-05-01

    Inadequate preservation methods of human induced pluripotent stem cells (hiPSCs) have impeded efficient reestablishment of cell culture after the freeze-thaw process. In this study, we examined roles of the cooling rate, seeding temperature, and difference between cell aggregates (3-50 cells) and single cells in controlled rate freezing of hiPSCs. Intracellular ice formation (IIF), post-thaw membrane integrity, cell attachment, apoptosis, and cytoskeleton organization were evaluated to understand the different freezing responses between hiPSC single cells and aggregates, among cooling rates of 1, 3, and 10°C/min, and between seeding temperatures of -4°C and -8°C. Raman spectroscopy images of ice showed that a lower seeding temperature (-8°C) did not affect IIF in single cells, but significantly increased IIF in aggregates, suggesting higher sensitivity of aggregates to supercooling. In the absence of IIF, Raman images showed greater variation of dimethyl sulfoxide concentration across aggregates than single cells, suggesting cryoprotectant transport limitations in aggregates. The ability of cryopreserved aggregates to attach to culture substrates did not correlate with membrane integrity for the wide range of freezing parameters, indicating inadequacy of using only membrane integrity-based optimization metrics. Lower cooling rates (1 and 3°C/min) combined with higher seeding temperature (-4°C) were better at preventing IIF and preserving cell function than a higher cooling rate (10°C/min) or lower seeding temperature (-8°C), proving the seeding temperature range of -7°C to -12°C from literature to be suboptimal. Unique f-actin cytoskeletal organization into a honeycomb-like pattern was observed in postpassage and post-thaw colonies and correlated with successful reestablishment of cell culture.

  7. Autologous circulating angiogenic cells treated with osteopontin and delivered via a collagen scaffold enhance wound healing in the alloxan-induced diabetic rabbit ear ulcer model.

    PubMed

    O'Loughlin, Aonghus; Kulkarni, Mangesh; Vaughan, Erin E; Creane, Michael; Liew, Aaron; Dockery, Peter; Pandit, Abhay; O'Brien, Timothy

    2013-01-01

    Diabetic foot ulceration is the leading cause of amputation in people with diabetes mellitus. Peripheral vascular disease is present in the majority of patients with diabetic foot ulcers. Despite standard treatments there exists a high amputation rate. Circulating angiogenic cells previously known as early endothelial progenitor cells are derived from peripheral blood and support angiogenesis and vasculogenesis, providing a potential topical treatment for non-healing diabetic foot ulcers. A scaffold fabricated from Type 1 collagen facilitates topical cell delivery to a diabetic wound. Osteopontin is a matricellular protein involved in wound healing and increases the angiogenic potential of circulating angiogenic cells. A collagen scaffold seeded with circulating angiogenic cells was developed. Subsequently the effect of autologous circulating angiogenic cells that were seeded in a collagen scaffold and topically delivered to a hyperglycemic cutaneous wound was assessed. The alloxan-induced diabetic rabbit ear ulcer model was used to determine healing in response to the following treatments: collagen seeded with autologous circulating angiogenic cells exposed to osteopontin, collagen seeded with autologous circulating angiogenic cells, collagen alone and untreated wound. Stereology was used to assess angiogenesis in wounds. The cells exposed to osteopontin and seeded on collagen increased percentage wound closure as compared to other groups. Increased angiogenesis was observed with the treatment of collagen and collagen seeded with circulating angiogenic cells. These results demonstrate that topical treatment of full thickness cutaneous ulcers with autologous circulating angiogenic cells increases wound healing. Cells exposed to the matricellular protein osteopontin result in superior wound healing. The wound healing benefit is associated with a more efficient vascular network. This topical therapy provides a potential novel therapy for the treatment of non-healing diabetic foot ulcers in humans.

  8. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.

    PubMed

    Fridley, Krista M; Fernandez, Irina; Li, Mon-Tzu Alice; Kettlewell, Robert B; Roy, Krishnendu

    2010-11-01

    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1(+) progenitors and spinner flasks generated more c-Kit(+) progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells.

  9. Probing Mechanoregulation of Neuronal Differentiation by Plasma Lithography Patterned Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Nam, Ki-Hwan; Jamilpour, Nima; Mfoumou, Etienne; Wang, Fei-Yue; Zhang, Donna D.; Wong, Pak Kin

    2014-11-01

    Cells sense and interpret mechanical cues, including cell-cell and cell-substrate interactions, in the microenvironment to collectively regulate various physiological functions. Understanding the influences of these mechanical factors on cell behavior is critical for fundamental cell biology and for the development of novel strategies in regenerative medicine. Here, we demonstrate plasma lithography patterning on elastomeric substrates for elucidating the influences of mechanical cues on neuronal differentiation and neuritogenesis. The neuroblastoma cells form neuronal spheres on plasma-treated regions, which geometrically confine the cells over two weeks. The elastic modulus of the elastomer is controlled simultaneously by the crosslinker concentration. The cell-substrate mechanical interactions are also investigated by controlling the size of neuronal spheres with different cell seeding densities. These physical cues are shown to modulate with the formation of focal adhesions, neurite outgrowth, and the morphology of neuroblastoma. By systematic adjustment of these cues, along with computational biomechanical analysis, we demonstrate the interrelated mechanoregulatory effects of substrate elasticity and cell size. Taken together, our results reveal that the neuronal differentiation and neuritogenesis of neuroblastoma cells are collectively regulated via the cell-substrate mechanical interactions.

  10. Evaluation of Cytotoxic and Anti-Inflammatory Activities of Extracts and Lectins from Moringa oleifera Seeds

    PubMed Central

    Araújo, Larissa Cardoso Corrêa; Aguiar, Jaciana Santos; Napoleão, Thiago Henrique; Mota, Fernanda Virgínia Barreto; Barros, André Luiz Souza; Moura, Maiara Celine; Coriolano, Marília Cavalcanti; Coelho, Luana Cassandra Breitenbach Barroso; Silva, Teresinha Gonçalves; Paiva, Patrícia Maria Guedes

    2013-01-01

    Background The extract from Moringa oleifera seeds is used worldwide, especially in rural areas of developing countries, to treat drinking water. M. oleifera seeds contain the lectins cmol and WSMoL, which are carbohydrate-binding proteins that are able to reduce water turbidity because of their coagulant activity. Studies investigating the ability of natural products to damage normal cells are essential for the safe use of these substances. This study evaluated the cytotoxic and anti-inflammatory properties of the aqueous seed extract, the extract used by population to treat water (named diluted seed extract in this work), and the isolated lectins cmol and WSMoL. Methodology/Principal Findings The data showed that the aqueous seed extract and cmol were potentially cytotoxic to human peripheral blood mononuclear cells, while WSMoL and diluted seed extract were not cytotoxic. The M. oleifera aqueous seed extract and the lectins cmol and WSMoL were weakly/moderately cytotoxic to the NCI-H292, HT-29 and HEp-2 cancer cell lines and were not hemolytic to murine erythrocytes. Evaluation of acute toxicity in mice revealed that the aqueous seed extract (2.000 mg/kg) did not cause systemic toxicity. The aqueous seed extract, cmol and WSMoL (6.25 µg/mL) and diluted seed extract at 50 µg/mL exhibited anti-inflammatory activity on lipopolyssaccharide-stimulated murine macrophages by regulating the production of nitric oxide, TNF-α and IL-1β. The aqueous seed extract reduced leukocyte migration in a mouse model of carrageenan-induced pleurisy; the myeloperoxidase activity and nitric oxide, TNF-α and IL-1β levels were similarly reduced. Histological analysis of the lungs showed that the extract reduced the number of leukocytes. Conclusion/Significance This study shows that the extract prepared according to folk use and WSMoL may be non-toxic to mammalian cells; however, the aqueous seed extract and cmol may be cytotoxic to immune cells which may explain the immunosuppressive potential of the extract. PMID:24349164

  11. Management of Protected Areas and Its Effect on an Ecosystem Function: Removal of Prosopis flexuosa Seeds by Mammals in Argentinian Drylands

    PubMed Central

    Campos, Valeria E.; Miguel, Florencia; Cona, Mónica I.

    2016-01-01

    The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: “seed predators”, “scatter-hoarders”, and “opportunistic frugivores”. Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal. PMID:27655222

  12. Management of Protected Areas and Its Effect on an Ecosystem Function: Removal of Prosopis flexuosa Seeds by Mammals in Argentinian Drylands.

    PubMed

    Campos, Claudia M; Campos, Valeria E; Miguel, Florencia; Cona, Mónica I

    The ecological function of animal seed dispersal depends on species interactions and can be affected by drivers such as the management interventions applied to protected areas. This study was conducted in two protected areas in the Monte Desert: a fenced reserve with grazing exclusion and absence of large native mammals (the Man and Biosphere Ñacuñán Reserve; FR) and an unfenced reserve with low densities of large native and domestic animals (Ischigualasto Park; UFR). The study focuses on Prosopis flexuosa seed removal by different functional mammal groups: "seed predators", "scatter-hoarders", and "opportunistic frugivores". Under both interventions, the relative contribution to seed removal by different functional mammal groups was assessed, as well as how these groups respond to habitat heterogeneity (i.e. vegetation structure) at different spatial scales. Camera traps were used to identify mammal species removing P. flexuosa seeds and to quantify seed removal; remote sensing data helped analyze habitat heterogeneity. In the FR, the major fruit removers were a seed predator (Graomys griseoflavus) and a scatter-hoarder (Microcavia asutralis). In the UFR, the main seed removers were the opportunistic frugivores (Lycalopex griseus and Dolichotis patagonum), who removed more seeds than the seed predator in the FR. The FR shows higher habitat homogeneity than the UFR, and functional groups respond differently to habitat heterogeneity at different spatial scales. In the FR, because large herbivores are locally extinct (e.g. Lama guanicoe) and domestic herbivores are excluded, important functions of large herbivores are missing, such as the maintenance of habitat heterogeneity, which provides habitats for medium-sized opportunistic frugivores with consequent improvement of quality and quantity of seed dispersal services. In the UFR, with low densities of large herbivores, probably one important ecosystem function this group performs is to increase habitat heterogeneity, allowing for the activity of medium-sized mammals who, behaving as opportunistic frugivores, did the most significant seed removal.

  13. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time.

    PubMed

    Lee, Yong-Ung; Mahler, Nathan; Best, Cameron A; Tara, Shuhei; Sugiura, Tadahisa; Lee, Avione Y; Yi, Tai; Hibino, Narutoshi; Shinoka, Toshiharu; Breuer, Christopher

    2016-03-01

    We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency. Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment. The incubation time showed no significant effect on TEVG patency. However, TEVG patency was significantly increased in a dose-dependent manner. In the human graft, more bone marrow used for seeding resulted in increased cell attachment in a dose-dependent manner. Increasing the BM-MNC dose and reducing incubation time is a viable strategy for improving the performance and utility of the graft.

  14. A Stem Cell-Seeded Nanofibrous Scaffold for Auditory Nerve Replacement

    DTIC Science & Technology

    2015-10-01

    guinea pigs . Initial results show improved electrically-evoked auditory brainstem responses in cell-seeded implants compared to control, cell-free...scaffold’s conduit, but the IAM of the guinea pig and limits imposed by the surgical approach make this difficult. Alternatives are being pursued...transplantation of the seeded nanofibrous scaffold Task 13. Group 1: Pilot deafening. Confirm efficacy of ß-bungarotoxin in guinea pig and time point of

  15. Guided self-assembly of magnetic beads for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gusenbauer, Markus; Nguyen, Ha; Reichel, Franz; Exl, Lukas; Bance, Simon; Fischbacher, Johann; Özelt, Harald; Kovacs, Alexander; Brandl, Martin; Schrefl, Thomas

    2014-02-01

    Micromagnetic beads are widely used in biomedical applications for cell separation, drug delivery, and hyperthermia cancer treatment. Here we propose to use self-organized magnetic bead structures which accumulate on fixed magnetic seeding points to isolate circulating tumor cells. The analysis of circulating tumor cells is an emerging tool for cancer biology research and clinical cancer management including the detection, diagnosis and monitoring of cancer. Microfluidic chips for isolating circulating tumor cells use either affinity, size or density capturing methods. We combine multiphysics simulation techniques to understand the microscopic behavior of magnetic beads interacting with soft magnetic accumulation points used in lab-on-chip technologies. Our proposed chip technology offers the possibility to combine affinity and size capturing with special antibody-coated bead arrangements using a magnetic gradient field created by Neodymium Iron Boron permanent magnets. The multiscale simulation environment combines magnetic field computation, fluid dynamics and discrete particle dynamics.

  16. Ultraporous, Compressible, Wettable Polylactide/Polycaprolactone Sponges for Tissue Engineering.

    PubMed

    Mader, Michael; Jérôme, Valérie; Freitag, Ruth; Agarwal, Seema; Greiner, Andreas

    2018-05-14

    Ultraporous, degradable sponges made of either polylactide or of blends of polylactide/poly(ε-caprolactone) are prepared by freeze-drying of dispersions of short electrospun fibers and subsequent thermal annealing. The sponges feature ultrahigh porosity (99.6%), a hierarchical cellular structure, and high reversible compressibility with fast recovery from deformation in the dry as well as in the wet state. The sponge properties depend on the fiber dispersion concentration and the annealing temperature. Sponge characteristics like fiber density (2.5-20 mg/cm 3 ), size, shape, crystallinity, mechanical strength, wetability, and structural integrity are user adjustable. Cell culture experiments were successfully performed with Jurkat cells with Confocal Laser Scanning Microscopy and MTT staining showing rapid cell proliferation. Live/Dead staining demonstrated high viability of the seeded cells. The sponge characteristics and modifications investigated and presented here reveal that these sponges are highly promising for tissue engineering applications.

  17. Density measurement in air with saturable absorbing seed gas

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1982-01-01

    Approaches which have the potential to make density measurements in a compressible flow, where one or more laser beams are used as probes, were investigated. Saturation in sulfur hexafluoride iodine and a crossed beam technique where one beam acts as a saturating beam and the other is at low intensity and acts as a probe beam are considered. It is shown that a balance between an increase in fluorescence intensity with increasing pressure from line broadening and the normal decrease in intensity with increasing pressure from quenching can be used to develop a linear relation between fluorescence intensity and number density and lead to a new density measurement scheme. The method is used to obtain a density image of the cross section of an iodine seeded underexpanded supersonic jet of nitrogen, by illuminating the cross section by a sheet of laser light.

  18. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    NASA Astrophysics Data System (ADS)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  19. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana

    PubMed Central

    Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto

    2016-01-01

    Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. PMID:27605715

  20. Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration

    NASA Astrophysics Data System (ADS)

    Rutkowski, Gregory E.; Miller, Cheryl A.; Jeftinija, Srdija; Mallapragada, Surya K.

    2004-09-01

    This paper describes a novel biodegradable conduit that provides a combination of physical, chemical and biological cues at the cellular level to facilitate peripheral nerve regeneration. The conduit consists of a porous poly(D,L-lactic acid) (PDLLA) tubular support structure with a micropatterned inner lumen. Schwann cells were pre-seeded into the lumen to provide additional trophic support. Conduits with micropatterned inner lumens pre-seeded with Schwann cells (MS) were fabricated and compared with three types of conduits used as controls: M (conduits with micropatterned inner lumens without pre-seeded Schwann cells), NS (conduits without micropatterned inner lumens pre-seeded with Schwann cells) and N (conduits without micropatterned inner lumens, without pre-seeded Schwann cells). The conduits were implanted in rats with 1 cm sciatic nerve transections and the regeneration and functional recovery were compared in the four different cases. The number or size of regenerated axons did not vary significantly among the different conduits. The time of recovery, and the sciatic function index, however, were significantly enhanced using the MS conduits, based on qualitative observations as well as quantitative measurements using walking track analysis. This demonstrates that biodegradable micropatterned conduits pre-seeded with Schwann cells that provide a combination of physical, chemical and biological guidance cues for regenerating axons at the cellular level offer a better alternative for repairing sciatic nerve transactions than conventional biodegradable conduits.

  1. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy.

    PubMed

    Haworth, Annette; Mears, Christopher; Betts, John M; Reynolds, Hayley M; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A

    2016-01-07

    Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The 'biological optimisation' considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.

  2. A radiobiology-based inverse treatment planning method for optimisation of permanent l-125 prostate implants in focal brachytherapy

    NASA Astrophysics Data System (ADS)

    Haworth, Annette; Mears, Christopher; Betts, John M.; Reynolds, Hayley M.; Tack, Guido; Leo, Kevin; Williams, Scott; Ebert, Martin A.

    2016-01-01

    Treatment plans for ten patients, initially treated with a conventional approach to low dose-rate brachytherapy (LDR, 145 Gy to entire prostate), were compared with plans for the same patients created with an inverse-optimisation planning process utilising a biologically-based objective. The ‘biological optimisation’ considered a non-uniform distribution of tumour cell density through the prostate based on known and expected locations of the tumour. Using dose planning-objectives derived from our previous biological-model validation study, the volume of the urethra receiving 125% of the conventional prescription (145 Gy) was reduced from a median value of 64% to less than 8% whilst maintaining high values of TCP. On average, the number of planned seeds was reduced from 85 to less than 75. The robustness of plans to random seed displacements needs to be carefully considered when using contemporary seed placement techniques. We conclude that an inverse planning approach to LDR treatments, based on a biological objective, has the potential to maintain high rates of tumour control whilst minimising dose to healthy tissue. In future, the radiobiological model will be informed using multi-parametric MRI to provide a personalised medicine approach.

  3. (Hydroxyproline-rich glycoprotein of the plant cell wall): Report on work from June 1987 to June 1988

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-01-01

    In soybean seed costs the accumulation of the hydroxproline-rich glycoprotein extensin is regulated in a developmental and tissue-specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold-silver localization. Using these techniques extensin was first detected at 16 to 18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked depostion of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made bymore » a new technique - tissue printing on nitrocellulose paper. This technique shows that extensin is primarily localized in the seed coal, hilum, and vascular elements of the seed.« less

  4. Identification of symplasmic domains in the embryo and seed of Sedum acre L. (Crassulaceae).

    PubMed

    Wróbel-Marek, Justyna; Kurczyńska, Ewa; Płachno, Bartosz J; Kozieradzka-Kiszkurno, Małgorzata

    2017-03-01

    Our study demonstrated that symplasmic communication between Sedum acre seed compartments and the embryo proper is not uniform. The presence of plasmodesmata (PD) constitutes the structural basis for information exchange between cells, and symplasmic communication is involved in the regulation of cell differentiation and plant development. Most recent studies concerning an analysis of symplasmic communication between seed compartments and the embryo have been predominantly performed on Arabidopsis thaliana. The results presented in this paper describe the analysis of symplasmic communication on the example of Sedum acre seeds, because the ultrastructure of the seed compartments and the embryo proper, including the PD, have already been described, and this species represents an embryonic type of development different to Arabidopsis. Moreover, in this species, an unusual electron-dense dome associated with plasmodesmata on the border between the basal cell/chalazal suspensor cells and the basal cell/the endosperm has been described. This prompted the question as to whether these plasmodesmata are functional. Thus, the aim of this study was to describe the movement of symplasmic transport fluorochromes between different Sedum seed compartments, with particular emphasis on the movement between the basal cell and the embryo proper and endosperm, to answer the following questions: (1) are seeds divided into symplasmic domains; (2) if so, are they stable or do they change with the development? The results have shown that symplasmic tracers movement: (a) from the external integument to internal integument is restricted; (b) from the basal cell to the other part of the embryo proper and from the basal cell to the endosperm is also restricted; (c) the embryo is a single symplasmic domain with respect to molecules of a molecular weight below 0.5 kDa.

  5. Quantitative 3D shape description of dust particles from treated seeds by means of X-ray micro-CT.

    PubMed

    Devarrewaere, Wouter; Foqué, Dieter; Heimbach, Udo; Cantre, Dennis; Nicolai, Bart; Nuyttens, David; Verboven, Pieter

    2015-06-16

    Crop seeds are often treated with pesticides before planting. Pesticide-laden dust particles can be abraded from the seed coating during planting and expelled into the environment, damaging nontarget organisms. Drift of these dust particles depends on their size, shape and density. In this work, we used X-ray micro-CT to examine the size, shape (sphericity) and porosity of dust particles from treated seeds of various crops. The dust properties quantified in this work were very variable in different crops. This variability may be a result of seed morphology, seed batch, treatment composition, treatment technology, seed cleaning or an interaction of these factors. The intraparticle porosity of seed treatment dust particles varied from 0.02 to 0.51 according to the crop and generally increased with particle size. Calculated settling velocities demonstrated that accounting for particle shape and porosity is important in drift studies. For example, the settling velocity of dust particles with an equivalent diameter of 200 μm may vary between 0.1 and 1.2 m s(-1), depending on their shape and density. Our analysis shows that in a wind velocity of 5 m s(-1), such particles ejected at 1 m height may travel between 4 and 50 m from the source before settling. Although micro-CT is a valuable tool to characterize dust particles, the current image processing methodology limits the number of particles that can be analyzed.

  6. Repeated drought alters resistance of seed bank regeneration in baldcypress swamps of North America

    USGS Publications Warehouse

    Lei, Ting; Middleton, Beth A.

    2018-01-01

    Recurring drying and wetting events are likely to increase in frequency and intensity in predicted future droughts in the central USA and alter the regeneration potential of species. We explored the resistance of seed banks to successive droughts in 53 sites across the nine locations in baldcypress swamps in the southeastern USA. Along the Mississippi River Alluvial Valley and northern Gulf of Mexico, we investigated the capacity of seed banks to retain viable seeds after successive periods of drying and wetting in a greenhouse study. Mean differences in species richness and seed density were compared to examine the interactions of successive droughts, geographical location and water regime. The results showed that both species richness and total density of germinating seedlings decreased over repeated drought trials. These responses were more pronounced in geographical areas with higher annual mean temperature. In seed banks across the southeastern swamp region, most species were exhausted after Trial 2 or 3, except for semiaquatic species in Illinois and Tennessee, and aquatic species in Texas. Distinct geographical trends in seed bank resistance to drought demonstrate that climate-induced drying of baldcypress swamps could influence the regeneration of species differently across their ranges. Despite the health of adult individuals, lack of regeneration may push ecosystems into a relict status. Seed bank depletion by germination without replenishment may be a major conservation threat in a future with recurring droughts far less severe than megadrought. Nevertheless, the protection of moist refugia might aid conservation.

  7. Microfabrication of channel arrays promotes vessel-like network formation in cardiac cell construct and vascularization in vivo.

    PubMed

    Zieber, Liran; Or, Shira; Ruvinov, Emil; Cohen, Smadar

    2014-06-01

    Pre-vascularization is important for the reconstruction of dense and metabolically active myocardial tissue and its integration with the host myocardium after implantation. Herein, we demonstrate that the fabrication of micro-channels in alginate scaffold combined with the presentation of adhesion peptides and an angiogenic growth factor promote vessel-like networks in the construct, both in vitro and in vivo. Using a CO2 laser engraving system, 200 µm diameter channels were formed from top to bottom of the 2 mm thick alginate scaffold, with a channel-to-channel distance of 400 µm. Cells were seeded in a sequential manner onto the scaffolds: first, human umbilical vascular endothelial cells (HUVECs) were seeded and cultured for three days, then neonatal rat cardiomyocytes (CMs) and cardiofibroblasts were added at a final cell ratio of 50:35:15, respectively, and the constructs were cultivated for an additional seven days. A vessel-like network was formed within the cell constructs, wherein HUVECs were organized around the channels in a multilayer manner, while the CMs were located in-between the channels and exhibited the characteristic morphological features of a mature cardiac fiber. Acellular scaffolds with the affinity-bound basic fibroblast growth factor were implanted subcutaneously in mice. Increased cell penetration into the channeled scaffold and greater vessel density were found in comparison with the nonchanneled scaffolds. Our results thus point to the importance of micro-channels as a major structural promoter of vascularization in scaffolds, in conjunction with the sequential preculture of ECs and angiogenic factor presentation.

  8. Relativistic Eulerian Vlasov simulations of the amplification of seed pulses by Brillouin backscattering in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoucri, M., E-mail: Shoucri.Magdi@ireq.ca; Matte, J.-P.; Vidal, F.

    We apply an Eulerian Vlasov code to study the amplification by Brillouin scattering of a short seed laser pulse by a long pump laser pulse in an underdense plasma. The stimulated Brillouin backscattering interaction is the coupling of the pump and seed electromagnetic waves propagating in opposite directions, and the ion plasma wave. The code solves the one-dimensional relativistic Vlasov-Maxwell set of equations. Large amplitude ion waves are generated. In the simulations we present, the density plateau of the plasma is n{sub e}=0.3 n{sub c} (n{sub c} is the critical density), which excludes spurious stimulated Raman scattering amplification (which can occurmore » only if n{sub e}« less

  9. Combinatoric analysis of heterogeneous stochastic self-assembly.

    PubMed

    D'Orsogna, Maria R; Zhao, Bingyu; Berenji, Bijan; Chou, Tom

    2013-09-28

    We analyze a fully stochastic model of heterogeneous nucleation and self-assembly in a closed system with a fixed total particle number M, and a fixed number of seeds Ns. Each seed can bind a maximum of N particles. A discrete master equation for the probability distribution of the cluster sizes is derived and the corresponding cluster concentrations are found using kinetic Monte-Carlo simulations in terms of the density of seeds, the total mass, and the maximum cluster size. In the limit of slow detachment, we also find new analytic expressions and recursion relations for the cluster densities at intermediate times and at equilibrium. Our analytic and numerical findings are compared with those obtained from classical mass-action equations and the discrepancies between the two approaches analyzed.

  10. In Vitro Endothelialization of Biodegradable Vascular Grafts Via Endothelial Progenitor Cell Seeding and Maturation in a Tubular Perfusion System Bioreactor.

    PubMed

    Melchiorri, Anthony J; Bracaglia, Laura G; Kimerer, Lucas K; Hibino, Narutoshi; Fisher, John P

    2016-07-01

    A critical challenge to the success of biodegradable vascular grafts is the establishment of a healthy endothelium. To establish this monolayer of endothelial cells (ECs), a variety of techniques have been developed, including cell seeding. Vascular grafts may be seeded with relevant cell types and allowed to mature before implantation. Due to the low proliferative ability of adult ECs and issues with donor site morbidity, there has been increasing interest in using endothelial progenitor cells (EPCs) for vascular healing procedures. In this work, we combined the proliferative and differentiation capabilities of a commercial cell line of early EPCs with an established bioreactor system to support the maturation of cell-seeded vascular grafts. All components of the vascular graft and bioreactor setup are commercially available and allow for complete customization of the scaffold and culturing system. This bioreactor setup enables the control of flow through the graft, imparting fluid shear stress on EPCs and affecting cellular proliferation and differentiation. Grafts cultured with EPCs in the bioreactor system demonstrated greatly increased cell populations and neotissue formation compared with grafts seeded and cultured in a static system. Increased expression of markers for mature endothelial tissues were also observed in bioreactor-cultured EPC-seeded grafts. These findings suggest the distinct advantages of a customizable bioreactor setup for the proliferation and maturation of EPCs. Such a strategy may be beneficial for utilizing EPCs in vascular tissue engineering applications.

  11. Seeding arterial prostheses with vascular endothelium. The nature of the lining.

    PubMed Central

    Herring, M B; Dilley, R; Jersild, R A; Boxer, L; Gardner, A; Glover, J

    1979-01-01

    Arterial prostheses seeded with autogenous vascular endothelium demonstrate a well-organized, cellular, inner lining. To determine the nature of the lining cells, six animals underwent replacement of the infrarenal aorta with Dacron prostheses. During the preparation of three such grafts, endothelium was scraped from the saphenous vein with a steel wool pledget, suspended in chilled Sack's solution, and mixed with blood used to preclot the graft. This suspension was omitted from the three control grafts. After six weeks, the grafts were removed, rinsed and examined. Fluorescent Factor VIII related antigen (F VIII-RA) strongly stained the lining cells. Silver nitrate Haütchen and electron microscopy preparations revealed a lining pattern characteristic of vascular endothelium. Endothelial cell-specific Weibel-Palade bodies were identified in the lining cell cytoplasm. Masson's trichrome staining revealed a relatively collagen-poor connective tissue within the seeded fabric. Transmission electron microscopy disclosed vascular smooth muscle cells between the seeded graft fabric and the lining cells. Vasa vasorum, arising from the outer capsule, penetrated the fabric to supply the inner capsules of the seeded grafts. It is concluded that the cells lining seeded canine arterial prostheses are true vascular endothelium supported by vascular smooth muscle cells, that the lining contains minimal connective tissue, and that vasa vasorum develop. Unseeded control grafts lacked these features. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:464684

  12. Numerical Modeling of Hailstorms and Hailstone Growth. Part III: Simulation of an Alberta Hailstorm--Natural and Seeded Cases.

    NASA Astrophysics Data System (ADS)

    Farley, Richard D.

    1987-07-01

    This paper reports on simulations of a multicellular hailstorm case observed during the 1983 Alberta Hail Project. The field operations on that day concentrated on two successive feeder cells which were subjected to controlled seeding experiments. The fist of these cells received the placebo treatment and the second was seeded with dry ice. The principal tool of this study is a modified version of the two-dimensional, time dependent hail category model described in Part I of this series of papers. It is with this model that hail growth processes are investigated, including the simulated effects of cloud seeding techniques as practiced in Alberta.The model simulation of the natural case produces a very good replication of the observed storm, particularly the placebo feeder cell. This is evidenced, in particular, by the high degree of fidelity of the observed and modeled radar reflectivity in terms of magnitudes, structure, and evolution. The character of the hailfall at the surface and the scale of the storm are captured nicely by the model, although cloud-top heights are generally too high, particularly for the mature storm system.Seeding experiments similar to those conducted in the field have also been simulated. These involve seeding the feeder cell early in its active development phase with dry ice (CO2) or silver iodide (AgI) introduced near cloud top. The model simulations of these seeded cases capture some of the observed seeding signatures detected by radar and aircraft. In these model experiments, CO2 seeding produced a stronger response than AgI seeding relative to inhibiting hail formation. For both seeded cases, production of precipitating ice was initially enhanced by the seeding, but retarded slightly in the later stages, the net result being modest increases in surface rainfall, with hail reduced slightly. In general, the model simulations support several subhypotheses of the operational strategy of the Alberta Research Council regarding the earlier formation of ice, snow, and graupel due to seeding.

  13. The Developmental Regulator SEEDSTICK Controls Structural and Mechanical Properties of the Arabidopsis Seed Coat

    PubMed Central

    Beauzamy, Léna; Caporali, Elisabetta; Koroney, Abdoul-Salam

    2016-01-01

    Although many transcription factors involved in cell wall morphogenesis have been identified and studied, it is still unknown how genetic and molecular regulation of cell wall biosynthesis is integrated into developmental programs. We demonstrate by molecular genetic studies that SEEDSTICK (STK), a transcription factor controlling ovule and seed integument identity, directly regulates PMEI6 and other genes involved in the biogenesis of the cellulose-pectin matrix of the cell wall. Based on atomic force microscopy, immunocytochemistry, and chemical analyses, we propose that structural modifications of the cell wall matrix in the stk mutant contribute to defects in mucilage release and seed germination under water-stress conditions. Our studies reveal a molecular network controlled by STK that regulates cell wall properties of the seed coat, demonstrating that developmental regulators controlling organ identity also coordinate specific aspects of cell wall characteristics. PMID:27624758

  14. Positive density-dependent reproduction regulated by local kinship and size in an understorey tropical tree

    PubMed Central

    Castilla, Antonio R.; Pope, Nathaniel; Jha, Shalene

    2016-01-01

    Background and Aims Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. Methods We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Key Results Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. Conclusions This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. PMID:26602288

  15. Positive density-dependent reproduction regulated by local kinship and size in an understorey tropical tree.

    PubMed

    Castilla, Antonio R; Pope, Nathaniel; Jha, Shalene

    2016-02-01

    Global pollinator declines and continued habitat fragmentation highlight the critical need to understand reproduction and gene flow across plant populations. Plant size, conspecific density and local kinship (i.e. neighbourhood genetic relatedness) have been proposed as important mechanisms influencing the reproductive success of flowering plants, but have rarely been simultaneously investigated. We conducted this study on a continuous population of the understorey tree Miconia affinis in the Forest Dynamics Plot on Barro Colorado Island in central Panama. We used spatial, reproductive and population genetic data to investigate the effects of tree size, conspecific neighbourhood density and local kinship on maternal and paternal reproductive success. We used a Bayesian framework to simultaneously model the effects of our explanatory variables on the mean and variance of maternal viable seed set and siring success. Our results reveal that large trees had lower proportions of viable seeds in their fruits but sired more seeds. We documented differential effects of neighbourhood density and local kinship on both maternal and paternal reproductive components. Trees in more dense neighbourhoods produced on average more viable seeds, although this positive density effect was influenced by variance-inflation with increasing local kinship. Neighbourhood density did not have significant effects on siring success. This study is one of the first to reveal an interaction among tree size, conspecific density and local kinship as critical factors differentially influencing maternal and paternal reproductive success. We show that both maternal and paternal reproductive success should be evaluated to determine the population-level and individual traits most essential for plant reproduction. In addition to conserving large trees, we suggest the inclusion of small trees and the conservation of dense patches with low kinship as potential strategies for strengthening the reproductive status of tropical trees. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth.

    PubMed

    Tian, Shujuan; Wu, Jingjing; Liu, Yuan; Huang, Xiaorong; Li, Fen; Wang, Zhaodan; Sun, Meng-Xiang

    2017-11-28

    We previously reported that a novel motor protein belonging to the kinesin-12 family, NtKRP, displays critical roles in regulating embryo and seed size establishment. However, it remains unknown exactly how NtKRP contributes to this developmental process. Here, we report that a 60S ribosomal protein NtRPL17 directly interacts with NtKRP. The phenotypes of NtRPL17 RNAi lines show notable embryo and seed size reduction. Structural observations of the NtRPL17-silenced embryos/seeds reveal that the embryo size reduction is due to a decrease in cell number. In these embryos, cell division cycle progression is delayed at the G2/M transition. These phenotypes are similar to that in NtKRP-silenced embryos/seeds, indicating that NtKRP and NtRPL17 function as partners in the same regulatory pathway during seed development and specifically regulate cell cycle progression to control embryo/seed size. This work reveals that NtRPL17, as a widely distributed ribosomal protein, plays a critical role in seed development and provides a new clue in the regulation of seed size. Confirmation of the interaction between NtKRP and NtRPL17 and their co-function in the control of the cell cycle also suggests that the mechanism might be conserved in both plants and animals. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  17. Metabolic and structural changes during early maturation of Inga vera seeds are consistent with the lack of a desiccation phase.

    PubMed

    Caccere, Rodrigo; Teixeira, Simone P; Centeno, Danilo C; Figueiredo-Ribeiro, Rita de Cássia L; Braga, Márcia R

    2013-06-15

    Inga vera, native to South America, is an important leguminous species used for ecological restoration of riparian forests and its seeds are among the most recalcitrant ones described up to date. In this work, we analysed the metabolic profile, cell ultrastructure as well as cell wall polysaccharides of I. vera seeds in order to better understand its maturation, which allows embryo germination without a quiescent phase. Increased amounts of citric, glutamic, pyroglutamic, and aspartic acids from stages I to II (120 and 129 days after flowering (DAF)) corroborate the hypothesis of high metabolism, shifting from fermentative to aerobic respiration at seed maturity. This phase was characterized by an extensive vacuolization of embryonic cells, which also indicate high metabolic activity. The proportion of arabinose in the cell walls of embryonic axis (approx. 20%) was lower than those found in some orthodox seeds (nearly 40%), suggesting that arabinose-containing polysaccharides, which are thought to provide more flexibility to the cell wall during natural drying, are less abundant in I. vera seeds. Taken together, our results provide evidence that the major changes occurred during early stages of seed maturation of I. vera, indicating that the rapid temporary metabolic shift observed between stages I and II may be related to the lack of desiccation phase, moving directly to germination. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Transplantation of an LGR6+ Epithelial Stem Cell-Enriched Scaffold for Repair of Full-Thickness Soft-Tissue Defects: The In Vitro Development of Polarized Hair-Bearing Skin.

    PubMed

    Lough, Denver M; Wetter, Nathan; Madsen, Christopher; Reichensperger, Joel; Cosenza, Nicole; Cox, Lisa; Harrison, Carrie; Neumeister, Michael W

    2016-02-01

    Recent literature has shown that full-thickness wounds, devoid of the stem cell niche, can subsequently be reconstructed with functional skin elements following migration of the LGR6 epithelial stem cell into the wound bed. In this study, the authors use a variety of LGR6 epithelial stem cell-seeded scaffolds to determine therapeutic utility and regenerative potential in the immediate reconstruction of full-thickness wounds. Isolated LGR6 epithelial stem cells were seeded onto a spectrum of acellular matrices and monitored in both in vitro and in vivo settings to determine their relative capacity to regenerate tissues and heal wounds. Wound beds containing LGR6 stem cell-seeded scaffolds showed significantly augmented rates of healing, epithelialization, and hair growth compared with controls. Gene and proteomic expression studies indicate that LGR6 stem cell-seeded constructs up-regulate WNT, epidermal growth factor, and angiogenesis pathways. Finally, the addition of stromal vascular fraction to LGR6 stem cell-seeded constructs induces polarized tissue formation, nascent hair growth, and angiogenesis within wounds. LGR6 stem cells are able to undergo proliferation, differentiation, and migration following seeding onto a variety of collagen-based scaffolding. In addition, deployment of these constructs induces epithelialization, hair growth, and angiogenesis within wound beds. The addition of stromal vascular fraction to LGR6 stem cell-containing scaffolds initiated an early form of tissue polarization, providing for the first time a clinically applicable stem cell-based construct that is capable of the repair of full-thickness wounds and hair regeneration. Therapeutic, V.

  19. Seasonal Variation in the Fate of Seeds under Contrasting Logging Regimes

    PubMed Central

    Fleury, Marina; Rodrigues, Ricardo R.; do Couto, Hilton T. Z.; Galetti, Mauro

    2014-01-01

    Seed predators and dispersers may drive the speed and structure of forest regeneration in natural ecosystems. Rodents and ants prey upon and disperse seeds, yet empirical studies on the magnitude of these effects are lacking. Here, we examined the role of ants and rodents on seed predation in 4 plant species in a successional gradient on a tropical rainforest island. We found that (1) seeds are mostly consumed rather than dispersed; (2) rates of seed predation vary by habitat, season, and species; (3) seed size, shape, and hardness do not affect the probability of being depredated. Rodents were responsible for 70% of seed predation and were negligible (0.14%) seed dispersers, whereas ants were responsible for only 2% of seed predation and for no dispersal. We detected seasonal and habitat effects on seed loss, with higher seed predation occurring during the wet season and in old-growth forests. In the absence of predators regulating seed-consumer populations, the densities of these resilient animals explode to the detriment of natural regeneration and may reduce diversity and carrying capacity for consumers and eventually lead to ecological meltdown. PMID:24614500

  20. Seasonal variation in the fate of seeds under contrasting logging regimes.

    PubMed

    Fleury, Marina; Rodrigues, Ricardo R; do Couto, Hilton T Z; Galetti, Mauro

    2014-01-01

    Seed predators and dispersers may drive the speed and structure of forest regeneration in natural ecosystems. Rodents and ants prey upon and disperse seeds, yet empirical studies on the magnitude of these effects are lacking. Here, we examined the role of ants and rodents on seed predation in 4 plant species in a successional gradient on a tropical rainforest island. We found that (1) seeds are mostly consumed rather than dispersed; (2) rates of seed predation vary by habitat, season, and species; (3) seed size, shape, and hardness do not affect the probability of being depredated. Rodents were responsible for 70% of seed predation and were negligible (0.14%) seed dispersers, whereas ants were responsible for only 2% of seed predation and for no dispersal. We detected seasonal and habitat effects on seed loss, with higher seed predation occurring during the wet season and in old-growth forests. In the absence of predators regulating seed-consumer populations, the densities of these resilient animals explode to the detriment of natural regeneration and may reduce diversity and carrying capacity for consumers and eventually lead to ecological meltdown.

  1. Artemisia tridenata seed bank densities following wildfires

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia spp.) is a critical shrub to such sagebrush obligate species as sage grouse, (Centocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush do not sprout after wildfires and big sagebrush seed is generally short-lived a...

  2. Big sagebrush seed bank densities following wildfires

    USDA-ARS?s Scientific Manuscript database

    Big sagebrush (Artemisia spp.) is a critical shrub to many wildlife species including sage grouse (Centrocercus urophasianus), mule deer (Odocoileus hemionus), and pygmy rabbit (Brachylagus idahoensis). Big sagebrush is killed by wildfires and big sagebrush seed is generally short-lived and do not s...

  3. Cold storage of rat hepatocyte suspensions for one week in a customized cold storage solution--preservation of cell attachment and metabolism.

    PubMed

    Pless-Petig, Gesine; Singer, Bernhard B; Rauen, Ursula

    2012-01-01

    Primary hepatocytes are of great importance for basic research as well as cell transplantation. However, their stability, especially in suspension, is very low. This feature severely compromises storage and shipment. Based on previous studies with adherent cells, we here assessed cold storage injury in rat hepatocyte suspensions and aimed to find a cold storage solution that preserves viability, attachment ability and functionality of these cells. Rat hepatocyte suspensions were stored in cell culture medium, organ preservation solutions and modified TiProtec solutions at 4°C for one week. Viability and cell volume were determined by flow cytometry. Thereafter, cells were seeded and density and metabolic capacity (reductive metabolism, forskolin-induced glucose release, urea production) of adherent cells were assessed. Cold storage injury in hepatocyte suspensions became evident as cell death occurring during cold storage or rewarming or as loss of attachment ability. Cell death during cold storage was not dependent on cell swelling and was almost completely inhibited in the presence of glycine and L-alanine. Cell attachment could be greatly improved by use of chloride-poor solutions and addition of iron chelators. Using a chloride-poor, potassium-rich storage solution containing glycine, alanine and iron chelators, cultures with 75% of the density of control cultures and with practically normal cell metabolism could be obtained after one week of cold storage. In the solution presented here, cold storage injury of hepatocyte suspensions, differing from that of adherent hepatocytes, was effectively inhibited. The components which acted on the different injurious processes were identified.

  4. Influence of Poly(L-Lactic Acid) Nanofibers and BMP-2–Containing Poly(L-Lactic Acid) Nanofibers on Growth and Osteogenic Differentiation of Human Mesenchymal Stem Cells

    PubMed Central

    Schofer, Markus D.; Fuchs-Winkelmann, Susanne; Gräbedünkel, Christian; Wack, Christina; Dersch, Roland; Rudisile, Markus; Wendorff, Joachim H.; Greiner, Andreas; Paletta, Jürgen R. J.; Boudriot, Ulrich

    2008-01-01

    The aim of this study was to characterize synthetic poly-(L-lactic acid) (PLLA) nanofibers concerning their ability to promote growth and osteogenic differentiation of stem cells in vitro, as well as to test their suitability as a carrier system for growth factors. Fiber matrices composed of PLLA or BMP-2–incorporated PLLA were seeded with human mesenchymal stem cells and cultivated over a period of 22 days under growth and osteoinductive conditions, and analyzed during the course of culture, with respect to gene expression of alkaline phosphatase (ALP), osteocalcin (OC), and collagen I (COL-I). Furthermore, COL-I and OC deposition, as well as cell densities and proliferation, were analyzed using fluorescence microscopy. Although the presence of nanofibers diminished the dexamethasone-induced proliferation, there were no differences in cell densities or deposition of either COL-I or OC after 22 days of culture. The gene expression of ALP, OC, and COL-I decreased in the initial phase of cell cultivation on PLLA nanofibers as compared to cover slip control, but normalized during the course of cultivation. The initial down-regulation was not observed when BMP-2 was directly incorporated into PLLA nanofibers by electrospinning, indicating that growth factors like BMP-2 might survive the spinning process in a bioactive form. PMID:19112539

  5. Measuring bitterbrush seed production on plants with variable crown density...complete counts per plant suggested

    Treesearch

    Donald W. Seegrist; Donald L. Neal; Richard L. Hubbard

    1966-01-01

    A sampling study was made of the number of bitterbrush seeds per trap from plots in northeastern California. The count per trap had a large variation for each plant. This variation was not reduced to an acceptable low level by grouping the seed traps according to their position relative to the plant crown. In the absence of additional information, it is recommended...

  6. Effects of sib-mating and wind pollination on nursery seedling size, growth components, and phenology of Douglas-fir seed-orchard progenies.

    Treesearch

    Frank C. Sorensen

    1997-01-01

    Polymix outcross (X), full-sib (FS), and wind-pollination (WP) families were produced on 25 seed trees and 10 half-sib families on 10 of the same trees in a Pseudotsuga menziesii (Mirb.) Franco var. menziesii seedling seed orchard. Seedlings were raised at two sowing densities for 2 years in the nursery, and inbreeding depression in seedling size...

  7. Preventive effects of 125I seeds on benign restenosis following esophageal stent implantation in a dog model

    PubMed Central

    GAN, ZHEN; JING, JIAN; ZHU, GUANGYU; QIN, YONGLIN; TENG, GAOJUN; GUO, JINHE

    2015-01-01

    The present study aimed to evaluate the effects of iodine-125 (125I) seeds on the proliferation of primary esophageal fibroblasts in dogs, and to assess the safety and preventive efficacy of 125I seed-pre-loaded esophageal stents in benign restenosis following implantation. Primary fibroblasts were cultured with various 125I seed activities, which were then evaluated using cell proliferation and apoptosis assays as well as cell cycle analysis using Annexin V/propidium iodide (PI) double staining and PI staining. Prior to sacrification, animals were submitted to esophageal radiography under digital subtraction angiography. Esophageal tissues were collected and examined for macroscopic, microscopic and pathological alterations. The results demonstrated a significant and dose-dependent inhibition of fibroblast proliferation and increased apoptosis following exposure to 125I seeds. G0/G1 fibroblast populations increased in a dose-dependent manner following treatment with 125I seeds, in contrast to cells in S phase. Four weeks following implantation, α-smooth muscle actin and proliferating cell nuclear antigen expression levels in the experimental group were significantly lower compared with those in the control group; in addition, eight weeks following implantation, esophageal inner diameters were increased in the experimental group. 125I seeds inhibited proliferation of dog esophageal fibroblasts via cell cycle arrest and apoptosis. In conclusion, 125I seed-pre-loaded esophageal stents inhibited benign hyperplasia in the upper edge of the stent to a certain extent, which relieved benign restenosis following implantation with a good safety profile. PMID:25543838

  8. Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds.

    PubMed

    Dias, Daiane Souza; Ribeiro, Leonardo Monteiro; Lopes, Paulo Sérgio Nascimento; Munné-Bosch, Sergi; Garcia, Queila Souza

    2017-09-01

    Little information is currently available concerning the mechanisms controlling palm seed germination. We compared the anatomical and physiological aspects of seeds of two neotropical palm species showing different levels of dormancy. The seeds of Attalea vitrivir and Butia capitata were evaluated for the endogenous contents of hormones (ABA, GAs, CKs, BRs, IAA, JA, SA and the ethylene precursor ACC) in their cotyledonary petiole and operculum (structures involved in germination control), the force necessary to displace the operculum, endo-β-mannanase activities, and embryo cell elongation. The analyses were carried out on with intact dry and imbibed seeds as well as with seeds with the operculum mechanically removed, 2, 5 and 10 days after sowing. The germinabilities of the intact seeds of A. vitrivir and B. capitata were 68% and 3%, respectively; the removal of the operculum increased germination to more than 90% in both species. Reductions of ABA and increases in GAs contents coincided with cell elongation, although there is no evidence that hormonal balance and endo-β-mannanase activity are involved in operculum weakening. The ratio between the embryo length and the force required for operculum displacement (EL/OF) was found to be 1.9 times greater in A. vitrivir than in B. capitata, which means that very small elongations in each cell would be sufficient to promote germination, resulting in a lower level of dormancy in the former species. EL/OF and cell growth control are therefore important for defining dormancy level in palm seeds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. Complex patchy colloids shaped from deformable seed particles through capillary interactions.

    PubMed

    Meester, V; Kraft, D J

    2018-02-14

    We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.

  10. Growth of High-Density Zinc Oxide Nanorods on Porous Silicon by Thermal Evaporation

    PubMed Central

    Rusli, Nurul Izni; Tanikawa, Masahiro; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2012-01-01

    The formation of high-density zinc oxide (ZnO) nanorods on porous silicon (PS) substrates at growth temperatures of 600–1000 °C by a simple thermal evaporation of zinc (Zn) powder in the presence of oxygen (O2) gas was systematically investigated. The high-density growth of ZnO nanorods with (0002) orientation over a large area was attributed to the rough surface of PS, which provides appropriate planes to promote deposition of Zn or ZnOx seeds as nucleation sites for the subsequent growth of ZnO nanorods. The geometrical morphologies of ZnO nanorods are determined by the ZnOx seed structures, i.e., cluster or layer structures. The flower-like hexagonal-faceted ZnO nanorods grown at 600 °C seem to be generated from the sparsely distributed ZnOx nanoclusters. Vertically aligned hexagonal-faceted ZnO nanorods grown at 800 °C may be inferred from the formation of dense arrays of ZnOx clusters. The formation of disordered ZnO nanorods formed at 1000 °C may due to the formation of a ZnOx seed layer. The growth mechanism involved has been described by a combination of self-catalyzed vapor-liquid-solid (VLS) and vapor-solid (VS) mechanism. The results suggest that for a more precise study on the growth of ZnO nanostructures involving the introduction of seeds, the initial seed structures must be taken into account given their significant effects.

  11. Limited by the host: Host age hampers establishment of holoparasite Cuscuta epithymum

    NASA Astrophysics Data System (ADS)

    Meulebrouck, Klaar; Verheyen, Kris; Brys, Rein; Hermy, Martin

    2009-07-01

    A good understanding of the relationship between plant establishment and the ecosystem of which they are part of is needed to conserve rare plant species. Introduction experiments offer a direct test of recruitment limitation, but generally only the seed germination and seedling phases are monitored. Thus the relative importance of different establishment stages in the process of recruitment is not considered. This is particularly true for parasitic plants where empirical data are generally missing. During two consecutive growing seasons we examined the effect of heathland management applications, degree of heathland succession (pioneer, building and mature phase) and seed-density on the recruitment and establishment of the endangered holoparasite Cuscuta epithymum. In general, recruitment after two growing seasons was low with 4.79% of the sown seeds that successfully emerged to the seedling stage and a final establishment of 89 flowering adults (i.e. <1.5% of the sown seeds). Although a higher seed-density resulted in a higher number of seedlings, seed-density did not significantly affected relative germination percentages. The management type and subsequent heath succession had no significant effect on seedling emergence; whereas, seedling attachment to the host, establishment and growth to full-grown size were hampered in older heath vegetation (i.e. high, dense, and mature canopy). Establishment was most successful in turf-cut pioneer heathland, characterised by a relatively open and low vegetation of young Calluna vulgaris. The age of C. vulgaris, C. epithymum's main host, proved to be the most limiting factor. These results emphasise the importance of site quality (i.e. successional phase of its host) on recruitment success of C. epithymum, which is directly affected by the management applied to the vegetation. Lack of any heathland management will thus seriously restrict establishment of the endangered parasite.

  12. Pollination of a native plant changes with distance and density of invasive plants in a simulated biological invasion.

    PubMed

    Bruckman, Daniela; Campbell, Diane R

    2016-08-01

    Effects of an exotic plant on pollination may change as the invasive increases in density. Quantity of pollinator visits to a native may increase, decrease, or change nonlinearly, while visit quality is likely to decrease with greater interspecific pollen movement. How visit quantity and quality contribute to the effect on reproductive success at each invasion stage has not been measured. We simulated four stages of invasion by Brassica nigra by manipulating the neighborhood of potted plants of the native Phacelia parryi in a field experiment. Stages were far from the invasion, near the invasion, intermixed with the invasive at low density, and intermixed at high density. We measured pollinator visitation, conspecific and invasive pollen deposition, and seed set for P. parryi at each stage. Native individuals near invasive plants and within areas of low invasive density showed greatest seed production, as expected from concurrent changes in conspecific and invasive pollen deposition. Those plants experienced facilitation of visits and received more conspecific pollen relative to plants farther from invasives. Native individuals within high invasive density also received frequent visits by many pollinators (although not honeybees), but the larger receipt of invasive pollen predicted interference with pollen tubes that matched patterns in seed set. Pollinator visitation was highest when exotic plants were nearby. Detrimental effects of heterospecific pollen deposition were highest at high exotic density. Our study quantified how reproduction benefits from near proximity to a showy invasive, but is still vulnerable when the invasive reaches high density. © 2016 Botanical Society of America.

  13. Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus

    PubMed Central

    Chao, Hongbo; Wang, Hao; Wang, Xiaodong; Guo, Liangxing; Gu, Jianwei; Zhao, Weiguo; Li, Baojun; Chen, Dengyan; Raboanatahiry, Nadia; Li, Maoteng

    2017-01-01

    High-density linkage maps can improve the precision of QTL localization. A high-density SNP-based linkage map containing 3207 markers covering 3072.7 cM of the Brassica napus genome was constructed in the KenC-8 × N53-2 (KNDH) population. A total of 67 and 38 QTLs for seed oil and protein content were identified with an average confidence interval of 5.26 and 4.38 cM, which could explain up to 22.24% and 27.48% of the phenotypic variation, respectively. Thirty-eight associated genomic regions from BSA overlapped with and/or narrowed the SOC-QTLs, further confirming the QTL mapping results based on the high-density linkage map. Potential candidates related to acyl-lipid and seed storage underlying SOC and SPC, respectively, were identified and analyzed, among which six were checked and showed expression differences between the two parents during different embryonic developmental periods. A large primary carbohydrate pathway based on potential candidates underlying SOC- and SPC-QTLs, and interaction networks based on potential candidates underlying SOC-QTLs, was constructed to dissect the complex mechanism based on metabolic and gene regulatory features, respectively. Accurate QTL mapping and potential candidates identified based on high-density linkage map and BSA analyses provide new insights into the complex genetic mechanism of oil and protein accumulation in the seeds of rapeseed. PMID:28393910

  14. Grape Seed Extract Dose-Responsively Decreases Disease Severity in a Rat Model of Mucositis; Concomitantly Enhancing Chemotherapeutic Effectiveness in Colon Cancer Cells

    PubMed Central

    Cheah, Ker Yeaw; Howarth, Gordon Stanley; Bastian, Susan Elaine Putnam

    2014-01-01

    Objective Mucositis is a serious disorder of the gastrointestinal tract that results from cancer chemotherapy. We investigated the effects of increasing grape seed extract doses on the severity of chemotherapy in a rat model and its coincident impact on chemotherapeutic effectiveness in colon cancer cells. Design Female Dark Agouti rats were gavaged with grape seed extract (400–1000 mg/kg) or water (day 3–11) and were injected intraperitoneally with 5-Fluorouracil (150 mg/kg) or saline (control) on day 9 to induce mucositis. Daily metabolic data were collected and rats were sacrificed on day 12. Intestinal tissues were collected for histological and myeloperoxidase analyses. Caco-2 cell viability was examined in response to grape seed extract in combination with 5-Fluorouracil by 3-(4,5-Dimethylthiazol-2yl)-2,5-diphenyl-tetrazolium bromide) assay. Results Compared with 5-Fluorouracil controls, grape seed extract (400–1000 mg/kg) significantly decreased the histological damage score (P<0.05) in the jejunum. Grape seed extract (1000 mg/kg) increased jejunal crypt depth by 25% (P<0.05) in 5-Fluorouracil treated rats compared to 5-Fluorouracil controls, and attenuated the 5-Fluorouracil -induced reduction of mucosal thickness (25%, P<0.05). Grape seed extract (600 mg/kg) decreased myeloperoxidase activity by 55% (P<0.01) compared to 5-Fluorouracil controls. Grape seed extract was more effective at ameliorating 5-Fluorouracil induced intestinal injury, with effects most pronounced in the proximal jejunum. Grape seed extract (10–25 ug/mL) significantly enhanced the growth-inhibitory effects of 5-Fluorouracil by 26% (P<0.05) in Caco-2 cells and was more potent than 5-Fluorouracil at 50–100 µg/mL. Conclusion Grape seed extract may represent a new therapeutic option to decrease the symptoms of intestinal mucositis while concurrently impacting on the viability of colon cancer cells. PMID:24465501

  15. Seed Hydropriming and Smoke Water Significantly Improve Low-Temperature Germination of Lupinus angustifolius L.

    PubMed

    Płażek, Agnieszka; Dubert, Franciszek; Kopeć, Przemysław; Dziurka, Michał; Kalandyk, Agnieszka; Pastuszak, Jakub; Wolko, Bogdan

    2018-03-26

    Seed imbibition under cold temperature is dangerous when dry seeds have relatively low water content. The aim of this study was to investigate germination of 20 lines/cultivars of narrow-leaf lupine at 7 °C (cold) and 13 °C (control) under the influence of smoke water and following seed hydropriming for 3 h at 20 °C. The efficacy of individual treatments was examined with regard to seed protection during low-temperature germination. Based on seed germination, vigour at cold was evaluated four days after sowing by means of hypocotyl length, the studied lines/cultivars were divided into three groups with low, high and very high germination rates. Germination vigour correlated with cell membrane permeability, dehydrogenase activity and abscisic acid (ABA) content and was analysed in the seeds one day after sowing. Gibberellin content did not correlate with germination vigour. The seeds of weakly germinating lines/cultivars had the highest cell permeability and ABA content as well as the lowest amylolytic activity at both studied temperatures. Additionally, the vigour of weakly germinating seeds at 7 °C correlated with dehydrogenase activity. Three-hour hydropriming was the most effective for seed germination under cold due to reduced cell membrane permeability and ABA level. Stimulating effects of smoke water on germination under cold could be explained by enhanced dehydrogenase activity.

  16. Novel seed adaptations of a monocotyledon seagrass in the wavy sea.

    PubMed

    Soong, Keryea; Chiu, Shau-Ting; Chen, Ching-Nen Nathan

    2013-01-01

    Returning to the sea, just like invasion of land, has occurred in many groups of animals and plants. For flowering plants, traits adapted to the terrestrial environments have to change or adopt a new function to allow the plants to survive and prosper in the sea where water motion tends to rotate and move seeds. In this investigation, how seeds of the seagrass Thalassia hemprichii (Hydrocharitaceae), a common monocotyledon in the Indo-Pacific, adapt to the wavy environment was studied. Mature seeds were collected from Dongsha Atoll in South China Sea. The effects of light qualities on seed germination, the seed morphology, the unipolar distribution of starch granules in the endosperms and growth of root hair-like filamentous cells from basal surface of the seeds were all found to differ from those of terrestrial monocotyledons. Physiologically, germination of the seeds was stimulated by blue light rather than red light. Morphologically, the bell-shaped seeds coupled with the unipolar distribution of starch granules in the enlarged bases helped maintain their upright posture on the tidal seafloor. Growth of root hair-like filamentous cells from the basal surface of the seeds prior to primary root growth served to attach onto sediments, providing leverage and attachment required by the primary roots to insert into sediments. These filamentous cells grasped coral sand but not silicate sand, demonstrating a habitat preference of this species.

  17. Novel Seed Adaptations of a Monocotyledon Seagrass in the Wavy Sea

    PubMed Central

    Soong, Keryea; Chiu, Shau-Ting; Chen, Ching-Nen Nathan

    2013-01-01

    Returning to the sea, just like invasion of land, has occurred in many groups of animals and plants. For flowering plants, traits adapted to the terrestrial environments have to change or adopt a new function to allow the plants to survive and prosper in the sea where water motion tends to rotate and move seeds. In this investigation, how seeds of the seagrass Thalassia hemprichii (Hydrocharitaceae), a common monocotyledon in the Indo-Pacific, adapt to the wavy environment was studied. Mature seeds were collected from Dongsha Atoll in South China Sea. The effects of light qualities on seed germination, the seed morphology, the unipolar distribution of starch granules in the endosperms and growth of root hair-like filamentous cells from basal surface of the seeds were all found to differ from those of terrestrial monocotyledons. Physiologically, germination of the seeds was stimulated by blue light rather than red light. Morphologically, the bell-shaped seeds coupled with the unipolar distribution of starch granules in the enlarged bases helped maintain their upright posture on the tidal seafloor. Growth of root hair-like filamentous cells from the basal surface of the seeds prior to primary root growth served to attach onto sediments, providing leverage and attachment required by the primary roots to insert into sediments. These filamentous cells grasped coral sand but not silicate sand, demonstrating a habitat preference of this species. PMID:24040188

  18. Novel engineered tendon-fibrocartilage-bone composite with cyclic tension for rotator cuff repair.

    PubMed

    Liu, Qian; Hatta, Taku; Qi, Jun; Liu, Haoyu; Thoreson, Andrew R; Amadio, Peter C; Moran, Steven L; Steinmann, Scott P; Gingery, Anne; Zhao, Chunfeng

    2018-05-15

    Surgical repair of rotator cuff tears presents a significant clinical challenge with high failure rates and inferior functional outcomes. Graft augmentation improves repair outcomes, however currently available grafting materials have limitations. While cell-seeded decellularized tendon slices may facilitate cell infiltration, promote tendon incorporation and preserve original mechanical strength, the unique fibrocartilage zone is yet to be successfully reestablished. In this study, we investigated the biological and mechanical properties of an engineered tendon-fibrocartilage-bone composite (TFBC) with cyclic tension (3% strain, 0.2 Hz). Decellularized TFBCs seeded with bone marrow-derived mesenchymal stem cell (BMSCs) sheets and subjected to mechanical stimulation for up to 7 days, were characterized by histology, immunohistochemistry, scanning electron microscopy, mechanical testing, and transcriptional regulation. The decellularized TFBC maintained native enthesis structure and properties. Mechanically stimulated TFBC-BMSC constructs displayed increased cell migration after 7 days of culture compared to static groups. The seeded cell sheet not only integrated well with tendon scaffold but also distributed homogeneously and aligned to the direction of stretch under dynamic culture. Developmental genes were regulated including, scleraxis which was significantly upregulated with mechanical stimulation. The Young's modulus of the cell-seeded constructs was significantly higher compared to the non-cell-seeded controls. In conclusion, the results of this study reveal that the TFBC-BMSC composite provides an ideal multilayer construct for cell seeding and growth, with mechanical preconditioning further enhances cell penetration and differentiation. The BMSC cell sheet revitalized TFBC in conjunction with mechanical stimulation could serve as a novel and primed biological patch to improve rotator cuff repair. This article is protected by copyright. All rights reserved.

  19. α-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana.

    PubMed

    Shigeyama, Takuma; Watanabe, Asuka; Tokuchi, Konatsu; Toh, Shigeo; Sakurai, Naoki; Shibuya, Naoto; Kawakami, Naoto

    2016-10-01

    Regulation and maintenance of cell wall physical properties are crucial for plant growth and environmental response. In the germination process, hypocotyl cell expansion and endosperm weakening are prerequisites for dicot seeds to complete germination. We have identified the Arabidopsis mutant thermoinhibition-resistant germination 1 (trg1), which has reduced seed dormancy and insensitivity to unfavourable conditions for germination owing to a loss-of-function mutation of TRG1/XYL1, which encodes an α-xylosidase. Compared to those of wild type, the elongating stem of trg1 showed significantly lower viscoelasticity, and the fruit epidermal cells were longitudinally shorter and horizontally enlarged. Actively growing tissues of trg1 over-accumulated free xyloglucan oligosaccharides (XGOs), and the seed cell wall had xyloglucan with a greatly reduced molecular weight. These observations suggest that XGOs reduce xyloglucan size by serving as an acceptor in transglycosylation and eventually enhancing cell wall loosening. TRG1/XYL1 gene expression was abundant in growing wild-type organs and tissues but relatively low in cells at most actively elongating part of the tissues, suggesting that α-xylosidase contributes to maintaining the mechanical integrity of the primary cell wall in the growing and pre-growing tissues. In germinating seeds of trg1, expression of genes encoding specific abscisic acid and gibberellin metabolism enzymes was altered in accordance with the aberrant germination phenotype. Thus, cell wall integrity could affect seed germination not only directly through the physical properties of the cell wall but also indirectly through the regulation of hormone gene expression. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  20. Micro-fabricated scaffolds lead to efficient remission of diabetes in mice.

    PubMed

    Buitinga, Mijke; Assen, Frank; Hanegraaf, Maaike; Wieringa, Paul; Hilderink, Janneke; Moroni, Lorenzo; Truckenmüller, Roman; van Blitterswijk, Clemens; Römer, Gert-Willem; Carlotti, Françoise; de Koning, Eelco; Karperien, Marcel; van Apeldoorn, Aart

    2017-08-01

    Despite the clinical success of intrahepatic islet transplantation in treating type 1 diabetes, factors specific to this transplantation site hinder long-term insulin independence. The adoption of alternative, extravascular sites likely improve islet survival and function, but few locations are able to sufficiently confine islets in order to facilitate engraftment. This work describes a porous microwell scaffold with a well-defined pore size and spacing designed to guarantee islet retention at an extrahepatic transplantation site and facilitate islet revascularization. Three techniques to introduce pores were characterized: particulate leaching; solvent casting on pillared wafers; and laser drilling. Our criteria of a maximum pore diameter of 40 μm were best achieved via laser drilling. Transplantation studies in the epididymal fat of diabetic mice elucidated the potential of this porous scaffold platform to restore blood glucose levels and facilitate islet engraftment. Six out of eight mice reverted to stable normoglycemia with a mean time to remission of 6.2 ± 3.2 days, which was comparable to that of the gold standard of renal subcapsular islet grafts. In contrast, when islets were transplanted in the epididymal fat pad without a microwell scaffold, only two out of seven mice reverted to stable normoglycemia. Detailed histological evaluation four weeks after transplantation found a comparable vascular density in scaffold-seeded islets, renal subcapsular islets and native pancreatic islets. However, the vascularization pattern in scaffold-seeded islets was more inhomogeneous compared to native pancreatic islets with a higher vascular density in the outer shell of the islets compared to the inner core. We also observed a corresponding decrease in the beta-cell density in the islet core. Despite this, our data indicated that islets transplanted in the microwell scaffold platform were able to maintain a viable beta-cell population and restore glycemic control. Furthermore, we demonstrated that the microwell scaffold platform facilitated detailed analysis at a subcellular level to correlate design parameters with functional physiological observations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Impact of Membrane-Induced Particle Immobilization on Seeded Growth Monitored by In Situ Liquid Scanning Transmission Electron Microscopy.

    PubMed

    Weiner, Rebecca G; Chen, Dennis P; Unocic, Raymond R; Skrabalak, Sara E

    2016-05-01

    In situ liquid cell scanning transmission electron microscopy probes seeded growth in real time. The growth of Pd on Au nanocubes is monitored as a model system to compare growth within a liquid cell and traditional colloidal synthesis. Different growth patterns are observed due to seed immobilization and the highly reducing environment within the liquid cell. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A Fiberless Seed Mutation in Cotton Is Associated with Lack of Fiber Cell Initiation in Ovule Epidermis and Alterations in Sucrose Synthase Expression and Carbon Partitioning in Developing Seeds1

    PubMed Central

    Ruan, Yong-Ling; Chourey, Prem S.

    1998-01-01

    Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype. PMID:9765525

  3. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds

    PubMed

    Ruan; Chourey

    1998-10-01

    Fiber cell initiation in the epidermal cells of cotton (Gossypium hirsutum L.) ovules represents a unique example of trichome development in higher plants. Little is known about the molecular and metabolic mechanisms controlling this process. Here we report a comparative analysis of a fiberless seed (fls) mutant (lacking fibers) and a normal (FLS) mutant to better understand the initial cytological events in fiber development and to analyze the metabolic changes that are associated with the loss of a major sink for sucrose during cellulose biosynthesis in the mutant seeds. On the day of anthesis (0 DAA), the mutant ovular epidermal cells lacked the typical bud-like projections that are seen in FLS ovules and are required for commitment to the fiber development pathway. Cell-specific gene expression analyses at 0 DAA showed that sucrose synthase (SuSy) RNA and protein were undetectable in fls ovules but were in abundant, steady-state levels in initiating fiber cells of the FLS ovules. Tissue-level analyses of developing seeds 15 to 35 DAA revealed an altered temporal pattern of SuSy expression in the mutant relative to the normal genotype. Whether the altered programming of SuSy expression is the cause or the result of the mutation is unknown. The developing seeds of the fls mutant have also shown several correlated changes that represent altered carbon partitioning in seed coats and cotyledons as compared with the FLS genotype.

  4. SOME ENGINEERING PROPERTIES OF SHELLED AND KERNEL TEA (Camellia sinensis) SEEDS.

    PubMed

    Altuntas, Ebubekir; Yildiz, Merve

    2017-01-01

    Camellia sinensis is the source of tea leaves and it is an economic crop now grown around the World. Tea seed oil has been used for cooking in China and other Asian countries for more than a thousand years. Tea is the most widely consumed beverages after water in the world. It is mainly produced in Asia, central Africa, and exported throughout the World. Some engineering properties (size dimensions, sphericity, volume, bulk and true densities, friction coefficient, colour characteristics and mechanical behaviour as rupture force of shelled and kernel tea ( Camellia sinensis ) seeds were determined in this study. This research was carried out for shelled and kernel tea seeds. The shelled tea seeds used in this study were obtained from East-Black Sea Tea Cooperative Institution in Rize city of Turkey. Shelled and kernel tea seeds were characterized as large and small sizes. The average geometric mean diameter and seed mass of the shelled tea seeds were 15.8 mm, 10.7 mm (large size); 1.47 g, 0.49 g (small size); while the average geometric mean diameter and seed mass of the kernel tea seeds were 11.8 mm, 8 mm for large size; 0.97 g, 0.31 g for small size, respectively. The sphericity, surface area and volume values were found to be higher in a larger size than small size for the shelled and kernel tea samples. The shelled tea seed's colour intensity (Chroma) were found between 59.31 and 64.22 for large size, while the kernel tea seed's chroma values were found between 56.04 68.34 for large size, respectively. The rupture force values of kernel tea seeds were higher than shelled tea seeds for the large size along X axis; whereas, the rupture force values of along X axis were higher than Y axis for large size of shelled tea seeds. The static coefficients of friction of shelled and kernel tea seeds for the large and small sizes higher values for rubber than the other friction surfaces. Some engineering properties, such as geometric mean diameter, sphericity, volume, bulk and true densities, the coefficient of friction, L*, a*, b* colour characteristics and rupture force of shelled and kernel tea ( Camellia sinensis ) seeds will serve to design the equipment used in postharvest treatments.

  5. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    PubMed

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Immunolocalization of pectic polysaccharides during abscission in pea seeds (Pisum sativum L.) and in abscission less def pea mutant seeds.

    PubMed

    Lee, YeonKyeong; Ayeh, Kwadwo Owusu; Ambrose, Mike; Hvoslef-Eide, Anne Kathrine

    2016-08-31

    In pea seeds (Pisum sativum L.), the presence of the Def locus determines abscission event between its funicle and the seed coat. Cell wall remodeling is a necessary condition for abscission of pea seed. The changes in cell wall components in wild type (WT) pea seed with Def loci showing seed abscission and in abscission less def mutant peas were studied to identify the factors determining abscission and non-abscission event. Changes in pectic polysaccharides components were investigated in WT and def mutant pea seeds using immunolabeling techniques. Pectic monoclonal antibodies (1 → 4)-β-D-galactan (LM5), (1 → 5)-α-L-arabinan(LM6), partially de-methyl esterified homogalacturonan (HG) (JIM5) and methyl esterified HG (JIM7) were used for this study. Prior to abscission zone (AZ) development, galactan and arabinan reduced in the predestined AZ of the pea seed and disappeared during the abscission process. The AZ cells had partially de-methyl esterified HG while other areas had highly methyl esterified HG. A strong JIM5 labeling in the def mutant may be related to cell wall rigidity in the mature def mutants. In addition, the appearance of pectic epitopes in two F3 populations resulting from cross between WT and def mutant parents was studied. As a result, we identified that homozygous dominant lines (Def/Def) showing abscission and homozygous recessive lines (def/def) showing non-abscission had similar immunolabeling pattern to their parents. However, the heterogeneous lines (Def/def) showed various immunolabeling pattern and the segregation pattern of the Def locus. Through the study of the complexity and variability of pectins in plant cell walls as well as understanding the segregation patterns of the Def locus using immunolabeling techniques, we conclude that cell wall remodeling occurs in the abscission process and de-methyl esterification may play a role in the non-abscission event in def mutant. Overall, this study contributes new insights into understanding the structural and architectural organization of the cell walls during abscission.

  7. Seed bank and established vegetation in the last remnants of the Mexican Central Plateau wetlands: the Lerma marshes.

    PubMed

    Zepeda, Carmen; Lot, Antonio; Nemiga, Xanat Antonio; Manjarrez, Javier

    2014-06-01

    Seed banks play a central role in vegetation dynamics of many wetlands. Therefore, knowledge of seed reservoirs in the soils of aquatic communities should provide useful tools for conservation and restoration efforts. This study was conducted in the Lerma marshes, one of the last remnants of the vast wetlands that were once in the Mexican Central Plateau. The main objective was to determine the composition and abundance of seed bank and its relationship with established vegetation of the three Lerma marshes. In each marsh, we systematically selected 18 to 40 sampling sites. In each site, the composition of vascular plant vegetation was evaluated in two 10m lines perpendicular to the shore. Every 0.5m, we determined the coverage of species by measuring the intercepted length for each plant or group of plants. At each sampling site where we had evaluated the established vegetation, we collected a sample of the top 10cm of sediment; the soil cores were divided into an upper layer (0-5cm) and a lower layer (5-10cm). These samples were used to evaluate the seed bank by the seedling emergence method. All samples were placed in a greenhouse at 20-25 degrees C and remained flooded for 15 weeks. Forty-nine species were recorded in the vegetation. Chiconahuapan had the richest and most diverse flora and the greatest number of perennial species. A life-forms analysis showed that perennial herbs, especially rooted-emergent hydrophytes, dominated in the three wetlands. Sixty-one species were identified in the total seed bank; Chimaliapan had the most diverse total seed bank, whereas the mean seedling density was higher in Chignahuapan. Only two species of the total seed bank of each marsh had a density greater than 10% of the total, and more than half were uncommon. The upper layer of sediment (0-5cm) contained two times more seeds/m2 and species per sample than the lower layer (5-10cm), and there was a significant decrease of seed density with depth. The detrended correspondence analysis produced a clear separation between the composition of the seed banks and established vegetation. In general, in each marsh there was less species diversity in the established vegetation than in the seed bank. Dominance by a few species in the seed bank, the presence of opportunistic species, and the low representation of established species in the seed bank suggest wetland degradation and a low probability of regenerating the natural communities from the seed bank. To ensure the permanence of these marshes, their biodiversity, and therefore the environmental services they provide, up to date planning is a must, and efforts to control and monitor hydrology, water quality, and the influence of human activities are suggested.

  8. Environmental Impact Research Program. Doveweeds (Croton supp.) Section 7.4.2, US Army Corps of Engineers Wildlife Resources Management Manual.

    DTIC Science & Technology

    1986-07-01

    inflorescences are formed. The inflorescence is an abbre-9viated terminal raceme with pistillate flowers below staminate flowers. The 3 -IC Figure 1...Distribution and distinguishing characteristics of woolly croton (Croton capitatus): (a) flowering branch, (b) fruit, and (c) seeds 4 ovary is 3- celled ...and the capsule is 3- celled and 3-seeded except for C. monanthogynus, which is 1-seeded. When seeds mature in late fall, they are forcefully ejected

  9. Application of response surface methodology to maximize the productivity of scalable automated human embryonic stem cell manufacture.

    PubMed

    Ratcliffe, Elizabeth; Hourd, Paul; Guijarro-Leach, Juan; Rayment, Erin; Williams, David J; Thomas, Robert J

    2013-01-01

    Commercial regenerative medicine will require large quantities of clinical-specification human cells. The cost and quality of manufacture is notoriously difficult to control due to highly complex processes with poorly defined tolerances. As a step to overcome this, we aimed to demonstrate the use of 'quality-by-design' tools to define the operating space for economic passage of a scalable human embryonic stem cell production method with minimal cell loss. Design of experiments response surface methodology was applied to generate empirical models to predict optimal operating conditions for a unit of manufacture of a previously developed automatable and scalable human embryonic stem cell production method. Two models were defined to predict cell yield and cell recovery rate postpassage, in terms of the predictor variables of media volume, cell seeding density, media exchange and length of passage. Predicted operating conditions for maximized productivity were successfully validated. Such 'quality-by-design' type approaches to process design and optimization will be essential to reduce the risk of product failure and patient harm, and to build regulatory confidence in cell therapy manufacturing processes.

  10. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells

    PubMed Central

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A.; de Boer, Jan; Watt, Fiona M.

    2016-01-01

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation. PMID:26757610

  11. Scalable topographies to support proliferation and Oct4 expression by human induced pluripotent stem cells.

    PubMed

    Reimer, Andreas; Vasilevich, Aliaksei; Hulshof, Frits; Viswanathan, Priyalakshmi; van Blitterswijk, Clemens A; de Boer, Jan; Watt, Fiona M

    2016-01-13

    It is well established that topographical features modulate cell behaviour, including cell morphology, proliferation and differentiation. To define the effects of topography on human induced pluripotent stem cells (iPSC), we plated cells on a topographical library containing over 1000 different features in medium lacking animal products (xeno-free). Using high content imaging, we determined the effect of each topography on cell proliferation and expression of the pluripotency marker Oct4 24 h after seeding. Features that maintained Oct4 expression also supported proliferation and cell-cell adhesion at 24 h, and by 4 days colonies of Oct4-positive, Sox2-positive cells had formed. Computational analysis revealed that small feature size was the most important determinant of pluripotency, followed by high wave number and high feature density. Using this information we correctly predicted whether any given topography within our library would support the pluripotent state at 24 h. This approach not only facilitates the design of substrates for optimal human iPSC expansion, but also, potentially, identification of topographies with other desirable characteristics, such as promoting differentiation.

  12. Plasma treatment switches the regime of wetting and floating of pepper seeds.

    PubMed

    Shapira, Yekaterina; Multanen, Victor; Whyman, Gene; Bormashenko, Yelena; Chaniel, Gilad; Barkay, Zahava; Bormashenko, Edward

    2017-09-01

    Cold radiofrequency plasma treatment modified wetting and floating regimes of pepper seeds. The wetting regime of plasma-treated seeds was switched from the Wenzel-like partial wetting to the complete wetting. No hydrophobic recovery following the plasma treatment was registered. Environmental scanning electron microscopy of the fine structure of the (three-phase) triple line observed with virgin and plasma-treated seeds is reported. Plasma treatment promoted rapid sinking of pepper seeds placed on the water/air interface. Plasma treatment did not influence the surface topography of pepper seeds, while charged them electrically. Electrostatic repulsion of floating plasma-treated seeds was observed. The surface charge density was estimated from the data extracted from floating of charged seeds and independently with the electrostatic pendulum as σ≈1-2μC/m 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Hsp104 Overexpression Cures Saccharomyces cerevisiae [PSI+] by Causing Dissolution of the Prion Seeds

    PubMed Central

    Park, Yang-Nim; Zhao, Xiaohong; Yim, Yang-In; Todor, Horia; Ellerbrock, Robyn; Reidy, Michael; Eisenberg, Evan; Masison, Daniel C.

    2014-01-01

    The [PSI+] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI+], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI+]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI+] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI+] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis. PMID:24632242

  14. Hsp104 overexpression cures Saccharomyces cerevisiae [PSI+] by causing dissolution of the prion seeds.

    PubMed

    Park, Yang-Nim; Zhao, Xiaohong; Yim, Yang-In; Todor, Horia; Ellerbrock, Robyn; Reidy, Michael; Eisenberg, Evan; Masison, Daniel C; Greene, Lois E

    2014-05-01

    The [PSI(+)] yeast prion is formed when Sup35 misfolds into amyloid aggregates. [PSI(+)], like other yeast prions, is dependent on the molecular chaperone Hsp104, which severs the prion seeds so that they pass on as the yeast cells divide. Surprisingly, however, overexpression of Hsp104 also cures [PSI(+)]. Several models have been proposed to explain this effect: inhibition of severing, asymmetric segregation of the seeds between mother and daughter cells, and dissolution of the prion seeds. First, we found that neither the kinetics of curing nor the heterogeneity in the distribution of the green fluorescent protein (GFP)-labeled Sup35 foci in partially cured yeast cells is compatible with Hsp104 overexpression curing [PSI(+)] by inhibiting severing. Second, we ruled out the asymmetric segregation model by showing that the extent of curing was essentially the same in mother and daughter cells and that the fluorescent foci did not distribute asymmetrically, but rather, there was marked loss of foci in both mother and daughter cells. These results suggest that Hsp104 overexpression cures [PSI(+)] by dissolution of the prion seeds in a two-step process. First, trimming of the prion seeds by Hsp104 reduces their size, and second, their amyloid core is eliminated, most likely by proteolysis.

  15. E. coli o157:H7 population reduction from alfalfa seeds with malic acid and thiamine dilauryl sulfate and quality evaluation of the resulting sprouts.

    PubMed

    Fransisca, Lilia; Park, Hee Kyung; Feng, Hao

    2012-02-01

    It has been reported that washing seeds with a 20000 ppm Ca(OCl)(2) solution as recommended by the U.S. Food and Drug Administration is unable to eliminate E. coli cells attached to seed surfaces, and the bacterial cells that have survived a sanitation wash can proliferate during sprouting to a high population. The objectives of this research were to examine the efficacy of malic acid (MA) and thiamine dilauryl sulfate (TDS) combined treatments on the inactivation of E. coli O157:H7 on alfalfa seeds, to study the growth of the remaining E. coli cells during sprouting, and to evaluate the sprout quality. When 10 g of inoculated alfalfa seeds were washed in a 10% MA-1% TDS solution, a complete elimination of E. coli was achieved. The same result was observed by washing the seeds in a 20000 ppm Ca(OCl)(2) solution. However, when the seed size was increased to 50 g while maintaining the same seed-to-sanitizer ratio, both the MA + TDS and the 20000 ppm chlorine washes failed to completely inactivate the E. coli cells on the seeds. Nevertheless, the 10% MA-1% TDS solution was significantly more effective in E. coli count reduction compared to the 20000 ppm chlorine wash. The E. coli O157:H7 cells remaining on the seeds after treatments with both sanitizers grew up to 7 to 8 log CFU/g sprout after 96 h of sprouting. Under the treatment conditions used in this study, none of the treatments resulted in significant differences in germination rate, yield, or quality of the sprouts. The malic acid (MA) and thiamine dilauryl sulfate (TDS) combined treatment may provide a new solution to secure the microbial safety of seeds and sprouts. An important finding of this study is that seed sample size has a significant impact on the inactivation of E. coli O157:H7 on alfalfa seeds. The microbial inactivation results obtained in a laboratory set-up cannot be directly applied to a large scale operation. A validation test on the large scale has to be performed to evaluate the efficacy of the sanitizer. © 2012 Institute of Food Technologists®

  16. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs

    NASA Astrophysics Data System (ADS)

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F. J.; Cummer, Steven A.

    2018-01-01

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 103.

  17. Mathematical modelling of tissue formation in chondrocyte filter cultures.

    PubMed

    Catt, C J; Schuurman, W; Sengers, B G; van Weeren, P R; Dhert, W J A; Please, C P; Malda, J

    2011-12-17

    In the field of cartilage tissue engineering, filter cultures are a frequently used three-dimensional differentiation model. However, understanding of the governing processes of in vitro growth and development of tissue in these models is limited. Therefore, this study aimed to further characterise these processes by means of an approach combining both experimental and applied mathematical methods. A mathematical model was constructed, consisting of partial differential equations predicting the distribution of cells and glycosaminoglycans (GAGs), as well as the overall thickness of the tissue. Experimental data was collected to allow comparison with the predictions of the simulation and refinement of the initial models. Healthy mature equine chondrocytes were expanded and subsequently seeded on collagen-coated filters and cultured for up to 7 weeks. Resulting samples were characterised biochemically, as well as histologically. The simulations showed a good representation of the experimentally obtained cell and matrix distribution within the cultures. The mathematical results indicate that the experimental GAG and cell distribution is critically dependent on the rate at which the cell differentiation process takes place, which has important implications for interpreting experimental results. This study demonstrates that large regions of the tissue are inactive in terms of proliferation and growth of the layer. In particular, this would imply that higher seeding densities will not significantly affect the growth rate. A simple mathematical model was developed to predict the observed experimental data and enable interpretation of the principal underlying mechanisms controlling growth-related changes in tissue composition.

  18. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins.

    PubMed

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J; Ellis, Brian E; Haughn, George W

    2017-02-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. © 2017 American Society of Plant Biologists. All Rights Reserved.

  19. Identification and Characterization of Arabidopsis Seed Coat Mucilage Proteins1[OPEN

    PubMed Central

    Tsai, Allen Yi-Lun; Kunieda, Tadashi; Rogalski, Jason; Foster, Leonard J.; Ellis, Brian E.

    2017-01-01

    Plant cell wall proteins are important regulators of cell wall architecture and function. However, because cell wall proteins are difficult to extract and analyze, they are generally poorly understood. Here, we describe the identification and characterization of proteins integral to the Arabidopsis (Arabidopsis thaliana) seed coat mucilage, a specialized layer of the extracellular matrix composed of plant cell wall carbohydrates that is used as a model for cell wall research. The proteins identified in mucilage include those previously identified by genetic analysis, and several mucilage proteins are reduced in mucilage-deficient mutant seeds, suggesting that these proteins are genuinely associated with the mucilage. Arabidopsis mucilage has both nonadherent and adherent layers. Both layers have similar protein profiles except for proteins involved in lipid metabolism, which are present exclusively in the adherent mucilage. The most abundant mucilage proteins include a family of proteins named TESTA ABUNDANT1 (TBA1) to TBA3; a less abundant fourth homolog was named TBA-LIKE (TBAL). TBA and TBAL transcripts and promoter activities were detected in developing seed coats, and their expression requires seed coat differentiation regulators. TBA proteins are secreted to the mucilage pocket during differentiation. Although reverse genetics failed to identify a function for TBAs/TBAL, the TBA promoters are highly expressed and cell type specific and so should be very useful tools for targeting proteins to the seed coat epidermis. Altogether, these results highlight the mucilage proteome as a model for cell walls in general, as it shares similarities with other cell wall proteomes while also containing mucilage-specific features. PMID:28003327

  20. From 3D Bioprinters to a fully integrated Organ Biofabrication Line

    NASA Astrophysics Data System (ADS)

    Passamai, V. E.; Dernowsek, J. A.; Nogueira, J.; Lara, V.; Vilalba, F.; Mironov, V. A.; Rezende, R. A.; da Silva, J. V.

    2016-04-01

    About 30 years ago, the 3D printing technique appeared. From that time on, engineers in medical science field started to look at 3D printing as a partner. Firstly, biocompatible and biodegradable 3D structures for cell seeding called “scaffolds” were fabricated for in vitro and in vivo animal trials. The advances proved to be of great importance, but, the use of scaffolds faces some limitations, such as low homogeneity and low density of cell aggregates. In the last decade, 3D bioprinting technology emerged as a promising approach to overcome these limitations and as one potential solution to the challenge of organ fabrication, to obtain very similar 3D human tissues, not only for transplantation, but also for drug discovery, disease research and to decrease the usage of animals in laboratory experimentation. 3D bioprinting allowed the fabrication of 3D alive structures with higher and controllable cell density and homogeneity. Other advantage of biofabrication is that the tissue constructs are solid scaffold-free. This paper presents the 3D bioprinting technology; equipment development, stages and components of a complex Organ Bioprinting Line (OBL) and the importance of developing a Virtual OBL.

  1. Impacts of Insect Herbivores on Plant Populations.

    PubMed

    Myers, Judith H; Sarfraz, Rana M

    2017-01-31

    Apparent feeding damage by insects on plants is often slight. Thus, the influences of insect herbivores on plant populations are likely minor. The role of insects on host-plant populations can be elucidated via several methods: stage-structured life tables of plant populations manipulated by herbivore exclusion and seed-addition experiments, tests of the enemy release hypothesis, studies of the effects of accidentally and intentionally introduced insect herbivores, and observations of the impacts of insect species that show outbreak population dynamics. These approaches demonstrate that some, but not all, insect herbivores influence plant population densities. At times, insect-feeding damage kills plants, but more often, it reduces plant size, growth, and seed production. Plant populations for which seed germination is site limited will not respond at the population level to reduced seed production. Insect herbivores can influence rare plant species and need to be considered in conservation programs. Alterations due to climate change in the distributions of insect herbivores indicate the possibility of new influences on host plants. Long-term studies are required to show if density-related insect behavior stabilizes plant populations or if environmental variation drives most temporal fluctuations in plant densities. Finally, insects can influence plant populations and communities through changing the diversity of nonhost species, modifying nutrient fluxes, and rejuvenating over mature forests.

  2. A global analysis of bidirectional interactions in alpine plant communities shows facilitators experiencing strong reciprocal fitness costs.

    PubMed

    Schöb, Christian; Michalet, Richard; Cavieres, Lohengrin A; Pugnaire, Francisco I; Brooker, Rob W; Butterfield, Bradley J; Cook, Bradley J; Kikvidze, Zaal; Lortie, Christopher J; Xiao, Sa; Al Hayek, Patrick; Anthelme, Fabien; Cranston, Brittany H; García, Mary-Carolina; Le Bagousse-Pinguet, Yoann; Reid, Anya M; le Roux, Peter C; Lingua, Emanuele; Nyakatya, Mawethu J; Touzard, Blaise; Zhao, Liang; Callaway, Ragan M

    2014-04-01

    Facilitative interactions are defined as positive effects of one species on another, but bidirectional feedbacks may be positive, neutral, or negative. Understanding the bidirectional nature of these interactions is a fundamental prerequisite for the assessment of the potential evolutionary consequences of facilitation. In a global study combining observational and experimental approaches, we quantified the impact of the cover and richness of species associated with alpine cushion plants on reproductive traits of the benefactor cushions. We found a decline in cushion seed production with increasing cover of cushion-associated species, indicating that being a benefactor came at an overall cost. The effect of cushion-associated species was negative for flower density and seed set of cushions, but not for fruit set and seed quality. Richness of cushion-associated species had positive effects on seed density and modulated the effects of their abundance on flower density and fruit set, indicating that the costs and benefits of harboring associated species depend on the composition of the plant assemblage. Our study demonstrates 'parasitic' interactions among plants over a wide range of species and environments in alpine systems, and we consider their implications for the possible selective effects of interactions between benefactor and beneficiary species. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Impact of Thiamethoxam Seed Treatment on Growth and Yield of Rice, Oryza sativa.

    PubMed

    Lanka, S K; Senthil-Nathan, S; Blouin, D J; Stout, M J

    2017-04-01

    Neonicotinoid seed treatments are widely used in agriculture. In rice, Oryza sativa L., in the southern United States, neonicotinoid seed treatments are used to manage early-season populations of the rice water weevil, Lissorhoptrus oryzophilus Kuschel. In addition to their effects on pests, neonicotinoid seed treatments may benefit crop plants directly by increasing plant growth or altering plant responses to stresses. As part of an effort to assess the overall benefits of thiamethoxam seed treatment in rice, rice emergence, growth, and yield were evaluated. In a growth chamber, rice emergence from the soil was 1-2 d more rapid from treated than untreated seeds. These laboratory results were supported by field experiments that revealed higher stand counts from thiamethoxam-treated plots than from untreated plots. Yields from thiamethoxam treatments were no higher than those from untreated plots under conditions in which weevil larvae were absent, a result inconsistent with the hypothesis that thiamethoxam imparts direct yield benefits. In a series of field experiments conducted to compare the relationship between weevil larval densities and rice yields in plots treated with several rates of thiamethoxam or chlorantraniliprole (another widely used seed treatment insecticide), the relationship between weevil density and yield did not differ markedly among both seed treatments. Overall yields from both seed treatments did not differ significantly, despite more effective control in chlorantraniliprole-treated plots. These results provide strong support for effect of thiamethoxam on early-season growth of rice, but only weak support for its direct effect on rice yields. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Prevalence and strength of density-dependent tree recruitment

    Treesearch

    Kai Zhu; Christopher W. Woodall; Joao V.D. Monteiro; James S. Clark

    2015-01-01

    Density dependence could maintain diversity in forests, but studies continue to disagree on its role. Part of the disagreement results from the fact that different studies have evaluated different responses (survival, recruitment, or growth) of different stages (seeds, seedlings, or adults) to different inputs (density of seedlings, density or distance to adults). Most...

  5. The focusing effect in backward Raman amplification in plasma

    NASA Astrophysics Data System (ADS)

    Li, Zhaoli; Peng, Hao; Zuo, Yanlei; Su, Jingxin; Yang, Suhui

    2018-04-01

    In this paper, the focusing effect on backward Raman amplification in plasma is investigated. A fluid model, used to simulate the backward Raman amplification and including the relativistic, ponderomotive, and thermal self-focusing and the mutual-focusing effect simultaneously, is proposed and investigated. The focusing effect is shown to severely distort the profile of the seed when the seed intensity was as high as 10 17 W/cm2. Reducing the plasma density can relax the focusing effect, but at the cost of decreasing the amplification efficiency. Changing the profile of the seed has a limited effect on mitigating the focusing effect. A Gaussian profile of the pump and a defocusing shape of the plasma density seem to be an effective way to mitigate the focusing effect without decreasing the amplification efficiency.

  6. Collagen scaffolds derived from a marine source and their biocompatibility.

    PubMed

    Song, Eun; Yeon Kim, So; Chun, Taehoon; Byun, Hyun-Jung; Lee, Young Moo

    2006-05-01

    The primary sources of industrial collagens are calf skin and bone. However, these carry a high risk of bovine spongiform encephalopathy or transmissible spongiform encephalopathy. In this study, a novel form of acid-soluble collagen was extracted from jellyfish in an effort to obtain an alternative and safer collagen. Porous scaffolds composed of jellyfish collagen were prepared by freeze-drying and cross-linking with 1-ethyl-(3-3-dimethylaminopropyl) carbodiimide hydrochloride/N-hydroxysuccinimide to be used in tissue engineering applications. Enzymatic degradation kinetics of jellyfish collagen scaffolds were controlled by EDC/NHS-cross-linking density. Results from an MTT assay indicated that jellyfish collagen exhibited higher cell viability than other naturally derived biomaterials, including bovine collagen, gelatin, hyaluronic acid, and glucan. Jellyfish collagen scaffolds also had a highly porous and interconnected pore structure, which is useful for an high-density cell seeding, an efficient nutrient and an oxygen supply to the cells cultured in the three-dimensional matrices. To determine whether jellyfish collagen evokes any specific inflammatory response compared to that induced by bovine collagen or gelatin, we measured the levels of pro-inflammatory cytokines and antibody secretions and monitored the population changes of immune cells after in vivo implantation. Jellyfish collagen was found to induce an immune response at least comparable to those caused by bovine collagen and gelatin.

  7. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    PubMed Central

    Rodriguez-Brotons, A.; Bietiger, W.; Peronet, C.; Magisson, J.; Sookhareea, C.; Langlois, A.; Mura, C.; Jeandidier, N.; Pinget, M.; Sigrist, S.; Maillard, E.

    2016-01-01

    In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm2) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance. PMID:26824040

  8. Seed bank characteristics of the Nymphoides peltata population in Lake Taihu

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Chen, Qiuwen; Chen, Kaining

    2015-08-01

    The Nymphoides peltata (N. peltata) population has shown rapid expansion in Lake Taihu, China, in recent years. The core question is whether N. peltata seeds have contributed to the expansion. To address this, we randomly selected three N. peltata stands to investigate the seed bank characteristics of N. peltata in Lake Taihu. Results showed that N. peltata had high seed production, with a maximum seed yield of 1763 seeds per m2. Density of intact and fragmented seeds decreased rapidly with sediment depth. Few intact or fragmented seeds were distributed at depths greater than 4 cm in the sediment. Spatial distribution of the seed bank indicated that most seeds sank to the sediment within the N. peltata stands, and few seeds took advantage of their floating ability. Seeds recovered from the sediment during April to June had a low germination rate, and no seeds germinated during October to April. Cold exposure treatment increased the germination rate remarkably. No seedlings were found in the field from January 2012 to December 2012, indicating that few seeds were successfully established in the surveyed area. The results suggested that sexual reproduction had little direct contribution to the N. peltata expansion in this large shallow lake.

  9. Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone.

    PubMed

    Moreno-de Las Heras, Mariano; Turnbull, Laura; Wainwright, John

    2016-09-01

    Large areas of desert grasslands in the southwestern United States have shifted to sparse shrublands dominated by drought-tolerant woody species over the last 150 yr, accompanied by accelerated soil erosion. An important step toward the understanding of patterns in species dominance and vegetation change at desert grassland-shrubland transitions is the study of environmental limitations imposed by the shrub-encroachment phenomenon on plant establishment. Here, we analyze the structure of soil seed banks, environmental limitations for seed germination (i.e., soil-water availability and temperature), and simulated seedling emergence and early establishment of dominant species (black grama, Bouteloua eriopoda, and creosotebush, Larrea tridentata) across a Chihuahuan grassland-shrubland ecotone (Sevilleta National Wildlife Refuge, New Mexico, USA). Average viable seed density in soils across the ecotone is generally low (200-400 seeds/m 2 ), although is largely concentrated in densely vegetated areas (with peaks up to 800-1,200 seeds/m 2 in vegetated patches). Species composition in the seed bank is strongly affected by shrub encroachment, with seed densities of grass species sharply decreasing in shrub-dominated sites. Environmental conditions for seed germination and seedling emergence are synchronized with the summer monsoon. Soil-moisture conditions for seedling establishment of B. eriopoda take place with a recurrence interval ranging between 5 and 8 yr for grassland and shrubland sites, respectively, and are favored by strong monsoonal precipitation. Limited L. tridentata seed dispersal and a narrow range of rainfall conditions for early seedling establishment (50-100 mm for five to six consecutive weeks) constrain shrub-recruitment pulses to localized and episodic decadal events (9-25 yr recurrence intervals) generally associated with late-summer rainfall. Re-establishment of B. eriopoda in areas now dominated by L. tridentata is strongly limited by the lack of seeds and decreased plant-available soil moisture for seedling establishment. © 2016 by the Ecological Society of America.

  10. Immunocytolocalization of extensin in developing soybean seed coats by immunogold-silver staining and by tissue printing on nitrocellulose paper

    PubMed Central

    1987-01-01

    In soybean seed coats the accumulation of the hydroxyproline-rich glycoprotein extensin is regulated in a developmental and tissue- specific manner. The time course of appearance of extensin during seed development was studied by Western blot analysis and by immunogold- silver localization. Using these techniques extensin was first detected at 16-18 d after anthesis, increasing during development to high levels at 24 d after anthesis. Immunogold-silver localization of extensin in the seed coat showed marked deposition of the glycoprotein in the walls of palisade epidermal cells and hourglass cells. The immunolocalization of extensin in developing soybean seeds was also made by a new technique--tissue printing on nitrocellulose paper. It was found that extensin is primarily localized in the seed coat, hilum, and vascular elements of the seed. PMID:3693394

  11. Effects of methanol-to-oil ratio, catalyst amount and reaction time on the FAME yield by in situ transesterification of rubber seeds (Hevea brasiliensis)

    NASA Astrophysics Data System (ADS)

    Abdulkadir, Bashir Abubakar; Uemura, Yoshimitsu; Ramli, Anita; Osman, Noridah B.; Kusakabe, Katsuki; Kai, Takami

    2014-10-01

    In this research, biodiesel is produced by in situ transesterification (direct transesterification) method from the rubber seeds using KOH as a catalyst. The influence of methanol to seeds mass ratio, duration of reaction, and catalyst loading was investigated. The result shows that, the best ratio of seeds to methanol is 1:6 (10 g seeds with 60 g methanol), 120 minutes reaction time and catalyst loading of 3.0 g. The maximum FAME yield obtain was 70 %. This findings support FAME production from the seeds of rubber tree using direct transesterifcation method from the seeds of rubber tree as an alternative to diesel fuel. Also, significant properties of biodiesel such as cloud point, density, pour point, specific gravity, and viscosity were investigated.

  12. Synthesis and Characterization of a Model Extracellular Matrix that Induces Partial Regeneration of Adult Mammalian Skin

    NASA Astrophysics Data System (ADS)

    Yannas, I. V.; Lee, E.; Orgill, D. P.; Skrabut, E. M.; Murphy, G. F.

    1989-02-01

    Regeneration of the dermis does not occur spontaneously in the adult mammal. The epidermis is regenerated spontaneously provided there is a dermal substrate over which it can migrate. Certain highly porous, crosslinked collagen--glycosaminoglycan copolymers have induced partial morphogenesis of skin when seeded with dermal and epidermal cells and then grafted on standard, full-thickness skin wounds in the adult guinea pig. A mature epidermis and a nearly physiological dermis, which lacked hair follicles but was demonstrably different from scar, were regenerated over areas as large as 16 cm2. These chemical analogs of extracellular matrices were morphogenetically active provided that the average pore diameter ranged between 20 and 125 μ m, the resistance to degradation by collagenase exceeded a critical limit, and the density of autologous dermal and epidermal cells inoculated therein was >5 × 104 cells per cm2 of wound area. Unseeded copolymers with physical structures that were within these limits delayed the onset of wound contraction by about 10 days but did not eventually prevent it. Seeded copolymers not only delayed contraction but eventually arrested and reversed it while new skin was being regenerated. The data identify a model extracellular matrix that acts as if it were an insoluble growth factor with narrowly specified physicochemical structure, functioning as a transient basal lamina during morphogenesis of skin.

  13. Optimized cell survival and seeding efficiency for craniofacial tissue engineering using clinical stem cell therapy.

    PubMed

    Rajan, Archana; Eubanks, Emily; Edwards, Sean; Aronovich, Sharon; Travan, Suncica; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Kaigler, Darnell

    2014-12-01

    Traumatic injuries involving the face are very common, yet the clinical management of the resulting craniofacial deficiencies is challenging. These injuries are commonly associated with missing teeth, for which replacement is compromised due to inadequate jawbone support. Using cell therapy, we report the upper jaw reconstruction of a patient who lost teeth and 75% of the supporting jawbone following injury. A mixed population of bone marrow-derived autologous stem and progenitor cells was seeded onto β-tricalcium phosphate (β-TCP), which served as a scaffold to deliver cells directly to the defect. Conditions (temperature, incubation time) to achieve the highest cell survival and seeding efficiency were optimized. Four months after cell therapy, cone beam computed tomography and a bone biopsy were performed, and oral implants were placed to support an engineered dental prosthesis. Cell seeding efficiency (>81%) of the β-TCP and survival during the seeding process (94%) were highest when cells were incubated with β-TCP for 30 minutes, regardless of incubation temperature; however, at 1 hour, cell survival was highest when incubated at 4°C. Clinical, radiographic, and histological analyses confirmed that by 4 months, the cell therapy regenerated 80% of the original jawbone deficiency with vascularized, mineralized bone sufficient to stably place oral implants. Functional and aesthetic rehabilitation of the patient was successfully completed with installation of a dental prosthesis 6 months following implant placement. This proof-of-concept clinical report used an evidence-based approach for the cell transplantation protocol used and is the first to describe a cell therapy for craniofacial trauma reconstruction. ©AlphaMed Press.

  14. The biomechanics of seed germination.

    PubMed

    Steinbrecher, Tina; Leubner-Metzger, Gerhard

    2017-02-01

    From a biomechanical perspective, the completion of seed (and fruit) germination depends on the balance of two opposing forces: the growth potential of the embryonic axis (radicle-hypocotyl growth zone) and the restraint of the seed-covering layers (endosperm, testa, and pericarp). The diverse seed tissues are composite materials which differ in their dynamic properties based on their distinct cell wall composition and water uptake capacities. The biomechanics of embryo cell growth during seed germination depend on irreversible cell wall loosening followed by water uptake due to the decreasing turgor, and this leads to embryo elongation and eventually radicle emergence. Endosperm weakening as a prerequisite for radicle emergence is a widespread phenomenon among angiosperms. Research into the biochemistry and biomechanics of endosperm weakening has demonstrated that the reduction in puncture force of a seed's micropylar endosperm is environmentally and hormonally regulated and involves tissue-specific expression of cell wall remodelling proteins such as expansins, diverse hydrolases, and the production of directly acting apoplastic reactive oxygen. The endosperm-weakening biomechanics and its underlying cell wall biochemistry differ between the micropylar (ME) and chalazal (CE) endosperm domains. In the ME, they involve cell wall loosening, cell separation, and programmed cell death to provide decreased and localized ME tissue resistance, autolysis, and finally the formation of an ME hole required for radicle emergence. Future work will further unravel the molecular mechanisms, environmental regulation, and evolution of the diverse biomechanical cell wall changes underpinning the control of germination by endosperm weakening. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Pine seed germination under weightlessness (a study of the Kosmos 782 satellite)

    NASA Technical Reports Server (NTRS)

    Platonova, R. N.; Parfenov, G. P.; Olkhovenko, V. P.; Karpova, N. I.; Pichugov, M. Y.

    1977-01-01

    Orientation of the above and underground organs of pine plants, grown from seeds under weightlessness, was found to be determined by seed position on the substrate. Normal plant growth was observed only if the seed embryos were oriented toward the substrate. Some differences were noted between the experimental and control plants concerning the amount of nucleoli in the root meristematic cells and the cell shape in cotyledonous leaves. No complete similarity was found in experimental results obtained with plants under weightlessness and under compensated gravity. The seeds were obtained from Pinus silvestris, considered to be particularly suitable for this experiment.

  16. An axial distribution of seeding, proliferation, and osteogenic differentiation of MC3T3-E1 cells and rat bone marrow-derived mesenchymal stem cells across a 3D Thai silk fibroin/gelatin/hydroxyapatite scaffold in a perfusion bioreactor.

    PubMed

    Sinlapabodin, Salita; Amornsudthiwat, Phakdee; Damrongsakkul, Siriporn; Kanokpanont, Sorada

    2016-01-01

    In cell culture, a perfusion bioreactor provides effective transportation of nutrients, oxygen, and waste removal to and from the core of the scaffold. In addition, it provides mechanical stimuli for enhancing osteogenic differentiation. In this study, we used an axial distribution of cell numbers, alkaline phosphatase (ALP) enzyme activity, and calcium content across 4 cross-sections of 10mm thick scaffold, made of Thai silk fibroin (SF)/gelatin (G)/hydroxyapatite (HA), as a tool to evaluate the suitable perfusion flow rate. These evaluations cover all cellular developmental phases starting from seeding, to proliferation, and later osteogenic differentiation. Mouse pre-osteoblastic MC3T3-E1 cell lines were used as a cell model during seeding and proliferation. The bioreactor seeded scaffold provided more uniform cell distribution across the scaffold compared to centrifugal and agitation seeding, while the overall number of adhered cells from bioreactor seeding was slightly lower than agitation seeding. The dynamic culture using 1 ml/min perfusion flow rate (initial shear stress of 0.1 dyn/cm(2)) enabled statistically higher MC3T3-E1 proliferation, ALP activity, and calcium deposition than those observed in the static-culturing condition. However, the perfusion flow rate of 1 ml/min seemed not to be enough for enhancing ALP expression across all sections of the scaffold. Rat bone marrow derived stromal cells (rMSC) were used in the detachment test and osteogenic differentiation. It was found that perfusion flow rate of 5 ml/min caused statistically higher cell detachment than that of 1 and 3 ml/min. The perfusion flow rate of 3 ml/min gave the highest rMSC osteogenic differentiation on a SF/G/HA scaffold than other flow rates, as observed from the significantly highest number of ALP enzyme activity and the calcium content without any significant cell growth. In addition, all of these parameters were evenly distributed across all scaffold sections. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Coagulation activation by MC28 fibrosarcoma cells facilitates lung tumor formation.

    PubMed

    Amirkhosravi, M; Francis, J L

    1995-01-01

    Tumor cells interact with the hemostatic system in various ways and may thus influence malignant growth and spread. MC28 fibrosarcoma cells possess a potent procoagulant activity (PCA) and form lung tumors following intravenous injection. The aim of this work was to study the relationship between PCA, intravascular coagulation and lung seeding in the MC28 model. MC28 cells were injected into control, warfarinized and heparinized hooded Lister rats. Coagulation changes were monitored by thromboelastography (TEG) and Sonoclot analysis (SA), lung fibrin formation by light and electron microscopy, tumor seeding by macroscopic counting and tumor cell and platelet deposition in the lungs by radiolabelling. PCA was measured by chromogenic assay. MC28 PCA was characterized as a tissue factor-factor VIIa complex that probably arose during cell culture or disaggregation of solid tumors. Injection of tumor cells caused marked coagulopathy and was rapidly (within 30 min) followed by fibrin deposition in the lungs and accumulation of radiolabelled platelets. Heparin and warfarin significantly reduced lung seeding (p < 0.001) and reduced retention of radiolabelled tumor cells in the pulmonary circulation (p < 0.01). Inhibition of cellular PCA by prior treatment with concanavalin A markedly reduced intravascular coagulation and lung seeding. We conclude that MC28 cells cause intravascular coagulation as a direct result of their procoagulant activity. The data suggest that tumor cells form complexes with platelets and fibrin which are retained in the lungs long enough for extravasation and seeding to occur.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Influence of Afforestation on the Species Diversity of the Soil Seed Bank and Understory Vegetation in the Hill-Gullied Loess Plateau, China.

    PubMed

    Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli

    2017-10-24

    The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m², and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land.

  19. Influence of Afforestation on the Species Diversity of the Soil Seed Bank and Understory Vegetation in the Hill-Gullied Loess Plateau, China

    PubMed Central

    Wang, Ning; Jiao, Juying; Jia, Yanfeng; Wang, Dongli

    2017-01-01

    The Chinese Loess Plateau region has long been suffering from serious soil erosion. Thus, large-scale afforestation has continued during the past decades in order to control soil erosion. Afforestation can dramatically alter nutrient cycles, affect soil-carbon storage, and change hydrology. However, it is unknown how afforestation influences species diversity of the soil seed bank and understory vegetation compared with spontaneous restoration of abandoned land. Forest land with trees planted 30 years ago, abandoned slope land restored spontaneously for 30 years, and the corresponding slopes with remnant natural vegetation were selected as sampling sites. The species richness both in the soil seed bank and vegetation was significantly higher on the afforested slope compared to the spontaneously restored abandoned land. The species similarity between the afforested slope and the remnant slope land was high both in the soil seed bank and standing vegetation compared to the abandoned land. The soil seed bank density varied from 1778 ± 187 to 3896 ± 221 seeds/m2, and more than half of it was constituted by annual and biennial species, with no significant difference among sampling habitats. However, the afforested slope had higher seed density of grass and shrub/subshrubs compared to the abandoned slope. The present study indicates that in the study region, characterized by serious soil erosion, afforestation can better facilitate vegetation succession compared to spontaneously restoration of abandoned slope land. PMID:29064405

  20. Using In Situ Symbiotic Seed Germination to Restore Over-collected Medicinal Orchids in Southwest China.

    PubMed

    Shao, Shi-Cheng; Burgess, Kevin S; Cruse-Sanders, Jennifer M; Liu, Qiang; Fan, Xu-Li; Huang, Hui; Gao, Jiang-Yun

    2017-01-01

    Due to increasing demand for medicinal and horticultural uses, the Orchidaceae is in urgent need of innovative and novel propagation techniques that address both market demand and conservation. Traditionally, restoration techniques have been centered on ex situ asymbiotic or symbiotic seed germination techniques that are not cost-effective, have limited genetic potential and often result in low survival rates in the field. Here, we propose a novel in situ advanced restoration-friendly program for the endangered epiphytic orchid species Dendrobium devonianum , in which a series of in situ symbiotic seed germination trials base on conspecific fungal isolates were conducted at two sites in Yunnan Province, China. We found that percentage germination varied among treatments and locations; control treatments (no inoculum) did not germinate at both sites. We found that the optimal treatment, having the highest in situ seed germination rate (0.94-1.44%) with no significant variation among sites, supported a warm, moist and fixed site that allowed for light penetration. When accounting for seed density, percentage germination was highest (2.78-2.35%) at low densities and did not vary among locations for the treatment that supported optimal conditions. Similarly for the same treatment, seed germination ranged from 0.24 to 5.87% among seasons but also did vary among sites. This study reports on the cultivation and restoration of an endangered epiphytic orchid species by in situ symbiotic seed germination and is likely to have broad application to the horticulture and conservation of the Orchidaceae.

  1. Microarray of neuroblastoma cells on the selectively functionalized nanocrystalline diamond thin film surface

    NASA Astrophysics Data System (ADS)

    Park, Young-Sang; Son, Hyeong-Guk; Kim, Dae-Hoon; Oh, Hong-Gi; Lee, Da-Som; Kim, Min-Hye; Lim, Ki-Moo; Song, Kwang-Soup

    2016-01-01

    Nanocrystalline diamond (NCD) film surfaces were modified with fluorine or oxygen by plasma treatment in an O2 or C3F8 gas environment in order to induce wettability. The oxygenated-NCD (O-NCD) film surface was hydrophilic and the fluorinated-NCD (F-NCD) surface was hydrophobic. The efficiency of early cell adhesion, which is dependent on the wettability of the cell culture plate and necessary for the growth and proliferation of cells, was 89.62 ± 3.92% on the O-NCD film and 7.78 ± 0.77% on the F-NCD film surface after 3 h of cell culture. The wettability of the NCD film surface was artificially modified using a metal mask and plasma treatment to fabricate a micro-pattern. Four types of micro-patterns were fabricated (line, circle, mesh, and word) on the NCD film surface. We precisely arrayed the neuroblastoma cells on the micro-patterned NCD film surfaces by controlling the surface wettability and cell seeding density. The neuroblastoma cells adhered and proliferated along the O-NCD film surface.

  2. Mathematical analysis of endothelial sibling pair cell-cell interactions using time-lapse cinematography data.

    PubMed

    Brown, L M; Ryan, U S; Absher, M; Olazabal, B M

    1982-01-01

    The sibling pairs from two different endothelial cell cultures were analysed by time-lapse cinematography. It was shown that wounded and regular (low density seeded) cultures differed in the behaviour patterns of their siblings. The cultures differed most significantly in the minimum interdivision time (IDT) which was 27% lower for the wounded culture. In the wounded culture there was a greater correlation of IDT values between sibling pairs. IDT values recorded both for paired and for unpaired cells were shorter for the wounded than for the regular culture. The mean IDT for unpaired cells was longer than the mean IDT for paired cells in the regular culture. Thus paired cells in the regular culture, had shorter IDTs, but not as short as in the wounded culture. It was significant that in the wounded culture the first generation of siblings were very close (less than 150 microns apart) at division. Overall the behaviour differences between the two cultures resulted in a higher rate of increase in cell numbers, and thus faster repair, of the wounded monolayer.

  3. Engineering muscle cell alignment through 3D bioprinting.

    PubMed

    Mozetic, Pamela; Giannitelli, Sara Maria; Gori, Manuele; Trombetta, Marcella; Rainer, Alberto

    2017-09-01

    Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic ® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017. © 2017 Wiley Periodicals, Inc.

  4. The Use of Multidimensional Image-Based Analysis to Accurately Monitor Cell Growth in 3D Bioreactor Culture

    PubMed Central

    Baradez, Marc-Olivier; Marshall, Damian

    2011-01-01

    The transition from traditional culture methods towards bioreactor based bioprocessing to produce cells in commercially viable quantities for cell therapy applications requires the development of robust methods to ensure the quality of the cells produced. Standard methods for measuring cell quality parameters such as viability provide only limited information making process monitoring and optimisation difficult. Here we describe a 3D image-based approach to develop cell distribution maps which can be used to simultaneously measure the number, confluency and morphology of cells attached to microcarriers in a stirred tank bioreactor. The accuracy of the cell distribution measurements is validated using in silico modelling of synthetic image datasets and is shown to have an accuracy >90%. Using the cell distribution mapping process and principal component analysis we show how cell growth can be quantitatively monitored over a 13 day bioreactor culture period and how changes to manufacture processes such as initial cell seeding density can significantly influence cell morphology and the rate at which cells are produced. Taken together, these results demonstrate how image-based analysis can be incorporated in cell quality control processes facilitating the transition towards bioreactor based manufacture for clinical grade cells. PMID:22028809

  5. The use of multidimensional image-based analysis to accurately monitor cell growth in 3D bioreactor culture.

    PubMed

    Baradez, Marc-Olivier; Marshall, Damian

    2011-01-01

    The transition from traditional culture methods towards bioreactor based bioprocessing to produce cells in commercially viable quantities for cell therapy applications requires the development of robust methods to ensure the quality of the cells produced. Standard methods for measuring cell quality parameters such as viability provide only limited information making process monitoring and optimisation difficult. Here we describe a 3D image-based approach to develop cell distribution maps which can be used to simultaneously measure the number, confluency and morphology of cells attached to microcarriers in a stirred tank bioreactor. The accuracy of the cell distribution measurements is validated using in silico modelling of synthetic image datasets and is shown to have an accuracy >90%. Using the cell distribution mapping process and principal component analysis we show how cell growth can be quantitatively monitored over a 13 day bioreactor culture period and how changes to manufacture processes such as initial cell seeding density can significantly influence cell morphology and the rate at which cells are produced. Taken together, these results demonstrate how image-based analysis can be incorporated in cell quality control processes facilitating the transition towards bioreactor based manufacture for clinical grade cells.

  6. Preparation and photovoltaic properties of perovskite solar cell based on ZnO nanorod arrays

    NASA Astrophysics Data System (ADS)

    Xu, Yang; Liu, Tian; Li, Zhaosong; Feng, Bingjie; Li, Siqian; Duan, Jinxia; Ye, Cong; Zhang, Jun; Wang, Hao

    2016-12-01

    A careful control of ZnO nanorod arrays with various densities and thickness were achieved by hydrothermal method. An obvious increase in the ZnO nanorod density is observed as the concentrations of zinc acetate dropped as expected through the surface SEM images. On the other hand, samples with and without TiO2 compact layer were also studied and results had been analyzed to seek for an optimized substrate structure for light absorbing layer and increase the efficiency. What's more, a deep research for the drying temperature for perovskite layer was also conducted. As a result, SEM images discribe a promising surface appearance of perovskite layer which is finely attached onto the nanorod structure. Final power conversion efficiency (PCE) of FTO/ZnO seed layer/ZnO nanorods/perovskite/spiro-OMe-TAD/Au electrode photovoltaic device reached ∼9.15% together with open-circuit voltage of 957 mV, short-circuit current density of 17.8 mA/cm2 and fill factor of 0.537.

  7. Acacia catechu Ethanolic Seed Extract Triggers Apoptosis of SCC-25 Cells.

    PubMed

    Lakshmi, Thangavelu; Ezhilarasan, Devaraj; Nagaich, Upendra; Vijayaragavan, Rajagopal

    2017-10-01

    Acacia catechu Willd ( Fabaceae ), commonly known as catechu, cachou, and black cutch, has been studied for its hepatoprotective, antipyretic, antidiarrheal, hypoglycemic, anti-inflammatory, immunomodulatory, antinociceptive, antimicrobial, free radical scavenging, and antioxidant activities. We evaluated the cytotoxic activity of ethanol extract of A. catechu seed (ACS) against SCC-25 human oral squamous carcinoma cell line. Cytotoxic effect of ACS extract was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, using concentrations of 0.1-1000 μg/mL for 24 h. A. catechu ethanol seed extract was treated SCC-25 cells with 25 and 50 μg/mL. At the end of treatment period, apoptotic marker gene expressions such as caspase 8, 9, Bcl-2, Bax, and cytochrome c were evaluated by semiquantitative reverse transcription-polymerase chain reaction. Morphological changes of ACS treated SCC-25 cells was evaluated by acridine orange/ethidium bromide (AO/EB) dual staining. Nuclear morphology and DNA fragmentation was evaluated by propidium iodide (PI) staining. A. catechu ethanol seed extract treatment caused cytotoxicity in SCC-25 cells with an IC 50 value of 100 μg/mL. Apoptotic markers caspases 8 and 9, cytochrome c, Bax gene expressions were significantly increased upon ACS extract treatment indicate the apoptosis induction in SCC-25 cells. This treatment also caused significant downregulation of Bcl-2 gene expression. Staining with AO/EB and PI shows membrane blebbing, and nuclear membrane distortion further confirms the apoptosis induction by ACS treatment in SCC-25 cells. The ethanol seed extracts of A. catechu was found to be cytotoxic at lower concentrations and induced apoptosis in human oral squamous carcinoma SCC-25 cells. Acacia catechu ethanolic seed extract contains phytochemicals such as epicatechin, rutin, and quercetin Acacia catechu seed (ACS) extract significantly ( P < 0.001) inhibits the active proliferation of human oral squamous carcinoma (SCC-25) cellsACS extract treatment to SCC-25 cells significantly modulated the gene expressions pertaining to apoptosis and propidium iodide and acridine orange/ethidium bromide staining also confirm the apoptosis inductionAntiproliferative and apoptosis inducing activities of ACS extract is correlated with phytochemical contents. Abbreviations used: ACS: Acacia catechu seed extract; MTT: 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide; DMSO: Dimethyl sulfoxide; AO/EO: Acridine orange/ethidium bromide; LC MS: Liquid chromatography mass spectrometry.

  8. Dynamics of storage reserve deposition during Brassica rapa L. pollen and seed development in microgravity

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.

    2005-01-01

    Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.

  9. Anticancer activity of Petroselinum sativum seed extracts on MCF-7 human breast cancer cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtesam Saad; Al-Oqail, Mai Mohammad; Musarrat, Javed; Al-Khedhairy, Abdulaziz Ali; Siddiqui, Maqsood Ahmed

    2013-01-01

    Pharmacological and preventive properties of Petroselinum sativum seed extracts are well known, but the anticancer activity of alcoholic extracts and oil of Petroselinum sativum seeds on human breast cancer cells have not been explored so far. Therefore, the present study was designed to investigate the cytotoxic activities of these extracts against MCF-7 cells. Cells were exposed to 10 to 1000 μg/ml of alcoholic seed extract (PSA) and seed oil (PSO) of Petroselinum sativum for 24 h. Post-treatment, percent cell viability was studied by 3-(4, 5-dimethylthiazol-2yl)-2, 5-biphenyl tetrazolium bromide (MTT) and neutral red uptake (NRU) assays, and cellular morphology by phase contrast inverted microscopy. The results showed that PSA and PSO significantly reduced cell viability, and altered the cellular morphology of MCF-7 cells in a concentration dependent manner. Concentrations of 50 μg/ml and above of PSA and 100 μg/ml and above of PSO were found to be cytotoxic in MCF-7 cells. Cell viability at 50, 100, 250, 500 and 1000 μg/ml of PSA was recorded as 81%, 57%, 33%, 8% and 5%, respectively, whereas at 100, 250, 500, and 1000 μg/ml of PSO values were 90%, 78%, 62%, and 8%, respectively by MTT assay. MCF-7 cells exposed to 250, 500 and 1000 μg/ml of PSA and PSO lost their typical morphology and appeared smaller in size. The data revealed that the treatment with PSA and PSO of Petroselinum sativum induced cell death in MCF-7 cells.

  10. ATP-binding cassette transporter 1 participates in LDL oxidation by artery wall cells.

    PubMed

    Reddy, Srinivasa T; Hama, Susan; Ng, Carey; Grijalva, Victor; Navab, Mohamad; Fogelman, Alan M

    2002-11-01

    We have previously reported that products of the lipoxygenase pathway, hydroperoxyoctadecadienoic acid and hydroperoxyeicosatetraenoic acid, as well as cholesterol linoleate hydroperoxides, collectively termed seeding molecules, are removed by apolipoprotein A-I (apoA-I) from the artery wall cells and render low density lipoprotein (LDL) resistant to oxidation by human artery wall cells. The mechanisms by which oxidized lipids are transported and/or transferred to lipoproteins and the pathways by which apoA-I facilitates their removal remain unclear. ATP-binding cassette transporter 1 (ABCA1) is known to facilitate the release of cellular phospholipids and cholesterol from the plasma membrane to apoA-I and high density lipoprotein. Therefore, we evaluated whether ABCA1 participates in LDL oxidation. In this report, we show that (1) chemical inhibitors of ABCA1 function, glyburide and DIDS, block artery wall cell-mediated oxidative modification of LDL, (2) inhibition of ABCA1 with the use of antisense (but not sense) oligonucleotides prevents LDL-induced lipid hydroperoxide formation and LDL-induced monocyte chemotactic activity by the artery wall cells, and (3) oxysterols that induce ABCA1 expression, such as 22(R)hydroxycholesterol, enhance cell-mediated LDL oxidation. Furthermore, we also show that 22(R)hydroxycholesterol induces the production of reactive oxygen species in the artery wall cells, which can be removed by incubating the artery wall cells with apoA-I. Our data suggest that ABCA1 plays an important role in artery wall cell-mediated modification/oxidation of LDL by modulating the release of reactive oxygen species from artery wall cells that are necessary for LDL oxidation.

  11. System Validation Experiments for Obtaining Tracer Laser-Induced Fluorescence Data at Elevated Pressure and Temperature.

    PubMed

    Hartwig, Jason; Mittal, Gaurav; Kumar, Kamal; Sung, Chih-Jen

    2018-04-01

    This paper presents a set of system validation experiments that can be used to qualify either static or flow experimental systems for gathering tracer photophysical data or conducting laser diagnostics at high pressure and temperature in order to establish design and operation limits and reduce uncertainty in data interpretation. Tests demonstrated here quantify the effect of tracer absorption at the test cell walls, stratification, photolysis, pyrolysis, adequacy of mixing and seeding, and reabsorption of laser light using acetone as the tracer and 282 nm excitation. Results show that acetone exhibits a 10% decrease in fluorescence signal over 36 000 shots at 127.4 mJ/cm 2 , and photolysis is negligible below 1000 shots collected. Meanwhile, appropriately chosen gas residence times can mitigate risks due to pyrolysis and inadequate mixing and seeding; for the current work 100 ms residence time ensured <0.5% alteration of tracer number density due to thermal destruction. Experimental results here are compared to theoretical values from the literature.

  12. X-ray lines as a density diagnostic in DT plasmas near 100x solid density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, D.S.

    1977-10-19

    The use of electron impact broadened resonance lines to diagnose near-term high density diagnostics is discussed. In particular, the question of how to choose seed and pusher materials to have discernible broadening effects while maintaining line visibility is discussed.

  13. Stages and Spatial Scales of Recruitment Limitation in Southern Appalachain Forests

    Treesearch

    James S. Clark; Eric Macklin; Leslie Wood

    1998-01-01

    Recruitment limitation of tree population dynamics is poorly understood, because fecundity and dispersal are difficult to characterize in closed stands. We present an approach that estimates seed production and dispersal under closed canopies and four limitations on recruitment: tree density and location, fecundity, seed dispersal, and establishment. Consistent...

  14. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    USGS Publications Warehouse

    Du, X.; Guo, Q.; Gao, X.; Ma, K.

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms. We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan, southwestern China. The results showed that: (1) there were marked differences in (mature) seed production between mast (733,700 seeds in 2001) and regular (51,200 and 195,600 seeds in 2002 and 2003, respectively) years for C. fargesii. (2) Most seeds were dispersed in leaf litter, humus and 0-2 cm depth soil in seed bank. (3) Frequency distributions of both DBH and height indicated that C. fargesii had a relatively stable population. (4) Seed rain, seed ground density, seed loss, and leaf fall were highly dynamic and certain quantity of seeds were preserved on the ground for a prolonged time due to predator satiation in both the mast and regular years so that the continuous presence of seed bank and seedling recruitments in situ became possible. Both longer time observations and manipulative experiments should be carried out to better understand the roles of seed dispersal and regeneration process in the ecosystem performance. ?? 2006 Elsevier B.V. All rights reserved.

  15. Escape from Tumor Cell Dormancy

    DTIC Science & Technology

    2011-10-01

    feature of the bioreactor has been developed (oxygen sensing) to improve monitoring of the physiological status of the cultures ; as cells are stimulated...Herein, these issues are addressed using a novel organotypic bioreactor in which tumor cells can be followed for weeks to months, the process of seeding... cells (months 1-6) 3. isolate human stellate and Kupffer cells (months 7-24) 3. seed bioreactors with cells (months 1-24) 4. label tumor cells for

  16. Variability in seeds: biological, ecological, and agricultural implications.

    PubMed

    Mitchell, Jack; Johnston, Iain G; Bassel, George W

    2017-02-01

    Variability is observed in biology across multiple scales, ranging from populations, individuals, and cells to the molecular components within cells. This review explores the sources and roles of this variability across these scales, focusing on seeds. From a biological perspective, the role and the impact this variability has on seed behaviour and adaptation to the environment is discussed. The consequences of seed variability on agricultural production systems, which demand uniformity, are also examined. We suggest that by understanding the basis and underlying mechanisms of variability in seeds, strategies to increase seed population uniformity can be developed, leading to enhanced agricultural production across variable climatic conditions. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Compressive elasticity of three-dimensional nanofiber matrix directs mesenchymal stem cell differentiation to vascular cells with endothelial or smooth muscle cell markers.

    PubMed

    Wingate, K; Bonani, W; Tan, Y; Bryant, S J; Tan, W

    2012-04-01

    The importance of mesenchymal stem cells (MSC) in vascular regeneration is becoming increasingly recognized. However, few in vitro studies have been performed to identify the effects of environmental elasticity on the differentiation of MSC into vascular cell types. Electrospinning and photopolymerization techniques were used to fabricate a three-dimensional (3-D) polyethylene glycol dimethacrylate nanofiber hydrogel matrix with tunable elasticity for use as a cellular substrate. Compression testing demonstrated that the elastic modulus of the hydrated 3-D matrices ranged from 2 to 15 kPa, similar to the in vivo elasticity of the intima basement membrane and media layer. MSC seeded on rigid matrices (8-15 kPa) showed an increase in cell area compared with those seeded on soft matrices (2-5 kPa). Furthermore, the matrix elasticity guided the cells to express different vascular-specific phenotypes with high differentiation efficiency. Around 95% of MSC seeded on the 3-D matrices with an elasticity of 3 kPa showed Flk-1 endothelial markers within 24h, while only 20% of MSC seeded on the matrices with elasticity >8 kPa demonstrated Flk-1 marker. In contrast, ∼80% of MSC seeded on 3-D matrices with elasticity >8 kPa demonstrated smooth muscle α-actin marker within 24h, while fewer than 10% of MSC seeded on 3-D matrices with elasticity <5 kPa showed α-actin markers. The ability to control MSC differentiation into either endothelial or smooth muscle-like cells based purely on the local elasticity of the substrate could be a powerful tool for vascular tissue regeneration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Defect reduction in seeded aluminum nitride crystal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.

    2017-04-18

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  19. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Morgan, Kenneth E.; Schowalter, Leo J.; Slack, Glen A.

    2017-06-06

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density .ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  20. Defect reduction in seeded aluminum nitride crystal growth

    DOEpatents

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  1. New Embedded Denotes Fuzzy C-Mean Application for Breast Cancer Density Segmentation in Digital Mammograms

    NASA Astrophysics Data System (ADS)

    Othman, Khairulnizam; Ahmad, Afandi

    2016-11-01

    In this research we explore the application of normalize denoted new techniques in advance fast c-mean in to the problem of finding the segment of different breast tissue regions in mammograms. The goal of the segmentation algorithm is to see if new denotes fuzzy c- mean algorithm could separate different densities for the different breast patterns. The new density segmentation is applied with multi-selection of seeds label to provide the hard constraint, whereas the seeds labels are selected based on user defined. New denotes fuzzy c- mean have been explored on images of various imaging modalities but not on huge format digital mammograms just yet. Therefore, this project is mainly focused on using normalize denoted new techniques employed in fuzzy c-mean to perform segmentation to increase visibility of different breast densities in mammography images. Segmentation of the mammogram into different mammographic densities is useful for risk assessment and quantitative evaluation of density changes. Our proposed methodology for the segmentation of mammograms on the basis of their region into different densities based categories has been tested on MIAS database and Trueta Database.

  2. Lallemantia reylenne seeds as superdisintegrant: Formulation and evaluation of nimesulide orodispersible tablets

    PubMed Central

    Malik, Karan; Arora, Gurpreet; Singh, Inderbir; Arora, Sandeep

    2011-01-01

    Aim: Orodispersible tablets also known as fast dissolving tablets disintegrate instantaneously within the mouth and thus can be consumed without water. The present study was aimed to formulate orodispersible tablets of nimesulide by using Lallemantia reylenne seeds as natural superdisintegrant. Materials and Methods: Powdered lallemantia seeds were characterized for powder flow properties (bulk density, tapped density, carr's consolidation index, hausner ratio, angle of repose), swelling index, viscosity, pH, and loss on drying. The prepared tablets were evaluated for different tablet parametric tests, wetting time, water absorption ratio, effective pore radius, porosity, packing fraction, in vitro and in vivo disintegration time, in vitro dissolution and stability studies. Results and Discussion: Increase in Lallementia reylenne concentration had an appreciable effect on tablet hardness and friability which clearly indicated binding potential of the seeds. Water absorption ratio increased with increase in Lallemantia reylenne concentration from batch A1 to A4. Water uptake coupled natural polymer swelling could be the most probable mechanism for concentration dependent reduction in disintegration time by the Lallemantia reylenne seeds. Porosity of the formulated tablets was found to increase from batch A1-A4. The in vitro disintegration results were in line with in vivo disintegration results. Conclusion: It could be concluded that Lallemantia reylenne seeds could be used as natural superdisintegrant in the formulation of orodispersible tablets. PMID:23071942

  3. Ectopic bone formation in nude rats using human osteoblasts seeded poly(3)hydroxybutyrate embroidery and hydroxyapatite-collagen tapes constructs.

    PubMed

    Mai, Ronald; Hagedorn, Manolo Gunnar; Gelinsky, Michael; Werner, Carsten; Turhani, Dritan; Späth, Heike; Gedrange, Tomas; Lauer, Günter

    2006-09-01

    The aim of this study was to evaluate the ectopic bone formation using tissue engineered cell-seeded constructs with two different scaffolds and primary human maxillary osteoblasts in nude rats over an implantation period of up to 96 days. Collagen I-coated Poly(3)hydroxybutyrate (PHB) embroidery and hydroxyapatite (HAP) collagen tapes were seeded with primary human maxillary osteoblasts (hOB) and implanted into athymic rnu/run rats. A total of 72 implants were placed into the back muscles of 18 rats. 24, 48 and 96 days after implantation, histological and histomorphometric analyses were made. The osteoblastic character of the cells was confirmed by immunocytochemistry and RT-PCR for osteocalcin. Histological analysis demonstrated that all cell-seeded constructs induced ectopic bone formation after 24, 48 and 96 days of implantation. There was more mineralized tissue in PHB constructs than in HAP-collagen tapes (at day 24; p < 0.05). Bone formation decreased with the increasing length of the implantation period. Osteocalcin expression verified the osteoblastic character of the cell-seeded constructs after implantation time. No bone formation and no osteocalcin expression were found in the control groups. Cell-seeded constructs either with PHB embroidery or HAP-collagen tapes can induce ectopic bone formation. However, the amount of bone formed decreased with increasing length of implantation.

  4. Impact of Sodium Contamination in Tin Sulfide Thin-Film Solar Cells

    DOE PAGES

    Steinmann, Vera; Brandt, Riley E.; Chakraborty, Rupak; ...

    2016-02-12

    Empirical observations show that sodium(Na) is a benign contaminant in some thin-filmsolar cells. Here, we intentionally contaminate thermally evaporated tin sulfide (SnS)thin-films with sodium and measure the SnS absorber properties and solar cellcharacteristics. The carrier concentration increases from 2 × 10 16 cm -3 to 4.3 × 10 17 cm -3 in Na-doped SnSthin-films, when using a 13 nm NaCl seed layer, which is detrimental for SnS photovoltaic applications but could make Na-doped SnS an attractive candidate in thermoelectrics. We observed trends in carrier concentration and found that it is in good agreement with density functional theory calculations, which predictmore » an acceptor-type NaSn defect with low formation energy.« less

  5. Statistical properties of the radiation belt seed population

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, A. J.; Spence, H. E.; Huang, C. -L.

    Here, we present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular, we investigate the relationship between the tens and hundreds of keV seed electrons and >1 MeV core radiation belt electron population. Using a cross-correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈0.73 with a time lag of 10–15 h. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of themore » acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of hundreds of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.« less

  6. Statistical properties of the radiation belt seed population

    DOE PAGES

    Boyd, A. J.; Spence, H. E.; Huang, C. -L.; ...

    2016-07-25

    Here, we present a statistical analysis of phase space density data from the first 26 months of the Van Allen Probes mission. In particular, we investigate the relationship between the tens and hundreds of keV seed electrons and >1 MeV core radiation belt electron population. Using a cross-correlation analysis, we find that the seed and core populations are well correlated with a coefficient of ≈0.73 with a time lag of 10–15 h. We present evidence of a seed population threshold that is necessary for subsequent acceleration. The depth of penetration of the seed population determines the inner boundary of themore » acceleration process. However, we show that an enhanced seed population alone is not enough to produce acceleration in the higher energies, implying that the seed population of hundreds of keV electrons is only one of several conditions required for MeV electron radiation belt acceleration.« less

  7. Lung Epithelial Healing: A Modified Seed and Soil Concept

    PubMed Central

    Brechbuhl, Heather M.; Smith, Mary Kathryn; Smith, Russell W.; Ghosh, Moumita

    2012-01-01

    Airway epithelial healing is defined as restoration of health or soundness; to cure. Our research indicates that two types of progenitor cells participate in this process: the tissue-specific stem cell (TSC) and the facultative basal progenitor (FBP). The TSC restores the epithelium to its normal structure and function. Thus, the TSC regenerates the epithelium. In contrast, the FBP-derived epithelium is characterized by regions of cellular hyperplasia and hypoplasia. Since the FBP-derived epithelium deviates from normal, we term the FBP-mediated process repair. Our work indicates that the TSC responds to signals from other epithelial cells, including the FBP. These signals instruct the TSC to proliferate or to select one of several differentiation pathways. We interpret these data in the context of Stephen Padget’s “seed and soil” paradigm. Therein, Padget explained that metastasis of a tumor, the seed, to a specific site, the soil, was determined by the growth and differentiation requirements of the tumor cell. By extending the seed and soil paradigm to airway epithelial healing, we suggest that proliferation and differentiation of the TSC, the seed, is determined by its interactions with other cell types, the soil. Based on this concept, we provide a set of suggestions for development of cell-based therapies that are directed toward chronic airways disease. PMID:22550238

  8. The Arabidopsis MTP8 transporter determines the localization of manganese and iron in seeds

    DOE PAGES

    Chu, Heng-Hsuan; Car, Suzana; Socha, Amanda L.; ...

    2017-09-08

    Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds. In an mtp8-2 mutant, Mn no longer accumulates in hypocotyl cortex cells and sub-epidermal cells of the embryonic cotyledons, but rather accumulates with Fe in the cells surrounding the vasculature, a pattern previously shown to be determined by the vacuolarmore » transporter VIT1. We also show that MTP8, unlike the other three Mn-CDF family members, can transport Fe and is responsible for localization of Fe to the same cells that store Mn. When both the VIT1 and MTP8 transporters are non-functional, there is no accumulation of Fe or Mn in specific cell types; rather these elements are distributed amongst all cell types in the seed. Finally, disruption of the putative Fe binding sites in MTP8 resulted in loss of ability to transport Fe but did not affect the ability to transport Mn.« less

  9. In Vivo Cell Wall Loosening by Hydroxyl Radicals during Cress Seed Germination and Elongation Growth1[W][OA

    PubMed Central

    Müller, Kerstin; Linkies, Ada; Vreeburg, Robert A.M.; Fry, Stephen C.; Krieger-Liszkay, Anja; Leubner-Metzger, Gerhard

    2009-01-01

    Loosening of cell walls is an important developmental process in key stages of the plant life cycle, including seed germination, elongation growth, and fruit ripening. Here, we report direct in vivo evidence for hydroxyl radical (·OH)-mediated cell wall loosening during plant seed germination and seedling growth. We used electron paramagnetic resonance spectroscopy to show that ·OH is generated in the cell wall during radicle elongation and weakening of the endosperm of cress (Lepidium sativum; Brassicaceae) seeds. Endosperm weakening precedes radicle emergence, as demonstrated by direct biomechanical measurements. By 3H fingerprinting, we showed that wall polysaccharides are oxidized in vivo by the developmentally regulated action of apoplastic ·OH in radicles and endosperm caps: the production and action of ·OH increased during endosperm weakening and radicle elongation and were inhibited by the germination-inhibiting hormone abscisic acid. Both effects were reversed by gibberellin. Distinct and tissue-specific target sites of ·OH attack on polysaccharides were evident. In vivo ·OH attack on cell wall polysaccharides were evident not only in germinating seeds but also in elongating maize (Zea mays; Poaceae) seedling coleoptiles. We conclude that plant cell wall loosening by ·OH is a controlled action of this type of reactive oxygen species. PMID:19493972

  10. Cell hydration as a biomarker for estimation of biological effects of nonionizing radiation on cells and organisms.

    PubMed

    Ayrapetyan, Sinerik; De, Jaysankar

    2014-01-01

    "Changes in cell hydration" have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR). To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV), static magnetic field (SMF), extremely low frequency electromagnetic field (ELF EMF), and microwave (MW)) pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q 10) of seed hydration in distilled water (DW) was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48-72 hours) seeds hydration exhibited temperature sensitivity Q 10 > 2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.

  11. NtKRP, a kinesin-12 protein, regulates embryo/seed size and seed germination via involving in cell cycle progression at the G2/M transition.

    PubMed

    Tian, Shujuan; Wu, Jingjing; Li, Fen; Zou, Jianwei; Liu, Yuwen; Zhou, Bing; Bai, Yang; Sun, Meng-Xiang

    2016-10-25

    Kinesins comprise a superfamily of microtubule-based motor proteins involved in essential processes in plant development, but few kinesins have been functionally identified during seed development. Especially, few kinesins that regulate cell division during embryogenesis have been identified. Here we report the functional characterization of NtKRP, a motor protein of the kinesin-12 family. NtKRP is predominantly expressed in embryos and embryonic roots. NtKRP RNAi lines displayed reductions in cell numbers in the meristematic zone, in embryonic root length, and in mature embryo and seed sizes. Furthermore, we also show that CDKA;1 binds to NtKRP at the consensus phosphorylation sites and that the decreased cell numbers in NtKRP-silenced embryos are due to a delay in cell division cycle at the G2/M transition. In addition, binding between the cargo-binding tail domain of NtKRP and CDKA; 1 was also determined. Our results reveal a novel molecular pathway that regulates embryo/seed development and critical role of kinesin in temporal and spatial regulation of a specific issue of embryo developmental.

  12. Effects of prolonged exposure of lettuce seeds to HZE particles on orbital stations

    NASA Astrophysics Data System (ADS)

    Nevzgodina, L. V.; Maksimova, E. N.; Kaminskaya, E. V.

    In a study of the biological effects of cosmic HZE particles, lettuce (Lactuca sativa) seeds were flown on the orbital stations Salyut 6 and 7 for varying periods of time (from 40 to 457 days). The dependence of the biological damage on flight duration, physical parameters and the fact of passage of an HZE particle through the seed was estimated using the criterion of the frequency of aberrant cells. The arrangement of the flight biological container Biobloc made it possible to trace the location of tracks of individual HZE particles with Z>=6 and LET 200 keV/um. In seeds hit by HZE particles, for all exposure times, a statistically significant much higher yield of aberrant cells and also of cells containing multiple chromosome aberrations was observed than in the control material. The frequency of aberrant cells is markedly higher (by a factor of 1,5) in seeds hit than in non-hit ones. The changes of the yield of aberrant cells as a function of the absorbed dose (3.2-63.4 mGy) and the fluence (4.8-44.2 particles/cm2) are linear for the exposure duration ranging from 40 to 457 days.

  13. Formation of qualified BaHfO3 doped Y0.5Gd0.5Ba2Cu3O7-δ film on CeO2 buffered IBAD-MgO tape by self-seeding pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Liu, Linfei; Wang, Wei; Yao, Yanjie; Wu, Xiang; Lu, Saidan; Li, Yijie

    2018-05-01

    Improvement in the in-filed transport properties of REBa2Cu3O7-δ (RE = rare earth elements, REBCO) coated conductor is needed to meet the performance requirements for various practical applications, which can be accomplished by introducing artificial pinning centers (APCs), such as second phase dopant. However, with increasing dopant level the critical current density Jc at 77 K in zero applied magnetic field decreases. In this paper, in order to improve Jc we propose a seed layer technique. 5 mol% BaHfO3 (BHO) doped Y0.5Gd0.5Ba2Cu3O7-δ (YGBCO) epilayer with an inserted seed layer was grown on CeO2 buffered ion beam assisted deposition MgO (IBAD-MgO) tape by pulsed laser deposition. The effect of the conditions employed to prepare the seed layer, including tape moving speed and chemical composition, on the quality of 5 mol% BHO doped YGBCO epilayer was systematically investigated by X-ray diffraction (XRD) measurements and scanning electron microscopy (SEM) observations. It was found that all the samples with seed layer have higher Jc (77 K, self-field) than the 5 mol% BHO doped YGBCO film without seed layer. The seed layer could inhibit deterioration of the Jc at 77 K and self-filed. Especially, the self-seed layer (5 mol% BHO doped YGBCO seed layer) was more effective in improving the crystal quality, surface morphology and superconducting performance. At 4.2 K, the 5 mol% BHO doped YGBCO film with 4 nm thick self-seed layer had a very high flux pinning force density Fp of 860 GN/m3 for B//c under a 9 T field, and more importantly, the peak of the Fp curve was not observed.

  14. Novel Silicone-Coated 125I Seeds for the Treatment of Extrahepatic Cholangiocarcinoma

    PubMed Central

    Zhang, Weixing; Cai, Xiaobo; Chen, Dafan; Wan, Xinjian

    2016-01-01

    125I seeds coated with titanium are considered a safe and effective interstitial brachytherapy for tumors, while the cost of 125I seeds is a major problem for the patients implanting lots of seeds. The aim of this paper was to develop a novel silicone coating for 125I seeds with a lower cost. In order to show the radionuclide utilization ratio, the silicone was coated onto the seeds using the electro-spinning method and the radioactivity was evaluated, then the anti-tumor efficacy of silicone 125I seeds was compared with titanium 125I seeds. The seeds were divided into four groups: A (control), B (pure silicone), C (silicone 125I), D (titanium 125I) at 2 Gy or 4 Gy. Their anti-tumour activity and mechanism were assessed in vitro and in vivo using a human extrahepatic cholangiocarcinoma cell line FRH-0201 and tumor-bearing BALB/c nude mice. The silicone 125I seeds showed higher radioactivity; the rate of cell apoptosis in vitro and the histopathology in vivo demonstrated that the silicone 125I seeds shared similar anti-tumor efficacy with the titanium 125I seeds for the treatment of extrahepatic cholangiocarcinoma, while they have a much lower cost. PMID:26840346

  15. Different Modes of Hydrogen Peroxide Action During Seed Germination

    PubMed Central

    Wojtyla, Łukasz; Lechowska, Katarzyna; Kubala, Szymon; Garnczarska, Małgorzata

    2016-01-01

    Hydrogen peroxide was initially recognized as a toxic molecule that causes damage at different levels of cell organization and thus losses in cell viability. From the 1990s, the role of hydrogen peroxide as a signaling molecule in plants has also been discussed. The beneficial role of H2O2 as a central hub integrating signaling network in response to biotic and abiotic stress and during developmental processes is now well established. Seed germination is the most pivotal phase of the plant life cycle, affecting plant growth and productivity. The function of hydrogen peroxide in seed germination and seed aging has been illustrated in numerous studies; however, the exact role of this molecule remains unknown. This review evaluates evidence that shows that H2O2 functions as a signaling molecule in seed physiology in accordance with the known biology and biochemistry of H2O2. The importance of crosstalk between hydrogen peroxide and a number of signaling molecules, including plant phytohormones such as abscisic acid, gibberellins, and ethylene, and reactive molecules such as nitric oxide and hydrogen sulfide acting on cell communication and signaling during seed germination, is highlighted. The current study also focuses on the detrimental effects of H2O2 on seed biology, i.e., seed aging that leads to a loss of germination efficiency. The dual nature of hydrogen peroxide as a toxic molecule on one hand and as a signal molecule on the other is made possible through the precise spatial and temporal control of its production and degradation. Levels of hydrogen peroxide in germinating seeds and young seedlings can be modulated via pre-sowing seed priming/conditioning. This rather simple method is shown to be a valuable tool for improving seed quality and for enhancing seed stress tolerance during post-priming germination. In this review, we outline how seed priming/conditioning affects the integrative role of hydrogen peroxide in seed germination and aging. PMID:26870076

  16. Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds

    PubMed Central

    Sarasola, José Hernán; Zanón-Martínez, Juan Ignacio; Costán, Andrea Silvina; Ripple, William J.

    2016-01-01

    Large “hypercarnivorous” felids are recognized for their role as apex predators and hence as key elements in food webs and ecosystem functioning through competition and depredation. Here we show that cougars (Puma concolor), one of the largest and the most widely ranging apex felid predators with a strictly carnivorous diet, could also be effective secondary long distance seed dispersers, potentially establishing direct and non-herbivore mediated interactions with plant species at the bottom of the food web. Cougars accidently ingest and disseminate large amounts of seeds (31,678 seeds in 123 scats) of plant species initially consumed by their main prey, the Eared Dove Zenaida auriculata. The germination potential of seeds for the three plant species most abundantly found in cougar scats (19,570 seeds) was not significantly different from that observed in seeds obtained from dove gizzards, indicating that seed passage through cougar guts did not affect seed germination. Considering the estimated cougar density in our study area, dispersal of seeds by cougars could allow a mean, annual seed spread of ~5,000 seeds per km2. Our results demonstrate that strictly carnivorous, felid predators could have broad and overlooked ecological functions related to ecosystem structuring and functioning. PMID:26791932

  17. Hypercarnivorous apex predator could provide ecosystem services by dispersing seeds.

    PubMed

    Sarasola, José Hernán; Zanón-Martínez, Juan Ignacio; Costán, Andrea Silvina; Ripple, William J

    2016-01-21

    Large "hypercarnivorous" felids are recognized for their role as apex predators and hence as key elements in food webs and ecosystem functioning through competition and depredation. Here we show that cougars (Puma concolor), one of the largest and the most widely ranging apex felid predators with a strictly carnivorous diet, could also be effective secondary long distance seed dispersers, potentially establishing direct and non-herbivore mediated interactions with plant species at the bottom of the food web. Cougars accidently ingest and disseminate large amounts of seeds (31,678 seeds in 123 scats) of plant species initially consumed by their main prey, the Eared Dove Zenaida auriculata. The germination potential of seeds for the three plant species most abundantly found in cougar scats (19,570 seeds) was not significantly different from that observed in seeds obtained from dove gizzards, indicating that seed passage through cougar guts did not affect seed germination. Considering the estimated cougar density in our study area, dispersal of seeds by cougars could allow a mean, annual seed spread of ~5,000 seeds per km(2). Our results demonstrate that strictly carnivorous, felid predators could have broad and overlooked ecological functions related to ecosystem structuring and functioning.

  18. The role of seed bank in the dynamics of understorey in an oak forest in Hungary.

    PubMed

    Koncz, G; Papp, Mária; Török, P; Kotroczó, Zs; Krakomperger, Zs; Matus, G; Tóthmérész, B

    2010-01-01

    We studied the potential role of seed bank in the dynamics of the understorey in a turkey oak-sessile oak forest (Querceteum petraeae-cerris) in Hungary. We used long-term records of the herb layer (1973-2006) and the seed bank composition of 2006 to assess the role of seed bank in the regeneration of herb layer. The total cover of herb layer decreased from 22% (1973) to 6% (1988), and remained low (<10%) till 2006; coinciding with the increasing cover of secondary canopy dominated by Acer campestre. We found a low density seed bank (ca. 1300 seeds/m2). Altogether 33 species were germinated from the soil samples. A few generalist weed species composed the majority of seed bank. It was possible to assign a seed bank type for 19 species; 14 species out of 19 was long-term persistent. We found that the characteristic perennial forest herbs and grasses had only sparse seed bank. The Jaccard similarity between vegetation and seed bank was low (<30%). Our results suggest that the continuous establishment of forest herbs are not based on local persistent seed bank; it should be based on vegetative spreading and/or seed rain.

  19. Flow Visualization of Density in a Cryogenic Wind Tunnel Using Planar Rayleigh and Raman Scattering

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.; Shirinzadeh, Behrooz

    2002-01-01

    Using a pulsed Nd:YAG laser (532 nm) and a gated, intensified charge-coupled device, planar Rayleigh and Raman scattering techniques have been used to visualize the unseeded Mach 0.2 flow density in a 0.3-meter transonic cryogenic wind tunnel. Detection limits are determined for density measurements by using both unseeded Rayleigh and Raman (N2 vibrational) methods. Seeding with CO2 improved the Rayleigh flow visualization at temperatures below 150 K. The seeded Rayleigh version was used to demonstrate the observation of transient flow features in a separated boundary layer region, which was excited with an oscillatory jet. Finally, a significant degradation of the laser light sheet, in this cryogenic facility, is discussed.

  20. The effect of rodent seed predation on four species of California annual grasses.

    PubMed

    Borchert, M I; Jain, S K

    1978-01-01

    The effect of seed predation by Microtus californicus and Mus musculus on plant numbers of four species of California annual grasses was investigated for one year period on a grassland near Davis, California. In winter, mice utilized dead star thistle plants for cover when grasses in open areas were short, but moved into open areas when grass grew tall in spring.Using exclosures and plots sown with known quantities of seed, it was estimated that a mouse population (approximate density 120/acre) consumed 75% of Avena fatua seed, 44% of Hordeum leporinum seed, and 37% of Bromus diandrus seed. Mice showed a strong preference for Avena seed.Plant numbers of Avena and Hordeum were reduced by 62% and 30%, respectively. Hordeum, Lolium, and to a lesser extent, Bromus responded to a competitive release from Avena by increases in plant size and reproductive output. In addition, seed predation markedly increased seed to adult plant survivorship of Avena, Hordeum, and Bromus.Vertebrate seed predation is discussed as a potentially important factor in the yearly patterns of plant population regulation in California annual grasslands.

  1. Extracting tissue and cell outlines of Arabidopsis seeds using refraction contrast X-ray CT at the SPring-8 facility

    NASA Astrophysics Data System (ADS)

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Karahara, Ichirou; Mineyuki, Yoshinobu

    2012-07-01

    How biological form is determined is one of the important questions in developmental biology. Physical forces are thought to be the primary determinants of the biological forms, and several theories for this were proposed nearly a century ago. To evaluate how physical forces can influence biological forms, precise determination of cell and tissue shapes and their geometries is necessary. Computed tomography (CT) is useful for visualizing three-dimensional structures without destroying a sample. Because recent progress in micro-CT has enabled visualizing cells and tissues at the sub-micron level, we investigated if we could extract cell and tissue outlines of seeds using refraction contrast X-ray CT available at the SPring-8 synchrotron radiation facility. We used Arabidopsis seeds because Arabidopsis is a well-known model plant and its seed size is small enough to obtain whole images using the X-ray CT experimental system. We could trace the outlines of tissues in dry seeds using beamline BL20B2 (10 keV, 2.4µm.pixel-1). Although we could also detect the outlines of some cell types, the image resolution was not adequate to extract whole cell edges. To detect the edges of cells in the epidermis and cortex, we obtained CT images using beamline BL20XU (8 keV, 0.5 µm.pixel-1). With these CT images, we could extract the facets and edges of each cell and determine cell vertices. This method enabled us to compare the numbers of cell facets among various cell types. We could also describe cell geometry as a set of points that showed these cell vertices.

  2. Manufacture of a human mesenchymal stem cell population using an automated cell culture platform.

    PubMed

    Thomas, Robert James; Chandra, Amit; Liu, Yang; Hourd, Paul C; Conway, Paul P; Williams, David J

    2007-09-01

    Tissue engineering and regenerative medicine are rapidly developing fields that use cells or cell-based constructs as therapeutic products for a wide range of clinical applications. Efforts to commercialise these therapies are driving a need for capable, scaleable, manufacturing technologies to ensure therapies are able to meet regulatory requirements and are economically viable at industrial scale production. We report the first automated expansion of a human bone marrow derived mesenchymal stem cell population (hMSCs) using a fully automated cell culture platform. Differences in cell population growth profile, attributed to key methodological differences, were observed between the automated protocol and a benchmark manual protocol. However, qualitatively similar cell output, assessed by cell morphology and the expression of typical hMSC markers, was obtained from both systems. Furthermore, the critical importance of minor process variation, e.g. the effect of cell seeding density on characteristics such as population growth kinetics and cell phenotype, was observed irrespective of protocol type. This work highlights the importance of careful process design in therapeutic cell manufacture and demonstrates the potential of automated culture for future optimisation and scale up studies required for the translation of regenerative medicine products from the laboratory to the clinic.

  3. Ant Abundance along a Productivity Gradient: Addressing Two Conflicting Hypotheses

    PubMed Central

    Segev, Udi; Kigel, Jaime; Lubin, Yael; Tielbörger, Katja

    2015-01-01

    The number of individuals within a population or community and their body size can be associated with changes in resource supply. While these relationships may provide a key to better understand the role of abiotic vs. biotic constraints in animal communities, little is known about the way size and abundance of organisms change along resource gradients. Here, we studied this interplay in ants, addressing two hypotheses with opposite predictions regarding variation in population densities along resource gradients- the ‘productivity hypothesis’ and the ‘productivity-based thinning hypothesis’. The hypotheses were tested in two functional groups of ground-dwelling ants that are directly primary consumers feeding on seeds: specialized seed-eaters and generalist species. We examined variations in colony density and foraging activity (a size measurement of the forager caste) in six ant assemblages along a steep productivity gradient in a semi-arid region, where precipitation and plant biomass vary 6-fold over a distance of 250km. An increase in the density or foraging activity of ant colonies along productivity gradients is also likely to affect competitive interactions among colonies, and consequently clinal changes in competition intensity were also examined. Ant foraging activity increased with productivity for both functional groups. However, colony density revealed opposing patterns: it increased with productivity for the specialized seed-eaters, but decreased for the generalist species. Competition intensity, evaluated by spatial partitioning of species at food baits and distribution of colonies, was uncorrelated with productivity in the specialized seed-eaters, but decreased with increasing productivity in the generalists. Our results provide support for two contrasting hypotheses regarding the effect of resource availability on the abundance of colonial organisms- the ‘productivity hypothesis’ for specialized seed-eaters and the ‘productivity-based thinning hypothesis’ for generalist species. These results also stress the importance of considering the role of functional groups in studies of community structure. PMID:26176853

  4. Anatomical structure of Camellia oleifera shell.

    PubMed

    Hu, Jinbo; Shi, Yang; Liu, Yuan; Chang, Shanshan

    2018-06-04

    The main product of Camellia oleifera is edible oil made from the seeds, but huge quantities of agro-waste are produced in the form of shells. The primary components of C. oleifera fruit shell are cellulose, hemicellulose, and lignin, which probably make it a good eco-friendly non-wood material. Understanding the structure of the shell is however a prerequisite to making full use of it. The anatomical structure of C. oleifera fruit shells was investigated from macroscopic to ultrastructural scale by stereoscopic, optical, and scanning electron microscopy. The main cell morphology in the different parts of the shell was observed and measured using the tissue segregation method. The density of the cross section of the shell was also obtained using an X-ray CT scanner to check the change in texture. The C. oleifera fruit pericarp was made up of exocarp, mesocarp, and endocarp. The main types of exocarp cells were stone cells, spiral vessels, and parenchyma cells. The mesocarp accounted for most of the shell and consisted of parenchyma, tracheids, and some stone cells. The endocarp was basically made up of cells with a thickened cell wall that were modified tracheid or parenchyma cells with secondary wall thickening. The most important ultrastructure in these cells was the pits in the cell wall of stone and vessel cells that give the shell a conducting, mechanical, and protective role. The density of the shell gradually decreased from exocarp to endocarp. Tracheid cells are one of the main cell types in the shell, but their low slenderness (length to width) ratio makes them unsuitable for the manufacture of paper. Further research should be conducted on composite shell-plastic panels (or other reinforced materials) to make better use of this agro-waste.

  5. Analysis of plasma-mediated ablation in aqueous tissue

    NASA Astrophysics Data System (ADS)

    Jiao, Jian; Guo, Zhixiong

    2012-06-01

    Plasma-mediated ablation using ultrafast lasers in transparent media such as aqueous tissues is studied. It is postulated that a critical seed free electron density exists due to the multiphoton ionization in order to trigger the avalanche ionization which causes ablation and during the avalanche ionization process the contribution of laser-induced photon ionization is negligible. Based on this assumption, the ablation process can be treated as two separate processes - the multiphoton and avalanche ionizations - at different time stages; so that an analytical solution to the evolution of plasma formation is obtained for the first time. The analysis is applied to plasma-mediated ablation in corneal epithelium and validated via comparison with experimental data available in the literature. The critical seed free-electron density and the time to initiate the avalanche ionization for sub-picosecond laser pulses are analyzed. It is found that the critical seed free-electron density decreases as the pulse width increases, obeying a tp-5.65 rule. This model is further extended to the estimation of crater size in the ablation of tissue-mimic polydimethylsiloxane (PDMS). The results match well with the available experimental measurements.

  6. Seed dispersal by wind, birds, and bats between Philippine montane rainforest and successional vegetation.

    PubMed

    Ingle, Nina M R

    2003-01-01

    In the moist Neotropics, vertebrate frugivores have a much greater role in the dispersal of forest and successional woody plants than wind, and bats rather than birds play the dominant role in dispersing early successional species. I investigated whether these patterns also occurred in a Philippine montane rainforest and adjacent successional vegetation. I also asked whether seed mass was related to probability of dispersal between habitats. A greater number of woody species and stems in the forest produced vertebrate-dispersed seeds than wind-dispersed seeds. Although input of forest seeds into the successional area was dominated by vertebrate-dispersed seeds in terms of species richness, wind-dispersed seeds landed in densities 15 times higher. Frugivorous birds dispersed more forest seeds and species into the successional area than bats, and more successional seeds and species into the forest. As expected, seed input declined with distance from source habitat. Low input of forest seeds into the successional area at the farthest distance sampled, 40 m from forest edge, particularly for vertebrate-dispersed seeds, suggests very limited dispersal out of forest even into a habitat in which woody successional vegetation provides perches and fruit resources. For species of vertebrate-dispersed successional seeds, probability of dispersal into forest declined significantly with seed mass.

  7. Repeated landscape-scale treatments following fire suppress a non-native annual grass and promote recovery of native perennial vegetation

    USGS Publications Warehouse

    Munson, Seth M.; Long, A. Lexine; Decker, Cheryl E.; Johnson, Katie A.; Walsh, Kathleen; Miller, Mark E.

    2015-01-01

    Invasive non-native species pose a large threat to restoration efforts following large-scale disturbances. Bromus tectorum (cheatgrass) is a non-native annual grass in the western U.S. that both spreads quickly following fire and accelerates the fire cycle. Herbicide and seeding applications are common restoration practices to break the positive fire-invasion feedback loop and recover native perennial species, but their interactive effects have infrequently been tested at the landscape-scale and repeated in time to encourage long-lasting effects. We determined the efficacy of repeated post-fire application of the herbicide imazapic and seeding treatments to suppressBromus abundance and promote perennial vegetation recovery. We found that the selective herbicide reduced Bromus cover by ~30 % and density by >50 % across our study sites, but had a strong initial negative effect on seeded species. The most effective treatment to promote perennial seeded species cover was seeding them alone followed by herbicide application 3 years later when the seeded species had established. The efficacy of the treatments was strongly influenced by water availability, as precipitation positively affected the density and cover of Bromus; soil texture and aspect secondarily influenced Bromus abundance and seeded species cover by modifying water retention in this semi-arid region. Warmer temperatures positively affected the non-native annual grass in the cool-season, but negatively affected seeded perennial species in the warm-season, suggesting an important role of seasonality in a region projected to experience large increases in warming in the future. Our results highlight the importance of environmental interactions and repeated treatments in influencing restoration outcomes at the landscape-scale.

  8. From seed production to seedling establishment: Important steps in an invasive process

    NASA Astrophysics Data System (ADS)

    Ferreras, Ana Elisa; Galetto, Leonardo

    2010-03-01

    It is widely accepted that exotic invasive species are one of the most important ecological and economic problems. Reproductive and establishment traits are considered key features of a population expansion process, but few works have studied many of these simultaneously. This work examines how large the differences are in reproductive and establishment traits between two Fabaceae, the exotic invasive, Gleditsia triacanthos and the native, Acacia aroma. Gleditsia is a serious leguminous woody invader in various parts of the world and Acacia is a common native tree of Argentina. Both species have similar dispersal mechanisms and their reproductive phenology overlaps. We chose 17 plants of each species in a continuous forest of the Chaco Serrano Forest of Córdoba, Argentina. In each plant we measured fruit production, fruit removal (exclusion experiments), seed predation (pre- and post-dispersal), seed germination, seed bank (on each focal tree, three sampling periods during the year), and density of seedlings (around focal individuals and randomly in the study site). Gleditsia presented some traits that could favour the invasion process, such as a higher number of seeds per plant, percentage of scarified seed germination and density of seedlings around the focal individuals, than Acacia. On the other hand, Gleditsia presented a higher percentage of seed predation. The seed bank was persistent in both species and no differences were observed in fruit removal. This work highlights the importance of simultaneously studying reproductive and establishment variables involved in the spreading of an exotic invasive species. It also gives important insight into the variables to be considered when planning management strategies. The results are discussed from the perspective of some remarkable hypotheses on invasive species and may contribute to rethinking some aspects of the theory on invasive species.

  9. Brassinosteroid Regulates Seed Size and Shape in Arabidopsis1[W][OPEN

    PubMed Central

    Jiang, Wen-Bo; Huang, Hui-Ya; Hu, Yu-Wei; Zhu, Sheng-Wei; Wang, Zhi-Yong; Lin, Wen-Hui

    2013-01-01

    Seed development is important for agriculture productivity. We demonstrate that brassinosteroid (BR) plays crucial roles in determining the size, mass, and shape of Arabidopsis (Arabidopsis thaliana) seeds. The seeds of the BR-deficient mutant de-etiolated2 (det2) are smaller and less elongated than those of wild-type plants due to a decreased seed cavity, reduced endosperm volume, and integument cell length. The det2 mutant also showed delay in embryo development, with reduction in both the size and number of embryo cells. Pollination of det2 flowers with wild-type pollen yielded seeds of normal size but still shortened shape, indicating that the BR produced by the zygotic embryo and endosperm is sufficient for increasing seed volume but not for seed elongation, which apparently requires BR produced from maternal tissues. BR activates expression of SHORT HYPOCOTYL UNDER BLUE1, MINISEED3, and HAIKU2, which are known positive regulators of seed size, but represses APETALA2 and AUXIN RESPONSE FACTOR2, which are negative regulators of seed size. These genes are bound in vivo by the BR-activated transcription factor BRASSINAZOLE-RESISTANT1 (BZR1), and they are known to influence specific processes of integument, endosperm, and embryo development. Our results demonstrate that BR regulates seed size and seed shape by transcriptionally modulating specific seed developmental pathways. PMID:23771896

  10. Effects of foliar boron application on seed composition, cell wall boron, and seed δ15N and δ13C isotopes in water-stressed soybean plants

    PubMed Central

    Bellaloui, Nacer; Hu, Yanbo; Mengistu, Alemu; Kassem, My A.; Abel, Craig A.

    2013-01-01

    Limited information is available on the effects of foliar boron (B) application on soybean seed composition. The objective of this research was to investigate the effects of foliar B on seed composition (protein, oil, fatty acids, and sugars). Our hypothesis was that since B is involved in nitrogen and carbon metabolism, it may impact seed composition. A repeated greenhouse experiment was conducted where half of the soybean plants was exposed to water stress (WS) and the other half was well-watered. Foliar boron (FB) in the form of boric acid was applied twice at a rate of 1.1 kg ha−1. The first application was during flowering stage, and the second application was during seed-fill stage. Treatments were water stressed plants with no FB (WS–B); water stressed plants with FB (WS+B); watered plants without FB (W–B), and watered plants with FB (W+B). The treatment W–B was used as a control. Comparing with WS–B plants, B concentration was the highest in leaves and seed of W+B plants (84% increase in leaves and 73% in seed). Seeds of W+B plants had higher protein (11% increase), oleic acid (27% increase), sucrose (up to 40% increase), glucose, and fructose comparing with W–B. However, seed stachyose concentrations increased by 43% in WS–B plants seed compared with W–B plants. Cell wall (structural) B concentration in leaves was higher in all plants under water stress, especially in WS–B plants where the percentage of cell wall B reached up to 90%. Water stress changed seed δ15N and δ13C values in both B applied and non-B applied plants, indicating possible effects on nitrogen and carbon metabolism. This research demonstrated that FB increased B accumulation in leaves and seed, and altered seed composition of well-watered and water stressed plants, indicating a possible involvement of B in seed protein, and oleic and linolenic fatty acids. Further research is needed to explain mechanisms of B involvement in seed protein and fatty acids. PMID:23888163

  11. Decellularized extracellular matrix microparticles as a vehicle for cellular delivery in a model of anastomosis healing.

    PubMed

    Hoganson, David M; Owens, Gwen E; Meppelink, Amanda M; Bassett, Erik K; Bowley, Chris M; Hinkel, Cameron J; Finkelstein, Eric B; Goldman, Scott M; Vacanti, Joseph P

    2016-07-01

    Extracellular matrix (ECM) materials from animal and human sources have become important materials for soft tissue repair. Microparticles of ECM materials have increased surface area and exposed binding sites compared to sheet materials. Decellularized porcine peritoneum was mechanically dissociated into 200 µm microparticles, seeded with fibroblasts and cultured in a low gravity rotating bioreactor. The cells avidly attached and maintained excellent viability on the microparticles. When the seeded microparticles were placed in a collagen gel, the cells quickly migrated off the microparticles and through the gel. Cells from seeded microparticles migrated to and across an in vitro anastomosis model, increasing the tensile strength of the model. Cell seeded microparticles of ECM material have potential for paracrine and cellular delivery therapies when delivered in a gel carrier. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1728-1735, 2016. © 2016 Wiley Periodicals, Inc.

  12. Transformation of Morinda citrifolia via simple mature seed imbibition method.

    PubMed

    Lee, J J; Ahmad, S; Roslan, H A

    2013-12-15

    Morinda citrifolia, is a valuable medicinal plant with a wide range of therapeutic properties and extensive transformation study on this plant has yet been known. Present study was conducted to establish a simple and reliable transformation protocol for M. citrifolia utilising Agrobacterium tumefaciens via direct seed exposure. In this study, the seeds were processed by tips clipping and dried and subsequently incubated in inoculation medium. Four different parameters during the incubation such as incubation period, bacterial density, temperature and binary vectors harbouring beta-glucuronidase (GUS) gene (pBI121 and pGSA1131), were tested to examine its effect on transformation efficiency. The leaves from the treated and germinated seedlings were analysed via Polymerase Chain Reaction (PCR), histochemical assay of the GUS gene and reverse transcription-PCR (RT-PCR). Results of the study showed that Agrobacterium strain LBA4404 with optical density of 1.0 and 2 h incubation period were optimum for M. citrifolia transformation. It was found that various co-cultivation temperatures tested and type of vector used did not affect the transformation efficiency. The highest transformation efficiency for M. citrifolia direct seed transformation harbouring pBI121 and pGSA1131 was determined to be 96.8% with 2 h co-cultivation treatment and 80.4% when using bacterial density of 1.0, respectively. The transformation method can be applied for future characterization study of M. citrifolia.

  13. Spectral Characteristics of VLF Sferics Associated With RHESSI TGFs.

    PubMed

    Mezentsev, Andrew; Lehtinen, Nikolai; Østgaard, Nikolai; Pérez-Invernón, F J; Cummer, Steven A

    2018-01-16

    We compared the modeled energy spectral density of very low frequency (VLF) radio emissions from terrestrial gamma ray flashes (TGFs) with the energy spectral density of VLF radio sferics recorded by Duke VLF receiver simultaneously with those TGFs. In total, six events with world wide lightning location network (WWLLN) defined locations were analyzed to exhibit a good fit between the modeled and observed energy spectral densities. In VLF range the energy spectral density of the TGF source current moment is found to be dominated by the contribution of secondary low-energy electrons and independent of the relativistic electrons which play their role in low-frequency (LF) range. Additional spectral modulation by the multiplicity of TGF peaks was found and demonstrated a good fit for two TGFs whose VLF sferics consist of two overlapping pulses each. The number of seeding pulses in TGF defines the spectral shape in VLF range, which allows to retrieve this number from VLF sferics, assuming they were radiated by TGFs. For two events it was found that the number of seeding pulses is small, of the order of 10. For the rest of the events the lower boundary of the number of seeding pulses was found to be between 10 to 10 3 .

  14. Consumption of Nuts and Seeds and Telomere Length in 5,582 Men and Women of the National Health and Nutrition Examination Survey (NHANES).

    PubMed

    Tucker, L A

    2017-01-01

    Consumption of nuts and seeds is associated favorably with all-cause mortality. Nuts and seeds could reduce disease and prolong life by influencing telomeres. Telomere length is a good indicator of the senescence of cells. The purpose of the present study was to determine the relationship between nuts and seeds intake and leukocyte telomere length, a biomarker of biologic aging. Cross-sectional. A total of 5,582 randomly selected men and women from the National Health and Nutrition Examination Survey (NHANES), 1999-2002, were studied. DNA was obtained via blood samples. Telomere length was assessed using the quantitative polymerase chain reaction method. A validated, multi-pass, 24-h recall dietary assessment, administered by NHANES, was employed to quantify consumption of nuts and seeds. Nuts and seeds intake was positively and linearly associated with telomere length. For each 1-percent of total energy derived from nuts and seeds, telomere length was 5 base pairs longer (F=8.6, P=0.0065). Given the age-related rate of telomere shortening was 15.4 base pairs per year (F=581.1, P<0.0001), adults of the same age had more than 1.5 years of reduced cell aging if they consumed 5% of their total energy from nuts and seeds. Consumption of nuts and seeds accounts for meaningful decreases in biologic aging and cell senescence. The findings reinforce the recommendations of the 2015-2020 Dietary Guidelines for Americans, which encourage the consumption of nuts and seeds as part of a healthy diet.

  15. Bioinoculants: A sustainable approach to maximize the yield of Ethiopian mustard (Brassica carinata L.) under low input of chemical fertilizers.

    PubMed

    Nosheen, Asia; Bano, Asghari; Ullah, Faizan

    2016-02-01

    This study aimed to find out the effect of plant growth-promoting rhizobacteria (PGPR; Azospirillum brasilense and Azotobacter vinelandii) either alone or in combination with different doses of nitrogen and phosphate fertilizers on growth, seed yield, and oil quality of Brassica carinata (L.) cv. Peela Raya. PGPR were applied as seed inoculation at 10(6) cells/mL(-1) so that the number of bacterial cells per seed was 2.6 × 10(5) cells/seed. The chemical fertilizers, namely, urea and diammonium phosphate (DAP) were applied in different doses (full dose (urea 160 kg ha(-1) + DAP 180 kg ha(-1)), half dose (urea 80 kg ha(-1) + DAP 90 kg ha(-1)), and quarter dose (urea 40 kg ha(-1) + DAP 45 kg ha(-1)). The chemical fertilizers at full and half dose significantly increased the chlorophyll, carotenoids, and protein content of leaves and the seed yield (in kilogram per hectare) but had no effect on the oil content of seed. The erucic acid (C22:1) content present in the seed was increased. Azospirillum performed better than Azotobacter and its effect was at par with full dose of chemical fertilizers (CFF) for pigments and protein content of leaves when inoculated in the presence of half dose of chemical fertilizers (SPH). The seed yield and seed size were greater. Supplementing Azospirillum with SPH assisted Azospirillum to augment the growth and yield, reduced the erucic acid (C22:1) and glucosinolates contents, and increased the unsaturation in seed oil. It is inferred that A. brasilense could be applied as an efficient bioinoculant for enhancing the growth, seed yield, and oil quality of Ethiopian mustard at low fertilizer costs and sustainable ways. © The Author(s) 2013.

  16. Strong early seed-specific gene regulatory region

    DOEpatents

    Broun, Pierre; Somerville, Chris

    1999-01-01

    Nucleic acid sequences and methods for their use are described which provide for early seed-specific transcription, in order to modulate or modify expression of foreign or endogenous genes in seeds, particularly embryo cells. The method finds particular use in conjunction with modifying fatty acid production in seed tissue.

  17. Strong early seed-specific gene regulatory region

    DOEpatents

    Broun, Pierre; Somerville, Chris

    2002-01-01

    Nucleic acid sequences and methods for their use are described which provide for early seed-specific transcription, in order to modulate or modify expression of foreign or endogenous genes in seeds, particularly embryo cells. The method finds particular use in conjunction with modifying fatty acid production in seed tissue.

  18. High Residue Winter Cover Crops Deplete Winter Annual Weed Seed Across a Landscape in a Long-Term Tillage Study

    USDA-ARS?s Scientific Manuscript database

    High residue conservation agriculture systems have the potential to maximize environmental benefits achieved when practicing reduced tillage. A greenhouse study was conducted in 2006 through 2008 to determine the effects of cover crop residue on weed seed density within the soil seedbank under varyi...

  19. Nutrient homeostasis, C:N:S ratios, protein, and oil content in Cuphea seed

    USDA-ARS?s Scientific Manuscript database

    Macro- and micro-nutrient densities, carbon:nitrogen (C:N), nitrogen:sulphur (N:S), protein, and oil contents and interrelationships were assessed during a 3-year study in seeds of the indeterminate Cuphea germplasm line PSR23 selected from an inter-specific cross between two species of the Lythrace...

  20. Purslane (Portulaca oleracea) Seed Consumption And Aerobic Training Improves Biomarkers Associated with Atherosclerosis in Women with Type 2 Diabetes (T2D).

    PubMed

    Dehghan, Firouzeh; Soori, Rahman; Gholami, Khadijeh; Abolmaesoomi, Mitra; Yusof, Ashril; Muniandy, Sekaran; Heidarzadeh, Sara; Farzanegi, Parvin; Ali Azarbayjani, Mohammad

    2016-12-05

    The aim of this study was to investigate the responses of atherosclerosis plaque biomarkers to purslane seed consumption and aerobic training in women with T2D. 196 women with T2D were assigned into; (1) placebo (PL), (2) aerobic training+placebo (AT + PL), 3) purslane seeds (PS), aerobic training+purslane seeds (AT + PS). The training program and purslane seeds consumption (2.5 g lunch and 5 g dinner) were carried out for 16 weeks. The components of purslane seed were identified and quantified by GC-MS. Blood samples were withdrawn via venipuncture to examine blood glucose, low-density lipoprotein (LDL), high-density lipoprotein (HDL), cholesterol, triglycerides (TG), creatinine, urea, uric acid, NF-κB, GLP1, GLP1R, TIMP-1, MMP2, MMP9, CRP, CST3, and CTSS expressions. Blood glucose, LDL, cholesterol, TG, creatinine, urea, and uric acid levels in the (P), (AT), and (AT + PS) groups were significantly decreased compared to the pre-experimental levels or the placebo group, while HDL, significantly increased. Furthermore, the protein and mRNA levels of NF-κB, TIMP-1, MMP2 &9, CRP, CST3, and CTSS in the (P), (AT), (AT + PS) significantly decreased compared to pre-experimental or the placebo group, while level of GLP1 and GLP1-R increased drastically. Findings suggest that purslane seed consumption alongside exercising could improve atherosclerosis plaque biomarkers through synergistically mechanisms in T2D.

Top