Sample records for cell selection devices

  1. 76 FR 51038 - Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ...; formerly Docket No. 2007D-0290] Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral Blood Stem Cells; Withdrawal of Draft Guidance...: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral...

  2. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things.

    PubMed

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-09-18

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified.

  3. Cell Selection Game for Densely-Deployed Sensor and Mobile Devices In 5G Networks Integrating Heterogeneous Cells and the Internet of Things

    PubMed Central

    Wang, Lusheng; Wang, Yamei; Ding, Zhizhong; Wang, Xiumin

    2015-01-01

    With the rapid development of wireless networking technologies, the Internet of Things and heterogeneous cellular networks (HCNs) tend to be integrated to form a promising wireless network paradigm for 5G. Hyper-dense sensor and mobile devices will be deployed under the coverage of heterogeneous cells, so that each of them could freely select any available cell covering it and compete for resource with others selecting the same cell, forming a cell selection (CS) game between these devices. Since different types of cells usually share the same portion of the spectrum, devices selecting overlapped cells can experience severe inter-cell interference (ICI). In this article, we study the CS game among a large amount of densely-deployed sensor and mobile devices for their uplink transmissions in a two-tier HCN. ICI is embedded with the traditional congestion game (TCG), forming a congestion game with ICI (CGI) and a congestion game with capacity (CGC). For the three games above, we theoretically find the circular boundaries between the devices selecting the macrocell and those selecting the picocells, indicated by the pure strategy Nash equilibria (PSNE). Meanwhile, through a number of simulations with different picocell radii and different path loss exponents, the collapse of the PSNE impacted by severe ICI (i.e., a large number of picocell devices change their CS preferences to the macrocell) is profoundly revealed, and the collapse points are identified. PMID:26393617

  4. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2003-11-04

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  5. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2004-09-28

    An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  6. Solid-state energy storage module employing integrated interconnect board

    DOEpatents

    Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.

    2000-01-01

    The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. In one embodiment, a sheet of conductive material is processed by employing a known milling, stamping, or chemical etching technique to include a connection pattern which provides for flexible and selective interconnecting of individual electrochemical cells within the housing, which may be a hermetically sealed housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.

  7. Provision Of Carbon Nanotube Bucky Paper Cages For Immune Shielding Of Cells, Tissues, and Medical Devices

    NASA Technical Reports Server (NTRS)

    Loftus, David J. (Inventor)

    2006-01-01

    System and method for enclosing cells and/or tissue, for purposes of growth, cell differentiation, suppression of cell differentiation, biological processing and/or transplantation of cells and tissues (biological inserts), and for secretion, sensing and monitoring of selected chemical substances and activation of gene expression of biological inserts implanted into a human body. Selected cells and/or tissue are enveloped in a "cage" that is primarily carbon nanotube Bucky paper, with a selected thickness and porosity. Optionally, selected functional groups, proteins and/or peptides are attached to the carbon nanotube cage, or included within the cage, to enhance the growth and/or differentiation of the cells and/or tissue, to select for certain cellular sub-populations, to optimize certain functions of the cells and/or tissue and/or to optimize the passage of chemicals across the cage surface(s). A cage system is also used as an immuns shield and to control operation of a nano-device or macroscopic device, located within the cage, to provide or transform a selected chemical and/or a selected signal.

  8. Parallel affinity-based isolation of leukocyte subsets using microfluidics: application for stroke diagnosis.

    PubMed

    Pullagurla, Swathi R; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hupert, Mateusz L; Nesterova, Irina V; Baird, Alison E; Soper, Steven A

    2014-04-15

    We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 μL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated.

  9. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design.

    PubMed

    Sumboja, Afriyanti; Liu, Jiawei; Zheng, Wesley Guangyuan; Zong, Yun; Zhang, Hua; Liu, Zhaolin

    2018-06-27

    Compatible energy storage devices that are able to withstand various mechanical deformations, while delivering their intended functions, are required in wearable technologies. This imposes constraints on the structural designs, materials selection, and miniaturization of the cells. To date, extensive efforts have been dedicated towards developing electrochemical energy storage devices for wearables, with a focus on incorporation of shape-conformable materials into mechanically robust designs that can be worn on the human body. In this review, we highlight the quantified performances of reported wearable electrochemical energy storage devices, as well as their micro-sized counterparts under specific mechanical deformations, which can be used as the benchmark for future studies in this field. A general introduction to the wearable technology, the development of the selection and synthesis of active materials, cell design approaches and device fabrications are discussed. It is followed by challenges and outlook toward the practical use of electrochemical energy storage devices for wearable applications.

  10. Spectrally-engineered solar thermal photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenert, Andrej; Bierman, David; Chan, Walker

    A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies belowmore » the bandgap.« less

  11. Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.

    PubMed

    Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming

    2016-08-25

    Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.

  12. Polymer Coatings in 3D-Printed Fluidic Device Channels for Improved Cellular Adherence Prior to Electrical Lysis.

    PubMed

    Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M

    2015-06-16

    This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.

  13. Enzymatic cleavage of uracil-containing single-stranded DNA linkers for the efficient release of affinity-selected circulating tumor cells.

    PubMed

    Nair, Soumya V; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hunsucker, Sally A; Sapp, Travis; Perry, Caroline E; Hupert, Mateusz L; Bae-Jump, Victoria; Gehrig, Paola A; Wysham, Weiya Z; Armistead, Paul M; Voorhees, Peter; Soper, Steven A

    2015-02-21

    We report a novel strategy to enzymatically release affinity-selected cells, such as circulating tumor cells (CTCs), from surfaces with high efficiency (∼90%) while maintaining cell viability (>85%). The strategy utilizes single-stranded DNAs that link a capture antibody to the surfaces of a CTC selection device. The DNA linkers contain a uracil residue that can be cleaved.

  14. A Membrane-Free Neutral pH Formate Fuel Cell Enabled by a Selective Nickel Sulfide Oxygen Reduction Catalyst.

    PubMed

    Yan, Bing; Concannon, Nolan M; Milshtein, Jarrod D; Brushett, Fikile R; Surendranath, Yogesh

    2017-06-19

    Polymer electrolyte membranes employed in contemporary fuel cells severely limit device design and restrict catalyst choice, but are essential for preventing short-circuiting reactions at unselective anode and cathode catalysts. Herein, we report that nickel sulfide Ni 3 S 2 is a highly selective catalyst for the oxygen reduction reaction in the presence of 1.0 m formate. We combine this selective cathode with a carbon-supported palladium (Pd/C) anode to establish a membrane-free, room-temperature formate fuel cell that operates under benign neutral pH conditions. Proof-of-concept cells display open circuit voltages of approximately 0.7 V and peak power values greater than 1 mW cm -2 , significantly outperforming the identical device employing an unselective platinum (Pt) cathode. The work establishes the power of selective catalysis to enable versatile membrane-free fuel cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Low resistivity ZnO-GO electron transport layer based CH{sub 3}NH{sub 3}PbI{sub 3} solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Muhammad Imran, E-mail: imranrahbar@scme.nust.edu.pk, E-mail: amirhabib@scme.nust.edu.pk; Hussain, Zakir; Mujahid, Mohammad

    Perovskite based solar cells have demonstrated impressive performances. Controlled environment synthesis and expensive hole transport material impede their potential commercialization. We report ambient air synthesis of hole transport layer free devices using ZnO-GO as electron selective contacts. Solar cells fabricated with hole transport layer free architecture under ambient air conditions with ZnO as electron selective contact achieved an efficiency of 3.02%. We have demonstrated that by incorporating GO in ZnO matrix, low resistivity electron selective contacts, critical to improve the performance, can be achieved. We could achieve max efficiency of 4.52% with our completed devices for ZnO: GO composite. Impedancemore » spectroscopy confirmed the decrease in series resistance and an increase in recombination resistance with inclusion of GO in ZnO matrix. Effect of temperature on completed devices was investigated by recording impedance spectra at 40 and 60 {sup o}C, providing indirect evidence of the performance of solar cells at elevated temperatures.« less

  16. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  17. Body Doping Profile of Select Device to Minimize Program Disturbance in Three-Dimensional Stack NAND Flash Memory

    NASA Astrophysics Data System (ADS)

    Choe, Byeong-In; Park, Byung-Gook; Lee, Jong-Ho

    2013-06-01

    The program disturbance characteristic in the three-dimensional (3D) stack NAND flash was analyzed for the first time in terms of string select line (SSL) threshold voltage (Vth) and p-type body doping profile. From the edge word line (W/L) program disturbance, we can observe the boosted channel potential loss as a function of SSL Vth and body doping profile for SSL device. According to simulation work, a high Vth of the SSL device is required to suppress channel leakage during programming. When the body doping of the SSL device is high in the channel, there is a large band bending near the gate edge of the SSL adjacent to the edge W/L cell of boosted cell strings, which generates significantly electron-hole pairs. The generated electrons decreases the boosted channel potential, resulting in increase of program disturbance of the inhibit strings. Through optimization of the body doping profile of the SSL device, both channel leakage and the program disturbance are successfully suppressed for a highly reliable 3D stack NAND flash memory cell operation.

  18. Device and method for the measurement of gas permeability through membranes

    DOEpatents

    Agarwal, Pradeep K.; Ackerman, John; Borgialli, Ron; Hamann, Jerry; Muknahalliptna, Suresh

    2006-08-08

    A device for the measuring membrane permeability in electrical/electrochemical/photo-electrochemical fields is provided. The device is a permeation cell and a tube mounted within the cell. An electrode is mounted at one end of the tube. A membrane is mounted within the cell wherein a corona is discharged from the electrode in a general direction toward the membrane thereby generating heated hydrogen atoms adjacent the membrane. A method for measuring the effects of temperature and pressure on membrane permeability and selectivity is also provided.

  19. Electromagnetic fields used clinically to improve bone healing also impact lymphocyte proliferation in vitro.

    PubMed

    Johnson, M T; Vanscoy-Cornett, A; Vesper, D N; Swez, J A; Chamberlain, J K; Seaward, M B; Nindl, G

    2001-01-01

    An important aspect of medical device development is the need to understand how a device produces a specific biological effect. The focus can then be on optimizing that effect by device modification and repeated testing. Several reports from this lab have targeted programmed cell death, or apoptosis, as a cellular pathway that is induced by exposure of transformed leukemic T-cells in culture to specific frequency and intensity electromagnetic fields (EMFs). An EMF delivery device capable of selectively inducing T-cell apoptosis in human tissues could be used to enhance healing by limiting the production of molecules that promote inflammatory disorders such as psoriasis and tendonitis. In the present study, we examined the normal T-cell response to EMF exposure in vitro. In the peripheral blood, 70-80% of the lymphocytes are T-cells, and thus is a rich source of normal cells that match the transformed T-cells used in other experiments (Jurkat cells). We isolated lymphocytes from the peripheral blood of humans and rats, cultured them in nutritive medium and exposed them to either a complex 1.8 mT pulsed EMF (Electrobiology, Inc.), a 0.1 mT, 60 Hz power frequency EMF or a 0.2 mT, 100 Hz sinusoidal EMF. Control lymphocytes were cultured similarly, without field exposure. Lymphocytes were then treated with T-cell mitogens and evaluated for proliferative capacity after an additional 72 hours culture. Results indicate that T-cell proliferation is modulated by in vitro exposure to defined EMFs. The potential use of an EMF delivery device capable of selectively inducing such T-cell effects is discussed.

  20. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity.

    PubMed

    Lee, Ada; Park, Juhee; Lim, Minji; Sunkara, Vijaya; Kim, Shine Young; Kim, Gwang Ha; Kim, Mi-Hyun; Cho, Yoon-Kyoung

    2014-11-18

    Circulating tumor cells (CTCs) have gained increasing attention owing to their roles in cancer recurrence and progression. Due to the rarity of CTCs in the bloodstream, an enrichment process is essential for effective target cell characterization. However, in a typical pressure-driven microfluidic system, the enrichment process generally requires complicated equipment and long processing times. Furthermore, the commonly used immunoaffinity-based positive selection method is limited, as its recovery rate relies on EpCAM expression of target CTCs, which shows heterogeneity among cell types. Here, we propose a centrifugal-force-based size-selective CTC isolation platform that can isolate and enumerate CTCs from whole blood within 30 s with high purity. The device was validated using the MCF-7 breast cancer cell line spiked in phosphate-buffered saline and whole blood, and an average capture efficiency of 61% was achieved, which is typical for size-based filtration. The capture efficiency for whole blood samples varied from 44% to 84% under various flow conditions and dilution factors. Under the optimized operating conditions, a few hundred white blood cells per 1 mL of whole blood were captured, representing a 20-fold decrease compared to those obtained using a commercialized size-based CTC isolation device. In clinical validation, normalized CTC counts varied from 10 to 60 per 7.5 mL of blood from gastric and lung cancer patients, yielding a detection rate of 50% and 38%, respectively. Overall, our CTC isolation device enables rapid and label-free isolation of CTCs with high purity, which should greatly improve downstream molecular analyses of captured CTCs.

  1. Increasing cell-device adherence using cultured insect cells for receptor-based biosensors

    NASA Astrophysics Data System (ADS)

    Terutsuki, Daigo; Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei

    2018-03-01

    Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell-device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell-device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell-device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs.

  2. A Review of Commercially Available Point-of-Care Devices to Concentrate Bone Marrow for the Treatment of Osteoarthritis and Focal Cartilage Lesions.

    PubMed

    Gaul, Florian; Bugbee, William D; Hoenecke, Heinz R; D'Lima, Darryl D

    2018-04-01

    Objective Mesenchymal stem cells (MSCs) are a promising cell-based therapy treatment option for several orthopedic indications. Because culture expansion of MSC is time and cost intensive, a bedside concentration of bone marrow (BM) aspirate is used as an alternative. Many commercial systems are available but the available literature and knowledge regarding these systems is limited. We compared different point-of-care devices that concentrate BM (BMC) by focusing on technical features and quality parameters to help surgeons make informed decisions while selecting the appropriate device. Methods We compared published data on the BMC devices of Arteriocyte, Arthrex, Celling Biosciences, EmCyte, Exactech, ISTO Tech, Harvest Tech/Terumo BCT, and Zimmer/BIOMET regarding technical features (centrifugation speed/time, input/output volume, kit components, type of aspiration syringes, filter usage) and quality parameters of their final BMC product (hematocrit, concentration of platelets and total nucleated cells, concentration of MSC and connective tissue progenitor cells). Results The systems differ significantly in their technical features and centrifugation parameters. Only the fully automated systems use universal kits, which allow processing different volumes of BM. Only the Arthrex system allows selection of final hematocrit. There was no standardized reporting method to describe biologic potency. Conclusions Based on the data obtained in this review, recommending a single device is not possible because the reported data could not be compared between devices. A standardized reporting method is needed for valid comparisons. Furthermore, clinical outcomes are required to establish the true efficacy of these systems. We are conducting additional studies for more careful comparison among the devices.

  3. Towards autonomous lab-on-a-chip devices for cell phone biosensing.

    PubMed

    Comina, Germán; Suska, Anke; Filippini, Daniel

    2016-03-15

    Modern cell phones are a ubiquitous resource with a residual capacity to accommodate chemical sensing and biosensing capabilities. From the different approaches explored to capitalize on such resource, the use of autonomous disposable lab-on-a-chip (LOC) devices-conceived as only accessories to complement cell phones-underscores the possibility to entirely retain cell phones' ubiquity for distributed biosensing. The technology and principles exploited for autonomous LOC devices are here selected and reviewed focusing on their potential to serve cell phone readout configurations. Together with this requirement, the central aspects of cell phones' resources that determine their potential for analytical detection are examined. The conversion of these LOC concepts into universal architectures that are readable on unaccessorized phones is discussed within this context. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Increasing cell–device adherence using cultured insect cells for receptor-based biosensors

    PubMed Central

    Mitsuno, Hidefumi; Sakurai, Takeshi; Okamoto, Yuki; Tixier-Mita, Agnès; Toshiyoshi, Hiroshi; Mita, Yoshio; Kanzaki, Ryohei

    2018-01-01

    Field-effect transistor (FET)-based biosensors have a wide range of applications, and a bio-FET odorant sensor, based on insect (Sf21) cells expressing insect odorant receptors (ORs) with sensitivity and selectivity, has emerged. To fully realize the practical application of bio-FET odorant sensors, knowledge of the cell–device interface for efficient signal transfer, and a reliable and low-cost measurement system using the commercial complementary metal-oxide semiconductor (CMOS) foundry process, will be indispensable. However, the interfaces between Sf21 cells and sensor devices are largely unknown, and electrode materials used in the commercial CMOS foundry process are generally limited to aluminium, which is reportedly toxic to cells. In this study, we investigated Sf21 cell–device interfaces by developing cross-sectional specimens. Calcium imaging of Sf21 cells expressing insect ORs was used to verify the functions of Sf21 cells as odorant sensor elements on the electrode materials. We found that the cell–device interface was approximately 10 nm wide on average, suggesting that the adhesion mechanism of Sf21 cells may differ from that of other cells. These results will help to construct accurate signal detection from expressed insect ORs using FETs. PMID:29657822

  5. A microfluidic platform for 3-dimensional cell culture and cell-based assays.

    PubMed

    Kim, Minseok S; Yeon, Ju Hun; Park, Je-Kyun

    2007-02-01

    This paper reports a novel microfluidic platform introducing peptide hydrogel to make biocompatible microenvironment as well as realizing in situ cell-based assays. Collagen composite, OPLA and Puramatrix scaffolds are compared to select good environment for human hepatocellular carcinoma cells (HepG2) by albumin measurement. The selected biocompatible self-assembling peptide hydrogel, Puramatrix, is hydrodynamically focused in the middle of main channel of a microfluidic device, and at the same time the cells are 3-dimensionally immobilized and encapsulated without any additional surface treatment. HepG2 cells have been 3-dimensionally cultured in a poly(dimethylsiloxane) (PDMS) microfluidic device for 4 days. The cells cultured in micro peptide scaffold are compared with those cultured by conventional petri dish in morphology and the rate of albumin secretion. By injection of different reagents into either side of the peptide scaffold, the microfluidic device also forms a linear concentration gradient profile across the peptide scaffold due to molecular diffusion. Based on this characteristic, toxicity tests are performed by Triton X-100. As the higher toxicant concentration gradient forms, the wider dead zone of cells in the peptide scaffold represents. This microfluidic platform facilitates in vivo-like 3-dimensional microenvironment, and have a potential for the applications of reliable cell-based screening and assays including cytotoxicity test, real-time cell viability monitoring, and continuous dose-response assay.

  6. Microwell Arrays for Studying Many Individual Cells

    NASA Technical Reports Server (NTRS)

    Folch, Albert; Kosar, Turgut Fettah

    2009-01-01

    "Laboratory-on-a-chip" devices that enable the simultaneous culturing and interrogation of many individual living cells have been invented. Each such device includes a silicon nitride-coated silicon chip containing an array of micromachined wells sized so that each well can contain one cell in contact or proximity with a patch clamp or other suitable single-cell-interrogating device. At the bottom of each well is a hole, typically 0.5 m wide, that connects the well with one of many channels in a microfluidic network formed in a layer of poly(dimethylsiloxane) on the underside of the chip. The microfluidic network makes it possible to address wells (and, thus, cells) individually to supply them with selected biochemicals. The microfluidic channels also provide electrical contact to the bottoms of the wells.

  7. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    PubMed Central

    Chambon, Sylvain; Derue, Lionel; Lahaye, Michel; Pavageau, Bertrand; Hirsch, Lionel; Wantz, Guillaume

    2012-01-01

    Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8%) and that increasing the thickness up to 15 nm does not change the device performance.

  8. Deformability and size-based cancer cell separation using an integrated microfluidic device.

    PubMed

    Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi

    2015-11-07

    Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications.

  9. Molecular cloning of Brevundimonas diminuta for efficacy assessment of reverse osmosis devices.

    PubMed

    Donofrio, Robert; Saha, Ratul; Bestervelt, Lori; Bagley, Susan

    2012-06-01

    Brevundimonas diminuta is the test organism specified in the United States Environmental Protection Agency's (USEPA) reverse osmosis (RO) treatment device verification protocol. As non-selective growth medium is employed, enumeration of B. diminuta may be impaired due to interference by indigenous heterotrophic bacteria. Thus the microbial removal capability of the filtration system may be incorrectly assessed. As these treatment devices are used in emergency situations, the health of the public could be compromised. The objective of this study was to develop selective approaches for enumerating viable B. diminuta in test water. Two molecular approaches were investigated: expression of a kanamycin resistance gene and expression of a fluorescent protein gene. The USEPA protocol specifies a 0.3 μm cell size, so the expression of the selective markers were assessed following growth on media designed to induce this small cell diameter. The kan(R) strain was demonstrated to be equivalent to the wild type in cell dimension and survival following exposure to the test water. The kan(R) strain showed equivalent performance to the wild type in the RO protocol indicating that it is a viable alternative surrogate. By utilizing this strain, a more accurate validation of the RO system can be achieved.

  10. Highly Selective and Sensitive Self-Powered Glucose Sensor Based on Capacitor Circuit.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2017-05-03

    Enzymatic glucose biosensors are being developed to incorporate nanoscale materials with the biological recognition elements to assist in the rapid and sensitive detection of glucose. Here we present a highly sensitive and selective glucose sensor based on capacitor circuit that is capable of selectively sensing glucose while simultaneously powering a small microelectronic device. Multi-walled carbon nanotubes (MWCNTs) is chemically modified with pyrroloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at anode and cathode, respectively, in the biofuel cell arrangement. The input voltage (as low as 0.25 V) from the biofuel cell is converted to a stepped-up power and charged to the capacitor to the voltage of 1.8 V. The frequency of the charge/discharge cycle of the capacitor corresponded to the oxidation of glucose. The biofuel cell structure-based glucose sensor synergizes the advantages of both the glucose biosensor and biofuel cell. In addition, this glucose sensor favored a very high selectivity towards glucose in the presence of competing and non-competing analytes. It exhibited unprecedented sensitivity of 37.66 Hz/mM.cm 2 and a linear range of 1 to 20 mM. This innovative self-powered glucose sensor opens new doors for implementation of biofuel cells and capacitor circuits for medical diagnosis and powering therapeutic devices.

  11. Development of targeted STORM for super resolution imaging of biological samples using digital micro-mirror device

    NASA Astrophysics Data System (ADS)

    Valiya Peedikakkal, Liyana; Steventon, Victoria; Furley, Andrew; Cadby, Ashley J.

    2017-12-01

    We demonstrate a simple illumination system based on a digital mirror device which allows for fine control over the power and pattern of illumination. We apply this to localization microscopy (LM), specifically stochastic optical reconstruction microscopy (STORM). Using this targeted STORM, we were able to image a selected area of a labelled cell without causing photo-damage to the surrounding areas of the cell.

  12. Descemet's Stripping Automated Endothelial Keratoplasty Tissue Insertion Devices

    PubMed Central

    Khan, Salman Nasir; Shiakolas, Panos S.; Mootha, Venkateswara Vinod

    2015-01-01

    This review study provides information regarding the construction, design, and use of six commercially available endothelial allograft insertion devices applied for Descemet's stripping automated endothelial keratoplasty (DSAEK). We also highlight issues being faced in DSAEK and discuss the methods through which medical devices such as corneal inserters may alleviate these issues. Inserter selection is of high importance in the DSAEK procedure since overcoming the learning curve associated with the use of an insertion device is a time and energy consuming process. In the present review, allograft insertion devices were compared in terms of design, construction material, insertion technique, dimensions, incision requirements and endothelial cell loss to show their relative merits and capabilities based on available data in the literature. Moreover, the advantages/disadvantages of various insertion devices used for allograft insertion in DSAEK are reviewed and compared. The information presented in this review can be utilized for better selection of an insertion device for DSAEK. PMID:27051492

  13. A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design

    PubMed Central

    Arguel, Marie-Jeanne; LeBrigand, Kevin; Paquet, Agnès; Ruiz García, Sandra; Zaragosi, Laure-Emmanuelle; Waldmann, Rainer

    2017-01-01

    Abstract Single cell RNA sequencing approaches are instrumental in studies of cell-to-cell variability. 5΄ selective transcriptome profiling approaches allow simultaneous definition of the transcription start size and have advantages over 3΄ selective approaches which just provide internal sequences close to the 3΄ end. The only currently existing 5΄ selective approach requires costly and labor intensive fragmentation and cell barcoding after cDNA amplification. We developed an optimized 5΄ selective workflow where all the cell indexing is done prior to fragmentation. With our protocol, cell indexing can be performed in the Fluidigm C1 microfluidic device, resulting in a significant reduction of cost and labor. We also designed optimized unique molecular identifiers that show less sequence bias and vulnerability towards sequencing errors resulting in an improved accuracy of molecule counting. We provide comprehensive experimental workflows for Illumina and Ion Proton sequencers that allow single cell sequencing in a cost range comparable to qPCR assays. PMID:27940562

  14. A Two-Stage Microfluidic Device for the Isolation and Capture of Circulating Tumor Cells

    NASA Astrophysics Data System (ADS)

    Cook, Andrew; Belsare, Sayali; Giorgio, Todd; Mu, Richard

    2014-11-01

    Analysis of circulating tumor cells (CTCs) can be critical for studying how tumors grow and metastasize, in addition to personalizing treatment for cancer patients. CTCs are rare events in blood, making it difficult to remove CTCs from the blood stream. Two microfluidic devices have been developed to separate CTCs from blood. The first is a double spiral device that focuses cells into streams, the positions of which are determined by cell diameter. The second device uses ligand-coated magnetic nanoparticles that selectively attach to CTCs. The nanoparticles then pull CTCs out of solution using a magnetic field. These two devices will be combined into a single 2-stage microfluidic device that will capture CTCs more efficiently than either device on its own. The first stage depletes the number of blood cells in the sample by size-based separation. The second stage will magnetically remove CTCs from solution for study and culturing. Thus far, size-based separation has been achieved. Research will also focus on understanding the equations that govern fluid dynamics and magnetic fields in order to determine how the manipulation of microfluidic parameters, such as dimensions and flow rate, will affect integration and optimization of the 2-stage device. NSF-CREST: Center for Physics and Chemistry of Materials. HRD-0420516; Department of Defense, Peer Reviewed Medical Research Program Award W81XWH-13-1-0397.

  15. Evaluation of transition metal oxide as carrier-selective contacts for silicon heterojunction solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, L.; Boccard, Matthieu; Holman, Zachary

    2015-04-06

    "Reducing light absorption in the non-active solar cell layers, while enabling the extraction of the photogenerated minority carriers at quasi-Fermi levels are two key factors to improve current generation and voltage, and therefore efficiency of silicon heterojunction solar devices. To address these two critical aspects, transition metal oxide materials have been proposed as alternative to the n- and p-type amorphous silicon used as electron and hole selective contacts, respectively. Indeed, transition metal oxides such as molybdenum oxide, titanium oxide, nickel oxide or tungsten oxide combine a wide band gap typically over 3 eV with a band structure and theoretical bandmore » alignment with silicon that results in high transparency to the solar spectrum and in selectivity for the transport of only one carrier type. Improving carrier extraction or injection using transition metal oxide has been a topic of investigation in the field of organic solar cells and organic LEDs; from these pioneering works a lot of knowledge has been gained on materials properties, ways to control these during synthesis and deposition, and their impact on device performance. Recently, the transfer of some of this knowledge to silicon solar cells and the successful application of some metal oxide to contact heterojunction devices have gained much attention. In this contribution, we investigate the suitability of various transition metal oxide films (molybdenum oxide, titanium oxide, and tungsten oxide) deposited either by thermal evaporation or sputtering as transparent hole or electron selective transport layer for silicon solar cells. In addition to systematically characterize their optical and structural properties, we use photoemission spectroscopy to relate compound stoichiometry to band structure and characterize band alignment to silicon. The direct silicon/metal oxide interface is further analyzed by quasi-steady state photoconductance decay method to assess the quality of surface passivation. In complement, we construct full device structures incorporating in some cases surface passivation schemes, with measured initial conversion efficiency over 15% and evaluate the carrier transport properties using temperature-dependent current-voltage and capacitance-voltage measurements. With this detailed characterization study, we aim at providing the framework to assess the potential of a material as a carrier selective contact and the understanding of how each of the aforementioned parameters on the metal oxide films influence the full solar cell operating performances.« less

  16. Devices capable of removing silicon and aluminum from gaseous atmospheres

    DOEpatents

    Spengler, Charles J.; Singh, Prabhakar

    1989-01-01

    An electrochemical device is made of a containment vessel (30) optional ceramic material within the containment vessel and including one or more electrochemical cells (10), the cells containing a porous exposed electrode (11) in contact with a solid electrolyte, where at least one of the exposed electrode, the containment vessel, and the optional ceramic material contains a deposit selected from metal oxide and metal salt capable of forming a metal oxide upon heating, where the metal is selected from the group consisting of Ce, Sm, Mg, Be, Ca, Sr, Ti, Zr, Hf, Y, La, Pr, Nb, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, and their mixtures.

  17. Taking Orders from Light: Photo-Switchable Working/Inactive Smart Surfaces for Protein and Cell Adhesion.

    PubMed

    Zhang, Junji; Ma, Wenjing; He, Xiao-Peng; Tian, He

    2017-03-15

    Photoresponsive smart surfaces are promising candidates for a variety of applications in optoelectronics and sensing devices. The use of light as an order signal provides advantages of remote and noninvasive control with high temporal and spatial resolutions. Modification of the photoswitches with target biomacromolecules, such as peptides, DNA, and small molecules including folic acid derivatives and sugars, has recently become a popular strategy to empower the smart surfaces with an improved detection efficiency and specificity. Herein, we report the construction of photoswitchable self-assembled monolayers (SAMs) based on sugar (galactose/mannose)-decorated azobenzene derivatives and determine their photoswitchable, selective protein/cell adhesion performances via electrochemistry. Under alternate UV/vis irradiation, interconvertible high/low recognition and binding affinity toward selective lectins (proteins that recognize sugars) and cells that highly express sugar receptors are achieved. Furthermore, the cis-SAMs with a low binding affinity toward selective proteins and cells also exhibit minimal response toward unselective protein and cell samples, which offers the possibility in avoiding unwanted contamination and consumption of probes prior to functioning for practical applications. Besides, the electrochemical technique used facilitates the development of portable devices based on the smart surfaces for on-demand disease diagnosis.

  18. Integrated Microfluidic System for Size-Based Selection and Trapping of Giant Vesicles.

    PubMed

    Kazayama, Yuki; Teshima, Tetsuhiko; Osaki, Toshihisa; Takeuchi, Shoji; Toyota, Taro

    2016-01-19

    Vesicles composed of phospholipids (liposomes) have attracted interest as artificial cell models and have been widely studied to explore lipid-lipid and lipid-protein interactions. However, the size dispersity of liposomes prepared by conventional methods was a major problem that inhibited their use in high-throughput analyses based on monodisperse liposomes. In this study, we developed an integrative microfluidic device that enables both the size-based selection and trapping of liposomes. This device consists of hydrodynamic selection and trapping channels in series, which made it possible to successfully produce an array of more than 60 monodisperse liposomes from a polydisperse liposome suspension with a narrow size distribution (the coefficient of variation was less than 12%). We successfully observed a size-dependent response of the liposomes to sequential osmotic stimuli, which had not clarified so far, by using this device. Our device will be a powerful tool to facilitate the statistical analysis of liposome dynamics.

  19. A water-processable organic electron-selective layer for solution-processed inverted organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dongcheng; Zhou, Hu; Cai, Ping

    2014-02-03

    A triazine- and pyridinium-containing water-soluble material of 1,1′,1″-(4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on themore » TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.« less

  20. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    PubMed

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Whole Blood Cell Staining Device

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.; Clift, Vaughan L.; McDonald, Kelly E.

    2000-01-01

    An apparatus and method for staining particular cell markers is disclosed. The apparatus includes a flexible tube that is reversibly pinched into compartments with one or more clamps. Each compartment of the tube contains a separate reagent and is in selective fluid communication with adjoining compartments.

  2. Bacterial Membrane Depolarization-Linked Fuel Cell Potential Burst as Signal for Selective Detection of Alcohol.

    PubMed

    Kaushik, Sharbani; Goswami, Pranab

    2018-06-06

    The biosensing application of microbial fuel cell (MFC) is hampered by its long response time, poor selectivity, and technical difficulty in developing portable devices. Herein, a novel signal form for rapid detection of ethanol was generated in a photosynthetic MFC (PMFC). First, a dual chambered (100 mL each) PMFC was fabricated by using cyanobacteria-based anode and abiotic cathode, and its performance was examined for detection of alcohols. A graphene-based nanobiocomposite matrix was layered over graphite anode to support cyanobacterial biofilm growth and to facilitate electron transfer. Injection of alcohols into the anodic chamber caused a transient potential burst of the PMFC within 60 s (load 1000 Ω), and the magnitude of potential could be correlated to the ethanol concentrations in the range 0.001-20% with a limit of detection (LOD) of 0.13% ( R 2 = 0.96). The device exhibited higher selectivity toward ethanol than methanol as discerned from the corresponding cell-alcohol interaction constant ( K i ) of 780 and 1250 mM. The concept was then translated to a paper-based PMFC (p-PMFC) (size ∼20 cm 2 ) wherein, the cells were merely immobilized over the anode. The device with a shelf life of ∼3 months detected ethanol within 10 s with a dynamic range of 0.005-10% and LOD of 0.02% ( R 2 = 0.99). The fast response time was attributed to the higher wettability of ethanol on the immobilized cell surface as validated by the contact angle data. Alcohols degraded the cell membrane on the order of ethanol > methanol, enhanced the redox current of the membrane-bound electron carrier proteins, and pushed the anodic band gap toward more negative value. The consequence was the potential burst, the magnitude of which was correlated to the ethanol concentrations. This novel approach has a great application potential for selective, sensitive, rapid, and portable detection of ethanol.

  3. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds.

    PubMed

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-10-23

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged.

  4. Solar Innovator | Alta Devices

    ScienceCinema

    Mattos, Laila; Le, Minh

    2017-12-09

    Selected to participate in the Energy Department's SunShot Initiative, Alta Devices produces solar cells that convert sunlight into electricity at world record-breaking levels of efficiency. Through its innovative solar technology Alta is helping bring down the cost of solar. Learn more about the Energy Department's efforts to advance solar technology at energy.gov/solar .

  5. Photocharge accumulation and recombination in perovskite solar cells regarding device performance and stability

    NASA Astrophysics Data System (ADS)

    Li, Yusheng; Li, Yiming; Shi, Jiangjian; Li, Hongshi; Zhang, Huiyin; Wu, Jionghua; Li, Dongmei; Luo, Yanhong; Wu, Huijue; Meng, Qingbo

    2018-01-01

    Photocharge accumulation and recombination in perovskite solar cells have been systematically investigated in this paper by electrochemical spectroscopy and transient photocurrent/photovoltage methods. It is found that the non-equilibrium photocharges stored in the selective charge transport layers follow a backward recombination mechanism. That is, the photocharges are first captured by the interface defects corresponding to the fast photovoltage decay, while the bulk charge recombination instead of the diffusion process dominates the slow photovoltage decay process. Further investigation reveals that the device degradation preferentially takes place at the interface under working conditions, which thus can confirm the importance of interface engineering to enhance the device stability.

  6. Persistent enhancement of bacterial motility increases tumor penetration.

    PubMed

    Thornlow, Dana N; Brackett, Emily L; Gigas, Jonathan M; Van Dessel, Nele; Forbes, Neil S

    2015-11-01

    Motile bacteria can overcome the transport limitations that hinder many cancer therapies. Active bacteria can penetrate through tissue to deliver treatment to resistant tumor regions. Bacterial therapy has had limited success, however, because this motility is heterogeneous, and within a population many individuals are non-motile. In human trials, heterogeneity led to poor dispersion and incomplete tumor colonization. To address these problems, a swarm-plate selection method was developed to increase swimming velocity. Video microscopy was used to measure the velocity distribution of selected bacteria and a microfluidic tumor-on-a-chip device was used to measure penetration through tumor cell masses. Selection on swarm plates increased average velocity fourfold, from 4.9 to 18.7 μm/s (P < 0.05) and decreased the number of non-motile individuals from 51% to 3% (P < 0.05). The selected phenotype was both robust and stable. Repeating the selection process consistently increased velocity and eliminated non-motile individuals. When selected strains were cryopreserved and subcultured for 30.1 doublings, the high-motility phenotype was preserved. In the microfluidic device, selected Salmonella penetrated deeper into cell masses than unselected controls. By 10 h after inoculation, control bacteria accumulated in the front 30% of cell masses, closest to the flow channel. In contrast, selected Salmonella accumulated in the back 30% of cell masses, farthest from the channel. Selection increased the average penetration distance from 150 to 400 μm (P < 0.05). This technique provides a simple and rapid method to generate high-motility Salmonella that has increased penetration and potential for greater tumor dispersion and clinical efficacy. © 2015 Wiley Periodicals, Inc.

  7. Early effects of extracorporeal shock wave treatment on osteoblast-like cells: a comparative study between electromagnetic and electrohydraulic devices.

    PubMed

    Martini, Lucia; Giavaresi, Gianluca; Fini, Milena; Borsari, Veronica; Torricelli, Paola; Giardino, Roberto

    2006-11-01

    Extracorporeal shockwave therapy (ESWT) has been increasingly applied to treat orthopedic and musculoskeletal pathologies. ESWT involves mechanical perturbations that, as with other physical therapies, can result in mechanical stimuli to a large number of cells, including bone cells. The aim of this study was to evaluate the effects of shock waves on osteoblast-like cells (MG63) when using two different generators of shock waves (electrohydraulic and electromagnetic devices), in terms of cell damage, cell viability, osteogenic phenotype expression, and cytokine production. MG63 cells were suspended in 1.5 mL screw-cap cryotubes (1 x 10 cells/mL), containing phosphate buffer solution (PBS), which were maintained at 37 degrees C during all the experimental times. Two levels of energy flux density (EFD) were evaluated for each device: 0.15 to 0.18 mJ/mm2 and 0.40 mJ/mm2. Cells were then cultivated for 72 hours starting from a concentration of 1 x 10 cells/mL, and biological activity and viability were evaluated 24 and 72 hours after treatment. The results obtained demonstrate that the factors most affecting osteoblast activity involve both the device and the level of EFD selected, and they must be considered all together. The use of the electromagnetic device and a level of EFD lower than 0.40 mJ/mm2 would appear to induce fewer immediate cytodestructive effects and better stimulate subsequent proliferation and the synthetic activity of MG63.

  8. An intelligent 1:2 demultiplexer as an intracellular theranostic device based on DNA/Ag cluster-gated nanovehicles

    NASA Astrophysics Data System (ADS)

    Ran, Xiang; Wang, Zhenzhen; Ju, Enguo; Pu, Fang; Song, Yanqiu; Ren, Jinsong; Qu, Xiaogang

    2018-02-01

    The logic device demultiplexer can convey a single input signal into one of multiple output channels. The choice of the output channel is controlled by a selector. Several molecules and biomolecules have been used to mimic the function of a demultiplexer. However, the practical application of logic devices still remains a big challenge. Herein, we design and construct an intelligent 1:2 demultiplexer as a theranostic device based on azobenzene (azo)-modified and DNA/Ag cluster-gated nanovehicles. The configuration of azo and the conformation of the DNA ensemble can be regulated by light irradiation and pH, respectively. The demultiplexer which uses light as the input and acid as the selector can emit red fluorescence or a release drug under different conditions. Depending on different cells, the intelligent logic device can select the mode of cellular imaging in healthy cells or tumor therapy in tumor cells. The study incorporates the logic gate with the theranostic device, paving the way for tangible applications of logic gates in the future.

  9. An intelligent 1:2 demultiplexer as an intracellular theranostic device based on DNA/Ag cluster-gated nanovehicles.

    PubMed

    Ran, Xiang; Wang, Zhenzhen; Ju, Enguo; Pu, Fang; Song, Yanqiu; Ren, Jinsong; Qu, Xiaogang

    2018-02-09

    The logic device demultiplexer can convey a single input signal into one of multiple output channels. The choice of the output channel is controlled by a selector. Several molecules and biomolecules have been used to mimic the function of a demultiplexer. However, the practical application of logic devices still remains a big challenge. Herein, we design and construct an intelligent 1:2 demultiplexer as a theranostic device based on azobenzene (azo)-modified and DNA/Ag cluster-gated nanovehicles. The configuration of azo and the conformation of the DNA ensemble can be regulated by light irradiation and pH, respectively. The demultiplexer which uses light as the input and acid as the selector can emit red fluorescence or a release drug under different conditions. Depending on different cells, the intelligent logic device can select the mode of cellular imaging in healthy cells or tumor therapy in tumor cells. The study incorporates the logic gate with the theranostic device, paving the way for tangible applications of logic gates in the future.

  10. Major intrinsic proteins in biomimetic membranes.

    PubMed

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here, I specifically discuss the feasibility of developing osmotic biomimetic MIP membranes, but the technical issues are of general concern in the design ofbiomimetic membranes capable of supporting selective transmembrane fluxes.

  11. Voltage-matched, monolithic, multi-band-gap devices

    DOEpatents

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  12. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOEpatents

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  13. Single cell Enrichment with High Throughput Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Pakjesm Pourfard, Pedram

    Microfluidics is a rapidly growing field of biomedical engineering with numerous applications such as diagnostic testing, therapeutics, and research preparation. Cell enrichment for automated diagnostic is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as, Shear migration, Lift force, Dean force, and many other label-free techniques, are advantageous since they don't require costly labeling or sample preparation. However, current passive techniques for enrichment had limited adoption in clinical and cell biology research applications. They generally require low flow rate and low cell volume fraction for high efficiency. The Control increment filtration, T-shaped microfluidic device, and spiral-shaped microfluidic devices will be studied for single-cell separation from aggregates. Control increment filtration works like the tangential filter; however, cells are separated based off of same amount of flow rate passing through large space gaps. Main microchannel of T-Shaped is connected to two perpendicular side channels. Based off Shear-modulated inertial migration, this device will enable selective enrichment of cells. The spiral shaped microfluidic device depends on different Dean and lift forces acting on cells to separate them based off different sizes. The spiral geometry of the microchannel will enable dominant inertial forces and the Dean Rotation force to cause larger cells to migrate to the inner side of the microchannel. Because manipulation of microchannel dimensions correlates to the degree of cell separation, versatility in design exists. Cell mixture samples will contain cells of different sizes and therefore design strategies could be utilized to maximize the effectiveness of single-cell separation.

  14. Solid-state devices for detection of DNA, protein biomarkers and cells

    NASA Astrophysics Data System (ADS)

    Asghar, Waseem

    Nanobiotechnology and BioMEMS have had tremendous impact on biosensing in the areas of cancer cell detection and therapeutics, disease diagnostics, proteomics and DNA analysis. Diseases are expressed on all levels including DNA, protein, cell and tissue. Therefore it is very critical to develop biosensors at each level. The power of the nanotechnology lies in the fact that we can fabricate devices on all scales from micro to nano. This dissertation focuses on four areas: 1) Development of nanopore sensors for DNA analysis; 2) Development of micropore sensors for early detection of circulating tumor cells (CTCs) from whole blood; 3) Synthesis of nano-textured substrates for cancer isolation and tissue culture applications; 4) Fabrication of nanoscale break-junctions. All of these sensors are fabricated using standard silicon processing techniques. Pulsed plasma polymer deposition is also utilized to control the density of the biosensor surface charges. These devices are then used for efficient detection of DNA, proteins and cells, and can be potentially used in point-of-care systems. Overall, our designed biosensing platforms offer improved selectivity, yield and reliability. Novel approaches to nanopore shrinking are simple, reliable and do not change the material composition around the pore boundary. The micropores provide a direct interface to distinguish CTCs from normal cell without requiring fluorescent dyes and surface functionalization. Nano-textured surfaces and break-junctions can be used for enhanced adhesion of cells and selective detection of proteins respectively.

  15. High-Bandgap Silicon Nanocrystal Solar Cells: Device Fabrication, Characterization, and Modeling

    NASA Astrophysics Data System (ADS)

    Löper, Philipp; Canino, Mariaconcetta; Schnabel, Manuel; Summonte, Caterina; Janz, Stefan; Zacharias, Margit

    Silicon nanocrystals (Si NCs) embedded in Si-based dielectrics provide a Si-based high-bandgap material (1.7 eV) and enable the construction of crystalline Si tandem solar cells. This chapter focusses on Si NC embedded in silicon carbide, because silicon carbide offers electrical conduction through the matrix material. The material development is reviewed, and optical modeling is introduced as a powerful method to monitor the four material components, amorphous and crystalline silicon as well as amorphous and crystalline silicon carbide. In the second part of this chapter, recent device developments for the photovoltaic characterization of Si NCs are examined. The controlled growth of Si NCs involves high-temperature annealing which deteriorates the properties of any previously established selective contacts. A membrane-based device is presented to overcome these limitations. In this approach, the formation of both selective contacts is carried out after high-temperature annealing and is therefore not affected by the latter. We examine p-i-n solar cells with an intrinsic region made of Si NCs embedded in silicon carbide. Device failure due to damaged insulation layers is analyzed by light beam-induced current measurements. An optical model of the device is presented for improving the cell current. A characterization scheme for Si NC p-i-n solar cells is presented which aims at determining the fundamental transport and recombination properties, i.e., the effective mobility lifetime product, of the nanocrystal layer at device level. For this means, an illumination-dependent analysis of Si NC p-i-n solar cells is carried out within the framework of the constant field approximation. The analysis builds on an optical device model, which is used to assess the photogenerated current in each of the device layers. Illumination-dependent current-voltage curves are modelled with a voltage-dependent current collection function with only two free parameters, and excellent agreement is found between theory and experiment. An effective mobility lifetime product of 10-10 cm2/V is derived and confirmed independently from an alternative method. The procedure discussed in this chapter is proposed as a characterization scheme for further material development, providing an optimization parameter (the effective mobility lifetime product) relevant for the photovoltaic performance of Si NC films.

  16. Multiparameter cell affinity chromatography: separation and analysis in a single microfluidic channel.

    PubMed

    Li, Peng; Gao, Yan; Pappas, Dimitri

    2012-10-02

    The ability to sort and capture more than one cell type from a complex sample will enable a wide variety of studies of cell proliferation and death and the analysis of disease states. In this work, we integrated a pneumatic actuated control layer to an affinity separation layer to create different antibody-coating regions on the same fluidic channel. The comparison of different antibody capture capabilities to the same cell line was demonstrated by flowing Ramos cells through anti-CD19- and anti-CD71-coated regions in the same channel. It was determined that the cell capture density on the anti-CD19 region was 2.44 ± 0.13 times higher than that on the anti-CD71-coated region. This approach can be used to test different affinity molecules for selectivity and capture efficiency using a single cell line in one separation. Selective capture of Ramos and HuT 78 cells from a mixture was also demonstrated using two antibody regions in the same channel. Greater than 90% purity was obtained on both capture areas in both continuous flow and stop flow separation modes. A four-region antibody-coated device was then fabricated to study the simultaneous, serial capture of three different cell lines. In this case the device showed effective capture of cells in a single separation channel, opening up the possibility of multiple cell sorting. Multiparameter sequential blood sample analysis was also demonstrated with high capture specificity (>97% for both CD19+ and CD4+ leukocytes). The chip can also be used to selectively treat cells after affinity separation.

  17. Optofluidic Cell Selection from Complex Microbial Communities for Single-Genome Analysis

    PubMed Central

    Landry, Zachary C.; Giovanonni, Stephen J.; Quake, Stephen R.; Blainey, Paul C.

    2013-01-01

    Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy. PMID:24060116

  18. Surface engineered biosensors for the early detection of cancer

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin

    Cancer commences in the building block of human body which is cells and in most of the cases remains silent at early stage. Diseases are only expressed at molecular and cellular level at primary stages. Recognition of diseases at this micro and nano level might reduce the mortality rate of cancer significantly. This research work aimed to introduce novel electronic biosensors for for identification of cancer at cellular level. The dissertation study focuses on 1) Label-Free Isolation of Metastatic Tumor Cells Using Filter Based Microfluidic device; 2) Nanotextured Polymer Substrates for Enhanced Cancer Cell Isolation and Cell Growth; 3) Nanotextured Microfluidic Channel for Electrical Profiling and Detection of Tumor Cells from Blood; and 4) Single Biochip for the Detection of Tumor Cells by Electrical Profile and Surface Immobilized Aptamer. Standard silicon processing techniques were followed to fabricate all of the biosensors. Nantoextruing and surface functionalizon were also incorporated to elevate the efficiency of the devices. The first approach aimed to detect cancer cells from blood based on their mechanophysical properties. Cancer cells are larger than blood cells but highly elastic in nature. These cells can squeeze through small microchannels much smaller than their size. The cross sectional area of the microchannels was optimized to isolate tumor cells from blood. Nanotextured polymer substrates, a platform inspired from the natural basement membrane was used to enhance the isolation and growth of tumor cells. Micro reactive ion etching was performed to have better control on features of nantoxtured surfaces and did not require any template. Next, electrical measurement of ionic current was performed across single microchannel to detect tumor cells from blood. Later, nanotexturing enhanced the efficiency of the device by selectively altering the translocation profile of cancer cells. Eventually aptamer functionalized nanotextured polymer surface was integrated with current measurement facilities in a single biochip to discriminate tumor cells from blood with higher efficiency and selectivity. This biochip can be an implemented as a point-of-care device for the early detection of cancer at cellular level.

  19. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Eppich, Henry M. (Inventor); Mangano, Joseph A. (Inventor)

    2003-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  20. Cell separation using electric fields

    NASA Technical Reports Server (NTRS)

    Mangano, Joseph (Inventor); Eppich, Henry (Inventor)

    2009-01-01

    The present invention involves methods and devices which enable discrete objects having a conducting inner core, surrounded by a dielectric membrane to be selectively inactivated by electric fields via irreversible breakdown of their dielectric membrane. One important application of the invention is in the selection, purification, and/or purging of desired or undesired biological cells from cell suspensions. According to the invention, electric fields can be utilized to selectively inactivate and render non-viable particular subpopulations of cells in a suspension, while not adversely affecting other desired subpopulations. According to the inventive methods, the cells can be selected on the basis of intrinsic or induced differences in a characteristic electroporation threshold, which can depend, for example, on a difference in cell size and/or critical dielectric membrane breakdown voltage. The invention enables effective cell separation without the need to employ undesirable exogenous agents, such as toxins or antibodies. The inventive method also enables relatively rapid cell separation involving a relatively low degree of trauma or modification to the selected, desired cells. The inventive method has a variety of potential applications in clinical medicine, research, etc., with two of the more important foreseeable applications being stem cell enrichment/isolation, and cancer cell purging.

  1. C60 as an Efficient n-Type Compact Layer in Perovskite Solar Cells.

    PubMed

    Wojciechowski, Konrad; Leijtens, Tomas; Siprova, Svetlana; Schlueter, Christoph; Hörantner, Maximilian T; Wang, Jacob Tse-Wei; Li, Chang-Zhi; Jen, Alex K-Y; Lee, Tien-Lin; Snaith, Henry J

    2015-06-18

    Organic-inorganic halide perovskite solar cells have rapidly evolved over the last 3 years. There are still a number of issues and open questions related to the perovskite material, such as the phenomenon of anomalous hysteresis in current-voltage characteristics and long-term stability of the devices. In this work, we focus on the electron selective contact in the perovskite solar cells and physical processes occurring at that heterojunction. We developed efficient devices by replacing the commonly employed TiO2 compact layer with fullerene C60 in a regular n-i-p architecture. Detailed spectroscopic characterization allows us to present further insight into the nature of photocurrent hysteresis and charge extraction limitations arising at the n-type contact in a standard device. Furthermore, we show preliminary stability data of perovskite solar cells under working conditions, suggesting that an n-type organic charge collection layer can increase the long-term performance.

  2. A Novel 96well-formatted Micro-gap Plate Enabling Drug Response Profiling on Primary Tumour Samples

    NASA Astrophysics Data System (ADS)

    Ma, Wei-Yuan; Hsiung, Lo-Chang; Wang, Chen-Ho; Chiang, Chi-Ling; Lin, Ching-Hung; Huang, Chiun-Sheng; Wo, Andrew M.

    2015-04-01

    Drug-based treatments are the most widely used interventions for cancer management. Personalized drug response profiling remains inherently challenging with low cell count harvested from tumour sample. We present a 96well-formatted microfluidic plate with built-in micro-gap that preserves up to 99.2% of cells during multiple assay/wash operation and only 9,000 cells needed for a single reagent test (i.e. 1,000 cells per test spot x 3 selected concentration x triplication), enabling drug screening and compatibility with conventional automated workstations. Results with MCF7 and MDA-MB-231 cell lines showed that no statistical significance was found in dose-response between the device and conventional 96-well plate control. Primary tumour samples from breast cancer patients tested in the device also showed good IC50 prediction. With drug screening of primary cancer cells must consider a wide range of scenarios, e.g. suspended/attached cell types and rare/abundant cell availability, the device enables high throughput screening even for suspended cells with low cell count since the signature microfluidic cell-trapping feature ensures cell preservation in a multiple solution exchange protocol.

  3. SELECTED ANNOTATED BIBLIOGRAPHY ON SYSTEMS OF THEORETICAL DEVICES,

    DTIC Science & Technology

    BIONICS, BIBLIOGRAPHIES), (*BIBLIOGRAPHIES, BIONICS), (*CYBERNETICS, BIBLIOGRAPHIES), MATHEMATICS, COMPUTER LOGIC, NETWORKS, NERVOUS SYSTEM , THEORY , SEQUENCE SWITCHES, SWITCHING CIRCUITS, REDUNDANT COMPONENTS, LEARNING, MATHEMATICAL MODELS, BEHAVIOR, NERVES, SIMULATION, NERVE CELLS

  4. MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework

    DOE PAGES

    Spoerke, Erik D.; Small, Leo J.; Foster, Michael E.; ...

    2017-03-01

    Metal–organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer,more » taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. In conclusion, continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies.« less

  5. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities

    PubMed Central

    Leung, Kaston; Zahn, Hans; Leaver, Timothy; Konwar, Kishori M.; Hanson, Niels W.; Pagé, Antoine P.; Lo, Chien-Chi; Chain, Patrick S.; Hallam, Steven J.; Hansen, Carl L.

    2012-01-01

    We present a programmable droplet-based microfluidic device that combines the reconfigurable flow-routing capabilities of integrated microvalve technology with the sample compartmentalization and dispersion-free transport that is inherent to droplets. The device allows for the execution of user-defined multistep reaction protocols in 95 individually addressable nanoliter-volume storage chambers by consecutively merging programmable sequences of picoliter-volume droplets containing reagents or cells. This functionality is enabled by “flow-controlled wetting,” a droplet docking and merging mechanism that exploits the physics of droplet flow through a channel to control the precise location of droplet wetting. The device also allows for automated cross-contamination-free recovery of reaction products from individual chambers into standard microfuge tubes for downstream analysis. The combined features of programmability, addressability, and selective recovery provide a general hardware platform that can be reprogrammed for multiple applications. We demonstrate this versatility by implementing multiple single-cell experiment types with this device: bacterial cell sorting and cultivation, taxonomic gene identification, and high-throughput single-cell whole genome amplification and sequencing using common laboratory strains. Finally, we apply the device to genome analysis of single cells and microbial consortia from diverse environmental samples including a marine enrichment culture, deep-sea sediments, and the human oral cavity. The resulting datasets capture genotypic properties of individual cells and illuminate known and potentially unique partnerships between microbial community members. PMID:22547789

  6. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.

    PubMed

    Lewpiriyawong, Nuttawut; Xu, Guolin; Yang, Chun

    2018-03-01

    This paper presents the use of DC-biased AC electric field for enhancing cell trapping throughput in an insulator-based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure-driven flow. Under an applied DC-biased AC electric field, DEP trapping force is produced as a result of non-uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure-driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC-biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Crystalline silicon photovoltaics via low-temperature TiO 2/Si and PEDOT/Si heterojunctions

    NASA Astrophysics Data System (ADS)

    Nagamatsu, Ken Alfred

    The most important goals in developing solar cell technology are to achieve high power conversion efficiencies and lower costs of manufacturing. Solar cells based on crystalline silicon currently dominate the market because they can achieve high efficiency. However, conventional p-n junction solar cells require high-temperature diffusions of dopants, and conventional heterojunction cells based on amorphous silicon require plasma-enhanced deposition, both of which can add manufacturing costs. This dissertation investigates an alternative approach, which is to form crystalline-silicon-based solar cells using heterojunctions with materials that are easily deposited at low temperatures and without plasma enhancement, such as organic semiconductors and metal oxides. We demonstrate a heterojunction between the organic polymer, poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT), and crystalline silicon, which acts as a hole-selective contact and an alternative to a diffused p-n junction. We also present the use of a heterojunction between titanium dioxide and crystalline silicon as a passivating electron-selective contact. The Si/TiO2 heterojunction is demonstrated for the first time as a back-surface field in a crystalline silicon solar cell, and is incorporated into a PEDOT/Si device. The resulting PEDOT/Si/TiO2 solar cell represents an alternative to conventional silicon solar cells that rely on thermally-diffused junctions or plasma-deposited heterojunctions. Finally, we investigate the merits of using conductive networks of silver nanowires to enhance the photovoltaic performance of PEDOT/Si solar cells. The investigation of these materials and devices contributes to the growing body of work regarding crystalline silicon solar cells made with selective contacts.

  8. Investigation of Dendrimer-Membrane Interactions

    NASA Astrophysics Data System (ADS)

    Mecke, Almut; Hessler, Jessica; Lee, Inhan; Banaszak Holl, Mark; Orr, Bradford; Patri, Anil K.; Baker, J. R.

    2003-03-01

    Modified Polyamidoamine (PAMAM) dendrimers show great promise as targeted drug transport agents. Current research efforts point to the possibility of dramatic improvements to conventional chemotherapy by selectively delivering a therapeutic to antigen bearing tumor cells. In order to better understand the uptake mechanism of such devices into cells we are investigating dendrimer-surface adsorption and dendrimer-membrane interactions using atomic force microscopy, light scattering and computer simulations. Model systems consisting of supported DMPC lipid bilayers have shown interesting results suggesting the shape and architecture of nano-devices play an important role for their biologic activity. We are also investigating the effect of targeted drug vehicles on cells in vitro.

  9. Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening

    PubMed Central

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; Li, Zhen; Li, Ge; Kim, Dong Hoe; Guo, Nanjie; Berry, Joseph J.; Zhu, Kai; Zhao, Yixin

    2016-01-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH3NH3PbI3−xBrx (MAPbI3−xBrx) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI3−xBrx thin films following an Ostwald ripening process, which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I–Br anion exchange reaction, yielding poorer device performance. This MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability. PMID:27477212

  10. Method and device for the detection of phenol and related compounds. [in an electrochemical cell

    NASA Technical Reports Server (NTRS)

    Schiller, J. G.; Liu, C. C. (Inventor)

    1979-01-01

    A method is described which permits the selective oxidation and potentiometric detection of phenol and related compounds in an electrochemical cell. An anode coated with a gel immobilized oxidative enzyme and a cathode are each placed in an electrolyte solution. The potential of the cell is measured by a potentiometer connected to the electrodes.

  11. The Effects of Nanotexturing Microfluidic Platforms to Isolate Brain Tumor Cells

    NASA Astrophysics Data System (ADS)

    Islam, Muhymin; Sajid, Adeel; Kim, Young-Tae; Iqbal, Samir M.

    2015-03-01

    Detection of tumor cells in the early stages of disease requires sensitive and selective approaches. Nanotextured polydimethylsiloxane (PDMS) substrates were implemented to detect metastatic human glioblastoma (hGBM) cells. RNA aptamers that were specific to epidermal growth factor receptors (EGFR) were used to functionalize the substrates. EGFR is known to be overexpressed on many cancer cells including hGBM. Nanotextured PDMS was prepared by micro reactive ion etching. PDMS surfaces became hydrophilic uponnanotexturing. Nanotextured substrates were incubated in tumor cell solution and density of captured cells was determined. Nanotextured PDMS provided >300% cell capture compared to plain PDMS due to increased effective surface area of roughened substrates at nanoscale as well as mire focal points for cell adhesion. Next, aptamer functionalized nanotextured PDMS was incorporated in microfluidic device to detect tumor cells at different flow velocities. The shear stress introduced by the flow pressure and heterogeneity of the EGFR overexpression on cell membranes of the tumor cells had significant impact on the cell capture efficiency of aptamer anchored nanotextured microfluidic devices. Eventually tumor cells were detected from the mixture of white blood cells at an efficiency of 73% using the microfluidic device. The interplay of binding energies and surface energies was major factor in this system. Support Acknowledged from NSF through ECCS-1407990.

  12. Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system.

    PubMed

    Romeo, Agostino; Tarabella, Giuseppe; D'Angelo, Pasquale; Caffarra, Cristina; Cretella, Daniele; Alfieri, Roberta; Petronini, Pier Giorgio; Iannotta, Salvatore

    2015-06-15

    We propose and demonstrate a sensitive diagnostic device based on an Organic Electrochemical Transistor (OECT) for direct in-vitro monitoring cell death. The system efficiently monitors cell death dynamics, being able to detect signals related to specific death mechanisms, namely necrosis or early/late apoptosis, demonstrating a reproducible correlation between the OECT electrical response and the trends of standard cell death assays. The innovative design of the Twell-OECT system has been modeled to better correlate electrical signals with cell death dynamics. To qualify the device, we used a human lung adenocarcinoma cell line (A549) that was cultivated on the micro-porous membrane of a Transwell (Twell) support, and exposed to the anticancer drug doxorubicin. Time-dependent and dose-dependent dynamics of A549 cells exposed to doxorubicin are evaluated by monitoring cell death upon exposure to a range of doses and times that fully covers the protocols used in cancer treatment. The demonstrated ability to directly monitor cell stress and death dynamics upon drug exposure using simple electronic devices and, possibly, achieving selectivity to different cell dynamics is of great interest for several application fields, including toxicology, pharmacology, and therapeutics. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Progress and Challenges in Macroencapsulation Approaches for Type 1 Diabetes (T1D) Treatment: Cells, Biomaterials, and Devices

    PubMed Central

    Song, Shang; Roy, Shuvo

    2018-01-01

    Macroencapsulation technology has been an attractive topic in the field of treatment for Type 1 diabetes due to mechanical stability, versatility, and retrievability of the macrocapsule design. Macro-capsules can be categorized into extravascular and intravascular devices, in which solute transport relies either on diffusion or convection, respectively. Failure of macroencapsulation strategies can be due to limited regenerative capacity of the encased insulin-producing cells, sub-optimal performance of encapsulation biomaterials, insufficient immunoisolation, excessive blood thrombosis for vascular perfusion devices, and inadequate modes of mass transfer to support cell viability and function. However, significant technical advancements have been achieved in macroencapsulation technology, namely reducing diffusion distance for oxygen and nutrients, using pro-angiogenic factors to increase vascularization for islet engraftment, and optimizing membrane permeability and selectivity to prevent immune attacks from host’s body. This review presents an overview of existing macroencapsulation devices and discusses the advances based on tissue-engineering approaches that will stimulate future research and development of macroencapsulation technology. PMID:26615050

  14. Identification and validation of nebulized aerosol devices for sputum induction

    PubMed Central

    Davidson, Warren J; Dennis, John; The, Stephanie; Litoski, Belinda; Pieron, Cora; Leigh, Richard

    2014-01-01

    Induced sputum cell count measurement has proven reliability for evaluating airway inflammation in patients with asthma and other airway diseases. Although the use of nebulizer devices for sputum induction is commonplace, they are generally labelled as single-patient devices by the manufacturer and, therefore, cannot be used for multiple patients in large clinical sputum induction programs due to infect ion-control requirements. Accordingly, this study investigated the aerosol characteristics of alternative devices that could be used in such programs. BACKGROUND: Induced sputum cell counts are a noninvasive and reliable method for evaluating the presence, type and degree of airway inflammation in patients with asthma. Currently, standard nebulizer devices used for sputum induction in multiple patients are labelled as single-patient devices by the manufacturer, which conflicts with infection prevention and control requirements. As such, these devices cannot feasibly be used in a clinical sputum induction program. Therefore, there is a need to identify alternative nebulizer devices that are either disposable or labelled for multi-patient use. OBJECTIVE: To apply validated rigorous, scientific testing methods to identify and validate commercially available nebulizer devices appropriate for use in a clinical sputum induction program. METHODS: Measurement of nebulized aerosol output and size for the selected nebulizer designs followed robust International Organization for Standardization methods. Sputum induction using two of these nebulizers was successfully performed on 10 healthy adult subjects. The cytotechnologist performing sputum cell counts was blinded to the type of nebulizer used. RESULTS: The studied nebulizers had variable aerosol outputs. The AeroNeb Solo (Aerogen, Ireland), Omron NE-U17 (Omron, Japan) and EASYneb II (Flaem Nuova, Italy) systems were found to have similar measurements of aerosol size. There was no significant difference in induced sputum cell results between the AeroNeb Solo and EASYneb II devices. DISCUSSION: There is a need for rigorous, scientific evaluation of nebulizer devices for clinical applications, including sputum induction, for measurement of cell counts. CONCLUSION: The present study was the most comprehensive analysis of different nebulizer devices for sputum induction to measure cell counts, and provides a framework for appropriate evaluation of nebulizer devices for induced sputum testing. PMID:24288700

  15. Femtosecond Laser Microfabrication of an Integrated Device for Optical Release and Sensing of Bioactive Compounds

    PubMed Central

    Ghezzi, Diego; Vazquez, Rebeca Martinez; Osellame, Roberto; Valtorta, Flavia; Pedrocchi, Alessandra; Valle, Giuseppe Della; Ramponi, Roberta; Ferrigno, Giancarlo; Cerullo, Giulio

    2008-01-01

    Flash photolysis of caged compounds is one of the most powerful approaches to investigate the dynamic response of living cells. Monolithically integrated devices suitable for optical uncaging are in great demand since they greatly simplify the experiments and allow their automation. Here we demonstrate the fabrication of an integrated bio-photonic device for the optical release of caged compounds. Such a device is fabricated using femtosecond laser micromachining of a glass substrate. More in detail, femtosecond lasers are used both to cut the substrate in order to create a pit for cell growth and to inscribe optical waveguides for spatially selective uncaging of the compounds present in the culture medium. The operation of this monolithic bio-photonic device is tested using both free and caged fluorescent compounds to probe its capability of multipoint release and optical sensing. Application of this device to the study of neuronal network activity can be envisaged. PMID:27873888

  16. Role of organic interfacial modifiers in inverted polymers solar cells: An in-depth analysis of perylene vs fullerene organic modifiers

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Panigrahi, D.; Dhar, A.

    2018-03-01

    Interfacial issues can significantly restrict the performance of photovoltaic devices by exacerbating the charge recombination channels, macroscopic phase separation, and providing a non-ideal contact for selective extraction of charges particularly in photovoltaic devices using organic and inorganic materials together. Organic interfacial modifiers (IMs) are often used to mitigate these issues by modifying the organic-inorganic interface. In order to extricate the role of these IMs on the photovoltaic performance we have made a comprehensive study on the application of perylene-based and fullerene small molecules having different molecular origin as organic IMs on ZnO electron extracting layers in inverted BHJs photovoltaic devices. We report an elaborate study on the electronic and surface altering properties of these IMs and correlated their effect on the different PV performance parameters of the inverted BHJ solar cells employing P3HT: PCBM photoactive layer. Our investigations demonstrate the role of these organic IMs in reducing the ZnO cathode work function and increasing its electron transportation property along with the passivation of superficial traps states present on ZnO which helps in selective extraction of charge carriers from the devices and minimize the recombination losses. These different aspects of IMs compete and their balanced effect decides the final outcome. As a result, we obtain a substantial improvement in the device performance with power conversion efficiency (PCE) of 3.0% for the C70/ZnO cathode device which shows over 60% improvement in contrast to the devices without any ZnO surface modification. The present investigation intents to exhibit the feasibility of vacuum sublimated organic small molecules in performance improvement in BHJ solar cells utilizing the ZnO ETLs and contrast their efficacy for the purpose rather than setting any benchmark device performance although the efficiencies obtained are typical for the active layer used in the study.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Laura; Harvey, Stephen P.; Teeter, Glenn

    We demonstrate the potential of X-ray photoelectron spectroscopy (XPS) to characterize new carrier-selective contacts (CSC) for solar cell application. We show that XPS not only provides information about the surface chemical properties of the CSC material, but that operando XPS, i.e. under light bias condition, can also directly measure the photovoltage that develops at the CSC/absorber interface, revealing device relevant information without the need of assembling a full solar cell. We present the application of the technique to molybdenum oxide hole-selective contact films on a crystalline silicon absorber.

  18. Error Characterization and Mitigation for 16Nm MLC NAND Flash Memory Under Total Ionizing Dose Effect

    NASA Technical Reports Server (NTRS)

    Li, Yue (Inventor); Bruck, Jehoshua (Inventor)

    2018-01-01

    A data device includes a memory having a plurality of memory cells configured to store data values in accordance with a predetermined rank modulation scheme that is optional and a memory controller that receives a current error count from an error decoder of the data device for one or more data operations of the flash memory device and selects an operating mode for data scrubbing in accordance with the received error count and a program cycles count.

  19. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    PubMed Central

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-01-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging. PMID:26878910

  20. “Optical communication with brain cells by means of an implanted duplex micro-device with optogenetics and Ca2+ fluoroimaging”

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takuma; Haruta, Makito; Sasagawa, Kiyotaka; Matsumata, Miho; Eizumi, Kawori; Kitsumoto, Chikara; Motoyama, Mayumi; Maezawa, Yasuyo; Ohta, Yasumi; Noda, Toshihiko; Tokuda, Takashi; Ishikawa, Yasuyuki; Ohta, Jun

    2016-02-01

    To better understand the brain function based on neural activity, a minimally invasive analysis technology in a freely moving animal is necessary. Such technology would provide new knowledge in neuroscience and contribute to regenerative medical techniques and prosthetics care. An application that combines optogenetics for voluntarily stimulating nerves, imaging to visualize neural activity, and a wearable micro-instrument for implantation into the brain could meet the abovementioned demand. To this end, a micro-device that can be applied to the brain less invasively and a system for controlling the device has been newly developed in this study. Since the novel implantable device has dual LEDs and a CMOS image sensor, photostimulation and fluorescence imaging can be performed simultaneously. The device enables bidirectional communication with the brain by means of light. In the present study, the device was evaluated in an in vitro experiment using a new on-chip 3D neuroculture with an extracellular matrix gel and an in vivo experiment involving regenerative medical transplantation and gene delivery to the brain by using both photosensitive channel and fluorescent Ca2+ indicator. The device succeeded in activating cells locally by selective photostimulation, and the physiological Ca2+ dynamics of neural cells were visualized simultaneously by fluorescence imaging.

  1. Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition

    PubMed Central

    Jaramillo, Rafael; Steinmann, Vera; Yang, Chuanxi; Hartman, Katy; Chakraborty, Rupak; Poindexter, Jeremy R.; Castillo, Mariela Lizet; Gordon, Roy; Buonassisi, Tonio

    2015-01-01

    Tin sulfide (SnS) is a candidate absorber material for Earth-abundant, non-toxic solar cells. SnS offers easy phase control and rapid growth by congruent thermal evaporation, and it absorbs visible light strongly. However, for a long time the record power conversion efficiency of SnS solar cells remained below 2%. Recently we demonstrated new certified record efficiencies of 4.36% using SnS deposited by atomic layer deposition, and 3.88% using thermal evaporation. Here the fabrication procedure for these record solar cells is described, and the statistical distribution of the fabrication process is reported. The standard deviation of efficiency measured on a single substrate is typically over 0.5%. All steps including substrate selection and cleaning, Mo sputtering for the rear contact (cathode), SnS deposition, annealing, surface passivation, Zn(O,S) buffer layer selection and deposition, transparent conductor (anode) deposition, and metallization are described. On each substrate we fabricate 11 individual devices, each with active area 0.25 cm2. Further, a system for high throughput measurements of current-voltage curves under simulated solar light, and external quantum efficiency measurement with variable light bias is described. With this system we are able to measure full data sets on all 11 devices in an automated manner and in minimal time. These results illustrate the value of studying large sample sets, rather than focusing narrowly on the highest performing devices. Large data sets help us to distinguish and remedy individual loss mechanisms affecting our devices. PMID:26067454

  2. Numerical simulation of dielectrophoretic separation of live/dead cells using a three-dimensional nonuniform AC electric field in micro-fabricated devices.

    PubMed

    Tada, Shigeru

    2015-01-01

    The analysis of cell separation has many important biological and medical applications. Dielectrophoresis (DEP) is one of the most effective and widely used techniques for separating and identifying biological species. In the present study, a DEP flow channel, a device that exploits the differences in the dielectric properties of cells in cell separation, was numerically simulated and its cell-separation performance examined. The samples of cells used in the simulation were modeled as human leukocyte (B cell) live and dead cells. The cell-separation analysis was carried out for a flow channel equipped with a planar electrode on the channel's top face and a pair of interdigitated counter electrodes on the bottom. This yielded a three-dimensional (3D) nonuniform AC electric field in the entire space of the flow channel. To investigate the optimal separation conditions for mixtures of live and dead cells, the strength of the applied electric field was varied. With appropriately selected conditions, the device was predicted to be very effective at separating dead cells from live cells. The major advantage of the proposed method is that a large volume of sample can be processed rapidly because of a large spacing of the channel height.

  3. Material and Device Stability in Perovskite Solar Cells.

    PubMed

    Kim, Hui-Seon; Seo, Ja-Young; Park, Nam-Gyu

    2016-09-22

    Organic-inorganic halide perovskite solar cells have attracted great attention because of their superb efficiency reaching 22 % and low-cost, facile fabrication processing. Nevertheless, stability issues in perovskite solar cells seem to block further advancements toward commercialization. Thus, device stability is one of the important topics in perovskite solar cell research. In the beginning, the poor moisture resistivity of the perovskite layer was considered as a main problem that hindered further development of perovskite solar cells, which encouraged engineering of the perovskite or protection of the perovskite by a buffer layer. Soon after, other parameters affecting long-term stability were sequentially found and various attempts have been made to enhance intrinsic and extrinsic stability. Here we review the recent progresses addressing stability issues in perovskite solar cells. In this report, we investigated factors affecting stability from material and device points of view. To gain a better understanding of the stability of the bulk perovskite material, decomposition mechanisms were investigated in relation to moisture, photons, and heat. Stability of full device should also be carefully examined because its stability is dependent not only on bulk perovskite but also on the interfaces and selective contacts. In addition, ion migration and current-voltage hysteresis were found to be closely related to stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Highly efficient capture and harvest of circulating tumor cells on a microfluidic chip integrated with herringbone and micropost arrays.

    PubMed

    Xue, Peng; Wu, Yafeng; Guo, Jinhong; Kang, Yuejun

    2015-04-01

    Circulating tumor cells (CTCs), which are derived from primary tumor site and transported to distant organs, are considered as the major cause of metastasis. So far, various techniques have been applied for CTC isolation and enumeration. However, there exists great demand to improve the sensitivity of CTC capture, and it remains challenging to elute the cells efficiently from device for further biomolecular and cellular analyses. In this study, we fabricate a dual functional chip integrated with herringbone structure and micropost array to achieve CTC capture and elution through EpCAM-based immunoreaction. Hep3B tumor cell line is selected as the model of CTCs for processing using this device. The results demonstrate that the capture limit of Hep3B cells can reach up to 10 cells (per mL of sample volume) with capture efficiency of 80% on average. Moreover, the elution rate of the captured Hep3B cells can reach up to 69.4% on average for cell number ranging from 1 to 100. These results demonstrate that this device exhibits dual functions with considerably high capture rate and elution rate, indicating its promising capability for cancer diagnosis and therapeutics.

  5. E-selectin liposomal and nanotube-targeted delivery of doxorubicin to circulating tumor cells

    PubMed Central

    Mitchell, Michael J.; Chen, Christina S.; Ponmudi, Varun; Hughes, Andrew D.; King, Michael R.

    2012-01-01

    The presence of circulating tumor cells (CTCs) is believed to lead to the formation of secondary tumors via an adhesion cascade involving interaction between adhesion receptors of endothelial cells and ligands on CTCs. Many CTCs express sialylated carbohydrate ligands on their surfaces that adhere to selectin protein found on inflamed endothelial cells. We have investigated the feasibility of using immobilized selectin proteins as a targeting mechanism for CTCs under flow. Herein, targeted liposomal doxorubicin (L-DXR) was functionalized with recombinant human E-selectin (ES) and polyethylene glycol (PEG) to target and kill cancer cells under shear flow, both when immobilized along a microtube device or sheared in a cone-and-plate viscometer in a dilute suspension. Healthy circulating cells such as red blood cells were not targeted by this mechanism and were left to freely circulate, and minimal leukocyte death was observed. Halloysite nanotube (HNT)-coated microtube devices immobilized with nanoscale liposomes significantly enhanced the targeting, capture, and killing of cancer cells. This work demonstrates that E-selectin functionalized L-DXR, sheared in suspension or immobilized onto microtube devices, provides a novel approach to selectively target and deliver chemotherapeutics to CTCs in the bloodstream. PMID:22421423

  6. Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling.

    PubMed

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; Gorman, Brian P; Ye, Jichun; Jiang, Chun-Sheng; Yan, Yanfa; Al-Jassim, Mowafak M

    2017-11-08

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO 2 -based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; (2) cells with an intrinsic SnO 2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO 2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2 -ESL < SnO 2 + SAM; this sequence explains the improvements of the fill factor (FF) and open-circuit voltage (V oc ). The improvement of the FF from the FTO to SnO 2 -ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO 2 -based ESL material quality and the ESL/PS interface.

  7. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE PAGES

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; ...

    2017-10-13

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  8. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  9. A dual V t disturb-free subthreshold SRAM with write-assist and read isolation

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Vipul; Kumar, Pradeep; Pandey, Neeta; Pandey, Sujata

    2018-02-01

    This paper presents a new dual V t 8T SRAM cell having single bit-line read and write, in addition to Write Assist and Read Isolation (WARI). Also a faster write back scheme is proposed for the half selected cells. A high V t device is used for interrupting the supply to one of the inverters for weakening the feedback loop for assisted write. The proposed cell provides an improved read static noise margin (RSNM) due to the bit-line isolation during the read. Static noise margins for data read (RSNM), write (WSNM), read delay, write delay, data retention voltage (DRV), leakage and average powers have been calculated. The proposed cell was found to operate properly at a supply voltage as small as 0.41 V. A new write back scheme has been suggested for half-selected cells, which uses a single NMOS access device and provides reduced delay, pulse timing hardware requirements and power consumption. The proposed new WARI 8T cell shows better performance in terms of easier write, improved read noise margin, reduced leakage power, and less delay as compared to the existing schemes that have been available so far. It was also observed that with proper adjustment of the cell ratio the supply voltage can further be reduced to 0.2 V.

  10. Paper-based device for separation and cultivation of single microalga.

    PubMed

    Chen, Chih-Chung; Liu, Yi-Ju; Yao, Da-Jeng

    2015-12-01

    Single-cell separation is among the most useful techniques in biochemical research, diagnosis and various industrial applications. Microalgae species have great economic importance as industrial raw materials. Microalgae species collected from environment are typically a mixed and heterogeneous population of species that must be isolated and purified for examination and further application. Conventional methods, such as serial dilution and a streaking-plate method, are intensive of labor and inefficient. We developed a paper-based device for separation and cultivation of single microalga. The fabrication was simply conducted with a common laser printer and required only a few minutes without lithographic instruments and clean-room. The driving force of the paper device was simple capillarity without a complicated pump connection that is part of most devices for microfluidics. The open-structure design of the paper device makes it operable with a common laboratory micropipette for sample transfer and manipulation with a naked eye or adaptable to a robotic system with functionality of high-throughput retrieval and analysis. The efficiency of isolating a single cell from mixed microalgae species is seven times as great as with a conventional method involving serial dilution. The paper device can serve also as an incubator for microalgae growth on simply rinsing the paper with a growth medium. Many applications such as highly expressed cell selection and various single-cell analysis would be applicable. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Solar cells using quantum funnels.

    PubMed

    Kramer, Illan J; Levina, Larissa; Debnath, Ratan; Zhitomirsky, David; Sargent, Edward H

    2011-09-14

    Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation toward an intended electron acceptor. Using this concept we build a solar cell that benefits from enhanced fill factor as a result of this quantum funnel. This concept addresses limitations on transport in soft condensed matter systems and leverages their advantages in large-area optoelectronic devices and systems.

  12. Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate.

    PubMed

    Shibata, Tomonori; Fujita, Yoshihiko; Ohno, Hirohisa; Suzuki, Yuki; Hayashi, Karin; Komatsu, Kaoru R; Kawasaki, Shunsuke; Hidaka, Kumi; Yonehara, Shin; Sugiyama, Hiroshi; Endo, Masayuki; Saito, Hirohide

    2017-09-14

    Nucleic acid nanotechnology has great potential for future therapeutic applications. However, the construction of nanostructured devices that control cell fate by detecting and amplifying protein signals has remained a challenge. Here we design and build protein-driven RNA-nanostructured devices that actuate in vitro by RNA-binding-protein-inducible conformational change and regulate mammalian cell fate by RNA-protein interaction-mediated protein assembly. The conformation and function of the RNA nanostructures are dynamically controlled by RNA-binding protein signals. The protein-responsive RNA nanodevices are constructed inside cells using RNA-only delivery, which may provide a safe tool for building functional RNA-protein nanostructures. Moreover, the designed RNA scaffolds that control the assembly and oligomerization of apoptosis-regulatory proteins on a nanometre scale selectively kill target cells via specific RNA-protein interactions. These findings suggest that synthetic RNA nanodevices could function as molecular robots that detect signals and localize target proteins, induce RNA conformational changes, and programme mammalian cellular behaviour.Nucleic acid nanotechnology has great potential for future therapeutic applications. Here the authors build protein-driven RNA nanostructures that can function within mammalian cells and regulate the cell fate.

  13. Facile fabrication of large-grain CH 3NH 3PbI 3-xBr x films for high-efficiency solar cells via CH 3NH 3Br-selective Ostwald ripening

    DOE PAGES

    Yang, Mengjin; Zhang, Taiyang; Schulz, Philip; ...

    2016-08-01

    Organometallic halide perovskite solar cells (PSCs) have shown great promise as a low-cost, high-efficiency photovoltaic technology. Structural and electro-optical properties of the perovskite absorber layer are most critical to device operation characteristics. Here we present a facile fabrication of high-efficiency PSCs based on compact, large-grain, pinhole-free CH 3NH 3PbI 3-xBr x (MAPbI 3-xBr x) thin films with high reproducibility. A simple methylammonium bromide (MABr) treatment via spin-coating with a proper MABr concentration converts MAPbI 3 thin films with different initial film qualities (for example, grain size and pinholes) to high-quality MAPbI 3-xBr x thin films following an Ostwald ripening process,more » which is strongly affected by MABr concentration and is ineffective when replacing MABr with methylammonium iodide. A higher MABr concentration enhances I-Br anion exchange reaction, yielding poorer device performance. Lastly, this MABr-selective Ostwald ripening process improves cell efficiency but also enhances device stability and thus represents a simple, promising strategy for further improving PSC performance with higher reproducibility and reliability.« less

  14. Macroscale delivery systems for molecular and cellular payloads

    NASA Astrophysics Data System (ADS)

    Kearney, Cathal J.; Mooney, David J.

    2013-11-01

    Macroscale drug delivery (MDD) devices are engineered to exert spatiotemporal control over the presentation of a wide range of bioactive agents, including small molecules, proteins and cells. In contrast to systemically delivered drugs, MDD systems act as a depot of drug localized to the treatment site, which can increase drug effectiveness while reducing side effects and confer protection to labile drugs. In this Review, we highlight the key advantages of MDD systems, describe their mechanisms of spatiotemporal control and provide guidelines for the selection of carrier materials. We also discuss the combination of MDD technologies with classic medical devices to create multifunctional MDD devices that improve integration with host tissue, and the use of MDD technology in tissue-engineering strategies to direct cell behaviour. As our ever-expanding knowledge of human biology and disease provides new therapeutic targets that require precise control over their application, the importance of MDD devices in medicine is expected to increase.

  15. Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers.

    PubMed

    Venkatesan, Swaminathan; Ngo, Evan; Khatiwada, Devendra; Zhang, Cheng; Qiao, Qiquan

    2015-07-29

    The role of electron selective interfaces on the performance and lifetime of polymer solar cells were compared and analyzed. Bilayer interfaces consisting of metal oxide films with cationic polymer modification namely poly ethylenimine ethoxylated (PEIE) were found to enhance device lifetime compared to bare metal oxide films when used as an electron selective cathode interface. Devices utilizing surface-modified metal oxide layers showed enhanced lifetimes, retaining up to 85% of their original efficiency when stored in ambient atmosphere for 180 days without any encapsulation. The work function and surface potential of zinc oxide (ZnO) and ZnO/PEIE interlayers were evaluated using Kelvin probe and Kelvin probe force microscopy (KPFM) respectively. Kelvin probe measurements showed a smaller reduction in work function of ZnO/PEIE films compared to bare ZnO films when aged in atmospheric conditions. KPFM measurements showed that the surface potential of the ZnO surface drastically reduces when stored in ambient air for 7 days because of surface oxidation. Surface oxidation of the interface led to a substantial decrease in the performance in aged devices. The enhancement in the lifetime of devices with a bilayer interface was correlated to the suppressed surface oxidation of the metal oxide layers. The PEIE passivated surface retained a lower Fermi level when aged, which led to lower trap-assisted recombination at the polymer-cathode interface. Further photocharge extraction by linearly increasing voltage (Photo-CELIV) measurements were performed on fresh and aged samples to evaluate the field required to extract maximum charges. Fresh devices with a bare ZnO cathode interlayer required a lower field than devices with ZnO/PEIE cathode interface. However, aged devices with ZnO required a much higher field to extract charges while aged devices with ZnO/PEIE showed a minor increase compared to the fresh devices. Results indicate that surface modification can act as a suitable passivation layer to suppress oxidation in metal oxide thin films for enhanced lifetime in inverted organic solar cells.

  16. Nanotube antibody biosensor arrays for the detection of circulating breast cancer cells

    NASA Astrophysics Data System (ADS)

    Shao, Ning; Wickstrom, Eric; Panchapakesan, Balaji

    2008-11-01

    Recent reports have shown that nanoscale electronic devices can be used to detect a change in electrical properties when receptor proteins bind to their corresponding antibodies functionalized on the surface of the device, in extracts from as few as ten lysed tumor cells. We hypothesized that nanotube-antibody devices could sensitively and specifically detect entire live cancer cells. We report for the first time a single nanotube field effect transistor array, functionalized with IGF1R-specific and Her2-specific antibodies, which exhibits highly sensitive and selective sensing of live, intact MCF7 and BT474 human breast cancer cells in human blood. Those two cell lines both overexpress IGF1R and Her2, at different levels. Single or small bundle of nanotube devices that were functionalized with IGF1R-specific or Her2-specific antibodies showed 60% decreases in conductivity upon interaction with BT474 or MCF7 breast cancer cells in two µl drops of blood. Control experiments with non-specific antibodies or with MCF10A control breast cells produced a less than 5% decrease in electrical conductivity, illustrating the high sensitivity for whole cell binding by these single nanotube-antibody devices. We postulate that the free energy change due to multiple simultaneous cell-antibody binding events exerted stress along the nanotube surface, decreasing its electrical conductivity due to an increase in band gap. Because the free energy change upon cell-antibody binding, the stress exerted on the nanotube, and the change in conductivity are specific to a specific antigen-antibody interaction; these properties might be used as a fingerprint for the molecular sensing of circulating cancer cells. From optical microscopy observations during sensing, it appears that the binding of a single cell to a single nanotube field effect transistor produced the change in electrical conductivity. Thus we report a nanoscale oncometer with single cell sensitivity with a diameter 1000 times smaller than a cancer cell that functions in a drop of fresh blood.

  17. Microfluidic Device with Tunable Post Arrays and Integrated Electrodes for Studying Cellular Release

    PubMed Central

    Selimovic, Asmira; Erkal, Jayda L.; Spence, Dana M.; Martin, R. Scott

    2015-01-01

    In this paper, we describe the development of a planar, pillar array device that can be used to image either side of a tunable membrane, as well as sample and detect small molecules in a cell-free region of the microchip. The pores are created by sealing two parallel PDMS microchannels (a cell channel and a collector channel) over a gold pillar array (5 or 10 µm in height), with the device being characterized and optimized for small molecule cross-over while excluding a flowing cell line (here, red blood cells, RBCs). The device was characterized in terms of the flow rate dependence of cross-over of analyte and cell exclusion as well as the ability to perform amperometric detection of catechol and nitric oxide (NO) as they cross-over into the collector channel. Using catechol as the test analyte, the limits of detection (LOD) of the cross-over for the 10 µm and 5 µm pillar array heights were shown to be 50 nM and 106 nM, respectively. Detection of NO was made possible with a glassy carbon detection electrode (housed in the collector channel) modified with Pt-black and Nafion, to enhance sensitivity and selectivity, respectively. Reproducible cross-over of NO as a function of concentration resulted in a linear correlation (r2 = 0.995, 7.6 µM - 190 µM), with an LOD for NO of 230 nM on the glassy carbon-Pt-black-0.05% Nafion electrode. The applicability of the device was demonstrated by measuring the NO released from hypoxic RBCs, with the device allowing the released NO to cross-over into a cell free channel where it was detected in close to real-time. This type of device is an attractive alternative to the use of 3-dimensional devices with polycarbonate membranes, as either side of the membrane can be imaged and facile integration of electrochemical detection is possible. PMID:25105251

  18. Computer modelling of aluminum-gallium arsenide/gallium arsenide multilayer photovoltaics. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Wagner, Michael Broderick

    1987-01-01

    The modeled cascade cells offer an alternative to conventional series cascade designs that require a monolithic intercell ohmic contact. Selective electrodes provide a simple means of fabricating three-terminal devices, which can be configured in complementary pairs to circumvent the attendant losses and fabrication complexities of intercell ohmic contacts. Moreover, selective electrodes allow incorporation of additional layers in the upper subcell which can improve spectral response and increase radiation tolerance. Realistic simulations of such cells operating under one-sun AMO conditions show that the seven-layer structure is optimum from the standpoint of beginning-of-life efficiency and radiation tolerance. Projected efficiencies exceed 26 percent. Under higher concentration factors, it should be possible to achieve efficiencies beyond 30 percent. However, to simulate operation at high concentration will require a model for resistive losses. Overall, these devices appear to be a promising contender for future space applications.

  19. Evaluation of canine red blood cell quality after processing with an automated cell salvage device.

    PubMed

    Hofbauer, Nina; Windberger, Ursula; Schwendenwein, Ilse; Tichy, Alexander; Eberspächer, Eva

    2016-05-01

    To evaluate the properties of RBC concentrate harvested after processing fresh whole blood units from healthy dogs with an automated cell salvage device. Prospective, in vitro, experimental study. University teaching hospital. Sixteen healthy, privately owned dogs of various breeds. Fresh canine whole blood collected in bags with citrate phosphate dextrose adenine solution was processed with an automated cell salvage device and analyzed in vitro. Laboratory values determined before (baseline, from a catheter sample) and after processing RBCs (procRBCs) included a complete blood count, selected blood chemistry analytes, erythrocyte osmotic resistance, whole blood viscosity, RBC aggregation, and RBC deformability. Total recovery of RBCs was 80% ± 12%. Hematocrit of the procRBCs yielded by the device was 77% ± 3.7% (mean ± standard deviation). Gross morphology of the RBCs remained unchanged. The mean corpuscular volume, erythrocyte osmotic resistance, RBC deformability, RBC aggregation, and the activity of lactate dehydrogenase showed minor but statistically significant changes from baseline. No differences in the concentrations of free hemoglobin were observed. Whole blood viscosity was less in the procRBCs. Seventy-seven percent (mean) of the platelets were washed out, while a mean of 57% of the leukocytes remained in the procRBCs. Although processing canine blood with this automated cell salvage device leads to slight changes in some properties of RBCs, most of these changes are comparable to changes seen in human blood after processing. Present data indicate that the use of this cell salvage device does not induce changes in canine RBC concentrate that would preclude its use for transfusion. © Veterinary Emergency and Critical Care Society 2016.

  20. Resistive Switching of Ta2O5-Based Self-Rectifying Vertical-Type Resistive Switching Memory

    NASA Astrophysics Data System (ADS)

    Ryu, Sungyeon; Kim, Seong Keun; Choi, Byung Joon

    2018-01-01

    To efficiently increase the capacity of resistive switching random-access memory (RRAM) while maintaining the same area, a vertical structure similar to a vertical NAND flash structure is needed. In addition, the sneak-path current through the half-selected neighboring memory cell should be mitigated by integrating a selector device with each RRAM cell. In this study, an integrated vertical-type RRAM cell and selector device was fabricated and characterized. Ta2O5 as the switching layer and TaOxNy as the selector layer were used to preliminarily study the feasibility of such an integrated device. To make the side contact of the bottom electrode with active layers, a thick Al2O3 insulating layer was placed between the Pt bottom electrode and the Ta2O5/TaOxNy stacks. Resistive switching phenomena were observed under relatively low currents (below 10 μA) in this vertical-type RRAM device. The TaOxNy layer acted as a nonlinear resistor with moderate nonlinearity. Its low-resistance-state and high-resistance-state were well retained up to 1000 s.

  1. Cerebrovascular accidents in patients with a ventricular assist device.

    PubMed

    Tsukui, Hiroyuki; Abla, Adib; Teuteberg, Jeffrey J; McNamara, Dennis M; Mathier, Michael A; Cadaret, Linda M; Kormos, Robert L

    2007-07-01

    A cerebrovascular accident is a devastating adverse event in a patient with a ventricular assist device. The goal was to clarify the risk factors for cerebrovascular accident. Prospectively collected data, including medical history, ventricular assist device type, white blood cell count, thrombelastogram, and infection, were reviewed retrospectively in 124 patients. Thirty-one patients (25%) had 48 cerebrovascular accidents. The mean ventricular assist device support period was 228 and 89 days in patients with and without cerebrovascular accidents, respectively (P < .0001). Sixty-six percent of cerebrovascular accidents occurred within 4 months after implantation. Actuarial freedom from cerebrovascular accident at 6 months was 75%, 64%, 63%, and 33% with the HeartMate device (Thoratec Corp, Pleasanton, Calif), Thoratec biventricular ventricular assist device (Thoratec Corp), Thoratec left ventricular assist device (Thoratec), and Novacor device (WorldHeart, Oakland, Calif), respectively. Twenty cerebrovascular accidents (42%) occurred in patients with infections. The mean white blood cell count at the cerebrovascular accident was greater than the normal range in patients with infection (12,900/mm3) and without infection (9500/mm3). The mean maximum amplitude of the thrombelastogram in the presence of infection (63.6 mm) was higher than that in the absence of infection (60.7 mm) (P = .0309). The risk of cerebrovascular accident increases with a longer ventricular assist device support period. Infection may activate platelet function and predispose the patient to a cerebrovascular accident. An elevation of the white blood cell count may also exacerbate the risk of cerebrovascular accident even in patients without infection. Selection of device type, prevention of infection, and meticulous control of anticoagulation are key to preventing cerebrovascular accident.

  2. Rapid identification and quantification of tumor cells using an electrocatalytic method based on gold nanoparticles.

    PubMed

    de la Escosura-Muñiz, Alfredo; Sánchez-Espinel, Christian; Díaz-Freitas, Belén; González-Fernández, Africa; Maltez-da Costa, Marisa; Merkoçi, Arben

    2009-12-15

    There is a high demand for simple, rapid, efficient, and user-friendly alternative methods for the detection of cells in general and, in particular, for the detection of cancer cells. A biosensor able to detect cells would be an all-in-one dream device for such applications. The successful integration of nanoparticles into cell detection assays could allow for the development of this novel class of cell sensors. Indeed, their application could well have a great future in diagnostics, as well as other fields. As an example of a novel biosensor, we report here an electrocatalytic device for the specific identification of tumor cells that quantifies gold nanoparticles (AuNPs) coupled with an electrotransducing platform/sensor. Proliferation and adherence of tumor cells are achieved on the electrotransducer/detector, which consists of a mass-produced screen-printed carbon electrode (SPCE). In situ identification/quantification of tumor cells is achieved with a detection limit of 4000 cells per 700 microL of suspension. This novel and selective cell-sensing device is based on the reaction of cell surface proteins with specific antibodies conjugated with AuNPs. Final detection requires only a couple of minutes, taking advantage of the catalytic properties of AuNPs on hydrogen evolution. The proposed detection method does not require the chemical agents used in most existing assays for the detection of AuNPs. It allows for the miniaturization of the system and is much cheaper than other expensive and sophisticated methods used for tumor cell detection. We envisage that this device could operate in a simple way as an immunosensor or DNA sensor. Moreover, it could be used, even by inexperienced staff, for the detection of protein molecules or DNA strands.

  3. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor.

    PubMed

    Adams, André A; Okagbare, Paul I; Feng, Juan; Hupert, Matuesz L; Patterson, Don; Göttert, Jost; McCarley, Robin L; Nikitopoulos, Dimitris; Murphy, Michael C; Soper, Steven A

    2008-07-09

    A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (>/=1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 mum width x 150 mum depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation.

  4. Highly Efficient Circulating Tumor Cell Isolation from Whole Blood and Label-Free Enumeration Using Polymer-Based Microfluidics with an Integrated Conductivity Sensor

    PubMed Central

    Adams, André A.; Okagbare, Paul I.; Feng, Juan; Hupert, Matuesz L.; Patterson, Don; Göttert, Jost; McCarley, Robin L.; Nikitopoulos, Dimitris; Murphy, Michael C.; Soper, Steven A.

    2008-01-01

    A novel microfluidic device that can selectively and specifically isolate exceedingly small numbers of circulating tumor cells (CTCs) through a monoclonal antibody (mAB) mediated process by sampling large input volumes (≥1 mL) of whole blood directly in short time periods (<37 min) was demonstrated. The CTCs were concentrated into small volumes (190 nL), and the number of cells captured was read without labeling using an integrated conductivity sensor following release from the capture surface. The microfluidic device contained a series (51) of high-aspect ratio microchannels (35 μm width × 150 μm depth) that were replicated in poly(methyl methacrylate), PMMA, from a metal mold master. The microchannel walls were covalently decorated with mABs directed against breast cancer cells overexpressing the epithelial cell adhesion molecule (EpCAM). This microfluidic device could accept inputs of whole blood, and its CTC capture efficiency was made highly quantitative (>97%) by designing capture channels with the appropriate widths and heights. The isolated CTCs were readily released from the mAB capturing surface using trypsin. The released CTCs were then enumerated on-device using a novel, label-free solution conductivity route capable of detecting single tumor cells traveling through the detection electrodes. The conductivity readout provided near 100% detection efficiency and exquisite specificity for CTCs due to scaling factors and the nonoptimal electrical properties of potential interferences (erythrocytes or leukocytes). The simplicity in manufacturing the device and its ease of operation make it attractive for clinical applications requiring one-time use operation. PMID:18557614

  5. 40 CFR Appendix D to Part 403 - Selected Industrial Subcategories Considered Dilute for Purposes of the Combined Wastestream Formula

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (40 CFR parts 413/433). Capacitors (Fluid Fill) Carbon and Graphite Products Dry Transformers Ferrite Electronic Devices Fixed Capacitors Fluorescent Lamps Fuel Cells Incandescent Lamps Magnetic Coatings Mica...

  6. Micro-array isolation of circulating tumor cells (CTCs): the droplet biopsy chip

    NASA Astrophysics Data System (ADS)

    Panchapakesan, B.

    2017-08-01

    We present a new method for circulating tumor cell capture based on micro-array isolation from droplets. Called droplet biopsy, our technique uses a 76-element array of carbon nanotube devices functionalized with anti-EpCAM and antiHer2 antibodies for immunocapture of spiked breast cancer cells in the blood. This droplet biopsy chip can enable capture of CTCs based on both positive and negative selection strategy. Negative selection is achieved through depletion of contaminating leukocytes through the differential settling of blood into layers. We report 55%-100% cancer cell capture yield in this first droplet biopsy chip study. The droplet biopsy is an enabling idea where one can capture CTCs based on multiple biomarkers in a single blood sample.

  7. Development of microtitre plates for electrokinetic assays

    NASA Astrophysics Data System (ADS)

    Burt, J. P. H.; Goater, A. D.; Menachery, A.; Pethig, R.; Rizvi, N. H.

    2007-02-01

    Electrokinetic processes have wide ranging applications in microsystems technology. Their optimum performance at micro and nano dimensions allows their use both as characterization and diagnostic tools and as a means of general particle manipulation. Within analytical studies, measurement of the electrokinesis of biological cells has the sensitivity and selectivity to distinguish subtle differences between cell types and cells undergoing changes and is gaining acceptance as a diagnostic tool in high throughput screening for drug discovery applications. In this work the development and manufacture of an electrokinetic-based microtitre plate is described. The plate is intended to be compatible with automated sample loading and handling systems. Manufacturing of the microtitre plate, which employs indium tin oxide microelectrodes, has been entirely undertaken using excimer and ultra-fast pulsed laser micromachining due to its flexibility in materials processing and accuracy in microstructuring. Laser micromachining has the ability to rapidly realize iterations in device prototype design while also having the capability to be scaled up for large scale manufacture. Device verification is achieved by the measurement of the electrorotation and dielectrophoretic properties of yeast cells while the flexibility of the developed microtitre plate is demonstrated by the selective separation of live yeast from polystyrene microbeads.

  8. Scaffolds and tissue regeneration: An overview of the functional properties of selected organic tissues.

    PubMed

    Rebelo, Márcia A; Alves, Thais F R; de Lima, Renata; Oliveira, José M; Vila, Marta M D C; Balcão, Victor M; Severino, Patrícia; Chaud, Marco V

    2016-10-01

    Tissue engineering plays a significant role both in the re-establishment of functions and regeneration of organic tissues. Success in manufacturing projects for biological scaffolds, for the purpose of tissue regeneration, is conditioned by the selection of parameters such as the biomaterial, the device architecture, and the specificities of the cells making up the organic tissue to create, in vivo, a microenvironment that preserves and further enhances the proliferation of a specific cell phenotype. To support this approach, we have screened scientific publications that show biomedical applications of scaffolds, biomechanical, morphological, biochemical, and hemodynamic characteristics of the target organic tissues, and the possible interactions between different cell matrices and biological scaffolds. This review article provides an overview on the biomedical application of scaffolds and on the characteristics of the (bio)materials commonly used for manufacturing these biological devices used in tissue engineering, taking into consideration the cellular specificity of the target tissue. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1483-1494, 2016. © 2015 Wiley Periodicals, Inc.

  9. Large-Flow-Area Flow-Selective Liquid/Gas Separator

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo; Bradley, Karla F.

    2010-01-01

    This liquid/gas separator provides the basis for a first stage of a fuel cell product water/oxygen gas phase separator. It can separate liquid and gas in bulk in multiple gravity environments. The system separates fuel cell product water entrained with circulating oxygen gas from the outlet of a fuel cell stack before allowing the gas to return to the fuel cell stack inlet. Additional makeup oxygen gas is added either before or after the separator to account for the gas consumed in the fuel cell power plant. A large volume is provided upstream of porous material in the separator to allow for the collection of water that does not exit the separator with the outgoing oxygen gas. The water then can be removed as it continues to collect, so that the accumulation of water does not impede the separating action of the device. The system is designed with a series of tubes of the porous material configured into a shell-and-tube heat exchanger configuration. The two-phase fluid stream to be separated enters the shell-side portion of the device. Gas flows to the center passages of the tubes through the porous material and is then routed to a common volume at the end of the tubes by simple pressure difference from a pumping device. Gas flows through the porous material of the tubes with greater ease as a function of the ratio of the dynamic viscosity of the water and gas. By careful selection of the dimensions of the tubes (wall thickness, porosity, diameter, length of the tubes, number of the tubes, and tube-to-tube spacing in the shell volume) a suitable design can be made to match the magnitude of water and gas flow, developed pressures from the oxygen reactant pumping device, and required residual water inventory for the shellside volume.

  10. Automated Cell Enrichment of Cytomegalovirus-specific T cells for Clinical Applications using the Cytokine-capture System.

    PubMed

    Kumaresan, Pappanaicken; Figliola, Mathew; Moyes, Judy S; Huls, M Helen; Tewari, Priti; Shpall, Elizabeth J; Champlin, Richard; Cooper, Laurence J N

    2015-10-05

    The adoptive transfer of pathogen-specific T cells can be used to prevent and treat opportunistic infections such as cytomegalovirus (CMV) infection occurring after allogeneic hematopoietic stem-cell transplantation. Viral-specific T cells from allogeneic donors, including third party donors, can be propagated ex vivo in compliance with current good manufacturing practice (cGMP), employing repeated rounds of antigen-driven stimulation to selectively propagate desired T cells. The identification and isolation of antigen-specific T cells can also be undertaken based upon the cytokine capture system of T cells that have been activated to secrete gamma-interferon (IFN-γ). However, widespread human application of the cytokine capture system (CCS) to help restore immunity has been limited as the production process is time-consuming and requires a skilled operator. The development of a second-generation cell enrichment device such as CliniMACS Prodigy now enables investigators to generate viral-specific T cells using an automated, less labor-intensive system. This device separates magnetically labeled cells from unlabeled cells using magnetic activated cell sorting technology to generate clinical-grade products, is engineered as a closed system and can be accessed and operated on the benchtop. We demonstrate the operation of this new automated cell enrichment device to manufacture CMV pp65-specific T cells obtained from a steady-state apheresis product obtained from a CMV seropositive donor. These isolated T cells can then be directly infused into a patient under institutional and federal regulatory supervision. All the bio-processing steps including removal of red blood cells, stimulation of T cells, separation of antigen-specific T cells, purification, and washing are fully automated. Devices such as this raise the possibility that T cells for human application can be manufactured outside of dedicated good manufacturing practice (GMP) facilities and instead be produced in blood banking facilities where staff can supervise automated protocols to produce multiple products.

  11. Light emission from organic single crystals operated by electrolyte doping

    NASA Astrophysics Data System (ADS)

    Matsuki, Keiichiro; Sakanoue, Tomo; Yomogida, Yohei; Hotta, Shu; Takenobu, Taishi

    2018-03-01

    Light-emitting devices based on electrolytes, such as light-emitting electrochemical cells (LECs) and electric double-layer transistors (EDLTs), are solution-processable devices with a very simple structure. Therefore, it is necessary to apply this device structure into highly fluorescent organic materials for future printed applications. However, owing to compatibility problems between electrolytes and organic crystals, electrolyte-based single-crystal light-emitting devices have not yet been demonstrated. Here, we report on light-emitting devices based on organic single crystals and electrolytes. As the fluorescent materials, α,ω-bis(biphenylyl)terthiophene (BP3T) and 5,6,11,12-tetraphenylnaphthacene (rubrene) single crystals were selected. Using ionic liquids as electrolytes, we observed clear light emission from BP3T LECs and rubrene EDLTs.

  12. Suppress carrier recombination by introducing defects. The case of Si solar cell

    DOE PAGES

    Liu, Yuanyue; Stradins, Paul; Deng, Huixiong; ...

    2016-01-11

    Deep level defects are usually harmful to solar cells. Here we show that incorporation of selected deep level defects in the carrier-collecting region, however, can be utilized to improve the efficiency of optoelectronic devices. The designed defects can help the transport of the majority carriers by creating defect levels that is resonant with the band edge state, and/or reduce the concentration of minority carriers through Coulomb repulsion, thus suppressing the recombination at the carrier-collecting region. The selection process is demonstrated by using Si solar cell as an example. In conclusion, our work enriches the understanding and utilization of the semiconductormore » defects.« less

  13. Polymeric composite devices for localized treatment of early-stage breast cancer

    PubMed Central

    Kan-Dapaah, Kwabena; Soboyejo, Wole

    2017-01-01

    For early-stage breast cancers mastectomy is an aggressive form of treatment. Therefore, there is a need for new treatment strategies that can enhance the use of lumpectomy by eliminating residual cancer cells with limited side effects to reduce local recurrence. Although, various radiotherapy-based methods have been developed, residual cells are found in 20–55% of the time at the first operation. Furthermore, some current treatment methods result in poor cosmesis. For the last decade, the authors have been exploring the use of polymeric composite materials in single and multi-modal implantable biomedical devices for post-operative treatment of breast cancer. In this paper, the concept and working principles of the devices, as well as selected results from experimental and numerical investigations, are presented. The results show the potential of the biomedical implants for cancer treatment. PMID:28245288

  14. A Microfluidic Device for Continuous Sensing of Systemic Acute Toxicants in Drinking Water

    PubMed Central

    Zhao, Xinyan; Dong, Tao

    2013-01-01

    A bioluminescent-cell-based microfluidic device for sensing toxicants in drinking water was designed and fabricated. The system employed Vibrio fischeri cells as broad-spectrum sensors to monitor potential systemic cell toxicants in water, such as heavy metal ions and phenol. Specifically, the chip was designed for continuous detection. The chip design included two counter-flow micromixers, a T-junction droplet generator and six spiral microchannels. The cell suspension and water sample were introduced into the micromixers and dispersed into droplets in the air flow. This guaranteed sufficient oxygen supply for the cell sensors. Copper (Cu2+), zinc (Zn2+), potassium dichromate and 3,5-dichlorophenol were selected as typical toxicants to validate the sensing system. Preliminary tests verified that the system was an effective screening tool for acute toxicants although it could not recognize or quantify specific toxicants. A distinct non-linear relationship was observed between the zinc ion concentration and the Relative Luminescence Units (RLU) obtained during testing. Thus, the concentration of simple toxic chemicals in water can be roughly estimated by this system. The proposed device shows great promise for an early warning system for water safety. PMID:24300075

  15. Impact of Ultrathin C60 on Perovskite Photovoltaic Devices.

    PubMed

    Liu, Dianyi; Wang, Qiong; Traverse, Christopher J; Yang, Chenchen; Young, Margaret; Kuttipillai, Padmanaban S; Lunt, Sophia Y; Hamann, Thomas W; Lunt, Richard R

    2018-01-23

    Halide perovskite solar cells have seen dramatic progress in performance over the past several years. Certified efficiencies of inverted structure (p-i-n) devices have now exceeded 20%. In these p-i-n devices, fullerene compounds are the most popular electron-transfer materials. However, the full function of fullerenes in perovskite solar cells is still under investigation, and the mechanism of photocurrent hysteresis suppression by fullerene remains unclear. In previous reports, thick fullerene layers (>20 nm) were necessary to fully cover the perovskite film surface to make good contact with perovskite film and avoid large leakage currents. In addition, the solution-processed fullerene layer has been broadly thought to infiltrate into the perovskite film to passivate traps on grain boundary surfaces, causing suppressed photocurrent hysteresis. In this work, we demonstrate an efficient perovskite photovoltaic device with only 1 nm C 60 deposited by vapor deposition as the electron-selective material. Utilizing a combination of fluorescence microscopy and impedance spectroscopy, we show that the ultrathin C 60 predominately acts to extract electrons from the perovskite film while concomitantly suppressing the photocurrent hysteresis by reducing space charge accumulation at the interface. This work ultimately helps to clarify the dominant role of fullerenes in perovskite solar cells while simplifying perovskite solar cell design to reduce manufacturing costs.

  16. Solid-phase extraction and purification of membrane proteins using a UV-modified PMMA microfluidic bioaffinity μSPE device.

    PubMed

    Battle, Katrina N; Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Hunsucker, Sally A; Armistead, Paul M; Soper, Steven A

    2014-03-21

    We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.

  17. Isolation of breast cancer and gastric cancer circulating tumor cells by use of an anti HER2-based microfluidic device.

    PubMed

    Galletti, Giuseppe; Sung, Matthew S; Vahdat, Linda T; Shah, Manish A; Santana, Steven M; Altavilla, Giuseppe; Kirby, Brian J; Giannakakou, Paraskevi

    2014-01-07

    Circulating tumor cells (CTCs) have emerged as a reliable source of tumor cells, and their concentration has prognostic implications. CTC capture offers real-time access to cancer tissue without the need of an invasive biopsy, while their phenotypic and molecular interrogation can provide insight into the biological changes of the tumor that occur during treatment. The majority of the CTC capture methods are based on EpCAM expression as a surface marker of tumor-derived cells. However, EpCAM protein expression levels can be significantly down regulated during cancer progression as a consequence of the process of epithelial to mesenchymal transition. In this paper, we describe a novel HER2 (Human Epidermal Receptor 2)-based microfluidic device for the isolation of CTCs from peripheral blood of patients with HER2-expressing solid tumors. We selected HER2 as an alternative to EpCAM as the receptor is biologically and therapeutically relevant in several solid tumors, like breast cancer (BC), where it is overexpressed in 30% of the patients and expressed in 90%, and gastric cancer (GC), in which HER2 presence is identified in more than 60% of the cases. We tested the performance of various anti HER2 antibodies in a panel of nine different BC cell lines with varying HER2 protein expression levels, using immunoblotting, confocal microscopy, live cells imaging and flow cytometry analyses. The antibody associated with the highest capture efficiency and sensitivity for HER2 expressing cells on the microfluidic device was the one that performed best in live cells imaging and flow cytometry assays as opposed to the fixed cell analyses, suggesting that recognition of the native conformation of the HER2 extracellular epitope on living cells was essential for specificity and sensitivity of CTC capture. Next, we tested the performance of the HER2 microfluidic device using blood from metastatic breast and gastric cancer patients. The HER2 microfluidic device exhibited CTC capture in 9/9 blood samples. Thus, the described HER2-based microfluidic device can be considered as a valid clinically relevant method for CTC capture in HER2 expressing solid cancers.

  18. Computational design optimization for microfluidic magnetophoresis

    PubMed Central

    Plouffe, Brian D.; Lewis, Laura H.; Murthy, Shashi K.

    2011-01-01

    Current macro- and microfluidic approaches for the isolation of mammalian cells are limited in both efficiency and purity. In order to design a robust platform for the enumeration of a target cell population, high collection efficiencies are required. Additionally, the ability to isolate pure populations with minimal biological perturbation and efficient off-chip recovery will enable subcellular analyses of these cells for applications in personalized medicine. Here, a rational design approach for a simple and efficient device that isolates target cell populations via magnetic tagging is presented. In this work, two magnetophoretic microfluidic device designs are described, with optimized dimensions and operating conditions determined from a force balance equation that considers two dominant and opposing driving forces exerted on a magnetic-particle-tagged cell, namely, magnetic and viscous drag. Quantitative design criteria for an electromagnetic field displacement-based approach are presented, wherein target cells labeled with commercial magnetic microparticles flowing in a central sample stream are shifted laterally into a collection stream. Furthermore, the final device design is constrained to fit on standard rectangular glass coverslip (60 (L)×24 (W)×0.15 (H) mm3) to accommodate small sample volume and point-of-care design considerations. The anticipated performance of the device is examined via a parametric analysis of several key variables within the model. It is observed that minimal currents (<500 mA) are required to generate magnetic fields sufficient to separate cells from the sample streams flowing at rate as high as 7 ml∕h, comparable to the performance of current state-of-the-art magnet-activated cell sorting systems currently used in clinical settings. Experimental validation of the presented model illustrates that a device designed according to the derived rational optimization can effectively isolate (∼100%) a magnetic-particle-tagged cell population from a homogeneous suspension even in a low abundance. Overall, this design analysis provides a rational basis to select the operating conditions, including chamber and wire geometry, flow rates, and applied currents, for a magnetic-microfluidic cell separation device. PMID:21526007

  19. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  20. Targeted cell adhesion on selectively micropatterned polymer arrays on a poly(dimethylsiloxane) surface.

    PubMed

    Tang, Linzhi; Min, Junhong; Lee, Eun-Cheol; Kim, Jong Sung; Lee, Nae Yoon

    2010-02-01

    Herein, we introduce the fabrication of polymer micropattern arrays on a chemically inert poly(dimethylsiloxane) (PDMS) surface and employ them for the selective adhesion of cells. To fabricate the micropattern arrays, a mercapto-ester-based photocurable adhesive was coated onto a mercaptosilane-coated PDMS surface and photopolymerized using a photomask to obtain patterned arrays at the microscale level. Robust polymer patterns, 380 microm in diameter, were successfully fabricated onto a PDMS surface, and cells were selectively targeted toward the patterned regions. Next, the performance of the cell adhesion was observed by anchoring cell adhesive linker, an RGD oligopeptide, on the surface of the mercapto-ester-based adhesive-cured layer. The successful anchoring of the RGD linker was confirmed through various surface characterizations such as water contact angle measurement, XPS analysis, FT-IR analysis, and AFM measurement. The micropatterning of a photocurable adhesive onto a PDMS surface can provide high structural rigidity, a highly-adhesive surface, and a physical pathway for selective cell adhesion, while the incorporated polymer micropattern arrays inside a PDMS microfluidic device can serve as a microfluidic platform for disease diagnoses and high-throughput drug screening.

  1. Micromachined devices: the impact of controlled geometry from cell-targeting to bioavailability.

    PubMed

    Tao, Sarah L; Desai, Tejal A

    2005-12-05

    Advances in microelectomechanical systems (MEMS) have allowed the microfabrication of polymeric substrates and the development of a novel class of controlled delivery devices. These vehicles have specifically tailored three-dimensional physical and chemical features which, together, provide the capacity to target cells, promote unidirectional controlled release, and enhance permeation across the intestinal epithelial barrier. Examining the biological response at the microdevice biointerface may provide insight into the benefits of customized surface chemistry and structure in terms of complex drug delivery vehicle design. Therefore, the aim of this work was to determine the interfacial effects of selective surface chemistry and architecture of tomato lectin (TL)-modified poly(methyl methacrylate) (PMMA) drug delivery microdevices on the Caco-2 cell line, a model of the gastrointestinal tract.

  2. Simple processing of back-contacted silicon heterojunction solar cells using selective-area crystalline growth

    NASA Astrophysics Data System (ADS)

    Tomasi, Andrea; Paviet-Salomon, Bertrand; Jeangros, Quentin; Haschke, Jan; Christmann, Gabriel; Barraud, Loris; Descoeudres, Antoine; Seif, Johannes Peter; Nicolay, Sylvain; Despeisse, Matthieu; de Wolf, Stefaan; Ballif, Christophe

    2017-04-01

    For crystalline-silicon solar cells, voltages close to the theoretical limit are nowadays readily achievable when using passivating contacts. Conversely, maximal current generation requires the integration of the electron and hole contacts at the back of the solar cell to liberate its front from any shadowing loss. Recently, the world-record efficiency for crystalline-silicon single-junction solar cells was achieved by merging these two approaches in a single device; however, the complexity of fabricating this class of devices raises concerns about their commercial potential. Here we show a contacting method that substantially simplifies the architecture and fabrication of back-contacted silicon solar cells. We exploit the surface-dependent growth of silicon thin films, deposited by plasma processes, to eliminate the patterning of one of the doped carrier-collecting layers. Then, using only one alignment step for electrode definition, we fabricate a proof-of-concept 9-cm2 tunnel-interdigitated back-contact solar cell with a certified conversion efficiency >22.5%.

  3. Perovskite Solar Cells: Influence of Hole Transporting Materials on Power Conversion Efficiency.

    PubMed

    Ameen, Sadia; Rub, Malik Abdul; Kosa, Samia A; Alamry, Khalid A; Akhtar, M Shaheer; Shin, Hyung-Shik; Seo, Hyung-Kee; Asiri, Abdullah M; Nazeeruddin, Mohammad Khaja

    2016-01-08

    The recent advances in perovskite solar cells (PSCs) created a tsunami effect in the photovoltaic community. PSCs are newfangled high-performance photovoltaic devices with low cost that are solution processable for large-scale energy production. The power conversion efficiency (PCE) of such devices experienced an unprecedented increase from 3.8 % to a certified value exceeding 20 %, demonstrating exceptional properties of perovskites as solar cell materials. A key advancement in perovskite solar cells, compared with dye-sensitized solar cells, occurred with the replacement of liquid electrolytes with solid-state hole-transporting materials (HTMs) such as 2,2',7,7'-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (Spiro-OMeTAD), which contributed to enhanced PCE values and improved the cell stability. Following improvements in the perovskite crystallinity to produce a smooth, uniform morphology, the selective and efficient extraction of positive and negative charges in the device dictated the PCE of PSCs. In this Review, we focus mainly on the HTMs responsible for hole transport and extraction in PSCs, which is one of the essential components for efficient devices. Here, we describe the current state-of-the-art in molecular engineering of hole-transporting materials that are used in PSCs and highlight the requisites for market-viability of this technology. Finally, we include an outlook on molecular engineering of new functional HTMs for high efficiency PSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 2008 Fuel Cell Technologies Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DOE

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.« less

  5. Electrochemical imaging of cells and tissues

    PubMed Central

    Lin, Tzu-En; Rapino, Stefania; Girault, Hubert H.

    2018-01-01

    The technological and experimental progress in electrochemical imaging of biological specimens is discussed with a view on potential applications for skin cancer diagnostics, reproductive medicine and microbial testing. The electrochemical analysis of single cell activity inside cell cultures, 3D cellular aggregates and microtissues is based on the selective detection of electroactive species involved in biological functions. Electrochemical imaging strategies, based on nano/micrometric probes scanning over the sample and sensor array chips, respectively, can be made sensitive and selective without being affected by optical interference as many other microscopy techniques. The recent developments in microfabrication, electronics and cell culturing/tissue engineering have evolved in affordable and fast-sampling electrochemical imaging platforms. We believe that the topics discussed herein demonstrate the applicability of electrochemical imaging devices in many areas related to cellular functions. PMID:29899947

  6. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    The redox flow cell energy storage system being developed by NASA for use in remote power systems and distributed storage installations for electric utilities is presented. The system under consideration is an electrochemical storage device which utilizes the oxidation and reduction of two fully soluble redox couples (acidified chloride solutions of chromium and iron) as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of redox flow cells where the electrochemical reactions take place at porous carbon felt electrodes. Redox equipment has allowed the incorporation of state of charge readout, stack voltage control and system capacity maintenance (rebalance) devices to regulate cells in a stack jointly. A 200 W, 12 V system with a capacity of about 400 Wh has been constructed, and a 2 kW, 10kWh system is planned.

  7. InAlAs photovoltaic cell design for high device efficiency

    DOE PAGES

    Smith, Brittany L.; Bittner, Zachary S.; Hellstroem, Staffan D.; ...

    2017-04-17

    This study presents a new design for a single-junction InAlAs solar cell, which reduces parasitic absorption losses from the low band-gap contact layer while maintaining a functional window layer by integrating a selective etch stop. The etch stop is then removed prior to depositing an anti-reflective coating. The final cell had a 17.9% efficiency under 1-sun AM1.5 with an anti-reflective coating. Minority carrier diffusion lengths were extracted from external quantum efficiency data using physics-based device simulation software yielding 170 nm in the n-type emitter and 4.6 um in the p-type base, which is more than four times the diffusion lengthmore » previously reported for a p-type InAlAs base. In conclusion, this report represents significant progress towards a high-performance InAlAs top cell for a triple-junction design lattice-matched to InP.« less

  8. A facile method to prepare a versatile surface coating with fibrinolytic activity, vascular cell selectivity and antibacterial properties.

    PubMed

    Jin, Sheng; Gu, Hao; Chen, Xianshuang; Liu, Xiaoli; Zhan, Wenjun; Wei, Ting; Sun, Xuebo; Ren, Chuanlu; Chen, Hong

    2018-07-01

    Clot and thrombus formation on surfaces that come into contact with blood is still the most serious problem for blood contacting devices. Despite many years of continuous efforts in developing hemocompatible materials, it is still of great interest to develop multifunctional materials to enable vascular cell selectivity (to favor rapid endothelialization while inhibiting smooth muscle cell proliferation) and improve hemocompatibility. In addition, biomaterial-associated infections also cause the failure of biomedical implants and devices. However, it remains a challenging task to design materials that are multifunctional, since one of their functions will usually be compromised by the introduction of another function. In the present work, the gold substrate was first layer-by-layer (LbL) deposited with a multilayered polyelectrolyte film containing chitosan (positively charged) and a copolymer of sodium 4-vinylbenzenesulfonate (SS) and the "guest" adamantane monomer 1-adamantan-1-ylmethyl methacrylate (P(SS-co-Ada), negatively charged) via electro-static interactions, referred to as Au-LbL. The chitosan and P(SS-co-Ada) were intended to provide, respectively, resistance to bacteria and heparin-like properties. Then, "host" β-cyclodextrin derivatives bearing seven lysine ligands (CD-L) were immobilized on the Au-LbL surface by host-guest interactions between adamantane residues and CD-L, referred to as Au-LbL/CD-L. Finally, a versatile surface coating with fibrinolytic activity (lysis of nascent clots), vascular cell selectivity and antibacterial properties was developed. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.

    PubMed

    Gogoi, Priya; Sepehri, Saedeh; Chow, Will; Handique, Kalyan; Wang, Yixin

    2017-01-01

    Molecular analysis of circulating tumor cells (CTCs) is hindered by low sensitivity and high level of background leukocytes of currently available CTC enrichment technologies. We have developed a novel device to enrich and retrieve CTCs from blood samples by using a microfluidic chip. The Celsee PREP100 device captures CTCs with high sensitivity and allows the captured CTCs to be retrieved for molecular analysis. It uses the microfluidic chip which has approximately 56,320 capture chambers. Based on differences in cell size and deformability, each chamber ensures that small blood escape while larger CTCs of varying sizes are trapped and isolated in the chambers. In this report, we used the Celsee PREP100 to capture cancer cells spiked into normal donor blood samples. We were able to show that the device can capture as low as 10 cells with high reproducibility. The captured CTCs were retrieved from the microfluidic chip. The cell recovery rate of this back-flow procedure is 100% and the level of remaining background leukocytes is very low (about 300-400 cells). RNA from the retrieved cells are extracted and converted to cDNA, and gene expression analysis of selected cancer markers can be carried out by using RT-PCR assays. The sensitive and easy-to-use Celsee PREP100 system represents a promising technology for capturing and molecular characterization of CTCs.

  10. Metal organic frameworks for enzyme immobilization in biofuel cells

    NASA Astrophysics Data System (ADS)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following enzymes: nicotinamide adenine dinucleotide (NAD)-dependent alcohol and aldehyde dehydrogenases, and pyrroloquinoline quinone (PQQ)-dependent alcohol and aldehyde dehydrogenases, as well as flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase. Tb-meso MOF was shown to immobilize PQQ-dependent enzymes through ? stacking interactions of the heme in the enzyme and the triazine molecules in the ligand of the MOF. However, the PQQ-dependent dehydrogenases did not have enough catalytic activity present to be measured electrochemically. Finally, ZIF-90 was synthesized under aqueous conditions in the presence of FAD-dependent glucose dehydrogenase (GDH) which led to size selective sheltering of FAD-GDH. FAD-GDH had activity an order of magnitude larger than any of the alcohol dehydrogenases, which provided sufficient catalytic activity to measure electrochemically. The FAD-GDH bound within ZIF-90 was used to build a full biofuel cell resulting in an open circuit voltage of 708 +/- 16 mV and a maximum power density of 2.75 +/- 0.40 microW/cm2.

  11. Electrochemical Device Comprising an Electrically-Conductive, Selectively-Permeable Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro S. T. (Inventor); Mittelsteadt, Cortney K. (Inventor); Harrison, Katherine E. (Inventor); McPheeters, Bryn M. (Inventor)

    2017-01-01

    An electrochemical device, such as a fuel cell or an electrolyzer. In one embodiment, the electrochemical device includes a membrane electrode assembly (MEA), an anodic gas diffusion medium in contact with the anode of the MEA, a cathodic gas diffusion medium in contact with the cathode, a first bipolar plate in contact with the anodic gas diffusion medium, and a second bipolar plate in contact with the cathodic gas diffusion medium. Each of the bipolar plates includes an electrically-conductive, non-porous, liquid-permeable, substantially gas-impermeable membrane in contact with its respective gas diffusion medium, the membrane including a solid polymer electrolyte and a non-particulate, electrically-conductive material, such as carbon nanotubes, carbon nanofibers, and/or metal nanowires. In addition, each bipolar plate also includes an electrically-conductive fluid chamber in contact with the electrically-conductive, selectively-permeable membrane and further includes a non-porous and electrically-conductive plate in contact with the fluid chamber.

  12. Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagamatsu, Ken A., E-mail: knagamat@princeton.edu; Man, Gabriel; Jhaveri, Janam

    2015-03-23

    In this work, we use an electron-selective titanium dioxide (TiO{sub 2}) heterojunction contact to silicon to block minority carrier holes in the silicon from recombining at the cathode contact of a silicon-based photovoltaic device. We present four pieces of evidence demonstrating the beneficial effect of adding the TiO{sub 2} hole-blocking layer: reduced dark current, increased open circuit voltage (V{sub OC}), increased quantum efficiency at longer wavelengths, and increased stored minority carrier charge under forward bias. The importance of a low rate of recombination of minority carriers at the Si/TiO{sub 2} interface for effective blocking of minority carriers is quantitatively described.more » The anode is made of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) heterojunction to silicon which forms a hole selective contact, so that the entire device is made at a maximum temperature of 100 °C, with no doping gradients or junctions in the silicon. A low rate of recombination of minority carriers at the Si/TiO{sub 2} interface is crucial for effective blocking of minority carriers. Such a pair of complementary carrier-selective heterojunctions offers a path towards high-efficiency silicon solar cells using relatively simple and near-room temperature fabrication techniques.« less

  13. Competitive Stem Cell Recruitment by Multiple Cytotactic Cues

    PubMed Central

    Mendelson, Avital; Cheung, Yukkee; Paluch, Kamila; Chen, Mo; Kong, Kimi; Tan, Jiali; Dong, Ziming; Sia, Samuel K.; Mao, Jeremy J.

    2014-01-01

    A multitude of cytotactic cues direct cell migration in development, cancer metastasis and wound healing. However, our understanding of cell motility remains fragmented partially because current migration devices only allow the study of independent factors. We developed a cell motility assay that allows competitive recruitment of a given cell population simultaneously by gradients of multiple cytotactic cues, observable under real-time imaging. Well-defined uniform gradients of cytotactic cues can be independently generated and sustained in each channel. As a case study, bone marrow mesenchymal stem/stromal cells (MSCs) were exposed to 15 cytokines that are commonly present in arthritis. Cytokines that induced robust recruitment of MSCs in multiple groups were selected to ‘compete’ in a final round to yield the most chemotactic factor(s) based on cell migration numbers, distances, migration indices and motility over time. The potency of a given cytokine in competition frequently differed from its individual action, substantiating the need to test multiple cytokines concurrently due to synergistic or antagonistic effects. This new device has the rare capacity to screen molecules that induce cell migration in cancer therapy, drug development and tissue regeneration. PMID:23364311

  14. A magnetic micropore chip for rapid (<1 hour) unbiased circulating tumor cell isolation and in situ RNA analysis.

    PubMed

    Ko, Jina; Bhagwat, Neha; Yee, Stephanie S; Black, Taylor; Redlinger, Colleen; Romeo, Janae; O'Hara, Mark; Raj, Arjun; Carpenter, Erica L; Stanger, Ben Z; Issadore, David

    2017-09-12

    The use of microtechnology for the highly selective isolation and sensitive detection of circulating tumor cells has shown enormous promise. One challenge for this technology is that the small feature sizes - which are the key to this technology's performance - can result in low sample throughput and susceptibility to clogging. Additionally, conventional molecular analysis of CTCs often requires cells to be taken off-chip for sample preparation and purification before analysis, leading to the loss of rare cells. To address these challenges, we have developed a microchip platform that combines fast, magnetic micropore based negative immunomagnetic selection (>10 mL h -1 ) with rapid on-chip in situ RNA profiling (>100× faster than conventional RNA labeling). This integrated chip can isolate both rare circulating cells and cell clusters directly from whole blood and allow individual cells to be profiled for multiple RNA cancer biomarkers, achieving sample-to-answer in less than 1 hour for 10 mL of whole blood. To demonstrate the power of this approach, we applied our device to the circulating tumor cell based diagnosis of pancreatic cancer. We used a genetically engineered lineage-labeled mouse model of pancreatic cancer (KPCY) to validate the performance of our chip. We show that in a cohort of patient samples (N = 25) that this device can detect and perform in situ RNA analysis on circulating tumor cells in patients with pancreatic cancer, even in those with extremely sparse CTCs (<1 CTC mL -1 of whole blood).

  15. It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis.

    PubMed

    Kegelmann, Lukas; Wolff, Christian M; Awino, Celline; Lang, Felix; Unger, Eva L; Korte, Lars; Dittrich, Thomas; Neher, Dieter; Rech, Bernd; Albrecht, Steve

    2017-05-24

    Solar cells made from inorganic-organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 °C is presented. The inorganic metal oxides TiO 2 and SnO 2 , the organic fullerene derivatives C 60 , PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO 2 , which shows a more prominent influence of defect states. Transient photoluminescence studies together with current-voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO 2 /PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells.

  16. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact

    PubMed Central

    2015-01-01

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm2 and a high power conversion efficiency of 19.2%. PMID:25679010

  17. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO2 Contact.

    PubMed

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; Chen, Kevin; Hettick, Mark; Zheng, Maxwell; Chen, Cheng-Ying; Kiriya, Daisuke; Javey, Ali

    2014-12-17

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (∼10 nm) of amorphous TiO 2 deposited at 120 °C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. A hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency of 19.2%.

  18. Component Selection, Accelerated Testing, and Improved Modeling of AMTEC Systems for Space Power (abstract)

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; Suitor, J.; O'Connor, D.

    1993-01-01

    Alkali metal thermal to electric converter (AMTEC) designs for space power are numerous, but selection of materials for construction of long-lived AMTEC devices has been limited to electrodes, current collectors, and the solid electrolyte. AMTEC devices with lifetimes greater than 5 years require careful selection and life testing of all hot-side components. The likely selection of a remote condensed design for initial flight test and probable use with a GPHS in AMTEC powered outer planet probes requires the device to be constructed to tolerate T greater than 1150K, as well as exposure to Na(sub (g)), and Na(sub (liq)) on the high pressure side. The temperatures involved make critical high strength and chemical resistance to Na containing Na(sub 2)O. Selection among materials which can be worked should not be driven by ease of fabricability, as high temperature stability is the critical issue. These concepts drive the selection of Mo alloys for Na(sub (liq)) containment in AMTEC cells for T to 1150K operation, as they are significantly stronger than comparable NB or Ta alloys, are less soluble in Na(sub (liq)) containing dissolved Na(sub 2)O, are workable compared to W alloys (which might be used for certain components), and are ductile at the T greater than 500K of proposed AMTEC modules in space applications.

  19. Selective contacts drive charge extraction in quantum dot solids via asymmetry in carrier transfer kinetics.

    PubMed

    Mora-Sero, Ivan; Bertoluzzi, Luca; Gonzalez-Pedro, Victoria; Gimenez, Sixto; Fabregat-Santiago, Francisco; Kemp, Kyle W; Sargent, Edward H; Bisquert, Juan

    2013-01-01

    Colloidal quantum dot solar cells achieve spectrally selective optical absorption in a thin layer of solution-processed, size-effect tuned, nanoparticles. The best devices built to date have relied heavily on drift-based transport due to the action of an electric field in a depletion region that extends throughout the thickness of the quantum dot layer. Here we study for the first time the behaviour of the best-performing class of colloidal quantum dot films in the absence of an electric field, by screening using an electrolyte. We find that the action of selective contacts on photovoltage sign and amplitude can be retained, implying that the contacts operate by kinetic preferences of charge transfer for either electrons or holes. We develop a theoretical model to explain these experimental findings. The work is the first to present a switch in the photovoltage in colloidal quantum dot solar cells by purposefully formed selective contacts, opening the way to new strategies in the engineering of colloidal quantum dot solar cells.

  20. Carbon Nanotube Based Devices for Intracellular Analysis

    NASA Astrophysics Data System (ADS)

    Singhal, Riju Mohan

    Scientific investigations on individual cells have gained increasing attention in recent years as efforts are being made to understand cellular functioning in complex processes, such as cell division during embryonic development, and owing to realization of heterogeneity amongst a population of a single cell type (for instance, certain individual cancer cells being immune to chemotherapy). Therefore devices enabling electrochemical detection, spectroscopy, optical observations, and separation techniques, along with cell piercing and fluid transfer capabilities at the intra-cellular level, are required. Glass pipettes have conventionally been used for single cell interrogation, however their poor mechanical properties and an intrusive conical geometry have led to limited precision and frequent cell damage or death, justifying research efforts to develop novel, non-intrusive cell probes. Carbon nanotubes (CNTs) are known for their superior physical properties and tunable chemical structure. They possess a high aspect ratio and offer minimally invasive thin carbon walls and tubular geometry. Moreover, possibility of chemical functionalization of CNTs enables multi-functional probes. In this dissertation, novel nanofluidic instruments that have nanostructured carbon tips will be presented along with techniques that utilize the exceptional physical properties of carbon nanotubes, to take miniature biomedical instrumentation to the next level. New methods for fabricating the probes were rigorously developed and their operation was extensively studied. The devices were mechanically robust and were used to inject liquids to a single cell, detect electrochemical signals and enable surface enhanced Raman spectroscopy (SERS) while inducing minimal harm to the cell. Particular attention was focused on the CVD process-which was used to deposit carbon, fluid flow through the nanotubes, and separation of chemical species (atto-liter chromatography) at the nanometer scale that would potentially lead to the highly sought after "selective component extraction" and analysis from a single cell. These multi-functional devices therefore provide a picture of the physiological state of a living cell and function as endoscopes for single cell analysis.

  1. Enhanced size-dependent trapping of particles using microvortices

    PubMed Central

    Zhou, Jian; Kasper, Susan; Papautsky, Ian

    2013-01-01

    Inertial microfluidics has been attracting considerable interest for size-based separation of particles and cells. The inertial forces can be manipulated by expanding the microchannel geometry, leading to formation of microvortices which selectively isolate and trap particles or cells from a mixture. In this work, we aim to enhance our understanding of particle trapping in such microvortices by developing a model of selective particle trapping. Design and operational parameters including flow conditions, size of the trapping region, and target particle concentration are explored to elucidate their influence on trapping behavior. Our results show that the size dependence of trapping is characterized by a threshold Reynolds number, which governs the selective entry of particles into microvortices from the main flow. We show that concentration enhancement on the order of 100,000× and isolation of targets at concentrations in the 1/mL is possible. Ultimately, the insights gained from our systematic investigation suggest optimization solutions that enhance device performance (efficiency, size selectivity, and yield) and are applicable to selective isolation and trapping of large rare cells as well as other applications. PMID:24187531

  2. Clinical grade isolation of regulatory T cells from G-CSF mobilized peripheral blood improves with initial depletion of monocytes

    PubMed Central

    Patel, Pritesh; Mahmud, Dolores; Park, Youngmin; Yoshinaga, Kazumi; Mahmud, Nadim; Rondelli, Damiano

    2015-01-01

    Clinical isolation of circulating CD4+CD25+ regulatory T cells (Tregs) from peripheral blood mononuclear cells is usually performed by CD4+ cell negative selection followed by CD25+ cell positive selection. Although G-CSF mobilized peripheral blood (G-PBSC) contains a high number of Tregs, a high number of monocytes in G-PBSC limits Treg isolation. Using a small scale device (MidiMACS, Miltenyi) we initially demonstrated that an initial depletion of monocytes would be necessary to obtaina separation of CD4+CD25+FoxP3+CD127- cells from G-PBSC (G-Tregs) with a consistent purity >70% and inhibitory activity of T cell alloreactivity in-vitro. We then validated the same approach in a clinical scale setting by separating G-Tregs with clinically available antibodies to perform a CD8+CD19+CD14+ cell depletion followed by CD25+ cell selection (2-step process) or by adding an initial CD14+ cell depletion (3-step process) using a CliniMACS column. The 3-step approach resulted in a better purity (81±12% vs. 35±33%) and yield (66% vs. 39%). Clinically isolated G-Tregs were also FoxP3+CD127dim and functionally suppressive in-vitro. Our findings suggest that a better and more consistent purity of Tregs can be achieved from G-PBSC by an initial single depletion of monocytes prior to selection of CD4+CD25+ cells. PMID:27069755

  3. Correlative fluorescence and electron microscopy of quantum dot labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Dukes, Madeline J; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy and scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot (QD) nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, the microchip with the labeled cells and one with a spacer are assembled in a special microfluidic device and imaged with STEM.

  4. Fiber-Optic SPR Immunosensors Tailored To Target Epithelial Cells through Membrane Receptors.

    PubMed

    Malachovská, Viera; Ribaut, Clotilde; Voisin, Valérie; Surin, Mathieu; Leclère, Philippe; Wattiez, Ruddy; Caucheteur, Christophe

    2015-06-16

    We report, for the first time, the use of a surface plasmon resonance (SPR) fiber-optic immunosensor for selective cellular detection through membrane protein targeting. The sensor architecture lies on gold-coated tilted fiber Bragg gratings (Au-coated TFBGs) photoimprinted in the fiber core via a laser technique. TFBGs operate in the near-infrared wavelength range at ∼1550 nm, yielding optical and SPR sensing characteristics that are advantageous for the analyses of cellular bindings and technical compatibility with relatively low-cost telecommunication-grade measurement devices. In this work, we take consider their numerous assets to figure out their ability to selectively detect intact epithelial cells as analytes in cell suspensions in the range of 2-5 × 10(6) cells mL(-1). For this, the probe was first thermally annealed to ensure a strong adhesion of the metallic coating to the fiber surface. Its surface was then functionalized with specific monoclonal antibodies via alkanethiol self-assembled monolayers (SAMs) against extracellular domain of epidermal growth factor receptors (EGFRs) and characterized by peak force tapping atomic force microscopy. A differential diagnosis has been demonstrated between two model systems. The developed immunosensors were able to monitor, in real time, the specific attachment of single intact cells in concentrations from 3 × 10(6) cells mL(-1). Such results confirm that the developed probe fits the lab-on-fiber technology and has the potential to be used as a disposable device for in situ and real-time clinical diagnosis.

  5. Quality Control Method for a Micro-Nano-Channel Microfabricated Device

    NASA Technical Reports Server (NTRS)

    Grattoni, Alessandro; Ferrari, Mauro; Li, Xuewu

    2012-01-01

    A variety of silicon-fabricated devices is used in medical applications such as drug and cell delivery, and DNA and protein separation and analysis. When a fluidic device inlet is connected to a compressed gas reservoir, and the outlet is at a lower pressure, a gas flow occurs through the membrane toward the outside. The method relies on the measurement of the gas pressure over the elapsed time inside the upstream and downstream environments. By knowing the volume of the upstream reservoir, the gas flow rate through the membrane over the pressure drop can be calculated. This quality control method consists of measuring the gas flow through a device and comparing the results with a standard curve, which can be obtained by testing standard devices. Standard devices can be selected through a variety of techniques, both destructive and nondestructive, such as SEM, AFM, and standard particle filtration.

  6. Spatial control of chemical processes on nanostructures through nano-localized water heating.

    PubMed

    Jack, Calum; Karimullah, Affar S; Tullius, Ryan; Khorashad, Larousse Khosravi; Rodier, Marion; Fitzpatrick, Brian; Barron, Laurence D; Gadegaard, Nikolaj; Lapthorn, Adrian J; Rotello, Vincent M; Cooke, Graeme; Govorov, Alexander O; Kadodwala, Malcolm

    2016-03-10

    Optimal performance of nanophotonic devices, including sensors and solar cells, requires maximizing the interaction between light and matter. This efficiency is optimized when active moieties are localized in areas where electromagnetic (EM) fields are confined. Confinement of matter in these 'hotspots' has previously been accomplished through inefficient 'top-down' methods. Here we report a rapid 'bottom-up' approach to functionalize selective regions of plasmonic nanostructures that uses nano-localized heating of the surrounding water induced by pulsed laser irradiation. This localized heating is exploited in a chemical protection/deprotection strategy to allow selective regions of a nanostructure to be chemically modified. As an exemplar, we use the strategy to enhance the biosensing capabilities of a chiral plasmonic substrate. This novel spatially selective functionalization strategy provides new opportunities for efficient high-throughput control of chemistry on the nanoscale over macroscopic areas for device fabrication.

  7. Design of Low Inductance Switching Power Cell for GaN HEMT Based Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurpinar, Emre; Iannuzzo, Francesco; Yang, Yongheng

    Here in this paper, an ultra-low inductance power cell is designed for a three-Level Active Neutral Point Clamped (3LANPC) based on 650 V gallium nitride (GaN) HEMT devices. The 3L-ANPC topology with GaN HEMT devices and the selected modulation scheme suitable for wide-bandgap (WBG) devices are presented. The commutation loops, which mainly contribute to voltage overshoots and increase of switching losses, are discussed. The ultra-low inductance power cell design based on a fourlayer Printed Circuit Board (PCB) with the aim to maximize the switching performance of GaN HEMTs is explained. The design of gate drivers for the GaN HEMT devicesmore » is presented. Parasitic inductance and resistance of the proposed design are extracted with finite element analysis and discussed. Common mode behaviours based on the SPICE model of the converter are analyzed. Experimental results on the designed 3L-ANPC with the output power of up to 1 kW are presented, which verifies the performance of the proposed design in terms of ultra-low inductance.« less

  8. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment

    NASA Astrophysics Data System (ADS)

    Noori, Keian; Konios, Dimitrios; Stylianakis, Minas M.; Kymakis, Emmanuel; Giustino, Feliciano

    2016-03-01

    Functionalized graphene promises to become a key component of novel solar cell architectures, owing to its versatile ability to act either as transparent conductor, electron acceptor, or buffer layer. In spite of this promise, the solar energy conversion efficiency of graphene-based devices falls short of the performance of competing solution-processable photovoltaic technologies. Here we address the question of the maximum achievable open-circuit voltage of all-organic graphene: polymer solar cells using a combined theoretical/experimental approach, going from the atomic scale level to the device level. Our calculations on very large atomistic models of the graphene/polymer interface indicate that the ideal open-circuit voltage approaches one volt, and that epoxide functional groups can have a dramatic effect on the photovoltage. Our predictions are confirmed by direct measurements on complete devices where we control the concentration of functional groups via chemical reduction. Our findings indicate that the selective removal of epoxide groups and the use of ultradisperse polymers are key to achieving graphene solar cells with improved energy conversion efficiency.

  9. Direct writing of bio-functional coatings for cardiovascular applications.

    PubMed

    Perkins, Jessica; Hong, Yi; Ye, Sang-Ho; Wagner, William R; Desai, Salil

    2014-12-01

    The surface modification of metallic biomaterials is of critical importance to enhance the biocompatibility of surgical implant materials and devices. This article investigates the use of a direct-write inkjet technique for multilayer coatings of a biodegradable polymer (polyester urethane urea (PEUU)) embedded with an anti-proliferation drug paclitaxel (Taxol). The direct-write inkjet technique provides selective patterning capability for depositing multimaterial coatings on three-dimensional implant devices such as pins, screws, and stents for orthopedic and vascular applications. Drug release profiles were studied to observe the influence of drug loading and coating thickness for obtaining tunable release kinetics. Platelet deposition studies were conducted following ovine blood contact and significant reduction in platelet deposition was observed on the Taxol loaded PEUU substrate compared with the unloaded control. Rat smooth muscle cells were used for cell proliferation studies. Significant reduction in cell growth was observed following the release of anti-proliferative drug from the biopolymer thin film. This research provides a basis for developing anti-proliferative biocompatible coatings for different biomedical device applications. © 2014 Wiley Periodicals, Inc.

  10. Sorting on the basis of deformability of single cells in a femtosecond laser fabricated optofluidic device

    NASA Astrophysics Data System (ADS)

    Bragheri, F.; Paiè, P.; Yang, T.; Nava, G.; Martınez Vázquez, R.; Di Tano, M.; Veglione, M.; Minzioni, P.; Mondello, C.; Cristiani, I.; Osellame, R.

    2015-03-01

    Optical stretching is a powerful technique for the mechanical phenotyping of single suspended cells that exploits cell deformability as an inherent functional marker. Dual-beam optical trapping and stretching of cells is a recognized tool to investigate their viscoelastic properties. The optical stretcher has the ability to deform cells through optical forces without physical contact or bead attachment. In addition, it is the only method that can be combined with microfluidic delivery, allowing for the serial, high-throughput measurement of the optical deformability and the selective sorting of single specific cells. Femtosecond laser micromachining can fabricate in the same chip both the microfluidic channel and the optical waveguides, producing a monolithic device with a very precise alignment between the components and very low sensitivity to external perturbations. Femtosecond laser irradiation in a fused silica chip followed by chemical etching in hydrofluoric acid has been used to fabricate the microfluidic channels where the cells move by pressure-driven flow. With the same femtosecond laser source two optical waveguides, orthogonal to the microfluidic channel and opposing each other, have been written inside the chip. Here we present an optimized writing process that provides improved wall roughness of the micro-channels allowing high-quality imaging. In addition, we will show results on cell sorting on the basis of mechanical properties in the same device: the different deformability exhibited by metastatic and tumorigenic cells has been exploited to obtain a metastasis-cells enriched sample. The enrichment is verified by exploiting, after cells collection, fluorescence microscopy.

  11. Giant Electroresistance in Edge Metal-Insulator-Metal Tunnel Junctions Induced by Ferroelectric Fringe Fields

    PubMed Central

    Jung, Sungchul; Jeon, Youngeun; Jin, Hanbyul; Lee, Jung-Yong; Ko, Jae-Hyeon; Kim, Nam; Eom, Daejin; Park, Kibog

    2016-01-01

    An enormous amount of research activities has been devoted to developing new types of non-volatile memory devices as the potential replacements of current flash memory devices. Theoretical device modeling was performed to demonstrate that a huge change of tunnel resistance in an Edge Metal-Insulator-Metal (EMIM) junction of metal crossbar structure can be induced by the modulation of electric fringe field, associated with the polarization reversal of an underlying ferroelectric layer. It is demonstrated that single three-terminal EMIM/Ferroelectric structure could form an active memory cell without any additional selection devices. This new structure can open up a way of fabricating all-thin-film-based, high-density, high-speed, and low-power non-volatile memory devices that are stackable to realize 3D memory architecture. PMID:27476475

  12. Magnetizable stent-grafts enable endothelial cell capture

    NASA Astrophysics Data System (ADS)

    Tefft, Brandon J.; Uthamaraj, Susheil; Harburn, J. Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S.

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  13. Magnetizable stent-grafts enable endothelial cell capture.

    PubMed

    Tefft, Brandon J; Uthamaraj, Susheil; Harburn, J Jonathan; Hlinomaz, Ota; Lerman, Amir; Dragomir-Daescu, Dan; Sandhu, Gurpreet S

    2017-04-01

    Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coated these stents with electrospun polyurethane nanofibers to fabricate prototype stent-grafts. Facilitated endothelialization may help improve the healing of arteries treated with stent-grafts, reduce the risk of thrombosis and restenosis, and enable small-caliber applications. When placed in a SPION-labeled endothelial cell suspension in the presence of an external magnetic field, magnetized stent-grafts successfully captured cells to the surface regions adjacent to the stent struts. Implantation within the coronary circulation of pigs (n=13) followed immediately by SPION-labeled autologous endothelial cell delivery resulted in widely patent devices with a thin, uniform neointima and no signs of thrombosis or inflammation at 7 days. Furthermore, the magnetized stent-grafts successfully captured and retained SPION-labeled endothelial cells to select regions adjacent to stent struts and between stent struts, whereas the non-magnetized control stent-grafts did not. Early results with these prototype devices are encouraging and further refinements will be necessary in order to achieve more uniform cell capture and complete endothelialization. Once optimized, this approach may lead to more rapid and complete healing of vascular stent-grafts with a concomitant improvement in long-term device performance.

  14. Design Course for Micropower Generation Devices

    ERIC Educational Resources Information Center

    Mitsos, Alexander

    2009-01-01

    A project-based design course is developed for man-portable power generation via microfabricated fuel cell systems. Targeted audience are undergraduate chemical/process engineering students in their final year. The course covers 6 weeks, with three hours of lectures per week. Two alternative projects are developed, one focusing on selection of…

  15. Materials, device, and interface engineering to improve polymer-based solar cells

    NASA Astrophysics Data System (ADS)

    Hau, Steven Kin

    The continued depletion of fossil fuel resources has lead to the rise in energy production costs which has lead to the search for an economically viable alternative energy source. One alternative of particular interest is solar energy. A promising alternative to inorganic materials is organic semiconductor polymer solar cells due to their advantages of being cheaper, light weight, flexible and made into large areas by roll-to-roll processing. In this dissertation, an integrated approach is taken to improve the overall performance of polymer-based solar cells by the development of new polymer materials, device architectures, and interface engineering of the contacts between layers. First, a new class of metallated conjugated polymers is explored as potential solar cell materials. Systematic modifications to the molecular units on the main chain of amorphous metallated Pt-polymers show a correlation that improving charge carrier mobility also improves solar cell performance leading to mobilities as high as 1 x 10-2 cm2/V·s and efficiencies as high as 4.1%. Second, an inverted device architecture using a more air stable electrode (Ag) is demonstrated to improve the ambient stability of unencapsulated P3HT:PCBM devices showing over 80% efficiency retention after 40 days of exposure. To further demonstrate the potential for roll-to-roll processing of polymer solar cells, solution processed Ag-nanoparticles were used to replace the vacuum deposited Ag anode electrode for inverted solar cells showing efficiencies as high as 3%. In addition, solution processed polymer based electrodes were demonstrated as a replacement to the expensive and brittle indium tin oxide showing efficiencies of 3% on flexible substrate solar cells. Third, interface engineering of the n-type (high temperature sol-gel processed TiO2 or ZnO, low temperature processed ZnO nanoparticles) electron selective metal oxide contacts in inverted solar cells with self-assembled monolayers (SAM) show improved device performance. Modifying the n-type layer in inverted cells with C60-SAMs containing different anchoring groups leads to an improvement in photocurrent density and fill factor leading to efficiencies as high as 4.9%.

  16. A single-cell scraper based on an atomic force microscope for detaching a living cell from a substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Futoshi, E-mail: iwata.futoshi@shizuoka.ac.jp; Research Institute of Electronics, Shizuoka University, Johoku, Naka-ku, Hamamatsu 432-8011; Adachi, Makoto

    We describe an atomic force microscope (AFM) manipulator that can detach a single, living adhesion cell from its substrate without compromising the cell's viability. The micrometer-scale cell scraper designed for this purpose was fabricated from an AFM micro cantilever using focused ion beam milling. The homemade AFM equipped with the scraper was compact and standalone and could be mounted on a sample stage of an inverted optical microscope. It was possible to move the scraper using selectable modes of operation, either a manual mode with a haptic device or a computer-controlled mode. The viability of the scraped single cells wasmore » evaluated using a fluorescence dye of calcein-acetoxymethl ester. Single cells detached from the substrate were collected by aspiration into a micropipette capillary glass using an electro-osmotic pump. As a demonstration, single HeLa cells were selectively detached from the substrate and collected by the micropipette. It was possible to recultivate HeLa cells from the single cells collected using the system.« less

  17. 19.2% Efficient InP Heterojunction Solar Cell with Electron-Selective TiO 2 Contact

    DOE PAGES

    Yin, Xingtian; Battaglia, Corsin; Lin, Yongjing; ...

    2014-09-25

    We demonstrate an InP heterojunction solar cell employing an ultrathin layer (~10 nm) of amorphous TiO 2 deposited at 120°C by atomic layer deposition as the transparent electron-selective contact. The TiO 2 film selectively extracts minority electrons from the conduction band of p-type InP while blocking the majority holes due to the large valence band offset, enabling a high maximum open-circuit voltage of 785 mV. Lastly, a hydrogen plasma treatment of the InP surface drastically improves the long-wavelength response of the device, resulting in a high short-circuit current density of 30.5 mA/cm 2 and a high power conversion efficiency ofmore » 19.2%.« less

  18. Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models.

    PubMed

    van Midwoud, Paul M; Janse, Arnout; Merema, Marjolijn T; Groothuis, Geny M M; Verpoorte, Elisabeth

    2012-05-01

    Microfluidic technology is providing new routes toward advanced cell and tissue culture models to better understand human biology and disease. Many advanced devices have been made from poly(dimethylsiloxane) (PDMS) to enable experiments, for example, to study drug metabolism by use of precision-cut liver slices, that are not possible with conventional systems. However, PDMS, a silicone rubber material, is very hydrophobic and tends to exhibit significant adsorption and absorption of hydrophobic drugs and their metabolites. Although glass could be used as an alternative, thermoplastics are better from a cost and fabrication perspective. Thermoplastic polymers (plastics) allow easy surface treatment and are generally transparent and biocompatible. This study focuses on the fabrication of biocompatible microfluidic devices with low adsorption properties from the thermoplastics poly(methyl methacrylate) (PMMA), polystyrene (PS), polycarbonate (PC), and cyclic olefin copolymer (COC) as alternatives for PDMS devices. Thermoplastic surfaces were oxidized using UV-generated ozone or oxygen plasma to reduce adsorption of hydrophobic compounds. Surface hydrophilicity was assessed over 4 weeks by measuring the contact angle of water on the surface. The adsorption of 7-ethoxycoumarin, testosterone, and their metabolites was also determined after UV-ozone treatment. Biocompatibility was assessed by culturing human hepatoma (HepG2) cells on treated surfaces. Comparison of the adsorption properties and biocompatibility of devices in different plastics revealed that only UV-ozone-treated PC and COC devices satisfied both criteria. This paper lays an important foundation that will help researchers make informed decisions with respect to the materials they select for microfluidic cell-based culture experiments.

  19. Selective layer disordering in III-nitrides with a capping layer

    DOEpatents

    Wierer, Jr., Jonathan J.; Allerman, Andrew A.

    2016-06-14

    Selective layer disordering in a doped III-nitride superlattice can be achieved by depositing a dielectric capping layer on a portion of the surface of the superlattice and annealing the superlattice to induce disorder of the layer interfaces under the uncapped portion and suppress disorder of the interfaces under the capped portion. The method can be used to create devices, such as optical waveguides, light-emitting diodes, photodetectors, solar cells, modulators, laser, and amplifiers.

  20. Dynamic Optical Filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  1. Dynamic optical filtration

    NASA Technical Reports Server (NTRS)

    Chretien, Jean-Loup (Inventor); Lu, Edward T. (Inventor)

    2005-01-01

    A dynamic optical filtration system and method effectively blocks bright light sources without impairing view of the remainder of the scene. A sensor measures light intensity and position so that selected cells of a shading matrix may interrupt the view of the bright light source by a receptor. A beamsplitter may be used so that the sensor may be located away from the receptor. The shading matrix may also be replaced by a digital micromirror device, which selectively sends image data to the receptor.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriello, Nicholas M.; Douglas, Erik S.; Mathies, Richard A.

    A microchip that performs directed capture and chemical activation of surface-modified single-cells has been developed. The cell-capture system is comprised of interdigitated gold electrodes microfabricated on a glass substrate within PDMS channels. The cell surface is labeled with thiol functional groups using endogenous RGD receptors and adhesion to exposed gold pads on the electrodes is directed by applying a driving electric potential. Multiple cell types can thus be sequentially and selectively captured on desired electrodes. Single-cell capture efficiency is optimized by varying the duration of field application. Maximum single-cell capture is attained for the 10 min trial, with 63+-9 percentmore » (n=30) of the electrode pad rows having a single cell. In activation studies, single M1WT3 CHO cells loaded with the calcium-sensitive dye fluo-4 AM were captured; exposure to the muscarinic agonist carbachol increased the fluorescence to 220+-74percent (n=79) of the original intensity. These results demonstrate the ability to direct the adhesion of selected living single cells on electrodes in a microfluidic device and to analyze their response to chemical stimuli.« less

  3. Electrically switchable polymer liquid crystal and polymer birefringent flake in fluid host systems and optical devices utilizing same

    DOEpatents

    Marshall, Kenneth L.; Kosc, Tanya Z.; Jacobs, Stephen D.; Faris, Sadeg M.; Li, Le

    2003-12-16

    Flakes or platelets of polymer liquid crystals (PLC) or other birefringent polymers (BP) suspended in a fluid host medium constitute a system that can function as the active element in an electrically switchable optical device when the suspension is either contained between a pair of rigid substrates bearing transparent conductive coatings or dispersed as microcapsules within the body of a flexible host polymer. Optical properties of these flake materials include large effective optical path length, different polarization states and high angular sensitivity in their selective reflection or birefringence. The flakes or platelets of these devices need only a 3-20.degree. rotation about the normal to the cell surface to achieve switching characteristics obtainable with prior devices using particle rotation or translation.

  4. Single-cell trapping and selective treatment via co-flow within a microfluidic platform.

    PubMed

    Benavente-Babace, A; Gallego-Pérez, D; Hansford, D J; Arana, S; Pérez-Lorenzo, E; Mujika, M

    2014-11-15

    Lab on a chip (LOC) systems provide interesting and low-cost solutions for key studies and applications in the biomedical field. Along with microfluidics, these microdevices make single-cell manipulation possible with high spatial and temporal resolution. In this work we have designed, fabricated and characterized a versatile and inexpensive microfluidic platform for on-chip selective single-cell trapping and treatment using laminar co-flow. The combination of co-existing laminar flow manipulation and hydrodynamic single-cell trapping for selective treatment offers a cost-effective solution for studying the effect of novel drugs on single-cells. The operation of the whole system is experimentally simple, highly adaptable and requires no specific equipment. As a proof of concept, a cytotoxicity study of ethanol in isolated hepatocytes is presented. The developed microfluidic platform controlled by means of co-flow is an attractive and multipurpose solution for the study of new substances of high interest in cell biology research. In addition, this platform will pave the way for the study of cell behavior under dynamic and controllable fluidic conditions providing information at the individual cell level. Thus, this analysis device could also hold a great potential to easily use the trapped cells as sensing elements expanding its functionalities as a cell-based biosensor with single-cell resolution. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Contact Selectivity Engineering in a 2 μm Thick Ultrathin c-Si Solar Cell Using Transition-Metal Oxides Achieving an Efficiency of 10.8.

    PubMed

    Xue, Muyu; Islam, Raisul; Meng, Andrew C; Lyu, Zheng; Lu, Ching-Ying; Tae, Christian; Braun, Michael R; Zang, Kai; McIntyre, Paul C; Kamins, Theodore I; Saraswat, Krishna C; Harris, James S

    2017-12-06

    In this paper, the integration of metal oxides as carrier-selective contacts for ultrathin crystalline silicon (c-Si) solar cells is demonstrated which results in an ∼13% relative improvement in efficiency. The improvement in efficiency originates from the suppression of the contact recombination current due to the band offset asymmetry of these oxides with Si. First, an ultrathin c-Si solar cell having a total thickness of 2 μm is shown to have >10% efficiency without any light-trapping scheme. This is achieved by the integration of nickel oxide (NiO x ) as a hole-selective contact interlayer material, which has a low valence band offset and high conduction band offset with Si. Second, we show a champion cell efficiency of 10.8% with the additional integration of titanium oxide (TiO x ), a well-known material for an electron-selective contact interlayer. Key parameters including V oc and J sc also show different degrees of enhancement if single (NiO x only) or double (both NiO x and TiO x ) carrier-selective contacts are integrated. The fabrication process for TiO x and NiO x layer integration is scalable and shows good compatibility with the device.

  6. Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem.

    PubMed

    Zhao, Qiang; Wang, Hanlin; Ni, Zhenjie; Liu, Jie; Zhen, Yonggang; Zhang, Xiaotao; Jiang, Lang; Li, Rongjin; Dong, Huanli; Hu, Wenping

    2017-09-01

    Organic electronics based on poly(vinylidenefluoride/trifluoroethylene) (P(VDF-TrFE)) dielectric is facing great challenges in flexible circuits. As one indispensable part of integrated circuits, there is an urgent demand for low-cost and easy-fabrication nonvolatile memory devices. A breakthrough is made on a novel ferroelectric random access memory cell (1T1T FeRAM cell) consisting of one selection transistor and one ferroelectric memory transistor in order to overcome the half-selection problem. Unlike complicated manufacturing using multiple dielectrics, this system simplifies 1T1T FeRAM cell fabrication using one common dielectric. To achieve this goal, a strategy for semiconductor/insulator (S/I) interface modulation is put forward and applied to nonhysteretic selection transistors with high performances for driving or addressing purposes. As a result, high hole mobility of 3.81 cm 2 V -1 s -1 (average) for 2,6-diphenylanthracene (DPA) and electron mobility of 0.124 cm 2 V -1 s -1 (average) for N,N'-1H,1H-perfluorobutyl dicyanoperylenecarboxydiimide (PDI-FCN 2 ) are obtained in selection transistors. In this work, we demonstrate this technology's potential for organic ferroelectric-based pixelated memory module fabrication. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanostructured Electron-Selective Interlayer for Efficient Inverted Organic Solar Cells.

    PubMed

    Song, Jiyun; Lim, Jaehoon; Lee, Donggu; Thambidurai, M; Kim, Jun Young; Park, Myeongjin; Song, Hyung-Jun; Lee, Seonghoon; Char, Kookheon; Lee, Changhee

    2015-08-26

    We report a unique nanostructured electron-selective interlayer comprising of In-doped ZnO (ZnO:In) and vertically aligned CdSe tetrapods (TPs) for inverted polymer:fullerene bulkheterojunction (BHJ) solar cells. With dimension-controlled CdSe TPs, the direct inorganic electron transport pathway is provided, resulting in the improvement of the short circuit current and fill factor of devices. We demonstrate that the enhancement is attributed to the roles of CdSe TPs that reduce the recombination losses between the active layer and buffer layer, improve the hole-blocking as well as electron-transporting properties, and simultaneously improve charge collection characteristics. As a result, the power conversion efficiency of PTB7:PC70BM based solar cell with nanostructured CdSe TPs increases to 7.55%. We expect this approach can be extended to a general platform for improving charge extraction in organic solar cells.

  8. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  9. Electrochemical device for converting carbon dioxide to a reaction product

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masel, Richard I.; Chen, Qingmei; Liu, Zengcai

    An electrochemical device converts carbon dioxide to a reaction product. The device includes an anode and a cathode, each comprising a quantity of catalyst. The anode and cathode each has reactant introduced thereto. A polymer electrolyte membrane is interposed between the anode and the cathode. At least a portion of the cathode catalyst is directly exposed to gaseous carbon dioxide during electrolysis. The average current density at the membrane is at least 20 mA/cm.sup.2, measured as the area of the cathode gas diffusion layer that is covered by catalyst, and CO selectivity is at least 50% at a cell potentialmore » of 3.0 V. In some embodiments, the polymer electrolyte membrane comprises a polymer in which a constituent monomer is (p-vinylbenzyl)-R, where R is selected from the group consisting of imidazoliums, pyridiniums and phosphoniums. In some embodiments, the polymer electrolyte membrane is a Helper Membrane comprising a polymer containing an imidazolium ligand, a pyridinium ligand, or a phosphonium ligand.« less

  10. A novel device to stretch multiple tissue samples with variable patterns: application for mRNA regulation in tissue-engineered constructs.

    PubMed

    Imsirovic, Jasmin; Derricks, Kelsey; Buczek-Thomas, Jo Ann; Rich, Celeste B; Nugent, Matthew A; Suki, Béla

    2013-01-01

    A broad range of cells are subjected to irregular time varying mechanical stimuli within the body, particularly in the respiratory and circulatory systems. Mechanical stretch is an important factor in determining cell function; however, the effects of variable stretch remain unexplored. In order to investigate the effects of variable stretch, we designed, built and tested a uniaxial stretching device that can stretch three-dimensional tissue constructs while varying the strain amplitude from cycle to cycle. The device is the first to apply variable stretching signals to cells in tissues or three dimensional tissue constructs. Following device validation, we applied 20% uniaxial strain to Gelfoam samples seeded with neonatal rat lung fibroblasts with different levels of variability (0%, 25%, 50% and 75%). RT-PCR was then performed to measure the effects of variable stretch on key molecules involved in cell-matrix interactions including: collagen 1α, lysyl oxidase, α-actin, β1 integrin, β3 integrin, syndecan-4, and vascular endothelial growth factor-A. Adding variability to the stretching signal upregulated, downregulated or had no effect on mRNA production depending on the molecule and the amount of variability. In particular, syndecan-4 showed a statistically significant peak at 25% variability, suggesting that an optimal variability of strain may exist for production of this molecule. We conclude that cycle-by-cycle variability in strain influences the expression of molecules related to cell-matrix interactions and hence may be used to selectively tune the composition of tissue constructs.

  11. Ultrathin Polymer Membranes with Patterned, Micrometric Pores for Organs-on-Chips.

    PubMed

    Pensabene, Virginia; Costa, Lino; Terekhov, Alexander Y; Gnecco, Juan S; Wikswo, John P; Hofmeister, William H

    2016-08-31

    The basal lamina or basement membrane (BM) is a key physiological system that participates in physicochemical signaling between tissue types. Its formation and function are essential in tissue maintenance, growth, angiogenesis, disease progression, and immunology. In vitro models of the BM (e.g., Boyden and transwell chambers) are common in cell biology and lab-on-a-chip devices where cells require apical and basolateral polarization. Extravasation, intravasation, membrane transport of chemokines, cytokines, chemotaxis of cells, and other key functions are routinely studied in these models. The goal of the present study was to integrate a semipermeable ultrathin polymer membrane with precisely positioned pores of 2 μm diameter in a microfluidic device with apical and basolateral chambers. We selected poly(l-lactic acid) (PLLA), a transparent biocompatible polymer, to prepare the semipermeable ultrathin membranes. The pores were generated by pattern transfer using a three-step method coupling femtosecond laser machining, polymer replication, and spin coating. Each step of the fabrication process was characterized by scanning electron microscopy to investigate reliability of the process and fidelity of pattern transfer. In order to evaluate the compatibility of the fabrication method with organs-on-a-chip technology, porous PLLA membranes were embedded in polydimethylsiloxane (PDMS) microfluidic devices and used to grow human umbilical vein endothelial cells (HUVECS) on top of the membrane with perfusion through the basolateral chamber. Viability of cells, optical transparency of membranes and strong adhesion of PLLA to PDMS were observed, thus confirming the suitability of the prepared membranes for use in organs-on-a-chip devices.

  12. Enhanced cell killing and apoptosis of oral squamous cell carcinoma cells with ultrasound in combination with cetuximab coated albumin microbubbles.

    PubMed

    Narihira, Kyoichi; Watanabe, Akiko; Sheng, Hong; Endo, Hitomi; Feril, Loreto B; Irie, Yutaka; Ogawa, Koichi; Moosavi-Nejad, Seyedeh; Kondo, Seiji; Kikuta, Toshihiro; Tachibana, Katsuro

    2018-03-01

    Targeted microbubbles have the potential to be used for ultrasound (US) therapy and diagnosis of various cancers. In the present study, US was irradiated to oral squamous cell carcinoma cells (HSC-2) in the presence of cetuximab-coated albumin microbubbles (CCAM). Cell killing rate with US treatment at 0.9 W/cm 2 and 1.0 W/cm 2 in the presence of CCAM was greater compared to non-targeted albumin microbubbles (p < .05). On the other hand, selective cell killing was not observed in human myelomonocytic lymphoma cell line (U937) that had no affinity to cetuximab. Furthermore, US irradiation in the presence of CCAM showed a fivefold increase of cell apoptotic rate for HSC-2 cells (21.0 ± 3.8%) as compared to U937 cells (4.0 ± 0.8%). Time-signal intensity curve in a tissue phantom demonstrated clear visualisation of CCAM with conventional US imaging device. Our experiment verifies the hypothesis that CCAM was selective to HSC-2 cells and may be applied as a novel therapeutic/diagnostic microbubble for oral squamous cell carcinoma.

  13. Young Children's Learning with Digital Media

    ERIC Educational Resources Information Center

    Lieberman, Debra A.; Bates, Cynthia H.; So, Jiyeon

    2009-01-01

    This article reviews a selection of studies on digital media and learning for young children ages 3 to 6. The range of digital media for this age group is growing and includes computer-delivered and online activities; console video games; handheld media, occasionally with GPS or an accelerometer, in cell phones and other wireless mobile devices;…

  14. Ground-Based Phase of Spaceflight Experiment "Biosignal" Using Autonomic Microflurimeter "Fluor-K"

    NASA Astrophysics Data System (ADS)

    Grigorieva, O. V.; Gal'chuk, S. V.; Rudimov, E. G.; Buravkova, L. B.

    2013-02-01

    The majority of flight experiments with the use of cell cultures and equipment like KUBIK and CRIOGEM carried out on board of the satellites (Bion, Foton) and ISS only allows the after-flight biosamples to be analyzed. As far as with few exceptions, the real-time cellular parameters registration for a long period is hard to be implemented. We developed the "Fluor-K" equipment - precision, small-sized, autonomous, two-channel, programmed fluorimeter. This device is designed for registration of differential fluorescent signal from organic and non-organic objects of microscale in small volumes (cellular organelles suspensions, animal and human cells, unicellular algae, bacteria, various fluorescent colloid solutions). Beside that, "Fluor-K" allows simultaneous detection of temperature. The ground-based tests of the device proved successful. The developed software can support experimental schedules while real-time data registration with the built-in storage device allows changes in selected parameters to be analyzed using wide range of fluorescent probes.

  15. Nanostructured Electrocatalysts for PEM Fuel Cells and Redox Flow Batteries: A Selected Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Yuyan; Cheng, Yingwen; Duan, Wentao

    2015-12-04

    PEM fuel cells and redox flow batteries are two very similar technologies which share common component materials and device design. Electrocatalysts are the key components in these two devices. In this Review, we discuss recent progress of electrocatalytic materials for these two technologies with a focus on our research activities at Pacific Northwest National Laboratory (PNNL) in the past years. This includes (1) nondestructive functionalization of graphitic carbon as Pt support to improve its electrocatalytic performance, (2) triple-junction of metal–carbon–metal oxides to promote Pt performance, (3) nitrogen-doped carbon and metal-doped carbon (i.e., metal oxides) to improve redox reactions in flowmore » batteries. A perspective on future research and the synergy between the two technologies are also discussed.« less

  16. Novel Treatment of Staphylococcus aureus Device-Related Infections Using Fibrinolytic Agents.

    PubMed

    Hogan, S; O'Gara, J P; O'Neill, E

    2018-02-01

    Staphylococcal infections involving biofilms represent a significant challenge in the treatment of patients with device-related infections. Staphylococcus aureus biofilms have been shown to be SaeRS regulated and dependent on the coagulase-catalyzed conversion of fibrinogen into fibrin on surfaces coated with human plasma. Here we investigated the treatment of staphylococcal biofilm device-related infections by digesting the fibrin biofilm matrix with and without existing antimicrobials. The fibrinolytic agents plasmin, streptokinase, and nattokinase, and TrypLE, a recombinant trypsin-like protease, were used to digest and treat S. aureus biofilms grown in vitro using in vivo -like static biofilm assays with and without antimicrobials. Cytotoxicity, the potential to induce a cytokine response in whole human blood, and the risk of induction of tolerance to fibrinolytic agents were investigated. A rat model of intravascular catheter infection was established to investigate the efficacy of selected fibrinolytic agents in vivo Under biomimetic conditions, the fibrinolytic agents effectively dispersed established S. aureus biofilms and, in combination with common antistaphylococcal antimicrobials, effectively killed bacterial cells being released from the biofilm. These fibrinolytic agents were not cytotoxic and did not affect the host immune response. The rat model of infection successfully demonstrated the activity of the selected fibrinolytic agents alone and in combination with antimicrobials on established biofilms in vivo TrypLE and nattokinase most successfully removed adherent cells from plasma-coated surfaces and significantly improved the efficacy of existing antimicrobials against S. aureus biofilms in vitro and in vivo These biofilm dispersal agents represent a viable future treatment option for S. aureus device-related infections. Copyright © 2018 American Society for Microbiology.

  17. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells

    PubMed Central

    Liu, Xiaoteng; Christensen, Paul A.; Kelly, Stephen M.; Rocher, Vincent; Scott, Keith

    2013-01-01

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved. PMID:24957065

  18. Al2O3 Disk Supported Si3N4 Hydrogen Purification Membrane for Low Temperature Polymer Electrolyte Membrane Fuel Cells.

    PubMed

    Liu, Xiaoteng; Christensen, Paul A; Kelly, Stephen M; Rocher, Vincent; Scott, Keith

    2013-12-05

    Reformate gas, a commonly employed fuel for polymer electrolyte membrane fuel cells (PEMFCs), contains carbon monoxide, which poisons Pt-containing anodes in such devices. A novel, low-cost mesoporous Si3N4 selective gas separation material was tested as a hydrogen clean-up membrane to remove CO from simulated feed gas to single-cell PEMFC, employing Nafion as the polymer electrolyte membrane. Polarization and power density measurements and gas chromatography showed a clear effect of separating the CO from the gas mixture; the performance and durability of the fuel cell was thereby significantly improved.

  19. Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots.

    PubMed

    Al-Fandi, Mohamed; Alshraiedeh, Nida; Owies, Rami; Alshdaifat, Hala; Al-Mahaseneh, Omamah; Al-Tall, Khadijah; Alawneh, Rawan

    2017-07-14

    This paper reports a novel self-detection method for tumor cells using living nano-robots. These living robots are a nonpathogenic strain of E. coli bacteria equipped with naturally synthesized bio-nano-sensory systems that have an affinity to VEGF, an angiogenic factor overly-expressed by cancer cells. The VEGF-affinity/chemotaxis was assessed using several assays including the capillary chemotaxis assay, chemotaxis assay on soft agar, and chemotaxis assay on solid agar. In addition, a microfluidic device was developed to possibly discover tumor cells through the overexpressed vascular endothelial growth factor (VEGF). Various experiments to study the sensing characteristic of the nano-robots presented a strong response toward the VEGF. Thus, a new paradigm of selective targeting therapies for cancer can be advanced using swimming E. coli as self-navigator miniaturized robots as well as drug-delivery vehicles.

  20. Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.

    PubMed

    Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin

    2016-04-21

    The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.

  1. Origin of photovoltage in perovskite solar cells probed by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Echeverría-Arrondo, C.

    2018-06-01

    Hybrid halide perovskite solar cells hold great potential for photovoltaic applications, but suffer, however, from anomalous current density-voltage characteristics. With a view to further understanding the performance of these optoelectronic devices, we investigate a prototypical electron selective contact with density functional theory methods. Our computations on a TiO2/CH3NH3PbI3 heterojunction doped with Schottky defects at open circuit reveal a consistent picture of ions and interlayer excitons at the origin of photovoltage formation.

  2. Selecting and designing with the right thermoplastic polymer for your microfluidic chip: a close look into cyclo-olefin polymer

    NASA Astrophysics Data System (ADS)

    Nevitt, Mark

    2013-03-01

    Engineers who are developing microfluidic devices and bioMEMs for life science applications have many aspects to consider when selecting the proper base materials for constructing a device. While glass and polydimethylsiloxane (PDMS) are the staple materials for proof-of-concept and prototype chip fabrication, they are not a feasible solution for commercial production due to their slow, labor-intensive production rate. Alternatively, a molded or extruded thermoplastic solution can deliver the precision, consistency, and high volume capability required for commercial scale production. Traditional thermoplastics, such as polymethylmethacrylate (PMMA), polycarbonate (PC), and polystyrene (PS), are well known by development engineers in the bioscience community; however, cyclo-olefin polymer (COP), a relative newcomer in the world of plastics, is gaining increasing attention for use in microfluidic devices due to its unique balance of key properties compared to conventional thermoplastics. In this paper, we provide a comprehensive look at the properties which make COP an excellent candidate for providing the flow cell support and reagent storage functions in microfluidic assays. We also explore the processing attributes and capabilities of COP resin and film which are crucial for manufacturing high-performance microfluidic devices.

  3. Microfluidic size separation of cells and particles using a swinging bucket centrifuge.

    PubMed

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-09-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency.

  4. Microfluidic size separation of cells and particles using a swinging bucket centrifuge

    PubMed Central

    Yeo, Joo Chuan; Wang, Zhiping; Lim, Chwee Teck

    2015-01-01

    Biomolecular separation is crucial for downstream analysis. Separation technique mainly relies on centrifugal sedimentation. However, minuscule sample volume separation and extraction is difficult with conventional centrifuge. Furthermore, conventional centrifuge requires density gradient centrifugation which is laborious and time-consuming. To overcome this challenge, we present a novel size-selective bioparticles separation microfluidic chip on a swinging bucket minifuge. Size separation is achieved using passive pressure driven centrifugal fluid flows coupled with centrifugal force acting on the particles within the microfluidic chip. By adopting centrifugal microfluidics on a swinging bucket rotor, we achieved over 95% efficiency in separating mixed 20 μm and 2 μm colloidal dispersions from its liquid medium. Furthermore, by manipulating the hydrodynamic resistance, we performed size separation of mixed microbeads, achieving size efficiency of up to 90%. To further validate our device utility, we loaded spiked whole blood with MCF-7 cells into our microfluidic device and subjected it to centrifugal force for a mere duration of 10 s, thereby achieving a separation efficiency of over 75%. Overall, our centrifugal microfluidic device enables extremely rapid and label-free enrichment of different sized cells and particles with high efficiency. PMID:26487900

  5. Testing biomaterials for application in artificial organs: impact of procedures, donor and patient properties.

    PubMed

    Vienken, Joerg

    2008-12-01

    Many factors can affect the characterisation of biomaterials during testing. These include drugs administered prior to testing and shear stress on blood cells induced by different blood flows and specific blood donor conditions. Some of the misconceptions in testing are described here and serve to indicate that a systems approach, and not only individual test parameters, is best when testing for biocompatibility. "Methodology is everything and the devil is in the details", remarked Paul Simmons, the current president of the International Society for Stemcell Research, in an article in Nature magazine [1]. The article refers to current problems related to the reproducibility of data in stem cell research. Reproducibility in in vitro testing is also mandatory when selecting polymers for medical device applications. Many mechanical and physical engineers are surprised when they realise the enormous standard deviations (sometimes between 50 and 100%) of data found in biological or physiological investigations of biomaterials. The reasons for this are the complexity of physiological parameters such as the nature of blood originating from a variety of donors and hour-to-hour and day-to-day physiological differences. As a consequence, standardisation is a condition sine qua non in biomaterial testing, and knowledge of possible pitfalls is absolutely necessary. Therefore ISO 10993-4, Biological Evaluation of Medical Devices, Selection of Tests for Interaction With Blood, [2] provides a practical tool, including a decision tree for use in the selection of appropriate polymers for biomaterial applications. However, the interested reader finds in Section 3.1 of ISO 10993-4 the definition of blood-device interaction: "Any interaction between blood or any component of blood and a device, resulting in effects on blood, or on any organ or tissue, or on the device". A note added to this definition further clarifies: "Such effects may or may not have clinically significant or undesirable consequences." This prompts one to ask if effects leading to undesirable consequences that are not clinically significant would be helpful to the polymer chemist. This article provides some observations and examples of the misconceptions and pitfalls that exist in testing biomaterials for biocompatibility.

  6. Low delay and area efficient soft error correction in arbitration logic

    DOEpatents

    Sugawara, Yutaka

    2013-09-10

    There is provided an arbitration logic device for controlling an access to a shared resource. The arbitration logic device comprises at least one storage element, a winner selection logic device, and an error detection logic device. The storage element stores a plurality of requestors' information. The winner selection logic device selects a winner requestor among the requestors based on the requestors' information received from a plurality of requestors. The winner selection logic device selects the winner requestor without checking whether there is the soft error in the winner requestor's information.

  7. Micro Ring Grating Spectrometer with Adjustable Aperture

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Choi, Sang H. (Inventor)

    2012-01-01

    A spectrometer includes a micro-ring grating device having coaxially-aligned ring gratings for diffracting incident light onto a target focal point, a detection device for detecting light intensity, one or more actuators, and an adjustable aperture device defining a circular aperture. The aperture circumscribes a target focal point, and directs a light to the detection device. The aperture device is selectively adjustable using the actuators to select a portion of a frequency band for transmission to the detection device. A method of detecting intensity of a selected band of incident light includes directing incident light onto coaxially-aligned ring gratings of a micro-ring grating device, and diffracting the selected band onto a target focal point using the ring gratings. The method includes using an actuator to adjust an aperture device and pass a selected portion of the frequency band to a detection device for measuring the intensity of the selected portion.

  8. Multi-cell storage battery

    DOEpatents

    Brohm, Thomas; Bottcher, Friedhelm

    2000-01-01

    A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

  9. Diversifying biological fuel cell designs by use of nanoporous filters.

    PubMed

    Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R

    2007-02-15

    The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.

  10. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual blood cell counting device. 864.6160...

  11. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual blood cell counting device. 864.6160...

  12. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual blood cell counting device. 864.6160...

  13. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual blood cell counting device. 864.6160...

  14. 21 CFR 864.6160 - Manual blood cell counting device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual blood cell counting device. 864.6160... blood cell counting device. (a) Identification. A manual blood cell counting device is a device used to count red blood cells, white blood cells, or blood platelets. (b) Classification. Class I (general...

  15. Origin of the OFF state variability in ReRAM cells

    NASA Astrophysics Data System (ADS)

    Salaoru, Iulia; Khiat, Ali; Li, Qingjiang; Berdan, Radu; Papavassiliou, Christos; Prodromakis, Themistoklis

    2014-04-01

    This work exploits the switching dynamics of nanoscale resistive random access memory (ReRAM) cells with particular emphasis on the origin of the observed variability when cells are consecutively cycled/programmed at distinct memory states. It is demonstrated that this variance is a common feature of all ReRAM elements and is ascribed to the formation and rupture of conductive filaments that expand across the active core, independently of the material employed as the active switching core, the causal physical switching mechanism, the switching mode (bipolar/unipolar) or even the unit cells' dimensions. Our hypothesis is supported through both experimental and theoretical studies on TiO2 and In2O3 : SnO2 (ITO) based ReRAM cells programmed at three distinct resistive states. Our prototypes employed TiO2 or ITO active cores over 5 × 5 µm2 and 100 × 100 µm2 cell areas, with all tested devices demonstrating both unipolar and bipolar switching modalities. In the case of TiO2-based cells, the underlying switching mechanism is based on the non-uniform displacement of ionic species that foster the formation of conductive filaments. On the other hand, the resistive switching observed in the ITO-based devices is considered to be due to a phase change mechanism. The selected experimental parameters allowed us to demonstrate that the observed programming variance is a common feature of all ReRAM devices, proving that its origin is dependent upon randomly oriented local disorders within the active core that have a substantial impact on the overall state variance, particularly for high-resistive states.

  16. Biosensors for breast cancer diagnosis: A review of bioreceptors, biotransducers and signal amplification strategies.

    PubMed

    Mittal, Sunil; Kaur, Hardeep; Gautam, Nandini; Mantha, Anil K

    2017-02-15

    Breast cancer is highly prevalent in females and accounts for second highest number of deaths, worldwide. Cumbersome, expensive and time consuming detection techniques presently available for detection of breast cancer potentiates the need for development of novel, specific and ultrasensitive devices. Biosensors are the promising and selective detection devices which hold immense potential as point of care (POC) tools. Present review comprehensively scrutinizes various breast cancer biosensors developed so far and their technical evaluation with respect to efficiency and potency of selected bioreceptors and biotransducers. Use of glycoproteins, DNA biomarkers, micro-RNA, circulatory tumor cells (CTC) and some potential biomarkers are introduced briefly. The review also discusses various strategies used in signal amplification such as nanomaterials, redox mediators, p19 protein, duplex specific nucleases (DSN) and redox cycling. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Random-access optical-resolution photoacoustic microscopy using a digital micromirror device

    PubMed Central

    Liang, Jinyang; Zhou, Yong; Winkler, Amy W.; Wang, Lidai; Maslov, Konstantin I.; Li, Chiye; Wang, Lihong V.

    2013-01-01

    We developed random-access optical-resolution photoacoustic microscopy using a digital micromirror device. This system can rapidly scan arbitrarily shaped regions of interest within a 40×40 μm2 imaging area with a lateral resolution of 3.6 μm. To identify a region of interest, a global structural image is first acquired, then the selected region is scanned. The random-access ability was demonstrated by imaging two static samples, a carbon fiber cross and a monolayer of red blood cells, with an acquisition rate up to 4 kilohertz. The system was then used to monitor blood flow in vivo in real time within user-selected capillaries in a mouse ear. By imaging only the capillary of interest, the frame rate was increased by up to 9.2 times. PMID:23903111

  18. Random-access optical-resolution photoacoustic microscopy using a digital micromirror device.

    PubMed

    Liang, Jinyang; Zhou, Yong; Winkler, Amy W; Wang, Lidai; Maslov, Konstantin I; Li, Chiye; Wang, Lihong V

    2013-08-01

    We developed random-access optical-resolution photoacoustic microscopy using a digital micromirror device. This system can rapidly scan arbitrarily shaped regions of interest within a 40 μm×40 μm imaging area with a lateral resolution of 3.6 μm. To identify a region of interest, a global structural image is first acquired, then the selected region is scanned. The random-access ability was demonstrated by imaging two static samples, a carbon fiber cross and a monolayer of red blood cells, with an acquisition rate up to 4 kHz. The system was then used to monitor blood flow in vivo in real time within user-selected capillaries in a mouse ear. By imaging only the capillary of interest, the frame rate was increased by up to 9.2 times.

  19. Interactive Physics and Characteristics of Photons and Photoelectrons in Hyperbranched Zinc Oxide Nanostructures

    NASA Astrophysics Data System (ADS)

    Torix, Garrett

    As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc oxide (ZnO) nanomaterials were investigated and subjected to various, systematical tests, with the aim of discovering new and useful properties. The various nanostructures were grown on a quartz substrate, between a pair of gold electrodes, and subjected to an electrical bias which produced a measurable photocurrent under sufficient lighting conditions. This design formed a novel photodetector device, which, when combined with a simple solar cell and a methodical set of experimental trials, allowed several unique phenomena to be studied. Under various conditions, the device photocurrent as a function of applied voltage, as well as transmitted light, were measured and compared between devices of different ZnO morphologies. Zinc oxide is an absorber of ultraviolet (UV) light. UV absorbing materials and devices have uses in solar cells, long range communications, and astronomical observational equipment, hence, a better understanding of zinc oxide nanostructures and their properties can lead to more efficient utilization of UV light, improved solar cell technology, and a better understanding of the basic science in photon-to-electricity conversion.

  20. Graphene and Carbon Quantum Dot-Based Materials in Photovoltaic Devices: From Synthesis to Applications

    PubMed Central

    Paulo, Sofia; Palomares, Emilio; Martinez-Ferrero, Eugenia

    2016-01-01

    Graphene and carbon quantum dots have extraordinary optical and electrical features because of their quantum confinement properties. This makes them attractive materials for applications in photovoltaic devices (PV). Their versatility has led to their being used as light harvesting materials or selective contacts, either for holes or electrons, in silicon quantum dot, polymer or dye-sensitized solar cells. In this review, we summarize the most common uses of both types of semiconducting materials and highlight the significant advances made in recent years due to the influence that synthetic materials have on final performance. PMID:28335285

  1. Method and apparatus for monitoring a hydrocarbon-selective catalytic reduction device

    DOEpatents

    Schmieg, Steven J; Viola, Michael B; Cheng, Shi-Wai S; Mulawa, Patricia A; Hilden, David L; Sloane, Thompson M; Lee, Jong H

    2014-05-06

    A method for monitoring a hydrocarbon-selective catalytic reactor device of an exhaust aftertreatment system of an internal combustion engine operating lean of stoichiometry includes injecting a reductant into an exhaust gas feedstream upstream of the hydrocarbon-selective catalytic reactor device at a predetermined mass flowrate of the reductant, and determining a space velocity associated with a predetermined forward portion of the hydrocarbon-selective catalytic reactor device. When the space velocity exceeds a predetermined threshold space velocity, a temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is determined, and a threshold temperature as a function of the space velocity and the mass flowrate of the reductant is determined. If the temperature differential across the predetermined forward portion of the hydrocarbon-selective catalytic reactor device is below the threshold temperature, operation of the engine is controlled to regenerate the hydrocarbon-selective catalytic reactor device.

  2. High resolution resonance ionization imaging detector and method

    DOEpatents

    Winefordner, James D.; Matveev, Oleg I.; Smith, Benjamin W.

    1999-01-01

    A resonance ionization imaging device (RIID) and method for imaging objects using the RIID are provided, the RIID system including a RIID cell containing an ionizable vapor including monoisotopic atoms or molecules, the cell being positioned to intercept scattered radiation of a resonance wavelength .lambda..sub.1 from the object which is to be detected or imaged, a laser source disposed to illuminate the RIID cell with laser radiation having a wavelength .lambda..sub.2 or wavelengths .lambda..sub.2, .lambda..sub.3 selected to ionize atoms in the cell that are in an excited state by virtue of having absorbed the scattered resonance laser radiation, and a luminescent screen at the back surface of the RIID cell which presents an image of the number and position of charged particles present in the RIID cell as a result of the ionization of the excited state atoms. The method of the invention further includes the step of initially illuminating the object to be detected or imaged with a laser having a wavelength selected such that the object will scatter laser radiation having the resonance wavelength .lambda..sub.1.

  3. Selective fibronectin adsorption against albumin and enhanced stem cell attachment on helium atmospheric pressure glow discharge treated titanium

    NASA Astrophysics Data System (ADS)

    Han, Inho; Vagaska, Barbora; Joo Park, Bong; Lee, Mi Hee; Jin Lee, Seung; Park, Jong-Chul

    2011-06-01

    Successful tissue integration of implanted medical devices depends on appropriate initial cellular response. In this study, the effect of helium atmospheric pressure glow discharge (He-APGD) treatment of titanium on selective protein adsorption and the initial attachment processes and focal adhesion formation of osteoprogenitor cells and stem cells were examined. Titanium disks were treated in a self-designed He-APGD system. Initial attachment of MC3T3-E1 mouse pre-osteoblasts and human mesenchymal stem cells (MSCs) was evaluated by MTT assay and plasma membrane staining followed by morphometric analysis. Fibronectin adsorption was investigated by Enzyme-Linked ImmunoSorbant Assay. MSCs cell attachment to treated and non-treated titanium disks coated with different proteins was verified also in serum-free culture. Organization of actin cytoskeleton and focal adhesions was evaluated microscopically. He-APGD treatment effectively modified the titanium surfaces by creating a super-hydrophilic surface, which promoted selectively higher adsorption of fibronectin, a protein of critical importance for cell/biomaterial interaction. In two different types of cells, the He-APGD treatment enhanced the number of attaching cells as well as their attachment area. Moreover, cells had higher organization of actin cytoskeleton and focal adhesions. Faster acceptance of the material by the progenitor cells in the early phases of tissue integration after the implantation may significantly reduce the overall healing time; therefore, titanium treatment with He-APGD seems to be an effective method of surface modification of titanium for improving its tissue inductive properties.

  4. SeleCon: Scalable IoT Device Selection and Control Using Hand Gestures.

    PubMed

    Alanwar, Amr; Alzantot, Moustafa; Ho, Bo-Jhang; Martin, Paul; Srivastava, Mani

    2017-04-01

    Although different interaction modalities have been proposed in the field of human-computer interface (HCI), only a few of these techniques could reach the end users because of scalability and usability issues. Given the popularity and the growing number of IoT devices, selecting one out of many devices becomes a hurdle in a typical smarthome environment. Therefore, an easy-to-learn, scalable, and non-intrusive interaction modality has to be explored. In this paper, we propose a pointing approach to interact with devices, as pointing is arguably a natural way for device selection. We introduce SeleCon for device selection and control which uses an ultra-wideband (UWB) equipped smartwatch. To interact with a device in our system, people can point to the device to select it then draw a hand gesture in the air to specify a control action. To this end, SeleCon employs inertial sensors for pointing gesture detection and a UWB transceiver for identifying the selected device from ranging measurements. Furthermore, SeleCon supports an alphabet of gestures that can be used for controlling the selected devices. We performed our experiment in a 9 m -by-10 m lab space with eight deployed devices. The results demonstrate that SeleCon can achieve 84.5% accuracy for device selection and 97% accuracy for hand gesture recognition. We also show that SeleCon is power efficient to sustain daily use by turning off the UWB transceiver, when a user's wrist is stationary.

  5. SeleCon: Scalable IoT Device Selection and Control Using Hand Gestures

    PubMed Central

    Alanwar, Amr; Alzantot, Moustafa; Ho, Bo-Jhang; Martin, Paul; Srivastava, Mani

    2018-01-01

    Although different interaction modalities have been proposed in the field of human-computer interface (HCI), only a few of these techniques could reach the end users because of scalability and usability issues. Given the popularity and the growing number of IoT devices, selecting one out of many devices becomes a hurdle in a typical smarthome environment. Therefore, an easy-to-learn, scalable, and non-intrusive interaction modality has to be explored. In this paper, we propose a pointing approach to interact with devices, as pointing is arguably a natural way for device selection. We introduce SeleCon for device selection and control which uses an ultra-wideband (UWB) equipped smartwatch. To interact with a device in our system, people can point to the device to select it then draw a hand gesture in the air to specify a control action. To this end, SeleCon employs inertial sensors for pointing gesture detection and a UWB transceiver for identifying the selected device from ranging measurements. Furthermore, SeleCon supports an alphabet of gestures that can be used for controlling the selected devices. We performed our experiment in a 9m-by-10m lab space with eight deployed devices. The results demonstrate that SeleCon can achieve 84.5% accuracy for device selection and 97% accuracy for hand gesture recognition. We also show that SeleCon is power efficient to sustain daily use by turning off the UWB transceiver, when a user’s wrist is stationary. PMID:29683151

  6. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify and...

  7. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify and...

  8. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify and...

  9. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify and...

  10. 21 CFR 864.5260 - Automated cell-locating device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Automated cell-locating device. 864.5260 Section... § 864.5260 Automated cell-locating device. (a) Identification. An automated cell-locating device is a device used to locate blood cells on a peripheral blood smear, allowing the operator to identify and...

  11. Separation of breast cancer cells from peripherally circulating blood using antibodies fixed in microchannels

    NASA Astrophysics Data System (ADS)

    Feng, Juan; Soper, Steven A.; McCarley, Robin L.; Murphy, Michael C.

    2004-07-01

    Bio-Micro Electro Mechanical System (Bio-MEMS) technology was applied to the problem of early breast cancer detection and diagnosis. A micro-device is being developed to identify and specifically collect tumor cells of low abundance (1 tumor cell among 107 normal blood cells) from circulating whole blood. By immobilizing anti-EpCAM (Epithelial Cell Adhesion Molecule) antibodies on polymer micro-channel walls by chemically modifying the surface of the PMMA, breast cancer cells from the MCF-7 cell line, which over-express EpCAM, were selected from a sample volume by the strong binding affinity between the antibody and antigen. To validate the capture of the breast cancer cells, three fluorochrome markers, each identified by a separate color, were used to reliably identify the cancer cells. The cancer cells were defined by DAPI+ (blue), CD45- and the FITC-cell membrane linker+ (green). White blood cells, which may interfere in the detection of the cancer cells, were identified by DAPI+ (blue), CD45+ (red), and the FITC-cell membrane linker+ (green). EpCAM/anti-EpCAM binding models from the literature were used to estimate an optimal velocity, 2mm/sec, for maximizing the number of cells binding and the critical binding force. At higher velocities, shear forces (> 0.48 dyne) will break existing bonds and prevent the formation of new ones. This detection micro-device can be assembled with other lab-on-a-chip components for follow-up gene and protein analysis.

  12. Accurate reconstruction of the jV-characteristic of organic solar cells from measurements of the external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Meyer, Toni; Körner, Christian; Vandewal, Koen; Leo, Karl

    2018-04-01

    In two terminal tandem solar cells, the current density - voltage (jV) characteristic of the individual subcells is typically not directly measurable, but often required for a rigorous device characterization. In this work, we reconstruct the jV-characteristic of organic solar cells from measurements of the external quantum efficiency under applied bias voltages and illumination. We show that it is necessary to perform a bias irradiance variation at each voltage and subsequently conduct a mathematical correction of the differential to the absolute external quantum efficiency to obtain an accurate jV-characteristic. Furthermore, we show that measuring the external quantum efficiency as a function of voltage for a single bias irradiance of 0.36 AM1.5g equivalent sun provides a good approximation of the photocurrent density over voltage curve. The method is tested on a selection of efficient, common single-junctions. The obtained conclusions can easily be transferred to multi-junction devices with serially connected subcells.

  13. Interface Play between Perovskite and Hole Selective Layer on the Performance and Stability of Perovskite Solar Cells.

    PubMed

    Salado, Manuel; Idigoras, Jesus; Calio, Laura; Kazim, Samrana; Nazeeruddin, Mohammad Khaja; Anta, Juan A; Ahmad, Shahzada

    2016-12-21

    Perovskite solar cells with variety of hole selective contacts such as 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-OMeTAD), poly(3-hexylthiophene-2,5-diyl), poly[bis(4-phenyl)(2,5,6-trimentlyphenyl)amine], 5,10,15-trihexyl-3,8,13-tris(4-methoxyphenyl)-10,15-dihydro-5H-diindolo[3,2-a:3',2'-c]carbazole (HMPDI), and 2',7'-bis(bis(4-methoxyphenyl)amino)spiro[cyclopenta[2,1-b:3,4-b']dithiophene-4,9'-fluorene] were employed to elucidate its role at the interface of perovskite and metallic cathode. Microscopy images revealed Spiro-OMeTAD and HMPDI produce smoother and intimate contact between perovskite/hole transporting materials (HTM) interfaces among others evaluated here. This morphological feature appears to be connected with three fundamental facts: (1) hole injection to the HTM is much more efficient as evidenced by photoluminescence measurements, (2) recombination losses are less important as evidenced by intensity-modulated photovoltage spectroscopy and impedance spectroscopy measurements, and (3) fabricated solar cells are much more robust against degradation by moisture. Devices with higher open-circuit photovoltages are characterized by higher values of the recombination resistance extracted from the impedance data. The variation in device hysteresis behavior can be ascribed mainly due to the molecular interaction and the core of HTM employed. In all cases, this fact is related with a larger value of the low-frequency capacitance, which indicates that the HTM can induce specific slow processes of ion accumulation at the interface. Notably, these processes tend to slowly relax in time, as hysteresis is substantially reduced for aged devices.

  14. Formulation/preparation of functionalized nanoparticles for in vivo targeted drug delivery.

    PubMed

    Gu, Frank; Langer, Robert; Farokhzad, Omid C

    2009-01-01

    Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D: ,L: -lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

  15. Novel Selective Detection Method of Tumor Angiogenesis Factors Using Living Nano-Robots

    PubMed Central

    Alshraiedeh, Nida; Owies, Rami; Alshdaifat, Hala; Al-Mahaseneh, Omamah; Al-Tall, Khadijah; Alawneh, Rawan

    2017-01-01

    This paper reports a novel self-detection method for tumor cells using living nano-robots. These living robots are a nonpathogenic strain of E. coli bacteria equipped with naturally synthesized bio-nano-sensory systems that have an affinity to VEGF, an angiogenic factor overly-expressed by cancer cells. The VEGF-affinity/chemotaxis was assessed using several assays including the capillary chemotaxis assay, chemotaxis assay on soft agar, and chemotaxis assay on solid agar. In addition, a microfluidic device was developed to possibly discover tumor cells through the overexpressed vascular endothelial growth factor (VEGF). Various experiments to study the sensing characteristic of the nano-robots presented a strong response toward the VEGF. Thus, a new paradigm of selective targeting therapies for cancer can be advanced using swimming E. coli as self-navigator miniaturized robots as well as drug-delivery vehicles. PMID:28708066

  16. Preparation strategy and illumination of three-dimensional cell cultures in light sheet-based fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Bruns, Thomas; Schickinger, Sarah; Wittig, Rainer; Schneckenburger, Herbert

    2012-10-01

    A device for selective plane illumination microscopy (SPIM) of three-dimensional multicellular spheroids, in culture medium under stationary or microfluidic conditions, is described. Cell spheroids are located in a micro-capillary and a light sheet, for illumination, is generated in an optical setup adapted to a conventional inverse microscope. Layers of the sample, of about 10 μm or less in diameter, are, thus, illuminated selectively and imaged by high resolution fluorescence microscopy. SPIM is operated at low light exposure even if a larger number of layers is imaged and is easily combined with laser scanning microscopy. Chinese hamster ovary cells expressing a membrane-associated green fluorescent protein are used for preliminary tests, and the uptake of the fluorescent marker, acridine orange via a microfluidic system, is visualized to demonstrate its potential in cancer research such as for the detection of cellular responses to anticancer drugs.

  17. AlGaAs top solar cell for mechanical attachment in a multi-junction tandem concentrator solar cell stack

    NASA Technical Reports Server (NTRS)

    Dinetta, L. C.; Hannon, M. H.; Mcneely, J. B.; Barnett, A. M.

    1991-01-01

    The AstroPower self-supporting, transparent AlGaAs top solar cell can be stacked upon any well-developed bottom solar cell for improved system performance. This is an approach to improve the performance and scale of space photovoltaic power systems. Mechanically stacked tandem solar cell concentrator systems based on the AlGaAs top concentrator solar cell can provide near term efficiencies of 36 percent (AMO, 100x). Possible tandem stack efficiencies greater than 38 percent (100x, AMO) are feasible with a careful selection of materials. In a three solar cell stack, system efficiencies exceed 41 percent (100x, AMO). These device results demonstrate a practical solution for a state-of-the-art top solar cell for attachment to an existing, well-developed solar cell.

  18. Specificity Bio-identification of CNT-Based Transistor

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-Yu; Wu, Hue-Min

    2017-12-01

    In this research, we report a simple and general approach to π-π stacking functionalization of the sidewalls of CNTs by 1-pyrenebutanoic acid, succinimidyl ester (PSE), and subsequent immobilization of insulin-like growth factor 1 receptor (IGF1R) onto SWNTs with a high degree of control and specificity. The selection of PSE provides visualization and characterization of individual CNTs based on its strong luminescence. In addition, we designed a simple and efficient electrode with a staggered pattern to increase the effect of electrophoresis by using electric field for the macroscopic alignment of CNTs to complete a field-effect device for CNT-based biosensors. Scanning Electron Microscopy (SEM) was used to investigate the morphology of the biosensors. The results of four-point probe method demonstrated high selectivity and sensitivity of detection. The functionalization of SWNTs was investigated by Fourier transform infrared spectroscopy (FTIR). Experimental results imply that specific binding between IGF1R and its specific mAb results in a dramatic change in electrical current of CNT-based devices, and suggest that the devices are very promising biosensor candidates to detect circulating cancer cells.

  19. Method for forming p-n junctions and solar-cells by laser-beam processing

    DOEpatents

    Narayan, Jagdish; Young, Rosa T.

    1979-01-01

    This invention is an improved method for preparing p-n junction devices, such as diodes and solar cells. High-quality junctions are prepared by effecting laser-diffusion of a selected dopant into silicon by means of laser pulses having a wavelength of from about 0.3 to 1.1 .mu.m, an energy area density of from about 1.0 to 2.0 J/cm.sup.2, and a duration of from about 20 to 60 nanoseconds. Initially, the dopant is deposited on the silicon as a superficial layer, preferably one having a thickness in the range of from about 50 to 100 A. Depending on the application, the values for the above-mentioned pulse parameters are selected to produce melting of the silicon to depths in the range from about 1000 A to 1 .mu.m. The invention has been used to produce solar cells having a one-sun conversion efficiency of 10.6%, these cells having no antireflective coating or back-surface fields.

  20. Hormones and the blood-brain barrier.

    PubMed

    Hampl, Richard; Bičíková, Marie; Sosvorová, Lucie

    2015-03-01

    Hormones exert many actions in the brain, and brain cells are also hormonally active. To reach their targets in brain structures, hormones must overcome the blood-brain barrier (BBB). The BBB is a unique device selecting desired/undesired molecules to reach or leave the brain, and it is composed of endothelial cells forming the brain vasculature. These cells differ from other endothelial cells in their almost impermeable tight junctions and in possessing several membrane structures such as receptors, transporters, and metabolically active molecules, ensuring their selection function. The main ways how compounds pass through the BBB are briefly outlined in this review. The main part concerns the transport of major classes of hormones: steroids, including neurosteroids, thyroid hormones, insulin, and other peptide hormones regulating energy homeostasis, growth hormone, and also various cytokines. Peptide transporters mediating the saturable transport of individual classes of hormones are reviewed. The last paragraph provides examples of how hormones affect the permeability and function of the BBB either at the level of tight junctions or by various transporters.

  1. Surveillance for unattended gas compressor stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stastny, F.J.

    1974-06-01

    Surveillance devices in unattended compressor stations include those which detect trespassing by unauthorized personnel and those which protect the major operating equipment from damage and/or self-destruction. The latter monitor the critical operating parameters of major equipment and shut down the equipment when these parameters are exceeded; a table presents a function monitor and control list for such devices. Detection and apprehension of unauthorized personnel is a subject of increasing importance to guarantee station operability for reliable service and yet minimize staff personnel. An effective intrusion-detection system must (1) pinpoint the location and indicate the nature of the intrusion and (2)more » detect and respond rapidly to give security personnel a reasonable probability of apprehending or deterring the intruder before damage is done. The 2nd requirement is most difficult to satisfy when the facility is in a remote location, as is usually the case. Some of the parameters to consider in selecting an intrusion-detection system include concealment, legality, active vs. passive detector, back-up power, weather conditions, reliability, maintenance, discrimination, and compromising by intruders. Types of detectors include photo cell, infrared and radio frequency, audio,vibration, taut wire, circuit continuity, radar, and closed-circuit TV. The numerous types of devices and systems available provide sufficient diversity to enable a company to select a single device or a hybrid system which would incorporate several different devices for protecting unattended facilities.« less

  2. Current matching using CdSe quantum dots to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells.

    PubMed

    Lee, Ya-Ju; Yao, Yung-Chi; Tsai, Meng-Tsan; Liu, An-Fan; Yang, Min-De; Lai, Jiun-Tsuen

    2013-11-04

    A III-V multi-junction tandem solar cell is the most efficient photovoltaic structure that offers an extremely high power conversion efficiency. Current mismatching between each subcell of the device, however, is a significant challenge that causes the experimental value of the power conversion efficiency to deviate from the theoretical value. In this work, we explore a promising strategy using CdSe quantum dots (QDs) to enhance the photocurrent of the limited subcell to match with those of the other subcells and to enhance the power conversion efficiency of InGaP/GaAs/Ge tandem solar cells. The underlying mechanism of the enhancement can be attributed to the QD's unique capacity for photon conversion that tailors the incident spectrum of solar light; the enhanced efficiency of the device is therefore strongly dependent on the QD's dimensions. As a result, by appropriately selecting and spreading 7 mg/mL of CdSe QDs with diameters of 4.2 nm upon the InGaP/GaAs/Ge solar cell, the power conversion efficiency shows an enhancement of 10.39% compared to the cell's counterpart without integrating CdSe QDs.

  3. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth.

    PubMed

    Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei

    2016-10-07

    Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.

  4. Tandem Solar Cells from Accessible Low Band-Gap Polymers Using an Efficient Interconnecting Layer.

    PubMed

    Bag, Santanu; Patel, Romesh J; Bunha, Ajaykumar; Grand, Caroline; Berrigan, J Daniel; Dalton, Matthew J; Leever, Benjamin J; Reynolds, John R; Durstock, Michael F

    2016-01-13

    Tandem solar cell architectures are designed to improve device photoresponse by enabling the capture of wider range of solar spectrum as compared to single-junction device. However, the practical realization of this concept in bulk-heterojunction polymer systems requires the judicious design of a transparent interconnecting layer compatible with both polymers. Moreover, the polymers selected should be readily synthesized at large scale (>1 kg) and high performance. In this work, we demonstrate a novel tandem polymer solar cell that combines low band gap poly isoindigo [P(T3-iI)-2], which is easily synthesized in kilogram quantities, with a novel Cr/MoO3 interconnecting layer. Cr/MoO3 is shown to be greater than 80% transparent above 375 nm and an efficient interconnecting layer for P(T3-iI)-2 and PCDTBT, leading to 6% power conversion efficiencies under AM 1.5G illumination. These results serve to extend the range of interconnecting layer materials for tandem cell fabrication by establishing, for the first time, that a thin, evaporated layer of Cr/MoO3 can work as an effective interconnecting layer in a tandem polymer solar cells made with scalable photoactive materials.

  5. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  6. Electrical and Optical Performance Characteristics of 0.74-eV p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Jain, Raj K.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74-eV InGaAs, have demonstrated V(sub oc) = 3.2 volts, J(sub sc) = 70 mA/sq cm, and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (greater than 2 micron) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55-eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  7. Practices of shake-flask culture and advances in monitoring CO2 and O2.

    PubMed

    Takahashi, Masato; Aoyagi, Hideki

    2018-05-01

    About 85 years have passed since the shaking culture was devised. Since then, various monitoring devices have been developed to measure culture parameters. O 2 consumed and CO 2 produced by the respiration of cells in shaking cultures are of paramount importance due to their presence in both the culture broth and headspace of shake flask. Monitoring in situ conditions during shake-flask culture is useful for analysing the behaviour of O 2 and CO 2 , which interact according to Henry's law, and is more convenient than conventional sampling that requires interruption of shaking. In situ monitoring devices for shake-flask cultures are classified as direct or the recently developed bypass type. It is important to understand the characteristics of each type along with their unintended effect on shake-flask cultures, in order to improve the existing devices and culture conditions. Technical developments in the bypass monitoring devices are strongly desired in the future. It is also necessary to understand the mechanism underlying conventional shake-flask culture. The existing shaking culture methodology can be expanded into next-generation shake-flask cultures constituting a novel culture environment through a judicious selection of monitoring devices depending on the intended purpose of shake-flask culture. Construction and sharing the databases compatible with the various types of the monitoring devices and measurement instruments adapted for shaking culture can provide a valuable resource for broadening the application of cells with shake-flask culture.

  8. Beta cell device using icosahedral boride compounds

    DOEpatents

    Aselage, Terrence L.; Emin, David

    2002-01-01

    A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15

  9. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    DOEpatents

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  10. MEMS resonant load cells for micro-mechanical test frames: feasibility study and optimal design

    NASA Astrophysics Data System (ADS)

    Torrents, A.; Azgin, K.; Godfrey, S. W.; Topalli, E. S.; Akin, T.; Valdevit, L.

    2010-12-01

    This paper presents the design, optimization and manufacturing of a novel micro-fabricated load cell based on a double-ended tuning fork. The device geometry and operating voltages are optimized for maximum force resolution and range, subject to a number of manufacturing and electromechanical constraints. All optimizations are enabled by analytical modeling (verified by selected finite elements analyses) coupled with an efficient C++ code based on the particle swarm optimization algorithm. This assessment indicates that force resolutions of ~0.5-10 nN are feasible in vacuum (~1-50 mTorr), with force ranges as large as 1 N. Importantly, the optimal design for vacuum operation is independent of the desired range, ensuring versatility. Experimental verifications on a sub-optimal device fabricated using silicon-on-glass technology demonstrate a resolution of ~23 nN at a vacuum level of ~50 mTorr. The device demonstrated in this article will be integrated in a hybrid micro-mechanical test frame for unprecedented combinations of force resolution and range, displacement resolution and range, optical (or SEM) access to the sample, versatility and cost.

  11. Minimizing performance degradation induced by interfacial recombination in perovskite solar cells through tailoring of the transport layer electronic properties

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Molaei Imenabadi, Rouzbeh; Vandenberghe, William G.; Hsu, Julia W. P.

    2018-03-01

    The performance of hybrid organic-inorganic metal halide perovskite solar cells is investigated using one-dimensional drift-diffusion device simulations. We study the effects of interfacial defect density, doping concentration, and electronic level positions of the charge transport layer (CTL). Choosing CTLs with a favorable band alignment, rather than passivating CTL-perovskite interfacial defects, is shown to be beneficial for maintaining high power-conversion efficiency, due to reduced minority carrier density arising from a favorable local electric field profile. Insights from this study provide theoretical guidance on practical selection of CTL materials for achieving high-performance perovskite solar cells.

  12. Process for utilizing low-cost graphite substrates for polycrystalline solar cells

    NASA Technical Reports Server (NTRS)

    Chu, T. L. (Inventor)

    1978-01-01

    Low cost polycrystalline silicon solar cells supported on substrates were prepared by depositing successive layers of polycrystalline silicon containing appropriate dopants over supporting substrates of a member selected from the group consisting of metallurgical grade polycrystalline silicon, graphite and steel coated with a diffusion barrier of silica, borosilicate, phosphosilicate, or mixtures thereof such that p-n junction devices were formed which effectively convert solar energy to electrical energy. To improve the conversion efficiency of the polycrystalline silicon solar cells, the crystallite size in the silicon was substantially increased by melting and solidifying a base layer of polycrystalline silicon before depositing the layers which form the p-n junction.

  13. Photovoltaic materials and devices 2016

    DOE PAGES

    Sopori, Bhushan; Basnyat, Prakash; Mehta, Vishal

    2016-01-01

    Photovoltaic energy continues to grow with about 59 GW of solar PV installed in 2015. While most of the PV production (about 93%) was Si wafer based, both CdTe and CI(G)S are growing in their shares. There is also continued progress at the laboratory scale in OPV and dye sensitized solar cells. As the market grows, emphasis on reducing the cost of modules and systems continues to grow. This is the fourth special issue of this journal that is dedicated to gathering selected papers on recent advances in materials, devices, and modules/PV systems. This issue contains sixteen papers on variousmore » aspects of photovoltaics. As a result, these fall in four broad categories of novel materials, device design and fabrication, modules, and systems.« less

  14. Double network bacterial cellulose hydrogel to build a biology-device interface.

    PubMed

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2014-01-21

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  15. Double network bacterial cellulose hydrogel to build a biology-device interface

    NASA Astrophysics Data System (ADS)

    Shi, Zhijun; Li, Ying; Chen, Xiuli; Han, Hongwei; Yang, Guang

    2013-12-01

    Establishing a biology-device interface might enable the interaction between microelectronics and biotechnology. In this study, electroactive hydrogels have been produced using bacterial cellulose (BC) and conducting polymer (CP) deposited on the BC hydrogel surface to cover the BC fibers. The structures of these composites thus have double networks, one of which is a layer of electroactive hydrogels combined with BC and CP. The electroconductivity provides the composites with capabilities for voltage and current response, and the BC hydrogel layer provides good biocompatibility, biodegradability, bioadhesion and mass transport properties. Such a system might allow selective biological functions such as molecular recognition and specific catalysis and also for probing the detailed genetic and molecular mechanisms of life. A BC-CP composite hydrogel could then lead to a biology-device interface. Cyclic voltammetry and electrochemical impedance spectroscopy (EIS) are used here to study the composite hydrogels' electroactive property. BC-PAni and BC-PPy respond to voltage changes. This provides a mechanism to amplify electrochemical signals for analysis or detection. BC hydrogels were found to be able to support the growth, spreading and migration of human normal skin fibroblasts without causing any cytotoxic effect on the cells in the cell culture. These double network BC-CP hydrogels are biphasic Janus hydrogels which integrate electroactivity with biocompatibility, and might provide a biology-device interface to produce implantable devices for personalized and regenerative medicine.

  16. Efficient Colorful Perovskite Solar Cells Using a Top Polymer Electrode Simultaneously as Spectrally Selective Antireflection Coating.

    PubMed

    Jiang, Youyu; Luo, Bangwu; Jiang, Fangyuan; Jiang, Fuben; Fuentes-Hernandez, Canek; Liu, Tiefeng; Mao, Lin; Xiong, Sixing; Li, Zaifang; Wang, Tao; Kippelen, Bernard; Zhou, Yinhua

    2016-12-14

    Organometal halide perovskites have shown excellent optoelectronic properties and have been used to demonstrate a variety of semiconductor devices. Colorful solar cells are desirable for photovoltaic integration in buildings and other aesthetically appealing applications. However, the realization of colorful perovskite solar cells is challenging because of their broad and large absorption coefficient that commonly leads to cells with dark-brown colors. Herein, for the first time, we report a simple and efficient strategy to achieve colorful perovskite solar cells by using the transparent conducting polymer (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), PEDOT:PSS) as a top electrode and simultaneously as an spectrally selective antireflection coating. Vivid colors across the visible spectrum are attained by engineering optical interference effects among the transparent PEDOT:PSS polymer electrode, the hole-transporting layer and the perovskite layer. The colored perovskite solar cells display power conversion efficiency values from 12.8 to 15.1% (from red to blue) when illuminated from the FTO glass side and from 11.6 to 13.8% (from red to blue) when illuminated from the PEDOT:PSS side. The new approach provides an advanced solution for fabricating colorful perovskite solar cells with easy processing and high efficiency.

  17. 2009 Fuel Cell Market Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less

  18. 2009 Fuel Cell Market Report, November 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States aremore » investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.« less

  19. Three-dimensional photonic crystals as intermediate filter for thin-film tandem solar cells

    NASA Astrophysics Data System (ADS)

    Bielawny, Andreas; Miclea, Paul T.; Wehrspohn, Ralf B.; Lee, Seung-Mo; Knez, Mato; Rockstuhl, Carsten; Lisca, Marian; Lederer, Falk L.; Carius, Reinhard

    2008-04-01

    The concept of a 3D photonic crystal structure as diffractive and spectrally selective intermediate filter within 'micromorphous' (a-Si/μc-Si) tandem solar cells has been investigated numerically and experimentally. Our device aims for the enhancement of the optical pathway of incident light within the amorphous silicon top cell in its spectral region of low absorption. From our previous simulations, we expect a significant improvement of the tandem cell efficiency of about absolutely 1.3%. This increases the efficiency for a typical a-Si / μc-Si tandem cell from 11.1% to 12.4%, as a result of the optical current-matching of the two junctions. We suggest as wavelength-selective optical element a 3D-structured optical thin-film, prepared by self-organized artificial opal templates and replicated with atomic layer deposition. The resulting samples are highly periodic thin-film inverted opals made of conducting and transparent zinc-oxide. We describe the fabrication processes and compare experimental data on the optical properties in reflection and transmission with our simulations and photonic band structure calculations.

  20. A microfluidic platform for controlled biochemical stimulation of twin neuronal networks.

    PubMed

    Biffi, Emilia; Piraino, Francesco; Pedrocchi, Alessandra; Fiore, Gianfranco B; Ferrigno, Giancarlo; Redaelli, Alberto; Menegon, Andrea; Rasponi, Marco

    2012-06-01

    Spatially and temporally resolved delivery of soluble factors is a key feature for pharmacological applications. In this framework, microfluidics coupled to multisite electrophysiology offers great advantages in neuropharmacology and toxicology. In this work, a microfluidic device for biochemical stimulation of neuronal networks was developed. A micro-chamber for cell culturing, previously developed and tested for long term neuronal growth by our group, was provided with a thin wall, which partially divided the cell culture region in two sub-compartments. The device was reversibly coupled to a flat micro electrode array and used to culture primary neurons in the same microenvironment. We demonstrated that the two fluidically connected compartments were able to originate two parallel neuronal networks with similar electrophysiological activity but functionally independent. Furthermore, the device allowed to connect the outlet port to a syringe pump and to transform the static culture chamber in a perfused one. At 14 days invitro, sub-networks were independently stimulated with a test molecule, tetrodotoxin, a neurotoxin known to block action potentials, by means of continuous delivery. Electrical activity recordings proved the ability of the device configuration to selectively stimulate each neuronal network individually. The proposed microfluidic approach represents an innovative methodology to perform biological, pharmacological, and electrophysiological experiments on neuronal networks. Indeed, it allows for controlled delivery of substances to cells, and it overcomes the limitations due to standard drug stimulation techniques. Finally, the twin network configuration reduces biological variability, which has important outcomes on pharmacological and drug screening.

  1. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-I.; Pan, Chien-Yuan; Li, Keng-Hui; Huang, Ying-Chih; Lu, Chia-Wei; Tang, Chuan-Yi; Su, Ya-Wen; Tseng, Ling-Wei; Tseng, Kun-Chang; Lin, Chi-Yun; Chen, Chii-Dong; Lin, Shih-Shun; Chen, Yit-Tsong

    2015-11-01

    Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3‧-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions.

  2. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  3. Enrichment and Detection of Escherichia coli O157:H7 from Water Samples Using an Antibody Modified Microfluidic Chip

    PubMed Central

    Dharmasiri, Udara; Witek, Małgorzata A.; Adams, Andre A.; Osiri, John K.; Hupert, Mateusz L.; Bianchi, Thomas S.; Roelke, Daniel L.; Soper, Steven A.

    2010-01-01

    Low abundant (<100 cells mL-1) E. coli O157:H7 cells were isolated and enriched from environmental water samples using a microfluidic chip. The poly(methylmethacrylate), PMMA, chip contained 8 devices each equipped with 16 curvilinear high aspect ratio channels that were covalently decorated with polyclonal anti-O157 antibodies (pAb) and could search for rare cells through a pAb mediated process. The chip could process independently 8 different samples or one sample using 8 different parallel inputs to increase volume processing throughput. After cell enrichment, cells were released and enumerated using bench top real-time quantitative PCR, targeting genes which effectively discriminated the O157:H7 serotype from other non-pathogenic bacteria. The recovery of target cells from water samples was determined to be ~72%, and the limit-of-detection was found to be 6 colony forming units (cfu) using the slt1 gene as a reporter. We subsequently performed analysis of lake and waste water samples. The simplicity in manufacturing and ease of operation makes this device attractive for the selection of pathogenic species from a variety of water supplies suspected of containing bacterial pathogens at extremely low frequencies. PMID:20218574

  4. Fluid sampling device

    NASA Technical Reports Server (NTRS)

    Studenick, D. K. (Inventor)

    1977-01-01

    An inlet leak is described for sampling gases, more specifically, for selectively sampling multiple fluids. This fluid sampling device includes a support frame. A plurality of fluid inlet devices extend through the support frame and each of the fluid inlet devices include a longitudinal aperture. An opening device that is responsive to a control signal selectively opens the aperture to allow fluid passage. A closing device that is responsive to another control signal selectively closes the aperture for terminating further fluid flow.

  5. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    PubMed Central

    Cataldo, Sebastiano; Pignataro, Bruno

    2013-01-01

    This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362

  6. A new disposable electrode for electrochemical study of leukemia K562 cells and anticancer drug sensitivity test.

    PubMed

    Yu, Chunmei; Zhu, Zhenkun; Wang, Li; Wang, Qiuhong; Bao, Ning; Gu, Haiying

    2014-03-15

    Developing cost-effective and simple analysis tools is of vital importance for practical applications in bioanalysis. In this work, a new disposable electrochemical cell sensor with low cost and simple fabrication was proposed to study the electrochemical behavior of leukemia K562 cells and the effect of anticancer drugs on cell viability. The analytical device was integrated by using ITO glass as the substrate of working electrodes and paper as the electrolytic cell. The cyclic voltammetry of the K562 cells at the disposable electrode exhibited an irreversible anodic peak and the peak current is proportional to the cell number. This anodic peak is attributed to the oxidation of guanine in cells involving two protons per transfer of two electrons. For the drug sensitivity tests, arsenic trioxide and cyclophosphamide were added to cell culture media. As a result, the electrochemical responses of the K562 cells decreased significantly. The cytotoxicity curves and results obtained corresponded well with the results of CCK-8 assays. In comparison to conventional methods, the proposed method is simple, rapid and inexpensive. More importantly, the developed sensor is supposed to be a single-use disposable device and electrodes were prepared "as new" for each experiment. We think that such disposable electrodes with these characteristics are suitable for experimental study with cancer cells or other types of pathogens for disease diagnosis, drug selection and on-site monitoring. © 2013 Elsevier B.V. All rights reserved.

  7. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  8. Construction of carbon nanotube based nanoarchitectures for selective impedimetric detection of cancer cells in whole blood.

    PubMed

    Liu, Yang; Zhu, Fanjiao; Dan, Wangxia; Fu, Yu; Liu, Shaoqin

    2014-10-21

    A carbon nanotube (CNT) based nanoarchitecture is developed for rapid, sensitive and specific detection of cancer cells by using real time electrical impedance sensing. The sensor is constructed with carbon nanotube (CNT) multilayers and EpCAM (epithelial cell adhesion molecule) antibodies, which are assembled on an indium tin oxide (ITO) electrode surface. The binding of tumor cells to EpCAM antibodies causes increase of the electron-transfer resistance. The electrochemical impedance of the prepared biosensors is linear with the logarithm of concentration of the liver cancer cell line (HepG2) within the concentration range of 10 to 10(5) cells per mL. The detection limit for HepG2 cells is 5 cells per mL. The proposed impedimetric sensing devices allow for sensitive and specific detection of cancer cells in whole-blood samples without any sample pretreatment steps.

  9. Vascularization and Cellular Isolation Potential of a Novel Electrospun Cell Delivery Vehicle

    PubMed Central

    Krishnan, Laxminarayanan; Touroo, Jeremy; Reed, Robert; Boland, Eugene; Hoying, James B.; Williams, Stuart K.

    2014-01-01

    A clinical need exists for a cell delivery device that supports long term cell viability, cell retention within the device and retrieval of delivered cells if necessary. Previously, cell isolation devices have been based on hollow fiber membranes, porous polymer scaffolds, alginate systems, or micro-machined membranes. We present the development and characterization of a novel dual porosity electrospun membrane based device, which supports cellular infiltration and vascularization of its outer porous layer and maintains cellular isolation within a lumen bounded by an inner low porosity layer. Electrospinning conditions were initially established to support electrospun fiber deposition onto nonconductive silicone surfaces. With these parameters established, devices for in vivo evaluations were produced using nylon as a nonconductive scaffold for deposition of dual porosity electrospun fibers. The outer porous layer supported the development of a penetrating microcirculation and the membrane supported the transfer of insulin from encapsulated sustained release pellets for four weeks. Viable cells implanted within the device could be identified after two weeks of implantation. Through the successful demonstration of survival and cellular isolation of human epithelial cells within the implanted devices and the ability to use the device to deliver insulin, we have established the utility of this device toward localized cell transplantation. The Cell Delivery Device establishes a platform to test the feasibility of approaches to cell dose control and cell localization at the site of implantation in the clinical use of modified autologous or allogeneic cells. PMID:23913805

  10. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  11. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  12. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  13. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  14. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell indices...

  15. UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection.

    PubMed

    Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Brady, Charles; Pullagurla, Swathi; Kamande, Joyce; Aufforth, Rachel D; Tignanelli, Christopher J; Torphy, Robert J; Yeh, Jen Jen; Soper, Steven A

    2014-01-07

    The need to activate thermoplastic surfaces using robust and efficient methods has been driven by the fact that replication techniques can be used to produce microfluidic devices in a high production mode and at low cost, making polymer microfluidics invaluable for in vitro diagnostics, such as circulating tumor cell (CTC) analysis, where device disposability is critical to mitigate artifacts associated with sample carryover. Modifying the surface chemistry of thermoplastic devices through activation techniques can be used to increase the wettability of the surface or to produce functional scaffolds to allow for the covalent attachment of biologics, such as antibodies for CTC recognition. Extensive surface characterization tools were used to investigate UV activation of various surfaces to produce uniform and high surface coverage of functional groups, such as carboxylic acids in microchannels of different aspect ratios. We found that the efficiency of the UV activation process is highly dependent on the microchannel aspect ratio and the identity of the thermoplastic substrate. Colorimetric assays and fluorescence imaging of UV-activated microchannels following EDC/NHS coupling of Cy3-labeled oligonucleotides indicated that UV-activation of a PMMA microchannel with an aspect ratio of ~3 was significantly less efficient toward the bottom of the channel compared to the upper sections. This effect was a consequence of the bulk polymer's damping of the modifying UV radiation due to absorption artifacts. In contrast, this effect was less pronounced for COC. Moreover, we observed that after thermal fusion bonding of the device's cover plate to the substrate, many of the generated functional groups buried into the bulk rendering them inaccessible. The propensity of this surface reorganization was found to be higher for PMMA compared to COC. As an example of the effects of material and microchannel aspect ratios on device functionality, thermoplastic devices for the selection of CTCs from whole blood were evaluated, which required the immobilization of monoclonal antibodies to channel walls. From our results, we concluded the CTC yield and purity of isolated CTCs were dependent on the substrate material with COC producing the highest clinical yields for CTCs as well as better purities compared to PMMA.

  16. Fabrication of three-dimensional scaffolds using precision extrusion deposition with an assisted cooling device.

    PubMed

    Hamid, Q; Snyder, J; Wang, C; Timmer, M; Hammer, J; Guceri, S; Sun, W

    2011-09-01

    In the field of biofabrication, tissue engineering and regenerative medicine, there are many methodologies to fabricate a building block (scaffold) which is unique to the target tissue or organ that facilitates cell growth, attachment, proliferation and/or differentiation. Currently, there are many techniques that fabricate three-dimensional scaffolds; however, there are advantages, limitations and specific tissue focuses of each fabrication technique. The focus of this initiative is to utilize an existing technique and expand the library of biomaterials which can be utilized to fabricate three-dimensional scaffolds rather than focusing on a new fabrication technique. An expanded library of biomaterials will enable the precision extrusion deposition (PED) device to construct three-dimensional scaffolds with enhanced biological, chemical and mechanical cues that will benefit tissue generation. Computer-aided motion and extrusion drive the PED to precisely fabricate micro-scaled scaffolds with biologically inspired, porosity, interconnectivity and internal and external architectures. The high printing resolution, precision and controllability of the PED allow for closer mimicry of tissues and organs. The PED expands its library of biopolymers by introducing an assisting cooling (AC) device which increases the working extrusion temperature from 120 to 250 °C. This paper investigates the PED with the integrated AC's capabilities to fabricate three-dimensional scaffolds that support cell growth, attachment and proliferation. Studies carried out in this paper utilized a biopolymer whose melting point is established to be 200 °C. This polymer was selected to illustrate the newly developed device's ability to fabricate three-dimensional scaffolds from a new library of biopolymers. Three-dimensional scaffolds fabricated with the integrated AC device should illustrate structural integrity and ability to support cell attachment and proliferation.

  17. Thermally-Activated Metal-to-Glass Bonding

    NASA Technical Reports Server (NTRS)

    Gallagher, B. D.

    1986-01-01

    Hermetic seals formed easily by use of metallo-organic film. Metallo-organic film thermally bonded to glass and soldered or welded to form hermetic seal. Film applied as ink consisting of silver neodecanoate in xylene. Relative amounts of ingredients selected to obtain desired viscosity. Material applied by printing or even by scribing with pen. Sealing technique useful in making solar-cell modules, microelectronic packages, and other hermetic silicon devices.

  18. Rate dependence of cell-to-cell variations of lithium-ion cells.

    PubMed

    An, Fuqiang; Chen, Lufan; Huang, Jun; Zhang, Jianbo; Li, Ping

    2016-10-11

    Lithium-ion cells are commonly used in a multicell configuration in power devices and electric vehicles, making the cell-to-cell variation (CtCV) a key factor to consider in system design and management. Previous studies on CtCV have two major limitations: the number of cells is usually less than one hundred, and the cells are usually commercial cells already subjected to cell-screenings. In this article, we first make a statistical analysis on the CtCV of 5473 fresh cells from an automotive battery manufacturer before the cell-screening process. Secondly, 198 cells are randomly selected from these 5473 cells and the rate dependence of the CtCV is examined, focusing on the correlations of capacity versus weight and capacity versus resistance, corresponding to thermodynamic and kinetic factors, respectively. The rate dependence of these two correlations is explained from a phenomenological model. Finally, eight cells from the 198 cells are further characterized with electrochemical impedance spectroscopy method to elucidate the kinetic origins of the CtCV.

  19. Rate dependence of cell-to-cell variations of lithium-ion cells

    PubMed Central

    An, Fuqiang; Chen, Lufan; Huang, Jun; Zhang, Jianbo; Li, Ping

    2016-01-01

    Lithium-ion cells are commonly used in a multicell configuration in power devices and electric vehicles, making the cell-to-cell variation (CtCV) a key factor to consider in system design and management. Previous studies on CtCV have two major limitations: the number of cells is usually less than one hundred, and the cells are usually commercial cells already subjected to cell-screenings. In this article, we first make a statistical analysis on the CtCV of 5473 fresh cells from an automotive battery manufacturer before the cell-screening process. Secondly, 198 cells are randomly selected from these 5473 cells and the rate dependence of the CtCV is examined, focusing on the correlations of capacity versus weight and capacity versus resistance, corresponding to thermodynamic and kinetic factors, respectively. The rate dependence of these two correlations is explained from a phenomenological model. Finally, eight cells from the 198 cells are further characterized with electrochemical impedance spectroscopy method to elucidate the kinetic origins of the CtCV. PMID:27725767

  20. A C-Te-based binary OTS device exhibiting excellent performance and high thermal stability for selector application.

    PubMed

    Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang

    2018-08-24

    In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off  > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.

  1. Correlative fluorescence and scanning transmission electron microscopy of quantum dot-labeled proteins on whole cells in liquid.

    PubMed

    Peckys, Diana B; Bandmann, Vera; de Jonge, Niels

    2014-01-01

    Correlative fluorescence microscopy combined with scanning transmission electron microscopy (STEM) of cells fully immersed in liquid is a new methodology with many application areas. Proteins, in live cells immobilized on microchips, are labeled with fluorescent quantum dot nanoparticles. In this protocol, the epidermal growth factor receptor (EGFR) is labeled. The cells are fixed after a selected labeling time, for example, 5 min as needed to form EGFR dimers. The microchip with cells is then imaged with fluorescence microscopy. Thereafter, STEM can be accomplished in two ways. The microchip with the labeled cells and one microchip with a spacer are assembled into a special microfluidic device and imaged with dedicated high-voltage STEM. Alternatively, thin edges of cells can be studied with environmental scanning electron microscopy with a STEM detector, by placing a microchip with cells in a cooled wet environment. © 2014 Elsevier Inc. All rights reserved.

  2. Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells.

    PubMed

    Zheng, Siyang; Lin, Henry; Liu, Jing-Quan; Balic, Marija; Datar, Ram; Cote, Richard J; Tai, Yu-Chong

    2007-08-31

    This paper presents development of a parylene membrane microfilter device for single stage capture and electrolysis of circulating tumor cells (CTCs) in human blood, and the potential of this device to allow genomic analysis. The presence and number of CTCs in blood has recently been demonstrated to provide significant prognostic information for patients with metastatic breast cancer. While finding as few as five CTCs in about 7.5mL of blood (i.e., 10(10) blood cells in) is clinically significant, detection of CTCs is currently difficult and time consuming. CTC enrichment is performed by either gradient centrifugation of CTC based on their buoyant density or magnetic separation of epithelial CTC, both of which are laborious procedures with variable efficiency, and CTC identification is typically done by trained pathologists through visual observation of stained cytokeratin-positive epithelial CTC. These processes may take hours, if not days. Work presented here provides a micro-electro-mechanical system (MEMS)-based option to make this process simpler, faster, better and cheaper. We exploited the size difference between CTCs and human blood cells to achieve the CTC capture on filter with approximately 90% recovery within 10 min, which is superior to current approaches. Following capture, we facilitated polymerase chain reaction (PCR)-based genomic analysis by performing on-membrane electrolysis with embedded electrodes reaching each of the individual 16,000 filtering pores. The biggest advantage for this on-membrane in situ cell lysis is the high efficiency since cells are immobilized, allowing their direct contact with electrodes. As a proof-of-principle, we show beta actin gene PCR, the same technology can be easily extended to real time PCR for CTC-specific transcript to allow molecular identification of CTC and their further characterization.

  3. Anodic Aluminum Oxide (AAO) Membranes for Cellular Devices

    NASA Astrophysics Data System (ADS)

    Ventura, Anthony P.

    Anodic Aluminum Oxide (AAO) membranes can be fabricated with a highly tunable pore structure making them a suitable candidate for cellular hybrid devices with single-molecule selectivity. The objective of this study was to characterize the cellular response of AAO membranes with varying pore sizes to serve as a proof-of-concept for an artificial material/cell synapse system. AAO membranes with pore diameters ranging from 34-117 nm were achieved via anodization at a temperature of -1°C in a 2.7% oxalic acid electrolyte. An operating window was established for this setup to create membranes with through-pore and disordered pore morphologies. C17.2 neural stem cells were seeded onto the membranes and differentiated via serum withdrawal. The data suggests a highly tunable correlation between AAO pore diameter and differentiated cell populations. Analysis of membranes before and after cell culture indicated no breakdown of the through-pore structure. Immunocytochemistry (ICC) showed that AAO membranes had increased neurite outgrowth when compared to tissue culture treated (TCT) glass, and neurite outgrowth varied with pore diameter. Additionally, lower neuronal percentages were found on AAO as compared to TCT glass; however, neuronal population was also found to vary with pore diameter. Scanning electron microscopy (SEM) and ICC images suggested the presence of a tissue-like layer with a mixed-phenotype population. AAO membranes appear to be an excellent candidate for cellular devices, but more work must be completed to understand the surface chemistry of the AAO membranes as it relates to cellular response.

  4. In vitro motility evaluation of aggregated cancer cells by means of automatic image processing.

    PubMed

    De Hauwer, C; Darro, F; Camby, I; Kiss, R; Van Ham, P; Decaesteker, C

    1999-05-01

    Set up of an automatic image processing based method that enables the motility of in vitro aggregated cells to be evaluated for a number of hours. Our biological model included the PC-3 human prostate cancer cell line growing as a monolayer on the bottom of Falcon plastic dishes containing conventional culture media. Our equipment consisted of an incubator, an inverted phase contrast microscope, a Charge Coupled Device (CCD) video camera, and a computer equipped with an image processing software developed in our laboratory. This computer-assisted microscope analysis of aggregated cells enables global cluster motility to be evaluated. This analysis also enables the trajectory of each cell to be isolated and parametrized within a given cluster or, indeed, the trajectories of individual cells outside a cluster. The results show that motility inside a PC-3 cluster is not restricted to slight motion due to cluster expansion, but rather consists of a marked cell movement within the cluster. The proposed equipment enables in vitro aggregated cell motility to be studied. This method can, therefore, be used in pharmacological studies in order to select anti-motility related compounds. The compounds selected by the equipment described could then be tested in vivo as potential anti-metastatic.

  5. 78 FR 27441 - NIJ Evaluation of Hand-Held Cell Phone Detector Devices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... Hand-Held Cell Phone Detector Devices AGENCY: National Institute of Justice, Department of Justice...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...-held cell phone detector devices for participation in an evaluation by the NIJ Corrections Technology...

  6. Dopant-Free and Carrier-Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives.

    PubMed

    Gao, Pingqi; Yang, Zhenhai; He, Jian; Yu, Jing; Liu, Peipei; Zhu, Juye; Ge, Ziyi; Ye, Jichun

    2018-03-01

    By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c-Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p + - and n + -HJ contacts. These issues have motivated the search for alternative new functional materials and simplified deposition technologies, whereby carrier-selective contacts (CSCs) can be formed directly with c-Si substrates, and thereafter form IBC cells, via a dopant-free method. Screening and modifying CSC materials in a wider context is beneficial for building dopant-free HJ contacts with better performance, shedding new light on the relatively mature Si photovoltaic field. In this review, a significant number of achievements in two representative dopant-free hole-selective CSCs, i.e . , poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/Si and transition metal oxides/Si, have been systemically presented and surveyed. The focus herein is on the latest advances in hole-selective materials modification, interfacial passivation, contact resistivity, light-trapping structure and device architecture design, etc. By analyzing the structure-property relationships of hole-selective materials and assessing their electrical transport properties, promising functional materials as well as important design concepts for such CSCs toward high-performance SCs have been highlighted.

  7. Dopant‐Free and Carrier‐Selective Heterocontacts for Silicon Solar Cells: Recent Advances and Perspectives

    PubMed Central

    Yang, Zhenhai; He, Jian; Yu, Jing; Liu, Peipei; Zhu, Juye; Ge, Ziyi; Ye, Jichun

    2017-01-01

    Abstract By combining the most successful heterojunctions (HJ) with interdigitated back contacts, crystalline silicon (c‐Si) solar cells (SCs) have recently demonstrated a record efficiency of 26.6%. However, such SCs still introduce optical/electrical losses and technological issues due to parasitic absorption/Auger recombination inherent to the doped films and the complex process of integrating discrete p+‐ and n+‐HJ contacts. These issues have motivated the search for alternative new functional materials and simplified deposition technologies, whereby carrier‐selective contacts (CSCs) can be formed directly with c‐Si substrates, and thereafter form IBC cells, via a dopant‐free method. Screening and modifying CSC materials in a wider context is beneficial for building dopant‐free HJ contacts with better performance, shedding new light on the relatively mature Si photovoltaic field. In this review, a significant number of achievements in two representative dopant‐free hole‐selective CSCs, i.e., poly(3,4‐ethylene dioxythiophene):poly(styrenesulfonate)/Si and transition metal oxides/Si, have been systemically presented and surveyed. The focus herein is on the latest advances in hole‐selective materials modification, interfacial passivation, contact resistivity, light‐trapping structure and device architecture design, etc. By analyzing the structure–property relationships of hole‐selective materials and assessing their electrical transport properties, promising functional materials as well as important design concepts for such CSCs toward high‐performance SCs have been highlighted. PMID:29593956

  8. Nanopillar based electrochemical biosensor for monitoring microfluidic based cell culture

    NASA Astrophysics Data System (ADS)

    Gangadharan, Rajan

    In-vitro assays using cultured cells have been widely performed for studying many aspects of cell biology and cell physiology. These assays also form the basis of cell based sensing. Presently, analysis procedures on cell cultures are done using techniques that are not integrated with the cell culture system. This approach makes continuous and real-time in-vitro measurements difficult. It is well known that the availability of continuous online measurements for extended periods of time will help provide a better understanding and will give better insight into cell physiological events. With this motivation we developed a highly sensitive, selective and stable microfluidic electrochemical glucose biosensor to make continuous glucose measurements in cell culture media. The performance of the microfluidic biosensor was enhanced by adding 3D nanopillars to the electrode surfaces. The microfluidic glucose biosensor consisted of three electrodes---Enzyme electrode, Working electrode, and Counter electrode. All these electrodes were enhanced with nanopillars and were optimized in their respective own ways to obtain an effective and stable biosensing device in cell culture media. For example, the 'Enzyme electrode' was optimized for enzyme immobilization via either a polypyrrole-based or a self-assembled-monolayer-based immobilization method, and the 'Working electrode' was modified with Prussian Blue or electropolymerized Neutral Red to reduce the working potential and also the interference from other interacting electro-active species. The complete microfluidic biosensor was tested for its ability to monitor glucose concentration changes in cell culture media. The significance of this work is multifold. First, the developed device may find applications in continuous and real-time measurements of glucose concentrations in in-vitro cell cultures. Second, the development of a microfluidic biosensor will bring technical know-how toward constructing continuous glucose monitoring devices. Third, the methods used to develop 3D electrodes incorporated with nanopillars can be used for other applications such as neural probes, fuel cells, solar cells etc., and finally, the knowledge obtained from the immobilization of enzymes onto nanostructures sheds some new insight into nanomaterial/biomolecule interactions.

  9. Efficient sintering of nanocrystalline titanium dioxide films for dye solar cells via raster scanning laser

    NASA Astrophysics Data System (ADS)

    Mincuzzi, Girolamo; Vesce, Luigi; Reale, Andrea; Di Carlo, Aldo; Brown, Thomas M.

    2009-09-01

    By identifying the right combination of laser parameters, in particular the integrated laser fluence Φ, we fabricated dye solar cells (DSCs) with UV laser-sintered TiO2 films exhibiting a power conversion efficiency η =5.2%, the highest reported for laser-sintered devices. η is dramatically affected by Φ and a clear trend is reported. Significantly, DSCs fabricated by raster scanning the laser beam to sinter the TiO2 films are made as efficient as those with oven-sintered ones. These results, confirmed on three batches of cells, demonstrate the remarkable potential (noncontact, local, low cost, rapid, selective, and scalable) of scanning laser processing applied to DSC technology.

  10. Medical applications of atomic force microscopy and Raman spectroscopy.

    PubMed

    Choi, Samjin; Jung, Gyeong Bok; Kim, Kyung Sook; Lee, Gi-Ja; Park, Hun-Kuk

    2014-01-01

    This paper reviews the recent research and application of atomic force microscopy (AFM) and Raman spectroscopy techniques, which are considered the multi-functional and powerful toolkits for probing the nanostructural, biomechanical and physicochemical properties of biomedical samples in medical science. We introduce briefly the basic principles of AFM and Raman spectroscopy, followed by diagnostic assessments of some selected diseases in biomedical applications using them, including mitochondria isolated from normal and ischemic hearts, hair fibers, individual cells, and human cortical bone. Finally, AFM and Raman spectroscopy applications to investigate the effects of pharmacotherapy, surgery, and medical device therapy in various medicines from cells to soft and hard tissues are discussed, including pharmacotherapy--paclitaxel on Ishikawa and HeLa cells, telmisartan on angiotensin II, mitomycin C on strabismus surgery and eye whitening surgery, and fluoride on primary teeth--and medical device therapy--collagen cross-linking treatment for the management of progressive keratoconus, radiofrequency treatment for skin rejuvenation, physical extracorporeal shockwave therapy for healing of Achilles tendinitis, orthodontic treatment, and toothbrushing time to minimize the loss of teeth after exposure to acidic drinks.

  11. The functional basis of adaptive evolution in chemostats.

    PubMed

    Gresham, David; Hong, Jungeui

    2015-01-01

    Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials.

    PubMed

    Meyers, Steven R; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B; Grinstaff, Mark W; Kenan, Daniel J

    2009-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remain limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, "Interfacial Biomaterials" (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture.

  13. A comparative study of the effects of Ag2S films prepared by MPD and HRTD methods on the performance of polymer solar cells

    NASA Astrophysics Data System (ADS)

    Zhai, Yong; Li, Fumin; Ling, Lanyun; Chen, Chong

    2016-10-01

    In this work, the Ag2S nanocrystalline thin films are deposited on ITO glass via molecular precursor decomposition (MPD) method and newly developed HRTD method for organic solar cells (ITO/Ag2S/P3HT:PCBM/MoO3/Au) as an electron selective layer and a light absorption material. The surface morphology, structure characterization, and optical property of the Ag2S films prepared by these two methods were compared and the effect of the prepared Ag2S film on the device performance is investigated. It is found that the Ag2S films prepared by HRTD method have lower roughness and better uniformity than the corresponding films prepared by the MPD method. In addition, a more effective and rapid transporting ability for the electrons and holes in the ITO/Ag2S(HRTD, n)/P3HT:PCBM/MoO3/Au cells is found, which reduces the charge recombination, and thus, improves the device performance. The highest efficiency of 3.21% achieved for the ITO/Ag2S(HRTD, 50)/P3HT:PCBM/MoO3/Au cell is 93% higher than that of the ITO/Ag2S(MPD, 2)/P3HT:PCBM/MoO3/Au cell.

  14. Transparent conductive carbon nanotubes coated flexible substrate and its application for electronic devices

    NASA Astrophysics Data System (ADS)

    Rahy, Abdelaziz

    The primary goal of this project was to develop a flexible transparent conductor with 100 O/sq with 90% transmittance in the wavelength range of 400-700nm on a flexible substrate. A second objective was to simplify the coating process to be commercially viable. The best result achieved so far was 110 O/sq at 88% transmittance using purified single walled nanotubes (SWNTs) coated on a polyethylene naphthalate (PEN) substrate on both sides. The SWNT sample used was purchased from Carbon Nanotechnologies Inc (CNI). Proper sonication of the single walled nanotubes (SWNTs) with a proper solvent selection with no use of surfactant simplified the overall coating procedure from five steps (prior art method) to three steps utilizing a dip coating method. We also found that the use of metallic SWNTs can significantly improve the conductivity and transmittance compared with the use of mixed SWNTs, i.e., unseparated SWNTs We also studied a possible adhesion mechanism between SWNTs and the surface of PEN; we concluded that pi - pi stacking effect and hydrophobic-to-hydrophobic interaction are the major contributing factors to have CNTs adhere on the surface of the PEN substrate. Working devices of polymer light emitting diodes (PLEDs) and solar cell were successfully fabricated using SWNT coated substrates. A no optimized PLEDs device exhibited low turn-on voltage (˜5V), and the fabricated solar cell functioned. The devices have demonstrated the coated film can be used for potential electronic devices.

  15. Geobacter strains that use alternate organic compounds, methods of making, and methods of use thereof

    DOEpatents

    Lovley, Derek R.; Summers, Zarath Morgan; Haveman, Shelley Annette; Izallalen, Mounir

    2016-03-01

    In preferred embodiments, the present invention provides new isolated strains of a Geobacter species that are capable of using a carbon source that is selected from C.sub.3 to C.sub.12 organic compounds selected from pyruvate or metabolic precursors of pyruvate as an electron donor in metabolism and in subsequent energy production. The wild type strain of the microorganisms has been shown to be unable to use these C.sub.3 to C.sub.12 organic compounds as electron donors. The inventive strains of microorganisms are useful for improving bioremediation applications, including in situ bioremediation (including uranium bioremediation and halogenated solvent bioremediation), microbial fuel cells, power generation from small and large-scale waste facilities (e.g., biomass waste from dairy, agriculture, food processing, brewery, or vintner industries, etc.) using microbial fuel cells, and other applications of microbial fuel cells, including, but not limited to, improved electrical power supplies for environmental sensors, electronic devices, and electric vehicles.

  16. Synthesis and Characterization of Carboxymethylcellulose-Methacrylate Hydrogel Cell Scaffolds

    PubMed Central

    Reeves, Robert; Ribeiro, Andreia; Lombardo, Leonard; Boyer, Richard; Leach, Jennie B.

    2012-01-01

    Many carbohydrates pose advantages for tissue engineering applications due to their hydrophilicity, degradability, and availability of chemical groups for modification. For example, carboxymethylcellulose (CMC) is a water-soluble cellulose derivative that is degradable by cellulase. Though this enzyme is not synthesized by mammalian cells, cellulase and the fragments derived from CMC degradation are biocompatible. With this in mind, we created biocompatible, selectively degradable CMC-based hydrogels that are stable in routine culture, but degrade when exposed to exogenous cellulase. Solutions of CMC-methacrylate and polyethylene glycol dimethacrylate (PEG-DM) were co-crosslinked to form stable hydrogels; we found that greater CMC-methacrylate content resulted in increased gel swelling, protein diffusion and rates of degradation by cellulase, as well as decreased gel shear modulus. CMC-methacrylate/PEG-DM gels modified with the adhesive peptide RGD supported fibroblast adhesion and viability. We conclude that hydrogels based on CMC-methacrylate are suitable for bioengineering applications where selective degradability may be favorable, such as cell scaffolds or controlled release devices. PMID:22708058

  17. A Battery-Aware Algorithm for Supporting Collaborative Applications

    NASA Astrophysics Data System (ADS)

    Rollins, Sami; Chang-Yit, Cheryl

    Battery-powered devices such as laptops, cell phones, and MP3 players are becoming ubiquitous. There are several significant ways in which the ubiquity of battery-powered technology impacts the field of collaborative computing. First, applications such as collaborative data gathering, become possible. Also, existing applications that depend on collaborating devices to maintain the system infrastructure must be reconsidered. Fundamentally, the problem lies in the fact that collaborative applications often require end-user computing devices to perform tasks that happen in the background and are not directly advantageous to the user. In this work, we seek to better understand how laptop users use the batteries attached to their devices and analyze a battery-aware alternative to Gnutella’s ultrapeer selection algorithm. Our algorithm provides insight into how system maintenance tasks can be allocated to battery-powered nodes. The most significant result of our study indicates that a large portion of laptop users can participate in system maintenance without sacrificing any of their battery. These results show great promise for existing collaborative applications as well as new applications, such as collaborative data gathering, that rely upon battery-powered devices.

  18. On-Chip Electrolytic Chemistry for the Tuning of Graphene Devices

    NASA Astrophysics Data System (ADS)

    Schmucker, Scott; Ruppalt, Laura; Culbertson, James; Do, Jae Won; Lyding, Joseph; Robinson, Jeremy; Cress, Cory

    2015-03-01

    The inherent interfacial nature of two-dimensional materials has motivated the tuning of these films by choice of substrate or chemical functionalization. Such parameters are generally selected during fabrication, and therefore remain static during device operation. However, the possibility of dynamic chemistry in a tunable solid-state system will enable the development of new devices which fully leverage the rich chemistry of graphenic materials. Here, we fabricate a novel device for localized, dynamic doping and functionalization of graphene that is compatible with CMOS processing. The device is enabled by a top-gated, solid electrochemical cell designed with calcium fluoride (CaF2) substituting the oxide of a traditional MOSFET. When the CaF2 is gated, F flows from cathode to anode, segregating Ca and F. In this work, one electrode is graphene. When saturated with fluorine, graphene undergoes covalent modification, becoming a wide-bandgap semiconductor. In contrast, when functionalized with calcium or dilute fluorine, graphene is electron or hole doped, respectively. With transport, Raman, and XPS, we demonstrate this lithographically localized and reversible modulation of graphene's electronic and chemical character.

  19. Divergent endometrial inflammatory cytokine expression at peri-implantation period and after the stimulation by copper intrauterine device.

    PubMed

    Chou, Chia-Hung; Chen, Shee-Uan; Shun, Chia-Tung; Tsao, Po-Nien; Yang, Yu-Shih; Yang, Jehn-Hsiahn

    2015-10-15

    Endometrial inflammation has contradictory effects. The one occurring at peri-implantation period is favourable for embryo implantation, whereas the other occurring after the stimulation by copper intrauterine device (Cu-IUD) prevents from embryo implantation. In this study, 8 week female ICR mice were used to investigate the endometrial inflammation, in which they were at proestrus stage (Group 1), at peri-implantation period (Group 2), and had a copper wire implanted into right uterine horn (Group 3). Cytokine array revealed that two cytokines were highly expressed in Group 2 and Group 3 as compared with Group 1, and seven cytokines, including tumour necrosis factor α (TNF-α), had selectively strong expression in Group 3. Immunohistochemistry demonstrated prominent TNF-α staining on the endometrium after Cu-IUD stimulation, and in vitro culture of human endometrial glandular cells with Cu induced TNF-α secretion. The increased TNF-α concentration enhanced in vitro THP-1 cells chemotaxis, and reduced embryo implantation rates. These results suggest that inflammatory cytokine profiles of endometrium are different between those at peri-implantation period and after Cu-IUD stimulation, and TNF-α is the one with selectively strong expression in the latter. It might account for the contradictory biological effects of endometrial inflammation.

  20. Quantitative Analysis, Design, and Fabrication of Biosensing and Bioprocessing Devices in Living Cells

    DTIC Science & Technology

    2015-03-10

    AFRL-OSR-VA-TR-2015-0080 Biosensing and Bioprocessing Devices in Living Cells Domitilla Del Vecchio MASSACHUSETTS INSTITUTE OF TECHNOLOGY Final...Of Biosensing And Bioprocessing Devices In Living Cells FA9550-12-1-0129 D. Del Vecchio Massachusetts Institute of Technology -- 77 Massachusetts...research is to develop quantitative techniques for the de novo design and fabrication of biosensing devices in living cells . Such devices will be entirely

  1. Development of a Single-Cell Migration and Extravasation Platform through Selective Surface Modification.

    PubMed

    Roberts, Steven A; Waziri, Allen E; Agrawal, Nitin

    2016-03-01

    Cell migration through three-dimensional (3D) tissue spaces is integral to many biological and pathological processes, including metastasis. Circulating tumor cells (CTCs) are phenotypically heterogeneous, and in vitro analysis of their extravasation behavior is often impeded by the inability to establish complex tissue-like extracellular matrix (ECM) environments and chemotactic gradients within microfluidic devices. We have developed a novel microfluidic strategy to manipulate surface properties of enclosed microchannels and create 3D ECM structures for real-time observation of individual migrating cells. The wettability of selective interconnected channels is controlled by a plasma pulse, enabling the incorporation of ECM exclusively within the transmigration regions. We applied this approach to collectively analyze CTC-endothelial adhesion, trans-endothelial migration, and subsequent motility of breast cancer cells (MDA-MB-231) through a 3D ECM under artificial gradients of SDF-1α. We observed migration velocities ranging from 5.12 to 12.8 μm/h, which closely correspond to single-cell migration in collagen blocks, but are significantly faster than the migration of cell aggregates. The compartmentalized microchannels separated by the porous ECM makes this in vitro assay versatile and suitable for a variety of applications such as inflammation studies, drug screening, and coculture interactions.

  2. Low-Voltage Bypass Device

    NASA Technical Reports Server (NTRS)

    Wilson, J. P.

    1994-01-01

    Improved bypass device provides low-resistance current shunt around low-voltage power cell when cell fails in open-circuit condition during operation. In comparison with older bypass devices for same application, this one weighs less, generates less heat, and has lower voltage drop (less resistance). Bypass device connected in parallel with power cell. Draws very little current during normal operation of cell.

  3. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature

    PubMed Central

    Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.

    2011-01-01

    Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328

  4. System and method for programmable bank selection for banked memory subsystems

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan

    2010-09-07

    A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.

  5. Chemically differentiating ascorbate-mediated dissolution of quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Su, Cheng-Kuan; Sun, Yuh-Chang

    2013-02-01

    To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule.To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule. Electronic supplementary information (ESI) available: The operation sequence, optimized parameters, instrumental operation conditions, and schematic representations for the proposed sequential in-tube PTFE SPE-ICP-MS hyphenated system are provided. See DOI: 10.1039/c2nr33365a

  6. 21 CFR 866.2360 - Selective culture medium.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...

  7. 21 CFR 866.2360 - Selective culture medium.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...

  8. 21 CFR 866.2360 - Selective culture medium.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...

  9. 21 CFR 866.2360 - Selective culture medium.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...

  10. 21 CFR 866.2360 - Selective culture medium.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Selective culture medium. 866.2360 Section 866.2360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Microbiology Devices § 866.2360 Selective culture...

  11. Gas phase electrodeposition: a programmable multimaterial deposition method for combinatorial nanostructured device discovery.

    PubMed

    Lin, En-Chiang; Cole, Jesse J; Jacobs, Heiko O

    2010-11-10

    This article reports and applies a recently discovered programmable multimaterial deposition process to the formation and combinatorial improvement of 3D nanostructured devices. The gas-phase deposition process produces charged <5 nm particles of silver, tungsten, and platinum and uses externally biased electrodes to control the material flux and to turn deposition ON/OFF in selected domains. Domains host nanostructured dielectrics to define arrays of electrodynamic 10 × nanolenses to further control the flux to form <100 nm resolution deposits. The unique feature of the process is that material type, amount, and sequence can be altered from one domain to the next leading to different types of nanostructures including multimaterial bridges, interconnects, or nanowire arrays with 20 nm positional accuracy. These features enable combinatorial nanostructured materials and device discovery. As a first demonstration, we produce and identify in a combinatorial way 3D nanostructured electrode designs that improve light scattering, absorption, and minority carrier extraction of bulk heterojunction photovoltaic cells. Photovoltaic cells from domains with long and dense nanowire arrays improve the relative power conversion efficiency by 47% when compared to flat domains on the same substrate.

  12. Stretchable Biofuel Cells as Wearable Textile-based Self-Powered Sensors.

    PubMed

    Jeerapan, Itthipon; Sempionatto, Juliane R; Pavinatto, Adriana; You, Jung-Min; Wang, Joseph

    2016-12-21

    Highly stretchable textile-based biofuel cells (BFCs), acting as effective self-powered sensors, have been fabricated using screen-printing of customized stress-enduring inks. Due to synergistic effects of nanomaterial-based engineered inks and the serpentine designs, these printable bioelectronic devices endure severe mechanical deformations, e.g., stretching, indentation, or torsional twisting. Glucose and lactate BFCs with the single enzyme and membrane-free configurations generated the maximum power density of 160 and 250 µW cm -2 with the open circuit voltages of 0.44 and 0.46 V, respectively. The textile-BFCs were able to withstand repeated severe mechanical deformations with minimal impact on its structural integrity, as was indicated from their stable power output after 100 cycles of 100% stretching. By providing power signals proportional to the sweat fuel concentration, these stretchable devices act as highly selective and stable self-powered textile sensors. Applicability to sock-based BFC and self-powered biosensor and mechanically compliant operations was demonstrated on human subjects. These stretchable skin-worn "scavenge-sense-display" devices are expected to contribute to the development of skin-worn energy harvesting systems, advanced non-invasive self-powered sensors and wearable electronics on a stretchable garment.

  13. Comparison between two portable devices for widefield PpIX fluorescence during cervical intraepithelial neoplasia treatment

    NASA Astrophysics Data System (ADS)

    Carbinatto, Fernanda M.; Inada, Natalia Mayumi; Lombardi, Welington; Cossetin, Natália Fernandez; Varoto, Cinthia; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2015-06-01

    The use of portable electronic devices, in particular mobile phones such as smartphones is increasing not only for all known applications, but also for diagnosis of diseases and monitoring treatments like topical Photodynamic Therapy. The aim of the study is to evaluate the production of the photosensitizer Protoporphyrin IX (PpIX) after topical application of a cream containing methyl aminolevulinate (MAL) in the cervix with diagnosis of Cervical Intraepithelial Neoplasia (CIN) through the fluorescence images captured after one and three hours and compare the images using two devices (a Sony Xperia® mobile and an Apple Ipod®. Was observed an increasing fluorescence intensity of the cervix three hours after cream application, in both portable electronic devices. However, because was used a specific program for the treatment of images using the Ipod® device, these images presented better resolution than observed by the Sony cell phone without a specific program. One hour after cream application presented a more selective fluorescence than the group of three hours. In conclusion, the use of portable devices to obtain images of PpIX fluorescence shown to be an effective tool and is necessary the improvement of programs for achievement of better results.

  14. Identification Of Cells With A Compact Microscope Imaging System With Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking mic?oscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  15. Tracking of Cells with a Compact Microscope Imaging System with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously

  16. Tracking of cells with a compact microscope imaging system with intelligent controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2007-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to auto-focus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  17. Aptamer-Nanoparticle Strip Biosensor for Rapid and Sensitive Detection of Cancer Cells

    PubMed Central

    Mao, Xun; Phillips, Joseph A.; Xu, Hui; Tan, Weihong; Zeng, Lingwen; Liu, Guodong

    2009-01-01

    We report an aptamer-nanoparticle strip biosensor (ANSB) for the rapid, specific, sensitive and low-cost detection of circulating cancer cells. Known for their high specificity and affinity, aptamers were first selected from live cells by the cell-SELEX (systematic evolution of ligands by exponential enrichment) process. When next combined with the unique optical properties of gold nanoparticles (Au-NPs), ANSBs were prepared on a lateral flow device. Ramos cells were used as a model target cell to demonstrate proof of principle. Under optimal conditions, the ANSB was capable of detecting a minimum of 4000 Ramos cells without instrumentation (visual judgment) and 800 Ramos cells with a portable strip reader within 15 minutes. Importantly, ANSB has successfully detected Ramos cells in human blood, thus providing a rapid, sensitive and low-cost quantitative tool for the detection of circulating cancer cells. ANSB therefore shows great promise for in-field and point-of-care cancer diagnosis and therapy. PMID:19904989

  18. Nanofluidic Pre-Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring

    DTIC Science & Technology

    2016-10-17

    AFRL-AFOSR-JP-TR-2016-0082 Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human...Nanofluidic Pre -Concentration Devices for Enhancing the Detection Sensitivity and Selectivity of Biomarkers for Human Performance Monitoring 5a...SUBJECT TERMS Biomarkers, Nanofluidics, Pre -concentration Devices, Sensing, AOARD 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF ABSTRACT SAR 18

  19. Static micro-array isolation, dynamic time series classification, capture and enumeration of spiked breast cancer cells in blood: the nanotube-CTC chip

    NASA Astrophysics Data System (ADS)

    Khosravi, Farhad; Trainor, Patrick J.; Lambert, Christopher; Kloecker, Goetz; Wickstrom, Eric; Rai, Shesh N.; Panchapakesan, Balaji

    2016-11-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in blood using nanotube-antibody micro-arrays. 76-element single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (anti-EpCAM), Anti-human epithelial growth factor receptor 2 (anti-Her2) and non-specific IgG antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester. Following device functionalization, blood spiked with SKBR3, MCF7 and MCF10A cells (100/1000 cells per 5 μl per device, 170 elements totaling 0.85 ml of whole blood) were adsorbed on to the nanotube device arrays. Electrical signatures were recorded from each device to screen the samples for differences in interaction (specific or non-specific) between samples and devices. A zone classification scheme enabled the classification of all 170 elements in a single map. A kernel-based statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping series to classify device electrical signals that corresponded to plain blood (control) or SKBR3 spiked blood (case) on anti-Her2 functionalized devices with ˜90% sensitivity, and 90% specificity in capture of 1000 SKBR3 breast cancer cells in blood using anti-Her2 functionalized devices. Screened devices that gave positive electrical signatures were confirmed using optical/confocal microscopy to hold spiked cancer cells. Confocal microscopic analysis of devices that were classified to hold spiked blood based on their electrical signatures confirmed the presence of cancer cells through staining for DAPI (nuclei), cytokeratin (cancer cells) and CD45 (hematologic cells) with single cell sensitivity. We report 55%-100% cancer cell capture yield depending on the active device area for blood adsorption with mean of 62% (˜12 500 captured off 20 000 spiked cells in 0.1 ml blood) in this first nanotube-CTC chip study.

  20. Development of an electronic device quality aluminum antimonide (AlSb) semiconductor for solar cell applications

    DOEpatents

    Sherohman, John W; Yee, Jick Hong; Combs, III, Arthur W

    2014-11-11

    Electronic device quality Aluminum Antimonide (AlSb)-based single crystals produced by controlled atmospheric annealing are utilized in various configurations for solar cell applications. Like that of a GaAs-based solar cell devices, the AlSb-based solar cell devices as disclosed herein provides direct conversion of solar energy to electrical power.

  1. Composite patterning devices for soft lithography

    DOEpatents

    Rogers, John A.; Menard, Etienne

    2007-03-27

    The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.

  2. Wash-free and selective imaging of epithelial cell adhesion molecule (EpCAM) expressing cells with fluorogenic peptide ligands.

    PubMed

    K C, Tara Bahadur; Suga, Kanako; Isoshima, Takashi; Aigaki, Toshiro; Ito, Yoshihiro; Shiba, Kiyotaka; Uzawa, Takanori

    2018-06-02

    Detection of the cells expressing an epithelial cell adhesion molecule (EpCAM) is a crucial step to identify circulating tumor cells (CTCs) from blood. To detect the EpCAM, we here designed and synthesized a series of fluorogenic peptides. Specifically, we functionalized an EpCAM-binding peptide, Ep114, by replacing its amino acids to an aminophenylalanine that was modified with environmentally sensitive 7-nitro-2,1,3-benzoxadiazole (NBD-amPhe). Among six synthesized peptides, we have found that two peptides, Q4X and V6X (X represents NBD-amPhe), retain the Ep114's binding ability and specifically mark EpCAM-expressing cells by just adding these peptides to the cultivation medium. Our wash-free, fluorogenic peptide ligands would boost the development of next generation devices for CTC diagnoses. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Facile and gram-scale synthesis of metal-free catalysts: toward realistic applications for fuel cells.

    PubMed

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-03-02

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells.

  4. Facile and Gram-scale Synthesis of Metal-free Catalysts: Toward Realistic Applications for Fuel Cells

    PubMed Central

    Kim, Ok-Hee; Cho, Yong-Hun; Chung, Dong Young; Kim, Min Jeong; Yoo, Ji Mun; Park, Ji Eun; Choe, Heeman; Sung, Yung-Eun

    2015-01-01

    Although numerous reports on nonprecious metal catalysts for replacing expensive Pt-based catalysts have been published, few of these studies have demonstrated their practical application in fuel cells. In this work, we report graphitic carbon nitride and carbon nanofiber hybrid materials synthesized by a facile and gram-scale method via liquid-based reactions, without the use of toxic materials or a high pressure-high temperature reactor, for use as fuel cell cathodes. The resulting materials exhibited remarkable methanol tolerance, selectivity, and stability even without a metal dopant. Furthermore, these completely metal-free catalysts exhibited outstanding performance as cathode materials in an actual fuel cell device: a membrane electrode assembly with both acidic and alkaline polymer electrolytes. The fabrication method and remarkable performance of the single cell produced in this study represent progressive steps toward the realistic application of metal-free cathode electrocatalysts in fuel cells. PMID:25728910

  5. Expression microdissection adapted to commercial laser dissection instruments

    PubMed Central

    Hanson, Jeffrey C; Tangrea, Michael A; Kim, Skye; Armani, Michael D; Pohida, Thomas J; Bonner, Robert F; Rodriguez-Canales, Jaime; Emmert-Buck, Michael R

    2016-01-01

    Laser-based microdissection facilitates the isolation of specific cell populations from clinical or animal model tissue specimens for molecular analysis. Expression microdissection (xMD) is a second-generation technology that offers considerable advantages in dissection capabilities; however, until recently the method has not been accessible to investigators. This protocol describes the adaptation of xMD to commonly used laser microdissection instruments and to a commercially available handheld laser device in order to make the technique widely available to the biomedical research community. The method improves dissection speed for many applications by using a targeting probe for cell procurement in place of an operator-based, cell-by-cell selection process. Moreover, xMD can provide improved dissection precision because of the unique characteristics of film activation. The time to complete the protocol is highly dependent on the target cell population and the number of cells needed for subsequent molecular analysis. PMID:21412274

  6. Method to monitor HC-SCR catalyst NOx reduction performance for lean exhaust applications

    DOEpatents

    Viola, Michael B [Macomb Township, MI; Schmieg, Steven J [Troy, MI; Sloane, Thompson M [Oxford, MI; Hilden, David L [Shelby Township, MI; Mulawa, Patricia A [Clinton Township, MI; Lee, Jong H [Rochester Hills, MI; Cheng, Shi-Wai S [Troy, MI

    2012-05-29

    A method for initiating a regeneration mode in selective catalytic reduction device utilizing hydrocarbons as a reductant includes monitoring a temperature within the aftertreatment system, monitoring a fuel dosing rate to the selective catalytic reduction device, monitoring an initial conversion efficiency, selecting a determined equation to estimate changes in a conversion efficiency of the selective catalytic reduction device based upon the monitored temperature and the monitored fuel dosing rate, estimating changes in the conversion efficiency based upon the determined equation and the initial conversion efficiency, and initiating a regeneration mode for the selective catalytic reduction device based upon the estimated changes in conversion efficiency.

  7. Design and Use of a Low Cost, Automated Morbidostat for Adaptive Evolution of Bacteria Under Antibiotic Drug Selection.

    PubMed

    Liu, Po C; Lee, Yi T; Wang, Chun Y; Yang, Ya-Tang

    2016-09-27

    We describe a low cost, configurable morbidostat for characterizing the evolutionary pathway of antibiotic resistance. The morbidostat is a bacterial culture device that continuously monitors bacterial growth and dynamically adjusts the drug concentration to constantly challenge the bacteria as they evolve to acquire drug resistance. The device features a working volume of ~10 ml and is fully automated and equipped with optical density measurement and micro-pumps for medium and drug delivery. To validate the platform, we measured the stepwise acquisition of trimethoprim resistance in Escherichia coli MG 1655, and integrated the device with a multiplexed microfluidic platform to investigate cell morphology and antibiotic susceptibility. The approach can be up-scaled to laboratory studies of antibiotic drug resistance, and is extendible to adaptive evolution for strain improvements in metabolic engineering and other bacterial culture experiments.

  8. IGZO thin film transistor biosensors functionalized with ZnO nanorods and antibodies.

    PubMed

    Shen, Yi-Chun; Yang, Chun-Hsu; Chen, Shu-Wen; Wu, Shou-Hao; Yang, Tsung-Lin; Huang, Jian-Jang

    2014-04-15

    We demonstrate a biosensor structure consisting of an IGZO (Indium-Gallium-Zinc-Oxide) TFT (thin film transistor) and an extended sensing pad. The TFT acts as the sensing and readout device, while the sensing pad ensures the isolation of biological solution from the transistor channel layer, and meanwhile increases the sensing area. The biosensor is functionalized by first applying ZnO nanorods to increase the surface area for attracting electrical charges of EGFR (epidermal growth factor receptor) antibodies. The device is able to selectively detect 36.2 fM of EGFR in the total protein solution of 0.1 ng/ml extracted from squamous cell carcinoma (SCC). Furthermore, the conjugation duration of the functionalized device with EGFR can be limited to 3 min, implying that the biosensor has the advantage for real-time detection. © 2013 Elsevier B.V. All rights reserved.

  9. Measurement of the water content in oil and oil products using IR light-emitting diode-photodiode optrons

    NASA Astrophysics Data System (ADS)

    Bogdanovich, M. V.; Kabanau, D. M.; Lebiadok, Y. V.; Shpak, P. V.; Ryabtsev, A. G.; Ryabtsev, G. I.; Shchemelev, M. A.; Andreev, I. A.; Kunitsyna, E. V.; Ivanov, E. V.; Yakovlev, Yu. P.

    2017-02-01

    The feasibility of using light-emitting devices, the radiation spectrum of which has maxima at wavelengths of 1.7, 1.9, and 2.2 μm for determining the water concentration in oil and oil products (gasoline, kerosene, diesel fuel) has been demonstrated. It has been found that the measurement error can be lowered if (i) the temperature of the light-emitting diode is maintained accurate to 0.5-1.0°C, (ii) by using a cell through which a permanently stirred analyte is pumped, and (iii) by selecting the repetition rate of radiation pulses from the light-emitting diodes according to the averaging time. A meter of water content in oil and oil products has been developed that is built around IR light-emitting device-photodiode optrons. This device provides water content on-line monitoring accurate to 1.5%.

  10. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    PubMed Central

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  11. Catch and Patch: A Pipette-Based Approach for Automating Patch Clamp That Enables Cell Selection and Fast Compound Application.

    PubMed

    Danker, Timm; Braun, Franziska; Silbernagl, Nikole; Guenther, Elke

    2016-03-01

    Manual patch clamp, the gold standard of electrophysiology, represents a powerful and versatile toolbox to stimulate, modulate, and record ion channel activity from membrane fragments and whole cells. The electrophysiological readout can be combined with fluorescent or optogenetic methods and allows for ultrafast solution exchanges using specialized microfluidic tools. A hallmark of manual patch clamp is the intentional selection of individual cells for recording, often an essential prerequisite to generate meaningful data. So far, available automation solutions rely on random cell usage in the closed environment of a chip and thus sacrifice much of this versatility by design. To parallelize and automate the traditional patch clamp technique while perpetuating the full versatility of the method, we developed an approach to automation, which is based on active cell handling and targeted electrode placement rather than on random processes. This is achieved through an automated pipette positioning system, which guides the tips of recording pipettes with micrometer precision to a microfluidic cell handling device. Using a patch pipette array mounted on a conventional micromanipulator, our automated patch clamp process mimics the original manual patch clamp as closely as possible, yet achieving a configuration where recordings are obtained from many patch electrodes in parallel. In addition, our implementation is extensible by design to allow the easy integration of specialized equipment such as ultrafast compound application tools. The resulting system offers fully automated patch clamp on purposely selected cells and combines high-quality gigaseal recordings with solution switching in the millisecond timescale.

  12. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.

    PubMed

    Halldorsson, Skarphedinn; Lucumi, Edinson; Gómez-Sjöberg, Rafael; Fleming, Ronan M T

    2015-01-15

    Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Stochastic Model of Clogging in a Microfluidic Cell Sorter

    NASA Astrophysics Data System (ADS)

    Fai, Thomas; Rycroft, Chris

    2016-11-01

    Microfluidic devices for sorting cells by deformability show promise for various medical purposes, e.g. detecting sickle cell anemia and circulating tumor cells. One class of such devices consists of a two-dimensional array of narrow channels, each column containing several identical channels in parallel. Cells are driven through the device by an applied pressure or flow rate. Such devices allows for many cells to be sorted simultaneously, but cells eventually clog individual channels and change the device properties in an unpredictable manner. In this talk, we propose a stochastic model for the failure of such microfluidic devices by clogging and present preliminary theoretical and computational results. The model can be recast as an ODE that exhibits finite time blow-up under certain conditions. The failure time distribution is investigated analytically in certain limiting cases, and more realistic versions of the model are solved by computer simulation.

  14. Method and system for reducing device performance degradation of organic devices

    DOEpatents

    Teague, Lucile C.

    2014-09-02

    Methods and systems for reducing the deleterious effects of gate bias stress on the drain current of an organic device, such as an organic thin film transistor, are provided. In a particular aspect, the organic layer of an organic device is illuminated with light having characteristics selected to reduce the gate bias voltage effects on the drain current of the organic device. For instance, the wavelength and intensity of the light are selected to provide a desired recovery of drain current of the organic device. If the characteristics of the light are appropriately matched to the organic device, recovery of the deleterious effects caused by gate bias voltage stress effects on the drain current of the organic device can be achieved. In a particular aspect, the organic device is selectively illuminated with light to operate the organic device in multiple modes of operation.

  15. Dermal Coverage of Traumatic War Wounds

    DTIC Science & Technology

    2017-01-01

    Device for re-epithelialization of full thickness wounds treated with INTEGRA MBWM. The ReCell Device is a stand-alone, battery operated cell...standalone, battery operated cell separation device that enables preparation of a cell suspension from a small, thin, split-thickness skin biopsy

  16. A Micro Fluorescent Activated Cell Sorter for Astrobiology Applications

    NASA Technical Reports Server (NTRS)

    Platt, Donald W.; Hoover, Richard B.

    2009-01-01

    A micro-scale Fluorescent Activated Cell Sorter (microFACS) for astrobiology applications is under development. This device is designed to have a footprint of 7 cm x 7 cm x 4 cm and allow live-dead counts and sorting of cells that have fluorescent characteristics from staining. The FACS system takes advantage of microfluidics to create a cell sorter that can fit in the palm of the hand. A micron-scale channel allows cells to pass by a blue diode which causes emission of marker-expressed cells which are detected by a filtered photodetector. A small microcontroller then counts cells and operates high speed valves to select which chamber the cell is collected in (a collection chamber or a waste chamber). Cells with the expressed characteristic will be collected in the collection chamber. This system has been built and is currently being tested. We are also designing a system with integrated MEMS-based pumps and valves for a small and compact unit to fly on small satellite-based biology experiments.

  17. Parylene as a new membrane material for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Lu, Bo

    The work in this thesis aims to use MEMS and microfabrication technologies to develop two types of parylene membrane devices for biomedical applications. The first device is the parylene membrane filter for cancer detection. The presence of circulating tumor cells (CTC) in patient blood is an important sign of cancer metastasis. However, currently there are two big challenges for CTC detection. First, CTCs are extremely rare, especially at the early stage of cancer metastasis. Secondly, CTCs are very fragile, and are very likely to be damaged during the capturing process. By using size-based membrane filtration through the specially designed parylene filters, together with a constant-pressure filtration system, we are able to capture the CTCs from patient blood with high capture efficiency, high viability, moderate enrichment, and high throughput. Both immunofluorescence enumeration and telomerase activity detection have been used to detect and differentiate the captured CTCs. The feasibility of further cell culture of the captured CTCs has also been demonstrated, which could be a useful way to increase the number of CTCs for future studies. Models of the time-dependent cell membrane damage are developed to predict and prevent CTC damage during this detection process. The results of clinical trials further demonstrate that the parylene membrane filter is a promising device for cancer detection. The second device is the parylene artificial Bruch's membrane for age-related macular degeneration (AMD). AMD is usually characterized by an impaired Bruch's membrane with much lowered permeability, which impedes the transportation of nutrients from choroid vessels to nourish the retinal pigment epithelial (RPE) cells and photoreceptors. Parylene is selected as a substitute material because of its good mechanical properties, transparency, biocompatibility, and machinability. More importantly, it is found that the permeability of submicron parylene is very similar to that of healthy human Bruch's membrane. A mesh-supported submicron parylene membrane structure has been designed and its feasibility as an artificial Bruch's membrane has been demonstrated by diffusion experiments, cell perfusion culture, and pressure deflection tests. RPE cells are able to adhere, proliferate and develop into normal in vivo-like morphology and functions. Currently this artificial membrane is under clinical trials.

  18. Wrapped optoelectronic devices and methods for making same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curran, Seamus; Dias, Sampath; Alley, Nigel

    In various embodiments, optoelectronic devices are described herein. The optoelectronic device may include an optoelectronic cell arranged so as to wrap around a central axis wherein the cell includes a first conductive layer, a semi-conductive layer disposed over and in electrical communication with the first conductive layer, and a second conductive layer disposed over and in electrical communication with the semi-conductive layer. In various embodiments, methods for making optoelectronic devices are described herein. The methods may include forming an optoelectronic cell while flat and wrapping the optoelectronic cell around a central axis. The optoelectronic devices may be photovoltaic devices. Alternatively,more » the optoelectronic devices may be organic light emitting diodes.« less

  19. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    PubMed

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  1. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  2. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  3. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...

  4. 21 CFR 864.7825 - Sickle cell test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Sickle cell test. 864.7825 Section 864.7825 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7825 Sickle cell test. (a) Identification. A sickle cell test is a device used to determine the sickle cell hemoglobin content of human...

  5. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells for...

  6. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  7. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  8. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  9. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  10. 21 CFR 864.7825 - Sickle cell test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Sickle cell test. 864.7825 Section 864.7825 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7825 Sickle cell test. (a) Identification. A sickle cell test is a device used to determine the sickle cell hemoglobin content of human...

  11. 21 CFR 864.8200 - Blood cell diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Blood cell diluent. 864.8200 Section 864.8200 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8200 Blood cell diluent. (a) Identification. A blood cell diluent is a device used to dilute blood for further testing, such as blood cell...

  12. 21 CFR 864.7825 - Sickle cell test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Sickle cell test. 864.7825 Section 864.7825 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7825 Sickle cell test. (a) Identification. A sickle cell test is a device used to determine the sickle cell hemoglobin content of human...

  13. 21 CFR 864.7825 - Sickle cell test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Sickle cell test. 864.7825 Section 864.7825 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7825 Sickle cell test. (a) Identification. A sickle cell test is a device used to determine the sickle cell hemoglobin content of human...

  14. 21 CFR 864.7825 - Sickle cell test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Sickle cell test. 864.7825 Section 864.7825 Food... DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7825 Sickle cell test. (a) Identification. A sickle cell test is a device used to determine the sickle cell hemoglobin content of human...

  15. Magnetic manipulation device for the optimization of cell processing conditions.

    PubMed

    Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki

    2010-02-01

    Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Review of microfluidic cell culture devices for the control of gaseous microenvironments in vitro

    NASA Astrophysics Data System (ADS)

    Wu, H.-M.; Lee, T.-A.; Ko, P.-L.; Chiang, H.-J.; Peng, C.-C.; Tung, Y.-C.

    2018-04-01

    Gaseous microenvironments play important roles in various biological activities in vivo. However, it is challenging to precisely control gaseous microenvironments in vitro for cell culture due to the high diffusivity nature of gases. In recent years, microfluidics has paved the way for the development of new types of cell culture devices capable of manipulating cellular microenvironments, and provides a powerful tool for in vitro cell studies. This paper reviews recent developments of microfluidic cell culture devices for the control of gaseous microenvironments, and discusses the advantages and limitations of current devices. We conclude with suggestions for the future development of microfluidic cell culture devices for the control of gaseous microenvironments.

  17. A flexible and rapid frequency selective scheme for SRS microscopy

    NASA Astrophysics Data System (ADS)

    Li, Jingting; Yue, Yuankai; Shih, Wei-Chuan

    2017-02-01

    Stimulated Raman scattering (SRS) is a label-free imaging technique suitable for studying biological systems. Due to stimulated nature by ultrafast laser pulses, SRS microscopy has the advantage of significantly higher sensitivity but often reduced spectroscopic information. In this paper, we present a newly constructed femtosecond SRS microscope with a high-speed dynamic micromirror device based pulse shaper to achieve flexible and rapid frequency selection within the C-H stretch region near 2800 to 3100 cm-1 with spectral width of 30 cm-1. This technique is applicable to lipid profiling such as cell activity mapping, lipid distribution mapping and distinction among subclasses.

  18. Short protection device for stack of electrolytic cells

    DOEpatents

    Katz, M.; Schroll, C.R.

    1984-11-29

    The present invention relates to a device for preventing the electrical shorting of a stack of electrolytic cells during an extended period of operation. The device has application to fuel cell and other electrolytic cell stacks operating in low or high temperature corrosive environments. It is of particular importance for use in a stack of fuel cells operating with molten metal carbonate electrolyte for the production of electric power. Also, the device may have application in similar technology involving stacks of electrolytic cells for electrolysis to decompose chemical compounds.

  19. Robust and Recyclable Substrate Template with an Ultrathin Nanoporous Counter Electrode for Organic-Hole-Conductor-Free Monolithic Perovskite Solar Cells.

    PubMed

    Li, Ming-Hsien; Yang, Yu-Syuan; Wang, Kuo-Chin; Chiang, Yu-Hsien; Shen, Po-Shen; Lai, Wei-Chih; Guo, Tzung-Fang; Chen, Peter

    2017-12-06

    A robust and recyclable monolithic substrate applying all-inorganic metal-oxide selective contact with a nanoporous (np) Au:NiO x counter electrode is successfully demonstrated for efficient perovskite solar cells, of which the perovskite active layer is deposited in the final step for device fabrication. Through annealing of the Ni/Au bilayer, the nanoporous NiO/Au electrode is formed in virtue of interconnected Au network embedded in oxidized Ni. By optimizing the annealing parameters and tuning the mesoscopic layer thickness (mp-TiO 2 and mp-Al 2 O 3 ), a decent power conversion efficiency (PCE) of 10.25% is delivered. With mp-TiO 2 /mp-Al 2 O 3 /np-Au:NiO x as a template, the original perovskite solar cell with 8.52% PCE can be rejuvenated by rinsing off the perovskite material with dimethylformamide and refilling with newly deposited perovskite. A renewed device using the recycled substrate once and twice, respectively, achieved a PCE of 8.17 and 7.72% that are comparable to original performance. This demonstrates that the novel device architecture is possible to recycle the expensive transparent conducting glass substrates together with all the electrode constituents. Deposition of stable multicomponent perovskite materials in the template also achieves an efficiency of 8.54%, which shows its versatility for various perovskite materials. The application of such a novel NiO/Au nanoporous electrode has promising potential for commercializing cost-effective, large scale, and robust perovskite solar cells.

  20. Designing components using smartMOVE electroactive polymer technology

    NASA Astrophysics Data System (ADS)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  1. Tracking metastatic breast cancer: the future of biology in biosensors.

    PubMed

    Lim, Y C; Wiegmans, A P

    2016-04-01

    Circulating tumour cells associated with breast cancer (brCTCs) represent cells that have the capability to establish aggressive secondary metastatic tumours. The isolation and characterization of CTCs from blood in a single device is the future of oncology diagnosis and treatment. The methods of enrichment of CTCs have primarily utilized simple biological interactions with bimodal reporting with biased high purity and low numbers or low purity and high background. In this review, we will discuss the advances in microfluidics that has allowed the use of more complex selection criteria and biological methods to identify CTC populations. We will also discuss a potential new method of selection based on the response of the oncogenic DNA repair pathways within brCTCs. This method would allow insight into not only the oncogenic signalling at play but the chemoresistance mechanisms that could guide future therapeutic intervention at any stage of disease progression.

  2. Feasibility of Induced Pluripotent Stem Cell Therapies for Treatment of Type 1 Diabetes.

    PubMed

    Duffy, Caden; Prugue, Cesar; Glew, Rachel; Smith, Taryn; Howell, Calvin; Choi, Gina; Cook, Alonzo David

    2018-06-27

    Despite their potential for treating type 1 diabetes (T1D), induced pluripotent stem cells (iPSCs) have not yet been used successfully in the clinic. In this paper, advances in iPSC therapies are reviewed and compared to current methods of treating T1D. Encapsulation of iPSCs is being pursued to address such safety concerns as the possibility of immune rejection or teratoma formation, and provide for retrievability. Issues of material selection, cell differentiation, size of islet aggregates, sites of implantation, animal models, and vascularization are also being addressed. Clinical trials are being conducted to test a variety of new devices with the hope of providing additional therapies for T1D.

  3. All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation

    PubMed Central

    2015-01-01

    This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232

  4. Single-cell cloning and expansion of human induced pluripotent stem cells by a microfluidic culture device.

    PubMed

    Matsumura, Taku; Tatsumi, Kazuya; Noda, Yuichiro; Nakanishi, Naoyuki; Okonogi, Atsuhito; Hirano, Kunio; Li, Liu; Osumi, Takashi; Tada, Takashi; Kotera, Hidetoshi

    2014-10-10

    The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A neuron-in-capillary platform for facile collection and mass spectrometric characterization of a secreted neuropeptide

    PubMed Central

    Lee, Chang Young; Fan, Yi; Rubakhin, Stanislav S.; Yoon, Sook; Sweedler, Jonathan V.

    2016-01-01

    The integration of microfluidic devices—which efficiently handle small liquid volumes—with separations/mass spectrometry (MS) is an effective approach for profiling the neurochemistry occurring in selected neurons. Interfacing the microfluidic cell culture to the mass spectrometer is challenging because of geometric and scaling issues. Here we demonstrate the hyphenation of a neuron-in-capillary platform to a solid phase extraction device and off-line MS. A primary neuronal culture of Aplysia californica neurons was established directly inside a cylindrical polyimide capillary. The approach also uses a particle-embedded monolith to condition neuropeptide releasates collected from several Aplysia neurons cultured in the capillary, with the subsequent characterization of released peptides via MS. This system presents a number of advances compared to more traditional microfluidic devices fabricated with polydimethylsiloxane. These include low cost, easy access to cell culture, rigidity, ease of transport, and minimal fluid handling. The cylindrical geometry of the platform allows convenient interface with a wide range of analytical tools that utilize capillary columns. PMID:27245782

  6. High-Efficiency Polycrystalline Thin Film Tandem Solar Cells.

    PubMed

    Kranz, Lukas; Abate, Antonio; Feurer, Thomas; Fu, Fan; Avancini, Enrico; Löckinger, Johannes; Reinhard, Patrick; Zakeeruddin, Shaik M; Grätzel, Michael; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-07-16

    A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.

  7. Automatic voltage imbalance detector

    DOEpatents

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  8. Design of a new membrane stretching device

    NASA Astrophysics Data System (ADS)

    Shao, Yiran

    Cell stretching device has been applied into the lab use for many years to help researchers study about the behavior of cells during the stretching process. Because the cell responses to the different mechanical stimuli, especially in the case of disease, the cell stretching device is a necessary tool to study the cell behavior in a controlled environment. However existing devices have limitations, such as too big to fit the culture chamber, unable to be observed during the stretching process and too expensive to fabricate. In this thesis, a new cell stretcher is designed to resolve these limitations. Many typical cell stretching devices only work under simple conditions. For instance they can only apply the strain on the cell in uniaxial or equibiaxial directions. On the other hand the environment of cells' survival is varying. Many new cell stretchers have been developed, which have the same property that cells can be stretched via the radical deformation of the elastomeric membrane. The aim of this new design is to create a cell stretching device that fits in general lab conditions. This device is designed to fit on a microscope to observe, as well as in the incubator. In addition, two small step motors are used to control the strain, adjust the frequency, and maintain the stability precisely. Problems such as the culture media leakage and the membrane breakage are solved by the usage of multiple materials for both the cell stretcher and the membrane. Based on the experimental results, this device can satisfy the requirements of target users with a reduced manufacturing cost. In the future, an auto-focus tracking function will be developed to allow real time observation of the cells' behavior.

  9. NANIVID: A New Research Tool for Tissue Microenvironment Studies

    NASA Astrophysics Data System (ADS)

    Raja, Waseem K.

    Metastatic tumors are heterogeneous in nature and composed of subpopulations of cells having various metastatic potentials. The time progression of a tumor creates a unique microenvironment to improve the invasion capabilities and survivability of cancer cells in different microenvironments. In the early stages of intravasation, cancer cells establish communication with other cell types through a paracrine loop and covers long distances by sensing growth factor gradients through extracellular matrices. Cellular migration both in vitro and in vivo is a complex process and to understand their motility in depth, sophisticated techniques are required to document and record events in real time. This study presents the design and optimization of a new versatile chemotaxis device called the NANIVID (NANo IntraVital Imaging Device), developed using advanced Nano/Micro fabrication techniques. The current version of this device has been demonstrated to form a stable (epidermal growth factor) EGF gradient in vitro (2D and 3D) while a miniaturized size of NANIVID is used as an implantable device for intravital studies of chemotaxis and to collect cells in vivo. The device is fabricated using microfabrication techniques in which two substrates are bonded together using a thin polymer layer creating a bonded device with one point source (approximately 150 im x 50 im) outlet. The main structures of the device consist of two transparent substrates: one having etched chambers and channel while the second consists of a microelectrode system to measure real time cell arrival inside the device. The chamber of the device is loaded with a growth factor reservoir consisting of hydrogel to sustain a steady release of growth factor into the surrounding environment for long periods of time and establishing a concentration gradient from the device. The focus of this study was to design and optimize the new device for cell chemotaxis studies in breast cancer cells in cell culture. Our results show that we have created a flexible, cheap, miniature and autonomous chemotaxis device and demonstrate its usefulness in 2D and 3D cell culture. We also provide preliminary data for use of the device in vivo.

  10. Cryopreservation of human insulin expressing cells macro-encapsulated in a durable therapeutic immunoisolating device theracyte.

    PubMed

    Yakhnenko, Ilya; Wong, Wallace K; Katkov, Igor I; Itkin-Ansari, Pamela

    2012-01-01

    Encapsulating insulin producing cells (INPCs) in an immunoisolation device have been shown to cure diabetes in rodents without the need for immunosuppression. However, micro-encapsulation in semi-solid gels raises longevity and safety concerns for future use of stem cell derived INPCs. We have focused on a durable and retrievable macro-encapsulation (> 10(6) cells) device (TheraCyte). Cryopreservation (CP) of cells preloaded into the device is highly desirable but may require prolonged exposure to cryoprotectants during loading and post-thaw manipulations. Here, we are reporting survival and function of a human islet cell line frozen as single cells or as islet-like cell clusters. The non-clusterized cells exhibited high cryosurvival after prolonged pre-freeze or post-thaw exposure to 10 percent DMSO. However, both clusterization and especially loading INPCs into the device reduced viable yield even without CP. The survived cryopreserved macro-encapsulated INPCs remained fully functional suggesting that CP of macro-encapsulated cells is a promising tool for cell based therapies.

  11. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.

    PubMed

    Liu, Zhike; Lau, Shu Ping; Yan, Feng

    2015-08-07

    Graphene is the thinnest two-dimensional (2D) carbon material and has many advantages including high carrier mobilities and conductivity, high optical transparency, excellent mechanical flexibility and chemical stability, which make graphene an ideal material for various optoelectronic devices. The major applications of graphene in photovoltaic devices are for transparent electrodes and charge transport layers. Several other 2D materials have also shown advantages in charge transport and light absorption over traditional semiconductor materials used in photovoltaic devices. Great achievements in the applications of 2D materials in photovoltaic devices have been reported, yet numerous challenges still remain. For practical applications, the device performance should be further improved by optimizing the 2D material synthesis, film transfer, surface functionalization and chemical/physical doping processes. In this review, we will focus on the recent advances in the applications of graphene and other 2D materials in various photovoltaic devices, including organic solar cells, Schottky junction solar cells, dye-sensitized solar cells, quantum dot-sensitized solar cells, other inorganic solar cells, and perovskite solar cells, in terms of the functionalization techniques of the materials, the device design and the device performance. Finally, conclusions and an outlook for the future development of this field will be addressed.

  12. A self-powered glucose biosensor based on pyrolloquinoline quinone glucose dehydrogenase and bilirubin oxidase operating under physiological conditions.

    PubMed

    Kulkarni, Tanmay; Slaughter, Gymama

    2017-07-01

    A novel biosensing system capable of simultaneously sensing glucose and powering portable electronic devices such as a digital glucometer is described. The biosensing system consists of enzymatic glucose biofuel cell bioelectrodes functionalized with pyrolloquinoline quinone glucose dehydrogenase (PQQ-GDH) and bilirubin oxidase (BOD) at the bioanode and biocathode, respectively. A dual-stage power amplification circuit is integrated with the single biofuel cell to amplify the electrical power generated. In addition, a capacitor circuit was incorporated to serve as the transducer for sensing glucose. The open circuit voltage of the optimized biofuel cell reached 0.55 V, and the maximum power density achieved was 0.23 mW/ cm 2 at 0.29 V. The biofuel cell exhibited a sensitivity of 0.312 mW/mM.cm 2 with a linear dynamic range of 3 mM - 20 mM glucose. The overall self-powered glucose biosensor is capable of selectively screening against common interfering species, such as ascorbate and urate and exhibited an operational stability of over 53 days, while maintaining 90 % of its activity. These results demonstrate the system's potential to replace the current glucose monitoring devices that rely on external power supply, such as a battery.

  13. Colloidal Engineering for Infrared-Bandgap Solution-Processed Quantum Dot Solar Cells

    NASA Astrophysics Data System (ADS)

    Kiani, Amirreza

    Ever-increasing global energy demand and a diminishing fossil fuel supply have prompted the development of technologies for sustainable energy production. Solar photovoltaic (PV) devices have huge potential for energy harvesting and production since the sun delivers more energy to the earth in one hour than the global population consumes in one year. The solar cell industry is now dominated by silicon PV devices. The cost of silicon modules has decreased substantially over the past two decades and the number of installed silicon PV devices has increased dramatically. There remains a need for emerging solar technologies that can harvest the untapped portion of the solar spectrum and can be integrated on flexible and curved surfaces. This thesis focuses on colloidal quantum dot (CQD) PV devices. CQDs are nanoparticles fabricated using a low-temperature and cost-effective solution technique. These materials suffer from a high density of surface traps derived from the large surface-to-volume ratio of CQD nanoparticles, combined with limited carrier mobility. These result in a short carrier diffusion length, a main limiting factor in CQD solar cell performance. This thesis seeks to address the poor diffusion length in lead sulfide (PbS) CQD films and pave the way for new applications for CQD PV devices in infrared solar harvesting and waste heat recovery. A two-fold reduction in surface trap density is demonstrated using molecular halide treatment. Iodine molecules introduced prior to the film formation replace the otherwise unpassivated surface sulfur atoms. This results in a 35% increase in the diffusion length and enables charge extraction over thicker active layer leading to the world's most efficient CQD PV devices from June 2015 to July 2016 with the certified power conversion efficiency of 9.9%. This represents a 30% increase over the best-certified PCE (7.5%) prior to this thesis. The colloidal engineering highlighted herein enables infrared (IR) solar harvesting for the first time. Addition of short bromothiol ligands during the synthesis significantly reduces the agglomeration of 1 eV bandgap CQDs and maintains efficient charge extraction into the selective electrodes. The devices can augment the performance of the best silicon cells by 7 power points where 0.8 additive power points are demonstrated experimentally. A tailored solution exchanged process developed for 1 eV bandgap CQDs results in air-stable IR PV devices with improved manufacturability. The process utilizes a tailored combination of lead iodide (PbI2) and ammonium acetate for the solution exchange and hexylamine + MEK as the final solvent to yield solar thick films with the filtered (1100 nm and beyond) performance of 0.4%. This thesis pushes the limit of CQD device applications to waste heat recovery. I demonstrate successful harvesting of low energy photons emitted from a hot object by designing and developing the first solution-processed thermophotovoltaic devices. These devices are comprised of 0.7 eV bandgap CQDs that successfully harvest photons emitted from an 800°C heat source.

  14. 21 CFR 864.8150 - Calibrator for cell indices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for cell indices. 864.8150 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8150 Calibrator for cell indices. (a) Identification. A calibrator for cell indices is a device that approximates whole blood or...

  15. 21 CFR 864.8150 - Calibrator for cell indices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for cell indices. 864.8150 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8150 Calibrator for cell indices. (a) Identification. A calibrator for cell indices is a device that approximates whole blood or...

  16. 21 CFR 864.8150 - Calibrator for cell indices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for cell indices. 864.8150 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8150 Calibrator for cell indices. (a) Identification. A calibrator for cell indices is a device that approximates whole blood or...

  17. 21 CFR 864.8150 - Calibrator for cell indices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for cell indices. 864.8150 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8150 Calibrator for cell indices. (a) Identification. A calibrator for cell indices is a device that approximates whole blood or...

  18. 21 CFR 864.8150 - Calibrator for cell indices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for cell indices. 864.8150 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8150 Calibrator for cell indices. (a) Identification. A calibrator for cell indices is a device that approximates whole blood or...

  19. Bio-Nanobattery Development and Characterization

    NASA Technical Reports Server (NTRS)

    King, Glen C.; Choi, Sang H.; Chu, Sang-Hyon; Kim, Jae-Woo; Watt, Gerald D.; Lillehei, Peter T.; Park, Yeonjoon; Elliott, James R.

    2005-01-01

    A bio-nanobattery is an electrical energy storage device that utilizes organic materials and processes on an atomic, or nanometer-scale. The bio-nanobattery under development at NASA s Langley Research Center provides new capabilities for electrical power generation, storage, and distribution as compared to conventional power storage systems. Most currently available electronic systems and devices rely on a single, centralized power source to supply electrical power to a specified location in the circuit. As electronic devices and associated components continue to shrink in size towards the nanometer-scale, a single centralized power source becomes impractical. Small systems, such as these, will require distributed power elements to reduce Joule heating, to minimize wiring quantities, and to allow autonomous operation of the various functions performed by the circuit. Our research involves the development and characterization of a bio-nanobattery using ferritins reconstituted with both an iron core (Fe-ferritin) and a cobalt core (Co-ferritin). Synthesis and characterization of the Co-ferritin and Fe-ferritin electrodes were performed, including reducing capability and the half-cell electrical potentials. Electrical output of nearly 0.5 V for the battery cell was measured. Ferritin utilizing other metallic cores were also considered to increase the overall electrical output. Two dimensional ferritin arrays were produced on various substrates to demonstrate the feasibility of a thin-film nano-scaled power storage system for distributed power storage applications. The bio-nanobattery will be ideal for nanometerscaled electronic applications, due to the small size, high energy density, and flexible thin-film structure. A five-cell demonstration article was produced for concept verification and bio-nanobattery characterization. Challenges to be addressed include the development of a multi-layered thin-film, increasing the energy density, dry-cell bionanobattery development, and selection of ferritin core materials to allow the broadest range of applications. The potential applications for the distributed power system include autonomously-operating intelligent chips, flexible thin-film electronic circuits, nanoelectromechanical systems (NEMS), ultra-high density data storage devices, nanoelectromagnetics, quantum electronic devices, biochips, nanorobots for medical applications and mechanical nano-fabrication, etc.

  20. Automated cellular sample preparation using a Centrifuge-on-a-Chip.

    PubMed

    Mach, Albert J; Kim, Jae Hyun; Arshi, Armin; Hur, Soojung Claire; Di Carlo, Dino

    2011-09-07

    The standard centrifuge is a laboratory instrument widely used by biologists and medical technicians for preparing cell samples. Efforts to automate the operations of concentration, cell separation, and solution exchange that a centrifuge performs in a simpler and smaller platform have had limited success. Here, we present a microfluidic chip that replicates the functions of a centrifuge without moving parts or external forces. The device operates using a purely fluid dynamic phenomenon in which cells selectively enter and are maintained in microscale vortices. Continuous and sequential operation allows enrichment of cancer cells from spiked blood samples at the mL min(-1) scale, followed by fluorescent labeling of intra- and extra-cellular antigens on the cells without the need for manual pipetting and washing steps. A versatile centrifuge-analogue may open opportunities in automated, low-cost and high-throughput sample preparation as an alternative to the standard benchtop centrifuge in standardized clinical diagnostics or resource poor settings.

  1. Flow cytometry: basic principles and applications.

    PubMed

    Adan, Aysun; Alizada, Günel; Kiraz, Yağmur; Baran, Yusuf; Nalbant, Ayten

    2017-03-01

    Flow cytometry is a sophisticated instrument measuring multiple physical characteristics of a single cell such as size and granularity simultaneously as the cell flows in suspension through a measuring device. Its working depends on the light scattering features of the cells under investigation, which may be derived from dyes or monoclonal antibodies targeting either extracellular molecules located on the surface or intracellular molecules inside the cell. This approach makes flow cytometry a powerful tool for detailed analysis of complex populations in a short period of time. This review covers the general principles and selected applications of flow cytometry such as immunophenotyping of peripheral blood cells, analysis of apoptosis and detection of cytokines. Additionally, this report provides a basic understanding of flow cytometry technology essential for all users as well as the methods used to analyze and interpret the data. Moreover, recent progresses in flow cytometry have been discussed in order to give an opinion about the future importance of this technology.

  2. Isolation of circulating plasma cells from blood of patients diagnosed with clonal plasma cell disorders using cell selection microfluidics.

    PubMed

    Kamande, Joyce W; Lindell, Maria A M; Witek, Małgorzata A; Voorhees, Peter M; Soper, Steven A

    2018-02-19

    Blood samples from patients with plasma cell disorders were analysed for the presence of circulating plasma cells (CPCs) using a microfluidic device modified with monoclonal anti-CD138 antibodies. CPCs were immuno-phenotyped using a CD38/CD56/CD45 panel and identified in 78% of patients with monoclonal gammopathy of undetermined significance (MGUS), all patients with smouldering and symptomatic multiple myeloma (MM), and none in the controls. The burden of CPCs was higher in patients with symptomatic MM compared with MGUS and smouldering MM (p < 0.05). FISH analysis revealed the presence of chromosome 13 deletions in CPCs that correlated with bone marrow results. Point mutations in KRAS were identified, including different mutations from sub-clones derived from the same patient. The microfluidic assay represents a highly sensitive method for enumerating CPCs and allows for the cytogenetic and molecular characterization of CPCs.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Emily L.; Deceglie, Michael G.; Stradins, Paul

    Three-terminal (3T) tandem cells fabricated by combining an interdigitated back contact (IBC) Si device with a wider bandgap top cell have the potential to provide a robust operating mechanism to efficiently capture the solar spectrum without the need to current match sub-cells or fabricate complicated metal interconnects between cells. Here we develop a two dimensional device physics model to study the behavior of IBC Si solar cells operated in a 3T configuration. We investigate how different cell designs impact device performance and discuss the analysis protocol used to understand and optimize power produced from a single junction, 3T device.

  4. Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication

    PubMed Central

    Gao, Zan; Bumgardner, Clifton; Song, Ningning; Zhang, Yunya; Li, Jingjing; Li, Xiaodong

    2016-01-01

    With rising energy concerns, efficient energy conversion and storage devices are required to provide a sustainable, green energy supply. Solar cells hold promise as energy conversion devices due to their utilization of readily accessible solar energy; however, the output of solar cells can be non-continuous and unstable. Therefore, it is necessary to combine solar cells with compatible energy storage devices to realize a stable power supply. To this end, supercapacitors, highly efficient energy storage devices, can be integrated with solar cells to mitigate the power fluctuations. Here, we report on the development of a solar cell-supercapacitor hybrid device as a solution to this energy requirement. A high-performance, cotton-textile-enabled asymmetric supercapacitor is integrated with a flexible solar cell via a scalable roll-to-roll manufacturing approach to fabricate a self-sustaining power pack, demonstrating its potential to continuously power future electronic devices. PMID:27189776

  5. The development of peptide-based interfacial biomaterials for generating biological functionality on the surface of bioinert materials

    PubMed Central

    Meyers, Steven R.; Khoo, Xiaojuan; Huang, Xin; Walsh, Elisabeth B.; Grinstaff, Mark W.; Kenan, Daniel J.

    2013-01-01

    Biomaterials used in implants have traditionally been selected based on their mechanical properties, chemical stability, and biocompatibility. However, the durability and clinical efficacy of implantable biomedical devices remains limited in part due to the absence of appropriate biological interactions at the implant interface and the lack of integration into adjacent tissues. Herein, we describe a robust peptide-based coating technology capable of modifying the surface of existing biomaterials and medical devices through the non-covalent binding of modular biofunctional peptides. These peptides contain at least one material binding sequence and at least one biologically active sequence and thus are termed, “Interfacial Biomaterials” (IFBMs). IFBMs can simultaneously bind the biomaterial surface while endowing it with desired biological functionalities at the interface between the material and biological realms. We demonstrate the capabilities of model IFBMs to convert native polystyrene, a bioinert surface, into a bioactive surface that can support a range of cell activities. We further distinguish between simple cell attachment with insufficient integrin interactions, which in some cases can adversely impact downstream biology, versus biologically appropriate adhesion, cell spreading, and cell survival mediated by IFBMs. Moreover, we show that we can use the coating technology to create spatially resolved patterns of fluorophores and cells on substrates and that these patterns retain their borders in culture. PMID:18929406

  6. Diabetes Is Reversed in a Murine Model by Marginal Mass Syngeneic Islet Transplantation Using a Subcutaneous Cell Pouch Device.

    PubMed

    Pepper, Andrew R; Pawlick, Rena; Gala-Lopez, Boris; MacGillivary, Amanda; Mazzuca, Delfina M; White, David J G; Toleikis, Philip M; Shapiro, A M James

    2015-11-01

    Islet transplantation is a successful β-cell replacement therapy for selected patients with type 1 diabetes mellitus. Although high rates of early insulin independence are achieved routinely, long-term function wanes over time. Intraportal transplantation is associated with procedural risks, requires multiple donors, and does not afford routine biopsy. Stem cell technologies may require potential for retrievability, and graft removal by hepatectomy is impractical. There is a clear clinical need for an alternative, optimized transplantation site. The subcutaneous space is a potential substitute, but transplantation of islets into this site has routinely failed to reverse diabetes. However, an implanted device, which becomes prevascularized before transplantation, may alter this equation. Syngeneic mouse islets were transplanted subcutaneously within Sernova Corp's Cell Pouch (CP). All recipients were preimplanted with CPs 4 weeks before diabetes induction and transplantation. After transplantation, recipients were monitored for glycemic control and glucose tolerance. Mouse islets transplanted into the CP routinely restored glycemic control with modest delay and responded well to glucose challenge, comparable to renal subcapsular islet grafts, despite a marginal islet dose, and normoglycemia was maintained until graft explantation. In contrast, islets transplanted subcutaneously alone failed to engraft. Islets within CPs stained positively for insulin, glucagon, and microvessels. The CP is biocompatible, forms an environment suitable for islet engraftment, and offers a potential alternative to the intraportal site for islet and future stem cell therapies.

  7. Miniaturizing 3D assay for high-throughput drug and genetic screens for small patient-derived tumor samples (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rotem, Asaf; Garraway, Levi; Su, Mei-Ju; Basu, Anindita; Regev, Aviv; Struhl, Kevin

    2017-02-01

    Three-dimensional growth conditions reflect the natural environment of cancer cells and are crucial to be performed at drug screens. We developed a 3D assay for cellular transformation that involves growth in low attachment (GILA) conditions and is strongly correlated with the 50-year old benchmark assay-soft agar. Using GILA, we performed high-throughput screens for drugs and genes that selectively inhibit or increase transformation, but not proliferation. This phenotypic approach is complementary to our genetic approach that utilizes single-cell RNA-sequencing of a patient sample to identify putative oncogenes that confer sensitivity to drugs designed to specifically inhibit the identified oncoprotein. Currently, we are dealing with a big challenge in our field- the limited number of cells that might be extracted from a biopsy. Small patient-derived samples are hard to test in the traditional multiwell plate and it will be helpful to minimize the culture area and the experimental system. We managed to design a suitable microfluidic device for limited number of cells and perform the assay using image analysis. We aim to test drugs on tumor cells, outside of the patient body- and recommend on the ideal treatment that is tailored to the individual. This device will help to minimize biopsy-sampling volumes and minimize interventions in the patient's tumor.

  8. Molecular interfaces for plasmonic hot electron photovoltaics

    NASA Astrophysics Data System (ADS)

    Pelayo García de Arquer, F.; Mihi, Agustín; Konstantatos, Gerasimos

    2015-01-01

    The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices.The use of self-assembled monolayers (SAMs) to improve and tailor the photovoltaic performance of plasmonic hot-electron Schottky solar cells is presented. SAMs allow the simultaneous control of open-circuit voltage, hot-electron injection and short-circuit current. To that end, a plurality of molecule structural parameters can be adjusted: SAM molecule's length can be adjusted to control plasmonic hot electron injection. Modifying SAMs dipole moment allows for a precise tuning of the open-circuit voltage. The functionalization of the SAM can also be selected to modify short-circuit current. This allows the simultaneous achievement of high open-circuit voltages (0.56 V) and fill-factors (0.58), IPCE above 5% at the plasmon resonance and maximum power-conversion efficiencies of 0.11%, record for this class of devices. Electronic supplementary information (ESI) available: Contact-potential differentiometry measurements, FTIR characterization, performance statistics and gold devices. See DOI: 10.1039/c4nr06356b

  9. Material selection indices for design of surgical instruments with long tubular shafts.

    PubMed

    Nelson, Carl A

    2013-02-01

    In any medical device design process, material selection plays an important role. For devices which sustain mechanical loading, strength and stiffness requirements can be significant drivers of the design. This paper examines the specific case of minimally invasive surgical instruments, including robotic instruments, having long, tubular shafts. Material properties-based selection indices are derived for achieving high performance of these devices in terms of strength and stiffness, and the use of these indices for informing the medical device design problem is illustrated.

  10. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Kasdan, Harvey L. (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor)

    2016-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  11. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor); Tai, Yu-Chong (Inventor)

    2015-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  12. Microfluidic Device

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolenbaugh, Jonathan M.; Naqi, Syed

    A method to operate a clutch device in an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and at least one electric machine includes, in response to a failure condition detected within a flow control device configured to facilitate flow of hydraulic fluid for operating the clutch device, selectively preventing the flow of hydraulic fluid from entering the flow control device and feeding the clutch device. Synchronization of the clutch device is initiated when the clutch device is intended for activation, and only if the clutch device is synchronized, the flow of hydraulic fluid is selectively permitted to entermore » the flow control device to activate the clutch device.« less

  14. Electroluminescence of thin-film CdTe solar cells and modules

    NASA Astrophysics Data System (ADS)

    Raguse, John Michael

    Thin-film photovoltaics has the potential to be a major source of world electricity. Mitigation of non-uniformities in thin-film solar cells and modules may help improve photovoltaic conversion efficiencies. In this manuscript, a measurement technique is discussed in detail which has the capability of detecting such non-uniformities in a form useful for analysis. Thin-film solar cells emit radiation while operating at forward electrical bias, analogous to an LED, a phenomena known as electroluminescence (EL). This process relatively is inefficient for polycrystalline CdTe devices, on the order of 10-4%, as most of the energy is converted into heat, but still strong enough for many valuable measurements. A EL system was built at the Colorado State University Photovoltaics Laboratory to measure EL from CdTe cells and modules. EL intensity normalized to exposure time and injection current density has been found to correlate very well with the difference between ideal and measured open-circuit voltage from devices that include a GaAs cell, an AlGaAs LED, and several CdTe cells with variations in manufacturing. Furthermore, these data points were found to be in good agreement when overlaid with calibrated data from two additional sources. The magnitude of the inverse slope of the fit is in agreement with the thermal voltage and the intercept was found to have a value near unity, in agreement with theory. The expanded data set consists of devices made from one of seven different band gaps and spans eight decades of EQELED efficiencies. As expected, cells which exhibit major failure of light-dark J-V superposition did not follow trend of well-behaved cells. EL images of selected defects from CdTe cells and modules are discussed and images are shown to be highly sensitive to defects in devices, since the intensity depends exponentially on the cells' voltages. The EL technique has proven to be a useful high-throughput tool for screening of cells. In addition to EL images, other opto-electronics characterization techniques were used to analyze defects in cells and modules such as weak-diode areas, cell delineation near substrate edge, non-uniform chlorine passivation, holes in back contact, high-resistance foreign layer, high back-contact sheet resistance, a discontinuous P3 line scribe (intercell shunt) and shunt through a cell (intracell shunt). Although EL images are proficient at illustrating the location and severity of defects with potentially high spatial resolution and short measurement times, their ability to identify the cause of such defects is limited. EL in concert with Light-Beam-Induced Current (LBIC), however, makes for a powerful ensemble as LBIC can probe different film layers at arbitrary voltage bias conditions, albeit with increased measurement times and potentially reduced spatial resolution.

  15. Novel multi-functional fluid flow device for studying cellular mechanotransduction

    PubMed Central

    Lyons, James S.; Iyer, Shama R.; Lovering, Richard M.; Ward, Christopher W.; Stains, Joseph P.

    2016-01-01

    Cells respond to their mechanical environment by initiating multiple mechanotransduction signaling pathways. Defects in mechanotransduction have been implicated in a number of pathologies; thus, there is need for convenient and efficient methods for studying the mechanisms underlying these processes. A widely used and accepted technique for mechanically stimulating cells in culture is the introduction of fluid flow on cell monolayers. Here, we describe a novel, multifunctional fluid flow device for exposing cells to fluid flow in culture. This device integrates with common lab equipment including routine cell culture plates and peristaltic pumps. Further, it allows the fluid flow treated cells to be examined with outcomes at the cell and molecular level. We validated the device using the biologic response of cultured UMR-106 osteoblast-like cells in comparison to a commercially available system of laminar sheer stress to track live cell calcium influx in response to fluid flow. In addition, we demonstrate the fluid flow-dependent activation of phospho-ERK in these cells, consistent with the findings in other fluid flow devices. This device provides a low cost, multi-functional alternative to currently available systems, while still providing the ability to generate physiologically relevant conditions for studying processes involved in mechanotransduction in vitro. PMID:27887728

  16. Efficient generation of hepatic cells from mesenchymal stromal cells by an innovative bio-microfluidic cell culture device.

    PubMed

    Yen, Meng-Hua; Wu, Yuan-Yi; Liu, Yi-Shiuan; Rimando, Marilyn; Ho, Jennifer Hui-Chun; Lee, Oscar Kuang-Sheng

    2016-08-19

    Mesenchymal stromal cells (MSCs) are multipotent and have great potential in cell therapy. Previously we reported the differentiation potential of human MSCs into hepatocytes in vitro and that these cells can rescue fulminant hepatic failure. However, the conventional static culture method neither maintains growth factors at an optimal level constantly nor removes cellular waste efficiently. In addition, not only is the duration of differentiating hepatocyte lineage cells from MSCs required to improve, but also the need for a large number of hepatocytes for cell therapy has not to date been addressed fully. The purpose of this study is to design and develop an innovative microfluidic device to overcome these shortcomings. We designed and fabricated a microfluidic device and a culture system for hepatic differentiation of MSCs using our protocol reported previously. The microfluidic device contains a large culture chamber with a stable uniform flow to allow homogeneous distribution and expansion as well as efficient induction of hepatic differentiation for MSCs. The device enables real-time observation under light microscopy and exhibits a better differentiation efficiency for MSCs compared with conventional static culture. MSCs grown in the microfluidic device showed a higher level of hepatocyte marker gene expression under hepatic induction. Functional analysis of hepatic differentiation demonstrated significantly higher urea production in the microfluidic device after 21 days of hepatic differentiation. The microfluidic device allows the generation of a large number of MSCs and induces hepatic differentiation of MSCs efficiently. The device can be adapted for scale-up production of hepatic cells from MSCs for cellular therapy.

  17. One-step fabrication of 3D silver paste electrodes into microfluidic devices for enhanced droplet-based cell sorting

    NASA Astrophysics Data System (ADS)

    Rao, Lang; Cai, Bo; Yu, Xiao-Lei; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2015-05-01

    3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.

  18. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-03-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  19. Fatigue Assessment of Nickel-Titanium Peripheral Stents: Comparison of Multi-Axial Fatigue Models

    NASA Astrophysics Data System (ADS)

    Allegretti, Dario; Berti, Francesca; Migliavacca, Francesco; Pennati, Giancarlo; Petrini, Lorenza

    2018-02-01

    Peripheral Nickel-Titanium (NiTi) stents exploit super-elasticity to treat femoropopliteal artery atherosclerosis. The stent is subject to cyclic loads, which may lead to fatigue fracture and treatment failure. The complexity of the loading conditions and device geometry, coupled with the nonlinear material behavior, may induce multi-axial and non-proportional deformation. Finite element analysis can assess the fatigue risk, by comparing the device state of stress with the material fatigue limit. The most suitable fatigue model is not fully understood for NiTi devices, due to its complex thermo-mechanical behavior. This paper assesses the fatigue behavior of NiTi stents through computational models and experimental validation. Four different strain-based models are considered: the von Mises criterion and three critical plane models (Fatemi-Socie, Brown-Miller, and Smith-Watson-Topper models). Two stents, made of the same material with different cell geometries are manufactured, and their fatigue behavior is experimentally characterized. The comparison between experimental and numerical results highlights an overestimation of the failure risk by the von Mises criterion. On the contrary, the selected critical plane models, even if based on different damage mechanisms, give a better fatigue life estimation. Further investigations on crack propagation mechanisms of NiTi stents are required to properly select the most reliable fatigue model.

  20. Microfluidic device for chemical and mechanical manipulation of suspended cells

    NASA Astrophysics Data System (ADS)

    Rezvani, Samaneh; Shi, Nan; Squires, Todd M.; Schmidt, Christoph F.

    2018-01-01

    Microfluidic devices have proven to be useful and versatile for cell studies. We here report on a method to adapt microfluidic stickers made from UV-curable optical adhesive with inserted permeable hydrogel membrane micro-windows for mechanical studies of suspended cells. The windows were fabricated by optical projection lithography using scanning confocal microscopy. The device allows us to rapidly exchange embedding medium while observing and probing the cells. We characterize the device and demonstrate the function by exposing cultured fibroblasts to varying osmotic conditions. Cells can be shrunk reversibly under osmotic compression.

  1. Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.

    PubMed

    El-Ali, Jamil; Gaudet, Suzanne; Günther, Axel; Sorger, Peter K; Jensen, Klavs F

    2005-06-01

    We describe a microfluidic device with rapid stimulus and lysis of mammalian cells for resolving fast transient responses in cell signaling networks. The device uses segmented gas-liquid flow to enhance mixing and has integrated thermoelectric heaters and coolers to control the temperature during cell stimulus and lysis. Potential negative effects of segmented flow on cell responses are investigated in three different cell types, with no morphological changes and no activation of the cell stress-sensitive mitogen activated protein kinases observed. Jurkat E6-1 cells are stimulated in the device using alpha-CD3, and the resulting activations of ERK and JNK are presented for different time points. Stimulation of cells performed on chip results in pathway activation identical to that of conventionally treated cells under the same conditions.

  2. A boosted negative bit-line SRAM with write-assisted cell in 45 nm CMOS technology

    NASA Astrophysics Data System (ADS)

    Bhatnagar, Vipul; Kumar, Pradeep; Pandey, Neeta; Pandey, Sujata

    2018-02-01

    A new 11 T SRAM cell with write-assist is proposed to improve operation at low supply voltage. In this technique, a negative bit-line voltage is applied to one of the write bit-lines, while a boosted voltage is applied to the other write bit-line where transmission gate access is used in proposed 11 T cell. Supply voltage to one of the inverters is interrupted to weaken the feedback. Improved write feature is attributed to strengthened write access devices and weakened feedback loop of cell at the same time. Amount of boosting required for write performance improvement is also reduced due to feedback weakening, solving the persistent problem of half-selected cells and reliability reduction of access devices with the other suggested boosted and negative bit-line techniques. The proposed design improves write time by 79%, 63% and slower by 52% with respect to LP 10 T, WRE 8 T and 6 T cells respectively. It is found that write margin for the proposed cell is improved by about 4×, 2.4× and 5.37× compared to WRE8 T, LP10 T and 6 T respectively. The proposed cell with boosted negative bit line (BNBL) provides 47%, 31%, and 68.4% improvement in write margin with respect to no write-assist, negative bit line (NBL) and boosted bit line (BBL) write-assist respectively. Also, new sensing circuit with replica bit-line is proposed to give a more precise timing of applying boosted voltages for improved results. All simulations are done on TSMC 45 nm CMOS technology.

  3. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  4. Unbiased Sunlight-Driven Artificial Photosynthesis of Carbon Monoxide from CO2 Using a ZnTe-Based Photocathode and a Perovskite Solar Cell in Tandem.

    PubMed

    Jang, Youn Jeong; Jeong, Inyoung; Lee, Jaehyuk; Lee, Jinwoo; Ko, Min Jae; Lee, Jae Sung

    2016-07-26

    Solar fuel production, mimicking natural photosynthesis of converting CO2 into useful fuels and storing solar energy as chemical energy, has received great attention in recent years. Practical large-scale fuel production needs a unique device capable of CO2 reduction using only solar energy and water as an electron source. Here we report such a system composed of a gold-decorated triple-layered ZnO@ZnTe@CdTe core-shell nanorod array photocathode and a CH3NH3PbI3 perovskite solar cell in tandem. The assembly allows effective light harvesting of higher energy photons (>2.14 eV) from the front-side photocathode and lower energy photons (>1.5 eV) from the back-side-positioned perovskite solar cell in a single-photon excitation. This system represents an example of a photocathode-photovoltaic tandem device operating under sunlight without external bias for selective CO2 conversion. It exhibited a steady solar-to-CO conversion efficiency over 0.35% and a solar-to-fuel conversion efficiency exceeding 0.43% including H2 as a minor product.

  5. Single event upset vulnerability of selected 4K and 16K CMOS static RAM's

    NASA Technical Reports Server (NTRS)

    Kolasinski, W. A.; Koga, R.; Blake, J. B.; Brucker, G.; Pandya, P.; Petersen, E.; Price, W.

    1982-01-01

    Upset thresholds for bulk CMOS and CMOS/SOS RAMS were deduced after bombardment of the devices with 140 MeV Kr, 160 MeV Ar, and 33 MeV O beams in a cyclotron. The trials were performed to test prototype devices intended for space applications, to relate feature size to the critical upset charge, and to check the validity of computer simulation models. The tests were run on 4 and 1 K memory cells with 6 transistors, in either hardened or unhardened configurations. The upset cross sections were calculated to determine the critical charge for upset from the soft errors observed in the irradiated cells. Computer simulations of the critical charge were found to deviate from the experimentally observed variation of the critical charge as the square of the feature size. Modeled values of series resistors decoupling the inverter pairs of memory cells showed that above some minimum resistance value a small increase in resistance produces a large increase in the critical charge, which the experimental data showed to be of questionable validity unless the value is made dependent on the maximum allowed read-write time.

  6. Room-Temperature and Solution-Processable Cu-Doped Nickel Oxide Nanoparticles for Efficient Hole-Transport Layers of Flexible Large-Area Perovskite Solar Cells.

    PubMed

    He, Qiqi; Yao, Kai; Wang, Xiaofeng; Xia, Xuefeng; Leng, Shifeng; Li, Fan

    2017-12-06

    Flexible perovskite solar cells (PSCs) using plastic substrates have become one of the most attractive points in the field of thin-film solar cells. Low-temperature and solution-processable nanoparticles (NPs) enable the fabrication of semiconductor thin films in a simple and low-cost approach to function as charge-selective layers in flexible PSCs. Here, we synthesized phase-pure p-type Cu-doped NiO x NPs with good electrical properties, which can be processed to smooth, pinhole-free, and efficient hole transport layers (HTLs) with large-area uniformity over a wide range of film thickness using a room-temperature solution-processing technique. Such a high-quality inorganic HTL allows for the fabrication of flexible PSCs with an active area >1 cm 2 , which have a power conversion efficiency over 15.01% without hysteresis. Moreover, the Cu/NiO x NP-based flexible devices also demonstrate excellent air stability and mechanical stability compared to their counterpart fabricated on the pristine NiO x films. This work will contribute to the evolution of upscaling flexible PSCs with a simple fabrication process and high device performances.

  7. High-temperature-measuring device

    DOEpatents

    Not Available

    1981-01-27

    A temperature measuring device for very high design temperatures (to 2000/sup 0/C) is described. The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensonally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  8. High temperature measuring device

    DOEpatents

    Tokarz, Richard D.

    1983-01-01

    A temperature measuring device for very high design temperatures (to 2,000.degree. C.). The device comprises a homogenous base structure preferably in the form of a sphere or cylinder. The base structure contains a large number of individual walled cells. The base structure has a decreasing coefficient of elasticity within the temperature range being monitored. A predetermined quantity of inert gas is confined within each cell. The cells are dimensionally stable at the normal working temperature of the device. Increases in gaseous pressure within the cells will permanently deform the cell walls at temperatures within the high temperature range to be measured. Such deformation can be correlated to temperature by calibrating similarly constructed devices under known time and temperature conditions.

  9. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  10. Fabrication of a co-culture micro-bioreactor device for efficient hepatic differentiation of human induced pluripotent stem cells (hiPSCs).

    PubMed

    Kehtari, Mousa; Zeynali, Bahman; Soleimani, Masoud; Kabiri, Mahboubeh; Seyedjafari, Ehsan

    2018-04-27

    Primary hepatocytes, as the gold standard cell type for in vitro models, lose their characteristic morphology and functions after few days. There is an urgent need to develop physiologically relevant models that recapitulate liver microenvironment to obtain mature hepatocyte from stem cells. We designed and fabricated a micro-bioreactor device mimicking the physiological shear stress and cell-cell interaction in liver sinusoid microenvironment. Induced pluripotent stem cells (iPSCs) were co-cultured with human umbilical vein endothelial cells (HUVECs) in the micro-bioreactor device with continuous perfusion of hepatic differentiation medium (100 μL/h). Simulation results showed that flow field inside our perfusion device was uniform and shear stress was adjusted to physiological condition (<2 dyne/cm 2 ). IPSCs-derived hepatocytes (iPSCs-Heps) that were cultured in micro-bioreactor device showed a higher level of hepatic markers compared to those in static condition. Flow cytometry and immunocytochemistry analysis revealed iPSCs cultured in the device sequentially acquired characteristics of definitive endodermal cells (SOX17 positive), hepatoblasts (AFP positive) and mature hepatocyte (ALB positive). Moreover, the albumin and urea secretion were significantly higher in micro-bioreactor device than those cultured in culture dishes during experiment. Thus, based on our results, we propose our micro-bioreactor as a beneficial device to generate mature hepatocytes for drug screening and basic research.

  11. Learning Optimized Local Difference Binaries for Scalable Augmented Reality on Mobile Devices.

    PubMed

    Xin Yang; Kwang-Ting Cheng

    2014-06-01

    The efficiency, robustness and distinctiveness of a feature descriptor are critical to the user experience and scalability of a mobile augmented reality (AR) system. However, existing descriptors are either too computationally expensive to achieve real-time performance on a mobile device such as a smartphone or tablet, or not sufficiently robust and distinctive to identify correct matches from a large database. As a result, current mobile AR systems still only have limited capabilities, which greatly restrict their deployment in practice. In this paper, we propose a highly efficient, robust and distinctive binary descriptor, called Learning-based Local Difference Binary (LLDB). LLDB directly computes a binary string for an image patch using simple intensity and gradient difference tests on pairwise grid cells within the patch. To select an optimized set of grid cell pairs, we densely sample grid cells from an image patch and then leverage a modified AdaBoost algorithm to automatically extract a small set of critical ones with the goal of maximizing the Hamming distance between mismatches while minimizing it between matches. Experimental results demonstrate that LLDB is extremely fast to compute and to match against a large database due to its high robustness and distinctiveness. Compared to the state-of-the-art binary descriptors, primarily designed for speed, LLDB has similar efficiency for descriptor construction, while achieving a greater accuracy and faster matching speed when matching over a large database with 2.3M descriptors on mobile devices.

  12. Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells.

    PubMed

    Feldt, Sandra M; Gibson, Elizabeth A; Gabrielsson, Erik; Sun, Licheng; Boschloo, Gerrit; Hagfeldt, Anders

    2010-11-24

    Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.

  13. Redox shuttles for lithium ion batteries

    DOEpatents

    Weng, Wei; Zhang, Zhengcheng; Amine, Khalil

    2014-11-04

    Compounds may have general Formula IVA or IVB. ##STR00001## where, R.sup.8, R.sup.9, R.sup.10, and R.sup.11 are each independently selected from H, F, Cl, Br, CN, NO.sub.2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z' is a linkage between X and Y. Such compounds may be used as redox shuttles in electrolytes for use in electrochemical cells, batteries and electronic devices.

  14. On-Demand Cell Internal Short Circuit Device

    NASA Technical Reports Server (NTRS)

    Darcy, Eric; Keyser, Matthew

    2014-01-01

    A device implantable in Li-ion cells that can generate a hard internal short circuit on-demand by exposing the cell to 60?C has been demonstrated to be valuable for expanding our understanding of cell responses. The device provides a negligible impact to cell performance and enables the instigation of the 4 general categories of cell internal shorts to determine relative severity and cell design susceptibility. Tests with a 18650 cell design indicates that the anode active material short to the aluminum cathode current collector tends to be more catastrophic than the 3 other types of internal shorts. Advanced safety features (such as shutdown separators) to prevent or mitigate the severity of cell internal shorts can be verified with this device. The hard short success rate achieved to date in 18650 cells is about 80%, which is sufficient for using these cells in battery assemblies for field-failure-relevant, cell-cell thermal runaway propagation verification tests

  15. Landscape Phage: Evolution from Phage Display to Nanobiotechnology.

    PubMed

    Petrenko, Valery A

    2018-06-07

    The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.

  16. Mechanisms underlying the attachment and spreading of human osteoblasts: from transient interactions to focal adhesions on vitronectin-grafted bioactive surfaces.

    PubMed

    Brun, Paola; Scorzeto, Michele; Vassanelli, Stefano; Castagliuolo, Ignazio; Palù, Giorgio; Ghezzo, Francesca; Messina, Grazia M L; Iucci, Giovanna; Battaglia, Valentina; Sivolella, Stefano; Bagno, Andrea; Polzonetti, Giovanni; Marletta, Giovanni; Dettin, Monica

    2013-04-01

    The features of implant devices and the reactions of bone-derived cells to foreign surfaces determine implant success during osseointegration. In an attempt to better understand the mechanisms underlying osteoblasts attachment and spreading, in this study adhesive peptides containing the fibronectin sequence motif for integrin binding (Arg-Gly-Asp, RGD) or mapping the human vitronectin protein (HVP) were grafted on glass and titanium surfaces with or without chemically induced controlled immobilization. As shown by total internal reflection fluorescence microscopy, human osteoblasts develop adhesion patches only on specifically immobilized peptides. Indeed, cells quickly develop focal adhesions on RGD-grafted surfaces, while HVP peptide promotes filopodia, structures involved in cellular spreading. As indicated by immunocytochemistry and quantitative polymerase chain reaction, focal adhesions kinase activation is delayed on HVP peptides with respect to RGD while an osteogenic phenotypic response appears within 24h on osteoblasts cultured on both peptides. Cellular pathways underlying osteoblasts attachment are, however, different. As demonstrated by adhesion blocking assays, integrins are mainly involved in osteoblast adhesion to RGD peptide, while HVP selects osteoblasts for attachment through proteoglycan-mediated interactions. Thus an interfacial layer of an endosseous device grafted with specifically immobilized HVP peptide not only selects the attachment and supports differentiation of osteoblasts but also promotes cellular migration. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Recent advances in live cell imaging of hepatoma cells

    PubMed Central

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  18. Capsular synovial-like hyperplasia around mammary implants similar to detritic synovitis. A morphologic and immunohistochemical study of 15 cases.

    PubMed

    Hameed, M R; Erlandson, R; Rosen, P P

    1995-04-01

    Formation of a fibrous envelope around the implant, a so-called capsule with resultant contracture of the prosthesis, is an occasional complication of augmentation mammoplasty. The capsulectomy specimen contains mature scar tissue with mononuclear cells, histiocytes, and foreign body giant cells. We studied 15 capsulectomy specimens. Seven showed a striking form of papillary villous synovial-like hyperplasia similar to detritic synovitis, a form of proliferative synovitis caused by orthopedic prosthetic devices. There was an accompanying infiltration of the subcapsular surface by mononuclear cells, giant cells, and chronic inflammatory cells. This reaction was independent of the type of prosthetic device. In one case, foreign material consistent with polyurethane was demonstrated by histology and electron microscopy. Among eight cases without capsular synovial-like hyperplasia (CSH), two showed dense fibrous tissue with foamy macrophages, and the rest showed fat necrosis, foreign body giant cell reaction, and occasional evidence of foreign material, including silicone granulomas. We stained four of the CSH, two with silicone granulomas, and one sample with dense fibrous tissue with peanut agglutinin and antibodies against vimentin and S-100 protein. Selected cases were also stained for concanavalin A and cytokeratin. CSH stained for concanavalin A, peanut agglutinin, and vimentin but was negative for cytokeratin. Our cases showed a striking similarity in the staining pattern of CSH, detritic synovitis, and normal synovium. We conclude that CSH of the mammary prosthetic capsule is pathophysiologically similar to proliferative synovitis.

  19. Communicating with residential electrical devices via a vehicle telematics unit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Rebecca C.; Pebbles, Paul H.

    A method of communicating with residential electrical devices using a vehicle telematics unit includes receiving information identifying a residential electrical device to control; displaying in a vehicle one or more controlled features of the identified residential electrical device; receiving from a vehicle occupant a selection of the displayed controlled features of the residential electrical device; sending an instruction from the vehicle telematics unit to the residential electrical device via a wireless carrier system in response to the received selection; and controlling the residential electrical device using the sent instruction.

  20. Multi-junction solar cell device

    DOEpatents

    Friedman, Daniel J.; Geisz, John F.

    2007-12-18

    A multi-junction solar cell device (10) is provided. The multi-junction solar cell device (10) comprises either two or three active solar cells connected in series in a monolithic structure. The multi-junction device (10) comprises a bottom active cell (20) having a single-crystal silicon substrate base and an emitter layer (23). The multi-junction device (10) further comprises one or two subsequent active cells each having a base layer (32) and an emitter layer (23) with interconnecting tunnel junctions between each active cell. At least one layer that forms each of the top and middle active cells is composed of a single-crystal III-V semiconductor alloy that is substantially lattice-matched to the silicon substrate (22). The polarity of the active p-n junction cells is either p-on-n or n-on-p. The present invention further includes a method for substantially lattice matching single-crystal III-V semiconductor layers with the silicon substrate (22) by including boron and/or nitrogen in the chemical structure of these layers.

  1. Development path and current status of the NANIVID: a new device for cancer cell studies.

    PubMed

    Raja, Waseem Khan; Padgen, Michael R; Williams, James K; Gertler, Frank B; Wyckoff, Jeffrey B; Condeelis, John S; Castracane, James

    2012-03-29

    Cancer cells create a unique microenvironment in vivo that enables migration to distant organs. To better understand the tumor micro-environment, special tools and devices are required to monitor the interactions between different cell types and the effects of particular chemical gradients. Our study presents the design and optimization of a versatile chemotaxis device, the nano-intravital device (NANIVID), which consists of etched and bonded glass substrates that create a soluble factor reservoir. The device contains a customized hydrogel blend that is loaded with epidermal growth factor (EGF), which diffuses from the outlet to create a chemotactic gradient that can be sustained for many hours in order to attract specific cells to the device. A microelectrode array is under development for quantification of cell collection and will be incorporated into future device generations. Additionally, the NANIVID can be modified to generate gradients of other soluble factors in order to initiate controlled changes to the microenvironment including the induction of hypoxia, manipulation of extracellular matrix stiffness, etc. The focus of the article is to present the design and optimization of the device towards wide ranging applications of cancer cell dynamics in vitro and, ultimately, implantation for in vivo investigations.

  2. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fast process flow, on-wafer interconnection and singulation for MEPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    2017-01-31

    A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less

  4. Fast process flow, on-wafer interconnection and singulation for MEPV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis

    2017-08-29

    A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less

  5. Modeling of defect-tolerant thin multi-junction solar cells for space application

    NASA Astrophysics Data System (ADS)

    Mehrotra, A.; Alemu, A.; Freundlich, A.

    2012-02-01

    Using drift-diffusion model and considering experimental III-V material parameters, AM0 efficiencies of lattice-matched multijunction solar cells have been calculated and the effects of dislocations and radiation damage have been analyzed. Ultrathin multi-junction devices perform better in presence of dislocations or/and radiation harsh environment compared to conventional thick multijunction devices. Our results show that device design optimization of Ga0.51In0.49P/GaAs multijunction devices leads to an improvement in EOL efficiency from 4.8%, for the conventional thick device design, to 12.7%, for the EOL optimized thin devices. In addition, an optimized defect free lattice matched Ga0.51In0.49P/GaAs solar cell under 1016cm-2 1Mev equivalent electron fluence is shown to give an EOL efficiency of 12.7%; while a Ga0.51In0.49P/GaAs solar cell with 108 cm-2 dislocation density under 1016cm-2 electron fluence gives an EOL efficiency of 12.3%. The results suggest that by optimizing the device design, we can obtain nearly the same EOL efficiencies for high dislocation metamorphic solar cells and defect filtered metamorphic multijunction solar cells. The findings relax the need for thick or graded buffer used for defect filtering in metamorphic devices. It is found that device design optimization allows highly dislocated devices to be nearly as efficient as defect free devices for space applications.

  6. Selective Laser Melting: a regular unit cell approach for the manufacture of porous, titanium, bone in-growth constructs, suitable for orthopedic applications.

    PubMed

    Mullen, Lewis; Stamp, Robin C; Brooks, Wesley K; Jones, Eric; Sutcliffe, Christopher J

    2009-05-01

    In this study, a novel porous titanium structure for the purpose of bone in-growth has been designed, manufactured and evaluated. The structure was produced by Selective Laser Melting (SLM); a rapid manufacturing process capable of producing highly intricate, functionally graded parts. The technique described utilizes an approach based on a defined regular unit cell to design and produce structures with a large range of both physical and mechanical properties. These properties can be tailored to suit specific requirements; in particular, functionally graded structures with bone in-growth surfaces exhibiting properties comparable to those of human bone have been manufactured. The structures were manufactured and characterized by unit cell size, strand diameter, porosity, and compression strength. They exhibited a porosity (10-95%) dependant compression strength (0.5-350 Mpa) comparable to the typical naturally occurring range. It is also demonstrated that optimized structures have been produced that possesses ideal qualities for bone in-growth applications and that these structures can be applied in the production of orthopedic devices. (c) 2008 Wiley Periodicals, Inc.

  7. The Curious Case of Fluorination of Conjugated Polymers for Solar Cells.

    PubMed

    Zhang, Qianqian; Kelly, Mary Allison; Bauer, Nicole; You, Wei

    2017-09-19

    Organic solar cells (OSCs) have been a rising star in the field of renewable energy since the introduction of the bulk heterojunction (BHJ) in 1992. Recent advances have pushed the efficiencies of OSCs to over 13%, an impressive accomplishment via collaborative efforts in rational materials design and synthesis, careful device engineering, and fundamental understanding of device physics. Throughout these endeavors, several design principles for the conjugated donor polymers used in such solar cells have emerged, including optimizing the conjugated backbone with judicious selection of building blocks, side-chain engineering, and substituents. Among all of the substituents, fluorine is probably the most popular one; improved device characteristics with fluorination have frequently been reported for a wide range of conjugated polymers, in particular, donor-acceptor (D-A)-type polymers. Herein we examine the effect of fluorination on the device performance of solar cells as a function of the position of fluorination (on the acceptor unit or on the donor unit), aiming to outline a clear understanding of the benefits of this curious substituent. As fluorination of the acceptor unit is the most adopted strategy for D-A polymers, we first discuss the effect of fluorination of the acceptor units, highlighting the five most widely utilized acceptor units. While improved device efficiency has been widely observed with fluorinated acceptor units, the underlying reasons vary from case to case and highly depend on the chemical structure of the polymer. Second, the effect of fluorination of the donor unit is addressed. Here we focus on four donor units that have been most studied with fluorination. While device-performance-enhancing effects by fluorination of the donor units have also been observed, it is less clear that fluorine will always benefit the efficiency of the OSC, as there are several cases where the efficiency drops, in particular with "over-fluorination", i.e., when too many fluorine substituents are incorporated. Finally, while this Account focuses on studies in which the polymer is paired with fullerene derivatives as the electron accepting materials, non-fullerene acceptors (NFAs) are quickly becoming key players in the field of OSCs. The effect of fluorination of the polymers on the device performance may be different when NFAs are used as the electron-accepting materials, which remains to be investigated. However, the design of fluorinated polymers may provide guidelines for the design of more efficient NFAs. Indeed, the current highest-performing OSC (∼13%) features fluorination on both the donor polymer and the non-fullerene acceptor.

  8. Tailored coating of gold nanostars: rational approach to prototype of theranostic device based on SERS and photothermal effects at ultralow irradiance.

    PubMed

    Bassi, B; Dacarro, G; Galinetto, P; Giulotto, E; Marchesi, N; Pallavicini, P; Pascale, A; Perversi, S; Taglietti, A

    2018-06-08

    The last decade has come across an increasing demand for theranostic biocompatible nanodevices possessing the double ability of diagnosis and therapy. In this work, we report the design, synthesis and step-by-step characterization of rationally coated gold nanostars (GNSs) for the SERS imaging and photothermal therapy of HeLa cancer cells. The nanodevices were realized by synthesizing GNSs with a seed growth approach, coating them with a controlled mixture of thiols composed of a Raman reporter and a polyethylene glycol with a terminal amino group, and then reacting these amino groups with folic acid (FA), in order to impart selectivity towards cancer cells which overexpress folate receptors on their membranes. After a complete characterization, we demonstrate that these FA-functionalized GNSs (FA-GNSs) are able to bind selectively to the membranes of HeLa cells, acting as SERS tags and allowing SERS imaging. Moreover, we demonstrate that once bound to HeLa cell membranes, FA-GNSs exhibit photothermal effect which can be exploited to kill the same cells in vitro using laser irradiation in the NIR at a very low and safe irradiance. We thus demonstrate that the FA-GNSs designed following the described approach are an efficient prototype of theranostic nanodevices.

  9. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells

    DOE PAGES

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; ...

    2016-08-17

    Both tin oxide (SnO 2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO 2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO 2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO 2/perovskite interface and perovskite grain boundaries. With careful device optimization, themore » best-performing planar perovskite solar cell using a fullerene passivated SnO 2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm -2, and a fill factor of 75.8% when measured under reverse voltage scanning. In conclusion, we find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.« less

  10. Tailored coating of gold nanostars: rational approach to prototype of theranostic device based on SERS and photothermal effects at ultralow irradiance

    NASA Astrophysics Data System (ADS)

    Bassi, B.; Dacarro, G.; Galinetto, P.; Giulotto, E.; Marchesi, N.; Pallavicini, P.; Pascale, A.; Perversi, S.; Taglietti, A.

    2018-06-01

    The last decade has come across an increasing demand for theranostic biocompatible nanodevices possessing the double ability of diagnosis and therapy. In this work, we report the design, synthesis and step-by-step characterization of rationally coated gold nanostars (GNSs) for the SERS imaging and photothermal therapy of HeLa cancer cells. The nanodevices were realized by synthesizing GNSs with a seed growth approach, coating them with a controlled mixture of thiols composed of a Raman reporter and a polyethylene glycol with a terminal amino group, and then reacting these amino groups with folic acid (FA), in order to impart selectivity towards cancer cells which overexpress folate receptors on their membranes. After a complete characterization, we demonstrate that these FA-functionalized GNSs (FA-GNSs) are able to bind selectively to the membranes of HeLa cells, acting as SERS tags and allowing SERS imaging. Moreover, we demonstrate that once bound to HeLa cell membranes, FA-GNSs exhibit photothermal effect which can be exploited to kill the same cells in vitro using laser irradiation in the NIR at a very low and safe irradiance. We thus demonstrate that the FA-GNSs designed following the described approach are an efficient prototype of theranostic nanodevices.

  11. Automated point-of-care testing for ABO agglutination test: proof of concept and validation.

    PubMed

    El Kenz, H; Corazza, F

    2015-07-01

    ABO-incompatible red blood cell transfusions still represent an important hazard in transfusion medicine. Therefore, some countries have introduced a systematic bedside ABO agglutination test checking that the right blood is given to the right patient. However, this strategy requires an extremely time-consuming learning programme and relies on a subjective interpretation of ABO test cards agglutination. We developed a prototype of a fully automated device performing the bedside agglutination test that could be completed by reading of a barcoded wristband. This POCT checks the ABO compatibility between the patient and the blood bag. Proof of concept and analytical validation of the prototype has been completed on 451 blood samples: 238 donor packed red blood cells, 137 consecutive unselected patients for whom a blood group determination had been ordered and on 76 patient samples selected with pathology that could possibly interfere with or impair performances of the assay. We observed 100% concordance for ABO blood groups between the POCT and the laboratory instrument. These preliminary results demonstrate the feasibility of ABO determination with a simple POCT device eliminating manipulation and subjective interpretation responsible for transfusion errors. This device should be linked to the blood bank system allowing all cross-check of the results. © 2015 International Society of Blood Transfusion.

  12. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7100 Red blood cell enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in...

  13. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells.

    PubMed

    Chen, Yu-Chih; Zhang, Zhixiong; Fouladdel, Shamileh; Deol, Yadwinder; Ingram, Patrick N; McDermott, Sean P; Azizi, Ebrahim; Wicha, Max S; Yoon, Euisik

    2016-08-07

    Considerable evidence suggests that cancer stem-like cells (CSCs) are critical in tumor pathogenesis, but their rarity and transience has led to much controversy about their exact nature. Although CSCs can be functionally identified using dish-based tumorsphere assays, it is difficult to handle and monitor single cells in dish-based approaches; single cell-based microfluidic approaches offer better control and reliable single cell derived sphere formation. However, like normal stem cells, CSCs are heavily regulated by their microenvironment, requiring tumor-stromal interactions for tumorigenic and proliferative behaviors. To enable single cell derived tumorsphere formation within a stromal microenvironment, we present a dual adherent/suspension co-culture device, which combines a suspension environment for single-cell tumorsphere assays and an adherent environment for co-culturing stromal cells in close proximity by selectively patterning polyHEMA in indented microwells. By minimizing dead volume and improving cell capture efficiency, the presented platform allows for the use of small numbers of cells (<100 cells). As a proof of concept, we co-cultured single T47D (breast cancer) cells and primary cancer associated fibroblasts (CAF) on-chip for 14 days to monitor sphere formation and growth. Compared to mono-culture, co-cultured T47D have higher tumorigenic potential (sphere formation rate) and proliferation rates (larger sphere size). Furthermore, 96-multiplexed single-cell transcriptome analyses were performed to compare the gene expression of co-cultured and mono-cultured T47D cells. Phenotypic changes observed in co-culture correlated with expression changes in genes associated with proliferation, apoptotic suppression, tumorigenicity and even epithelial-to-mesechymal transition. Combining the presented platform with single cell transcriptome analysis, we successfully identified functional CSCs and investigated the phenotypic and transcriptome effects induced by tumor-stromal interactions.

  14. Development of a microfluidic device for cell concentration and blood cell-plasma separation.

    PubMed

    Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K

    2015-12-01

    This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.

  15. Arrays of High-Aspect Ratio Microchannels for High-Throughput Isolation of Circulating Tumor Cells (CTCs).

    PubMed

    Hupert, Mateusz L; Jackson, Joshua M; Wang, Hong; Witek, Małgorzata A; Kamande, Joyce; Milowsky, Matthew I; Whang, Young E; Soper, Steven A

    2014-10-01

    Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12-25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs.

  16. A method for determining the conversion efficiency of multiple-cell photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Glatfelter, Troy; Burdick, Joseph

    A method for accurately determining the conversion efficiency of any multiple-cell photovoltaic device under any arbitrary reference spectrum is presented. This method makes it possible to obtain not only the short-circuit current, but also the fill factor, the open-circuit voltage, and hence the conversion efficiency of a multiple-cell device under any reference spectrum. Results are presented which allow a comparison of the I-V parameters of two-terminal, two- and three-cell tandem devices measured under a multiple-source simulator with the same parameters measured under different reference spectra. It is determined that the uncertainty in the conversion efficiency of a multiple-cell photovoltaic device obtained with this method is less than +/-3 percent.

  17. Enrichment of cancer cells using aptamers immobilized on a microfluidic channel

    PubMed Central

    Phillips, Joseph A.; Xu, Ye; Xia, Zheng

    2009-01-01

    This work describes the development and investigation of an aptamer modified microfluidic device that captures rare cells to achieve a rapid assay without pre-treatment of cells. To accomplish this, aptamers are first immobilized on the surface of a poly (dimethylsiloxane) microchannel, followed by pumping a mixture of cells through the device. This process permits the use of optical microscopy to measure the cell-surface density from which we calculate the percentage of cells captured as a function of cell and aptamer concentration, flow velocity, and incubation time. This aptamer-based device was demonstrated to capture target cells with > 97% purity and > 80% efficiency. Since the cell capture assay is completed within minutes and requires no pre-treatment of cells, the device promises to play a key role in the early detection and diagnosis of cancer where rare diseased cells can first be enriched and then captured for detection. PMID:19115856

  18. Operation of a Cartesian Robotic System in a Compact Microscope with Intelligent Controls

    NASA Technical Reports Server (NTRS)

    McDowell, Mark (Inventor)

    2006-01-01

    A Microscope Imaging System (CMIS) with intelligent controls is disclosed that provides techniques for scanning, identifying, detecting and tracking microscopic changes in selected characteristics or features of various surfaces including, but not limited to, cells, spheres, and manufactured products subject to difficult-to-see imperfections. The practice of the present invention provides applications that include colloidal hard spheres experiments, biological cell detection for patch clamping, cell movement and tracking, as well as defect identification in products, such as semiconductor devices, where surface damage can be significant, but difficult to detect. The CMIS system is a machine vision system, which combines intelligent image processing with remote control capabilities and provides the ability to autofocus on a microscope sample, automatically scan an image, and perform machine vision analysis on multiple samples simultaneously.

  19. IDEA. VOCES: A Mnemonic Device to Cue Mood Selection after Impersonal Expressions.

    ERIC Educational Resources Information Center

    Chandler, Paul Michael

    1996-01-01

    Providing language learners with mnemonic devices assists retention and recall of vocabulary and structural items. This idea provides one such memory device to assist beginning and intermediate students who struggle with mood selection after impersonal expressions. (five references) (Author)

  20. Transplantation of macroencapsulated human islets within the bioartificial pancreas βAir to patients with type 1 diabetes mellitus.

    PubMed

    Carlsson, Per-Ola; Espes, Daniel; Sedigh, Amir; Rotem, Avi; Zimerman, Baruch; Grinberg, Helena; Goldman, Tali; Barkai, Uriel; Avni, Yuval; Westermark, Gunilla T; Carlbom, Lina; Ahlström, Håkan; Eriksson, Olof; Olerud, Johan; Korsgren, Olle

    2017-12-29

    Macroencapsulation devices provide the dual possibility of immunoprotecting transplanted cells while also being retrievable, the latter bearing importance for safety in future trials with stem cell-derived cells. However, macroencapsulation entails a problem with oxygen supply to the encapsulated cells. The βAir device solves this with an incorporated refillable oxygen tank. This phase 1 study evaluated the safety and efficacy of implanting the βAir device containing allogeneic human pancreatic islets into patients with type 1 diabetes. Four patients were transplanted with 1-2 βAir devices, each containing 155 000-180 000 islet equivalents (ie, 1800-4600 islet equivalents per kg body weight), and monitored for 3-6 months, followed by the recovery of devices. Implantation of the βAir device was safe and successfully prevented immunization and rejection of the transplanted tissue. However, although beta cells survived in the device, only minute levels of circulating C-peptide were observed with no impact on metabolic control. Fibrotic tissue with immune cells was formed in capsule surroundings. Recovered devices displayed a blunted glucose-stimulated insulin response, and amyloid formation in the endocrine tissue. We conclude that the βAir device is safe and can support survival of allogeneic islets for several months, although the function of the transplanted cells was limited (Clinicaltrials.gov: NCT02064309). © 2018 The Authors. American Journal of Transplantation published by Wiley Periodicals, Inc. on behalf of The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. A PDMS Device Coupled with Culture Dish for In Vitro Cell Migration Assay.

    PubMed

    Lv, Xiaoqing; Geng, Zhaoxin; Fan, Zhiyuan; Wang, Shicai; Pei, WeiHua; Chen, Hongda

    2018-04-30

    Cell migration and invasion are important factors during tumor progression and metastasis. Wound-healing assay and the Boyden chamber assay are efficient tools to investigate tumor development because both of them could be applied to measure cell migration rate. Therefore, a simple and integrated polydimethylsiloxane (PDMS) device was developed for cell migration assay, which could perform quantitative evaluation of cell migration behaviors, especially for the wound-healing assay. The integrated device was composed of three units, which included cell culture dish, PDMS chamber, and wound generation mold. The PDMS chamber was integrated with cell culture chamber and could perform six experiments under different conditions of stimuli simultaneously. To verify the function of this device, it was utilized to explore the tumor cell migration behaviors under different concentrations of fetal bovine serum (FBS) and transforming growth factor (TGF-β) at different time points. This device has the unique capability to create the "wound" area in parallel during cell migration assay and provides a simple and efficient platform for investigating cell migration assay in biomedical application.

  2. Zone routing in a torus network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Heidelberger, Philip; Kumar, Sameer

    A system for routing data in a network comprising a network logic device at a sending node for determining a path between the sending node and a receiving node, wherein the network logic device sets one or more selection bits and one or more hint bits within the data packet, a control register for storing one or more masks, wherein the network logic device uses the one or more selection bits to select a mask from the control register and the network logic device applies the selected mask to the hint bits to restrict routing of the data packet tomore » one or more routing directions for the data packet within the network and selects one of the restricted routing directions from the one or more routing directions and sends the data packet along a link in the selected routing direction toward the receiving node.« less

  3. Organic Electrochemical Transistors for the Detection of Cell Surface Glycans.

    PubMed

    Chen, Lizhen; Fu, Ying; Wang, Naixiang; Yang, Anneng; Li, Yuanzhe; Wu, Jie; Ju, Huangxian; Yan, Feng

    2018-05-23

    Cell surface glycans play critical roles in diverse biological processes, such as cell-cell communication, immunity, infection, development, and differentiation. Their expressions are closely related to cancer growth and metastasis. This work demonstrates an organic electrochemical transistor (OECT)-based biosensor for the detection of glycan expression on living cancer cells. Herein, mannose on human breast cancer cells (MCF-7) as the target glycan model, poly dimethyl diallyl ammonium chloride-multiwall carbon nanotubes (PDDA-MWCNTs) as the loading interface, concanavalin A (Con A) with active mannose binding sites, aptamer and horseradish peroxidase co-immobilized gold nanoparticles (HRP-aptamer-Au NPs) as specific nanoprobes are used to fabricate the OECT biosensor. In this strategy, PDDA-MWCNT interfaces can enhance the loading of Con A, and the target cells can be captured through Con A via active mannose binding sites. Thus, the expression of cell surface can be reflected by the amount of cells captured on the gate. Specific nanoprobes are introduced to the captured cells to produce an OECT signal because of the reduction of hydrogen peroxide catalyzed by HRP conjugated on Au nanoparticles, while the aptamer on nanoprobes can selectively recognize the MCF-7 cells. It is reasonable that more target cells are captured on the gate electrode, more HRP-nanoprobes are loaded thus a larger signal response. The device shows an obvious response to MCF-7 cells down to 10 cells/μL and can be used to selectively monitor the change of mannose expression on cell surfaces upon a treatment with the N-glycan inhibitor. The OECT-based biosensor is promising for the analysis of glycan expressions on the surfaces of different types of cells.

  4. Transfection in perfused microfluidic cell culture devices: A case study.

    PubMed

    Raimes, William; Rubi, Mathieu; Super, Alexandre; Marques, Marco P C; Veraitch, Farlan; Szita, Nicolas

    2017-08-01

    Automated microfluidic devices are a promising route towards a point-of-care autologous cell therapy. The initial steps of induced pluripotent stem cell (iPSC) derivation involve transfection and long term cell culture. Integration of these steps would help reduce the cost and footprint of micro-scale devices with applications in cell reprogramming or gene correction. Current examples of transfection integration focus on maximising efficiency rather than viable long-term culture. Here we look for whole process compatibility by integrating automated transfection with a perfused microfluidic device designed for homogeneous culture conditions. The injection process was characterised using fluorescein to establish a LabVIEW-based routine for user-defined automation. Proof-of-concept is demonstrated by chemically transfecting a GFP plasmid into mouse embryonic stem cells (mESCs). Cells transfected in the device showed an improvement in efficiency (34%, n = 3) compared with standard protocols (17.2%, n = 3). This represents a first step towards microfluidic processing systems for cell reprogramming or gene therapy.

  5. Carbon Nanotube-Silicon Nanowire Heterojunction Solar Cells with Gas-Dependent Photovoltaic Performances and Their Application in Self-Powered NO2 Detecting.

    PubMed

    Jia, Yi; Zhang, Zexia; Xiao, Lin; Lv, Ruitao

    2016-12-01

    A multifunctional device combining photovoltaic conversion and toxic gas sensitivity is reported. In this device, carbon nanotube (CNT) membranes are used to cover onto silicon nanowire (SiNW) arrays to form heterojunction. The porous structure and large specific surface area in the heterojunction structure are both benefits for gas adsorption. In virtue of these merits, gas doping is a feasible method to improve cell's performance and the device can also work as a self-powered gas sensor beyond a solar cell. It shows a significant improvement in cell efficiency (more than 200 times) after NO2 molecules doping (device working as a solar cell) and a fast, reversible response property for NO2 detection (device working as a gas sensor). Such multifunctional CNT-SiNW structure can be expected to open a new avenue for developing self-powered, efficient toxic gas-sensing devices in the future.

  6. Apparatus and method for evaporator defrosting

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Domitrovic, Ronald E.

    2001-01-01

    An apparatus and method for warm-liquid defrosting of the evaporator of a refrigeration system. The apparatus includes a first refrigerant expansion device that selectively expands refrigerant for cooling the evaporator, a second refrigerant expansion device that selectively expands the refrigerant after the refrigerant has passed through the evaporator, and a defrosting control for the first refrigerant expansion device and second refrigerant expansion device to selectively defrost the evaporator by causing warm refrigerant to flow through the evaporator. The apparatus is alternately embodied with a first refrigerant bypass and/or a second refrigerant bypass for selectively directing refrigerant to respectively bypass the first refrigerant expansion device and the second refrigerant expansion device, and with the defrosting control connected to the first refrigerant bypass and/or the second refrigerant bypass to selectively activate and deactivate the bypasses depending upon the current cycle of the refrigeration system. The apparatus alternately includes an accumulator for accumulating liquid and/or gaseous refrigerant that is then pumped either to a refrigerant receiver or the first refrigerant expansion device for enhanced evaporator defrosting capability. The inventive method of defrosting an evaporator in a refrigeration system includes the steps of compressing refrigerant in a compressor and cooling the refrigerant in the condenser such that the refrigerant is substantially in liquid form, passing the refrigerant substantially in liquid form through the evaporator, and expanding the refrigerant with a refrigerant expansion device after the refrigerant substantially passes through the evaporator.

  7. Quantum well infrared photodetectors (QWIP) with selectively regrown N-GaAs plugs

    NASA Astrophysics Data System (ADS)

    Matsukura, Yusuke; Nishino, Hironori; Tanaka, Hitoshi; Fujii, Toshio

    2001-10-01

    We fabricated the GaAs/AlGaAs Quantum Well Infrared Photo detector (QWIP) focal plane array with selectively re-grown N- GaAs interconnection plugs and demonstrated its device operation, in order to establish the technology to obtain both complex device functions and device manufacturability. MBE (Molecular Beam Epitaxy) grown QWIP MQW wafers were covered with SiON and SiNx mask films to obtain selectivity of the re-growth process. N-GaAs plugs were re-grown selectively with low-pressure MOCVD (Metal-Organic Chemical Vapor Deposition) with AsH3 and Dimethylgalliumchloride as precursors, only on the bottom surfaces of the holes for the interconnection to extract the electrodes from the underlying epilayer. Cross- sectional SEM observation revealed that the feature of the re- grown N-GaAs plugs was triangular, rather than rectangular as expected. The reason for this discrepancy is not yet clear. The electrical contact between the epilayer and re-grown N- GaAs plug was 'ohmic-like,' without any trace of interfacial barrier. The Current-Voltage characteristics of the fabricated QWIP device showed no tangible leakage current between the N- GaAs plug and device structure, indicating that electrical insulation between the N-GaAs plugs and device structure was sufficient. Fabricated devices were successfully operated as a hybrid focal plane array, indicating the selective re-growth was a promising technique to realize complex QWIP based devices.

  8. Confocal Light Absorption and Scattering Spectroscopic (CLASS) imaging: From cancer detection to sub-cellular function

    NASA Astrophysics Data System (ADS)

    Qiu, Le

    Light scattering spectroscopy (LSS), an optical technique that relates the spectroscopic properties of light elastically scattered by small particles to their size, refractive index and shape, has been recently successfully employed for sensing morphological and biochemical properties of epithelial tissues and cells in vivo. LSS does not require exogenous markers, is non-invasive, and, due to its multispectral nature, can sense biological structures well beyond the diffraction limit. All that makes LSS be a very good candidate to be used both in clinical medicine for in vivo detection of disease and in cell biology to monitor cell function on the organelle scale. Recently we developed two LSS-based imaging modalities: clinical Polarized LSS (PLSS) Endoscopic Technique for locating early pre-cancerous changes in GI tract and Confocal Light Absorption and Scattering Spectroscopic (CLASS) Microscopy for studying cells in vivo without exogenous markers. One important application of the clinical PLSS endoscopic instrument, a noncontact scanning imaging device compatible with the standard clinical endoscopes and capable of detecting dysplastic changes, is to serve as a guide for biopsy in Barrett's esophagus (BE). The instrument detects parallel and perpendicular components of the polarized light, backscattered from epithelial tissues, and determines characteristics of epithelial nuclei from the residual spectra. It also can find tissue oxygenation, hemoglobin content and other properties from the diffuse light component. By rapidly scanning esophagus the PLSS endoscopic instrument makes sure the entire BE portion is scanned and examined for the presence of dysplasia. CLASS microscopy, on the other hand, combines principles of light scattering spectroscopy (LSS) with confocal microscopy. Its main purpose is to image cells on organelle scale in vivo without the use of exogenous labels which may affect the cell function. The confocal geometry selects specific region and images are obtained by scanning the confocal volume across the sample. The new beam scanning CLASS microscope is a significant improvement over the previous proof-of-principle device. With this new device we have already performed experiments to monitor morphological changes in cells during apoptosis, differentiated fetal from maternal nucleated red blood cells, and detected plasmon scattering spectra of single gold nanorod.

  9. Study of relationships of material properties and high efficiency solar cell performance on material composition

    NASA Technical Reports Server (NTRS)

    Sah, C. T.

    1983-01-01

    The performance improvements obtainable from extending the traditionally thin back-surface-field (BSF) layer deep into the base of silicon solar cells under terrestrial solar illumination (AM1) are analyzed. This extended BSF cell is also known as the back-drift-field cell. About 100 silicon cells were analyzed, each with a different emitter or base dopant impurity distribution whose selection was based on physically anticipated improvements. The four principal performance parameters (the open-circuit voltage, the short-circuit current, the fill factor, and the maximum efficiency) are computed using a FORTRAN program, called Circuit Technique for Semiconductor-device Analysis, CTSA, which numerically solves the six Shockley Equations under AM1 solar illumination at 88.92 mW/cm, at an optimum cell thickness of 50 um. The results show that very significant performance improvements can be realized by extending the BSF layer thickness from 2 um (18% efficiency) to 40 um (20% efficiency).

  10. Redox flow cell energy storage systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1979-01-01

    NASA-Redox systems are electrochemical storage devices that use two fully soluble Redox couples, anode and cathode fluids, as active electrode materials separated by a highly selective ion exchange membrane. The reactants are contained in large storage tanks and pumped through a stack of Redox flow cells where the electrochemical reactions (reduction and oxidation) take place at porous carbon felt electrodes. A string or stack of these power producing cells is connected in series in a bipolar manner. Redox energy storage systems promise to be inexpensive and possess many features that provide for flexible design, long life, high reliability and minimal operation and maintenance costs. These features include independent sizing of power and storage capacity requirements and inclusion within the cell stack of a cell that monitors the state of charge of the system as a whole, and a rebalance cell which permits continuous correction to be made for minor side reactions that would tend to result in the anode fluid and cathode fluids becoming electrochemically out of balance. These system features are described and discussed.

  11. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  12. Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination.

    PubMed

    Wang, Xiaorong; Kang, Yu; Luo, Chunxiong; Zhao, Tong; Liu, Lin; Jiang, Xiangdan; Fu, Rongrong; An, Shuchang; Chen, Jichao; Jiang, Ning; Ren, Lufeng; Wang, Qi; Baillie, J Kenneth; Gao, Zhancheng; Yu, Jun

    2014-02-11

    Heteroresistance refers to phenotypic heterogeneity of microbial clonal populations under antibiotic stress, and it has been thought to be an allocation of a subset of "resistant" cells for surviving in higher concentrations of antibiotic. The assumption fits the so-called bet-hedging strategy, where a bacterial population "hedges" its "bet" on different phenotypes to be selected by unpredicted environment stresses. To test this hypothesis, we constructed a heteroresistance model by introducing a blaCTX-M-14 gene (coding for a cephalosporin hydrolase) into a sensitive Escherichia coli strain. We confirmed heteroresistance in this clone and that a subset of the cells expressed more hydrolase and formed more colonies in the presence of ceftriaxone (exhibited stronger "resistance"). However, subsequent single-cell-level investigation by using a microfluidic device showed that a subset of cells with a distinguishable phenotype of slowed growth and intensified hydrolase expression emerged, and they were not positively selected but increased their proportion in the population with ascending antibiotic concentrations. Therefore, heteroresistance--the gradually decreased colony-forming capability in the presence of antibiotic--was a result of a decreased growth rate rather than of selection for resistant cells. Using a mock strain without the resistance gene, we further demonstrated the existence of two nested growth-centric feedback loops that control the expression of the hydrolase and maximize population growth in various antibiotic concentrations. In conclusion, phenotypic heterogeneity is a population-based strategy beneficial for bacterial survival and propagation through task allocation and interphenotypic collaboration, and the growth rate provides a critical control for the expression of stress-related genes and an essential mechanism in responding to environmental stresses. Heteroresistance is essentially phenotypic heterogeneity, where a population-based strategy is thought to be at work, being assumed to be variable cell-to-cell resistance to be selected under antibiotic stress. Exact mechanisms of heteroresistance and its roles in adaptation to antibiotic stress have yet to be fully understood at the molecular and single-cell levels. In our study, we have not been able to detect any apparent subset of "resistant" cells selected by antibiotics; on the contrary, cell populations differentiate into phenotypic subsets with variable growth statuses and hydrolase expression. The growth rate appears to be sensitive to stress intensity and plays a key role in controlling hydrolase expression at both the bulk population and single-cell levels. We have shown here, for the first time, that phenotypic heterogeneity can be beneficial to a growing bacterial population through task allocation and interphenotypic collaboration other than partitioning cells into different categories of selective advantage.

  13. Functional Na+ Channels in Cell Adhesion probed by Transistor Recording

    PubMed Central

    Schmidtner, Markus; Fromherz, Peter

    2006-01-01

    Cell membranes in a tissue are in close contact to each other, embedded in the extracellular matrix. Standard electrophysiological methods are not able to characterize ion channels under these conditions. Here we consider the area of cell adhesion on a solid substrate as a model system. We used HEK 293 cells cultured on fibronectin and studied the activation of NaV1.4 sodium channels in the adherent membrane with field-effect transistors in a silicon substrate. Under voltage clamp, we compared the transistor response with the whole-cell current. We observed that the extracellular voltage in the cell-chip contact was proportional to the total membrane current. The relation was calibrated by alternating-current stimulation. We found that Na+ channels are present in the area of cell adhesion on fibronectin with a functionality and a density that is indistinguishable from the free membrane. The experiment provides a basis for studying selective accumulation and depletion of ion channels in cell adhesion and also for a development of cell-based biosensoric devices and neuroelectronic systems. PMID:16227504

  14. Rare cell isolation and analysis in microfluidics

    PubMed Central

    Chen, Yuchao; Li, Peng; Huang, Po-Hsun; Xie, Yuliang; Mai, John D.; Wang, Lin; Nguyen, Nam-Trung; Huang, Tony Jun

    2014-01-01

    Rare cells are low-abundance cells in a much larger population of background cells. Conventional benchtop techniques have limited capabilities to isolate and analyze rare cells because of their generally low selectivity and significant sample loss. Recent rapid advances in microfluidics have been providing robust solutions to the challenges in the isolation and analysis of rare cells. In addition to the apparent performance enhancements resulting in higher efficiencies and sensitivity levels, microfluidics provides other advanced features such as simpler handling of small sample volumes and multiplexing capabilities for high-throughput processing. All of these advantages make microfluidics an excellent platform to deal with the transport, isolation, and analysis of rare cells. Various cellular biomarkers, including physical properties, dielectric properties, as well as immunoaffinities, have been explored for isolating rare cells. In this Focus article, we discuss the design considerations of representative microfluidic devices for rare cell isolation and analysis. Examples from recently published works are discussed to highlight the advantages and limitations of the different techniques. Various applications of these techniques are then introduced. Finally, a perspective on the development trends and promising research directions in this field are proposed. PMID:24406985

  15. Device research task (processing and high-efficiency solar cells)

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This task has been expanded since the last 25th Project Integration Meeting (PIM) to include process research in addition to device research. The objective of this task is to assist the Flat-plate Solar Array (FSA) Project in meeting its near- and long-term goals by identifying and implementing research in the areas of device physics, device structures, measurement techniques, material-device interactions, and cell processing. The research efforts of this task are described and reflect the deversity of device research being conducted. All of the contracts being reported are either completed or near completion and culminate the device research efforts of the FSA Project. Optimazation methods and silicon solar cell numerical models, carrier transport and recombination parameters in heavily doped silicon, development and analysis of silicon solar cells of near 20% efficiency, and SiN sub x passivation of silicon surfaces are discussed.

  16. 21 CFR 864.2360 - Mycoplasma detection media and components.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products... microbial contaminant in cell cultures. (b) Classification. Class I (general controls). These devices are...

  17. Micromechanical Devices for Control of Cell-Cell Interaction, and Methods of Use Thereof

    NASA Technical Reports Server (NTRS)

    Bhatia, Sangeeta N. (Inventor); Hui, Elliot (Inventor)

    2017-01-01

    The development and function of living tissues depends largely on interactions between cells that can vary in both time and space; however, temporal control of cell-cell interaction is experimentally challenging. By employing a micromachined silicon substrate with moving parts, herein is disclosed the dynamic regulation of cell-cell interactions via direct manipulation of adherent cells with micron-scale precision. The inventive devices and methods allow mechanical control of both tissue composition and spatial organization. The inventive device and methods enable the investigation of dynamic cell-cell interaction in a multitude of applications, such as intercellular communication, spanning embryogenesis, homeostasis, and pathogenic processes.

  18. High efficiency thin-film multiple-gap photovoltaic device

    DOEpatents

    Dalal, Vikram L.

    1983-01-01

    A photovoltaic device includes at least two solar cells made from Group IV elements or their alloys in the amorphous state mounted on a substrate. The outermost or first cell has a larger bandgap than the second cell. Various techniques are utilized to improve the efficiency of the device.

  19. Development path and current status of the NANIVID: a new device for cancer cell studies

    NASA Astrophysics Data System (ADS)

    Raja, Waseem Khan; Padgen, Michael R.; Williams, James K.; Wyckoff, Jeffrey; Condeelis, John; Castracane, James

    2011-02-01

    Cancer cells create a unique microenvironment in vivo which enables migration to distant organs. To better understand the tumor microenvironment, special tools and devices are required to monitor the interactions between different cell types and the effects of particular chemical gradients. This study presents the design and optimization of a new, versatile chemotaxis device called the NANIVID (NANo IntraVital Device). The device is fabricated using BioMEMS techniques and consists of etched and bonded Pyrex substrates, a soluble factor reservoir, fluorescent tracking beads and a microelectrode array for cell quantification. The reservoir contains a customized hydrogel blend loaded with EGF which diffuses out of the hydrogel to create a chemotactic gradient. This reservoir sustains a steady release of growth factor into the surrounding environment for many hours and establishes a concentration gradient that attracts specific cells to the device. In addition to a cell collection tool, the NANIVID can be modified to act as a delivery vehicle for the local generation of alternate soluble factor gradients to initiate controlled changes to the microenvironment such as hypoxia, ECM stiffness and etc. The focus of this study is to design and optimize the new device for wide ranging studies of breast cancer cell dynamics in vitro and ultimately, implantation for in vivo work.

  20. Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    PubMed Central

    Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren

    2011-01-01

    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813

  1. Controlling particle trajectories using oscillating microbubbles

    NASA Astrophysics Data System (ADS)

    Jalikop, Shreyas; Wang, Cheng; Hilgenfeldt, Sascha

    2010-11-01

    In many applications of microfluidics and biotechnology, such as cytometry and drug delivery, it is vital to manipulate the trajectories of microparticles such as vesicles or cells. On this small scale, inertial or gravitational effects are often too weak to exploit. We propose a mechanism to selectively trap and direct particles based on their size in creeping transport flows (Re1). We employ Rayleigh-Nyborg-Westervelt (RNW) streaming generated by an oscillating microbubble, which in turn generates a streaming flow component around the mobile particles. The result is an attractive interaction that draws the particle closer to the bubble. The impenetrability of the bubble interface destroys time-reversal symmetry and forces the particles onto either narrow trajectory bundles or well-defined closed trajectories, where they are trapped. The effect is dependent on particle size and thus allows for the passive focusing and sorting of selected sizes, on scales much smaller than the geometry of the microfluidic device. The device could eliminate the need for complicated microchannel designs with external magnetic or electric fields in applications such as particle focusing and size-based sorting.

  2. Advantages offered by high average power picosecond lasers

    NASA Astrophysics Data System (ADS)

    Moorhouse, C.

    2011-03-01

    As electronic devices shrink in size to reduce material costs, device size and weight, thinner material thicknesses are also utilized. Feature sizes are also decreasing, which is pushing manufacturers towards single step laser direct write process as an attractive alternative to conventional, multiple step photolithography processes by eliminating process steps and the cost of chemicals. The fragile nature of these thin materials makes them difficult to machine either mechanically or with conventional nanosecond pulsewidth, Diode Pumped Solids State (DPSS) lasers. Picosecond laser pulses can cut materials with reduced damage regions and selectively remove thin films due to the reduced thermal effects of the shorter pulsewidth. Also, the high repetition rate allows high speed processing for industrial applications. Selective removal of thin films for OLED patterning, silicon solar cells and flat panel displays is discussed, as well as laser cutting of transparent materials with low melting point such as Polyethylene Terephthalate (PET). For many of these thin film applications, where low pulse energy and high repetition rate are required, throughput can be increased by the use of a novel technique to using multiple beams from a single laser source is outlined.

  3. High-Efficiency Selective Electron Tunnelling in a Heterostructure Photovoltaic Diode.

    PubMed

    Jia, Chuancheng; Ma, Wei; Gu, Chunhui; Chen, Hongliang; Yu, Haomiao; Li, Xinxi; Zhang, Fan; Gu, Lin; Xia, Andong; Hou, Xiaoyuan; Meng, Sheng; Guo, Xuefeng

    2016-06-08

    A heterostructure photovoltaic diode featuring an all-solid-state TiO2/graphene/dye ternary interface with high-efficiency photogenerated charge separation/transport is described here. Light absorption is accomplished by dye molecules deposited on the outside surface of graphene as photoreceptors to produce photoexcited electron-hole pairs. Unlike conventional photovoltaic conversion, in this heterostructure both photoexcited electrons and holes tunnel along the same direction into graphene, but only electrons display efficient ballistic transport toward the TiO2 transport layer, thus leading to effective photon-to-electricity conversion. On the basis of this ipsilateral selective electron tunnelling (ISET) mechanism, a model monolayer photovoltaic device (PVD) possessing a TiO2/graphene/acridine orange ternary interface showed ∼86.8% interfacial separation/collection efficiency, which guaranteed an ultrahigh absorbed photon-to-current efficiency (APCE, ∼80%). Such an ISET-based PVD may become a fundamental device architecture for photovoltaic solar cells, photoelectric detectors, and other novel optoelectronic applications with obvious advantages, such as high efficiency, easy fabrication, scalability, and universal availability of cost-effective materials.

  4. Non-invasive sex assessment in bovine semen by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    De Luca, A. C.; Managó, S.; Ferrara, M. A.; Rendina, I.; Sirleto, L.; Puglisi, R.; Balduzzi, D.; Galli, A.; Ferraro, P.; Coppola, G.

    2014-05-01

    X- and Y-chromosome-bearing sperm cell sorting is of great interest, especially for animal production management systems and genetic improvement programs. Here, we demonstrate an optical method based on Raman spectroscopy to separate X- and Y-chromosome-bearing sperm cells, overcoming many of the limitations associated with current sex-sorting protocols. A priori Raman imaging of bull spermatozoa was utilized to select the sampling points (head-neck region), which were then used to discriminate cells based on a spectral classification model. Main variations of Raman peaks associated with the DNA content were observed together with a variation due to the sex membrane proteins. Next, we used principal component analysis to determine the efficiency of our device as a cell sorting method. The results (>90% accuracy) demonstrated that Raman spectroscopy is a powerful candidate for the development of a highly efficient, non-invasive, and non-destructive tool for sperm sexing.

  5. Fluorescent Reporter Libraries as Useful Tools for Optimizing Microbial Cell Factories: A Review of the Current Methods and Applications

    PubMed Central

    Delvigne, Frank; Pêcheux, Hélène; Tarayre, Cédric

    2015-01-01

    The use of genetically encoded fluorescent reporters allows speeding up the initial optimization steps of microbial bioprocesses. These reporters can be used for determining the expression level of a particular promoter, not only the synthesis of a specific protein but also the content of intracellular metabolites. The level of protein/metabolite is thus proportional to a fluorescence signal. By this way, mean expression profiles of protein/metabolites can be determined non-invasively at a high-throughput rate, allowing the rapid identification of the best producers. Actually, different kinds of reporter systems are available, as well as specific cultivation devices allowing the on-line recording of the fluorescent signal. Cell-to-cell variability is another important phenomenon that can be integrated into the screening procedures for the selection of more efficient microbial cell factories. PMID:26442261

  6. AMTEC cell testing, optimization of rhodium/tungsten electrodes, and tests of other components

    NASA Technical Reports Server (NTRS)

    Williams, Roger M.; Ryan, Margaret A.; Jeffries-Nakamura, Barbara; Underwood, Mark L.; O'Connor, Dennis; Kikkert, Stan

    1991-01-01

    Electrodes, current collectors, ceramic to metal braze seals, and metallic components exposed to the high 'hot side' temperatures and sodium liquid and vapor environment have been tested and evaluated in laboratory cells running for hundreds of hours at 1100-1200 K. Rhodium/tungsten electrodes have been selected as the optimum electrodes based on performance parameters and durability. Current collectors have been evaluated under simulated and actual operating conditions. The microscopic effects of metal migration between electrode and current collector alloys as well as their thermal and electrical properties determined the suitability of current collector and lead materials. Braze seals suitable for long term application to AMTEC devices are being developed.

  7. Non-immune cells equipped with T cell receptor-like signaling for cancer cell ablation

    PubMed Central

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2017-01-01

    The ability to engineer custom cell-contact-sensing output devices into human non-immune cells would be useful for extending the applicability of cell-based cancer therapies and avoiding risks associated with engineered immune cells. Here, we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human non-immune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell/target cell interface. We further showed that designer non-immune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to advancement of synthetic biology by extending available design principles to transmit extracellular information to cells. PMID:29131143

  8. Emerging Semitransparent Solar Cells: Materials and Device Design.

    PubMed

    Tai, Qidong; Yan, Feng

    2017-09-01

    Semitransparent solar cells can provide not only efficient power-generation but also appealing images and show promising applications in building integrated photovoltaics, wearable electronics, photovoltaic vehicles and so forth in the future. Such devices have been successfully realized by incorporating transparent electrodes in new generation low-cost solar cells, including organic solar cells (OSCs), dye-sensitized solar cells (DSCs) and organometal halide perovskite solar cells (PSCs). In this review, the advances in the preparation of semitransparent OSCs, DSCs, and PSCs are summarized, focusing on the top transparent electrode materials and device designs, which are all crucial to the performance of these devices. Techniques for optimizing the efficiency, color and transparency of the devices are addressed in detail. Finally, a summary of the research field and an outlook into the future development in this area are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Composition and method for encapsulating photovoltaic devices

    DOEpatents

    Pern, Fu-Jann

    2000-01-01

    A composition and method for encapsulating a photovoltaic device which minimizes discoloration of the encapsulant. The composition includes an ethylene-vinyl acetate encapsulant, a curing agent, an optional ultraviolet light stabilizer, and/or an optional antioxidant. The curing agent is preferably 1,1-di-(t-butylperoxy)-3,3,5-trimethylcyclohexane; the ultraviolet light stabilizer is bis-(N-octyloxy-tetramethyl) piperidinyl sebacate and the antioxidant is selected from the group consisting of tris (2,4-di-tert-butylphenyl) phosphite, tetrakis methylene (3,5-di-tert-butyl-4-hydroxyhydrocinnamate) methane, octadecyl 3,5-di-tert-butyl-4-hydroxyhydrocinnamate, and 2,2'-ethylidene bis(4,6-di-t-butylphenyl) fluorophosponite. The composition is applied to a solar cell then cured. The cured product contains a minimal concentration of curing-generated chromophores and resists UV-induced degradation.

  10. Spontaneous and Selective Nanowelding of Silver Nanowires by Electrochemical Ostwald Ripening and High Electrostatic Potential at the Junctions for High-Performance Stretchable Transparent Electrodes.

    PubMed

    Lee, Hyo-Ju; Oh, Semi; Cho, Ki-Yeop; Jeong, Woo-Lim; Lee, Dong-Seon; Park, Seong-Ju

    2018-04-25

    Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag + ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

  11. Online oxygen monitoring using integrated inkjet-printed sensors in a liver-on-a-chip system.

    PubMed

    Moya, A; Ortega-Ribera, M; Guimerà, X; Sowade, E; Zea, M; Illa, X; Ramon, E; Villa, R; Gracia-Sancho, J; Gabriel, G

    2018-06-12

    The demand for real-time monitoring of cell functions and cell conditions has dramatically increased with the emergence of organ-on-a-chip (OOC) systems. However, the incorporation of co-cultures and microfluidic channels in OOC systems increases their biological complexity and therefore makes the analysis and monitoring of analytical parameters inside the device more difficult. In this work, we present an approach to integrate multiple sensors in an extremely thin, porous and delicate membrane inside a liver-on-a-chip device. Specifically, three electrochemical dissolved oxygen (DO) sensors were inkjet-printed along the microfluidic channel allowing local online monitoring of oxygen concentrations. This approach demonstrates the existence of an oxygen gradient up to 17.5% for rat hepatocytes and 32.5% for human hepatocytes along the bottom channel. Such gradients are considered crucial for the appearance of zonation of the liver. Inkjet printing (IJP) was the selected technology as it allows drop on demand material deposition compatible with delicate substrates, as used in this study, which cannot withstand temperatures higher than 130 °C. For the deposition of uniform gold and silver conductive inks on the porous membrane, a primer layer using SU-8 dielectric material was used to seal the porosity of the membrane at defined areas, with the aim of building a uniform sensor device. As a proof-of-concept, experiments with cell cultures of primary human and rat hepatocytes were performed, and oxygen consumption rate was stimulated with carbonyl-cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP), accelerating the basal respiration of 0.23 ± 0.07 nmol s-1/106 cells up to 5.95 ± 0.67 nmol s-1/106 cells s for rat cells and the basal respiration of 0.17 ± 0.10 nmol s-1/106 cells by up to 10.62 ± 1.15 nmol s-1/106 cells for human cells, with higher oxygen consumption of the cells seeded at the outflow zone. These results demonstrate that the approach of printing sensors inside an OOC has tremendous potential because IJP is a feasible technique for the integration of different sensors for evaluating metabolic activity of cells, and overcomes one of the major challenges still remaining on how to tap the full potential of OOC systems.

  12. In operando spectroscopic studies of high temperature electrocatalysts used for energy conversion

    NASA Astrophysics Data System (ADS)

    McIntyre, Melissa Dawn

    Solid-state electrochemical cells are efficient energy conversion devices that can be used for clean energy production or for removing air pollutants from exhaust gas emitted by combustion processes. For example, solid oxide fuel cells generate electricity with low emissions from a variety of fuel sources; solid oxide electrolysis cells produce zero-emission H2 fuel; and solid-state DeNOx cells remove NOx gases from diesel exhaust. In order to maintain high conversion efficiencies, these systems typically operate at temperatures ≥ 500°C. The high operating temperatures, however, accelerate chemical and mechanical cell degradation. To improve device durability, a mechanistic understanding of the surface chemistry occurring at the cell electrodes (anode and cathode) is critical in terms of refining cell design, material selection and operation protocols. The studies presented herein utilized in operando Raman spectroscopy coupled with electrochemical measurements to directly correlate molecular/material changes with device performance in solid oxide cells under various operating conditions. Because excessive carbon accumulation with carbon-based fuels destroys anodes, the first three studies investigated strategies for mitigating carbon accumulation on Ni cermet anodes. Results from the first two studies showed that low amounts of solid carbon stabilized the electrical output and improved performance of solid oxide fuel cells operating with syn-gas (H 2/CO fuel mixture). The third study revealed that infiltrating anodes with Sn or BaO suppressed carbon accumulation with CH4 fuel and that H2O was the most effective reforming agent facilitating carbon removal. The last two studies explored how secondary phases formed in traditional solid oxide cell materials doped with metal oxides improve electrochemical performance. Results from the fourth study suggest that the mixed ion-electron conducting Zr5Ti7O24 secondary phase can expand the electrochemically active region and increase electrochemical activity in cermet electrodes. The final study of lanthanum strontium manganite cathodes infiltrated with BaO revealed the reversible decomposition/formation of a Ba3Mn2O8 secondary phase under applied potentials and proposed mechanisms for the enhanced electrocatalytic oxygen reduction associated with this compound under polarizing conditions. Collectively, these studies demonstrate that mechanistic information obtained from molecular/material specific techniques coupled with electrochemical measurements can be used to help optimize materials and operating conditions in solid-state electrochemical cells.

  13. Characterization and Separation of Cancer Cells with a Wicking Fiber Device.

    PubMed

    Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L

    2017-12-01

    Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.

  14. Photovoltaic Powering And Control System For Electrochromic Windows

    DOEpatents

    Schulz, Stephen C.; Michalski, Lech A.; Volltrauer, Hermann N.; Van Dine, John E.

    2000-04-25

    A sealed insulated glass unit is provided with an electrochromic device for modulating light passing through the unit. The electrochromic device is controlled from outside the unit by a remote control electrically unconnected to the device. Circuitry within the unit may be magnetically controlled from outside. The electrochromic device is powered by a photovoltaic cells. The photovoltaic cells may be positioned so that at least a part of the light incident on the cell passes through the electrochromic device, providing a form of feedback control. A variable resistance placed in parallel with the electrochromic element is used to control the response of the electrochromic element to changes in output of the photovoltaic cell.

  15. Fiber-optic Singlet Oxygen [1O2 (1Δg)] Generator Device Serving as a Point Selective Sterilizer

    PubMed Central

    Aebisher, David; Zamadar, Matibur; Mahendran, Adaickapillai; Ghosh, Goutam; McEntee, Catherine; Greer, Alexander

    2016-01-01

    Traditionally, Type II heterogeneous photo-oxidations produce singlet oxygen via external irradiation of a sensitizer and external supply of ground-state oxygen. A potential improvement is reported here. A hollow-core fiber-optic device was developed with an “internal” supply of light and flowing oxygen, and a porous photosensitizer-end capped configuration. Singlet oxygen was delivered through the fiber tip. The singlet oxygen steady-state concentration in the immediate vicinity of the probe tip was ca 20 fM by N-benzoyl-DL-methionine trapping. The device is portable and the singlet oxygen-generating tip is maneuverable, which opened the door to simple disinfectant studies. Complete Escherichia coli inactivation was observed in 2 h when the singlet oxygen sensitizing probe tip was immersed in 0.1 mL aqueous samples of 0.1–4.4 × 107 cells. Photobleaching of the probe tip occurred after ca 12 h of use, requiring baking and sensitizer reloading steps for reuse. PMID:20497367

  16. Novel microfluidic device for the continuous separation of cancer cells using dielectrophoresis.

    PubMed

    Alazzam, Anas; Mathew, Bobby; Alhammadi, Falah

    2017-03-01

    We describe the design, microfabrication, and testing of a microfluidic device for the separation of cancer cells based on dielectrophoresis. Cancer cells, specifically green fluorescent protein-labeled MDA-MB-231, are successfully separated from a heterogeneous mixture of the same and normal blood cells. MDA-MB-231 cancer cells are separated with an accuracy that enables precise detection and counting of circulating tumor cells present among normal blood cells. The separation is performed using a set of planar interdigitated transducer electrodes that are deposited on the surface of a glass wafer and slightly protrude into the separation microchannel at one side. The device includes two parts, namely, a glass wafer and polydimethylsiloxane element. The device is fabricated using standard microfabrication techniques. All experiments are conducted with low conductivity sucrose-dextrose isotonic medium. The variation in response between MDA-MB-231 cancer cells and normal cells to a certain band of alternating-current frequencies is used for continuous separation of cells. The fabrication of the microfluidic device, preparation of cells and medium, and flow conditions are detailed. The proposed microdevice can be used to detect and separate malignant cells from heterogeneous mixture of cells for the purpose of early screening for cancer. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microfluidic device capable of medium recirculation for non-adherent cell culture

    PubMed Central

    Dixon, Angela R.; Rajan, Shrinidhi; Kuo, Chuan-Hsien; Bersano, Tom; Wold, Rachel; Futai, Nobuyuki; Takayama, Shuichi; Mehta, Geeta

    2014-01-01

    We present a microfluidic device designed for maintenance and culture of non-adherent mammalian cells, which enables both recirculation and refreshing of medium, as well as easy harvesting of cells from the device. We demonstrate fabrication of a novel microfluidic device utilizing Braille perfusion for peristaltic fluid flow to enable switching between recirculation and refresh flow modes. Utilizing fluid flow simulations and the human promyelocytic leukemia cell line, HL-60, non-adherent cells, we demonstrate the utility of this RECIR-REFRESH device. With computer simulations, we profiled fluid flow and concentration gradients of autocrine factors and found that the geometry of the cell culture well plays a key role in cell entrapping and retaining autocrine and soluble factors. We subjected HL-60 cells, in the device, to a treatment regimen of 1.25% dimethylsulfoxide, every other day, to provoke differentiation and measured subsequent expression of CD11b on day 2 and day 4 and tumor necrosis factor-alpha (TNF-α) on day 4. Our findings display perfusion sensitive CD11b expression, but not TNF-α build-up, by day 4 of culture, with a 1:1 ratio of recirculation to refresh flow yielding the greatest increase in CD11b levels. RECIR-REFRESH facilitates programmable levels of cell differentiation in a HL-60 non-adherent cell population and can be expanded to other types of non-adherent cells such as hematopoietic stem cells. PMID:24753733

  18. Economic comparison of fabric filters and electrostatic precipitators for particulate control on coal-fired utility boilers

    NASA Technical Reports Server (NTRS)

    Cukor, P. M.; Chapman, R. A.

    1978-01-01

    The uncertainties and associated costs involved in selecting and designing a particulate control device to meet California's air emission regulations are considered. The basic operating principles of electrostatic precipitators and fabric filters are discussed, and design parameters are identified. The size and resulting cost of the control device as a function of design parameters is illustrated by a case study for an 800 MW coal-fired fired utility boiler burning a typical southwestern subbituminous coal. The cost of selecting an undersized particulate control device is compared with the cost of selecting an oversized device.

  19. Continuous and high-level in vivo delivery of endostatin from recombinant cells encapsulated in TheraCyte immunoisolation devices.

    PubMed

    Malavasi, N V; Rodrigues, D B; Chammas, R; Chura-Chambi, R M; Barbuto, J A M; Balduino, K; Nonogaki, S; Morganti, L

    2010-01-01

    Endostatin (ES) is a potent inhibitor of angiogenesis and tumor growth. Continuous ES delivery of ES improves the efficacy and potency of the antitumoral therapy. The TheraCyte system is a polytetrafluoroethylene (PTFE) semipermeable membrane macroencapsulation system for implantation of genetically engineered cells specially designed for the in vivo delivery of therapeutic proteins, such as ES, which circumvents the problem of limited half-life and variation in circulating levels. In order to enable neovascularization at the tissues adjacent to the devices prior to ES secretion by the cells inside them, we designed a scheme in which empty TheraCyte devices were preimplanted SC into immunodeficient mice. Only after healing (17 days later) were Chinese hamster ovary cells expressing ES injected into the preimplanted devices. In another model for device implantation, the cells expressing ES where loaded into the immunoisolation devices prior to implantation into the animals, and the TheraCyte were then immediately implanted SC into the mice. Throughout the 2-month study, constant high ES levels of up to 3.7 microg/ml were detected in the plasma of the mice preimplanted with the devices, while lower but also constant levels of ES (up to 2.1 microg/ml plasma) were detected in the mice that had received devices preloaded with the ES-expressing cells. Immunohistochemistry using anti-ES antibody showed reaction within the device and outside it, demonstrating that ES, secreted by the confined recombinant cells, permeated through the membrane and reached the surrounding tissues.

  20. Separation of cancer cells from a red blood cell suspension using inertial force.

    PubMed

    Tanaka, Tatsuya; Ishikawa, Takuji; Numayama-Tsuruta, Keiko; Imai, Yohsuke; Ueno, Hironori; Matsuki, Noriaki; Yamaguchi, Takami

    2012-11-07

    The circulating tumor cell (CTC) test has recently become popular for evaluating prognosis and treatment efficacy in cancer patients. The accuracy of the test is strongly dependent on the precision of the cancer cell separation. In this study, we developed a multistage microfluidic device to separate cancer cells from a red blood cell (RBC) suspension using inertial migration forces. The device was able to effectively remove RBCs up to the 1% hematocrit (Hct) condition with a throughput of 565 μL min(-1). The collection efficiency of cancer cells from a RBC suspension was about 85%, and the enrichment of cancer cells was about 120-fold. Further improvements can be easily achieved by parallelizing the device. These results illustrate that the separation of cancer cells from RBCs is possible using only inertial migration forces, thus paving the way for the development of a novel microfluidic device for future CTC tests.

  1. Design of a compact microfludic device for controllable cell distribution.

    PubMed

    Li, Jing-Liang; Day, Daniel; Gu, Min

    2010-11-21

    A compact microfluidic device with 96 microchambers allocated within four circular units was designed and examined for cell distribution. In each unit, cells were distributed to the surrounding chambers radially from the center. The circular arrangement of the chambers makes the design simple and compact. A controllable and quantitative cell distribution is achievable in this device. This design is significant to the microfluidic applications where controllable distribution of cells in multipule microchambers is demanded.

  2. Effects of device size and material on the bending performance of resistive-switching memory devices fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Lee, Won-Ho; Yoon, Sung-Min

    2017-05-01

    The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.

  3. Evaluation and refinement of a field-portable drinking water toxicity sensor utilizing electric cell-substrate impedance sensing and a fluidic biochip.

    PubMed

    Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H

    2015-07-01

    The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. Copyright © 2014 John Wiley & Sons, Ltd.

  4. An Optimized Method for Manufacturing a Clinical Scale Dendritic Cell-Based Vaccine for the Treatment of Glioblastoma

    PubMed Central

    Pogliani, Simona; Pellegatta, Serena; Antozzi, Carlo; Baggi, Fulvio; Gellera, Cinzia; Pollo, Bianca; Parati, Eugenio A.; Finocchiaro, Gaetano; Frigerio, Simona

    2012-01-01

    Immune-based treatments represent a promising new class of therapy designed to boost the immune system to specifically eradicate malignant cells. Immunotherapy may generate specific anti-tumor immune responses, and dendritic cells (DC), professional antigen-presenting cells, are widely used in experimental cancer immunotherapy. Several reports describe methods for the generation of mature, antigen-pulsed DC for clinical use. Improved quality and standardization are desirable to obtain GMP-compliant protocols. In this study we describe the generation of DC from 31 Glioblastoma (GB) patients starting from their monocytes isolated by immunomagnetic CD14 selection using the CliniMACS® device. Upon differentiation of CD14+ with IL-4 and GM-CSF, DC were induced to maturation with TNF-α, PGE2, IL-1β, and IL-6. Whole tumor lysate was obtained, for the first time, in a closed system using the semi-automated dissociator GentleMACS®. The yield of proteins improved by 130% compared to the manual dissociation method. Interestingly the Mean Fluorescence Intensity for CD83 increased significantly in DC pulsed with “new method” lysate compared to DC pulsed with “classical method” lysate. Our results indicate that immunomagnetic isolation of CD14+ monocytes using the CliniMACS® device and their pulsing with whole tumor lysate proteins is a suitable method for clinical-scale generation of high quality, functional DC under GMP-grade conditions. PMID:23284979

  5. Chemically reactive species in liquids generated by atmospheric-pressure plasmas and their roles in plasma medicine

    NASA Astrophysics Data System (ADS)

    Hamaguchi, Satoshi

    2013-07-01

    Plasmas whose gas temperatures are close to room temperature may be generated in ambient air or a gas at atmospheric pressure with the use of low-frequency high voltage or low-power radio-frequency (RF) or microwave power applied to electrodes. Such plasmas can serve as a powerful source of free radicals and/or chemically reactive species that arise from atoms and molecules of the ambient gas. Recently use of such plasmas for medical purposes has attracted much attention as they can be implemented in possible medical devices that can cause blood coagulation, heal wounds, facilitate angiogenesis, sterilize surgical devices as well as living tissues without harming healthy cells, and selectively inactivate cancer cells. Especially of interest among reactive species generated by atmospheric-pressure plasmas (APP) are reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated in liquid phase. Since most living tissues and cells are immersed in liquids (such as blood or culture media), reactive species generated by APPs in the gas phase are transported to the liquid phase and possibly converted to different types of reactive species therein before causing some influence on the tissues or cells. In this study, the rate equations are solved to evaluate concentrations of various reactive species in pure water that are originated by plasma reactions in atmosphere and possible effects of such species (including ROS/RNS) on living tissues and cells are discussed.

  6. Diabetes Is Reversed in a Murine Model by Marginal Mass Syngeneic Islet Transplantation Using a Subcutaneous Cell Pouch Device

    PubMed Central

    Pepper, Andrew R.; Pawlick, Rena; Gala-Lopez, Boris; MacGillivary, Amanda; Mazzuca, Delfina M.; White, David J. G.; Toleikis, Philip M.; Shapiro, A. M. James

    2015-01-01

    Background Islet transplantation is a successful β-cell replacement therapy for selected patients with type 1 diabetes mellitus. Although high rates of early insulin independence are achieved routinely, long-term function wanes over time. Intraportal transplantation is associated with procedural risks, requires multiple donors, and does not afford routine biopsy. Stem cell technologies may require potential for retrievability, and graft removal by hepatectomy is impractical. There is a clear clinical need for an alternative, optimized transplantation site. The subcutaneous space is a potential substitute, but transplantation of islets into this site has routinely failed to reverse diabetes. However, an implanted device, which becomes prevascularized before transplantation, may alter this equation. Methods Syngeneic mouse islets were transplanted subcutaneously within Sernova Corp's Cell Pouch (CP). All recipients were preimplanted with CPs 4 weeks before diabetes induction and transplantation. After transplantation, recipients were monitored for glycemic control and glucose tolerance. Results Mouse islets transplanted into the CP routinely restored glycemic control with modest delay and responded well to glucose challenge, comparable to renal subcapsular islet grafts, despite a marginal islet dose, and normoglycemia was maintained until graft explantation. In contrast, islets transplanted subcutaneously alone failed to engraft. Islets within CPs stained positively for insulin, glucagon, and microvessels. Conclusions The CP is biocompatible, forms an environment suitable for islet engraftment, and offers a potential alternative to the intraportal site for islet and future stem cell therapies. PMID:26308506

  7. Microelectroporation device for genomic screening

    DOEpatents

    Perroud, Thomas D.; Renzi, Ronald F.; Negrete, Oscar; Claudnic, Mark R.

    2014-09-09

    We have developed an microelectroporation device that combines microarrays of oligonucleotides, microfluidic channels, and electroporation for cell transfection and high-throughput screening applications (e.g. RNA interference screens). Microarrays allow the deposition of thousands of different oligonucleotides in microscopic spots. Microfluidic channels and microwells enable efficient loading of cells into the device and prevent cross-contamination between different oligonucleotides spots. Electroporation allows optimal transfection of nucleic acids into cells (especially hard-to-transfect cells such as primary cells) by minimizing cell death while maximizing transfection efficiency. This invention has the advantage of a higher throughput and lower cost, while preventing cross-contamination compared to conventional screening technologies. Moreover, this device does not require bulky robotic liquid handling equipment and is inherently safer given that it is a closed system.

  8. A membraneless single compartment abiotic glucose fuel cell

    NASA Astrophysics Data System (ADS)

    Slaughter, Gymama; Sunday, Joshua

    2014-09-01

    A simple energy harvesting strategy has been developed to selectively catalyze glucose in the presence of oxygen in a glucose/O2 fuel cell. The anode consists of an abiotic catalyst Al/Au/ZnO, in which ZnO seed layer was deposited on the surface of Al/Au substrate using hydrothermal method. The cathode is constructed from a single rod of platinum with an outer diameter of 500 μm. The abiotic glucose fuel cell was studied in phosphate buffer solution (pH 7.4) containing 5 mM glucose at a temperature of 22 °C. The cell is characterized according to its open-circuit voltage, polarization profile, and power density plot. Under these conditions, the abiotic glucose fuel cell possesses an open-circuit voltage of 840 mV and delivered a maximum power density of 16.2 μW cm-2 at a cell voltage of 495 mV. These characteristics are comparable to biofuel cell utilizing a much more complex system design. Such low-cost lightweight abiotic catalyzed glucose fuel cells have a great promise to be optimized, miniaturized to power bio-implantable devices.

  9. Effects of thermochemical treatment on CuSbS 2 photovoltaic absorber quality and solar cell reproducibility

    DOE PAGES

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; ...

    2016-08-01

    CuSbS 2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu 2ZnSnS 4. However, CuSbS 2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS 2 thin films, which consists of annealing in Sb 2S 3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS 2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime.more » These improvements also lead to more reproducible CuSbS 2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Altogether, these results point to the potential avenues to further increase the performance of CuSbS 2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.« less

  10. Engineering controllable bidirectional molecular motors based on myosin

    PubMed Central

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-01-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells1, and have potential applications in molecular detection and diagnostic devices2,3. Engineering molecular motors with dynamically controllable properties will allow selective perturbation of mechanical processes in living cells, and yield optimized device components for complex tasks such as molecular sorting and directed assembly3. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions4,5 and other signals6. Here we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies7–11 and guided by a structural model12 for the redirected power stroke of myosin VI, we constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our general strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should enable spatiotemporal control over a range of motor properties including processivity, stride size13, and branchpoint turning14. PMID:22343382

  11. Engineering controllable bidirectional molecular motors based on myosin

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Nakamura, Muneaki; Schindler, Tony D.; Parker, David; Bryant, Zev

    2012-04-01

    Cytoskeletal motors drive the transport of organelles and molecular cargoes within cells and have potential applications in molecular detection and diagnostic devices. Engineering molecular motors with controllable properties will allow selective perturbation of mechanical processes in living cells and provide optimized device components for tasks such as molecular sorting and directed assembly. Biological motors have previously been modified by introducing activation/deactivation switches that respond to metal ions and other signals. Here, we show that myosin motors can be engineered to reversibly change their direction of motion in response to a calcium signal. Building on previous protein engineering studies and guided by a structural model for the redirected power stroke of myosin VI, we have constructed bidirectional myosins through the rigid recombination of structural modules. The performance of the motors was confirmed using gliding filament assays and single fluorophore tracking. Our strategy, in which external signals trigger changes in the geometry and mechanics of myosin lever arms, should make it possible to achieve spatiotemporal control over a range of motor properties including processivity, stride size and branchpoint turning.

  12. Mitochondrial damage and cytoskeleton reorganization in human dermal fibroblasts exposed to artificial visible light similar to screen-emitted light.

    PubMed

    Rascalou, Adeline; Lamartine, Jérôme; Poydenot, Pauline; Demarne, Frédéric; Bechetoille, Nicolas

    2018-05-05

    Artificial visible light is everywhere in modern life. Social communication confronts us with screens of all kinds, and their use is on the rise. We are therefore increasingly exposed to artificial visible light, the effects of which on skin are poorly known. The purpose of this study was to model the artificial visible light emitted by electronic devices and assess its effect on normal human fibroblasts. The spectral irradiance emitted by electronic devices was optically measured and equipment was developed to accurately reproduce such artificial visible light. Effects on normal human fibroblasts were analyzed on human genome microarray-based gene expression analysis. At cellular level, visualization and image analysis were performed on the mitochondrial network and F-actin cytoskeleton. Cell proliferation, ATP release and type I procollagen secretion were also measured. We developed a device consisting of 36 LEDs simultaneously emitting blue, green and red light at distinct wavelengths (450 nm, 525 nm and 625 nm) with narrow spectra and equivalent radiant power for the three colors. A dose of 99 J/cm 2 artificial visible light was selected so as not to induce cell mortality following exposure. Microarray analysis revealed 2984 light-modulated transcripts. Functional annotation of light-responsive genes revealed several enriched functions including, amongst others, the "mitochondria" and "integrin signaling" categories. Selected results were confirmed by real-time quantitative PCR, analyzing 24 genes representing these two categories. Analysis of micro-patterned culture plates showed marked fragmentation of the mitochondrial network and disorganization of the F-actin cytoskeleton following exposure. Functionally, there was considerable impairment of cell growth and spread, ATP release and type I procollagen secretion in exposed fibroblasts. Artificial visible light induces drastic molecular and cellular changes in normal human fibroblasts. This may impede normal cellular functions and contribute to premature skin aging. The present results extend our knowledge of the effects of the low-energy wavelengths that are increasingly used to treat skin disorders. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  13. Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells.

    PubMed

    Fang, Chaolong; Zheng, Jun; Zhang, Yaoju; Li, Yijie; Liu, Siyuan; Wang, Weiji; Jiang, Tao; Zhao, Xuesong; Li, Zhihong

    2018-06-21

    Microlens arrays can improve light transmittance in optical devices or enhance the photoelectrical conversion efficiency of photovoltaic devices. Their surface morphology (aspect ratio and packed density) is vital to photon management in solar cells. Here, we report a 100% packed density paraboloidal microlens array (PMLA), with a large aspect ratio, fabricated by direct-write UV laser photolithography coupled with soft imprint lithography. Optical characterization shows that the PMLA structure can remarkably decrease the front-side reflectance of solar cell device. The measured electrical parameters of the solar cell device clearly and consistently demonstrate that the PMLA film can considerably improve the photoelectrical conversion efficiency. In addition, the PMLA film has superhydrophobic properties, verified by measurement of a large water contact angle, and can enhance the self-cleaning capability of solar cell devices.

  14. Macro to Nano: A Simple Method for Transporting Cultured Cells from Milliliter Scale to Nanoliter Scale

    PubMed Central

    Seale, Kevin T.; Faley, Shannon L.; Chamberlain, Jeff; Wikswo, John P.

    2013-01-01

    Microfluidic devices are well suited for the study of metabolism and paracrine and autocrine signaling because they allow steady or intermittent perfusion of biological cells at cell densities that approach those in living tissue. They also enable the study of small populations of rare cells. However, it can be difficult to introduce the cells into a microfluidic device to achieve and control such densities without damaging or clumping the cells. We describe simple procedures that address the problem of efficient introduction of cells and cell culture media into microfluidic devices using small bore polyetheretherketone (PEEK) tubing and Hamilton gastight syringes. Suspension or adherent cells grown in cell culture flasks are centrifuged and extracted directly from the centrifuge pellet into the end of the PEEK tubing by aspiration. The tube end is then coupled to pre-punched channels in the polydimethylsiloxane (PDMS) microfluidic device by friction fitting. Controlled depression of the syringe plunger expels the cells into the microfluidic device only seconds following aspiration. The gastight syringes and PEEK tubing with PEEK fittings provide a noncompliant source of pressure and suction with a rapid response time that is well suited for short-term intra-microfluidic cellular studies. The benefits of this method are its simplicity, modest expense, the short preparation time required for loading appropriate numbers of cells, and the applicability of the technique to small quantities of rare or expensive cells. This should in turn lead to new applications of microfludic devices to biology and medicine. PMID:20511682

  15. Pneumatic microfluidic cell compression device for high-throughput study of chondrocyte mechanobiology.

    PubMed

    Lee, Donghee; Erickson, Alek; You, Taesun; Dudley, Andrew T; Ryu, Sangjin

    2018-06-13

    Hyaline cartilage is a specialized type of connective tissue that lines many moveable joints (articular cartilage) and contributes to bone growth (growth plate cartilage). Hyaline cartilage is composed of a single cell type, the chondrocyte, which produces a unique hydrated matrix to resist compressive stress. Although compressive stress has profound effects on transcriptional networks and matrix biosynthesis in chondrocytes, mechanistic relationships between strain, signal transduction, cell metabolism, and matrix production remain superficial. Here, we describe development and validation of a polydimethylsiloxane (PDMS)-based pneumatic microfluidic cell compression device which generates multiple compression conditions in a single platform. The device contained an array of PDMS balloons of different sizes which were actuated by pressurized air, and the balloons compressed chondrocytes cells in alginate hydrogel constructs. Our characterization and testing of the device showed that the developed platform could compress chondrocytes with various magnitudes simultaneously with negligible effect on cell viability. Also, the device is compatible with live cell imaging to probe early effects of compressive stress, and it can be rapidly dismantled to facilitate molecular studies of compressive stress on transcriptional networks. Therefore, the proposed device will enhance the productivity of chondrocyte mechanobiology studies, and it can be applied to study mechanobiology of other cell types.

  16. Mechanical phenotyping of tumor cells using a microfluidic cell squeezer device

    NASA Astrophysics Data System (ADS)

    Khan, Zeina S.; Kamyabi, Nabiollah; Vanapalli, Siva A.

    2013-03-01

    Studies have indicated that cancer cells have distinct mechanical properties compared to healthy cells. We are investigating the potential of cell mechanics as a biophysical marker for diagnostics and prognosis of cancer. To establish the significance of mechanical properties for cancer diagnostics, a high throughput method is desired. Although techniques such as atomic force microscopy are very precise, they are limited in throughput for cellular mechanical property measurements. To develop a device for high throughput mechanical characterization of tumor cells, we have fabricated a microfludic cell squeezer device that contains narrow micrometer-scale pores. Fluid flow is used to drive cells into these pores mimicking the flow-induced passage of circulating tumor cells through microvasculature. By integrating high speed imaging, the device allows for the simultaneous characterization of five different parameters including the blockage pressure, cell velocity, cell size, elongation and the entry time into squeezer. We have tested a variety of in vitro cell lines, including brain and prostate cancer cell lines, and have found that the entry time is the most sensitive measurement capable of differentiating between cell lines with differing invasiveness.

  17. Comparative Evaluations of Randomly Selected Four Point-of-Care Glucometer Devices in Addis Ababa, Ethiopia.

    PubMed

    Wolde, Mistire; Tarekegn, Getahun; Kebede, Tedla

    2018-05-01

    Point-of-care glucometer (PoCG) devices play a significant role in self-monitoring of the blood sugar level, particularly in the follow-up of high blood sugar therapeutic response. The aim of this study was to evaluate blood glucose test results performed with four randomly selected glucometers on diabetes and control subjects versus standard wet chemistry (hexokinase) methods in Addis Ababa, Ethiopia. A prospective cross-sectional study was conducted on randomly selected 200 study participants (100 participants with diabetes and 100 healthy controls). Four randomly selected PoCG devices (CareSens N, DIAVUE Prudential, On Call Extra, i-QARE DS-W) were evaluated against hexokinase method and ISO 15197:2003 and ISO 15197:2013 standards. The minimum and maximum blood sugar values were recorded by CareSens N (21 mg/dl) and hexokinase method (498.8 mg/dl), respectively. The mean sugar values of all PoCG devices except On Call Extra showed significant differences compared with the reference hexokinase method. Meanwhile, all four PoCG devices had strong positive relationship (>80%) with the reference method (hexokinase). On the other hand, none of the four PoCG devices fulfilled the minimum accuracy measurement set by ISO 15197:2003 and ISO 15197:2013 standards. In addition, the linear regression analysis revealed that all four selected PoCG overestimated the glucose concentrations. The overall evaluation of the selected four PoCG measurements were poorly correlated with standard reference method. Therefore, before introducing PoCG devices to the market, there should be a standardized evaluation platform for validation. Further similar large-scale studies on other PoCG devices also need to be undertaken.

  18. Observing eye movements and the influence of cognition during a symbol search task: a comparison across three age groups.

    PubMed

    Perrin, Maxine; Robillard, Manon; Roy-Charland, Annie

    2017-12-01

    This study examined eye movements during a visual search task as well as cognitive abilities within three age groups. The aim was to explore scanning patterns across symbol grids and to better understand the impact of symbol location in AAC displays on speed and accuracy of symbol selection. For the study, 60 students were asked to locate a series of symbols on 16 cell grids. The EyeLink 1000 was used to measure eye movements, accuracy, and response time. Accuracy was high across all cells. Participants had faster response times, longer fixations, and more frequent fixations on symbols located in the middle of the grid. Group comparisons revealed significant differences for accuracy and reaction times. The Leiter-R was used to evaluate cognitive abilities. Sustained attention and cognitive flexibility scores predicted the participants' reaction time and accuracy in symbol selection. Findings suggest that symbol location within AAC devices and individuals' cognitive abilities influence the speed and accuracy of retrieving symbols.

  19. Local delivery of hormonal therapy with silastic tubing for prevention and treatment of breast cancer.

    PubMed

    Park, Jeenah; Thomas, Scott; Zhong, Allison Y; Wolfe, Alan R; Krings, Gregor; Terranova-Barberio, Manuela; Pawlowska, Nela; Benet, Leslie Z; Munster, Pamela N

    2018-01-08

    Broad use of germline testing has identified an increasing number of women at risk for breast cancer with a need for effective chemoprevention. We report a novel method to selectively deliver various anti-estrogens at high drug levels to the breast tissue by implanting a device comprised of silastic tubing. Optimized tubing properties allow elution of otherwise poorly bioavailable anti-estrogens, such as fulvestrant, into mammary tissue in vitro and in vivo with levels sufficient to inhibit estrogen receptor activation and tumor cell proliferation. Implantable silastic tubing delivers fulvestrant selectively to mouse mammary fat tissue for one year with anti-tumor effects similar to those achieved with systemic fulvestrant exposure. Furthermore, local delivery of fulvestrant significantly decreases cell proliferation, as assessed by Ki67 expression, most effectively in tumor sections adjacent to tubing. This approach may thereby introduce a potential paradigm shift and offer a promising alternative to systemic therapy for prevention and early interception of breast cancer.

  20. Cell Phone-Based System (Chaak) for Surveillance of Immatures of Dengue Virus Mosquito Vectors

    PubMed Central

    LOZANO–FUENTES, SAUL; WEDYAN, FADI; HERNANDEZ–GARCIA, EDGAR; SADHU, DEVADATTA; GHOSH, SUDIPTO; BIEMAN, JAMES M.; TEP-CHEL, DIANA; GARCÍA–REJÓN, JULIÁN E.; EISEN, LARS

    2014-01-01

    Capture of surveillance data on mobile devices and rapid transfer of such data from these devices into an electronic database or data management and decision support systems promote timely data analyses and public health response during disease outbreaks. Mobile data capture is used increasingly for malaria surveillance and holds great promise for surveillance of other neglected tropical diseases. We focused on mosquito-borne dengue, with the primary aims of: 1) developing and field-testing a cell phone-based system (called Chaak) for capture of data relating to the surveillance of the mosquito immature stages, and 2) assessing, in the dengue endemic setting of Mérida, México, the cost-effectiveness of this new technology versus paper-based data collection. Chaak includes a desktop component, where a manager selects premises to be surveyed for mosquito immatures, and a cell phone component, where the surveyor receives the assigned tasks and captures the data. Data collected on the cell phone can be transferred to a central database through different modes of transmission, including near-real time where data are transferred immediately (e.g., over the Internet) or by first storing data on the cell phone for future transmission. Spatial data are handled in a novel, semantically driven, geographic information system. Compared with a pen-and-paper-based method, use of Chaak improved the accuracy and increased the speed of data transcription into an electronic database. The cost-effectiveness of using the Chaak system will depend largely on the up-front cost of purchasing cell phones and the recurring cost of data transfer over a cellular network. PMID:23926788

  1. Implementing oxygen control in chip-based cell and tissue culture systems.

    PubMed

    Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth

    2016-09-21

    Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.

  2. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOEpatents

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  3. 3D nanostructured inkjet printed graphene via UV-pulsed laser irradiation enables paper-based electronics and electrochemical devices.

    PubMed

    Das, Suprem R; Nian, Qiong; Cargill, Allison A; Hondred, John A; Ding, Shaowei; Saei, Mojib; Cheng, Gary J; Claussen, Jonathan C

    2016-09-21

    Emerging research on printed and flexible graphene-based electronics is beginning to show tremendous promise for a wide variety of fields including wearable sensors and thin film transistors. However, post-print annealing/reduction processes that are necessary to increase the electrical conductivity of the printed graphene degrade sensitive substrates (e.g., paper) and are whole substrate processes that are unable to selectively anneal/reduce only the printed graphene-leaving sensitive device components exposed to damaging heat or chemicals. Herein a pulsed laser process is introduced that can selectively irradiate inkjet printed reduced graphene oxide (RGO) and subsequently improve the electrical conductivity (Rsheet∼0.7 kΩ□(-1)) of printed graphene above previously published reports. Furthermore, the laser process is capable of developing 3D petal-like graphene nanostructures from 2D planar printed graphene. These visible morphological changes display favorable electrochemical sensing characteristics-ferricyanide cyclic voltammetry with a redox peak separation (ΔEp) ≈ 0.7 V as well as hydrogen peroxide (H2O2) amperometry with a sensitivity of 3.32 μA mM(-1) and a response time of <5 s. Thus this work paves the way for not only paper-based electronics with graphene circuits, it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells, and theranostic devices.

  4. MemFlash device: floating gate transistors as memristive devices for neuromorphic computing

    NASA Astrophysics Data System (ADS)

    Riggert, C.; Ziegler, M.; Schroeder, D.; Krautschneider, W. H.; Kohlstedt, H.

    2014-10-01

    Memristive devices are promising candidates for future non-volatile memory applications and mixed-signal circuits. In the field of neuromorphic engineering these devices are especially interesting to emulate neuronal functionality. Therefore, new materials and material combinations are currently investigated, which are often not compatible with Si-technology processes. The underlying mechanisms of the device often remain unclear and are paired with low device endurance and yield. These facts define the current most challenging development tasks towards a reliable memristive device technology. In this respect, the MemFlash concept is of particular interest. A MemFlash device results from a diode configuration wiring scheme of a floating gate transistor, which enables the persistent device resistance to be varied according to the history of the charge flow through the device. In this study, we investigate the scaling conditions of the floating gate oxide thickness with respect to possible applications in the field of neuromorphic engineering. We show that MemFlash cells exhibit essential features with respect to neuromorphic applications. In particular, cells with thin floating gate oxides show a limited synaptic weight growth together with low energy dissipation. MemFlash cells present an attractive alternative for state-of-art memresitive devices. The emulation of associative learning is discussed by implementing a single MemFlash cell in an analogue circuit.

  5. High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection.

    PubMed

    Autebert, Julien; Coudert, Benoit; Champ, Jérôme; Saias, Laure; Guneri, Ezgi Tulukcuoglu; Lebofsky, Ronald; Bidard, François-Clément; Pierga, Jean-Yves; Farace, Françoise; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis

    2015-05-07

    A new generation of the Ephesia cell capture technology optimized for CTC capture and genetic analysis is presented, characterized in depth and compared with the CellSearch system as a reference. This technology uses magnetic particles bearing tumour-cell specific EpCAM antibodies, self-assembled in a regular array in a microfluidic flow cell. 48,000 high aspect-ratio columns are generated using a magnetic field in a high throughput (>3 ml h(-1)) device and act as sieves to specifically capture the cells of interest through antibody-antigen interactions. Using this device optimized for CTC capture and analysis, we demonstrated the capture of epithelial cells with capture efficiency above 90% for concentrations as low as a few cells per ml. We showed the high specificity of capture with only 0.26% of non-epithelial cells captured for concentrations above 10 million cells per ml. We investigated the capture behavior of cells in the device, and correlated the cell attachment rate with the EpCAM expression on the cell membranes for six different cell lines. We developed and characterized a two-step blood processing method to allow for rapid processing of 10 ml blood tubes in less than 4 hours, and showed a capture rate of 70% for as low as 25 cells spiked in 10 ml blood tubes, with less than 100 contaminating hematopoietic cells. Using this device and procedure, we validated our system on patient samples using an automated cell immunostaining procedure and a semi-automated cell counting method. Our device captured CTCs in 75% of metastatic prostate cancer patients and 80% of metastatic breast cancer patients, and showed similar or better results than the CellSearch device in 10 out of 13 samples. Finally, we demonstrated the possibility of detecting cancer-related PIK3CA gene mutation in 20 cells captured in the chip with a good correlation between the cell count and the quantitation value Cq of the post-capture qPCR.

  6. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of configurations both with and without buffer layers. All structures were characterized by reciprocal space x-ray diffraction to determine epilayer composition and residual strain. Electrical characterization of the devices was performed to examine the effect of the buffer on the device performance. The effect of the buffer structure depends upon where it is positioned. When near the emitter region, a 2.6x increase in dark current was measured, whereas no change in dark current was observed when it was near the base region.

  7. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles.

    PubMed

    Channon, Robert B; Yang, Yuanyuan; Feibelman, Kristen M; Geiss, Brian J; Dandy, David S; Henry, Charles S

    2018-06-19

    Viral pathogens are a serious health threat around the world, particularly in resource limited settings, where current sensing approaches are often insufficient and slow, compounding the spread and burden of these pathogens. Here, we describe a label-free, point-of-care approach toward detection of virus particles, based on a microfluidic paper-based analytical device with integrated microwire Au electrodes. The device is initially characterized through capturing of streptavidin modified nanoparticles by biotin-modified microwires. An order of magnitude improvement in detection limits is achieved through use of a microfluidic device over a classical static paper-based device, due to enhanced mass transport and capturing of particles on the modified electrodes. Electrochemical impedance spectroscopy detection of West Nile virus particles was carried out using antibody functionalized Au microwires, achieving a detection limit of 10.2 particles in 50 μL of cell culture media. No increase in signal is found on addition of an excess of a nonspecific target (Sindbis). This detection motif is significantly cheaper (∼$1 per test) and faster (∼30 min) than current methods, while achieving the desired selectivity and sensitivity. This sensing motif represents a general platform for trace detection of a wide range of biological pathogens.

  8. Integrated biocircuits: engineering functional multicellular circuits and devices.

    PubMed

    Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang

    2018-04-01

    Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.

  9. Integrated biocircuits: engineering functional multicellular circuits and devices

    NASA Astrophysics Data System (ADS)

    Prox, Jordan; Smith, Tory; Holl, Chad; Chehade, Nick; Guo, Liang

    2018-04-01

    Objective. Implantable neurotechnologies have revolutionized neuromodulatory medicine for treating the dysfunction of diseased neural circuitry. However, challenges with biocompatibility and lack of full control over neural network communication and function limits the potential to create more stable and robust neuromodulation devices. Thus, we propose a platform technology of implantable and programmable cellular systems, namely Integrated Biocircuits, which use only cells as the functional components of the device. Approach. We envision the foundational principles for this concept begins with novel in vitro platforms used for the study and reconstruction of cellular circuitry. Additionally, recent advancements in organoid and 3D culture systems account for microenvironment factors of cytoarchitecture to construct multicellular circuits as they are normally formed in the brain. We explore the current state of the art of these platforms to provide knowledge of their advancements in circuit fabrication and identify the current biological principles that could be applied in designing integrated biocircuit devices. Main results. We have highlighted the exemplary methodologies and techniques of in vitro circuit fabrication and propose the integration of selected controllable parameters, which would be required in creating suitable biodevices. Significance. We provide our perspective and propose new insights into the future of neuromodulaion devices within the scope of living cellular systems that can be applied in designing more reliable and biocompatible stimulation-based neuroprosthetics.

  10. Micro-patterned agarose gel devices for single-cell high-throughput microscopy of E. coli cells.

    PubMed

    Priest, David G; Tanaka, Nobuyuki; Tanaka, Yo; Taniguchi, Yuichi

    2017-12-21

    High-throughput microscopy of bacterial cells elucidated fundamental cellular processes including cellular heterogeneity and cell division homeostasis. Polydimethylsiloxane (PDMS)-based microfluidic devices provide advantages including precise positioning of cells and throughput, however device fabrication is time-consuming and requires specialised skills. Agarose pads are a popular alternative, however cells often clump together, which hinders single cell quantitation. Here, we imprint agarose pads with micro-patterned 'capsules', to trap individual cells and 'lines', to direct cellular growth outwards in a straight line. We implement this micro-patterning into multi-pad devices called CapsuleHotel and LineHotel for high-throughput imaging. CapsuleHotel provides ~65,000 capsule structures per mm 2 that isolate individual Escherichia coli cells. In contrast, LineHotel provides ~300 line structures per mm that direct growth of micro-colonies. With CapsuleHotel, a quantitative single cell dataset of ~10,000 cells across 24 samples can be acquired and analysed in under 1 hour. LineHotel allows tracking growth of > 10 micro-colonies across 24 samples simultaneously for up to 4 generations. These easy-to-use devices can be provided in kit format, and will accelerate discoveries in diverse fields ranging from microbiology to systems and synthetic biology.

  11. Improved Short-Circuit Protection for Power Cells in Series

    NASA Technical Reports Server (NTRS)

    Davies, Francis

    2008-01-01

    A scheme for protection against short circuits has been devised for series strings of lithium electrochemical cells that contain built-in short-circuit protection devices, which go into a high-resistance, current-limiting state when heated by excessive current. If cells are simply connected in a long series string to obtain a high voltage and a short circuit occurs, whichever short-circuit protection device trips first is exposed to nearly the full string voltage, which, typically, is large enough to damage the device. Depending on the specific cell design, the damage can defeat the protective function, cause a dangerous internal short circuit in the affected cell, and/or cascade to other cells. In the present scheme, reverse diodes rated at a suitably high current are connected across short series sub-strings, the lengths of which are chosen so that when a short-circuit protection device is tripped, the voltage across it does not exceed its rated voltage. This scheme preserves the resetting properties of the protective devices. It provides for bypassing of cells that fail open and limits cell reversal, though not as well as does the more-expensive scheme of connecting a diode across every cell.

  12. Porous AgPt@Pt Nanooctahedra as an Efficient Catalyst toward Formic Acid Oxidation with Predominant Dehydrogenation Pathway.

    PubMed

    Jiang, Xian; Yan, Xiaoxiao; Ren, Wangyu; Jia, Yufeng; Chen, Jianian; Sun, Dongmei; Xu, Lin; Tang, Yawen

    2016-11-16

    For direct formic acid fuel cells (DFAFCs), the dehydrogenation pathway is a desired reaction pathway, to boost the overall cell efficiency. Elaborate composition tuning and nanostructure engineering provide two promising strategies to design efficient electrocatalysts for DFAFCs. Herein, we present a facile synthesis of porous AgPt bimetallic nanooctahedra with enriched Pt surface (denoted as AgPt@Pt nanooctahedra) by a selective etching strategy. The smart integration of geometric and electronic effect confers a substantial enhancement of desired dehydrogenation pathway as well as electro-oxidation activity for the formic acid oxidation reaction (FAOR). We anticipate that the obtained nanocatalyst may hold great promises in fuel cell devices, and furthermore, the facile synthetic strategy demonstrated here can be extendable for the fabrication of other multicomponent nanoalloys with desirable morphologies and enhanced electrocatalytic performances.

  13. Time-dependent efficiency measurements of polymer solar cells with dye additives: unexpected initial increase of efficiency

    NASA Astrophysics Data System (ADS)

    Bandaccari, Kyle J.; Chesmore, Grace E.; Bugaj, Mitchel; Valverde, Parisa Tajalli-Tehrani; Barber, Richard P.; McNelis, Brian J.

    2018-04-01

    We report the effects of the addition of two azo-dye additives on the time-dependent efficiency of polymer solar cells. Although the maximum efficiencies of devices containing different amounts of dye do not vary greatly over the selected concentration range, the time dependence results reveal a surprising initial increase in efficiency in some samples. We observe this effect to be correlated with a leakage current, although a specific mechanism is not yet identified. We also present the measured lifetimes of these solar cells, and find that variations in dye concentrations produce a small effect at most. Characterization of the bulk heterojunction layer (active layer) morphology using atomic-force microscope (AFM) imaging reveals reordering patterns which suggest that the primary effects of the dyes arise via structural, not absorptive, characteristics.

  14. Inverted organic electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Small, Cephas E.

    The research and development of organic electronics for commercial application has received much attention due to the unique properties of organic semiconductors and the potential for low-cost high-throughput manufacturing. For improved large-scale processing compatibility and enhanced device stability, an inverted geometry has been employed for devices such as organic light emitting diodes and organic photovoltaic cells. These improvements are attributed to the added flexibility to incorporate more air-stable materials into the inverted device geometry. However, early work on organic electronic devices with an inverted geometry typically showed reduced device performance compared to devices with a conventional structure. In the case of organic light emitting diodes, inverted devices typically show high operating voltages due to insufficient carrier injection. Here, a method for enhancing hole injection in inverted organic electronic devices is presented. By incorporating an electron accepting interlayer into the inverted device, a substantial enhancement in hole injection efficiency was observed as compared to conventional devices. Through a detailed carrier injection study, it is determined that the injection efficiency enhancements in the inverted devices are due to enhanced charge transfer at the electron acceptor/organic semiconductor interface. A similar situation is observed for organic photovoltaic cells, in which devices with an inverted geometry show limited carrier extraction in early studies. In this work, enhanced carrier extraction is demonstrated for inverted polymer solar cells using a surface-modified ZnO-polymer composite electron-transporting layer. The insulating polymer in the composite layer inhibited aggregation of the ZnO nanoparticles, while the surface-modification of the composite interlayer improved the electronic coupling with the photoactive layer. As a result, inverted polymer solar cells with power conversion efficiencies of over 8% were obtained. To further study carrier extraction in inverted polymer solar cells, the active layer thickness dependence of the efficiency was investigated. For devices with active layer thickness < 200 nm, power conversion efficiencies over 8% was obtained. This result is important for demonstrating improved large-scale processing compatibility. Above 200 nm, significant reduction in cell efficiency were observed. A detailed study of the loss processes that contributed to the reduction in efficiency for thick-film devices are presented.

  15. Thermal and optical characterization of biologically synthesized ZnS nanoparticles synthesized from an endophytic fungus Aspergillus flavus: A colorimetric probe in metal detection

    NASA Astrophysics Data System (ADS)

    Uddandarao, Priyanka; Balakrishnan, Raj Mohan

    2017-03-01

    Nanostructured semiconductor materials are of great importance for several technological applications due to their optical and thermal properties. The design and fabrication of metal sulfide nanoparticles with tunable properties for advanced applications have drawn a great deal of attention in the field of nanotechnology. ZnS is a potential II-IV group material which is used in hetero-junction solar cells, light emitting diodes, optoelectronic devices, electro luminescent devices and photovoltaic cells. Due to their multiple applications, there is a need to elucidate their thermal and optical properties. In the present study, thermal and optical properties of biologically synthesized ZnS nanoparticles are determined in detail with Thermal Gravimetric Analysis (TGA), Derivative Thermogravimetric Analysis (DTG), Differential Scanning Calorimeter (DSC), Diffuse Reflectance Spectroscopy (DRS), Photoluminescence (PL) and Raman spectroscopy. The results reveal that ZnS NPs exhibit a very strong quantum confinement with a significant increase in their optical band gap energy. These biologically synthesized ZnS NPs contain protein residues that can selectively bind with metal ions in aqueous solutions and can exhibit an aggregation-induced color change. This phenomenon is utilized to quantitatively measure the metal concentrations of Cu2 + and Mn2 + in this study. Further the stability of nanoparticles for the metal sensing process is accessed by UV-Vis spectrometer, zeta potential and cyclic voltammeter. The selectivity and sensitivity of ZnS NPs indicate its potential use as a sensor for metal detection in the ecosystem.

  16. Portable widefield imaging device for ICG-detection of the sentinel lymph node

    NASA Astrophysics Data System (ADS)

    Govone, Angelo Biasi; Gómez-García, Pablo Aurelio; Carvalho, André Lopes; Capuzzo, Renato de Castro; Magalhães, Daniel Varela; Kurachi, Cristina

    2015-06-01

    Metastasis is one of the major cancer complications, since the malignant cells detach from the primary tumor and reaches other organs or tissues. The sentinel lymph node (SLN) is the first lymphatic structure to be affected by the malignant cells, but its location is still a great challenge for the medical team. This occurs due to the fact that the lymph nodes are located between the muscle fibers, making it visualization difficult. Seeking to aid the surgeon in the detection of the SLN, the present study aims to develop a widefield fluorescence imaging device using the indocyanine green as fluorescence marker. The system is basically composed of a 780nm illumination unit, optical components for 810nm fluorescence detection, two CCD cameras, a laptop, and dedicated software. The illumination unit has 16 diode lasers. A dichroic mirror and bandpass filters select and deliver the excitation light to the interrogated tissue, and select and deliver the fluorescence light to the camera. One camera is responsible for the acquisition of visible light and the other one for the acquisition of the ICG fluorescence. The software developed at the LabVIEW® platform generates a real time merged image where it is possible to observe the fluorescence spots, related to the lymph nodes, superimposed at the image under white light. The system was tested in a mice model, and a first patient with tongue cancer was imaged. Both results showed the potential use of the presented fluorescence imaging system assembled for sentinel lymph node detection.

  17. Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Koog

    2011-03-01

    An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.

  18. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells

    PubMed Central

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-01-01

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution. PMID:26961061

  19. Asymmetrical Deterministic Lateral Displacement Gaps for Dual Functions of Enhanced Separation and Throughput of Red Blood Cells.

    PubMed

    Zeming, Kerwin Kwek; Salafi, Thoriq; Chen, Chia-Hung; Zhang, Yong

    2016-03-10

    Deterministic lateral displacement (DLD) method for particle separation in microfluidic devices has been extensively used for particle separation in recent years due to its high resolution and robust separation. DLD has shown versatility for a wide spectrum of applications for sorting of micro particles such as parasites, blood cells to bacteria and DNA. DLD model is designed for spherical particles and efficient separation of blood cells is challenging due to non-uniform shape and size. Moreover, separation in sub-micron regime requires the gap size of DLD systems to be reduced which exponentially increases the device resistance, resulting in greatly reduced throughput. This paper shows how simple application of asymmetrical DLD gap-size by changing the ratio of lateral-gap (GL) to downstream-gap (GD) enables efficient separation of RBCs without greatly restricting throughput. This method reduces the need for challenging fabrication of DLD pillars and provides new insight to the current DLD model. The separation shows an increase in DLD critical diameter resolution (separate smaller particles) and increase selectivity for non-spherical RBCs. The RBCs separate better as compared to standard DLD model with symmetrical gap sizes. This method can be applied to separate non-spherical bacteria or sub-micron particles to enhance throughput and DLD resolution.

  20. An experimental approach to identify dynamical models of transcriptional regulation in living cells

    NASA Astrophysics Data System (ADS)

    Fiore, G.; Menolascina, F.; di Bernardo, M.; di Bernardo, D.

    2013-06-01

    We describe an innovative experimental approach, and a proof of principle investigation, for the application of System Identification techniques to derive quantitative dynamical models of transcriptional regulation in living cells. Specifically, we constructed an experimental platform for System Identification based on a microfluidic device, a time-lapse microscope, and a set of automated syringes all controlled by a computer. The platform allows delivering a time-varying concentration of any molecule of interest to the cells trapped in the microfluidics device (input) and real-time monitoring of a fluorescent reporter protein (output) at a high sampling rate. We tested this platform on the GAL1 promoter in the yeast Saccharomyces cerevisiae driving expression of a green fluorescent protein (Gfp) fused to the GAL1 gene. We demonstrated that the System Identification platform enables accurate measurements of the input (sugars concentrations in the medium) and output (Gfp fluorescence intensity) signals, thus making it possible to apply System Identification techniques to obtain a quantitative dynamical model of the promoter. We explored and compared linear and nonlinear model structures in order to select the most appropriate to derive a quantitative model of the promoter dynamics. Our platform can be used to quickly obtain quantitative models of eukaryotic promoters, currently a complex and time-consuming process.

Top